1
|
Miao P, Tang Y. Two-Dimensional Hybridization Chain Reaction Strategy for Highly Sensitive Analysis of Intracellular mRNA. Anal Chem 2020; 92:12700-12709. [DOI: 10.1021/acs.analchem.0c03181] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peng Miao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
- Department of Chemistry, New York University, New York 10003, United States
| | - Yuguo Tang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
| |
Collapse
|
2
|
Yang X, Kui L, Tang M, Li D, Wei K, Chen W, Miao J, Dong Y. High-Throughput Transcriptome Profiling in Drug and Biomarker Discovery. Front Genet 2020; 11:19. [PMID: 32117438 PMCID: PMC7013098 DOI: 10.3389/fgene.2020.00019] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/07/2020] [Indexed: 01/26/2023] Open
Abstract
The development of new drugs is multidisciplinary and systematic work. High-throughput techniques based on “-omics” have driven the discovery of biomarkers in diseases and therapeutic targets of drugs. A transcriptome is the complete set of all RNAs transcribed by certain tissues or cells at a specific stage of development or physiological condition. Transcriptome research can demonstrate gene functions and structures from the whole level and reveal the molecular mechanism of specific biological processes in diseases. Currently, gene expression microarray and high-throughput RNA-sequencing have been widely used in biological, medical, clinical, and drug research. The former has been applied in drug screening and biomarker detection of drugs due to its high throughput, fast detection speed, simple analysis, and relatively low price. With the further development of detection technology and the improvement of analytical methods, the detection flux of RNA-seq is much higher but the price is lower, hence it has powerful advantages in detecting biomarkers and drug discovery. Compared with the traditional RNA-seq, scRNA-seq has higher accuracy and efficiency, especially the single-cell level of gene expression pattern analysis can provide more information for drug and biomarker discovery. Therefore, (sc)RNA-seq has broader application prospects, especially in the field of drug discovery. In this overview, we will review the application of these technologies in drug, especially in natural drug and biomarker discovery and development. Emerging applications of scRNA-seq and the third generation RNA-sequencing tools are also discussed.
Collapse
Affiliation(s)
- Xiaonan Yang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Ling Kui
- Dana-Farber Cancer Institute, Harvard Medical School, Brookline, MA, United States
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Dawei Li
- College of Biological Big Data, Yunnan Agricultural University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Kunhua Wei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China.,School of Pharmacy, Guangxi Medical University, Nanning, China
| | - Wei Chen
- College of Biological Big Data, Yunnan Agricultural University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Jianhua Miao
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China.,School of Pharmacy, Guangxi Medical University, Nanning, China
| | - Yang Dong
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China.,College of Biological Big Data, Yunnan Agricultural University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
3
|
Smith HL, Stevens A, Minogue B, Sneddon S, Shaw L, Wood L, Adeniyi T, Xiao H, Lio P, Kimber SJ, Brison DR. Systems based analysis of human embryos and gene networks involved in cell lineage allocation. BMC Genomics 2019; 20:171. [PMID: 30836937 PMCID: PMC6399968 DOI: 10.1186/s12864-019-5558-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 02/22/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Little is understood of the molecular mechanisms involved in the earliest cell fate decision in human development, leading to the establishment of the trophectoderm (TE) and inner cell mass (ICM) stem cell population. Notably, there is a lack of understanding of how transcriptional networks arise during reorganisation of the embryonic genome post-fertilisation. RESULTS We identified a hierarchical structure of preimplantation gene network modules around the time of embryonic genome activation (EGA). Using network models along with eukaryotic initiation factor (EIF) and epigenetic-associated gene expression we defined two sets of blastomeres that exhibited diverging tendencies towards ICM or TE. Analysis of the developmental networks demonstrated stage specific EIF expression and revealed that histone modifications may be an important epigenetic regulatory mechanism in preimplantation human embryos. Comparison to published RNAseq data confirmed that during EGA the individual 8-cell blastomeres are transcriptionally primed for the first lineage decision in development towards ICM or TE. CONCLUSIONS Using multiple systems biology approaches to compare developmental stages in the early human embryo with single cell transcript data from blastomeres, we have shown that blastomeres considered to be totipotent are not transcriptionally equivalent. Furthermore we have linked the developmental interactome to individual blastomeres and to later cell lineage. This has clinical implications for understanding the impact of fertility treatments and developmental programming of long term health.
Collapse
Affiliation(s)
- H. L. Smith
- Maternal and Fetal Health Research Centre, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester, M13 9WL UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester, M13 9WL UK
| | - A. Stevens
- Division of Developmental Biology & Medicine, School of Medical Sciences, University of Manchester, Manchester Academic Health Sciences Centre, 5th Floor Research, Royal Manchester Children’s Hospital, Oxford Road, Manchester, M13 9WL UK
| | - B. Minogue
- Maternal and Fetal Health Research Centre, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester, M13 9WL UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester, M13 9WL UK
| | - S. Sneddon
- Maternal and Fetal Health Research Centre, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester, M13 9WL UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester, M13 9WL UK
| | - L. Shaw
- Maternal and Fetal Health Research Centre, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester, M13 9WL UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester, M13 9WL UK
| | - L. Wood
- Department of Reproductive Medicine, Saint Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Oxford Road, Manchester, M13 9WL UK
| | - T. Adeniyi
- Department of Reproductive Medicine, Saint Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Oxford Road, Manchester, M13 9WL UK
| | - H. Xiao
- Computer Laboratory, William Gates Building, University of Cambridge, Cambridge, UK
| | - P. Lio
- Computer Laboratory, William Gates Building, University of Cambridge, Cambridge, UK
| | - S. J. Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester, M13 9WL UK
| | - D. R. Brison
- Maternal and Fetal Health Research Centre, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester, M13 9WL UK
- Department of Reproductive Medicine, Saint Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Oxford Road, Manchester, M13 9WL UK
| |
Collapse
|
4
|
Sasagawa Y, Hayashi T, Nikaido I. Strategies for Converting RNA to Amplifiable cDNA for Single-Cell RNA Sequencing Methods. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1129:1-17. [PMID: 30968357 DOI: 10.1007/978-981-13-6037-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This review describes the features of molecular biology techniques for single-cell RNA sequencing (scRNA-seq), including methods developed in our laboratory. Existing scRNA-seq methods require the conversion of first-strand cDNA to amplifiable cDNA followed by whole-transcript amplification. There are three primary strategies for this conversion: poly-A tagging, template switching, and RNase H-DNA polymerase I-mediated second-strand cDNA synthesis for in vitro transcription. We discuss the merits and limitations of these strategies and describe our Reverse Transcription with Random Displacement Amplification technology that allows for direct first-strand cDNA amplification from RNA without the need for conversion to an amplifiable cDNA. We believe that this review provides all users of single-cell transcriptome technologies with an understanding of the relationship between the quantitative performance of various methods and their molecular features.
Collapse
Affiliation(s)
- Yohei Sasagawa
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Saitama, Japan
| | - Tetsutaro Hayashi
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Saitama, Japan
| | - Itoshi Nikaido
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Saitama, Japan.
| |
Collapse
|
5
|
Kolodziejczyk AA, Lönnberg T. Global and targeted approaches to single-cell transcriptome characterization. Brief Funct Genomics 2018; 17:209-219. [PMID: 29028866 PMCID: PMC6063303 DOI: 10.1093/bfgp/elx025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Analysing transcriptomes of cell populations is a standard molecular biology approach to understand how cells function. Recent methodological development has allowed performing similar experiments on single cells. This has opened up the possibility to examine samples with limited cell number, such as cells of the early embryo, and to obtain an understanding of heterogeneity within populations such as blood cell types or neurons. There are two major approaches for single-cell transcriptome analysis: quantitative reverse transcription PCR (RT-qPCR) on a limited number of genes of interest, or more global approaches targeting entire transcriptomes using RNA sequencing. RT-qPCR is sensitive, fast and arguably more straightforward, while whole-transcriptome approaches offer an unbiased perspective on a cell's expression status.
