1
|
Jun CS, Lee W. Development of Lasing Silica Microsphere for High-Speed DNA Molecular Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:6088. [PMID: 39338832 PMCID: PMC11435820 DOI: 10.3390/s24186088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
Laser and molecular detection techniques that have been used to overcome the limitations of fluorescent DNA labeling have presented new challenges. To address some of these challenges, we developed a DNA laser that uses a solid-state silica microsphere as a ring resonator and a site for DNA-binding reactions, as well as a platform to detect and sequence target DNA molecules. We detected target DNA using laser emission from a DNA-labeling dye and a developed solid-state silica microsphere ring resonator. The microsphere was sensitive; a single base mismatch in the DNA resulted in the absence of an optical signal. As each individual microsphere can be utilized as a parallel DNA analysis chamber, this optical digital detection scheme allows for high-throughput and rapid analysis. More importantly, the solid-state DNA laser is free from deformation, which guarantees stable lasing characteristics, and can be manipulated freely outside the solution. Thus, this promising advanced DNA laser scheme can be implemented on platforms other than optofluidic chips.
Collapse
Affiliation(s)
- Chan Seok Jun
- Department of Material Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Wonsuk Lee
- Nanophotonics Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
2
|
Abedpoor N, Taghian F, Jalali Dehkordi K, Safavi K. Sparassis latifolia and exercise training as complementary medicine mitigated the 5-fluorouracil potent side effects in mice with colorectal cancer: bioinformatics approaches, novel monitoring pathological metrics, screening signatures, and innovative management tactic. Cancer Cell Int 2024; 24:141. [PMID: 38637796 PMCID: PMC11027426 DOI: 10.1186/s12935-024-03328-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/12/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Prompt identification and assessment of the disease are essential for reducing the death rate associated with colorectal cancer (COL). Identifying specific causal or sensitive components, such as coding RNA (cRNA) and non-coding RNAs (ncRNAs), may greatly aid in the early detection of colorectal cancer. METHODS For this purpose, we gave natural chemicals obtained from Sparassis latifolia (SLPs) either alone or in conjunction with chemotherapy (5-Fluorouracil to a mouse colorectal tumor model induced by AOM-DSS. The transcription profile of non-coding RNAs (ncRNAs) and their target hub genes was evaluated using qPCR Real-Time, and ELISA techniques. RESULTS MSX2, MMP7, ITIH4, and COL1A2 were identified as factors in inflammation and oxidative stress, leading to the development of COL. The hub genes listed, upstream regulatory factors such as lncRNA PVT1, NEAT1, KCNQ1OT1, SNHG16, and miR-132-3p have been discovered as biomarkers for prognosis and diagnosis of COL. The SLPs and exercise, effectively decreased the size and quantity of tumors. CONCLUSIONS This effect may be attributed to the modulation of gene expression levels, including MSX2, MMP7, ITIH4, COL1A2, PVT1, NEAT1, KCNQ1OT1, SNHG16, and miR-132-3p. Ultimately, SLPs and exercise have the capacity to be regarded as complementing and enhancing chemotherapy treatments, owing to their efficacious components.
Collapse
Affiliation(s)
- Navid Abedpoor
- Department of Sports Physiology, Faculty of Sports Sciences, School of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Farzaneh Taghian
- Department of Sports Physiology, Faculty of Sports Sciences, School of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| | - Khosro Jalali Dehkordi
- Department of Sports Physiology, Faculty of Sports Sciences, School of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Kamran Safavi
- Department of Plant Biotechnology, Medicinal Plants Research Centre, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
3
|
Chiang CC, Yeh H, Lim SN, Lin WR. Transcriptome analysis creates a new era of precision medicine for managing recurrent hepatocellular carcinoma. World J Gastroenterol 2023; 29:780-799. [PMID: 36816628 PMCID: PMC9932421 DOI: 10.3748/wjg.v29.i5.780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/23/2022] [Accepted: 01/10/2023] [Indexed: 02/06/2023] Open
Abstract
The high incidence of hepatocellular carcinoma (HCC) recurrence negatively impacts outcomes of patients treated with curative intent despite advances in surgical techniques and other locoregional liver-targeting therapies. Over the past few decades, the emergence of transcriptome analysis tools, including real-time quantitative reverse transcription PCR, microarrays, and RNA sequencing, has not only largely contributed to our knowledge about the pathogenesis of recurrent HCC but also led to the development of outcome prediction models based on differentially expressed gene signatures. In recent years, the single-cell RNA sequencing technique has revolutionized our ability to study the complicated crosstalk between cancer cells and the immune environment, which may benefit further investigations on the role of different immune cells in HCC recurrence and the identification of potential therapeutic targets. In the present article, we summarized the major findings yielded with these transcriptome methods within the framework of a causal model consisting of three domains: primary cancer cells; carcinogenic stimuli; and tumor microenvironment. We provided a comprehensive review of the insights that transcriptome analyses have provided into diagnostics, surveillance, and treatment of HCC recurrence.
Collapse
Affiliation(s)
- Chun-Cheng Chiang
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, United States
| | - Hsuan Yeh
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Siew-Na Lim
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Wey-Ran Lin
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| |
Collapse
|
4
|
Wang XD, Zhang CY, Yuan Y, Hua YF, Asami T, Qin Y, Xiong XH, Zhu JL, Lu YC. Molecular Responses and Degradation Mechanisms of the Herbicide Diuron in Rice Crops. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14352-14366. [PMID: 36326728 DOI: 10.1021/acs.jafc.2c05142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Diuron [DU; 3-(3,4-dichlorophenyl)-1,1-dimethylurea], a widely used herbicide for weed control, arouses ecological and health risks due to its environment persistence. Our findings revealed that DU at 0.125-2.0 mg L-1 caused oxidative damage to rice. RNA-sequencing profiles disclosed a globally genetic expression landscape of rice under DU treatment. DU mediated downregulated gene encoding photosynthesis and biosynthesis of protein, fatty acid, and carbohydrate. Conversely, it induced the upregulation of numerous genes involved in xenobiotic metabolism, detoxification, and anti-oxidation. Furthermore, 15 DU metabolites produced by metabolic genes were identified, 7 of which include two Phase I-based and 5 Phase II-based derivatives, were reported for the first time. The changes of resistance-related phytohormones, like JA, ABA, and SA, in terms of their contents and molecular-regulated signaling pathways positively responded to DU stress. Our work provides a molecular-scale perspective on the response of rice to DU toxicity and clarifies the biotransformation and degradation fate of DU in rice crops.
Collapse
Affiliation(s)
- Xiao Dong Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing211816, China
| | - Chen Yi Zhang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing211816, China
| | - Yi Yuan
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming650205, China
| | - Yi Fei Hua
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing211816, China
| | - Tadao Asami
- Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo113-8657, Japan
| | - Yi Qin
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing211816, China
| | - Xiao Hui Xiong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing211816, China
| | - Jian Liang Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing211816, China
| | - Yi Chen Lu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing211816, China
| |
Collapse
|
5
|
Sangket U, Yodsawat P, Nuanpirom J, Sathapondecha P. bestDEG: a web-based application automatically combines various tools to precisely predict differentially expressed genes (DEGs) from RNA-Seq data. PeerJ 2022; 10:e14344. [PMID: 36389403 PMCID: PMC9657178 DOI: 10.7717/peerj.14344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/14/2022] [Indexed: 11/11/2022] Open
Abstract
Background Differential gene expression analysis using RNA sequencing technology (RNA-Seq) has become the most popular technique in transcriptome research. Although many R packages have been developed to analyze differentially expressed genes (DEGs), several evaluations have shown that no single DEG analysis method outperforms all others. The validity of DEG identification could be increased by using multiple methods and producing the consensus results. However, DEG analysis methods are complex and most of them require prior knowledge of a programming language or command-line shell. Users who do not have this knowledge need to invest time and effort to acquire it. Methods We developed a novel web application called "bestDEG" to automatically analyze DEGs with different tools and compare the results. A differential expression (DE) analysis pipeline was created combining the edgeR, DESeq2, NOISeq, and EBSeq packages; selected because they use different statistical methods to identify DEGs. bestDEG was evaluated on human datasets from the MicroArray Quality Control (MAQC) project. Results The performance of the bestDEG web application with the human datasets showed excellent results, and the consensus method outperformed the other DE analysis methods in terms of precision (94.71%) and specificity (97.01%). bestDEG is a rapid and efficient tool to analyze DEGs. With bestDEG, users can select DE analysis methods and parameters in the user-friendly web interface. bestDEG also provides a Venn diagram and a table of results. Moreover, the consensus method of this tool can maximize the precision or minimize the false discovery rate (FDR), which reduces the cost of gene expression validation by minimizing wet-lab experiments.
Collapse
Affiliation(s)
- Unitsa Sangket
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand,Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Prasert Yodsawat
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Jiratchaya Nuanpirom
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Ponsit Sathapondecha
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand,Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
6
|
Wang Z, Ma R, Jia Z, Lin P, Zhao Z, Wang W, Yi S, Li X, Li J. Investigating on the influence mechanism of sausage of sea bass on calcium absorption and transport based on Caco-2 cell monolayer model. Front Nutr 2022; 9:1046945. [PMID: 36330132 PMCID: PMC9623112 DOI: 10.3389/fnut.2022.1046945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/03/2022] [Indexed: 11/25/2022] Open
Abstract
A monolayer Caco-2 cell model was established to explore the effects of sea bass sausage digestive juice containing phosphate on calcium ion transport. Differential proteins of Caco-2 cells treated with fish sausage juice were detected and analyzed by gene ontology (GO) functional annotation and kyoto encyclopedia of genes and genomes (KEGG) pathway analyses. Results revealed that after treatment with 0.23 mg/mL digestive juice of perch sausage in vitro, Caco-2 cell viability was the highest at 72 h (99.84%). Additionally, 0.23 mg/mL digestive juice of perch sausage in vitro significantly increased calcium ion transport. The transfer volume was 1.396 μg/well. Fish sausages containing phosphate significantly affected the protein expression levels of Caco-2 cells. Two hundred one differential proteins were detected, including 114 up-regulated and 87 down-regulated proteins. The main differential proteins included P02795, Q9P0W0, Q96PU5, Q9GZT9 and Q5EBL8. The adjustment ratios of the fish sausage group were 0.7485, 1.373, 1.2535, 0.6775, and 0.809, respectively. The pathway analysis showed that phosphate affected calcium ion absorption and transport through the P02795 enrichment pathway. The fish sausage group showed that the immune-related functions of cells were affected. This study expounds the effects of water-retaining agents on the nutritional quality of aquatic products and provides theoretical support for the research and application of surimi products.
Collapse
|
7
|
Lu F, Hu F, Qiu B, Zou H, Xu J. Identification of novel biomarkers in septic cardiomyopathy via integrated bioinformatics analysis and experimental validation. Front Genet 2022; 13:929293. [PMID: 35957694 PMCID: PMC9358039 DOI: 10.3389/fgene.2022.929293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022] Open
Abstract
Purpose: Septic cardiomyopathy (SCM) is an important world public health problem with high morbidity and mortality. It is necessary to identify SCM biomarkers at the genetic level to identify new therapeutic targets and strategies. Method: DEGs in SCM were identified by comprehensive bioinformatics analysis of microarray datasets (GSE53007 and GSE79962) downloaded from the GEO database. Subsequently, bioinformatics analysis was used to conduct an in-depth exploration of DEGs, including GO and KEGG pathway enrichment analysis, PPI network construction, and key gene identification. The top ten Hub genes were identified, and then the SCM model was constructed by treating HL-1 cells and AC16 cells with LPS, and these top ten Hub genes were examined using qPCR. Result: STAT3, SOCS3, CCL2, IL1R2, JUNB, S100A9, OSMR, ZFP36, and HAMP were significantly elevated in the established SCM cells model. Conclusion: After bioinformatics analysis and experimental verification, it was demonstrated that STAT3, SOCS3, CCL2, IL1R2, JUNB, S100A9, OSMR, ZFP36, and HAMP might play important roles in SCM.
