1
|
Ashraf A, Huang Y, Choroomi A, Johnson K, Torres J, Chung EJ. Endothelial-targeting miR-145 micelles restore barrier function and exhibit atheroprotective effects. NANOSCALE HORIZONS 2025; 10:976-986. [PMID: 40130343 DOI: 10.1039/d4nh00613e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Atherosclerosis remains the leading cause of death worldwide and is characterized by the accumulation of plaque beneath the endothelium. MicroRNA-145-5p (miR-145), which is downregulated in atherosclerosis, has been shown to mitigate plaque development by promoting the contractile vascular smooth muscle cell (VSMC) phenotype. Previously, our lab found that miR-145 micelles conjugated with MCP-1 peptides were able to inhibit atherosclerosis by targeting diseased VSMC via C-C chemokine receptor 2 (CCR2). Diseased endothelial cells similarly express CCR2; however, the impact of miR-145 micelles on endothelial cell function has not been explored. Thus, in this study, the in vitro therapeutic effects of miR-145 micelles in modulating the endothelium during atherosclerosis are evaluated. To that end, the MCP-1 peptide density on the micelle surface was first optimized for activated endothelial cell binding, followed by loading miR-145 into micelles with the optimal MCP-1 ratio. Following characterization, miR-145 micelle treatment of activated endothelial cells resulted in efficient miR-145 transfection, upregulation of atheroprotective genes, and suppression of atherogenic genes. Furthermore, the treatment enhanced the integrity of endothelial tight junctions and reduced monocyte migration. This work establishes miR-145 micelles as an effective nanotherapeutic for restoring endothelial cell health in cardiovascular disease for the first time.
Collapse
Affiliation(s)
- Anisa Ashraf
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Yi Huang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Auveen Choroomi
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Kyla Johnson
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Jocelynn Torres
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| |
Collapse
|
2
|
Delshad M, Sanaei MJ, Mohammadi MH, Sadeghi A, Bashash D. Exosomal Biomarkers: A Comprehensive Overview of Diagnostic and Prognostic Applications in Malignant and Non-Malignant Disorders. Biomolecules 2025; 15:587. [PMID: 40305328 PMCID: PMC12024574 DOI: 10.3390/biom15040587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 05/02/2025] Open
Abstract
Exosomes are small extracellular vesicles, ranging from 30 to 150 nm, that are essential in cell biology, mediating intercellular communication and serving as biomarkers due to their origin from cells. Exosomes as biomarkers for diagnosing various illnesses have gained significant investigation due to the high cost and invasive nature of current diagnostic procedures. Exosomes have a clear advantage in the diagnosis of diseases because they include certain signals that are indicative of the genetic and proteomic profile of the ailment. This feature gives them the potential to be useful liquid biopsies for real-time, noninvasive monitoring, enabling early cancer identification for the creation of individualized treatment plans. According to our analysis, the trend toward utilizing exosomes as diagnostic and prognostic tools has raised since 2012. In this regard, the proportion of malignant indications is higher compared with non-malignant ones. To be precise, exosomes have been used the most in gastrointestinal, thoracic, and urogenital cancers, along with cardiovascular, diabetic, breathing, infectious, and brain disorders. To the best of our knowledge, this is the first research to examine all registered clinical trials that look at exosomes as a diagnostic and prognostic biomarker.
Collapse
Affiliation(s)
- Mahda Delshad
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
- Department of Laboratory Sciences, School of Allied Medical Sciences, Zanjan University of Medical Sciences, Zanjan 1411718541, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
| | - Mohammad Hossein Mohammadi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717411, Iran;
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
| |
Collapse
|
3
|
Zimbru RI, Zimbru EL, Bojin FM, Haidar L, Andor M, Harich OO, Tănasie G, Tatu C, Mailat DE, Zbîrcea IM, Hirtie B, Uța C, Bănărescu CF, Panaitescu C. Connecting the Dots: How MicroRNAs Link Asthma and Atherosclerosis. Int J Mol Sci 2025; 26:3570. [PMID: 40332077 PMCID: PMC12026532 DOI: 10.3390/ijms26083570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
Asthma and atherosclerosis are chronic conditions with distinct pathophysiologies, but overlapping inflammatory mechanisms that suggest a potential common regulatory framework. MicroRNAs (miRNAs), small non-coding RNA molecules that modulate gene expression post-transcriptionally, could be key players in linking these disorders. This review outlines how miRNAs contribute to the complex interplay between asthma and atherosclerosis, focusing on key miRNAs involved in inflammatory pathways, immune cell regulation and vascular remodeling. We discuss specific miRNAs, such as miR-155, miR-21 and miR-146a, which have been shown to modulate inflammatory cytokine production and T cell differentiation, impacting respiratory and cardiovascular health. The common miRNAs found in both asthma and atherosclerosis emphasize their role as potential biomarkers, but also as therapeutic targets. Understanding these molecular connections may unlock novel approaches for innovative, integrated treatment strategies that address both conditions and may significantly improve patient outcomes. Further research is needed to explore mechanistic pathways and validate the translational potential of miRNA-based interventions in preclinical and clinical settings.
Collapse
Affiliation(s)
- Răzvan-Ionuț Zimbru
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.)
- Research Center for Gene and Cellular Therapies in the Treatment of Cancer—OncoGen, Timis County Emergency Clinical Hospital “Pius Brinzeu”, 156 Liviu Rebreanu Bd., 300723 Timisoara, Romania
| | - Elena-Larisa Zimbru
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.)
- Research Center for Gene and Cellular Therapies in the Treatment of Cancer—OncoGen, Timis County Emergency Clinical Hospital “Pius Brinzeu”, 156 Liviu Rebreanu Bd., 300723 Timisoara, Romania
- Multidisciplinary Heart Research Center, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Florina-Maria Bojin
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.)
- Research Center for Gene and Cellular Therapies in the Treatment of Cancer—OncoGen, Timis County Emergency Clinical Hospital “Pius Brinzeu”, 156 Liviu Rebreanu Bd., 300723 Timisoara, Romania
- Timis County Emergency Clinical Hospital “Pius Brinzeu”, 156 Liviu Rebreanu Bd., 300723 Timisoara, Romania
| | - Laura Haidar
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.)
| | - Minodora Andor
- Multidisciplinary Heart Research Center, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Cardiology Clinic, Timisoara Municipal Clinical Emergency Hospital, 12 Revoluției din 1989 Bd., 300040 Timisoara, Romania
| | - Octavia Oana Harich
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.)
| | - Gabriela Tănasie
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.)
- Research Center for Gene and Cellular Therapies in the Treatment of Cancer—OncoGen, Timis County Emergency Clinical Hospital “Pius Brinzeu”, 156 Liviu Rebreanu Bd., 300723 Timisoara, Romania
- Timis County Emergency Clinical Hospital “Pius Brinzeu”, 156 Liviu Rebreanu Bd., 300723 Timisoara, Romania
| | - Carmen Tatu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.)
- Research Center for Gene and Cellular Therapies in the Treatment of Cancer—OncoGen, Timis County Emergency Clinical Hospital “Pius Brinzeu”, 156 Liviu Rebreanu Bd., 300723 Timisoara, Romania
- Timis County Emergency Clinical Hospital “Pius Brinzeu”, 156 Liviu Rebreanu Bd., 300723 Timisoara, Romania
| | - Diana-Evelyne Mailat
- Multidisciplinary Heart Research Center, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Cardiology Clinic, Timisoara Municipal Clinical Emergency Hospital, 12 Revoluției din 1989 Bd., 300040 Timisoara, Romania
| | - Iulia-Maria Zbîrcea
- Department of Automation and Applied Informatics, “Politehnica” University of Timisoara, 300006 Timișoara, Romania
| | - Bogdan Hirtie
- ENT Department, “Victor Babes” University of Medicine and Pharmacy, 300042 Timișoara, Romania
| | - Cristina Uța
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.)
- Timis County Emergency Clinical Hospital “Pius Brinzeu”, 156 Liviu Rebreanu Bd., 300723 Timisoara, Romania
| | - Camelia-Felicia Bănărescu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.)
- Timis County Emergency Clinical Hospital “Pius Brinzeu”, 156 Liviu Rebreanu Bd., 300723 Timisoara, Romania
| | - Carmen Panaitescu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (R.-I.Z.)
- Research Center for Gene and Cellular Therapies in the Treatment of Cancer—OncoGen, Timis County Emergency Clinical Hospital “Pius Brinzeu”, 156 Liviu Rebreanu Bd., 300723 Timisoara, Romania
- Timis County Emergency Clinical Hospital “Pius Brinzeu”, 156 Liviu Rebreanu Bd., 300723 Timisoara, Romania
| |
Collapse
|
4
|
Cheng CK, Wang N, Wang L, Huang Y. Biophysical and Biochemical Roles of Shear Stress on Endothelium: A Revisit and New Insights. Circ Res 2025; 136:752-772. [PMID: 40146803 PMCID: PMC11949231 DOI: 10.1161/circresaha.124.325685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Hemodynamic shear stress, the frictional force exerted by blood flow on the endothelium, mediates vascular homeostasis. This review examines the biophysical nature and biochemical effects of shear stress on endothelial cells, with a particular focus on its impact on cardiovascular pathophysiology. Atherosclerosis develops preferentially at arterial branches and curvatures, where disturbed flow patterns are most prevalent. The review also highlights the range of shear stress across diverse human arteries and its temporal variations, including aging-related alterations. This review presents a summary of the critical mechanosensors and flow-sensitive effectors that respond to shear stress, along with the downstream cellular events that they regulate. The review evaluates experimental models for studying shear stress in vitro and in vivo, as well as their potential limitations. The review discusses strategies targeting shear stress, including pharmacological approaches, physiological means, surgical interventions, and gene therapies. Furthermore, the review addresses emerging perspectives in hemodynamic research, including single-cell sequencing, spatial omics, metabolomics, and multiomics technologies. By integrating the biophysical and biochemical aspects of shear stress, this review offers insights into the complex interplay between hemodynamics and endothelial homeostasis at the preclinical and clinical levels.
Collapse
Affiliation(s)
- Chak Kwong Cheng
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, China (C.K.C., L.W., Y.H.)
| | - Nanping Wang
- Laboratory for Molecular Vascular Biology and Bioengineering, and Wuhu Hospital, Health Science Center, East China Normal University, Shanghai (N.W.)
| | - Li Wang
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, China (C.K.C., L.W., Y.H.)
| | - Yu Huang
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, China (C.K.C., L.W., Y.H.)
| |
Collapse
|
5
|
Li C, Fang F, Wang E, Yang H, Yang X, Wang Q, Si L, Zhang Z, Liu X. Engineering extracellular vesicles derived from endothelial cells sheared by laminar flow for anti-atherosclerotic therapy through reprogramming macrophage. Biomaterials 2025; 314:122832. [PMID: 39270628 DOI: 10.1016/j.biomaterials.2024.122832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Extracellular vesicles (EVs) secreted by endothelial cells in response to blood laminar flow play a crucial role in maintaining vascular homeostasis. However, the potential of these EVs to modulate the immune microenvironment within plaques for treating atherosclerosis remains unclear. Here, we present compelling evidence that EVs secreted by endothelial cells sheared by atheroprotective laminar shear stress (LSS-EVs) exhibit excellent immunoregulatory effects against atherosclerosis. LSS-EVs demonstrated a robust capacity to induce the conversion of M1-type macrophages into M2-type macrophages. Mechanistic investigations confirmed that LSS-EVs were enriched in miR-34c-5p and reprogrammed macrophages by targeting the TGF-β-Smad3 signaling pathway. Moreover, we employed click chemistry to modify hyaluronic acid (HA) on the surface of LSS-EVs, enabling specific binding to the CD44 receptor expressed by inflammatory macrophages within plaques. These HA-modified LSS-EVs (HA@LSS-EVs) exhibited exceptional abilities for targeting atherosclerosis and demonstrated promising therapeutic effects both in vitro and in vivo.
Collapse
Affiliation(s)
- Chunli Li
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Fei Fang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Erxiang Wang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Hanqiao Yang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xinrui Yang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Qiwei Wang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Longlong Si
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhen Zhang
- Department of Cardiology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610036, China.
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Li X, Hallajzadeh J. Circulating microRNAs and physical activity: Impact in diabetes. Clin Chim Acta 2025; 569:120178. [PMID: 39900127 DOI: 10.1016/j.cca.2025.120178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/05/2025]
Abstract
The term "ci-miRNAs," or "circulating microRNAs," refers to extracellular microRNAs (miRNAs) that exist outside of cells and can be detected in various bodily fluids, including blood, saliva, urine, and breast milk. These ci-miRNAs play a role in regulating gene expression and are mainly recognized for their functions beyond the cell, serving as signaling molecules in the blood. Researchers have thoroughly investigated the roles of these circulating miRNAs in various diseases. The capacity to detect and quantify ci-miRNAs in bodily fluids suggests their potential as biomarkers for monitoring several health conditions, including cancer, heart disease, brain disorders, and metabolic disorders, where fluctuations in miRNA levels may correlate with different physiological and pathological states. Current methods enable researchers to identify and measure miRNAs in these fluids, facilitating the exploration of their roles in health maintenance and disease resistance. Although research on ci-miRNAs is ongoing, recent studies focus on uncovering their significance, assessing their viability as biomarkers, and clarifying their functions. However, our understanding of how various types, intensities, and durations of exercise influence the levels of these miRNAs in the bloodstream is still limited. This section seeks to provide an overview of the changes in ci-miRNAs in response to exercise.