Collapse
Affiliation(s)
| | - Tapio Lönnberg
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| |
Collapse
|
6
|
|
7
|
Liu Q, Ge Z, Mao X, Zhou G, Zuo X, Shen J, Shi J, Li J, Wang L, Chen X, Fan C. Valency-Controlled Framework Nucleic Acid Signal Amplifiers. Angew Chem Int Ed Engl 2018; 57:7131-7135. [DOI: 10.1002/anie.201802701] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Qi Liu
- Institute of Molecular Medicine; Renji Hospital; School of Medicine and School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; Shanghai 200127 China
- College of Chemistry and Chemical Engineering; Central South University; Changsha 410083 China
| | - Zhilei Ge
- Division of Physical Biology and Bioimaging Center; Shanghai Synchrotron Radiation Facility; Shanghai Institute of Applied Physics; Chinese Academy of Sciences; Shanghai 201800 China
| | - Xiuhai Mao
- Institute of Molecular Medicine; Renji Hospital; School of Medicine and School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; Shanghai 200127 China
| | - Guobao Zhou
- Division of Physical Biology and Bioimaging Center; Shanghai Synchrotron Radiation Facility; Shanghai Institute of Applied Physics; Chinese Academy of Sciences; Shanghai 201800 China
| | - Xiaolei Zuo
- Institute of Molecular Medicine; Renji Hospital; School of Medicine and School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; Shanghai 200127 China
| | - Juwen Shen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences; East China Normal University; Shanghai 200241 China
| | | | - Jiang Li
- Division of Physical Biology and Bioimaging Center; Shanghai Synchrotron Radiation Facility; Shanghai Institute of Applied Physics; Chinese Academy of Sciences; Shanghai 201800 China
| | - Lihua Wang
- Division of Physical Biology and Bioimaging Center; Shanghai Synchrotron Radiation Facility; Shanghai Institute of Applied Physics; Chinese Academy of Sciences; Shanghai 201800 China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering; Central South University; Changsha 410083 China
| | - Chunhai Fan
- Division of Physical Biology and Bioimaging Center; Shanghai Synchrotron Radiation Facility; Shanghai Institute of Applied Physics; Chinese Academy of Sciences; Shanghai 201800 China
| |
Collapse
|
8
|
Snider EJ, Vannatta RT, Schildmeyer L, Stamer WD, Ethier CR. Characterizing differences between MSCs and TM cells: Toward autologous stem cell therapies for the glaucomatous trabecular meshwork. J Tissue Eng Regen Med 2017; 12:695-704. [PMID: 28556530 DOI: 10.1002/term.2488] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 04/09/2017] [Accepted: 05/19/2017] [Indexed: 01/10/2023]
Abstract
Glaucoma, a leading cause of blindness, is characterized by an increase in intraocular pressure, which is largely determined by resistance to aqueous humour outflow through the trabecular meshwork (TM). In glaucoma, the cellularity of the TM is decreased, and, as a result, stem cell therapies for the TM represent a potential therapeutic option for restoring TM function and treating glaucoma patients. We here focus on adipose derived mesenchymal stem cells (MSCs) as a potential autologous cell source for TM regenerative medicine applications and describe characterization techniques at the messenger (reverse transcription-quantitative polymerase chain reaction), protein (western blotting, flow cytometry), and functional (contractility, phagocytosis) levels to distinguish MSCs from TM cells. We present a panel of 12 transcripts to allow: (a) suitable normalization of reverse transcription-quantitative polymerase chain reaction results across cell types and after exposure to potential differentiation stimuli; (b) distinguishing MSCs from TM cells; (c) distinguishing subtypes of TM cells; and (d) distinguishing TM cells from those in neighbouring tissue. At the protein level, dexamethasone induction of myocilin was a robust discriminating factor between MSCs and TM cells and was complemented by other protein markers. Finally, we show that contractility and phagocytosis differ between MSCs and TM cells. These methods are recommended for use in future differentiation studies to fully define if a functional TM-like phenotype is being achieved.
Collapse
Affiliation(s)
- Eric J Snider
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - R Taylor Vannatta
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Lisa Schildmeyer
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, NC, USA.,Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - C Ross Ethier
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| |
Collapse
|
9
|
Arzalluz-Luque Á, Devailly G, Mantsoki A, Joshi A. Delineating biological and technical variance in single cell expression data. Int J Biochem Cell Biol 2017; 90:161-166. [PMID: 28716546 PMCID: PMC5608017 DOI: 10.1016/j.biocel.2017.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 01/08/2023]
Abstract
Single cell transcriptomics is becoming a common technique to unravel new biological phenomena whose functional significance can only be understood in the light of differences in gene expression between single cells. The technology is still in its early days and therefore suffers from many technical challenges. This review discusses the continuous effort to identify and systematically characterise various sources of technical variability in single cell expression data and the need to further develop experimental and computational tools and resources to help deal with it.
Collapse
Affiliation(s)
- Ángeles Arzalluz-Luque
- Genomics of Gene Expression Laboratory, Centro de Investigación Principe Felipe (CIPF), Carrer d'Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Guillaume Devailly
- Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Anna Mantsoki
- Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Anagha Joshi
- Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.
| |
Collapse
|
10
|
Wang J, Song Y. Single cell sequencing: a distinct new field. Clin Transl Med 2017; 6:10. [PMID: 28220395 PMCID: PMC5318355 DOI: 10.1186/s40169-017-0139-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/11/2017] [Indexed: 12/12/2022] Open
Abstract
Single cell sequencing (SCS) has become a new approach to study biological heterogeneity. The advancement in technologies for single cell isolation, amplification of genome/transcriptome and next-generation sequencing enables SCS to reveal the inherent properties of a single cell from the large scale of the genome, transcriptome or epigenome at high resolution. Recently, SCS has been widely applied in various clinical and research fields, such as cancer biology and oncology, immunology, microbiology, neurobiology and prenatal diagnosis. In this review, we will discuss the development of SCS methods and focus on the latest clinical and research applications of SCS.
Collapse
Affiliation(s)
- Jian Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200030, China
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200030, China.
| |
Collapse
|
11
|
Stanescu DE, Yu R, Won KJ, Stoffers DA. Single cell transcriptomic profiling of mouse pancreatic progenitors. Physiol Genomics 2016; 49:105-114. [PMID: 28011883 DOI: 10.1152/physiolgenomics.00114.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/12/2016] [Accepted: 12/19/2016] [Indexed: 12/20/2022] Open
Abstract
The heterogeneity of the developing pancreatic epithelium and low abundance of endocrine progenitors limit the information derived from traditional expression studies. To identify genes that characterize early developmental tissues composed of multiple progenitor lineages, we applied single-cell RNA-Seq to embryonic day (e)13.5 mouse pancreata and performed integrative analysis with single cell data from mature pancreas. We identified subpopulations expressing macrophage or endothelial markers and new pancreatic progenitor markers. We also identified potential α-cell precursors expressing glucagon (Gcg) among the e13.5 pancreatic cells. Despite their high Gcg expression levels, these cells shared greater transcriptomic similarity with other e13.5 cells than with adult α-cells, indicating their immaturity. Comparative analysis identified the sodium-dependent neutral amino acid transporter, Slc38a5, as a characteristic gene expressed in α-cell precursors but not mature cells. By immunofluorescence analysis, we observed SLC38A5 expression in pancreatic progenitors, including in a subset of NEUROG3+ endocrine progenitors and MAFB+ cells and in all GCG+ cells. Expression declined in α-cells during late gestation and was absent in the adult islet. Our results suggest SLC38A5 as an early marker of α-cell lineage commitment.
Collapse
Affiliation(s)
- Diana E Stanescu
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Reynold Yu
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Kyoung-Jae Won
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Doris A Stoffers
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; .,Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
12
|
Jin LQ, Pennise CR, Rodemer W, Jahn KS, Selzer ME. Protein synthetic machinery and mRNA in regenerating tips of spinal cord axons in lamprey. J Comp Neurol 2016; 524:3614-3640. [PMID: 27120118 DOI: 10.1002/cne.24020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 02/03/2023]
Abstract
Polyribosomes, mRNA, and other elements of translational machinery have been reported in peripheral nerves and in elongating injured axons of sensory neurons in vitro, primarily in growth cones. Evidence for involvement of local protein synthesis in regenerating central nervous system (CNS) axons is less extensive. We monitored regeneration of back-labeled lamprey spinal axons after spinal cord transection and detected mRNA in axon tips by in situ hybridization and microaspiration of their axoplasm. Poly(A)+mRNA was present in the axon tips, and was more abundant in actively regenerating tips than in static or retracting ones. Target-specific polymerase chain reaction (PCR) and in situ hybridization revealed plentiful mRNA for the low molecular neurofilament subunit and β-tubulin, but very little for β-actin, consistent with the morphology of their tips, which lack filopodia and lamellipodia. Electron microscopy showed ribosomes/polyribosomes in the distal parts of axon tips and in association with vesicle-like membranes, primarily in the tip. In one instance, there were structures with the appearance of rough endoplasmic reticulum. Immunohistochemistry showed patches of ribosomal protein S6 positivity in a similar distribution. The results suggest that local protein synthesis might be involved in the mechanism of axon regeneration in the lamprey spinal cord. J. Comp. Neurol. 524:3614-3640, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Li-Qing Jin
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA, 19140.
| | - Cynthia R Pennise
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA, 19140
| | - William Rodemer
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA, 19140
| | - Kristen S Jahn
- The Children's Hospital of Philadelphia, 1108 Pine Street, Philadelphia, PA, 19107
| | - Michael E Selzer
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA, 19140. .,Department of Neurology, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA, 19140.
| |
Collapse
|
13
|
Grün D, van Oudenaarden A. Design and Analysis of Single-Cell Sequencing Experiments. Cell 2016; 163:799-810. [PMID: 26544934 DOI: 10.1016/j.cell.2015.10.039] [Citation(s) in RCA: 360] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Indexed: 12/21/2022]
Abstract
Recent advances in single-cell sequencing hold great potential for exploring biological systems with unprecedented resolution. Sequencing the genome of individual cells can reveal somatic mutations and allows the investigation of clonal dynamics. Single-cell transcriptome sequencing can elucidate the cell type composition of a sample. However, single-cell sequencing comes with major technical challenges and yields complex data output. In this Primer, we provide an overview of available methods and discuss experimental design and single-cell data analysis. We hope that these guidelines will enable a growing number of researchers to leverage the power of single-cell sequencing.