Collapse
Affiliation(s)
- Feng Lu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Feng Hu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Baiquan Qiu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hongpeng Zou
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianjun Xu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Jianjun Xu,
| |
Collapse
|
8
|
Marques E, Pfohl M, Wei W, Tarantola G, Ford L, Amaeze O, Alesio J, Ryu S, Jia X, Zhu H, Bothun GD, Slitt A. Replacement per- and polyfluoroalkyl substances (PFAS) are potent modulators of lipogenic and drug metabolizing gene expression signatures in primary human hepatocytes. Toxicol Appl Pharmacol 2022; 442:115991. [PMID: 35337807 PMCID: PMC9036616 DOI: 10.1016/j.taap.2022.115991] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/03/2022] [Accepted: 03/18/2022] [Indexed: 01/12/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of environmental toxicants, and some, such as perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), have been associated with hepatic steatosis in rodents and monkeys. It was hypothesized that perfluorosulfonic acids (C4, 6, 8), perfluorocarboxylic acids (C4-14), perfluoro(2-methyl-3-oxahexanoic) acid (HFPO-DA), 1H, 1H, 2H, 2H-perfluorooctanesulfonic acid (6:2 FTS) along with 3 PFOS precursors could induce expression of lipid metabolism genes and lipid deposition in human hepatocytes. Five-donor pooled cryopreserved human hepatocytes were cultured and treated with 0.1% DMSO vehicle or various PFAS (0.25 to 25 μM) in media. After a 48-h treatment, mRNA transcripts related to lipid transport, metabolism, and synthesis were measured using a Quantigene Plex assay. After 72-h treatments, hepatocytes were stained with Nile Red dye to quantify intracellular lipids. Overall, PFAS were transcriptionally active at 25 μM. In this model, lipid accumulation was not observed with C8-C12 treatments. Shorter chain PFAS (C4-C5), 6:2 FTS, and PFOS precursor, metFOSA, induced significant liver lipid accumulation, and gene activation at lower concentrations than legacy PFAS. In summary short chain PFAS and other alternative PFAS were more potent gene inducers, and potential health effects of replacement PFAS should be critically evaluated in humans.
Collapse
Affiliation(s)
- Emily Marques
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Marisa Pfohl
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Wei Wei
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Giuseppe Tarantola
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Lucie Ford
- Department of Biology and Biomedical Sciences, Salve Regina University, Newport, RI 02840, USA
| | - Ogochukwu Amaeze
- Department of Clinical Pharmacy & Biopharmacy, Faculty of Pharmacy, University of Lagos, Nigeria
| | - Jessica Alesio
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI, USA
| | - Sangwoo Ryu
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI, USA
| | - Xuelian Jia
- The Rutgers Center for Computational and Integrative Biology, Camden, NJ, USA
| | - Hao Zhu
- The Rutgers Center for Computational and Integrative Biology, Camden, NJ, USA; Department of Chemistry, Rutgers University, Camden, NJ, USA
| | - Geoffrey D Bothun
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI, USA
| | - Angela Slitt
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA.
| |
Collapse
|
9
|
Transcriptomic analysis of human skin wound healing and rejuvenation following ablative fractional laser treatment. PLoS One 2021; 16:e0260095. [PMID: 34843523 PMCID: PMC8629261 DOI: 10.1371/journal.pone.0260095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/02/2021] [Indexed: 11/19/2022] Open
Abstract
Ablative fractional laser treatment is considered the gold standard for skin rejuvenation. In order to understand how fractional laser works to rejuvenate skin, we performed microarray profiling on skin biopsies to identify temporal and dose-response changes in gene expression following fractional laser treatment. The backs of 14 women were treated with ablative fractional laser (Fraxel®) and 4 mm punch biopsies were collected from an untreated site and at the treated sites 1, 3, 7, 14, 21 and 28 days after the single treatment. In addition, in order to understand the effect that multiple fractional laser treatments have on skin rejuvenation, several sites were treated sequentially with either 1, 2, 3, or 4 treatments (with 28 days between treatments) followed by the collection of 4 mm punch biopsies. RNA was extracted from the biopsies, analyzed using Affymetrix U219 chips and gene expression was compared between untreated and treated sites. We observed dramatic changes in gene expression as early as 1 day after fractional laser treatment with changes remaining elevated even after 1 month. Analysis of individual genes demonstrated significant and time related changes in inflammatory, epidermal, and dermal genes, with dermal genes linked to extracellular matrix formation changing at later time points following fractional laser treatment. When comparing the age-related changes in skin gene expression to those induced by fractional laser, it was observed that fractional laser treatment reverses many of the changes in the aging gene expression. Finally, multiple fractional laser treatments, which cover different regions of a treatment area, resulted in a sustained or increased dermal remodeling response, with many genes either differentially regulated or continuously upregulated, supporting previous observations that maximal skin rejuvenation requires multiple fractional laser treatments. In conclusion, fractional laser treatment of human skin activates a number of biological processes involved in wound healing and tissue regeneration.
Collapse
|
10
|
Mercer TR, Xu J, Mason CE, Tong W. The Sequencing Quality Control 2 study: establishing community standards for sequencing in precision medicine. Genome Biol 2021; 22:306. [PMID: 34749795 PMCID: PMC8574019 DOI: 10.1186/s13059-021-02528-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Tim R Mercer
- Australian Institute of Bioengineering and Nanotechnology, University of Queensland, Brisbane, Australia
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Joshua Xu
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
| | - Weida Tong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA.
| |
Collapse
|
11
|
Chiappini C, Chen Y, Aslanoglou S, Mariano A, Mollo V, Mu H, De Rosa E, He G, Tasciotti E, Xie X, Santoro F, Zhao W, Voelcker NH, Elnathan R. Tutorial: using nanoneedles for intracellular delivery. Nat Protoc 2021; 16:4539-4563. [PMID: 34426708 DOI: 10.1038/s41596-021-00600-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/30/2021] [Indexed: 02/08/2023]
Abstract
Intracellular delivery of advanced therapeutics, including biologicals and supramolecular agents, is complex because of the natural biological barriers that have evolved to protect the cell. Efficient delivery of therapeutic nucleic acids, proteins, peptides and nanoparticles is crucial for clinical adoption of emerging technologies that can benefit disease treatment through gene and cell therapy. Nanoneedles are arrays of vertical high-aspect-ratio nanostructures that can precisely manipulate complex processes at the cell interface, enabling effective intracellular delivery. This emerging technology has already enabled the development of efficient and non-destructive routes for direct access to intracellular environments and delivery of cell-impermeant payloads. However, successful implementation of this technology requires knowledge of several scientific fields, making it complex to access and adopt by researchers who are not directly involved in developing nanoneedle platforms. This presents an obstacle to the widespread adoption of nanoneedle technologies for drug delivery. This tutorial aims to equip researchers with the knowledge required to develop a nanoinjection workflow. It discusses the selection of nanoneedle devices, approaches for cargo loading and strategies for interfacing to biological systems and summarises an array of bioassays that can be used to evaluate the efficacy of intracellular delivery.
Collapse
Affiliation(s)
- Ciro Chiappini
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK.
- London Centre for Nanotechnology, King's College London, London, UK.
| | - Yaping Chen
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, Australia
| | - Stella Aslanoglou
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, Australia
- CSIRO Manufacturing, Clayton, Victoria, Australia
| | - Anna Mariano
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy
| | - Valentina Mollo
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy
| | - Huanwen Mu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Enrica De Rosa
- Center for Musculoskeletal Regeneration, Orthopedics & Sports Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Gen He
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China
| | - Ennio Tasciotti
- IRCCS San Raffaele Pisana Hospital, Rome, Italy
- San Raffaele University, Rome, Italy
- Sclavo Pharma, Siena, Italy
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China.
| | - Francesca Santoro
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy.
| | - Wenting Zhao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, Australia.
- CSIRO Manufacturing, Clayton, Victoria, Australia.
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia.
| | - Roey Elnathan
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, Australia.
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
12
|
Bosque JR, Gómez-Nieto R, Hormigo S, Herrero-Turrión MJ, Díaz-Casado E, Sancho C, López DE. Molecular tools for the characterization of seizure susceptibility in genetic rodent models of epilepsy. Epilepsy Behav 2021; 121:106594. [PMID: 31685382 DOI: 10.1016/j.yebeh.2019.106594] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022]
Abstract
Epilepsy is a chronic neurological disorder characterized by abnormal neuronal activity that arises from imbalances between excitatory and inhibitory synapses, which are highly correlated to functional and structural changes in specific brain regions. The difference between the normal and the epileptic brain may harbor genetic alterations, gene expression changes, and/or protein alterations in the epileptogenic nucleus. It is becoming increasingly clear that such differences contribute to the development of distinct epilepsy phenotypes. The current major challenges in epilepsy research include understanding the disease progression and clarifying epilepsy classifications by searching for novel molecular biomarkers. Thus, the application of molecular techniques to carry out comprehensive studies at deoxyribonucleic acid, messenger ribonucleic acid, and protein levels is of utmost importance to elucidate molecular dysregulations in the epileptic brain. The present review focused on the great diversity of technical approaches available and new research methodology, which are already being used to study molecular alterations underlying epilepsy. We have grouped the different techniques according to each step in the flow of information from DNA to RNA to proteins, and illustrated with specific examples in animal models of epilepsy, some of which are our own. Separately and collectively, the genomic and proteomic techniques, each with its own strengths and limitations, provide valuable information on molecular mechanisms underlying seizure susceptibility and regulation of neuronal excitability. Determining the molecular differences between genetic rodent models of epilepsy and their wild-type counterparts might be a key in determining mechanisms of seizure susceptibility and epileptogenesis as well as the discovery and development of novel antiepileptic agents. This article is part of the Special Issue "NEWroscience 2018".