Collapse
Affiliation(s)
- Xiu Li
- Shanghai Minyuan College, Shanghai 201210, China.
| | - Jamal Hallajzadeh
- Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran.
| |
Collapse
|
7
|
Zuo R, Guo X, Song X, Gao X, Zhang J, Jiang S, Adam V, Kuca K, Wu W, Guo D. New uses of halofuginone to treat cancer. J Pharm Anal 2025; 15:101080. [PMID: 40099206 PMCID: PMC11910366 DOI: 10.1016/j.jpha.2024.101080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 03/19/2025] Open
Abstract
The small-molecule alkaloid halofuginone (HF) is obtained from febrifugine. Recent studies on HF have aroused widespread attention owing to its universal range of noteworthy biological activities and therapeutic functions, which range from parasite infections and fibrosis to autoimmune diseases. In particular, HF is believed to play an excellent anticancer role by suppressing the proliferation, adhesion, metastasis, and invasion of cancers. This review supports the goal of demonstrating various anticancer effects and molecular mechanisms of HF. In the studies covered in this review, the anticancer molecular mechanisms of HF mainly included transforming growth factor-β (TGF-β)/Smad-3/nuclear factor erythroid 2-related factor 2 (Nrf2), serine/threonine kinase proteins (Akt)/mechanistic target of rapamycin complex 1(mTORC1)/wingless/integrated (Wnt)/β-catenin, the exosomal microRNA-31 (miR-31)/histone deacetylase 2 (HDAC2) signaling pathway, and the interaction of the extracellular matrix (ECM) and immune cells. Notably, HF, as a novel type of adenosine triphosphate (ATP)-dependent inhibitor that is often combined with prolyl transfer RNA synthetase (ProRS) and amino acid starvation therapy (AAS) to suppress the formation of ribosome, further exerts a significant effect on the tumor microenvironment (TME). Additionally, the combination of HF with other drugs or therapies obtained universal attention. Our results showed that HF has significant potential for clinical cancer treatment.
Collapse
Affiliation(s)
- Runan Zuo
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Animal-Derived Food Safety Innovation Team, Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Xinyi Guo
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xinhao Song
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiuge Gao
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Junren Zhang
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shanxiang Jiang
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, 61300, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Brno, 60200, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
- Malaysia-Japan International Institute of Technology (MJIIT), University Teknologi Malaysia, Kuala Lumpur, 50200, Malaysia
| | - Wenda Wu
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Dawei Guo
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
8
|
Wilson TG, Baghel M, Kaur N, Datta I, Loveless I, Potla P, Mendez D, Hansen L, Baker K, Lynch TS, Moutzouros V, Davis J, Ali SA. Circulating miR-126-3p is a mechanistic biomarker for knee osteoarthritis. Nat Commun 2025; 16:2021. [PMID: 40016267 PMCID: PMC11868599 DOI: 10.1038/s41467-025-57308-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 02/18/2025] [Indexed: 03/01/2025] Open
Abstract
Osteoarthritis is a major contributor to pain and disability worldwide, yet there are currently no validated soluble biomarkers or disease-modifying treatments. Given that microRNAs are promising mechanistic biomarkers that can be therapeutically targeted, in this study, we aimed to identify and prioritize reproducible circulating microRNAs associated with radiographic knee osteoarthritis. Across four independent cohorts, we find circulating miR-126-3p is elevated in knee osteoarthritis versus controls. Across six primary human knee osteoarthritis tissues, miR-126-3p is highest in subchondral bone, fat pad and synovium, and lowest in cartilage. Following both intravenous and intra-articular miR-126-3p mimic treatment in a surgical mouse model of knee osteoarthritis, we show reduced disease severity in males. In human knee osteoarthritis biospecimens, miR-126-3p mimic treatment reduces genes and markers associated with angiogenesis, as well as genes linked to osteogenesis, adipogenesis, and synovitis-processes secondary to angiogenesis. Our findings indicate that miR-126-3p is elevated in knee osteoarthritis and mitigates disease severity, supporting its potential as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Thomas G Wilson
- Bone and Joint Center, Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, USA
| | - Madhu Baghel
- Bone and Joint Center, Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, USA
| | - Navdeep Kaur
- Bone and Joint Center, Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, USA
| | - Indrani Datta
- Center for Bioinformatics, Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, USA
| | - Ian Loveless
- Center for Bioinformatics, Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, USA
| | - Pratibha Potla
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
| | - Devin Mendez
- Bone and Joint Center, Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, USA
| | - Logan Hansen
- Department of Orthopedic Surgery, Henry Ford Health, Detroit, MI, USA
| | - Kevin Baker
- Bone and Joint Center, Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, USA
| | - T Sean Lynch
- Department of Orthopedic Surgery, Henry Ford Health, Detroit, MI, USA
| | | | - Jason Davis
- Department of Orthopedic Surgery, Henry Ford Health, Detroit, MI, USA
| | - Shabana Amanda Ali
- Bone and Joint Center, Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, USA.
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
9
|
Al-Rawaf HA, Gabr SA, Alghadir T, Alghadir F, Iqbal A, Alghadir AH. Correlation between circulating microRNAs and vascular biomarkers in type 2 diabetes based upon physical activity: a biochemical analytic study. BMC Endocr Disord 2025; 25:55. [PMID: 40016689 PMCID: PMC11866858 DOI: 10.1186/s12902-025-01855-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/21/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND This research investigated how physical activity (PA) might impact the expression of several microRNAs, specifically miR-126, miR-146a, miR-34a, miR-124a, miR-155, and miR-221, in the blood of elderly individuals with type 2 diabetes (T2D). Additionally, the study examined the relationship between these microRNAs and markers of vascular endothelial dysfunction, including vascular endothelial growth factor (VEGF), apolipoprotein A-I (apoA-I), and apolipoprotein B (apoB), to assess their potential in the prevention, early detection, and treatment of diabetes. METHODS This correlational observational study involved 100 male participants, aged between 18 and 65 years, all of whom had been living with type 2 diabetes (T2D) for over six years. The participants were divided into three groups: inactive, moderate, and active, depending on their level of physical activity (PA). Real-time PCR and immunoassays were employed to measure the expression of selected miRNAs, as well as VEGF, apoA-I, apoB, and diabetic management indicators. PA levels were determined using ACTi graph GT1M accelerometer (model WAM 7164; Fort Walton Beach, FL) and energy expenditure was measured in the form of metabolic equivalent (MET) by indirect calorimetry method. RESULTS The expression levels of miR-146a, miR-34a, and miR-124a were significantly higher in patients with higher physical activity, while no such increase was observed for the other miRNAs in less active participants. Additionally, PA-active individuals showed a more pronounced decrease in fasting blood sugar (FBS), insulin resistance (IR), fasting insulin (FINS), HOMA-IR, HbA1c (%), and levels of VEGF, apoAI, apoB, and the apoB/apoA-I ratio. The alteration in miRNA expression was positively associated with physical activity, VEGF, apoAI, apoB, the apoB/apoA-I ratio, and diabetes-related metrics, while being inversely related to BMI. CONCLUSIONS In diabetic patients with higher physical activity levels, circulating miR-146a, miR-34a, and miR-124a showed elevated expression, accompanied by a notable decrease in vascular biomarkers, including apoAI, apoB, and the apoB/apoA-I ratio. The findings revealed a strong correlation between these vascular biomarkers and the physiological responses of miR-146a, miR-34a, and miR-124a, though larger studies are required to validate these results further. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Hadeel A Al-Rawaf
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11433, Saudi Arabia
- Rehabilitation Research Chair, Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Sami A Gabr
- Rehabilitation Research Chair, Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Talal Alghadir
- College of Medicine, King Saud University, Riyadh, 11433, Saudi Arabia
| | - Faisal Alghadir
- College of Medicine, King Saud University, Riyadh, 11433, Saudi Arabia
| | - Amir Iqbal
- Rehabilitation Research Chair, Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia.
| | - Ahmad H Alghadir
- Rehabilitation Research Chair, Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| |
Collapse
|
10
|
Cuinat C, Pan J, Comelli EM. Host-dependent alteration of the gut microbiota: the role of luminal microRNAs. MICROBIOME RESEARCH REPORTS 2025; 4:15. [PMID: 40207285 PMCID: PMC11977366 DOI: 10.20517/mrr.2024.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 01/22/2025] [Accepted: 02/10/2025] [Indexed: 04/11/2025]
Abstract
MicroRNAs (miRNAs) are short, non-coding RNAs that play gene expression regulatory roles in eukaryotes. MiRNAs are also released in body fluids, and in the intestine, they are found in the lumen and feces. Here, together with exogenous dietary-derived miRNAs, they constitute the fecal miRNome. Several miRNAs were identified in the feces of healthy adults, including, as shown here, core miRNAs hsa-miR-21-5p and hsa-miR-1246. These miRNAs are important for intestinal homeostasis. Recent evidence suggests that miRNAs may interact with gut bacteria. This represents a new avenue to understand host-bacteria crosstalk in the gut and its role in health and disease. This review provides a comprehensive overview of current knowledge on fecal miRNAs, their representation across individuals, and their effects on the gut microbiota. It also discusses existing evidence on potential mechanisms of uptake and interaction with bacterial genomes, drawing from knowledge of prokaryotic small RNAs (sRNAs) regulation of gene expression. Finally, we review in silico and experimental approaches for profiling miRNA-mRNA interactions in bacterial species, highlighting challenges in target validation. This work emphasizes the need for further research into host miRNA-bacterial interactions to better understand their regulatory roles in the gut ecosystem and support their exploitation for disease prevention and treatment.
Collapse
Affiliation(s)
- Céline Cuinat
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto M5S 1A8, Canada
- Authors contributed equally
| | - Jiali Pan
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto M5S 1A8, Canada
- Authors contributed equally
| | - Elena M. Comelli
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto M5S 1A8, Canada
- Joannah and Brian Lawson Centre for Child Nutrition, Faculty of Medicine, University of Toronto, Toronto M5S 1A8, Canada
| |
Collapse
|
11
|
Rolland TJ, Zahra S, Cucinotta D, Young R, Weil B. Mesenchymal Stem Cell-Derived Extracellular Vesicles Mitigate Immune Cell Activation in an In Vitro Model of Post-Resuscitation Inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.637856. [PMID: 40027652 PMCID: PMC11870425 DOI: 10.1101/2025.02.13.637856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Background Systemic inflammation is a well-established component of post-cardiac arrest syndrome (PCAS), a condition responsible for significant morbidity and mortality in patients who are initially resuscitated from sudden cardiac arrest. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have emerged as promising immunomodulatory agents in various inflammatory conditions, including after ischemia-reperfusion injury (IRI). Here, we investigated the therapeutic potential of MSC-EVs in porcine peripheral blood mononuclear cells (PBMCs) stimulated with lipopolysaccharide (LPS) or mitochondrial DNA (mtDNA) to mimic immune cell activation in PCAS. Methods PBMCs were isolated from healthy pigs ( Sus scrofa ), cultured in vitro , stimulated with LPS or mtDNA, and treated with a range of MSC-EV concentrations. Flow cytometry, quantitative PCR, ELISA, and ROS/RNS measurements were performed to assess PBMC activation. Results MSC-EV treatment reduced LPS-induced inflammatory granulocyte activation and selectively modulated cytokine transcripts, including IFNα, IL-1β, and TNF-α, in a concentration-dependent manner. Similar immunosuppressive effects were observed in mtDNA-stimulated PBMCs, where MSC-EVs attenuated dendritic cell activation and inflammatory cytokine release. Furthermore, higher concentrations of MSC-EVs significantly decreased ROS/RNS production in both LPS- and mtDNA-challenged PBMCs. Conclusions MSC-EVs exhibit potent immunomodulatory properties against LPS- and mtDNA-induced activation of porcine PBMCs, highlighting their broad capacity to modulate immune responses and mitigate oxidative stress induced by pro-inflammatory stimuli that are relevant to PCAS. These findings provide further support for the administration of MSCs, or MSC-EVs themselves, as a potential therapeutic intervention to target immune activation in PCAS and other disorders characterized by an acute systemic inflammatory state.
Collapse
|
12
|
Gong S, Li Y, Yan K, Shi Z, Leng J, Bao Y, Ning K. The Crosstalk Between Endothelial Cells, Smooth Muscle Cells, and Macrophages in Atherosclerosis. Int J Mol Sci 2025; 26:1457. [PMID: 40003923 PMCID: PMC11855868 DOI: 10.3390/ijms26041457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/02/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory vascular disease closely tied to cellular metabolism. Recent genome-wide association study data have suggested the significant roles of endothelial cells, smooth muscle cells, and macrophages in the regression and exacerbation of AS. However, the impact of cellular crosstalk and cellular metabolic derangements on disease progression in AS is vaguely understood. In this review, we analyze the roles of the three cell types in AS. We also summarize the crosstalk between the two of them, and the associated molecules and consequences involved. In addition, we emphasize potential therapeutic targets and highlight the importance of the three-cell co-culture model and extracellular vesicles in AS-related research, providing ideas for future studies.
Collapse
Affiliation(s)
- Sihe Gong
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; (S.G.); (Y.L.); (K.Y.); (Z.S.)
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Yanni Li
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; (S.G.); (Y.L.); (K.Y.); (Z.S.)
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Kaijie Yan
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; (S.G.); (Y.L.); (K.Y.); (Z.S.)
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Zhonghong Shi
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; (S.G.); (Y.L.); (K.Y.); (Z.S.)
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Jing Leng
- Preclinical Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China;
| | - Yimin Bao
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; (S.G.); (Y.L.); (K.Y.); (Z.S.)
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Ke Ning
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; (S.G.); (Y.L.); (K.Y.); (Z.S.)
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| |
Collapse
|
13
|
Zhou ZR, Wu MS, Yang Z, Wu Y, Guo W, Li DW, Qian RC, Lu Y. Synthetic transmembrane DNA receptors enable engineered sensing and actuation. Nat Commun 2025; 16:1464. [PMID: 39920144 PMCID: PMC11806108 DOI: 10.1038/s41467-025-56758-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/30/2025] [Indexed: 02/09/2025] Open
Abstract
In living organisms, cells synergistically couple cascade reaction pathways to achieve inter- and intracellular signal transduction by transmembrane protein receptors. The construction and assembly of synthetic receptor analogs that can mimic such biological processes is a central goal of synthetic biochemistry and bionanotechnology to endow receptors with user-defined signal transduction effects. However, designing artificial transmembrane receptors with the desired input, output, and performance parameters are challenging. Here we show that the dimerization of synthetic transmembrane DNA receptors executes a systematically engineered sensing and actuation cascade in response to external molecular signals. The synthetic DNA receptors are composed of three parts, including an extracellular signal reception part, a lipophilic transmembrane anchoring part, and an intracellular signal output part. Upon the input of external signals, the DNA receptors can form dimers on the cell surface triggered by configuration changes, leading to a series of downstream cascade events including communication between donor and recipient cells, gene transcription regulation, protein level control, and cell apoptosis. We believe this work establishes a flexible cell surface engineering strategy that is broadly applicable to implement sophisticated biological functions.