Collapse
Affiliation(s)
- Dominic Grün
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, Cancer Genomics Netherlands, 3584 CX Utrecht, the Netherlands; Max Planck Institute of Immunobiology and Epigenetics, D-79108 Freiburg, Germany
| | - Alexander van Oudenaarden
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), 3584 CT Utrecht, the Netherlands; University Medical Center Utrecht, Cancer Genomics Netherlands, 3584 CX Utrecht, the Netherlands.
| |
Collapse
|
14
|
Mantikou E, Bruning O, Mastenbroek S, Repping S, Breit TM, de Jong M. Evaluation of ribonucleic acid amplification protocols for human oocyte transcriptome analysis. Fertil Steril 2016; 105:511-9.e4. [DOI: 10.1016/j.fertnstert.2015.10.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/14/2015] [Accepted: 10/26/2015] [Indexed: 12/31/2022]
|
15
|
Epigenomic Reprogramming of Adult Cardiomyocyte-Derived Cardiac Progenitor Cells. Sci Rep 2015; 5:17686. [PMID: 26657817 PMCID: PMC4677315 DOI: 10.1038/srep17686] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 10/14/2015] [Indexed: 01/01/2023] Open
Abstract
It has been believed that mammalian adult cardiomyocytes (ACMs) are terminally-differentiated and are unable to proliferate. Recently, using a bi-transgenic ACM fate mapping mouse model and an in vitro culture system, we demonstrated that adult mouse cardiomyocytes were able to dedifferentiate into cardiac progenitor-like cells (CPCs). However, little is known about the molecular basis of their intrinsic cellular plasticity. Here we integrate single-cell transcriptome and whole-genome DNA methylation analyses to unravel the molecular mechanisms underlying the dedifferentiation and cell cycle reentry of mouse ACMs. Compared to parental cardiomyocytes, dedifferentiated mouse cardiomyocyte-derived CPCs (mCPCs) display epigenomic reprogramming with many differentially-methylated regions, both hypermethylated and hypomethylated, across the entire genome. Correlated well with the methylome, our transcriptomic data showed that the genes encoding cardiac structure and function proteins are remarkably down-regulated in mCPCs, while those for cell cycle, proliferation, and stemness are significantly up-regulated. In addition, implantation of mCPCs into infarcted mouse myocardium improves cardiac function with augmented left ventricular ejection fraction. Our study demonstrates that the cellular plasticity of mammalian cardiomyocytes is the result of a well-orchestrated epigenomic reprogramming and a subsequent global transcriptomic alteration.
Collapse
|
16
|
Hodne K, Weltzien FA. Single-Cell Isolation and Gene Analysis: Pitfalls and Possibilities. Int J Mol Sci 2015; 16:26832-49. [PMID: 26569222 PMCID: PMC4661855 DOI: 10.3390/ijms161125996] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/14/2015] [Accepted: 11/03/2015] [Indexed: 01/07/2023] Open
Abstract
During the last two decades single-cell analysis (SCA) has revealed extensive phenotypic differences within homogenous cell populations. These phenotypic differences are reflected in the stochastic nature of gene regulation, which is often masked by qualitatively and quantitatively averaging in whole tissue analyses. The ability to isolate transcripts and investigate how genes are regulated at the single cell level requires highly sensitive and refined methods. This paper reviews different strategies currently used for SCA, including harvesting, reverse transcription, and amplification of the RNA, followed by methods for transcript quantification. The review provides the historical background to SCA, discusses limitations, and current and future possibilities in this exciting field of research.
Collapse
Affiliation(s)
- Kjetil Hodne
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences-Campus Adamstuen, 0033 Oslo, Norway.
| | - Finn-Arne Weltzien
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences-Campus Adamstuen, 0033 Oslo, Norway.
| |
Collapse
|
17
|
Single cells get together: High-resolution approaches to study the dynamics of early mouse development. Semin Cell Dev Biol 2015; 47-48:92-100. [PMID: 26183190 DOI: 10.1016/j.semcdb.2015.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 06/17/2015] [Accepted: 06/19/2015] [Indexed: 11/22/2022]
Abstract
Embryonic development is a complex and highly dynamic process during which individual cells interact with one another, adopt different identities and organize themselves in three-dimensional space to generate an entire organism. Recent technical developments in genomics and high-resolution quantitative imaging are making it possible to study cellular populations at single-cell resolution and begin to integrate different inputs, for example genetic, physical and chemical factors, that affect cell differentiation over spatial and temporal scales. The preimplantation mouse embryo allows the analysis of cell fate decisions in vivo with high spatiotemporal resolution. In this review we highlight how the application of live imaging and single-cell resolution analysis pipelines is providing an unprecedented level of insight on the processes that shape the earliest stages of mammalian development.
Collapse
|
18
|
Single prokaryotic cell isolation and total transcript amplification protocol for transcriptomic analysis. Nat Protoc 2015; 10:974-84. [PMID: 26042386 DOI: 10.1038/nprot.2015.058] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Until recently, transcriptome analyses of single cells have been confined to eukaryotes. The information obtained from single-cell transcripts can provide detailed insight into spatiotemporal gene expression, and it could be even more valuable if expanded to prokaryotic cells. Transcriptome analysis of single prokaryotic cells is a recently developed and powerful tool. Here we describe a procedure that allows amplification of the total transcript of a single prokaryotic cell for in-depth analysis. This is performed by using a laser-capture microdissection instrument for single-cell isolation, followed by reverse transcription via Moloney murine leukemia virus, degradation of chromosomal DNA with McrBC and DpnI restriction enzymes, single-stranded cDNA (ss-cDNA) ligation using T4 polynucleotide kinase and CircLigase, and polymerization of ss-cDNA to double-stranded cDNA (ds-cDNA) by Φ29 polymerase. This procedure takes ∼5 d, and sufficient amounts of ds-cDNA can be obtained from single-cell RNA template for further microarray analysis.
Collapse
|
19
|
Korenková V, Scott J, Novosadová V, Jindřichová M, Langerová L, Švec D, Šídová M, Sjöback R. Pre-amplification in the context of high-throughput qPCR gene expression experiment. BMC Mol Biol 2015; 16:5. [PMID: 25888347 PMCID: PMC4365555 DOI: 10.1186/s12867-015-0033-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 02/12/2015] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND With the introduction of the first high-throughput qPCR instrument on the market it became possible to perform thousands of reactions in a single run compared to the previous hundreds. In the high-throughput reaction, only limited volumes of highly concentrated cDNA or DNA samples can be added. This necessity can be solved by pre-amplification, which became a part of the high-throughput experimental workflow. Here, we focused our attention on the limits of the specific target pre-amplification reaction and propose the optimal, general setup for gene expression experiment using BioMark instrument (Fluidigm). RESULTS For evaluating different pre-amplification factors following conditions were combined: four human blood samples from healthy donors and five transcripts having high to low expression levels; each cDNA sample was pre-amplified at four cycles (15, 18, 21, and 24) and five concentrations (equivalent to 0.078 ng, 0.32 ng, 1.25 ng, 5 ng, and 20 ng of total RNA). Factors identified as critical for a success of cDNA pre-amplification were cycle of pre-amplification, total RNA concentration, and type of gene. The selected pre-amplification reactions were further tested for optimal Cq distribution in a BioMark Array. The following concentrations combined with pre-amplification cycles were optimal for good quality samples: 20 ng of total RNA with 15 cycles of pre-amplification, 20x and 40x diluted; and 5 ng and 20 ng of total RNA with 18 cycles of pre-amplification, both 20x and 40x diluted. CONCLUSIONS We set up upper limits for the bulk gene expression experiment using gene expression Dynamic Array and provided an easy-to-obtain tool for measuring of pre-amplification success. We also showed that variability of the pre-amplification, introduced into the experimental workflow of reverse transcription-qPCR, is lower than variability caused by the reverse transcription step.