Collapse
Affiliation(s)
- José Ramón Bosque
- Institute for Neuroscience of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain; Salamanca Institute for Biomedical Research (IBSAL), Spain
| | - Ricardo Gómez-Nieto
- Institute for Neuroscience of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain; Salamanca Institute for Biomedical Research (IBSAL), Spain; Department of Neurobiology and Anatomy, Drexel University College of Medicine, United States of America
| | - Sebastián Hormigo
- Institute for Neuroscience of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain; Department of Cell Biology and Pathology, School of Medicine, University of Salamanca, Salamanca, Spain
| | - M Javier Herrero-Turrión
- Institute for Neuroscience of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain; INCYL Neurological Tissue Bank (BTN-INCYL), Spain
| | - Elena Díaz-Casado
- Institute for Neuroscience of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain; Salamanca Institute for Biomedical Research (IBSAL), Spain
| | - Consuelo Sancho
- Institute for Neuroscience of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain; Salamanca Institute for Biomedical Research (IBSAL), Spain
| | - Dolores E López
- Institute for Neuroscience of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain; Salamanca Institute for Biomedical Research (IBSAL), Spain; Department of Neurobiology and Anatomy, Drexel University College of Medicine, United States of America.
| |
Collapse
|
13
|
Flagler MJ, Tamura M, Laughlin T, Hartman S, Ashe J, Adams R, Kozak K, Cresswell K, Mullins L, Jarrold BB, Isfort RJ, Sherrill JD. Combinations of peptides synergistically activate the regenerative capacity of skin cells in vitro. Int J Cosmet Sci 2021; 43:518-529. [PMID: 34272744 PMCID: PMC9291327 DOI: 10.1111/ics.12725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/02/2021] [Accepted: 07/15/2021] [Indexed: 11/28/2022]
Abstract
Objective To explore synergistic effects related to skin regeneration, peptides with distinct biological mechanisms of action were evaluated in combination with different skin cell lines in the presence or absence of niacinamide (Nam). Furthermore, the synergistic responses of peptide combinations on global gene expression were compared with the changes that occur with fractional laser resurfacing treatment, a gold standard approach for skin rejuvenation, to further define optimal peptide combinations. Methods Microarray profiling was used to characterize the biological responses of peptide combinations (+/− Nam) relative to the individual components in epidermal keratinocyte and dermal fibroblast cell lines. Cellular functional assays were utilized to confirm the synergistic effects of peptide combinations. Bioinformatics approaches were used to link the synergistic effects of peptide combinations on gene expression to the transcriptomics of the skin rejuvenation response from fractional laser treatment. Results Microarray analysis of skin cells treated with peptide combinations revealed synergistic changes in gene expression compared with individual peptide controls. Bioinformatic analysis of synergy genes in keratinocytes revealed the activation of NRF2‐mediated oxidative stress responses by a combination of Ac‐PPYL, Pal‐KTTKS and Nam. Additional analysis revealed direct downstream transcriptional targets of NRF2/ARE exhibiting synergistic regulation by this combination of materials, which was corroborated by a cellular reporter assay. NRF2‐mediated oxidative stress response pathways were also found to be activated in the transcriptomics of the early skin rejuvenation response to fractional laser treatment, suggesting the importance of this biology in the early stages of tissue repair. Additionally, the second combination of peptides (pal‐KT and Ac‐PPYL) was found to synergistically restore cellular ATP levels that had been depleted due to the presence of ROS, indicating an additional mechanism, whereby peptide synergies may accelerate skin repair. Conclusion Through combinatorial synergy studies, we have identified additional in vitro skin repair mechanisms beyond the previously described functions of individual peptides and correlated these to the transcriptomics of the skin rejuvenation response of fractional laser treatment. These findings suggest that specific peptides can act together, via complementary and synergistic mechanisms, to holistically enhance the regenerative capacity of in vitro skin cells.
Collapse
Affiliation(s)
| | - Makio Tamura
- The Procter & Gamble Company, Cincinnati, Ohio, USA
| | - Tim Laughlin
- The Procter & Gamble Company, Cincinnati, Ohio, USA
| | | | - Julie Ashe
- The Procter & Gamble Company, Cincinnati, Ohio, USA
| | - Rachel Adams
- The Procter & Gamble Company, Cincinnati, Ohio, USA
| | - Kim Kozak
- The Procter & Gamble Company, Cincinnati, Ohio, USA
| | | | - Lisa Mullins
- The Procter & Gamble Company, Cincinnati, Ohio, USA
| | | | | | | |
Collapse
|
14
|
Tang K, Ji X, Zhou M, Deng Z, Huang Y, Zheng G, Cao Z. Rank-in: enabling integrative analysis across microarray and RNA-seq for cancer. Nucleic Acids Res 2021; 49:e99. [PMID: 34214174 PMCID: PMC8464058 DOI: 10.1093/nar/gkab554] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/10/2021] [Accepted: 06/25/2021] [Indexed: 12/13/2022] Open
Abstract
Though transcriptomics technologies evolve rapidly in the past decades, integrative analysis of mixed data between microarray and RNA-seq remains challenging due to the inherent variability difference between them. Here, Rank-In was proposed to correct the nonbiological effects across the two technologies, enabling freely blended data for consolidated analysis. Rank-In was rigorously validated via the public cell and tissue samples tested by both technologies. On the two reference samples of the SEQC project, Rank-In not only perfectly classified the 44 profiles but also achieved the best accuracy of 0.9 on predicting TaqMan-validated DEGs. More importantly, on 327 Glioblastoma (GBM) profiles and 248, 523 heterogeneous colon cancer profiles respectively, only Rank-In can successfully discriminate every single cancer profile from normal controls, while the others cannot. Further on different sizes of mixed seq-array GBM profiles, Rank-In can robustly reproduce a median range of DEG overlapping from 0.74 to 0.83 among top genes, whereas the others never exceed 0.72. Being the first effective method enabling mixed data of cross-technology analysis, Rank-In welcomes hybrid of array and seq profiles for integrative study on large/small, paired/unpaired and balanced/imbalanced samples, opening possibility to reduce sampling space of clinical cancer patients. Rank-In can be accessed at http://www.badd-cao.net/rank-in/index.html.
Collapse
Affiliation(s)
- Kailin Tang
- Department of Gastroenterology, Shanghai 10th People's Hospital and School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, P.R. China
| | - Xuejie Ji
- Department of Gastroenterology, Shanghai 10th People's Hospital and School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, P.R. China
| | - Mengdi Zhou
- Department of Gastroenterology, Shanghai 10th People's Hospital and School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, P.R. China
| | - Zeliang Deng
- Department of Gastroenterology, Shanghai 10th People's Hospital and School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, P.R. China
| | - Yuwei Huang
- Department of Gastroenterology, Shanghai 10th People's Hospital and School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, P.R. China.,CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Science, Shanghai 200031, P.R. China
| | - Genhui Zheng
- Department of Gastroenterology, Shanghai 10th People's Hospital and School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, P.R. China
| | - Zhiwei Cao
- Department of Gastroenterology, Shanghai 10th People's Hospital and School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, P.R. China
| |
Collapse
|
15
|
Lu S, Ortiz C, Fürth D, Fischer S, Meletis K, Zador A, Gillis J. Assessing the replicability of spatial gene expression using atlas data from the adult mouse brain. PLoS Biol 2021; 19:e3001341. [PMID: 34280183 PMCID: PMC8321401 DOI: 10.1371/journal.pbio.3001341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/29/2021] [Accepted: 06/29/2021] [Indexed: 11/19/2022] Open
Abstract
High-throughput, spatially resolved gene expression techniques are poised to be transformative across biology by overcoming a central limitation in single-cell biology: the lack of information on relationships that organize the cells into the functional groupings characteristic of tissues in complex multicellular organisms. Spatial expression is particularly interesting in the mammalian brain, which has a highly defined structure, strong spatial constraint in its organization, and detailed multimodal phenotypes for cells and ensembles of cells that can be linked to mesoscale properties such as projection patterns, and from there, to circuits generating behavior. However, as with any type of expression data, cross-dataset benchmarking of spatial data is a crucial first step. Here, we assess the replicability, with reference to canonical brain subdivisions, between the Allen Institute's in situ hybridization data from the adult mouse brain (Allen Brain Atlas (ABA)) and a similar dataset collected using spatial transcriptomics (ST). With the advent of tractable spatial techniques, for the first time, we are able to benchmark the Allen Institute's whole-brain, whole-transcriptome spatial expression dataset with a second independent dataset that similarly spans the whole brain and transcriptome. We use regularized linear regression (LASSO), linear regression, and correlation-based feature selection in a supervised learning framework to classify expression samples relative to their assayed location. We show that Allen Reference Atlas labels are classifiable using transcription in both data sets, but that performance is higher in the ABA than in ST. Furthermore, models trained in one dataset and tested in the opposite dataset do not reproduce classification performance bidirectionally. While an identifying expression profile can be found for a given brain area, it does not generalize to the opposite dataset. In general, we found that canonical brain area labels are classifiable in gene expression space within dataset and that our observed performance is not merely reflecting physical distance in the brain. However, we also show that cross-platform classification is not robust. Emerging spatial datasets from the mouse brain will allow further characterization of cross-dataset replicability ultimately providing a valuable reference set for understanding the cell biology of the brain.
Collapse
Affiliation(s)
- Shaina Lu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Cantin Ortiz
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Daniel Fürth
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Stephan Fischer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | | | - Anthony Zador
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Jesse Gillis
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| |
Collapse
|
16
|
Matta C, Lewis R, Fellows C, Diszhazi G, Almassy J, Miosge N, Dixon J, Uribe MC, May S, Poliska S, Barrett-Jolley R, Fodor J, Szentesi P, Hajdú T, Keller-Pinter A, Henslee E, Labeed FH, Hughes MP, Mobasheri A. Transcriptome-based screening of ion channels and transporters in a migratory chondroprogenitor cell line isolated from late-stage osteoarthritic cartilage. J Cell Physiol 2021; 236:7421-7439. [PMID: 34008188 DOI: 10.1002/jcp.30413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022]
Abstract
Chondrogenic progenitor cells (CPCs) may be used as an alternative source of cells with potentially superior chondrogenic potential compared to mesenchymal stem cells (MSCs), and could be exploited for future regenerative therapies targeting articular cartilage in degenerative diseases such as osteoarthritis (OA). In this study, we hypothesised that CPCs derived from OA cartilage may be characterised by a distinct channelome. First, a global transcriptomic analysis using Affymetrix microarrays was performed. We studied the profiles of those ion channels and transporter families that may be relevant to chondroprogenitor cell physiology. Following validation of the microarray data with quantitative reverse transcription-polymerase chain reaction, we examined the role of calcium-dependent potassium channels in CPCs and observed functional large-conductance calcium-activated potassium (BK) channels involved in the maintenance of the chondroprogenitor phenotype. In line with our very recent results, we found that the KCNMA1 gene was upregulated in CPCs and observed currents that could be attributed to the BK channel. The BK channel inhibitor paxilline significantly inhibited proliferation, increased the expression of the osteogenic transcription factor RUNX2, enhanced the migration parameters, and completely abolished spontaneous Ca2+ events in CPCs. Through characterisation of their channelome we demonstrate that CPCs are a distinct cell population but are highly similar to MSCs in many respects. This study adds key mechanistic data to the in-depth characterisation of CPCs and their phenotype in the context of cartilage regeneration.
Collapse
Affiliation(s)
- Csaba Matta
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Rebecca Lewis
- Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Christopher Fellows
- Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Gyula Diszhazi
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Janos Almassy
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Nicolai Miosge
- Department of Prosthodontics, Tissue Regeneration Work Group, Georg August University, Göttingen, Germany
| | - James Dixon
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, Centre of Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Marcos C Uribe
- The Nottingham Arabidopsis Stock Centre (NASC), School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Sean May
- The Nottingham Arabidopsis Stock Centre (NASC), School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Szilard Poliska
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Richard Barrett-Jolley
- Department of Musculoskeletal Biology, Faculty of Health and Life Sciences, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Janos Fodor
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Peter Szentesi
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tibor Hajdú
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Aniko Keller-Pinter
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Erin Henslee
- Department of Mechanical Engineering Sciences, Centre for Biomedical Engineering, University of Surrey, Guildford, UK
| | - Fatima H Labeed
- Department of Mechanical Engineering Sciences, Centre for Biomedical Engineering, University of Surrey, Guildford, UK
| | - Michael P Hughes
- Department of Mechanical Engineering Sciences, Centre for Biomedical Engineering, University of Surrey, Guildford, UK
| | - Ali Mobasheri
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.,Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.,Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Joint Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
17
|
Gomez-Paredes C, Mason MA, Taxy BA, Papadopoulou AS, Paganetti P, Bates GP. The heat shock response, determined by QuantiGene multiplex, is impaired in HD mouse models and not caused by HSF1 reduction. Sci Rep 2021; 11:9117. [PMID: 33907289 PMCID: PMC8079691 DOI: 10.1038/s41598-021-88715-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 04/14/2021] [Indexed: 01/09/2023] Open
Abstract
Huntington's disease (HD) is a devastating neurodegenerative disorder, caused by a CAG/polyglutamine repeat expansion, that results in the aggregation of the huntingtin protein, culminating in the deposition of inclusion bodies in HD patient brains. We have previously shown that the heat shock response becomes impaired with disease progression in mouse models of HD. The disruption of this inducible arm of the proteostasis network is likely to exacerbate the pathogenesis of this protein-folding disease. To allow a rapid and more comprehensive analysis of the heat shock response, we have developed, and validated, a 16-plex QuantiGene assay that allows the expression of Hsf1 and nine heat shock genes, to be measured directly, and simultaneously, from mouse tissue. We used this QuantiGene assay to show that, following pharmacological activation in vivo, the heat shock response impairment in tibialis anterior, brain hemispheres and striatum was comparable between zQ175 and R6/2 mice. In contrast, although a heat shock impairment could be detected in R6/2 cortex, this was not apparent in the cortex from zQ175 mice. Whilst the mechanism underlying this impairment remains unknown, our data indicated that it is not caused by a reduction in HSF1 levels, as had been reported.