Collapse
Affiliation(s)
- Ze-Rui Zhou
- Key Laboratory for Advanced Materials. East China University of Science and Technology, Shanghai, 200237, P. R. China
- Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry. East China University of Science and Technology, Shanghai, 200237, P. R. China
- Frontiers Science Center for Materiobiology & Dynamic Chemistry. East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Man-Sha Wu
- Key Laboratory for Advanced Materials. East China University of Science and Technology, Shanghai, 200237, P. R. China
- Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry. East China University of Science and Technology, Shanghai, 200237, P. R. China
- Frontiers Science Center for Materiobiology & Dynamic Chemistry. East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Zhenglin Yang
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Yuting Wu
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Weijie Guo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Da-Wei Li
- Key Laboratory for Advanced Materials. East China University of Science and Technology, Shanghai, 200237, P. R. China
- Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry. East China University of Science and Technology, Shanghai, 200237, P. R. China
- Frontiers Science Center for Materiobiology & Dynamic Chemistry. East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Ruo-Can Qian
- Key Laboratory for Advanced Materials. East China University of Science and Technology, Shanghai, 200237, P. R. China.
- Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry. East China University of Science and Technology, Shanghai, 200237, P. R. China.
- Frontiers Science Center for Materiobiology & Dynamic Chemistry. East China University of Science and Technology, Shanghai, 200237, P. R. China.
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA.
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
14
|
Kostiniuk D, Marttila S, Raitoharju E. Circulatory miRNAs in essential hypertension. Atherosclerosis 2025; 401:119069. [PMID: 39645458 DOI: 10.1016/j.atherosclerosis.2024.119069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/22/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs, that regulate gene-expression at post-transcriptional level. Unlike other RNA species, blood miRNAs circulate in a highly stable form, either within extracellular vesicles or bound to proteins. In recent years, circulatory miRNA profiles have been proposed as potential biomarkers for multitude of pathologies, including essential hypertension. However, the evidence of miRNA biomarker potential is limited, mainly due to the scarcity of profiling studies associating miRNA levels with hypertension. Furthermore, most of these studies have been performed with preselected miRNA pool, limiting their discovery potential. Here, we summarize the results of the unbiased profiling studies and additionally discuss findings from targeted miRNA analysis. Only miR-30e has been found to be associated with hypertension in more than one unbiased study. The targeted analyses highlight the association of miR-1, -21, -34a, -92a, -122, -126, -143, -145, -605, -623, -1299, as well as let-7 and miR-30 families with hypertension. Current literature indicates that some of these miRNAs are involved in hypertension-associated vascular dysfunction and the development of atherosclerosis, suggesting a novel mechanism for cardiovascular disease risk posed by hypertension. All in all, studies associating hypertension with circulatory miRNA profiles are scarce, with several limitations affecting the comparability of the studies. This review discusses the functions and potential mechanisms linking the identified miRNAs to hypertension and underscores the need for further research.
Collapse
Affiliation(s)
- Daria Kostiniuk
- Molecular Epidemiology, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland
| | - Saara Marttila
- Molecular Epidemiology, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland; Tampere University Hospital, Wellbeing Services County of Pirkanmaa, Tampere, Finland; Gerontology Research Center, Tampere University, Tampere, 33014, Finland
| | - Emma Raitoharju
- Molecular Epidemiology, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland; Tampere University Hospital, Wellbeing Services County of Pirkanmaa, Tampere, Finland; Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland; Fimlab Laboratories, Finland.
| |
Collapse
|
15
|
Xiao Y, Zou D, Liu J, Dai F, Zhao A, Yang P. Dose-responsive effects of endothelial cell-sourced exosomes on vascular cell proliferation and phenotype transition. Biochim Biophys Acta Gen Subj 2025; 1869:130745. [PMID: 39689838 DOI: 10.1016/j.bbagen.2024.130745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 11/24/2024] [Accepted: 12/11/2024] [Indexed: 12/19/2024]
Abstract
Endothelial cell-sourced exosomes are potential participants in the process of atherosclerosis, and their function is mainly affected by concentration. By studying the effects of exosome concentrations on vascular cells, atherosclerosis can be better intervened. In this study, exosomes with concentrations of 0, 0.07, 0.35, 1.75 and 8.75 μg/mL were set to interact with endothelial cells, macrophages and smooth muscle cells respectively. The results suggested that EC-Exo altered vascular cells' proliferation, migration and nitric oxide release abilities, increasing with EC-Exo concentrate from 0 to 1.75 μg/mL and varing with cell types at 8.75 μg/mL. The effects of exosome on cells is dose-responsive,and endothelial cells-sourced exosome favors vascular repair within the concentration of 0.35-1.75 μg/mL,showing potential for atherosclerosis regulation.
Collapse
Affiliation(s)
- Yangyang Xiao
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China.
| | - Dan Zou
- School of Health Management, Xihua University, Chengdu 610039, China.
| | - Jianan Liu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China.
| | - Fanfan Dai
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China.
| | - Ansha Zhao
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China.
| | - Ping Yang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
16
|
Li H, Liu G, Wang B, Momeni MR. Exosomes and microRNAs as mediators of the exercise. Eur J Med Res 2025; 30:38. [PMID: 39828711 PMCID: PMC11742998 DOI: 10.1186/s40001-025-02273-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025] Open
Abstract
MicroRNAs (miRNAs), also known as microribonucleic acids, are small molecules found in specific tissues that are essential for maintaining proper control of genes and cellular processes. Environmental factors, such as physical exercise, can modulate miRNA expression and induce targeted changes in gene transcription. This article presents an overview of the present knowledge on the principal miRNAs influenced by physical activity in different tissues and bodily fluids. Numerous research projects have emphasized the significant impact of miRNAs on controlling biological changes brought about by physical activity. These molecules play main roles in important processes such as the growth of skeletal muscle and heart muscle cells, the creation of mitochondria, the development of the vascular system, and the regulation of metabolism. Studies have shown that physical exertion utilizes the contributions of miR-1, miR-133, miR-206, miR-208, and miR-486 to revitalize and restore skeletal muscle tissue. Moreover, detecting alterations in miRNA levels and connecting them to the specific outcomes of various exercise routines and intensities can act as indicators for physical adaptation and the reaction to physical activity in long-term diseases. Numerous studies have confirmed that extracellular vesicles (EVs) which composed of different members such as exosomes have the ability to reduce inflammation through the activation of the nuclear factor kappa B (NF-κB pathway. Furthermore, physical activity greatly affects the levels of specific miRNAs present in exosomes derived from skeletal muscle. Therefore, exosomal miRNAs target some pathways that are related to growth and development, such asWnt/β-catenin, PI3K/AKT, and insulin-like growth factor 1 (IGF1). Exercise-induced exosomes have also been identified as important mediators in promoting beneficial effects throughout the body. The aim of this review is to summarize the effect of exercise on the function of miRNAs and exosomes.
Collapse
Affiliation(s)
- Haoyuan Li
- Department of Sport Leisure, Sungshin Women's University, Seoul, 02844, Korea
| | - Guifang Liu
- Department of Physical Education, Zhengzhou Normal University, Zhengzhou, 450044, Henan, China.
| | - Bing Wang
- School of Physical Education, Zhengzhou Normal University, Zhengzhou, 450044, Henan, China
| | | |
Collapse
|
17
|
Xie M, Li X, Chen L, Zhang Y, Chen L, Hua H, Qi J. The crosstalks between vascular endothelial cells, vascular smooth muscle cells, and adventitial fibroblasts in vascular remodeling. Life Sci 2025; 361:123319. [PMID: 39701178 DOI: 10.1016/j.lfs.2024.123319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/08/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
Pathological vascular remodeling (VR) is characterized by structural and functional alterations in the vascular wall resulting from injury, which significantly contribute to the development of cardiovascular diseases (CVDs). The vascular wall consists primarily of endothelial cells (ECs), vascular smooth muscle cells (VSMCs), and adventitial fibroblasts (AFs), whose interactions are crucial for both the formation of the vascular system and the maintenance of mature blood vessels. Disruptions in the communication between these cell types have been implicated in the progression of VR. This review examines the complex interactions between ECs, VSMCs, and AFs in the context of CVD development, emphasizing a relatively underexplored yet potentially critical mechanism. This interaction framework likely extends to the broader cellular dialogue in the pathogenesis of CVDs, suggesting novel therapeutic strategies for intervention.
Collapse
Affiliation(s)
- Ming Xie
- Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Department of Pharmacy, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu 214499, China
| | - Xiandeng Li
- Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Lun Chen
- Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Yufeng Zhang
- Department of Vascular Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shangdong 271000, China; Postdoctoral Workstation, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shangdong 250117, China; Department of Pulmonary and Critical Care Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu 214499, China
| | - Long Chen
- Institute of Chinese Medicine of Taizhou China Medical City, Taizhou, Jiangsu 225316, China; International Centre for Genetic Engineering and Biotechnology, Taizhou, Jiangsu 225300, China
| | - Haibing Hua
- Department of Gastroenterology, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu 214499, China.
| | - Jia Qi
- Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
18
|
Yu F, Peng Z, Gao N, Tang Z, Liao Z, Zhao S, Zhong S, Umwiza G, Huang H, Long W, He Z. Sinomenine attenuates uremia vascular calcification by miR-143-5p. Sci Rep 2025; 15:1798. [PMID: 39806038 PMCID: PMC11730593 DOI: 10.1038/s41598-025-86055-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
Vascular calcification is considered to be a killer of the cardiovascular system, involved inflammation and immunity. There is no approved therapeutic strategy for the prevention of vascular calcification. Sinomenine exhibited anti-inflammatory and immunosuppressive effects. Objective of this study was to investigate the effect of sinomenine in vascular calcification and its potential molecular mechanism. Adenine-induced uremic rats were constructed and administrated with sinomenine. Optical clearing of aortas, alizarin red staining, von Kossa staining, calcification quantification, micro-CT analyses of vascular calcification were performed to analyze calcification in aortas. Administration of 40 mg/kg/d sinomenine effectively alleviated vascular calcification in uremic rats. The miRNA sequencing revealed differentially expressed miRNAs in aortas and bioinformatic analysis assisted with miRNA screening. We screened 9 differential expressed miRNAs and their predicted target genes. By qRT-PCR, we validated that the expression of rno-miR-143-5p was corresponding to our prediction. Sinomenine inhibited vascular smooth muscle cells (VSMCs) calcification, accompanied with miR-143-5p upregulation. MiR-143-5p mimic decreased VSMCs calcification in high phosphate condition. On the contrary, miR-143-5p inhibitor increased VSMCs calcification in high phosphate condition, which was inhibited by sinomenine. In chronic kidney disease patients with vascular calcification, the expression level of circulating miR-143-5p was lower than those without vascular calcification. Sinomenine significantly inhibited vascular calcification in VSMCs and uremic rat. MiR-143-5p was one of the collection of miRNAs modified by sinomenine in vascular calcification. Reduction of miR-143-5p in VSMCs was not only a concomitant phenomenon in pro-calcification condition but also contribute to VSMCs calcification. Circulating miR-143-5p was supposed to be a potential biomarker for vascular calcification in chronic kidney disease patients. In conclusion, sinomenine effectively alleviated vascular calcification, which was attributed to miR-143-5p regulation partly.
Collapse
MESH Headings
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Morphinans/pharmacology
- Animals
- Vascular Calcification/drug therapy
- Vascular Calcification/genetics
- Vascular Calcification/etiology
- Vascular Calcification/pathology
- Vascular Calcification/metabolism
- Uremia/complications
- Uremia/drug therapy
- Uremia/genetics
- Rats
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Humans
- Rats, Sprague-Dawley
- Aorta/pathology
- Aorta/metabolism
- Aorta/drug effects
- Disease Models, Animal
Collapse
Affiliation(s)
- Fengyi Yu
- Department of Nephrology, Yiyang Central Hospital, 118 Kangfubei Road, Yiyang, 413000, Hunan, China
- Department of Gastroenterology, Yiyang Central Hospital, Yiyang, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhong Peng
- Department of Gastroenterology, Yiyang Central Hospital, Yiyang, Hunan, China
| | - Ning Gao
- Department of Nephrology, Yiyang Central Hospital, 118 Kangfubei Road, Yiyang, 413000, Hunan, China
| | - Zixu Tang
- Department of Nephrology, Yiyang Central Hospital, 118 Kangfubei Road, Yiyang, 413000, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zihao Liao
- Department of Nephrology, Yiyang Central Hospital, 118 Kangfubei Road, Yiyang, 413000, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Song Zhao
- Department of Nephrology, Yiyang Central Hospital, 118 Kangfubei Road, Yiyang, 413000, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shuzhu Zhong
- Department of Nephrology, Yiyang Central Hospital, 118 Kangfubei Road, Yiyang, 413000, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Gloria Umwiza
- Department of Nephrology, Yiyang Central Hospital, 118 Kangfubei Road, Yiyang, 413000, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Hong Huang
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wei Long
- Department of Nephrology, Yiyang Central Hospital, 118 Kangfubei Road, Yiyang, 413000, Hunan, China
| | - Zhangxiu He
- Department of Nephrology, Yiyang Central Hospital, 118 Kangfubei Road, Yiyang, 413000, Hunan, China.
- Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
19
|
Wehbe Z, Wehbe M, Al Khatib A, Dakroub AH, Pintus G, Kobeissy F, Eid AH. Emerging understandings of the role of exosomes in atherosclerosis. J Cell Physiol 2025; 240:e31454. [PMID: 39370679 PMCID: PMC11730360 DOI: 10.1002/jcp.31454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/20/2024] [Accepted: 09/20/2024] [Indexed: 10/08/2024]
Abstract
Atherosclerosis remains a major contributor to cardiovascular disease, the leading cause of global morbidity and mortality. Despite the elucidation of several molecular, biochemical, and cellular aspects that contribute to the etio-pathogenesis of atherosclerosis, much remains to be understood about the onset and progression of this disease. Emerging evidence supports a role for exosomes in the cellular basis of atherosclerosis. Indeed, exosomes of activated monocytes seem to accentuate a positive feedback loop that promotes recruitment of pro-inflammatory leukocytes. Moreover, in addition to their role in promoting proliferation and invasion of vascular smooth muscle cells, exosomes can also induce neovascularization within lesions and increase endothelial permeability, two important features of fibrous plaques. Depending on their sources and cargo, exosomes can also induce clot formation and contribute to other hallmarks of atherosclerosis. Taken together, it is becoming increasingly evident that a better understanding of exosome biology is integral to elucidating the pathogenesis of atherosclerosis, and may thus provide insight into a potentially new therapeutic target for this disease.