Collapse
Affiliation(s)
- Vlasta Korenková
- Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | - Justin Scott
- QFAB Bioinformatics, University of Queensland - St Lucia QLD, Brisbane, Australia.
| | - Vendula Novosadová
- Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | - Marie Jindřichová
- Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | - Lucie Langerová
- Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | - David Švec
- Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | - Monika Šídová
- Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | |
Collapse
|
20
|
Gerstmann K, Pensold D, Symmank J, Khundadze M, Hübner CA, Bolz J, Zimmer G. Thalamic afferents influence cortical progenitors via ephrin A5-EphA4 interactions. Development 2014; 142:140-50. [PMID: 25480914 DOI: 10.1242/dev.104927] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The phenotype of excitatory cerebral cortex neurons is specified at the progenitor level, orchestrated by various intrinsic and extrinsic factors. Here, we provide evidence for a subcortical contribution to cortical progenitor regulation by thalamic axons via ephrin A5-EphA4 interactions. Ephrin A5 is expressed by thalamic axons and represents a high-affinity ligand for EphA4 receptors detected in cortical precursors. Recombinant ephrin A5-Fc protein, as well as ephrin A ligand-expressing, thalamic axons affect the output of cortical progenitor division in vitro. Ephrin A5-deficient mice show an altered division mode of radial glial cells (RGCs) accompanied by increased numbers of intermediate progenitor cells (IPCs) and an elevated neuronal production for the deep cortical layers at E13.5. In turn, at E16.5 the pool of IPCs is diminished, accompanied by reduced rates of generated neurons destined for the upper cortical layers. This correlates with extended infragranular layers at the expense of superficial cortical layers in adult ephrin A5-deficient and EphA4-deficient mice. We suggest that ephrin A5 ligands imported by invading thalamic axons interact with EphA4-expressing RGCs, thereby contributing to the fine-tuning of IPC generation and thus the proper neuronal output for cortical layers.
Collapse
Affiliation(s)
- Katrin Gerstmann
- Institute of Human Genetics, Jena University Hospital, Friedrich-Schiller-University Jena, 07743 Jena, Germany Institute for General Zoology and Animal Physiology, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Daniel Pensold
- Institute of Human Genetics, Jena University Hospital, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Judit Symmank
- Institute of Human Genetics, Jena University Hospital, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Mukhran Khundadze
- Institute of Human Genetics, Jena University Hospital, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Christian A Hübner
- Institute of Human Genetics, Jena University Hospital, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Jürgen Bolz
- Institute for General Zoology and Animal Physiology, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Geraldine Zimmer
- Institute of Human Genetics, Jena University Hospital, Friedrich-Schiller-University Jena, 07743 Jena, Germany Institute for General Zoology and Animal Physiology, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| |
Collapse
|
21
|
Isothermal cycling and cascade signal amplification strategy for ultrasensitive colorimetric detection of nucleic acids. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1385-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Liu N, Liu L, Pan X. Single-cell analysis of the transcriptome and its application in the characterization of stem cells and early embryos. Cell Mol Life Sci 2014; 71:2707-15. [PMID: 24652479 PMCID: PMC11113295 DOI: 10.1007/s00018-014-1601-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/16/2014] [Accepted: 02/03/2014] [Indexed: 12/17/2022]
Abstract
Cellular heterogeneity within a cell population is a common phenomenon in multicellular organisms, tissues, cultured cells, and even FACS-sorted subpopulations. Important information may be masked if the cells are studied as a mass. Transcriptome profiling is a parameter that has been intensively studied, and relatively easier to address than protein composition. To understand the basis and importance of heterogeneity and stochastic aspects of the cell function and its mechanisms, it is essential to examine transcriptomes of a panel of single cells. High-throughput technologies, starting from microarrays and now RNA-seq, provide a full view of the expression of transcriptomes but are limited by the amount of RNA for analysis. Recently, several new approaches for amplification and sequencing the transcriptome of single cells or a limited low number of cells have been developed and applied. In this review, we summarize these major strategies, such as PCR-based methods, IVT-based methods, phi29-DNA polymerase-based methods, and several other methods, including their principles, characteristics, advantages, and limitations, with representative applications in cancer stem cells, early development, and embryonic stem cells. The prospects for development of future technology and application of transcriptome analysis in a single cell are also discussed.
Collapse
Affiliation(s)
- Na Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Science, Nankai University, Tianjin, 300071, China,
| | | | | |
Collapse
|
23
|
Thissen JB, McLoughlin K, Gardner S, Gu P, Mabery S, Slezak T, Jaing C. Analysis of sensitivity and rapid hybridization of a multiplexed Microbial Detection Microarray. J Virol Methods 2014; 201:73-8. [DOI: 10.1016/j.jviromet.2014.01.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 01/14/2014] [Accepted: 01/21/2014] [Indexed: 11/26/2022]
|
24
|
Sedighi A, Li PC. Kras gene codon 12 mutation detection enabled by gold nanoparticles conducted in a nanobioarray chip. Anal Biochem 2014; 448:58-64. [DOI: 10.1016/j.ab.2013.11.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/13/2013] [Accepted: 11/16/2013] [Indexed: 11/28/2022]
|
25
|
Gibriel A. Effect of Target Length on Specificity and Sensitivity of Oligonucleotide Microarrays: A Comparison between Dendrimer and Modified PCR based Labelling Methods. Open Biochem J 2014; 8:11-20. [PMID: 24551024 PMCID: PMC3927376 DOI: 10.2174/1874091x01408010011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 11/07/2013] [Accepted: 11/08/2013] [Indexed: 12/28/2022] Open
Abstract
DNA microarrays are widely used as end point detectors for gene expression analysis. Several methods have
been developed for target labelling to enable quantification but without taking target length into consideration. Here we
highlight the importance of choosing the optimum target length that would ensure specificity without compromising sensitivity
of the assay. For this, eight plasmids that are identical to each other except for a closely related 23 bp unique reporter
(UR) sequence were used to examine the hybridization efficiency for these URs. Targets of various lengths were
generated and labelled as follows: full length and 330 bases transcripts using a dendrimer labelling method, 120 bp amplicons
by the modified PCR end labelling method and synthetic labelled targets of 33 bases. This report also shows the advantages
of using the modified PCR method over other labelling methods in generating labelled amplicons of the desired
lengths to maximize hybridization efficiency.
Collapse
Affiliation(s)
- Abdullah Gibriel
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Ahram Canadian University (ACU) ; Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
26
|
Abstract
Advances in whole-genome and whole-transcriptome amplification have permitted the sequencing of the minute amounts of DNA and RNA present in a single cell, offering a window into the extent and nature of genomic and transcriptomic heterogeneity which occurs in both normal development and disease. Single-cell approaches stand poised to revolutionise our capacity to understand the scale of genomic, epigenomic, and transcriptomic diversity that occurs during the lifetime of an individual organism. Here, we review the major technological and biological breakthroughs achieved, describe the remaining challenges to overcome, and provide a glimpse into the promise of recent and future developments.
Collapse
|
27
|
Gadkar VJ, Arseneault T, Filion M. Fidelity and representativeness of two isothermal multiple displacement amplification systems to preamplify limiting amounts of total RNA. Mol Biotechnol 2013; 56:377-85. [PMID: 24198216 DOI: 10.1007/s12033-013-9718-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this study we investigated the fidelity and representativeness of two novel multiple displacement amplification (MDA) protocols leading to whole transcriptome amplification (WTA). WTA is used to amplify a limiting amount of experimental RNA, allowing its use in downstream applications. Using Phi29 and Bst DNA polymerase-based MDA, henceforth referred to as WTA-Phi and WTA-Bst, respectively, we successfully amplified very low amounts of linearly concatenated cDNA originating from 10 to 100 ng of starting RNA. The average yield obtained from 10 ng was 3.5 and 4.7 μg for WTA-Phi and WTA-Bst, respectively, while 100 ng of starting RNA yielded 7.0 and 12.4 μg for WTA-Phi and WTA-Bst, respectively. Representational distortion of the templates, analyzed via conventional PCR, showed robust amplification of 11 different transcripts when either WTA-Phi or WTA-Bst synthesized templates were used, while some transcripts were not detected from unamplified templates. Loci representation, a measure of amplification consistency, was evaluated using TaqMan RT-qPCR amplification of five different transcripts, yielding values ranging from 96.4 to 189.3 %, comparable to those obtained using genomic target-based MDA systems. The two MDA protocols described in this study efficiently lead to representative WTA, using as little as 10 ng of starting RNA.