Collapse
Affiliation(s)
- Casandra Gomez-Paredes
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Michael A Mason
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Bridget A Taxy
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Aikaterini S Papadopoulou
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Paolo Paganetti
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale and Faculty of Biomedical Sciences, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Gillian P Bates
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
| |
Collapse
|
18
|
Gilhooley MJ, Hickey DG, Lindner M, Palumaa T, Hughes S, Peirson SN, MacLaren RE, Hankins MW. ON-bipolar cell gene expression during retinal degeneration: Implications for optogenetic visual restoration. Exp Eye Res 2021; 207:108553. [PMID: 33811915 PMCID: PMC8214074 DOI: 10.1016/j.exer.2021.108553] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 03/08/2021] [Accepted: 03/23/2021] [Indexed: 12/28/2022]
Abstract
Purpose Retinal bipolar cells survive even in the later stages of inherited retinal degenerations (IRDs) and so are attractive targets for optogenetic approaches to vision restoration. However, it is not known to what extent the remodelling that these cells undergo during degeneration affects their function. Specifically, it is unclear if they are free from metabolic stress, receptive to adeno-associated viral vectors, suitable for opsin-based optogenetic tools and able to propagate signals by releasing neurotransmitter. Methods Fluorescence activated cell sorting (FACS) was performed to isolate labelled bipolar cells from dissociated retinae of litter-mates with or without the IRD mutation Pde6brd1/rd1 selectively expressing an enhanced yellow fluorescent protein (EYFP) as a marker in ON-bipolar cells. Subsequent mRNA extraction allowed Illumina® microarray comparison of gene expression in bipolar cells from degenerate to those of wild type retinae. Changes in four candidate genes were further investigated at the protein level using retinal immunohistochemistry over the course of degeneration. Results A total of sixty differentially expressed transcripts reached statistical significance: these did not include any genes directly associated with native primary bipolar cell signalling, nor changes consistent with metabolic stress. Four significantly altered genes (Srm2, Slf2, Anxa7 & Cntn1), implicated in synaptic remodelling, neurotransmitter release and viral vector entry had immunohistochemical staining colocalising with ON-bipolar cell markers and varying over the course of degeneration. Conclusion Our findings suggest relatively few gene expression changes in the context of degeneration: that despite remodelling, bipolar cells are likely to remain viable targets for optogenetic vision restoration. In addition, several genes where changes were seen could provide a basis for investigations to enhance the efficacy of optogenetic therapies.
Bipolar cells are attractive targets for therapeutic optogenetics in IRDs. This is the first cell specific transcriptomic analysis of bipolar cells in an IRD model. Bipolar cells maintain expression of genes essential to act as targets for optogenetics. Protein staining relating to four candidate genes (Anxa7, Cntn1, Srm2, Sulf2) is confirmed using immunohistochemistry.
Collapse
Affiliation(s)
- Michael J Gilhooley
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX1 3RE, United Kingdom; The Oxford Eye Hospital, Oxford, OX3 9DU, United Kingdom; Moorfields Eye Hospital, London, EC1V 2PD, United Kingdom
| | - Doron G Hickey
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX1 3RE, United Kingdom; Royal Victorian Eye and Ear Hospital, Melbourne, 002, Australia
| | - Moritz Lindner
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX1 3RE, United Kingdom; The Oxford Eye Hospital, Oxford, OX3 9DU, United Kingdom; Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps University, Deutschhausstrasse 1-2, Marburg, 35037, Germany
| | - Teele Palumaa
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX1 3RE, United Kingdom
| | - Steven Hughes
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX1 3RE, United Kingdom; Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX1 3RE, United Kingdom
| | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX1 3RE, United Kingdom
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX1 3RE, United Kingdom; The Oxford Eye Hospital, Oxford, OX3 9DU, United Kingdom; Moorfields Eye Hospital, London, EC1V 2PD, United Kingdom
| | - Mark W Hankins
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX1 3RE, United Kingdom; Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX1 3RE, United Kingdom.
| |
Collapse
|
19
|
Li LF, Wang ZB, Han CG, Sun HQ, Wang R, Ren YL, Lin JQ, Pang X, Liu XM, Lin JQ, Chen LX. Optimal reference genes for real-time quantitative PCR and the expression of sigma factors in Acidithiobacillus caldus under various conditions. J Appl Microbiol 2021; 131:1800-1812. [PMID: 33754423 DOI: 10.1111/jam.15085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/02/2021] [Accepted: 03/18/2021] [Indexed: 12/01/2022]
Abstract
AIMS Acidithiobacillus caldus is an important sulphur-oxidizing bacterium that plays crucial roles in the bioleaching industry. This study aims to analyse the optimal reference gene for real-time quantitative PCR (RT-qPCR) under different conditions and investigate the transcription levels of the sigma factor genes in the stress response. METHODS AND RESULTS We selected six housekeeping genes and analysed them via RT-qPCR using two energy resources, under four stress conditions. Three statistical approaches BestKeeper, geNorm, and NormFinder were utilized to determine transcription stability of these reference genes. The gapdH gene was the best internal control gene using elemental sulphur as an energy resource and under heat stress, map was the best internal control gene under pH and osmotic stress, era was the best internal control gene for the K2 S4 O6 energy resource, and rpoC was the best internal control gene under Cu2+ stress. Furthermore, the expressional levels of 11 sigma factors were analysed by RT-qPCR in the stress response. CONCLUSIONS Stable internal control genes for RT-qPCR analysis of A. caldus were determined, and the expression patterns of sigma factor genes of A. caldus were investigated. SIGNIFICANCE AND IMPACT OF THE STUDY The identification of the optimal reference gene and analysis of transcription levels of sigma factors in A. caldus can provide clues for reference gene selection and the study of sigma factor function.
Collapse
Affiliation(s)
- L F Li
- Henan Neurodevelopment Engineering Research Center for Children, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China.,State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Z B Wang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - C G Han
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - H Q Sun
- Department of Neonatology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - R Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Y L Ren
- Qingdao Longding Biotech Limited Company, Qingdao, China
| | - J Q Lin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - X Pang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - X M Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - J Q Lin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - L X Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
20
|
Lu X, Lee S, Kim J, Abbas N, Badshah MA, Kim SM. Fabrication of Ag nanorods on micropost array for a metal-enhanced fluorescence substrate with a high signal-to-background ratio. Biosens Bioelectron 2021; 175:112881. [PMID: 33308961 DOI: 10.1016/j.bios.2020.112881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/17/2020] [Accepted: 12/01/2020] [Indexed: 11/29/2022]
Abstract
Selective fabrication of metallic nanostructures at the spotting area is required to increase the signal-to-background noise ratio (SBR) of the metal-enhanced fluorescence (MEF) substrate. As a simple and cost-effective fabrication method for MEF substrate with high SBR, a glancing angle deposition (GLAD) process of Ag material on the UV-imprinted micropost array (50 μm in height, 300 μm in diameter, and 600 μm in pitch) was proposed to selectively fabricate Ag nanorods on the top of micropost structure (spotting area). Ag nanorod formation at the bottom of the micropost decreased as the deposition angle in Ag GLAD increased. A deposition angle of 89° and deposition thickness of 500 nm were selected as the optimum GLAD conditions to maximize the SBR. The optimum Ag nanorods on micropost array (AgNMPA) MEF substrate provided 71-fold fluorescence signal enhancement and 25-times higher SBR than the bare glass substrate. It also provided 7-times higher SBR than the Ag nanorod MEF substrate, which has a similar Ag nanorod structure but is not selectively formed. The detection limit of AgNMPA was 16- and 4-times lower than that of the amine-functionalized glass substrate and commercial epoxy slide, respectively. Although the fluorescence signal of AgNMPA was similar to that of Ag nanorod substrate, the detection limit was 2-times lower because of the low signal standard deviation caused by the low background noise and clear spot shape.
Collapse
Affiliation(s)
- Xun Lu
- Department of Mechanical Engineering, Yanbian University, Yanji, 133002, China; Department of Mechanical Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Seongmin Lee
- Department of Mechanical System Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jun Kim
- Department of Mechanical Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Naseem Abbas
- Department of Mechanical Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Mohsin Ali Badshah
- Department of Mechanical Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Seok-Min Kim
- Department of Mechanical System Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea; Department of Mechanical Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea; Department of Computer Science and Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
21
|
Jiang C, Zhao Y, Yuan B, Chang H, Hang B, Snijders AM, Mao JH, Zou X, Wang P. Identification of a novel 15-gene expression signature predicting overall survival of human colorectal cancer. Clin Transl Med 2020; 10:e258. [PMID: 33377636 PMCID: PMC7759535 DOI: 10.1002/ctm2.258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/30/2020] [Accepted: 12/06/2020] [Indexed: 11/29/2022] Open
Affiliation(s)
- Chengfei Jiang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yue Zhao
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Binbin Yuan
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Hang Chang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Bo Hang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Antoine M Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Pin Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
22
|
Lataretu M, Hölzer M. RNAflow: An Effective and Simple RNA-Seq Differential Gene Expression Pipeline Using Nextflow. Genes (Basel) 2020; 11:E1487. [PMID: 33322033 PMCID: PMC7763471 DOI: 10.3390/genes11121487] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/28/2022] Open
Abstract
RNA-Seq enables the identification and quantification of RNA molecules, often with the aim of detecting differentially expressed genes (DEGs). Although RNA-Seq evolved into a standard technique, there is no universal gold standard for these data's computational analysis. On top of that, previous studies proved the irreproducibility of RNA-Seq studies. Here, we present a portable, scalable, and parallelizable Nextflow RNA-Seq pipeline to detect DEGs, which assures a high level of reproducibility. The pipeline automatically takes care of common pitfalls, such as ribosomal RNA removal and low abundance gene filtering. Apart from various visualizations for the DEG results, we incorporated downstream pathway analysis for common species as Homo sapiens and Mus musculus. We evaluated the DEG detection functionality while using qRT-PCR data serving as a reference and observed a very high correlation of the logarithmized gene expression fold changes.