Collapse
Affiliation(s)
- Zena Wehbe
- Vascular Biology Research Centre, Molecular and Clinical Research InstituteSt. George's University of LondonLondonUnited Kingdom
| | - Maya Wehbe
- Oxford University HospitalsOxfordUnited Kingdom
| | - Ali Al Khatib
- Department of Nutrition and Food SciencesLebanese International UniversityBeirutLebanon
| | - Ali H. Dakroub
- Departments of Medicine (Cardiology) and Population Health Science and Policy, Blavatnik Family Research InstituteIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Gianfranco Pintus
- Department of Biomedical SciencesUniversity of Sassari, Viale San PietroSassari07100Italy
| | - Firas Kobeissy
- Department of Neurobiology, Morehouse School of MedicineCenter for Neurotrauma, Multiomics & Biomarkers (CNMB)AtlantaGAUSA
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of MedicineQU Health, Qatar UniversityDohaP.O. Box 2713Qatar
| |
Collapse
|
20
|
Zhang L, Zhang D, Liu C, Tang B, Cui Y, Guo D, Duan M, Tu Y, Zheng H, Ning X, Liu Y, Chen H, Huang M, Niu Z, Zhao Y, Liu X, Xie J. Outer Membrane Vesicles Derived From Fusobacterium nucleatum Trigger Periodontitis Through Host Overimmunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400882. [PMID: 39475060 DOI: 10.1002/advs.202400882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 10/11/2024] [Indexed: 12/19/2024]
Abstract
The virulent bacteria-induced host immune response dominates the occurrence and progression of periodontal diseases because of the roles of individual virulence factors from these pathogens in the initiation and spread of inflammation. Outer membrane vesicles (OMVs) as a pathogenic entity have recently attracted great attention as messenger bridges between bacteria and host tissues. Herein, the novel role of OMVs derived from Fusobacterium nucleatum in the occurrence of periodontitis is dissected. In a rat periodontitis model, it is found that OMVs derived from F. nucleatum caused deterioration of periodontitis by enhancing inflammation of the periodontium and absorption of alveolar bone, which is almost equivalent to the effect of F. nucleatum itself. Furthermore, that OMVs can independently induce periodontitis is shown. The pathogenicity of OMVs is attributed to multiple pathogenic components identified by omics. After entering human periodontal ligament stem cells (hPDLSCs) by endocytosis, OMVs activated NLRP3 inflammasomes and impaired the mineralization of hPDLSCs through NF-κB (p65) signaling, leading to the final injury of the periodontium and damage of alveolar bone in periodontitis. These results provide a new understanding of OMVs derived from pathogens and cues for the prevention of periodontitis.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Demao Zhang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Chengcheng Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Boyu Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yujia Cui
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Daimo Guo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Mengmeng Duan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ying Tu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Huiling Zheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xinjie Ning
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Haoran Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Minglei Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhixing Niu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yanfang Zhao
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama Birmingham, Birmingham, 35233, USA
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
21
|
Saenz-Pipaon G, Wacker BK, Bi L, Stamatikos A, Dichek DA. Exosome-Mediated Transfer of X-Motif-Tagged Anti-MiR-33a-5p Antagomirs to the Medial Cells of Transduced Rabbit Carotid Arteries. BIOLOGY 2024; 13:965. [PMID: 39765632 PMCID: PMC11673983 DOI: 10.3390/biology13120965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025]
Abstract
Atherosclerosis is caused by the accumulation of cholesterol within intimal smooth muscle cells (SMCs) and macrophages. However, the transporter ATP-binding cassette subfamily A, member 1 (ABCA1), can remove cholesterol from these intimal, cells reducing atherosclerosis. Antagomir-mediated inhibition of miR-33a-5p, a microRNA that represses ABCA1 translation, promotes ABCA1-dependent cholesterol efflux and may impede atherosclerosis development. In our previous work, transducing cultured endothelial cells (ECs) with a helper-dependent adenoviral vector (HDAd) that expresses X-motif-tagged anti-miR-33a-5p enhanced antagomir packaging into EC-derived exosomes, which delivered the antagomir to cultured SMCs and macrophages. In this present study, we tested whether in vivo transduction of rabbit carotid artery endothelium can deliver an X-motif-tagged anti-miR-33a-5p to subendothelial cells. Rabbit carotid endothelial cells were transduced in vivo with an HDAd expressing anti-miR-33a-5p either with or without the X-motif (n = 11 arteries per vector). Contralateral carotids received HDAd that express scrambled oligonucleotides. Three days after transduction, the antagomir-without the X-motif-was detected in the intima but not in the media of transduced carotids (p = 0.062). The X-motif antagomir was detected in 82% of the intimal extracts (9 out of 11 carotids) and 27% of medial samples (3 out of 11 carotids, p = 0.031). However, the X-motif did not significantly enhance antagomir delivery to the media (p = 0.214 vs. non-X-motif antagomir). Expression of the antagomirs-with and without the X-motif-was sub-stoichiometric in ECs and SMCs. No antagomir-related changes in miR-33a-5p or ABCA1 expressions were detected. Despite its potential as a therapeutic strategy, our exosome-targeted gene transfer system requires further improvements to enhance antagomir expression and delivery to the subendothelial cells.
Collapse
Affiliation(s)
- Goren Saenz-Pipaon
- Department of Medicine, Division of Cardiology, University of Washington, Seattle, WA 98195, USA; (B.K.W.); (L.B.); (D.A.D.)
| | - Bradley K. Wacker
- Department of Medicine, Division of Cardiology, University of Washington, Seattle, WA 98195, USA; (B.K.W.); (L.B.); (D.A.D.)
| | - Lianxiang Bi
- Department of Medicine, Division of Cardiology, University of Washington, Seattle, WA 98195, USA; (B.K.W.); (L.B.); (D.A.D.)
| | - Alexis Stamatikos
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA;
| | - David A. Dichek
- Department of Medicine, Division of Cardiology, University of Washington, Seattle, WA 98195, USA; (B.K.W.); (L.B.); (D.A.D.)
| |
Collapse
|
22
|
Mierke CT. Mechanosensory entities and functionality of endothelial cells. Front Cell Dev Biol 2024; 12:1446452. [PMID: 39507419 PMCID: PMC11538060 DOI: 10.3389/fcell.2024.1446452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
The endothelial cells of the blood circulation are exposed to hemodynamic forces, such as cyclic strain, hydrostatic forces, and shear stress caused by the blood fluid's frictional force. Endothelial cells perceive mechanical forces via mechanosensors and thus elicit physiological reactions such as alterations in vessel width. The mechanosensors considered comprise ion channels, structures linked to the plasma membrane, cytoskeletal spectrin scaffold, mechanoreceptors, and junctional proteins. This review focuses on endothelial mechanosensors and how they alter the vascular functions of endothelial cells. The current state of knowledge on the dysregulation of endothelial mechanosensitivity in disease is briefly presented. The interplay in mechanical perception between endothelial cells and vascular smooth muscle cells is briefly outlined. Finally, future research avenues are highlighted, which are necessary to overcome existing limitations.
Collapse
|
23
|
Atkin-Smith GK, Santavanond JP, Light A, Rimes JS, Samson AL, Er J, Liu J, Johnson DN, Le Page M, Rajasekhar P, Yip RKH, Geoghegan ND, Rogers KL, Chang C, Bryant VL, Margetts M, Keightley MC, Kilpatrick TJ, Binder MD, Tran S, Lee EF, Fairlie WD, Ozkocak DC, Wei AH, Hawkins ED, Poon IKH. In situ visualization of endothelial cell-derived extracellular vesicle formation in steady state and malignant conditions. Nat Commun 2024; 15:8802. [PMID: 39438460 PMCID: PMC11496675 DOI: 10.1038/s41467-024-52867-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
Endothelial cells are integral components of all vasculature within complex organisms. As they line the blood vessel wall, endothelial cells are constantly exposed to a variety of molecular factors and shear force that can induce cellular damage and stress. However, how endothelial cells are removed or eliminate unwanted cellular contents, remains unclear. The generation of large extracellular vesicles (EVs) has emerged as a key mechanism for the removal of cellular waste from cells that are dying or stressed. Here, we used intravital microscopy of the bone marrow to directly measure the kinetics of EV formation from endothelial cells in vivo under homoeostatic and malignant conditions. These large EVs are mitochondria-rich, expose the 'eat me' signal phosphatidylserine, and can interact with immune cell populations as a potential clearance mechanism. Elevated levels of circulating EVs correlates with degradation of the bone marrow vasculature caused by acute myeloid leukaemia. Together, our study provides in vivo spatio-temporal characterization of EV formation in the murine vasculature and suggests that circulating, large endothelial cell-derived EVs can provide a snapshot of vascular damage at distal sites.
Collapse
Affiliation(s)
- Georgia K Atkin-Smith
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia.
- Research Centre for Extracellular Vesicles, La Trobe University, Melbourne, VIC, Australia.
| | - Jascinta P Santavanond
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- Research Centre for Extracellular Vesicles, La Trobe University, Melbourne, VIC, Australia
| | - Amanda Light
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Joel S Rimes
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Andre L Samson
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Jeremy Er
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Clinical Haematology Department, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Joy Liu
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Darryl N Johnson
- Materials Characterisation and Fabrication Platform, Department of Chemical Engineering, University of Melbourne, Parkville, VIC, Australia
| | - Mélanie Le Page
- ARAFlowCore, Alfred Research Alliance, Monash University, Melbourne, VIC, Australia
| | - Pradeep Rajasekhar
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Raymond K H Yip
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Niall D Geoghegan
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Kelly L Rogers
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Catherine Chang
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Vanessa L Bryant
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Clinical Immunology and Allergy, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Mai Margetts
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - M Cristina Keightley
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- Department of Rural Clinical Sciences, La Trobe Rural Health School, Bendigo, VIC, Australia
| | - Trevor J Kilpatrick
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Michele D Binder
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - Sharon Tran
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Erinna F Lee
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Walter D Fairlie
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Dilara C Ozkocak
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- Research Centre for Extracellular Vesicles, La Trobe University, Melbourne, VIC, Australia
| | - Andrew H Wei
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Clinical Haematology Department, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Edwin D Hawkins
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.
| | - Ivan K H Poon
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia.
- Research Centre for Extracellular Vesicles, La Trobe University, Melbourne, VIC, Australia.
| |
Collapse
|
24
|
Roldán Gallardo FF, Martínez Piñerez DE, Reinarz Torrado KF, Berg GA, Herzfeld JD, Da Ros VG, López Seoane M, Maldonado CA, Quintar AA. Extracellular Vesicles Contribute to Oxidized LDL-Induced Stromal Cell Proliferation in Benign Prostatic Hyperplasia. BIOLOGY 2024; 13:827. [PMID: 39452137 PMCID: PMC11504470 DOI: 10.3390/biology13100827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Clinical and experimental evidence has linked Benign Prostatic Hyperplasia (BPH) with dyslipidemic and hypercholesterolemic conditions, though the underlying cellular mechanisms remain unclear. This study investigates the impact of dyslipidemia, specifically oxidized LDL (OxLDL), on prostatic stromal cell proliferation and the release of extracellular vesicles (EVs). METHODS Mice were fed a high-fat diet, and human prostatic stromal cells (HPSCs) were treated with OxLDL. Proliferation assays and EV characterization were performed to assess the role of EVs in BPH progression. RESULTS Pro-atherogenic conditions significantly increased cell proliferation in both murine prostatic cells and HPSCs. Treatment with metformin effectively inhibited OxLDL-induced proliferation. Additionally, OxLDL stimulated the production and release of pro-proliferative EVs by HPSCs, which further promoted cellular proliferation. CONCLUSIONS The findings suggest that dyslipidemia drives prostatic stromal cell proliferation and EV secretion, contributing to BPH progression. Metformin demonstrates potential as a therapeutic agent to mitigate these effects, offering insight into novel strategies for BPH management. This study highlights the complex interaction between dyslipidemia, cell proliferation, and extracellular communication in the context of BPH pathogenesis.
Collapse
Affiliation(s)
- Franco F. Roldán Gallardo
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (F.F.R.G.)
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba 5000, Argentina
| | - Daniel E. Martínez Piñerez
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (F.F.R.G.)
| | - Kevin F. Reinarz Torrado
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (F.F.R.G.)
| | - Gabriela A. Berg
- Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires 1000, Argentina
| | - Jael D. Herzfeld
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires 1000, Argentina
| | - Vanina G. Da Ros
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires 1000, Argentina
| | | | - Cristina A. Maldonado
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (F.F.R.G.)
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba 5000, Argentina
| | - Amado A. Quintar
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (F.F.R.G.)
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba 5000, Argentina
| |
Collapse
|
25
|
Murase H, Minatoguchi S, Heishima K, Yasuda S, Satake A, Yoshizumi R, Komaki H, Baba S, Ojio S, Tanaka T, Akao Y, Minatoguchi S, Okura H. Plasma microRNA-143 and microRNA-145 levels are elevated in patients with left ventricular dysfunction. Heart Vessels 2024; 39:867-876. [PMID: 38717698 PMCID: PMC11405439 DOI: 10.1007/s00380-024-02410-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/25/2024] [Indexed: 09/17/2024]
Abstract
MicroRNA(miR)-143 and miR-145 are mainly expressed in vascular smooth muscle cells. However, the relationship between plasma miR-143 or miR-145 levels and the left ventricular (LV) function in patients with heart diseases remains unclear. Blood samples were taken from the antecubital vein in patients with heart diseases (n = 52), such as coronary artery disease, old myocardial infarction, cardiomyopathy, and valvular heart disease, and controls without heart diseases (n = 22). We measured plasma miR-143 and -145 levels by quantitative RT-PCR using TaqMan MicroRNA Assays and THUNDERBIRD Probe qPCR Mix. Plasma BNP levels were also measured. Echocardiography was performed to measure the LV ejection fraction (LVEF) and LV dilation. Plasma miR-143 and miR-145 levels were significantly higher in patients with heart diseases than in controls, respectively. Plasma miR-143 and miR-145 levels were significantly higher in patients with LVEF < 50% than in those with LVEF ≧ 50%, respectively. Plasma miR-143 and miR-145 levels were inversely correlated with LVEF, respectively. Plasma miR-143 and miR-145 levels were positively correlated with LV end-systolic dimension, respectively. Plasma miR-143 and -145 levels were positively correlated with plasma BNP levels, respectively. Plasma BNP levels were inversely correlated with LVEF. Plasma miR-143 and miR-145 levels are elevated in patients with LV dysfunction and may counteract LV dysfunction.