Collapse
Affiliation(s)
- Vijay J Gadkar
- Department of Biology, Université de Moncton, 18 Antonine-Maillet Ave, Moncton, NB, E1A 3E9, Canada
| | | | | |
Collapse
|
28
|
Twin J, Bradshaw CS, Garland SM, Fairley CK, Fethers K, Tabrizi SN. The potential of metatranscriptomics for identifying screening targets for bacterial vaginosis. PLoS One 2013; 8:e76892. [PMID: 24086764 PMCID: PMC3785445 DOI: 10.1371/journal.pone.0076892] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 08/29/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The ribosomal RNA content of a sample collected from a woman with bacterial vaginosis (BV) was analysed to determine the active microbial community, and to identify potential targets for further screening. METHODOLOGY/PRINCIPAL FINDINGS The sample from the BV patient underwent total RNA extraction, followed by physical subtraction of human rRNA and whole transcriptome amplification. The metatranscriptome was sequenced using Roche 454 titanium chemistry. The bioinformatics pipeline MG-RAST and desktop DNA analysis platforms were utilised to analyse results. Bacteria of the genus Prevotella (predominately P. amnii) constituted 36% of the 16S rRNA reads, followed by Megasphaera (19%), Leptotrichia/Sneathia (8%) and Fusobacterium (8%). Comparison of the abundances of several bacteria to quantitative PCR (qPCR) screening of extracted DNA revealed comparable relative abundances. This suggests a correlation between what was present and transcriptionally active in this sample: however distinct differences were seen when compared to the microbiome determined by 16S rRNA gene amplicon sequencing. To assess the presence of P. amnii in a larger pool of samples, 90 sexually active women were screened using qPCR. This bacterium was found to be strongly associated with BV (P<0.001, OR 23.3 (95%CI:2.9-190.7)) among the 90 women. CONCLUSIONS/SIGNIFICANCE This study highlighted the potential of metatranscriptomics as a tool for characterising metabolically active microbiota and identifying targets for further screening. Prevotella amnii was chosen as an example target, being the most metabolically active species present in the single patient with BV, and was found to be detected at a high concentration by qPCR in 31% of cohort with BV, with an association with both oral and penile-vaginal sex.
Collapse
Affiliation(s)
- Jimmy Twin
- Department of Microbiology and Infectious Diseases, The Royal Women's Hospital, Melbourne, Australia
- Murdoch Childrens Research Institute, Melbourne, Australia
- * E-mail:
| | - Catriona S. Bradshaw
- Melbourne Sexual Health Centre, Melbourne, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
- Melbourne School of Population Health, University of Melbourne, Melbourne, Australia
| | - Suzanne M. Garland
- Department of Microbiology and Infectious Diseases, The Royal Women's Hospital, Melbourne, Australia
- Murdoch Childrens Research Institute, Melbourne, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Australia
- Department of Microbiology, The Royal Children's Hospital, Melbourne, Australia
| | - Christopher K. Fairley
- Melbourne Sexual Health Centre, Melbourne, Australia
- Melbourne School of Population Health, University of Melbourne, Melbourne, Australia
| | - Katherine Fethers
- Melbourne Sexual Health Centre, Melbourne, Australia
- Melbourne School of Population Health, University of Melbourne, Melbourne, Australia
| | - Sepehr N. Tabrizi
- Department of Microbiology and Infectious Diseases, The Royal Women's Hospital, Melbourne, Australia
- Murdoch Childrens Research Institute, Melbourne, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Australia
- Department of Microbiology, The Royal Children's Hospital, Melbourne, Australia
| |
Collapse
|
29
|
Frelin C, Herrington R, Janmohamed S, Barbara M, Tran G, Paige CJ, Benveniste P, Zuñiga-Pflücker JC, Souabni A, Busslinger M, Iscove NN. GATA-3 regulates the self-renewal of long-term hematopoietic stem cells. Nat Immunol 2013; 14:1037-44. [PMID: 23974957 PMCID: PMC4972578 DOI: 10.1038/ni.2692] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/22/2013] [Indexed: 01/07/2023]
Abstract
The transcription factor GATA-3 is expressed and required for differentiation and function throughout the T lymphocyte lineage. Despite evidence it may also be expressed in multipotent hematopoietic stem cells (HSCs), any role for GATA-3 in these cells has remained unclear. Here we found GATA-3 was in the cytoplasm in quiescent long-term stem cells from steady-state bone marrow but relocated to the nucleus when HSCs cycled. Relocation depended on signaling via the mitogen-activated protein kinase p38 and was associated with a diminished capacity for long-term reconstitution after transfer into irradiated mice. Deletion of Gata3 enhanced the repopulating capacity and augmented the self-renewal of long-term HSCs in cell-autonomous fashion without affecting the cell cycle. Our observations position GATA-3 as a regulator of the balance between self-renewal and differentiation in HSCs that acts downstream of the p38 signaling pathway.
Collapse
Affiliation(s)
- Catherine Frelin
- 1] Ontario Cancer Institute, University Health Network, Toronto, Canada. [2] Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Shaw L, Sneddon SF, Zeef L, Kimber SJ, Brison DR. Global gene expression profiling of individual human oocytes and embryos demonstrates heterogeneity in early development. PLoS One 2013; 8:e64192. [PMID: 23717564 PMCID: PMC3661520 DOI: 10.1371/journal.pone.0064192] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/10/2013] [Indexed: 11/19/2022] Open
Abstract
Early development in humans is characterised by low and variable embryonic viability, reflected in low fecundity and high rates of miscarriage, relative to other mammals. Data from assisted reproduction programmes provides additional evidence that this is largely mediated at the level of embryonic competence and is highly heterogeneous among embryos. Understanding the basis of this heterogeneity has important implications in a number of areas including: the regulation of early human development, disorders of pregnancy, assisted reproduction programmes, the long term health of children which may be programmed in early development, and the molecular basis of pluripotency in human stem cell populations. We have therefore investigated global gene expression profiles using polyAPCR amplification and microarray technology applied to individual human oocytes and 4-cell and blastocyst stage embryos. In order to explore the basis of any variability in detail, each developmental stage is replicated in triplicate. Our data show that although transcript profiles are highly stage-specific, within each stage they are relatively variable. We describe expression of a number of gene families and pathways including apoptosis, cell cycle and amino acid metabolism, which are variably expressed and may be reflective of embryonic developmental competence. Overall, our data suggest that heterogeneity in human embryo developmental competence is reflected in global transcript profiles, and that the vast majority of existing human embryo gene expression data based on pooled oocytes and embryos need to be reinterpreted.
Collapse
Affiliation(s)
- Lisa Shaw
- Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
- Department of Reproductive Medicine, Old St Mary’s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Sharon F. Sneddon
- Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
- Department of Reproductive Medicine, Old St Mary’s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Leo Zeef
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Susan J. Kimber
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Daniel R. Brison
- Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
- Department of Reproductive Medicine, Old St Mary’s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
31
|
Ramsköld D, Luo S, Wang YC, Li R, Deng Q, Faridani OR, Daniels GA, Khrebtukova I, Loring JF, Laurent LC, Schroth GP, Sandberg R. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol 2013; 30:777-82. [PMID: 22820318 PMCID: PMC3467340 DOI: 10.1038/nbt.2282] [Citation(s) in RCA: 1157] [Impact Index Per Article: 96.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 05/22/2012] [Indexed: 12/17/2022]
Abstract
In the last decade, genome-wide transcriptome analyses have been routinely used to monitor tissue-, disease- and cell type-specific gene expression, but it has been technically challenging to generate expression profiles from single cells. Here we describe a novel and robust mRNA-Seq protocol (Smart-Seq) that is applicable down to single cell levels. Compared with existing methods, Smart-Seq has improved read coverage across transcripts, which significantly enhances detailed analyses of alternative transcript isoforms and identification of SNPs. We have determined the sensitivity and quantitative accuracy of Smart-Seq for single-cell transcriptomics by evaluating it on total RNA dilution series. Applying Smart-Seq to circulating tumor cells from melanomas, we identified distinct gene expression patterns, including new candidate biomarkers for melanoma circulating tumor cells. Importantly, our protocol can easily be utilized for addressing fundamental biological problems requiring genome-wide transcriptome profiling in rare cells.
Collapse
|
32
|
Stochastic profiling of transcriptional regulatory heterogeneities in tissues, tumors and cultured cells. Nat Protoc 2013; 8:282-301. [PMID: 23306461 DOI: 10.1038/nprot.2012.158] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Single-cell variations in gene and protein expression are important during development and disease. Such cell-to-cell heterogeneities can be directly inspected one cell at a time, but global methods are usually not sensitive enough to work with the starting material of a single cell. Here we provide a detailed protocol for stochastic profiling, a method that infers single-cell regulatory heterogeneities by repeatedly sampling small collections of cells selected at random. Repeated stochastic sampling is performed by laser-capture microdissection or limiting dilution, followed by careful exponential cDNA amplification, hybridization to microarrays and statistical analysis. Stochastic profiling surveys the transcriptome for programs that are heterogeneously regulated among cellular subpopulations in their native tissue context. The protocol is readily optimized for specific biological applications and takes about 1 week to complete.