Collapse
Affiliation(s)
- Marie Lataretu
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany;
| | - Martin Hölzer
- Methodology and Research Infrastructure, MF1 Bioinformatics, Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
| |
Collapse
|
23
|
Grawish ME, Mourad MI, Esmaeil DA, Ahmed RA, Ateia IM, Hany E, Elkhier MTA. Emerging therapeutic modality enhancing the efficiency of chemotherapeutic agents against head and neck squamous cell carcinoma cell lines. Cancer Treat Res Commun 2020; 25:100242. [PMID: 33249209 DOI: 10.1016/j.ctarc.2020.100242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 11/02/2020] [Accepted: 11/20/2020] [Indexed: 11/22/2022]
Abstract
The current work aimed to evaluate bee venom (BV) cytotoxic effect and its synergistic action when combined with cisplatin (CIS) against four types of head and neck squamous cell carcinoma (HNSCC) cell lines. 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide (MTT) assay for cell viability, reverse transcription-polymerase chain reaction (RT-PCR) for expression of BCL2 associated X (BAX), B-cell lymphoma 2 (BCL2) and epidermal growth factor receptor (EGFR) genes and, flow cytometry for cell cycle analysis were performed. MTT assay revealed that BV caused an approximately 50% cell death for UMSCC12, UMSCC29, UMSCC38 and, UMSCC47 cell lines after 72 hr with 54.809 µg/ml, 61.287 µg/ml, 71.328 µg/ml and, 61.045 µg/ml, respectively. RT-PCR demonstrated a significant up-regulation of BAX gene and a significant down-regulation of BCL2 and EGFR genes among single or combined treatments with CIS and BV as compared to vehicle-treated. The cell lines treated with both BV and CIS showed marked elevation of BAX and a notable drop of BCL2 and EGFR expressions than single-treated groups. Cell cycle analysis via flow cytometry revealed significantly increased cells in the G2/M phase in single or combined-treated cell lines with CIS and BV when compared with vehicle-treated. Moreover, a significant decrease in cells in S phases among all single and combined treatments when matched with vehicle-treated. Briefly, the findings of the present study suggest that BV can exert an anti-cancer effect on HNSCC and may have the potentiality for potentiation of CIS cytotoxic effects and reduction of its adverse effects.
Collapse
Affiliation(s)
- Mohammed E Grawish
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, Egypt; Department of Oral Biology, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Mansoura, Egypt.
| | - Mohamed I Mourad
- Department of Oral Pathology, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Doaa Am Esmaeil
- Department of Oral Pathology, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Rehab A Ahmed
- Department of General Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Islam Mohamed Ateia
- Department of Oral Medicine and Periodontology, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Eman Hany
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
24
|
Systematic comparison and assessment of RNA-seq procedures for gene expression quantitative analysis. Sci Rep 2020; 10:19737. [PMID: 33184454 PMCID: PMC7665074 DOI: 10.1038/s41598-020-76881-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/03/2020] [Indexed: 01/16/2023] Open
Abstract
RNA-seq is currently considered the most powerful, robust and adaptable technique for measuring gene expression and transcription activation at genome-wide level. As the analysis of RNA-seq data is complex, it has prompted a large amount of research on algorithms and methods. This has resulted in a substantial increase in the number of options available at each step of the analysis. Consequently, there is no clear consensus about the most appropriate algorithms and pipelines that should be used to analyse RNA-seq data. In the present study, 192 pipelines using alternative methods were applied to 18 samples from two human cell lines and the performance of the results was evaluated. Raw gene expression signal was quantified by non-parametric statistics to measure precision and accuracy. Differential gene expression performance was estimated by testing 17 differential expression methods. The procedures were validated by qRT-PCR in the same samples. This study weighs up the advantages and disadvantages of the tested algorithms and pipelines providing a comprehensive guide to the different methods and procedures applied to the analysis of RNA-seq data, both for the quantification of the raw expression signal and for the differential gene expression.
Collapse
|
25
|
Zhu L, Wang H, Jiang C, Li W, Zhai S, Cai X, Wang X, Liao L, Tao F, Jin D, Chen G, Xia Y, Mao JH, Li B, Wang P, Hang B. Clinically applicable 53-Gene prognostic assay predicts chemotherapy benefit in gastric cancer: A multicenter study. EBioMedicine 2020; 61:103023. [PMID: 33069062 PMCID: PMC7569189 DOI: 10.1016/j.ebiom.2020.103023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/20/2020] [Accepted: 09/09/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND We previously established a 53-gene prognostic signature for overall survival (OS) of gastric cancer patients. This retrospective multi-center study aimed to develop a clinically applicable gene expression detection assay and to investigate the prognostic value of this signature. METHODS A TCGA gastric adenocarcinoma cohort (TCGA-STAD) was used for comparing 53-gene signature with other gene signatures. A high-throughput mRNA hybridization gene expression assay was developed to quantify the expression of 53-genes in formalin-fixed paraffin-embedded tissues of 540 patients enrolled from three hospitals. 180 patents were randomly selected from two hospitals to build a prognostic prediction model based on the 53-gene signature using leave-p-out (one-third out) cross-validation method together with Cox regression and Kaplan-Meier analysis, and the model was assessed on three validation cohorts. FINDINGS In the evaluation phase, studies based on TCGA-STAD showed that the 53-gene signature was significantly superior to other three prognostic signatures and was independent of TCGA molecular subtypes and clinical factors. For clinical validation and utility, the prognostic scores were generated using the newly developed assay, which was reliable and sensitive, in 100 sampling training sets and were significantly associated with OS in 100 sampling validation sets. The scores were significantly associated with OS in three independent and combined validation cohorts, and in patients with stages II and III/IV. The multivariate Cox regression demonstrated that the prognostic power of the score was independent of clinical factors, consistent with those findings in the TCGA dataset. Finally, patients with good prognostic scores exhibited significantly a better 5-year OS rate from adjuvant FOLFOX chemotherapy after surgery than from other chemotherapies. INTERPRETATION The 53-gene prognostic score system is clinically applicable for predicting the OS of patients independent of clinical factors in gastric cancers, which could also be a promising predictive biomarker for FOLFOX regimen. FUNDING Chinese National Science and Technology, National Natural Science Foundation and Natural Science Foundation of Jiangsu Province.
Collapse
Affiliation(s)
- Linghua Zhu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haifeng Wang
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, Zhejiang, China
| | - Chengfei Jiang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Wenhuan Li
- Department of Gastrointestinal Surgery, The First People's Hospital of Wenling, Wenling, Zhejiang, China
| | - Shuting Zhai
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xianfa Wang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Linghong Liao
- Fujian Key Laboratory of TCM Health State, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Feng Tao
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, Zhejiang, China
| | - Dexi Jin
- Department of Gastrointestinal Surgery, The First People's Hospital of Wenling, Wenling, Zhejiang, China
| | - Guofu Chen
- Department of Gastrointestinal Surgery, The First People's Hospital of Wenling, Wenling, Zhejiang, China
| | - Yankai Xia
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Bin Li
- Nanjing KDRB Biotech Inc., Ltd, Jiangning District, Nanjing, Jiangsu, China.
| | - Pin Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China.
| | - Bo Hang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States.
| |
Collapse
|
26
|
Microarray Normalization Revisited for Reproducible Breast Cancer Biomarkers. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1363827. [PMID: 32832541 PMCID: PMC7428878 DOI: 10.1155/2020/1363827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/30/2020] [Accepted: 05/11/2020] [Indexed: 11/21/2022]
Abstract
Precision medicine for breast cancer relies on biomarkers to select therapies. However, the reliability of biomarkers drawn from gene expression arrays has been questioned and calls for reassessment, in particular for large datasets. We revisit widely used data-normalization procedures and evaluate differences in outcome in order to pinpoint the most reliable reprocessing methods biomarkers can be based upon. We generated a database of 3753 breast cancer patients out of 38 studies by downloading and curating patient samples from NCBI-GEO. As gene-expression biomarkers, we select the assessment of receptor status and breast cancer subtype classification. Each normalization procedure is applied separately, and biomarkers are then evaluated for each patient. Differences between normalization pipelines are quantified as percentages of patients having outcomes different for each pipeline. Some normalization procedures lead to quite consistent biomarkers, differing only in 1-2% of patients. Other normalization procedures—some of them have been used in many clinical studies—end up with distrusting discrepancies (10% and more). A good deal of doubt regarding the reliability of microarrays may root in the haphazard application of inadequate preprocessing pipelines. Several modes of batch corrections are evaluated regarding a possible improvement of receptor prediction from gene expression versus the golden standard of immunohistochemistry. Finally, we nominate those normalization methods yielding consistent and trustable results. Adequate bioinformatics data preprocessing is key and crucial for any subsequent statistics to arrive at trustable results. We conclude with a suggestion for future bioinformatics development to further increase the reliability of cancer biomarkers.
Collapse
|
27
|
Angata K, Sawaki H, Tsujikawa S, Ocho M, Togayachi A, Narimatsu H. Glycogene Expression Profiling of Hepatic Cells by RNA-Seq Analysis for Glyco-Biomarker Identification. Front Oncol 2020; 10:1224. [PMID: 32850363 PMCID: PMC7402167 DOI: 10.3389/fonc.2020.01224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/15/2020] [Indexed: 01/01/2023] Open
Abstract
Glycans are primarily generated by “glycogenes,” which consist of more than 200 genes for glycosynthesis, including sugar-nucleotide synthases, sugar-nucleotide transporters, and glycosyltransferases. Measuring the expression level of glycogenes is one of the approaches to analyze the glycomes of particular biological and clinical samples. To develop an effective strategy for identifying the glycosylated biomarkers, we performed transcriptome analyses using quantitative real-time polymerase chain reaction (qRT-PCR) arrays and RNA sequencing (RNA-Seq). First, we measured and analyzed the transcriptome from the primary culture of human liver cells and hepatocarcinoma cells using RNA-Seq. This analysis revealed similar but distinctive expression profiles of glycogenes among hepatic cells as indicated by the qRT-PCR arrays, which determined a copy number of 186 glycogenes. Both data sets indicated that altered expression of glycosyltransferases affect the glycosylation of particular glycoproteins, which is consistent with the mass analysis data. Moreover, RNA-Seq analysis can uncover mutations in glycogenes and search differently expressed genes out of more than 50,000 distinct human gene transcripts including candidate biomarkers that were previously reported for hepatocarcinoma cells. Identification of candidate glyco-biomarkers from the expression profile of the glycogenes and proteins from liver cancer tissues available from public database emphasized the possibility that even though the expression level of biomarkers might not be altered, the expression of the glycogenes modifying biomarkers, generating glyco-biomarkers, might be different. Pathway analysis revealed that ~20% of the glycogenes exhibited different expression levels in normal and cancer cells. Thus, transcriptome analyses using both qRT-PCR array and RNA-Seq in combination with glycome and glycoproteome analyses can be advantageous to identify “glyco-biomarkers” by reinforcing information at the expression levels of both glycogenes and proteins.
Collapse
Affiliation(s)
- Kiyohiko Angata
- Molecular and Cellular Glycoproteomics Research Group, Department of Life Science and Biotechnology, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Hiromichi Sawaki
- Molecular and Cellular Glycoproteomics Research Group, Department of Life Science and Biotechnology, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Shigeko Tsujikawa
- Molecular and Cellular Glycoproteomics Research Group, Department of Life Science and Biotechnology, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Makoto Ocho
- Molecular and Cellular Glycoproteomics Research Group, Department of Life Science and Biotechnology, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Akira Togayachi
- Molecular and Cellular Glycoproteomics Research Group, Department of Life Science and Biotechnology, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Hisashi Narimatsu
- Molecular and Cellular Glycoproteomics Research Group, Department of Life Science and Biotechnology, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| |
Collapse
|
28
|
Ying X, Jin X, Wang P, He Y, Zhang H, Ren X, Chai S, Fu W, Zhao P, Chen C, Ma G, Liu H. Integrative Analysis for Elucidating Transcriptomics Landscapes of Glucocorticoid-Induced Osteoporosis. Front Cell Dev Biol 2020; 8:252. [PMID: 32373610 PMCID: PMC7176994 DOI: 10.3389/fcell.2020.00252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/25/2020] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis is the most common bone metabolic disease, characterized by bone mass loss and bone microstructure changes due to unbalanced bone conversion, which increases bone fragility and fracture risk. Glucocorticoids are clinically used to treat a variety of diseases, including inflammation, cancer and autoimmune diseases. However, excess glucocorticoids can cause osteoporosis. Herein we performed an integrated analysis of two glucocorticoid-related microarray datasets. The WGCNA analysis identified 3 and 4 glucocorticoid-related gene modules, respectively. Differential expression analysis revealed 1047 and 844 differentially expressed genes in the two datasets. After integrating differentially expressed glucocorticoid-related genes, we found that most of the robust differentially expressed genes were up-regulated. Through protein-protein interaction analysis, we obtained 158 glucocorticoid-related candidate genes. Enrichment analysis showed that these genes are significantly enriched in the osteoporosis related pathways. Our results provided new insights into glucocorticoid-induced osteoporosis and potential candidate markers of osteoporosis.