Collapse
Affiliation(s)
- Hirotaka Murase
- Department of Cardiology, Gifu Municipal Hospital, 7-1 Kashimachou, Gifu, 500-8513, Japan
| | - Shingo Minatoguchi
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kazuki Heishima
- United Graduate School of Drug Discovery and Medical Information Science, Gifu University, Gifu, Japan
| | - Shinji Yasuda
- Department of Cardiology, Gifu Municipal Hospital, 7-1 Kashimachou, Gifu, 500-8513, Japan
| | - Atsushi Satake
- Department of Cardiology, Gifu Municipal Hospital, 7-1 Kashimachou, Gifu, 500-8513, Japan
| | - Ryo Yoshizumi
- Department of Cardiology, Gifu Municipal Hospital, 7-1 Kashimachou, Gifu, 500-8513, Japan
| | - Hisaaki Komaki
- Department of Cardiology, Gifu Municipal Hospital, 7-1 Kashimachou, Gifu, 500-8513, Japan
| | - Shinya Baba
- Department of Cardiology, Gifu Municipal Hospital, 7-1 Kashimachou, Gifu, 500-8513, Japan
| | - Shinsuke Ojio
- Department of Cardiology, Gifu Municipal Hospital, 7-1 Kashimachou, Gifu, 500-8513, Japan
| | - Toshiki Tanaka
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yukihiro Akao
- United Graduate School of Drug Discovery and Medical Information Science, Gifu University, Gifu, Japan
| | - Shinya Minatoguchi
- Department of Cardiology, Gifu Municipal Hospital, 7-1 Kashimachou, Gifu, 500-8513, Japan.
| | - Hiroyuki Okura
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
26
|
Yu Y, Cai Y, Yang F, Yang Y, Cui Z, Shi D, Bai R. Vascular smooth muscle cell phenotypic switching in atherosclerosis. Heliyon 2024; 10:e37727. [PMID: 39309965 PMCID: PMC11416558 DOI: 10.1016/j.heliyon.2024.e37727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Atherosclerosis (AS) is a complex pathology process involving intricate interactions among various cells and biological processes. Vascular smooth muscle cells (VSMCs) are the predominant cell type in normal arteries, and under atherosclerotic stimuli, VSMCs respond to altered blood flow and microenvironment changes by downregulating contractile markers and switching their phenotype. This review overviews the diverse phenotypes of VSMCs, including the canonical contractile VSMCs, synthetic VSMCs, and phenotypes resembling macrophages, foam cells, myofibroblasts, osteoblasts/chondrocytes, and mesenchymal stem cells. We summarize their presumed protective and pro-atherosclerotic roles in AS development. Additionally, we underscore the molecular mechanisms and regulatory pathways governing VSMC phenotypic switching, encompassing transcriptional regulation, biochemical factors, plaque microenvironment, epigenetics, miRNAs, and the cytoskeleton, emphasizing their significance in AS development. Finally, we outline probable future research directions targeting VSMCs, offering insights into potential therapeutic strategies for AS management.
Collapse
Affiliation(s)
- Yanqiao Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yajie Cai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Furong Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Yankai Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhuorui Cui
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dazhuo Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Ruina Bai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| |
Collapse
|
27
|
Sun P, Li Y, Li Y, Ji H, Mang G, Fu S, Jiang S, Choi S, Wang X, Tong Z, Wang C, Gao F, Wan P, Chen S, Li Y, Zhao P, Leng X, Zhang M, Tian J. Low-intensity pulsed ultrasound protects from inflammatory dilated cardiomyopathy through inciting extracellular vesicles. Cardiovasc Res 2024; 120:1177-1190. [PMID: 38696702 DOI: 10.1093/cvr/cvae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/30/2023] [Accepted: 02/14/2024] [Indexed: 05/04/2024] Open
Abstract
AIMS CD4+ T cells are activated during inflammatory dilated cardiomyopathy (iDCM) development to induce immunogenic responses that damage the myocardium. Low-intensity pulsed ultrasound (LIPUS), a novel physiotherapy for cardiovascular diseases, has recently been shown to modulate inflammatory responses. However, its efficacy in iDCM remains unknown. Here, we investigated whether LIPUS could improve the severity of iDCM by orchestrating immune responses and explored its therapeutic mechanisms. METHODS AND RESULTS In iDCM mice, LIPUS treatment reduced cardiac remodelling and dysfunction. Additionally, CD4+ T-cell inflammatory responses were suppressed. LIPUS increased Treg cells while decreasing Th17 cells. LIPUS mechanically stimulates endothelial cells, resulting in increased secretion of extracellular vesicles (EVs), which are taken up by CD4+ T cells and alter their differentiation and metabolic patterns. Moreover, EVs selectively loaded with microRNA (miR)-99a are responsible for the therapeutic effects of LIPUS. The hnRNPA2B1 translocation from the nucleus to the cytoplasm and binding to caveolin-1 and miR-99a confirmed the upstream mechanism of miR-99a transport. This complex is loaded into EVs and taken up by CD4+ T cells, which further suppress mTOR and TRIB2 expression to modulate cellular differentiation. CONCLUSION Our findings revealed that LIPUS uses an EVs-dependent molecular mechanism to protect against iDCM progression. Therefore, LIPUS is a promising new treatment option for iDCM.
Collapse
MESH Headings
- Animals
- Extracellular Vesicles/metabolism
- Extracellular Vesicles/transplantation
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/therapy
- Cardiomyopathy, Dilated/pathology
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/immunology
- Cardiomyopathy, Dilated/physiopathology
- Disease Models, Animal
- MicroRNAs/metabolism
- MicroRNAs/genetics
- Mice, Inbred C57BL
- Signal Transduction
- Ultrasonic Therapy
- Ventricular Function, Left
- Ultrasonic Waves
- Ventricular Remodeling
- Male
- Th17 Cells/immunology
- Th17 Cells/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Caveolin 1/metabolism
- Caveolin 1/genetics
- TOR Serine-Threonine Kinases/metabolism
- Cells, Cultured
- Humans
- Mice
Collapse
Affiliation(s)
- Ping Sun
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Road, Nan Gang Dist., Harbin, 150086, Heilongjiang Province, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
| | - Yi Li
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Road, Nan Gang Dist., Harbin, 150086, Heilongjiang Province, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
| | - Yifei Li
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Road, Nan Gang Dist., Harbin, 150086, Heilongjiang Province, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
| | - Huan Ji
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Road, Nan Gang Dist., Harbin, 150086, Heilongjiang Province, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
| | - Ge Mang
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
| | - Shuai Fu
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Road, Nan Gang Dist., Harbin, 150086, Heilongjiang Province, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
| | - Shuangquan Jiang
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Road, Nan Gang Dist., Harbin, 150086, Heilongjiang Province, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
| | - Stephen Choi
- SXULTRASONIC (Shenzhen) Ltd. Kerry Rehabilitation Medicine Research Institute, 126 Zhongkang Road, Shang Mei LinFutian, Shenzhen, 518000, Guangdong Province, China
| | - Xiaoqi Wang
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
| | - Zhonghua Tong
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
| | - Chao Wang
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Road, Nan Gang Dist., Harbin, 150086, Heilongjiang Province, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
| | - Fei Gao
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Road, Nan Gang Dist., Harbin, 150086, Heilongjiang Province, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
| | - Pingping Wan
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
| | - Shuang Chen
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Road, Nan Gang Dist., Harbin, 150086, Heilongjiang Province, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
| | - You Li
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Road, Nan Gang Dist., Harbin, 150086, Heilongjiang Province, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
| | - Peng Zhao
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Road, Nan Gang Dist., Harbin, 150086, Heilongjiang Province, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
| | - Xiaoping Leng
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Road, Nan Gang Dist., Harbin, 150086, Heilongjiang Province, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
| | - Maomao Zhang
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
| | - Jiawei Tian
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Road, Nan Gang Dist., Harbin, 150086, Heilongjiang Province, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
| |
Collapse
|
28
|
Wang X, He B. Insight into endothelial cell-derived extracellular vesicles in cardiovascular disease: Molecular mechanisms and clinical implications. Pharmacol Res 2024; 207:107309. [PMID: 39009292 DOI: 10.1016/j.phrs.2024.107309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/15/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
The endothelium is crucial in regulating vascular function. Extracellular vesicles (EVs) serve as membranous structures released by cells to facilitate intercellular communication through the delivery of nucleic acids, lipids, and proteins to recipient cells in an paracrine or endocrine manner. Endothelial cell-derived EVs (EndoEVs) have been identified as both biomarkers and significant contributors to the occurrence and progression of cardiovascular disease (CVD). The impact of EndoEVs on CVD is complex and contingent upon the condition of donor cells, the molecular cargo within EVs, and the characteristics of recipient cells. Consequently, elucidating the underlying molecular mechanisms of EndoEVs is crucial for comprehending their contributions to CVD. Moreover, a thorough understanding of the composition and function of EndoEVs is imperative for their potential clinical utility. This review aims provide an up-to-date overview of EndoEVs in the context of physiology and pathophysiology, as well as to discuss their prospective clinical applications.
Collapse
Affiliation(s)
- Xia Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, China
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, China.
| |
Collapse
|
29
|
Zisser L, Binder CJ. Extracellular Vesicles as Mediators in Atherosclerotic Cardiovascular Disease. J Lipid Atheroscler 2024; 13:232-261. [PMID: 39355407 PMCID: PMC11439751 DOI: 10.12997/jla.2024.13.3.232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 10/03/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial intima, characterized by accumulation of lipoproteins and accompanying inflammation, leading to the formation of plaques that eventually trigger occlusive thrombotic events, such as myocardial infarction and ischemic stroke. Although many aspects of plaque development have been elucidated, the role of extracellular vesicles (EVs), which are lipid bilayer-delimited vesicles released by cells as mediators of intercellular communication, has only recently come into focus of atherosclerosis research. EVs comprise several subtypes that may be differentiated by their size, mode of biogenesis, or surface marker expression and cargo. The functional effects of EVs in atherosclerosis depend on their cellular origin and the specific pathophysiological context. EVs have been suggested to play a role in all stages of plaque formation. In this review, we highlight the known mechanisms by which EVs modulate atherogenesis and outline current limitations and challenges in the field.
Collapse
Affiliation(s)
- Lucia Zisser
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
30
|
Zeng B, Li Y, Khan N, Su A, Yang Y, Mi P, Jiang B, Liang Y, Duan L. Yin-Yang: two sides of extracellular vesicles in inflammatory diseases. J Nanobiotechnology 2024; 22:514. [PMID: 39192300 PMCID: PMC11351009 DOI: 10.1186/s12951-024-02779-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
The concept of Yin-Yang, originating in ancient Chinese philosophy, symbolizes two opposing but complementary forces or principles found in all aspects of life. This concept can be quite fitting in the context of extracellular vehicles (EVs) and inflammatory diseases. Over the past decades, numerous studies have revealed that EVs can exhibit dual sides, acting as both pro- and anti-inflammatory agents, akin to the concept of Yin-Yang theory (i.e., two sides of a coin). This has enabled EVs to serve as potential indicators of pathogenesis or be manipulated for therapeutic purposes by influencing immune and inflammatory pathways. This review delves into the recent advances in understanding the Yin-Yang sides of EVs and their regulation in specific inflammatory diseases. We shed light on the current prospects of engineering EVs for treating inflammatory conditions. The Yin-Yang principle of EVs bestows upon them great potential as, therapeutic, and preventive agents for inflammatory diseases.
Collapse
Affiliation(s)
- Bin Zeng
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
- Graduate School, Guangxi University of Chinese Medicine, Nanning, 53020, Guangxi, China
| | - Ying Li
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
| | - Nawaz Khan
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
| | - Aiyuan Su
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
| | - Yicheng Yang
- Eureka Biotech Inc, Philadelphia, PA, 19104, USA
| | - Peng Mi
- Department of Radiology, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Bin Jiang
- Eureka Biotech Inc, Philadelphia, PA, 19104, USA.
| | - Yujie Liang
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China.
| | - Li Duan
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China.
| |
Collapse
|
31
|
Su J, Song Y, Zhu Z, Huang X, Fan J, Qiao J, Mao F. Cell-cell communication: new insights and clinical implications. Signal Transduct Target Ther 2024; 9:196. [PMID: 39107318 PMCID: PMC11382761 DOI: 10.1038/s41392-024-01888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/09/2024] [Accepted: 06/02/2024] [Indexed: 09/11/2024] Open
Abstract
Multicellular organisms are composed of diverse cell types that must coordinate their behaviors through communication. Cell-cell communication (CCC) is essential for growth, development, differentiation, tissue and organ formation, maintenance, and physiological regulation. Cells communicate through direct contact or at a distance using ligand-receptor interactions. So cellular communication encompasses two essential processes: cell signal conduction for generation and intercellular transmission of signals, and cell signal transduction for reception and procession of signals. Deciphering intercellular communication networks is critical for understanding cell differentiation, development, and metabolism. First, we comprehensively review the historical milestones in CCC studies, followed by a detailed description of the mechanisms of signal molecule transmission and the importance of the main signaling pathways they mediate in maintaining biological functions. Then we systematically introduce a series of human diseases caused by abnormalities in cell communication and their progress in clinical applications. Finally, we summarize various methods for monitoring cell interactions, including cell imaging, proximity-based chemical labeling, mechanical force analysis, downstream analysis strategies, and single-cell technologies. These methods aim to illustrate how biological functions depend on these interactions and the complexity of their regulatory signaling pathways to regulate crucial physiological processes, including tissue homeostasis, cell development, and immune responses in diseases. In addition, this review enhances our understanding of the biological processes that occur after cell-cell binding, highlighting its application in discovering new therapeutic targets and biomarkers related to precision medicine. This collective understanding provides a foundation for developing new targeted drugs and personalized treatments.