Collapse
|
33
|
Wang Y, Hayatsu M, Fujii T. Extraction of bacterial RNA from soil: challenges and solutions. Microbes Environ 2012; 27:111-21. [PMID: 22791042 PMCID: PMC4036013 DOI: 10.1264/jsme2.me11304] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Detection of bacterial gene expression in soil emerged in the early 1990s and provided information on bacterial responses in their original soil environments. As a key procedure in the detection, extraction of bacterial RNA from soil has attracted much interest, and many methods of soil RNA extraction have been reported in the past 20 years. In addition to various RT-PCR-based technologies, new technologies for gene expression analysis, such as microarrays and high-throughput sequencing technologies, have recently been applied to examine bacterial gene expression in soil. These technologies are driving improvements in RNA extraction protocols. In this mini-review, progress in the extraction of bacterial RNA from soil is summarized with emphasis on the major difficulties in the development of methodologies and corresponding strategies to overcome them.
Collapse
Affiliation(s)
- Yong Wang
- Environmental Biofunction Division, National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604, Japan.
| | | | | |
Collapse
|
34
|
Qiu S, Luo S, Evgrafov O, Li R, Schroth GP, Levitt P, Knowles JA, Wang K. Single-neuron RNA-Seq: technical feasibility and reproducibility. Front Genet 2012; 3:124. [PMID: 22934102 PMCID: PMC3407998 DOI: 10.3389/fgene.2012.00124] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Accepted: 06/19/2012] [Indexed: 12/21/2022] Open
Abstract
Understanding brain function involves improved knowledge about how the genome specifies such a large diversity of neuronal types. Transcriptome analysis of single neurons has been previously described using gene expression microarrays. Using high-throughput transcriptome sequencing (RNA-Seq), we have developed a method to perform single-neuron RNA-Seq. Following electrophysiology recording from an individual neuron, total RNA was extracted by aspirating the cellular contents into a fine glass electrode tip. The mRNAs were reverse transcribed and amplified to construct a single-neuron cDNA library, and subsequently subjected to high-throughput sequencing. This approach was applied to both individual neurons cultured from embryonic mouse hippocampus, as well as neocortical neurons from live brain slices. We found that the average pairwise Spearman’s rank correlation coefficient of gene expression level expressed as RPKM (reads per kilobase of transcript per million mapped reads) was 0.51 between five cultured neuronal cells, whereas the same measure between three cortical layer 5 neurons in situ was 0.25. The data suggest that there may be greater heterogeneity of the cortical neurons, as compared to neurons in vitro. The results demonstrate the technical feasibility and reproducibility of RNA-Seq in capturing a part of the transcriptome landscape of single neurons, and confirmed that morphologically identical neurons, even from the same region, have distinct gene expression patterns.
Collapse
Affiliation(s)
- Shenfeng Qiu
- Zilkha Neurogenetic Institute, University of Southern California Los Angeles, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Quantitative single-cell ion-channel gene expression profiling through an improved qRT-PCR technique combined with whole cell patch clamp. J Neurosci Methods 2012; 209:227-34. [PMID: 22728251 DOI: 10.1016/j.jneumeth.2012.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/17/2012] [Accepted: 06/09/2012] [Indexed: 12/19/2022]
Abstract
Cellular excitability originates from a concerted action of different ion channels. The genomic diversity of ion channels (over 100 different genes) underlies the functional diversity of neurons in the central nervous system (CNS) and even within a specific type of neurons large differences in channel expression have been observed. Patch-clamp is a powerful technique to study the electrophysiology of excitability at the single cell level, allowing exploration of cell-to-cell variability. Only a few attempts have been made to link electrophysiological profiling to mRNA transcript levels and most suffered from experimental noise precluding conclusive quantitative correlations. Here we describe a refinement to the technique that combines patch-clamp analysis with quantitative real-time (qRT) PCR at the single cell level. Hereto the expression of a housekeeping gene was used to normalize for cell-to-cell variability in mRNA isolation and the subsequent processing steps for performing qRT-PCR. However, the mRNA yield from a single cell was insufficient for performing a valid qRT-PCR assay; this was resolved by including a RNA amplification step. The technique was validated on a stable Ltk(-) cell line expressing the Kv2.1 channel and on embryonic dorsal root ganglion (DRG) cells probing for the expression of Kv2.1. Current density and transcript quantity displayed a clear correlation when the qRT-PCR assay was done in twofold and the data normalized to the transcript level of the housekeeping gene GAPD. Without this normalization no significant correlation was obtained. This improved technique should prove very valuable for studying the molecular background of diversity in cellular excitability.
Collapse
|
36
|
Horstmann M, Foerster B, Brader N, John H, Maake C. Establishment of a protocol for large-scale gene expression analyses of laser capture microdissected bladder tissue. World J Urol 2012; 30:853-9. [PMID: 22638977 DOI: 10.1007/s00345-012-0881-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 04/26/2012] [Indexed: 10/28/2022] Open
Abstract
PURPOSE Lower urinary tract symptoms (LUTS) can be caused by structural and functional changes in different compartments of the bladder. To enable extensive investigations of individual regions even in small bladder biopsies, we established a combination protocol consisting of three molecular techniques: laser capture microdissection microscopy (LCM), RNA preamplification and quantitative polymerase chain reaction (qPCR). METHODS Urinary bladders of ten mice were resected and frozen immediately or after a delay of 15 min. Cryosections were obtained and smooth muscle was isolated using the LCM technique. Then, RNA was extracted, including protocols with and without DNase digestion as well as with and without the addition of carrier RNA. Extracted RNA was either used for reverse transcriptase (RT)-PCR plus qPCR or for a combination of RNA preamplification and qPCR. RESULTS Our data showed that with RNA preamplification, 10 μg cDNA can be regularly generated from 2.5 ng RNA. Depending on expression levels, this is sufficient for hundreds of pPCR reactions. The efficiency of preamplification, however, was gene-dependent. DNase digestion before preamplification lead to lower threshold cycles in qPCR. The use of partly degraded RNA for RNA preamplification did not change the results of the following qPCR. CONCLUSIONS RNA preamplification strongly enlarges the spectrum of genes to be analyzed in distinct bladder compartments by qPCR. It is an easy and reliable method that can be realized with standard laboratory equipment. Our protocol may lead in near future to a better understanding of the pathomechanisms in LUTS.
Collapse
Affiliation(s)
- M Horstmann
- Department of Urology, Kantonsspital Winterthur, Brauerstr. 15, 8401 Winterthur, Switzerland.
| | | | | | | | | |
Collapse
|
37
|
Goetz JJ, Trimarchi JM. Single-cell profiling of developing and mature retinal neurons. J Vis Exp 2012:3824. [PMID: 22546911 DOI: 10.3791/3824] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Highly specialized, but exceedingly small populations of cells play important roles in many tissues. The identification of cell-type specific markers and gene expression programs for extremely rare cell subsets has been a challenge using standard whole-tissue approaches. Gene expression profiling of individual cells allows for unprecedented access to cell types that comprise only a small percentage of the total tissue(1-7). In addition, this technique can be used to examine the gene expression programs that are transiently expressed in small numbers of cells during dynamic developmental transitions(8). This issue of cellular diversity arises repeatedly in the central nervous system (CNS) where neuronal connections can occur between quite diverse cells(9). The exact number of distinct cell types is not precisely known, but it has been estimated that there may be as many as 1000 different types in the cortex itself(10). The function(s) of complex neural circuits may rely on some of the rare neuronal types and the genes they express. By identifying new markers and helping to molecularly classify different neurons, the single-cell approach is particularly useful in the analysis of cell types in the nervous system. It may also help to elucidate mechanisms of neural development by identifying differentially expressed genes and gene pathways during early stages of neuronal progenitor development. As a simple, easily accessed tissue with considerable neuronal diversity, the vertebrate retina is an excellent model system for studying the processes of cellular development, neuronal differentiation and neuronal diversification. However, as in other parts of the CNS, this cellular diversity can present a problem for determining the genetic pathways that drive retinal progenitors to adopt a specific cell fate, especially given that rod photoreceptors make up the majority of the total retinal cell population(11). Here we report a method for the identification of the transcripts expressed in single retinal cells (Figure 1). The single-cell profiling technique allows for the assessment of the amount of heterogeneity present within different cellular populations of the retina(2,4,5,12). In addition, this method has revealed a host of new candidate genes that may play role(s) in the cell fate decision-making processes that occur in subsets of retinal progenitor cells(8). With some simple adjustments to the protocol, this technique can be utilized for many different tissues and cell types.