Collapse
Affiliation(s)
- Xiaoxia Ying
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Xiyun Jin
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, China
| | - Pingping Wang
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, China
| | - Yuzhu He
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Haomiao Zhang
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Xiang Ren
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Songling Chai
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Wenqi Fu
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Pengcheng Zhao
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Chen Chen
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Guowu Ma
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Huiying Liu
- School of Stomatology, Dalian Medical University, Dalian, China
| |
Collapse
|
29
|
Comparison of human monocyte derived macrophages and THP1-like macrophages as in vitro models for M. tuberculosis infection. Comp Immunol Microbiol Infect Dis 2019; 67:101355. [DOI: 10.1016/j.cimid.2019.101355] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 12/22/2022]
|
30
|
Papadopoulou AS, Gomez-Paredes C, Mason MA, Taxy BA, Howland D, Bates GP. Extensive Expression Analysis of Htt Transcripts in Brain Regions from the zQ175 HD Mouse Model Using a QuantiGene Multiplex Assay. Sci Rep 2019; 9:16137. [PMID: 31695145 PMCID: PMC6834638 DOI: 10.1038/s41598-019-52411-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/14/2019] [Indexed: 11/18/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by a CAG repeat expansion within exon 1 of the huntingtin (HTT) gene. HTT mRNA contains 67 exons and does not always splice between exon 1 and exon 2 leading to the production of a small polyadenylated HTTexon1 transcript, and the full-length HTT mRNA has three 3'UTR isoforms. We have developed a QuantiGene multiplex panel for the simultaneous detection of all of these mouse Htt transcripts directly from tissue lysates and demonstrate that this can replace the more work-intensive Taqman qPCR assays. We have applied this to the analysis of brain regions from the zQ175 HD mouse model and wild type littermates at two months of age. We show that the incomplete splicing of Htt occurs throughout the brain and confirm that this originates from the mutant and not endogenous Htt allele. Given that HTTexon1 encodes the highly pathogenic exon 1 HTT protein, it is essential that the levels of all Htt transcripts can be monitored when evaluating HTT lowering approaches. Our QuantiGene panel will allow the rapid comparative assessment of all Htt transcripts in cell lysates and mouse tissues without the need to first extract RNA.
Collapse
Affiliation(s)
- Aikaterini S Papadopoulou
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Casandra Gomez-Paredes
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Michael A Mason
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Bridget A Taxy
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - David Howland
- CHDI Management/CHDI Foundation Inc., New York, NY, 10001, USA
| | - Gillian P Bates
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
| |
Collapse
|
31
|
Measurement of mRNA therapeutics: method development and validation challenges. Bioanalysis 2019; 11:2003-2010. [DOI: 10.4155/bio-2019-0120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The progression of chemically modified mRNA therapeutics through development pipelines is accelerating for many disease indications and the need to assess these analytes is becoming more routine for the pharmaceutical industry and contract research organizations. This article describes some of the challenges and strategies for performing regulated bioanalysis of modified mRNA therapeutics by comparing the two main analytical approaches – quantitative reverse transcription PCR and branched DNA.
Collapse
|
32
|
Adachi S, Aoki H, Ueda Y, Sudo T, Nozawa A, Koga S, Suzuki H, Shibayama S, Noda N, Fujii SI, Itoh S, Kawashima S, Suda Y, Nakae H. Practical determination of LODP (limit of detection for microarray platform) for the evaluation of microarray platforms. Anal Biochem 2019; 583:113360. [PMID: 31288000 DOI: 10.1016/j.ab.2019.113360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/27/2019] [Accepted: 07/04/2019] [Indexed: 11/24/2022]
Abstract
The performance indicator called limit of detection for microarray platform (LODP) was defined in ISO 16578:2013. The methods to determine practical LODP were explored. In general, + 3 SD of the background is used as the signal strength of limit of detection and criteria for dividing positive and negative results. Since the negative signal had been defined differently for each microarray platform, signals obtained from Non-Probe Spots (NPS) installed on the microarrays were defined as the "background" of microarrays. LODP was determined as the lowest concentration of which the average signal exceeded Avg. + 3 SD of the background (NPS) and the signal was significantly different from those of the lower and higher adjacent concentration points measured with a diluted series of reference materials. For reliable qualitative analysis, the positive results can be defined as signals higher than those corresponding to LODP and negative results as lower signals, without determining limit of detection for all target probes. The use of LODP also enables comparisons of platform performances without checking sequence dependencies, and assists to select reliable and fitting platforms for experimental purposes.
Collapse
Affiliation(s)
- Satoru Adachi
- Special Project Z1, Zeon Corporation, 1-2-1 Yako, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9507, Japan
| | - Hidetoshi Aoki
- Innovation Center, Yokogawa Electric Corporation, 2-9-32 Nakacho, Musashino-shi, Tokyo, 180-8750, Japan
| | - Yumi Ueda
- DNA Chip Research, Inc, 1-15-1 Kaigan, Minato-ku, Tokyo, 105-0022, Japan
| | - Tetsuo Sudo
- New Frontiers Research Laboratories, Toray Industries, Inc, 10-1 Tebiro 6-chome, Kamakura-shi, Kanagawa, 248-8555, Japan
| | - Ai Nozawa
- Tsurumi R&D Center, Mitsubishi Chemical Corporation, 10-1 Daikoku-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0053, Japan
| | - Shigetaka Koga
- ALPS-Engineering Headquarters, Alps Alpine Co. Ltd, 1-7 Yukigaya-otsukamachi, Ota-ku, Tokyo, 145-8501, Japan
| | - Hisashi Suzuki
- Research & Development Div, Yokowo Co. Ltd, 5-11 Takinogawa 7-Chome, Kita-ku, Tokyo, 114-8515, Japan
| | - Sachie Shibayama
- National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8563, Japan
| | - Naohiro Noda
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Shin-Ichiro Fujii
- National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8563, Japan
| | - Sayaka Itoh
- Bio-innovation Policy Unit, The University of Tokyo, 4-6-1 Shirokanedai Minato-ku, Tokyo, 108-8639, Japan; Japan Bio Measurement & Analysis Consortium, 2-4-10 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Sayaka Kawashima
- Japan Bio Measurement & Analysis Consortium, 2-4-10 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Yoshihiko Suda
- Japan Bio Measurement & Analysis Consortium, 2-4-10 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan.
| | - Hiroki Nakae
- Japan Bio Measurement & Analysis Consortium, 2-4-10 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| |
Collapse
|
33
|
Wen L, Zhang Z, Peng R, Zhang L, Liu H, Peng H, Sun Y. Whole transcriptome analysis of diabetic nephropathy in the db/db mouse model of type 2 diabetes. J Cell Biochem 2019; 120:17520-17533. [PMID: 31106482 DOI: 10.1002/jcb.29016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 12/13/2022]
Abstract
Whole-transcriptome analysis using RNA sequencing (RNA-seq) affords broader insights about gene expression regulatory networks in diabetic nephropathy (DN). To better explore the molecular basis of DN, kidney tissue from db/db DN model mice and control mice were submitted to RNA-seq analysis. Thousands of long noncoding RNAs (lncRNAs) and messenger RNAs (mRNAs) were found to be significantly differentially expressed in the DN group relative to the control group. To research the regulatory mechanism of these lncRNAs and mRNAs, the integrated co-expression networks were constructed for 322 mRNAs and 27 lncRNAs that revealed significantly correlated expression patterns in DN. The potential roles of these co-expressed mRNAs were classified by Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses. The co-expression networks involved 27 lncRNAs interacting with 38 key mRNAs related to metabolic processes, including ND4/4L, Ndufa2/5, Ndufb4/7, Ndufs3, Uqcrc1, Aco2, Alad, Alas1, Alpl, Atp5j2, Coq5, Coq6, Cth, and CytB, all of which are highly related to encoding subunits of the mitochondrial complexes. Thus, mitochondrial dysfunction could result in renal function decline in DN. Seven dysregulated lncRNAs and nine dysregulated mRNAs in the DN model were confirmed by quantitative real-time polymerase chain reaction. The lncRNA-mRNA co-expression network provides novel evidence to support the contention that metabolic changes are associated with metabolic reprogramming in the kidneys, and that these changes play a critical role during the progression of DN.
Collapse
Affiliation(s)
- Li Wen
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China.,Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zheng Zhang
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China
| | - Rui Peng
- Department of Bioinformatics, Chongqing Medical University, Chongqing, China
| | - Luyu Zhang
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China
| | - Handeng Liu
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China
| | - Huimin Peng
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China
| | - Yan Sun
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China
| |
Collapse
|
34
|
Lee MY, Kim TK, Walters KA, Wang K. A biological function based biomarker panel optimization process. Sci Rep 2019; 9:7365. [PMID: 31089177 PMCID: PMC6517383 DOI: 10.1038/s41598-019-43779-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 04/26/2019] [Indexed: 11/09/2022] Open
Abstract
Implementation of multi-gene biomarker panels identified from high throughput data, including microarray or next generation sequencing, need to be adapted to a platform suitable in a clinical setting such as quantitative polymerase chain reaction. However, technical challenges when transitioning from one measurement platform to another, such as inconsistent measurement results can affect panel development. We describe a process to overcome the challenges by replacing poor performing genes during platform transition and reducing the number of features without impacting classification performance. This approach assumes that a diagnostic panel reflects the effect of dysregulated biological processes associated with a disease, and genes involved in the same biological processes and coordinately affected by a disease share a similar discriminatory power. The utility of this optimization process was assessed using a published sepsis diagnostic panel. Substitution of more than half of the genes and/or reducing genes based on biological processes did not negatively affect the performance of the sepsis diagnostic panel. Our results suggest a systematic gene substitution and reduction process based on biological function can be used to alleviate the challenges associated with clinical development of biomarker panels.