Collapse
Affiliation(s)
- Jimeng Su
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Song
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Zhipeng Zhu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Xinyue Huang
- Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
- Cancer Center, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
32
|
Bhat OM, Mir RA, Nehvi IB, Wani NA, Dar AH, Zargar MA. Emerging role of sphingolipids and extracellular vesicles in development and therapeutics of cardiovascular diseases. IJC HEART & VASCULATURE 2024; 53:101469. [PMID: 39139609 PMCID: PMC11320467 DOI: 10.1016/j.ijcha.2024.101469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024]
Abstract
Sphingolipids are eighteen carbon alcohol lipids synthesized from non-sphingolipid precursors in the endoplasmic reticulum (ER). The sphingolipids serve as precursors for a vast range of moieties found in our cells that play a critical role in various cellular processes, including cell division, senescence, migration, differentiation, apoptosis, pyroptosis, autophagy, nutrition intake, metabolism, and protein synthesis. In CVDs, different subclasses of sphingolipids and other derived molecules such as sphingomyelin (SM), ceramides (CERs), and sphingosine-1-phosphate (S1P) are directly related to diabetic cardiomyopathy, dilated cardiomyopathy, myocarditis, ischemic heart disease (IHD), hypertension, and atherogenesis. Several genome-wide association studies showed an association between genetic variations in sphingolipid pathway genes and the risk of CVDs. The sphingolipid pathway plays an important role in the biogenesis and secretion of exosomes. Small extracellular vesicles (sEVs)/ exosomes have recently been found as possible indicators for the onset of CVDs, linking various cellular signaling pathways that contribute to the disease progression. Important features of EVs like biocompatibility, and crossing of biological barriers can improve the pharmacokinetics of drugs and will be exploited to develop next-generation drug delivery systems. In this review, we have comprehensively discussed the role of sphingolipids, and sphingolipid metabolites in the development of CVDs. In addition, concise deliberations were laid to discuss the role of sEVs/exosomes in regulating the pathophysiological processes of CVDs and the exosomes as therapeutic targets.
Collapse
Affiliation(s)
- Owais Mohmad Bhat
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | | | - Nissar Ahmad Wani
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Abid Hamid Dar
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - M Afzal Zargar
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| |
Collapse
|
33
|
Caporali A, Anwar M, Devaux Y, Katare R, Martelli F, Srivastava PK, Pedrazzini T, Emanueli C. Non-coding RNAs as therapeutic targets and biomarkers in ischaemic heart disease. Nat Rev Cardiol 2024; 21:556-573. [PMID: 38499868 DOI: 10.1038/s41569-024-01001-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 03/20/2024]
Abstract
The adult heart is a complex, multicellular organ that is subjected to a series of regulatory stimuli and circuits and has poor reparative potential. Despite progress in our understanding of disease mechanisms and in the quality of health care, ischaemic heart disease remains the leading cause of death globally, owing to adverse cardiac remodelling, leading to ischaemic cardiomyopathy and heart failure. Therapeutic targets are urgently required for the protection and repair of the ischaemic heart. Moreover, personalized clinical biomarkers are necessary for clinical diagnosis, medical management and to inform the individual response to treatment. Non-coding RNAs (ncRNAs) deeply influence cardiovascular functions and contribute to communication between cells in the cardiac microenvironment and between the heart and other organs. As such, ncRNAs are candidates for translation into clinical practice. However, ncRNA biology has not yet been completely deciphered, given that classes and modes of action have emerged only in the past 5 years. In this Review, we discuss the latest discoveries from basic research on ncRNAs and highlight both the clinical value and the challenges underscoring the translation of these molecules as biomarkers and therapeutic regulators of the processes contributing to the initiation, progression and potentially the prevention or resolution of ischaemic heart disease and heart failure.
Collapse
Affiliation(s)
- Andrea Caporali
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Maryam Anwar
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Luxembourg, Luxemburg
| | - Rajesh Katare
- Department of Physiology, HeartOtago, University of Otago, Dunedin, New Zealand
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy
| | | | - Thierry Pedrazzini
- Experimental Cardiology Unit, Division of Cardiology, Department of Cardiovascular Medicine, University of Lausanne Medical School, Lausanne, Switzerland
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK
- British Heart Foundation Centre of Research Excellence, King's College London, London, UK
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
34
|
González-López P, Yu Y, Lin S, Escribano Ó, Gómez-Hernández A, Gisterå A. Dysregulation of micro-RNA 143-3p as a Biomarker of Carotid Atherosclerosis and the Associated Immune Reactions During Disease Progression. J Cardiovasc Transl Res 2024; 17:768-778. [PMID: 38270847 PMCID: PMC11371874 DOI: 10.1007/s12265-024-10482-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
Atherosclerosis commonly remains undiagnosed until disease manifestations occur. The disease is associated with dysregulated micro(mi)RNAs, but how this is linked to atherosclerosis-related immune reactions is largely unknown. A mouse model of carotid atherosclerosis, human APOB100-transgenic Ldlr-/- (HuBL), was used to study the spatiotemporal dysregulation of a set of miRNAs. Middle-aged HuBL mice with established atherosclerosis had decreased levels of miR-143-3p in their carotid arteries. In young HuBL mice, early atherosclerosis was observed in the carotid bifurcation, which had lower levels of miR-15a-5p, miR-143-3p, and miR-199a-3p, and higher levels of miR-155-5p. The dysregulation of these miRNAs was reflected by specific immune responses during atheroprogression. Finally, levels of miR-143-3p were 70.6% lower in extracellular vesicles isolated from the plasma of patients with carotid stenosis compared to healthy controls. Since miR-143-3p levels progressively decrease when transitioning between early and late experimental carotid atherosclerosis, we propose it as a biomarker for atherosclerosis.
Collapse
Affiliation(s)
- Paula González-López
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Yinda Yu
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Shiying Lin
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Óscar Escribano
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Almudena Gómez-Hernández
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Anton Gisterå
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden.
- Bioclinicum J8:20, Karolinska University Hospital, Visionsgatan 4, Solna, SE-17164, Stockholm, Sweden.
| |
Collapse
|
35
|
Qin C, Zhao B, Wang Y, Li Z, Li T, Zhao Y, Wang W, Zhao Y. Extracellular vesicles miR-31-5p promotes pancreatic cancer chemoresistance via regulating LATS2-Hippo pathway and promoting SPARC secretion from pancreatic stellate cells. J Extracell Vesicles 2024; 13:e12488. [PMID: 39104296 DOI: 10.1002/jev2.12488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Pancreatic cancer remains one of the most lethal malignant diseases. Gemcitabine-based chemotherapy is still one of the first-line systemic treatments, but chemoresistance occurs in the majority of patients. Recently, accumulated evidence has demonstrated the role of the tumour microenvironment in promoting chemoresistance. In the tumour microenvironment, pancreatic stellate cells (PSCs) are among the main cellular components, and extracellular vesicles (EVs) are common mediators of cell‒cell communication. In this study, we showed that SP1-transcribed miR-31-5p not only targeted LATS2 in pancreatic cancer cells but also regulated the Hippo pathway in PSCs through EV transfer. Consequently, PSCs synthesized and secreted protein acidic and rich in cysteins (SPARC), which was preferentially expressed in stromal cells, stimulating Extracellular Signal regulated kinase (ERK) signalling in pancreatic cancer cells. Therefore, pancreatic cancer cell survival and chemoresistance were improved due to both the intrinsic Hippo pathway regulated by miR-31-5p and external SPARC-induced ERK signalling. In mouse models, miR-31-5p overexpression in pancreatic cancer cells promoted the chemoresistance of coinjected xenografts. In a tissue microarray, pancreatic cancer patients with higher miR-31-5p expression had shorter overall survival. Therefore, miR-31-5p regulates the Hippo pathway in multiple cell types within the tumour microenvironment via EVs, ultimately contributing to the chemoresistance of pancreatic cancer cells.
Collapse
Affiliation(s)
- Cheng Qin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P. R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, P. R. China
| | - Bangbo Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P. R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, P. R. China
| | - Yuanyang Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P. R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, P. R. China
| | - Zeru Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P. R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, P. R. China
| | - Tianyu Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P. R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, P. R. China
| | - Yutong Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P. R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, P. R. China
| | - Weibin Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P. R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, P. R. China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P. R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, P. R. China
| |
Collapse
|
36
|
Raju S, Turner ME, Cao C, Abdul-Samad M, Punwasi N, Blaser MC, Cahalane RM, Botts SR, Prajapati K, Patel S, Wu R, Gustafson D, Galant NJ, Fiddes L, Chemaly M, Hedin U, Matic L, Seidman M, Subasri V, Singh SA, Aikawa E, Fish JE, Howe KL. Multiomics unveils extracellular vesicle-driven mechanisms of endothelial communication in human carotid atherosclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.599781. [PMID: 38979218 PMCID: PMC11230219 DOI: 10.1101/2024.06.21.599781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Background: Carotid atherosclerosis is orchestrated by cell-cell communication that drives progression along a clinical continuum (asymptomatic to symptomatic). Extracellular vesicles (EVs) are cell-derived nanoparticles representing a new paradigm in cellular communication. Little is known about their biological cargo, cellular origin/destination, and functional roles in human atherosclerotic plaque. Methods: EVs were enriched via size exclusion chromatography from human carotid endarterectomy samples dissected into paired plaque and marginal zones (symptomatic n=16, asymptomatic n=13). EV cargos were assessed via whole transcriptome miRNA sequencing and mass spectrometry-based proteomics. EV multi-omics were integrated with bulk and single cell RNA-sequencing (scRNA-seq) datasets to predict EV cellular origin and ligand-receptor interactions, and multi-modal biological network integration of EV-cargo was completed. EV functional impact was assessed with endothelial angiogenesis assays. Results: Carotid plaques contained more EVs than adjacent marginal zones, with differential enrichment for EV-miRNAs and EV-proteins in key atherogenic pathways. EV cellular origin analysis suggested that tissue EV signatures originated from endothelial cells (EC), smooth muscle cells (SMC), and immune cells. Integrated tissue vesiculomics and scRNA-seq indicated complex EV-vascular cell communication that changed with disease progression and plaque vulnerability (i.e., symptomatic disease). Plaques from symptomatic patients, but not asymptomatic patients, were characterized by increased involvement of endothelial pathways and more complex ligand-receptor interactions, relative to their marginal zones. Plaque-EVs were predicted to mediate communication with ECs. Pathway enrichment analysis delineated an endothelial signature with roles in angiogenesis and neovascularization - well-known indices of plaque instability. This was validated functionally, wherein human carotid symptomatic plaque EVs induced sprouting angiogenesis in comparison to their matched marginal zones. Conclusion: Our findings indicate that EVs may drive dynamic changes in plaques through EV- vascular cell communication and effector functions that typify vulnerability to rupture, precipitating symptomatic disease. The discovery of endothelial-directed angiogenic processes mediated by EVs creates new therapeutic avenues for atherosclerosis.
Collapse
|
37
|
Rai A, Claridge B, Lozano J, Greening DW. The Discovery of Extracellular Vesicles and Their Emergence as a Next-Generation Therapy. Circ Res 2024; 135:198-221. [PMID: 38900854 DOI: 10.1161/circresaha.123.323054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
From their humble discovery as cellular debris to cementing their natural capacity to transfer functional molecules between cells, the long-winded journey of extracellular vesicles (EVs) now stands at the precipice as a next-generation cell-free therapeutic tool to revolutionize modern-day medicine. This perspective provides a snapshot of the discovery of EVs to their emergence as a vibrant field of biology and the renaissance they usher in the field of biomedical sciences as therapeutic agents for cardiovascular pathologies. Rapid development of bioengineered EVs is providing innovative opportunities to overcome biological challenges of natural EVs such as potency, cargo loading and enhanced secretion, targeting and circulation half-life, localized and sustained delivery strategies, approaches to enhance systemic circulation, uptake and lysosomal escape, and logistical hurdles encompassing scalability, cost, and time. A multidisciplinary collaboration beyond the field of biology now extends to chemistry, physics, biomaterials, and nanotechnology, allowing rapid development of designer therapeutic EVs that are now entering late-stage human clinical trials.
Collapse
Affiliation(s)
- Alin Rai
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.R., B.C., J.L., D.W.G.)
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia (A.R., J.L., D.W.G.)
- Baker Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia (A.R., D.W.G.)
- Central Clinical School, Monash University, Melbourne, Victoria, Australia (A.R., D.W.G.)
| | - Bethany Claridge
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.R., B.C., J.L., D.W.G.)
| | - Jonathan Lozano
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.R., B.C., J.L., D.W.G.)
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia (A.R., J.L., D.W.G.)
| | - David W Greening
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.R., B.C., J.L., D.W.G.)
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia (A.R., J.L., D.W.G.)
- Baker Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia (A.R., D.W.G.)
- Central Clinical School, Monash University, Melbourne, Victoria, Australia (A.R., D.W.G.)
| |
Collapse
|
38
|
Featherby SJ, Ettelaie C. Endothelial-derived microvesicles promote pro-migratory cross-talk with smooth muscle cells by a mechanism requiring tissue factor and PAR2 activation. Front Cardiovasc Med 2024; 11:1365008. [PMID: 38966751 PMCID: PMC11222581 DOI: 10.3389/fcvm.2024.1365008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/31/2024] [Indexed: 07/06/2024] Open
Abstract
Introduction Microvesicles (MV) released by endothelial cells (EC) following injury or inflammation contain tissue factor (TF) and mediate communication with the underlying smooth muscle cells (SMC). Ser253-phosphorylated TF co-localizes with filamin A at the leading edge of migrating SMC. In this study, the influence of endothelial-derived TF-MV, on human coronary artery SMC (HCASMC) migration was examined. Methods and Results MV derived from human coronary artery EC (HCAEC) expressing TFWt accelerated HCASMC migration, but was lower with cytoplasmic domain-deleted TF. Furthermore, incubation with TFAsp253-MV, or expression of TFAsp253 in HCASMC, reduced cell migration. Blocking TF-factor VIIa (TF-fVIIa) procoagulant/protease activity, or inhibiting PAR2 signaling on HCASMC, abolished the accelerated migration. Incubation with fVIIa alone increased HCASMC migration, but was significantly enhanced on supplementation with TF. Neither recombinant TF alone, factor Xa, nor PAR2-activating peptide (SLIGKV) influenced cell migration. In other experiments, HCASMC were transfected with peptides corresponding to the cytoplasmic domain of TF prior to stimulation with TF-fVIIa. Cell migration was suppressed only when the peptides were phosphorylated at position of Ser253. Expression of mutant forms of filamin A in HCASMC indicated that the enhancement of migration by TF but not by PDGF-BB, was dependent on the presence of repeat-24 within filamin A. Incubation of HCASMC with TFWt-MV significantly reduced the levels of Smoothelin-B protein, and upregulated FAK expression. Discussion In conclusion, Ser253-phosphorylated TF and fVIIa released as MV-cargo by EC, act in conjunction with PAR2 on SMC to promote migration and may be crucial for normal arterial homeostasis as well as, during development of vascular disease.