Collapse
Affiliation(s)
- Jillian J Goetz
- Department of Genetics, Development and Cell Biology, Neuroscience Program, Iowa State University, Iowa, USA
| | | |
Collapse
|
38
|
Gibriel AAY. Options available for labelling nucleic acid samples in DNA microarray-based detection methods. Brief Funct Genomics 2012; 11:311-8. [PMID: 22510454 DOI: 10.1093/bfgp/els015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
DNA microarrays are considered by many researchers to be the platform of choice for the high-throughput analysis of nucleic acids. Since the past two decades, they have been used constantly as powerful tools in differential gene expression, SNP genotyping, DNA sequencing, gene discovery, disease diagnostic and pathways reconstruction. Several methods have been developed to enable samples of limited amounts of RNA to be quantified. Here we evaluate classical and up-to-date assays made available for labelling those samples. This review also sheds light on the recently developed strategies that ensure high sensitivity such as sample and signal amplification, quantum dot, surface plasmom resonance, nanoparticles and cationinc polythiophenes.
Collapse
Affiliation(s)
- Abdullah A Y Gibriel
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Ahram Canadian University (ACU), P.O. Box 259, Cairo, 11728, Egypt.
| |
Collapse
|
39
|
Mtango NR, Sutovsky M, Vandevoort CA, Latham KE, Sutovsky P. Essential role of ubiquitin C-terminal hydrolases UCHL1 and UCHL3 in mammalian oocyte maturation. J Cell Physiol 2012; 227:2022-9. [PMID: 21751213 DOI: 10.1002/jcp.22931] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ubiquitin C-terminal hydrolases (UCHs) comprise a family of deubiquitinating enzymes that play a role in the removal of multi-ubiquitin chains from proteins that are posttranslationally modified by ubiquitination to be targeted for proteolysis by the 26S proteasome. The UCH-enzymes also generate free monomeric ubiquitin from precursor multi-ubiquitin chains and, in some instances, may rescue ubiquitinated proteins from degradation. This study examined the roles of two oocyte-expressed UCHs, UCHL1, and UCHL3 in murine and rhesus monkey oocyte maturation. The Uchl1 and Uchl3 mRNAs were highly expressed in GV and MII oocytes, and were associated with the oocyte cortex (UCHL1) and meiotic spindle (UCHL3). Microinjection of the UCH-family enzyme inhibitor, ubiquitin-aldehyde (UBAL) to GV oocytes prevented oocyte meiotic progression beyond metaphase I in a majority of treated oocytes and caused spindle and first polar body anomalies. Injection of antibodies against UCHL3 disrupted oocyte maturation and caused meiotic anomalies, including abnormally long meiotic spindles. A selective, cell permeant inhibitor of UCHL3, 4, 5, 6, 7-tetrachloroidan-1, 3-dione also caused meiotic defects and chromosome misalignment. Cortical granule localization in the oocyte cortex was disrupted by UBAL injected after oocyte maturation. We conclude that the activity of oocyte UCHs contributes to oocyte maturation by regulating the oocyte cortex and meiotic spindle.
Collapse
Affiliation(s)
- Namdori R Mtango
- The Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
40
|
Ståhlberg A, Kubista M, Aman P. Single-cell gene-expression profiling and its potential diagnostic applications. Expert Rev Mol Diagn 2012; 11:735-40. [PMID: 21902535 DOI: 10.1586/erm.11.60] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Gene-expression profiling has been successfully applied in various diagnostic applications, but its full capacity is yet to be realized. Samples are generally prepared from a mixture of different cells that are present in unknown proportions. Cells are, in many aspects, unique in their characteristics and this heterogeneity confounds the expression profile. The development of new and robust techniques to measure gene expression in single cells opens new avenues in molecular medicine. Today, gene-expression profiles of individual cells can be measured with high precision and accuracy, identifying different cell types as well as revealing heterogeneity among cells of the same kind. Here, we review practical aspects of single-cell gene-expression profiling using reverse transcription quantitative real-time PCR and its potential use in diagnostics.
Collapse
Affiliation(s)
- Anders Ståhlberg
- Sahlgrenska Cancer Center, Department of Pathology, Sahlgrenska Academy at University of Gothenburg, Box 425, 40530 Gothenburg, Sweden.
| | | | | |
Collapse
|
41
|
Abstract
In Drosophila, the central nervous system is populated by a set of asymmetrically dividing neural stem cells called neuroblasts. Neuroblasts are derived from epithelial or neuroepithelial precursors, and divide along their apico-basal axes to produce a large apical neuroblast and a smaller basal ganglion mother cell. The ganglion mother cell will divide once again to produce two post-mitotic neurons or glia. In this chapter we outline a method for labeling different types of neural precursors in the Drosophila central nervous system, followed by their extraction and processing for transcriptome analysis. This technique has allowed us to capture and compare the expression profiles of neuroblasts and neuroepithelial cells, resulting in the identification of key genes required for the regulation of self-renewal and differentiation.
Collapse
Affiliation(s)
- Katrina S Gold
- The Gurdon Institute, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
42
|
Abstract
Studying complex biological systems such as a developing embryo, a tumor, or a microbial ecosystem often involves understanding the behavior and heterogeneity of the individual cells that constitute the system and their interactions. In this review, we discuss a variety of approaches to single-cell genomic analysis.
Collapse
Affiliation(s)
- Tomer Kalisky
- Department of Bioengineering, Stanford University and Howard Hughes Medical Institute, Stanford, California 94305, USA.
| | | | | |
Collapse
|
43
|
Intersection of FOXO- and RUNX1-mediated gene expression programs in single breast epithelial cells during morphogenesis and tumor progression. Proc Natl Acad Sci U S A 2011; 108:E803-12. [PMID: 21873240 DOI: 10.1073/pnas.1103423108] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gene expression networks are complicated by the assortment of regulatory factors that bind DNA and modulate transcription combinatorially. Single-cell measurements can reveal biological mechanisms hidden by population averages, but their value has not been fully explored in the context of mRNA regulation. Here, we adapted a single-cell expression profiling technique to examine the gene expression program downstream of Forkhead box O (FOXO) transcription factors during 3D breast epithelial acinar morphogenesis. By analyzing patterns of mRNA fluctuations among individual matrix-attached epithelial cells, we found that a subset of FOXO target genes was jointly regulated by the transcription factor Runt-related transcription factor 1 (RUNX1). Knockdown of RUNX1 causes hyperproliferation and abnormal morphogenesis, both of which require normal FOXO function. Down-regulating RUNX1 and FOXOs simultaneously causes widespread oxidative stress, which arrests proliferation and restores normal acinar morphology. In hormone-negative breast cancers lacking human epidermal growth factor receptor 2 (HER2) amplification, we find that RUNX1 down-regulation is strongly associated with up-regulation of FOXO1, which may be required to support growth of RUNX1-negative tumors. The coordinate function of these two tumor suppressors may provide a failsafe mechanism that inhibits cancer progression.
Collapse
|
44
|
McEvoy J, Flores-Otero J, Zhang J, Nemeth K, Brennan R, Bradley C, Krafcik F, Rodriguez-Galindo C, Wilson M, Xiong S, Lozano G, Sage J, Fu L, Louhibi L, Trimarchi J, Pani A, Smeyne R, Johnson D, Dyer MA. Coexpression of normally incompatible developmental pathways in retinoblastoma genesis. Cancer Cell 2011; 20:260-75. [PMID: 21840489 PMCID: PMC3551581 DOI: 10.1016/j.ccr.2011.07.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Revised: 03/28/2011] [Accepted: 07/07/2011] [Indexed: 01/26/2023]
Abstract
It is widely believed that the molecular and cellular features of a tumor reflect its cell of origin and can thus provide clues about treatment targets. The retinoblastoma cell of origin has been debated for over a century. Here, we report that human and mouse retinoblastomas have molecular, cellular, and neurochemical features of multiple cell classes, principally amacrine/horizontal interneurons, retinal progenitor cells, and photoreceptors. Importantly, single-cell gene expression array analysis showed that these multiple cell type-specific developmental programs are coexpressed in individual retinoblastoma cells, which creates a progenitor/neuronal hybrid cell. Furthermore, neurotransmitter receptors, transporters, and biosynthetic enzymes are expressed in human retinoblastoma, and targeted disruption of these pathways reduces retinoblastoma growth in vivo and in vitro.