Collapse
Affiliation(s)
- Min Young Lee
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Taek-Kyun Kim
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Kathie-Anne Walters
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Kai Wang
- Institute for Systems Biology, Seattle, Washington, United States of America.
| |
Collapse
|
35
|
Yang W, Rosenstiel P, Schulenburg H. aFold - using polynomial uncertainty modelling for differential gene expression estimation from RNA sequencing data. BMC Genomics 2019; 20:364. [PMID: 31077153 PMCID: PMC6509820 DOI: 10.1186/s12864-019-5686-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/11/2019] [Indexed: 12/12/2022] Open
Abstract
Background Data normalization and identification of significant differential expression represent crucial steps in RNA-Seq analysis. Many available tools rely on assumptions that are often not met by real data, including the common assumption of symmetrical distribution of up- and down-regulated genes, the presence of only few differentially expressed genes and/or few outliers. Moreover, the cut-off for selecting significantly differentially expressed genes for further downstream analysis often depend on arbitrary choices. Results We here introduce a new tool for estimating differential expression in noisy real-life data. It employs a novel normalization procedure (qtotal), which takes account of the overall distribution of read counts for data standardization enhancing reliable identification of differential gene expression, especially in case of asymmetrical distributions of up- and downregulated genes. The tool then introduces a polynomial algorithm (aFold) to model the uncertainty of read counts across treatments and genes. We extensively benchmark aFold on a variety of simulated and validated real-life data sets (e.g. ABRF, SEQC and MAQC-II) and show a higher ability to correctly identify differentially expressed genes under most tested conditions. aFold infers fold change values that are comparable across experiments, thereby facilitating data clustering, visualization, and other downstream applications. Conclusions We here present a new transcriptomics analysis tool that includes both a data normalization method and a differential expression analysis approach. The new tool is shown to enhance reliable identification of significant differential expression across distinct data distributions. It outcompetes alternative procedures in case of asymmetrical distributions of up- versus down-regulated genes and also the presence of outliers, all common to real data sets. Electronic supplementary material The online version of this article (10.1186/s12864-019-5686-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wentao Yang
- Evolutionary Ecology and Genetics, Zoological Institute, CAU Kiel, Am Botanischen Garten 9, 24118, Kiel, Germany.
| | - Philip Rosenstiel
- Institute for Clinical Molecular Biology, CAU Kiel, Am Botanischen Garten 11, 24118, Kiel, Germany
| | - Hinrich Schulenburg
- Evolutionary Ecology and Genetics, Zoological Institute, CAU Kiel, Am Botanischen Garten 9, 24118, Kiel, Germany. .,Max Planck Institute for Evolutionary Biology, Ausgust-Thienemann-Str. 2, 24306 Ploen, Kiel, Germany.
| |
Collapse
|
36
|
Martin EM, Schirmer JM, Jones SL, Davis JL. Pharmacokinetics and ex vivo anti-inflammatory effects of oral misoprostol in horses. Equine Vet J 2019; 51:415-421. [PMID: 30256450 PMCID: PMC6587934 DOI: 10.1111/evj.13024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/14/2018] [Accepted: 09/18/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND Misoprostol is an E prostanoid (EP) 2, 3 and 4 receptor agonist that is anecdotally used to treat and prevent NSAID-induced GI injury in horses. Misoprostol elicits anti-inflammatory effects in vivo in men and rodents, and inhibits TNFα production in equine leucocytes in vitro. OBJECTIVE Define the pharmacokinetic parameters of oral misoprostol in horses, and determine the inhibitory effect of oral misoprostol administration on equine leucocyte TNFα production in an ex vivo inflammation model. STUDY DESIGN Pharmacokinetic study, ex vivo experimental study. METHODS Six healthy adult horses of mixed breeds were used. In phase one, horses were given 5 μg/kg misoprostol orally, and blood was collected at predetermined times for determination of misoprostol free acid (MFA) by UHPLC-MS/MS. Pharmacokinetic parameters were calculated. In phase two, horses were dosed as in phase one, and blood was collected at T0, 0.5, 1 and 4 h following misoprostol administration for leucocyte isolation. Leucocytes were stimulated with 100 ng/mL LPS, and TNFα mRNA concentrations were determined via quantitative real-time PCR. RESULTS About 5 μg/kg oral misoprostol produced a rapid time to maximum concentration (Tmax ) of 23.4 ± 2.4 min, with a maximum concentration (Cmax ) of 0.29 ± 0.07 ng/mL and area under the curve (AUC0-∞ ) of 0.4 ± 0.12 h ng/mL. LPS stimulation of equine leucocytes ex vivo significantly increased TNFα mRNA concentrations, and there was no significant effect of misoprostol even at the Tmax . MAIN LIMITATIONS Only a single dose was used, and sample size was small. CONCLUSIONS Misoprostol is rapidly absorbed following oral administration in horses, and a single 5 μg/kg dose had no significant inhibitory effect on ex vivo LPS-stimulated TNFα mRNA production in leucocytes. Further studies analysing different dosing strategies, including repeat administration or combination with other anti-inflammatory drugs, are warranted.
Collapse
Affiliation(s)
- E. M. Martin
- North Carolina State University College of Veterinary MedicineRaleighNorth CarolinaUSA
| | - J. M. Schirmer
- North Carolina State University College of Veterinary MedicineRaleighNorth CarolinaUSA
| | - S. L. Jones
- North Carolina State University College of Veterinary MedicineRaleighNorth CarolinaUSA
| | - J. L. Davis
- VA‐MD College of Veterinary MedicineBlacksburgVirginiaUSA
| |
Collapse
|
37
|
Xiong B, Yang Y, Fineis FR, Wang JP. DegNorm: normalization of generalized transcript degradation improves accuracy in RNA-seq analysis. Genome Biol 2019; 20:75. [PMID: 30992037 PMCID: PMC6466807 DOI: 10.1186/s13059-019-1682-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 03/27/2019] [Indexed: 01/09/2023] Open
Abstract
RNA degradation affects RNA-seq quality when profiling transcriptional activities in cells. Here, we show that transcript degradation is both gene- and sample-specific and is a common and significant factor that may bias the results in RNA-seq analysis. Most existing global normalization approaches are ineffective to correct for degradation bias. We propose a novel pipeline named DegNorm to adjust the read counts for transcript degradation heterogeneity on a gene-by-gene basis while simultaneously controlling for the sequencing depth. The robust and effective performance of this method is demonstrated in an extensive set of simulated and real RNA-seq data.
Collapse
Affiliation(s)
- Bin Xiong
- Department of Statistics, Northwestern University, Evanston, IL, 60208, USA
| | - Yiben Yang
- Department of Statistics, Northwestern University, Evanston, IL, 60208, USA
| | - Frank R Fineis
- Department of Statistics, Northwestern University, Evanston, IL, 60208, USA
| | - Ji-Ping Wang
- Department of Statistics, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
38
|
Su H, Kang Q, Wang H, Yin H, Duan L, Liu Y, Fan R. Changes in expression of p53 and inflammatory factors in patients with ulcerative colitis. Exp Ther Med 2019; 17:2451-2456. [PMID: 30906432 PMCID: PMC6425133 DOI: 10.3892/etm.2019.7253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 11/19/2019] [Indexed: 01/05/2023] Open
Abstract
Ulcerative colitis (UC) is an important risk factor for the occurrence of colon cancer, and changes in expression of p53 and inflammatory factors are closely related to the pathogenesis of colon cancer. Therefore, changes in expression of p53 and inflammatory factors in UC were investigated to explore its intrinsic pathogenetic laws. The levels of inflammatory factors, such as interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), IL-10 and IL-4, in peripheral blood of UC patients and healthy adults were detected via enzyme-linked immunosorbent assay, and the changes in p53 expression were analyzed via immunohistochemistry and western blotting, and the correlation of p53 expression with changes in cytokines was also analyzed. Moreover, changes in 45S preribosomal ribonucleic acid (preRNA) transcriptional activity in four kinds of cell lines exposed to IL-6 were analyzed and determined by using reverse transcription-quantitative polymerase chain reaction. Finally, the C-myc protein expression after IL-6 stimulation was analyzed and evaluated via western blot analysis. The levels of IL-6 and TNF-α in peripheral blood in the UC patient group were significantly increased compared with those in the healthy adult group (P<0.01), while the levels of IL-10 and IL-4 in peripheral blood were significantly decreased compared with those in the healthy adult group (P<0.01). The p53 expression had a significant negative correlation with IL-6. The results showed that IL-6 activated C-myc messenger RNA (mRNA) translation, thereby upregulating the ribosomal RNA (rRNA) transcription. Additionally, IL-6 stimulated the mouse double minute 2 homolog (MDM2)-mediated proteasomal degradation of p53 by reducing the availability of ribosomal protein used for MDM2 binding, thus resulting in the downregulation of p53 protein expression. The findings of the study show that, expression level of IL-6 was increased in UC patients, which regulates the downregulation of p53 expression level and plays a role in tumorigenesis through enhancing cell proliferation and inhibiting apoptosis.
Collapse
Affiliation(s)
- Hui Su
- Department of Gastroenterology, PLA Army General Hospital, Beijing 100700, P.R. China
| | - Qian Kang
- Department of Gastroenterology, PLA Army General Hospital, Beijing 100700, P.R. China
| | - Haihong Wang
- Department of Gastroenterology, PLA Army General Hospital, Beijing 100700, P.R. China
| | - Hui Yin
- Department of Gastroenterology, PLA Army General Hospital, Beijing 100700, P.R. China
| | - Linghui Duan
- Department of Gastroenterology, PLA Army General Hospital, Beijing 100700, P.R. China
| | - Yuli Liu
- Department of Gastroenterology, PLA Army General Hospital, Beijing 100700, P.R. China
| | - Ruying Fan
- Department of Gastroenterology, PLA Army General Hospital, Beijing 100700, P.R. China
| |
Collapse
|
39
|
Mutalip SSM, Rajikin MH, Rahim SA, Khan NMN. Annatto ( Bixa orellana) δ-TCT supplementation protected against embryonic DNA damages through alterations in PI3K/ Akt-Cyclin D1 pathway. INT J VITAM NUTR RES 2019; 88:16-26. [PMID: 30907699 DOI: 10.1024/0300-9831/a000492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Protective action by annatto-derived delta-tocotrienol (δ-TCT) and soy-derived alpha-tocopherol (α-TOC) through the regulation of PI3K/Akt-Cyclin D1 pathway against the nicotine-induced DNA damages is the focus of the present study. Nicotine, which has been widely reported to have numerous adverse effects on the reproductive system, was used as reproductive toxicant. 48 female balb/c mice (6-8 weeks) (23-25 g) were randomly divided into 8 groups (G1-G8; n = 6) and treated with either nicotine or/and annatto δ-TCT/soy α-TOC for 7 consecutive days. On Day 8, the females were superovulated and mated before euthanized for embryo collection (46 hours post-coitum). Fifty 2-cell embryos from each group were used in gene expression analysis using Affymetrix QuantiGene Plex2.0 assay. Findings indicated that nicotine (G2) significantly decreased (p < 0.05) the number of produced 2-cell embryos compared to control (G1). Intervention with mixed annatto δ-TCT (G3) and pure annatto δ-TCT (G4) significantly increased the number of produced 2-cell embryos by 127 % and 79 % respectively compared to G2, but these were lower than G1. Concurrent treatment with soy α-TOC (G5) decreased embryo production by 7 %. Supplementations with δ-TCT and α-TOC alone (G6-G8) significantly increased (p < 0.05) the number of produced 2-cell embryos by 50 %, 36 % and 41 % respectively, compared to control (G1). These results were found to be associated with the alterations in the PI3K/Akt-Cyclin D1 gene expressions, indicating the inhibitory effects of annatto δ-TCT and soy α-TOC against the nicotinic embryonic damages. To our knowledge, this is the first attempt on studying the benefits of annatto δ-TCT on murine preimplantation 2-cell embryos.