Collapse
|
39
|
La Chica Lhoëst MT, Martinez A, Claudi L, Garcia E, Benitez-Amaro A, Polishchuk A, Piñero J, Vilades D, Guerra JM, Sanz F, Rotllan N, Escolà-Gil JC, Llorente-Cortés V. Mechanisms modulating foam cell formation in the arterial intima: exploring new therapeutic opportunities in atherosclerosis. Front Cardiovasc Med 2024; 11:1381520. [PMID: 38952543 PMCID: PMC11215187 DOI: 10.3389/fcvm.2024.1381520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/28/2024] [Indexed: 07/03/2024] Open
Abstract
In recent years, the role of macrophages as the primary cell type contributing to foam cell formation and atheroma plaque development has been widely acknowledged. However, it has been long recognized that diffuse intimal thickening (DIM), which precedes the formation of early fatty streaks in humans, primarily consists of lipid-loaded smooth muscle cells (SMCs) and their secreted proteoglycans. Recent studies have further supported the notion that SMCs constitute the majority of foam cells in advanced atherosclerotic plaques. Given that SMCs are a major component of the vascular wall, they serve as a significant source of microvesicles and exosomes, which have the potential to regulate the physiology of other vascular cells. Notably, more than half of the foam cells present in atherosclerotic lesions are of SMC origin. In this review, we describe several mechanisms underlying the formation of intimal foam-like cells in atherosclerotic plaques. Based on these mechanisms, we discuss novel therapeutic approaches that have been developed to regulate the generation of intimal foam-like cells. These innovative strategies hold promise for improving the management of atherosclerosis in the near future.
Collapse
Affiliation(s)
- M. T. La Chica Lhoëst
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain
- Department of Cardiovascular, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - A. Martinez
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain
- Department of Cardiovascular, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - L. Claudi
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain
- Department of Cardiovascular, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - E. Garcia
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain
- Department of Cardiovascular, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - A. Benitez-Amaro
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain
- Department of Cardiovascular, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - A. Polishchuk
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain
- Department of Cardiovascular, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - J. Piñero
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences (DCEXS), Hospital del Mar Medical Research Institute (IMIM), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - D. Vilades
- Department of Cardiology, Hospital de la Santa Creu I Sant Pau, Biomedical Research Institute Sant Pau (IIB-SANTPAU), Universitat Autonoma de Barcelona, Barcelona, Spain
- Department of Cardiovascular, CIBERCV, Institute of Health Carlos III, Madrid, Spain
| | - J. M. Guerra
- Department of Cardiology, Hospital de la Santa Creu I Sant Pau, Biomedical Research Institute Sant Pau (IIB-SANTPAU), Universitat Autonoma de Barcelona, Barcelona, Spain
- Department of Cardiovascular, CIBERCV, Institute of Health Carlos III, Madrid, Spain
| | - F. Sanz
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences (DCEXS), Hospital del Mar Medical Research Institute (IMIM), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - N. Rotllan
- Department of Cardiovascular, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Department of Cardiovascular, CIBERDEM, Institute of Health Carlos III, Madrid, Spain
| | - J. C. Escolà-Gil
- Department of Cardiovascular, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Department of Cardiovascular, CIBERDEM, Institute of Health Carlos III, Madrid, Spain
| | - V. Llorente-Cortés
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain
- Department of Cardiovascular, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Department of Cardiovascular, CIBERCV, Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
40
|
Zeng Y, Cui X, Li H, Wang Y, Cheng M, Zhang X. Extracellular vesicles originating from the mechanical microenvironment in the pathogenesis and applications for cardiovascular diseases. Regen Ther 2024; 26:1069-1077. [PMID: 39582802 PMCID: PMC11585476 DOI: 10.1016/j.reth.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/04/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
The mechanical microenvironment plays a crucial regulatory role in the growth and development of cells. Mechanical stimuli, including shear, tensile, compression, and extracellular matrix forces, significantly influence cell adhesion, migration, proliferation, differentiation, and various other cellular functions. Extracellular vesicles (EVs) are involved in numerous physiological and pathological processes, with their occurrence and secretion being strictly regulated by the mechanical microenvironment. Recent studies have confirmed that alterations in the mechanical microenvironment are present in cardiovascular diseases, and the components of EVs can respond to changes in mechanical signals, thereby impacting the progression of these diseases. Additionally, engineered EVs, created by leveraging mechanical microenvironments, can serve as natural drug-delivery vehicles for treating and managing specific diseases. This article systematically reviews the regulatory mechanisms through which the mechanical microenvironment influences EVs and summarizes the role and advancements of EVs derived from this environment in the context of cardiovascular diseases.
Collapse
Affiliation(s)
| | | | | | - Yanhui Wang
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong, 261053, PR China
| | - Min Cheng
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong, 261053, PR China
| | - Xiaoyun Zhang
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong, 261053, PR China
| |
Collapse
|
41
|
Rasmi Y, Mohamed YA, Alipour S, Ahmed S, Abdelmajed SS. The role of miR-143/miR-145 in the development, diagnosis, and treatment of diabetes. J Diabetes Metab Disord 2024; 23:39-47. [PMID: 38932869 PMCID: PMC11196424 DOI: 10.1007/s40200-023-01317-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/14/2023] [Indexed: 06/28/2024]
Abstract
Objectives Diabetes mellitus [DM], is a multifaceted metabolic disease, which has become a worldwide threat to human wellness. Over the past decades, an enormous amount of attention has been devoted to understanding how microRNAs [miRNAs], a class of small non-coding RNA regulators of gene expression at the post-transcriptional level, are tied to DM pathology. It has been demonstrated that miRNAs control insulin synthesis, secretion, and activity. This review aims to provide an evaluation of the use of miR-143 and miR-145 as biomarkers for the diagnosis and prognosis of diabetes. Methods The use of miR-143 and miR-145 as biomarkers for the diagnosis and prognosis of diabetes has been studied, and research that examined this link was sought after in the literature. In addition, we will discuss the cellular and molecular pathways of insulin secretion regulation by miR-143/145 expression and finally their role in diabetes. Results In the current review, we emphasize recent findings on the miR-143/145 expression profiles as novel DM biomarkers in clinical studies and animal models and highlight recent discoveries on the complex regulatory effect and functional role of miR-143/145 expression in DM. Conclusion A novel clinical treatment that alters the expression and activity of miR-143/miR-145 may be able to return cells to their natural state of glucose homeostasis, demonstrating the value of using comprehensive miRNA profiles to predict the beginning of diabetes. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-023-01317-y.
Collapse
Affiliation(s)
- Yousef Rasmi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Cellular and Molecular Research Center, Cellular and Molecular Research Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Yara Ahmed Mohamed
- Faculty of Biotechnology, October University for Modern Sciences and Arts University [MSA], Giza, Egypt
| | - Shahriar Alipour
- Cellular and Molecular Research Center, Cellular and Molecular Research Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Salma Ahmed
- Faculty of Biotechnology, October University for Modern Sciences and Arts University [MSA], Giza, Egypt
| | - Samar Samir Abdelmajed
- Faculty of Dentistry- Medical Biochemistry and Genetics department, October University for Modern Sciences and Arts University [MSA], Giza, Egypt
| |
Collapse
|
42
|
Climent M, García-Giménez JL. Special Issue "The Role of Non-Coding RNAs Involved in Cardiovascular Diseases and Cellular Communication". Int J Mol Sci 2024; 25:6034. [PMID: 38892220 PMCID: PMC11172417 DOI: 10.3390/ijms25116034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Despite the great progress in diagnosis, prevention, and treatment, cardiovascular diseases (CVDs) are still the most prominent cause of death worldwide [...].
Collapse
Affiliation(s)
- Montserrat Climent
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - José Luis García-Giménez
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain;
- Health Research Institute INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Research Network on Rare Diseases (CIBERER), Carlos III Health Institute, 46010 Valencia, Spain
| |
Collapse
|
43
|
Tripathi S, Rani K, Raj VS, Ambasta RK. Drug repurposing: A multi targetted approach to treat cardiac disease from existing classical drugs to modern drug discovery. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 207:151-192. [PMID: 38942536 DOI: 10.1016/bs.pmbts.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Cardiovascular diseases (CVDs) are characterized by abnormalities in the heart, blood vessels, and blood flow. CVDs comprise a diverse set of health issues. There are several types of CVDs like stroke, endothelial dysfunction, thrombosis, atherosclerosis, plaque instability and heart failure. Identification of a new drug for heart disease takes longer duration and its safety efficacy test takes even longer duration of research and approval. This chapter explores drug repurposing, nano-therapy, and plant-based treatments for managing CVDs from existing drugs which saves time and safety issues with testing new drugs. Existing drugs like statins, ACE inhibitor, warfarin, beta blockers, aspirin and metformin have been found to be useful in treating cardiac disease. For better drug delivery, nano therapy is opening new avenues for cardiac research by targeting interleukin (IL), TNF and other proteins by proteome interactome analysis. Nanoparticles enable precise delivery to atherosclerotic plaques, inflammation areas, and damaged cardiac tissues. Advancements in nano therapeutic agents, such as drug-eluting stents and drug-loaded nanoparticles are transforming CVDs management. Plant-based treatments, containing phytochemicals from Botanical sources, have potential cardiovascular benefits. These phytochemicals can mitigate risk factors associated with CVDs. The integration of these strategies opens new avenues for personalized, effective, and minimally invasive cardiovascular care. Altogether, traditional drugs, phytochemicals along with nanoparticles can revolutionize the future cardiac health care by identifying their signaling pathway, mechanism and interactome analysis.
Collapse
Affiliation(s)
- Shyam Tripathi
- Centre for Drug Design Discovery and Development (C4D), Department of Biotechnology and Microbiology, SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat, Haryana, India
| | - Kusum Rani
- Centre for Drug Design Discovery and Development (C4D), Department of Biotechnology and Microbiology, SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat, Haryana, India
| | - V Samuel Raj
- Centre for Drug Design Discovery and Development (C4D), Department of Biotechnology and Microbiology, SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat, Haryana, India.
| | - Rashmi K Ambasta
- Centre for Drug Design Discovery and Development (C4D), Department of Biotechnology and Microbiology, SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat, Haryana, India.
| |
Collapse
|
44
|
Lozano-Vidal N, Stanicek L, Bink DI, Juni RP, Hooglugt A, Kremer V, Phelp P, van Bergen A, MacInnes AW, Dimmeler S, Boon RA. Aging-regulated PNUTS maintains endothelial barrier function via SEMA3B suppression. Commun Biol 2024; 7:541. [PMID: 38714838 PMCID: PMC11076560 DOI: 10.1038/s42003-024-06230-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Age-related diseases pose great challenges to health care systems worldwide. During aging, endothelial senescence increases the risk for cardiovascular disease. Recently, it was described that Phosphatase 1 Nuclear Targeting Subunit (PNUTS) has a central role in cardiomyocyte aging and homeostasis. Here, we determine the role of PNUTS in endothelial cell aging. We confirm that PNUTS is repressed in senescent endothelial cells (ECs). Moreover, PNUTS silencing elicits several of the hallmarks of endothelial aging: senescence, reduced angiogenesis and loss of barrier function. Findings are validate in vivo using endothelial-specific inducible PNUTS-deficient mice (Cdh5-CreERT2;PNUTSfl/fl), termed PNUTSEC-KO. Two weeks after PNUTS deletion, PNUTSEC-KO mice present severe multiorgan failure and vascular leakage. Transcriptomic analysis of PNUTS-silenced HUVECs and lungs of PNUTSEC-KO mice reveal that the PNUTS-PP1 axis tightly regulates the expression of semaphorin 3B (SEMA3B). Indeed, silencing of SEMA3B completely restores barrier function after PNUTS loss-of-function. These results reveal a pivotal role for PNUTS in endothelial homeostasis through a SEMA3B downstream pathway that provides a potential target against the effects of aging in ECs.
Collapse
Affiliation(s)
- Noelia Lozano-Vidal
- Department of Physiology, Amsterdam UMC, VU University, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Laura Stanicek
- Department of Physiology, Amsterdam UMC, VU University, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Institute of Cardiovascular Regeneration, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Diewertje I Bink
- Department of Physiology, Amsterdam UMC, VU University, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Rio P Juni
- Department of Physiology, Amsterdam UMC, VU University, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Aukie Hooglugt
- Department of Physiology, Amsterdam UMC, VU University, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - Veerle Kremer
- Department of Physiology, Amsterdam UMC, VU University, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Philippa Phelp
- Department of Physiology, Amsterdam UMC, VU University, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Anke van Bergen
- Department of Physiology, Amsterdam UMC, VU University, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Alyson W MacInnes
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, the Netherlands
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, Potsdamer Strasse 58, 10785, Berlin, Germany
| | - Reinier A Boon
- Department of Physiology, Amsterdam UMC, VU University, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands.
- Amsterdam Cardiovascular Sciences, Microcirculation, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
- Institute of Cardiovascular Regeneration, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, Potsdamer Strasse 58, 10785, Berlin, Germany.
| |
Collapse
|
45
|
Tahmasebi F, Asl ER, Vahidinia Z, Barati S. Stem Cell-Derived Exosomal MicroRNAs as Novel Potential Approach for Multiple Sclerosis Treatment. Cell Mol Neurobiol 2024; 44:44. [PMID: 38713302 PMCID: PMC11076329 DOI: 10.1007/s10571-024-01478-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/09/2024] [Indexed: 05/08/2024]
Abstract
Multiple Sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) characterized by inflammation and demyelination of CNS neurons. Up to now, there are many therapeutic strategies for MS but they are only being able to reduce progression of diseases and have not got any effect on repair and remyelination. Stem cell therapy is an appropriate method for regeneration but has limitations and problems. So recently, researches were used of exosomes that facilitate intercellular communication and transfer cell-to-cell biological information. MicroRNAs (miRNAs) are a class of short non-coding RNAs that we can used to their dysregulation in order to diseases diagnosis. The miRNAs of microvesicles obtained stem cells may change the fate of transplanted cells based on received signals of injured regions. The miRNAs existing in MSCs may be displayed the cell type and their biological activities. Current studies show also that the miRNAs create communication between stem cells and tissue-injured cells. In the present review, firstly we discuss the role of miRNAs dysregulation in MS patients and miRNAs expression by stem cells. Finally, in this study was confirmed the relationship of microRNAs involved in MS and miRNAs expressed by stem cells and interaction between them in order to find appropriate treatment methods in future for limit to disability progression.