Collapse
Affiliation(s)
- Justina McEvoy
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jacqueline Flores-Otero
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jiakun Zhang
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Katie Nemeth
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Rachel Brennan
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Cori Bradley
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Fred Krafcik
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | - Matthew Wilson
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Shunbin Xiong
- Department of Genetics, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guillermina Lozano
- Department of Genetics, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Julien Sage
- Department of Pediatrics and Genetics, Stanford University Medical Center, Stanford, CA 94305, USA
| | - Ligia Fu
- Department of Hematology-Oncology, Hospital de Niños, Tegucigalpa 11101, Honduras
| | | | - Jeff Trimarchi
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Amar Pani
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Richard Smeyne
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Dianna Johnson
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Michael A. Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Correspondence:
| |
Collapse
|
45
|
Identification of a role for the nuclear receptor EAR-2 in the maintenance of clonogenic status within the leukemia cell hierarchy. Leukemia 2011; 25:1687-96. [PMID: 21637284 PMCID: PMC4977185 DOI: 10.1038/leu.2011.137] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Identification of genes that regulate clonogenicity of acute myelogenous leukemia (AML) cells is hindered by the difficulty of isolating pure populations of cells with defined proliferative abilities. By analyzing the growth of clonal siblings in low passage cultures of the cell line OCI/AML4 we resolved this heterogeneous population into strata of distinct clonogenic potential, permitting analysis of the transcriptional signature of single cells with defined proliferative abilities. By microarray analysis we showed that the expression of the orphan nuclear receptor EAR-2 (NR2F6) is greater in leukemia cells with extensive proliferative capacity than in those that have lost proliferative ability. EAR-2 is expressed highly in long-term hematopoietic stem cells, relative to short-term hematopoietic stem and progenitor cells, and is downregulated in AML cells after induction of differentiation. Exogenous expression of EAR-2 increased the growth of U937 cells and prevented the proliferative arrest associated with terminal differentiation, and blocked differentiation of U937 and 32Dcl3 cells. Conversely, silencing of EAR-2 by short-hairpin RNA initiated terminal differentiation of these cell lines. These data identify EAR-2 as an important factor in the regulation of clonogenicity and differentiation, and establish that analysis of clonal siblings allows the elucidation of differences in gene expression within the AML hierarchy.
Collapse
|
46
|
Devonshire AS, Elaswarapu R, Foy CA. Applicability of RNA standards for evaluating RT-qPCR assays and platforms. BMC Genomics 2011; 12:118. [PMID: 21332979 PMCID: PMC3052187 DOI: 10.1186/1471-2164-12-118] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 02/18/2011] [Indexed: 12/22/2022] Open
Abstract
The availability of diverse RT-qPCR assay formats and technologies hinder comparability of data between platforms. Reference standards to facilitate platform evaluation and comparability are needed. We have explored using universal RNA standards for comparing the performance of a novel qPCR platform (Fluidigm® BioMark™) against the widely used ABI 7900HT system. Our results show that such standards may form part of a toolkit to evaluate the key performance characteristics of platforms.
Collapse
|
47
|
Kurimoto K, Saitou M. A global single-cell cDNA amplification method for quantitative microarray analysis. Methods Mol Biol 2011; 687:91-111. [PMID: 20967603 DOI: 10.1007/978-1-60761-944-4_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We describe here a protocol to faithfully amplify global cDNAs from single cells. The amplified cDNAs retain their sense-antisense orientation and can be easily applied to template preparation for quantitative high-density oligonucleotide microarray analyses. The amplification protocol comprises (1) lysis of a single cell in a tube without purification, (2) first-strand cDNA synthesis with the first primer tailed with oligo dT, (3) elimination of the unreacted first primer, (4) poly (dA) tailing of the cDNA, (5) second-strand cDNA synthesis with the second primer tailed with oligo dT, and (6) 20-cycle, directional PCR with the two primers. To prepare the template for the isothermal linear amplification with T7 RNA polymerase to synthesize labeled cRNAs for microarray hybridization, the promoter sequence is added to the cDNA with another round of PCR. The promoter-tagged cDNA is purified with gel electrophoresis and amplified with one final cycle of PCR.
Collapse
Affiliation(s)
- Kazuki Kurimoto
- Laboratory for Mammalian Germ Cell Biology, RIKEN Center for Developmental Biology, Kobe, Japan.
| | | |
Collapse
|
48
|
Mtango NR, VandeVoort CA, Latham KE. Ontological aspects of pluripotency and stemness gene expression pattern in the rhesus monkey. Gene Expr Patterns 2011; 11:285-98. [PMID: 21329766 DOI: 10.1016/j.gep.2011.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 02/03/2011] [Accepted: 02/08/2011] [Indexed: 11/24/2022]
Abstract
Two essential aspects of mammalian development are the progressive specialization of cells toward different lineages, and the maintenance of progenitor cells that will give rise to the differentiated components of each tissue and also contribute new cells as older cells die or become injured. The transition from totipotentiality to pluripotentiality, to multipotentiality, to monopotentiality, and then to differentiation is a continuous process during development. The ontological relationship between these different stages is not well understood. We report for the first time an ontological survey of expression of 45 putative "stemness" and "pluripotency" genes in rhesus monkey oocytes and preimplantation stage embryos, and comparison to the expression in the inner cell mass, trophoblast stem cells, and a rhesus monkey (ORMES6) embryonic stem cell line. Our results reveal that some of these genes are not highly expressed in all totipotent or pluripotent cell types. Some are predominantly maternal mRNAs present in oocytes and embryos before transcriptional activation, and diminishing before the blastocyst stage. Others are well expressed in morulae or early blastocysts, but are poorly expressed in later blastocysts or ICMs. Also, some of the genes employed to induce pluripotent stem cells from somatic cells (iPS genes) appear unlikely to play major roles as stemness or pluripotency genes in normal embryos.
Collapse
Affiliation(s)
- Namdori R Mtango
- The Fels Institute for Cancer Research & Molecular Biology, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
49
|
Tamaki T, Tono K, Uchiyama Y, Okada Y, Masuda M, Soeda S, Nitta M, Akatsuka A. Origin and hierarchy of basal lamina-forming and -non-forming myogenic cells in mouse skeletal muscle in relation to adhesive capacity and Pax7 expression in vitro. Cell Tissue Res 2011; 344:147-68. [PMID: 21274567 DOI: 10.1007/s00441-010-1127-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 12/17/2010] [Indexed: 01/06/2023]
Abstract
As a novel approach to distinguish skeletal myogenic cell populations, basal lamina (BL) formation of myogenic cells was examined in the mouse compensatory enlarged plantaris muscles in vivo and in fiber-bundle cultures in vitro. MyoD(+) myogenic cells located inside the regenerative muscle fiber BL were laminin(-) but interstitial MyoD(+) cells were laminin(+). This was also confirmed by electron microscopy as structural BL formation. Similar trends were observed in the fiber-bundle cultures including satellite cells and interstitial myogenic cells and laminin(+) myogenic cells predominantly showed non-adhesive (non-Ad) behavior with Pax7(-), whereas laminin(-) cells were adhesive (Ad) with Pax7(+). Moreover, non-Ad/laminin(+) and Ad/laminin(-) myotubes were also observed and the former type showed spontaneous contractions, while the latter type did not. The origin and hierarchy of Ad/Pax7(+)/laminin(-) and non-Ad/Pax7(-)/laminin(+) myogenic cells were also examined using skeletal muscle interstitium-derived CD34(+)/45(-) (Sk-34) and CD34(-)/45(-) (Sk-DN) multipotent stem cells, which were composed of non-committed myogenic cells with a few (<1%) Pax7(+) cells in the Sk-DN cells at fresh isolation. Both cell types were separated by Ad/non-Ad capacity in repetitive culture. As expected, both Ad/Pax7(+)/laminin(-) and non-Ad/Pax7(-)/laminin(+) myogenic cells consistently appeared in the Ad and non-Ad cell culture. However, Ad/Pax7(+)/laminin(-) cells were repeatedly detected in the non-Ad cell culture, while the opposite phenomenon did not occur. This indicates that the source of non-Ad/ Pax7(-)/laminin(+) myogenic cells was present in the Sk-34 and Sk-DN stem cells and they were able to produce Ad/ Pax7(+)/ laminin(-) myogenic cells during myogenesis as primary myoblasts and situated hierarchically upstream of the latter cells.
Collapse
Affiliation(s)
- Tetsuro Tamaki
- Muscle Physiology and Cell Biology Unit, Department of Regenerative Medicine, Division of Basic Clinical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Nojima H, Tougan T. Preparation of a high-quality cDNA library from a single-cell quantity of mRNA using chum-RNA. Methods Mol Biol 2011; 729:15-35. [PMID: 21365481 DOI: 10.1007/978-1-61779-065-2_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Unlike exponential amplification using polymerase chain reaction (PCR), linear RNA amplification using T7 RNA polymerase is advantageous for genome-wide analysis of gene expression and for cDNA library preparation from single-cell quantities of RNA. However, the use of RNA polymerase requires a large amount of RNA, as the optimum concentration of the substrate (mRNA), or the Michaelis constant (K(m)), is one millionfold higher than the single-cell amount of mRNA. To circumvent this K(m) problem, we designed a small mRNA-like dummy molecule, termed chum-RNA, which can be easily removed after the completion of the reaction. Chum-RNA allowed the preparation of a high-quality cDNA library from single-cell quantities of RNA after four rounds of T7-based linear amplification, without using PCR amplification. The use of chum-RNA may also facilitate quantitative reverse-transcription (qRT)-PCR from small quantities of substrate.
Collapse
Affiliation(s)
- Hiroshi Nojima
- Department of Molecular Genetics and DNA-chip Development Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
| | | |
Collapse
|