Collapse
Affiliation(s)
- Fatemeh Tahmasebi
- Department of Anatomy, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elmira Roshani Asl
- Department of Biochemistry, Saveh University of Medical Sciences, Saveh, Iran
| | - Zeinab Vahidinia
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Shirin Barati
- Department of Anatomy, Saveh University of Medical Sciences, Saveh, Iran.
| |
Collapse
|
46
|
Hordijk S, Carter T, Bierings R. A new look at an old body: molecular determinants of Weibel-Palade body composition and von Willebrand factor exocytosis. J Thromb Haemost 2024; 22:1290-1303. [PMID: 38307391 DOI: 10.1016/j.jtha.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/04/2024]
Abstract
Endothelial cells, forming a monolayer along blood vessels, intricately regulate vascular hemostasis, inflammatory responses, and angiogenesis. A key determinant of these functions is the controlled secretion of Weibel-Palade bodies (WPBs), which are specialized endothelial storage organelles housing a presynthesized pool of the hemostatic protein von Willebrand factor and various other hemostatic, inflammatory, angiogenic, and vasoactive mediators. This review delves into recent mechanistic insights into WPB biology, including the biogenesis that results in their unique morphology, the acquisition of intraluminal vesicles and other cargo, and the contribution of proton pumps to organelle acidification. Additionally, in light of a number of proteomic approaches to unravel the regulatory networks that control WPB formation and secretion, we provide a comprehensive overview of the WPB exocytotic machinery, including their molecular and cellular mechanisms.
Collapse
Affiliation(s)
- Sophie Hordijk
- Hematology, Erasmus MC University Medical Center, Rotterdam, The Netherlands. https://twitter.com/SophieHordijk
| | - Tom Carter
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Ruben Bierings
- Hematology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
47
|
Kotewitsch M, Heimer M, Schmitz B, Mooren FC. Non-coding RNAs in exercise immunology: A systematic review. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:311-338. [PMID: 37925072 PMCID: PMC11116971 DOI: 10.1016/j.jshs.2023.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/01/2023] [Accepted: 09/19/2023] [Indexed: 11/06/2023]
Abstract
Regular physical exercise has been recognized as a potent modulator of immune function, with its effects including enhanced immune surveillance, reduced inflammation, and improved overall health. While strong evidence exists that physical exercise affects the specific expression and activity of non-coding RNAs (ncRNAs) also involved in immune system regulation, heterogeneity in individual study designs and analyzed exercise protocols exists, and a condensed list of functional, exercise-dependent ncRNAs with known targets in the immune system is missing from the literature. A systematic review and qualitative analysis was used to identify and categorize ncRNAs participating in immune modulation by physical exercise. Two combined approaches were used: (a) a systematic literature search for "ncRNA and exercise immunology", (b) and a database search for microRNAs (miRNAs) (miRTarBase and DIANA-Tarbase v8) aligned with known target genes in the immune system based on the Reactome database, combined with a systematic literature search for "ncRNA and exercise". Literature searches were based on PubMed, Web of Science, and SPORTDiscus; and miRNA databases were filtered for targets validated by in vitro experimental data. Studies were eligible if they reported on exercise-based interventions in healthy humans. After duplicate removal, 95 studies were included reporting on 164 miRNAs, which were used for the qualitative synthesis. Six studies reporting on long-noncoding RNAs (lncRNAs) or circular RNAs were also identified. Results were analyzed using ordering tables that included exercise modality (endurance/resistance exercise), acute or chronic interventions, as well as the consistency in reported change between studies. Evaluation criteria were defined as "validated" with 100% of ≥3 independent studies showing identical direction of regulation, "plausible" (≥80%), or "suggestive" (≥70%). For resistance exercise, upregulation of miR-206 was validated while downregulation of miR-133a appeared plausible. For endurance exercise, 15 miRNAs were categorized as validated, with 12 miRNAs being consistently elevated and 3 miRNAs being downregulated, most of them after acute exercise training. In conclusion, our approach provides evidence that miRNAs play a major role in exercise-induced effects on the innate and adaptive immune system by targeting different pathways affecting immune cell distribution, function, and trafficking as well as production of (anti-)inflammatory cytokines. miRNAs miR-15, miR-29c, miR-30a, miR-142/3, miR-181a, and miR-338 emerged as key players in mediating the immunomodulatory effects of exercise predominantly after acute bouts of endurance exercise.
Collapse
Affiliation(s)
- Mona Kotewitsch
- Department of Rehabilitation Sciences, Faculty of Health, University of Witten/Herdecke, Witten 58455, Germany; DRV Clinic Königsfeld, Center for Medical Rehabilitation, Ennepetal 58256, Germany
| | - Melina Heimer
- Department of Rehabilitation Sciences, Faculty of Health, University of Witten/Herdecke, Witten 58455, Germany; DRV Clinic Königsfeld, Center for Medical Rehabilitation, Ennepetal 58256, Germany
| | - Boris Schmitz
- Department of Rehabilitation Sciences, Faculty of Health, University of Witten/Herdecke, Witten 58455, Germany; DRV Clinic Königsfeld, Center for Medical Rehabilitation, Ennepetal 58256, Germany.
| | - Frank C Mooren
- Department of Rehabilitation Sciences, Faculty of Health, University of Witten/Herdecke, Witten 58455, Germany; DRV Clinic Königsfeld, Center for Medical Rehabilitation, Ennepetal 58256, Germany
| |
Collapse
|
48
|
Silver BB, Kreutz A, Weick M, Gerrish K, Tokar EJ. Biomarkers of chemotherapy-induced cardiotoxicity: toward precision prevention using extracellular vesicles. Front Oncol 2024; 14:1393930. [PMID: 38706609 PMCID: PMC11066856 DOI: 10.3389/fonc.2024.1393930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/02/2024] [Indexed: 05/07/2024] Open
Abstract
Detrimental side effects of drugs like doxorubicin, which can cause cardiotoxicity, pose barriers for preventing cancer progression, or treating cancer early through molecular interception. Extracellular vesicles (EVs) are valued for their potential as biomarkers of human health, chemical and molecular carcinogenesis, and therapeutics to treat disease at the cellular level. EVs are released both during normal growth and in response to toxicity and cellular death, playing key roles in cellular communication. Consequently, EVs may hold promise as precision biomarkers and therapeutics to prevent or offset damaging off-target effects of chemotherapeutics. EVs have promise as biomarkers of impending cardiotoxicity induced by chemotherapies and as cardioprotective therapeutic agents. However, EVs can also mediate cardiotoxic cues, depending on the identity and past events of their parent cells. Understanding how EVs mediate signaling is critical toward implementing EVs as therapeutic agents to mitigate cardiotoxic effects of chemotherapies. For example, it remains unclear how mixtures of EV populations from cells exposed to toxins or undergoing different stages of cell death contribute to signaling across cardiac tissues. Here, we present our perspective on the outlook of EVs as future clinical tools to mitigate chemotherapy-induced cardiotoxicity, both as biomarkers of impending cardiotoxicity and as cardioprotective agents. Also, we discuss how heterogeneous mixtures of EVs and transient exposures to toxicants may add complexity to predicting outcomes of exogenously applied EVs. Elucidating how EV cargo and signaling properties change during dynamic cellular events may aid precision prevention of cardiotoxicity in anticancer treatments and development of safer chemotherapeutics.
Collapse
Affiliation(s)
- Brian B. Silver
- Mechanistic Toxicology Branch, Division of Translational Toxicology (DTT), National Institute of Environmental Health Sciences (NIEHS), Durham, NC, United States
- Molecular Genomics Core, Division of Intramural Research (DIR), National Institute of Environmental Health Sciences (NIEHS), Durham, NC, United States
| | - Anna Kreutz
- Mechanistic Toxicology Branch, Division of Translational Toxicology (DTT), National Institute of Environmental Health Sciences (NIEHS), Durham, NC, United States
- Epigenetics & Stem Cell Biology Laboratory, Division of Intramural Research (DIR), National Institute of Environmental Health Sciences (NIEHS), Durham, NC, United States
- Inotiv, Durham, NC, United States
| | - Madeleine Weick
- Molecular Genomics Core, Division of Intramural Research (DIR), National Institute of Environmental Health Sciences (NIEHS), Durham, NC, United States
| | - Kevin Gerrish
- Molecular Genomics Core, Division of Intramural Research (DIR), National Institute of Environmental Health Sciences (NIEHS), Durham, NC, United States
| | - Erik J. Tokar
- Mechanistic Toxicology Branch, Division of Translational Toxicology (DTT), National Institute of Environmental Health Sciences (NIEHS), Durham, NC, United States
| |
Collapse
|
49
|
Cheng S, Xia IF, Wanner R, Abello J, Stratman AN, Nicoli S. Hemodynamics regulate spatiotemporal artery muscularization in the developing circle of Willis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.01.569622. [PMID: 38077062 PMCID: PMC10705471 DOI: 10.1101/2023.12.01.569622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Vascular smooth muscle cells (VSMCs) envelop vertebrate brain arteries, playing a crucial role in regulating cerebral blood flow and neurovascular coupling. The dedifferentiation of VSMCs is implicated in cerebrovascular diseases and neurodegeneration. Despite its importance, the process of VSMC differentiation on brain arteries during development remains inadequately characterized. Understanding this process could aid in reprogramming and regenerating differentiated VSMCs in cerebrovascular diseases. In this study, we investigated VSMC differentiation on the zebrafish circle of Willis (CoW), comprising major arteries that supply blood to the vertebrate brain. We observed that the arterial expression of CoW endothelial cells (ECs) occurs after their migration from the cranial venous plexus to form CoW arteries. Subsequently, acta2+ VSMCs differentiate from pdgfrb+ mural cell progenitors upon recruitment to CoW arteries. The progression of VSMC differentiation exhibits a spatiotemporal pattern, advancing from anterior to posterior CoW arteries. Analysis of blood flow suggests that earlier VSMC differentiation in anterior CoW arteries correlates with higher red blood cell velocity wall shear stress. Furthermore, pulsatile blood flow is required for differentiation of human brain pdgfrb+ mural cells into VSMCs as well as VSMC differentiation on zebrafish CoW arteries. Consistently, the flow-responsive transcription factor klf2a is activated in ECs of CoW arteries prior to VSMC differentiation, and klf2a knockdown delays VSMC differentiation on anterior CoW arteries. In summary, our findings highlight the role of blood flow activation of endothelial klf2a as a mechanism regulating the initial VSMC differentiation on vertebrate brain arteries.
Collapse
Affiliation(s)
- Siyuan Cheng
- Department of Genetics, Yale School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
- Yale Cardiovascular Research Center, Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, 300 George St, New Haven, CT 06511, USA
- Vascular Biology & Therapeutics Program, Yale School of Medicine, 10 Amistad St, New Haven, CT 06520, USA
| | - Ivan Fan Xia
- Department of Genetics, Yale School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
- Yale Cardiovascular Research Center, Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, 300 George St, New Haven, CT 06511, USA
- Vascular Biology & Therapeutics Program, Yale School of Medicine, 10 Amistad St, New Haven, CT 06520, USA
| | - Renate Wanner
- Department of Genetics, Yale School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
- Yale Cardiovascular Research Center, Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, 300 George St, New Haven, CT 06511, USA
- Vascular Biology & Therapeutics Program, Yale School of Medicine, 10 Amistad St, New Haven, CT 06520, USA
| | - Javier Abello
- Department of Cell Biology & Physiology, School of Medicine, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO 63110, USA
| | - Amber N. Stratman
- Department of Cell Biology & Physiology, School of Medicine, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO 63110, USA
| | - Stefania Nicoli
- Department of Genetics, Yale School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
- Yale Cardiovascular Research Center, Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, 300 George St, New Haven, CT 06511, USA
- Vascular Biology & Therapeutics Program, Yale School of Medicine, 10 Amistad St, New Haven, CT 06520, USA
| |
Collapse
|
50
|
Tanaka LY, Kumar S, Gutierre LF, Magnun C, Kajihara D, Kang DW, Laurindo FRM, Jo H. Disturbed flow regulates protein disulfide isomerase A1 expression via microRNA-204. Front Physiol 2024; 15:1327794. [PMID: 38638277 PMCID: PMC11024637 DOI: 10.3389/fphys.2024.1327794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/13/2024] [Indexed: 04/20/2024] Open
Abstract
Redox processes can modulate vascular pathophysiology. The endoplasmic reticulum redox chaperone protein disulfide isomerase A1 (PDIA1) is overexpressed during vascular proliferative diseases, regulating thrombus formation, endoplasmic reticulum stress adaptation, and structural remodeling. However, both protective and deleterious vascular effects have been reported for PDIA1, depending on the cell type and underlying vascular condition. Further understanding of this question is hampered by the poorly studied mechanisms underlying PDIA1 expression regulation. Here, we showed that PDIA1 mRNA and protein levels were upregulated (average 5-fold) in the intima and media/adventitia following partial carotid ligation (PCL). Our search identified that miR-204-5p and miR-211-5p (miR-204/211), two broadly conserved miRNAs, share PDIA1 as a potential target. MiR-204/211 was downregulated in vascular layers following PCL. In isolated endothelial cells, gain-of-function experiments of miR-204 with miR mimic decreased PDIA1 mRNA while having negligible effects on markers of endothelial activation/stress response. Similar effects were observed in vascular smooth muscle cells (VSMCs). Furthermore, PDIA1 downregulation by miR-204 decreased levels of the VSMC contractile differentiation markers. In addition, PDIA1 overexpression prevented VSMC dedifferentiation by miR-204. Collectively, we report a new mechanism for PDIA1 regulation through miR-204 and identify its relevance in a model of vascular disease playing a role in VSMC differentiation. This mechanism may be regulated in distinct stages of atherosclerosis and provide a potential therapeutic target.
Collapse
Affiliation(s)
- Leonardo Y. Tanaka
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Sandeep Kumar
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States
| | - Lucas F. Gutierre
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Celso Magnun
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Daniela Kajihara
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Dong-Won Kang
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States
| | - Francisco R. M. Laurindo
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|