Collapse
Affiliation(s)
- Siti Syairah Mohd Mutalip
- 1 Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Puncak Alam Campus, Selangor, Malaysia.,2 Maternofetal and Embryo Research Group (MatE), Universiti Teknologi MARA (UiTM), Malaysia
| | - Mohd Hamim Rajikin
- 2 Maternofetal and Embryo Research Group (MatE), Universiti Teknologi MARA (UiTM), Malaysia.,3 Faculty of Medicine, Universiti Teknologi MARA (UiTM) Sg. Buloh Campus, Selangor, Malaysia
| | - Sharaniza Ab Rahim
- 3 Faculty of Medicine, Universiti Teknologi MARA (UiTM) Sg. Buloh Campus, Selangor, Malaysia
| | - Norashikin Mohamed Noor Khan
- 2 Maternofetal and Embryo Research Group (MatE), Universiti Teknologi MARA (UiTM), Malaysia.,3 Faculty of Medicine, Universiti Teknologi MARA (UiTM) Sg. Buloh Campus, Selangor, Malaysia
| |
Collapse
|
40
|
Zhang Z, Yu D, Seo M, Hersh CP, Weiss ST, Qiu W. Novel Data Transformations for RNA-seq Differential Expression Analysis. Sci Rep 2019; 9:4820. [PMID: 30886278 PMCID: PMC6423143 DOI: 10.1038/s41598-019-41315-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/06/2019] [Indexed: 11/25/2022] Open
Abstract
We propose eight data transformations (r, r2, rv, rv2, l, l2, lv, and lv2) for RNA-seq data analysis aiming to make the transformed sample mean to be representative of the distribution center since it is not always possible to transform count data to satisfy the normality assumption. Simulation studies showed that for data sets with small (e.g., nCases = nControls = 3) or large sample size (e.g., nCases = nControls = 100) limma based on data from the l, l2, and r2 transformations performed better than limma based on data from the voom transformation in term of accuracy, FDR, and FNR. For datasets with moderate sample size (e.g., nCases = nControls = 30 or 50), limma with the rv and rv2 transformations performed similarly to limma with the voom transformation. Real data analysis results are consistent with simulation analysis results: limma with the r, l, r2, and l2 transformation performed better than limma with the voom transformation when sample sizes are small or large; limma with the rv and rv2 transformations performed similarly to limma with the voom transformation when sample sizes are moderate. We also observed from our data analyses that for datasets with large sample size, the gene-selection via the Wilcoxon rank sum test (a non-parametric two sample test method) based on the raw data outperformed limma based on the transformed data.
Collapse
Affiliation(s)
- Zeyu Zhang
- Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Danyang Yu
- Department of Information and Computing Science, College of Mathematics and Econometrics, Hunan University, Hunan, China
| | - Minseok Seo
- Channing Division of Network Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, USA
| | - Craig P Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, USA
| | - Weiliang Qiu
- Channing Division of Network Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, USA.
| |
Collapse
|
41
|
Mathieson W, Mommaerts K, Trouet JM, Mathay C, Guan P, Carithers LJ, Rohrer D, Valley DR, Blanski A, Jewell S, Moore HM, Betsou F. Cold Ischemia Score: An mRNA Assay for the Detection of Extended Cold Ischemia in Formalin-Fixed, Paraffin-Embedded Tissue. J Histochem Cytochem 2019; 67:159-168. [PMID: 30562131 PMCID: PMC6393842 DOI: 10.1369/0022155418819967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/26/2018] [Indexed: 02/08/2023] Open
Abstract
Although there are thousands of formalin-fixed paraffin-embedded (FFPE) tissue blocks potentially available for scientific research, many are of questionable quality, partly due to unknown preanalytical variables. We analyzed FFPE tissue biospecimens as part of the National Cancer Institute (NCI) Biospecimen Preanalytical Variables program to identify mRNA markers denoting cold ischemic time. The mRNA was extracted from colon, kidney, and ovary cancer FFPE blocks (40 patients, 10-12 hr fixation time) with 1, 2, 3, and 12 hr cold ischemic times, then analyzed using qRT-PCR for 23 genes selected following a literature search. No genes tested could determine short ischemic times (1-3 hr). However, a combination of three unstable genes normalized to a more stable gene could generate a "Cold Ischemia Score" that could distinguish 1 to 3 hr cold ischemia from 12 hr cold ischemia with 62% sensitivity and 84% specificity.
Collapse
Affiliation(s)
| | | | | | | | - Ping Guan
- National Cancer Institute, Bethesda, Maryland
| | | | | | | | | | | | | | - Fay Betsou
- Integrated Biobank of Luxembourg, Luxembourg
| |
Collapse
|
42
|
Mohd Mutalip SS, Rajikin MH, Ab Rahim S, Mohamed Noor Khan N. Annatto ( Bixa orellana) δ-TCT Supplementation Protection against Embryonic Malformations through Alterations in PI3K/Akt-Cyclin D1 Pathway. Biomolecules 2019; 9:E19. [PMID: 30634632 PMCID: PMC6358786 DOI: 10.3390/biom9010019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 12/12/2022] Open
Abstract
Protective action by annatto-derived delta-tocotrienol (δ-TCT) and soy-derived alpha-tocopherol (α-TOC) through the regulation of the PI3K/Akt-cyclin D1 pathway against nicotine-induced DNA damage is the focus of the present study. Nicotine, which has been widely reported to have numerous adverse effects on the reproductive system, was used as a reproductive toxicant. 48 female balb/c mice (6⁻8 weeks) (23⁻25 g) were randomly divided into eight groups (Grp.1⁻Grp.8; n = 6) and treated with either nicotine or/and annatto δ-TCT/soy α-TOC for seven consecutive days. On Day 8, the females were superovulated and mated before euthanization for embryo collection (46 h post-coitum). Fifty 2-cell embryos from each group were used in gene expression analysis using Affymetrix QuantiGene Plex2.0 assay. Findings indicated that nicotine (Grp.2) significantly decreased (p < 0.05) the number of produced 2-cell embryos compared to the control (Grp.1). Intervention with mixed annatto δ-TCT (Grp.3) and pure annatto δ-TCT (Grp.4) significantly increased the number of produced 2-cell embryos by 127% and 79%, respectively compared to Grp.2, but these were lower than Grp.1. Concurrent treatment with soy α-TOC (Grp.5) decreased embryo production by 7%. Supplementations with δ-TCT and α-TOC alone (Grp.6-Grp.8) significantly increased (p < 0.05) the number of produced 2-cell embryos by 50%, 36%, and 41%, respectively, compared to control (Grp.1). These results were found to be associated with alterations in the PI3K/Akt-Cyclin D1 genes expressions, indicating the inhibitory effects of annatto δ-TCT and soy α-TOC against nicotinic embryonic damage. To our knowledge, this is the first attempt in studying the benefits of annatto δ-TCT on murine preimplantation 2-cell embryos.
Collapse
Affiliation(s)
- Siti Syairah Mohd Mutalip
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Puncak Alam Campus, Selangor 42300, Malaysia.
- Maternofetal and Embryo Research Group (MatE), Universiti Teknologi MARA (UiTM), Selangor 40450, Malaysia.
| | - Mohd Hamim Rajikin
- Maternofetal and Embryo Research Group (MatE), Universiti Teknologi MARA (UiTM), Selangor 40450, Malaysia.
- Faculty of Medicine, Universiti Teknologi MARA (UiTM) Sg. Buloh Campus, Selangor 47000, Malaysia.
| | - Sharaniza Ab Rahim
- Faculty of Medicine, Universiti Teknologi MARA (UiTM) Sg. Buloh Campus, Selangor 47000, Malaysia.
| | - Norashikin Mohamed Noor Khan
- Maternofetal and Embryo Research Group (MatE), Universiti Teknologi MARA (UiTM), Selangor 40450, Malaysia.
- Faculty of Medicine, Universiti Teknologi MARA (UiTM) Sg. Buloh Campus, Selangor 47000, Malaysia.
| |
Collapse
|
43
|
Asmar A, Semenov I, Kelly R, Stacey M. Abnormal response of costal chondrocytes to acidosis in patients with chest wall deformity. Exp Mol Pathol 2018; 106:27-33. [PMID: 30485799 DOI: 10.1016/j.yexmp.2018.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 11/08/2018] [Accepted: 11/24/2018] [Indexed: 11/30/2022]
Abstract
Costal cartilage is much understudied compared to the load bearing cartilages. Abnormally grown costal cartilages are associated with the inherited chest wall deformities pectus excavatum and pectus carinatum resulting in sunken or pigeon chest respectively. A lack of understanding of the ultrastructural and molecular biology properties of costal cartilage is a major confounder in predicting causes and outcomes of these disorders. Due to the avascular nature of cartilage, chondrocytes metabolize glycolytically, producing an acidic environment. During physical activity hydrogen ions move within cartilage driven by compressive forces, thus at any one time, chondrocytes experience transient changes in pH. A variety of ion channels on chondrocytes plasma membrane equip them to function in the rapidly changing conditions they experience. In this paper we describe reduced expression of the ASIC2 gene encoding the acid sensing ion channel isoform 2 (previously referred to as ACCN1 or ACCN) in patients with chest wall deformities. We hypothesized that chondrocytes from these patients cannot respond normally to changes in pH that are an integral part of the biology of this tissue. Activation of ASICs indirectly creates a cascade ultimately dependent on intracellular calcium transients. The objective of this paper was to compare internal calcium signaling in response to external pH changes in costal chondrocytes from patients with chest wall deformities and healthy individuals. Although the molecular mechanism through which chondrocytes are regulated by acidosis remains unknown, we observed reduced amplitudes of calcium rise in patient chondrocytes exposed to low pH that become further impaired upon repeat exposure.
Collapse
Affiliation(s)
- A Asmar
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | - I Semenov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | - R Kelly
- Department of Surgery, Eastern Virginia Medical School, Pediatric Surgery Division, Children's Hospital of the King's Daughters, Norfolk, VA, USA
| | - M Stacey
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA.
| |
Collapse
|
44
|
Fabrication of Highly Packed Plasmonic Nanolens Array Using Polymer Nanoimprinted Nanodots for an Enhanced Fluorescence Substrate. Polymers (Basel) 2018; 10:polym10060649. [PMID: 30966683 PMCID: PMC6404152 DOI: 10.3390/polym10060649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/25/2022] Open
Abstract
A simple and cost-effective fabrication method for plasmonic nanolens arrays (PNA) with a narrow gap has been proposed for fabricating enhanced fluorescence substrates, in which the fluorophores interacting with the enhanced electromagnetic field generated by localized surface plasmons provide a higher fluorescence signal. The PNA was fabricated by the sequential depositions of the SiO2 and Ag layers on a UV-nanoimprinted nanodot array with a pitch of 500 nm, a diameter of 250 nm, and a height of 100 nm. During the deposition processes, the shape of the nanodots changed to that of nanolenses, and the gap between the nanolenses was decreased via sidewall deposition. To examine the feasibility of the fabricated PNA for enhanced fluorescence application, a streptavidin-Cy5 (SA-Cy5) conjugate dissolved in a saline buffer solution was spotted on the PNA, and the fluorescence signals of the SA-Cy5 were measured and compared with those on a bare glass substrate. The enhancement factor was affected by the gap between the nanolenses, and the maximum enhancement factor of ~128 was obtained from the PNA with a SiO2 layer thickness of 150 nm and an Ag layer thickness of 100 nm. Finally, an electromagnetic field analysis was used to examine the fluorescence signal enhancement, and was conducted using rigorous coupled wave analysis.
Collapse
|
45
|
Liu ZP, Gao R. Detecting pathway biomarkers of diabetic progression with differential entropy. J Biomed Inform 2018; 82:143-153. [DOI: 10.1016/j.jbi.2018.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 04/22/2018] [Accepted: 05/12/2018] [Indexed: 12/20/2022]
|
46
|
Little HC, Tan SY, Cali FM, Rodriguez S, Lei X, Wolfe A, Hug C, Wong GW. Multiplex Quantification Identifies Novel Exercise-regulated Myokines/Cytokines in Plasma and in Glycolytic and Oxidative Skeletal Muscle. Mol Cell Proteomics 2018; 17:1546-1563. [PMID: 29735541 DOI: 10.1074/mcp.ra118.000794] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/02/2018] [Indexed: 12/15/2022] Open
Abstract
Exercise is known to confer major health benefits, but the underlying mechanisms are not well understood. The systemic effects of exercise on multi-organ systems are thought to be partly because of myokines/cytokines secreted by skeletal muscle. The extent to which exercise alters cytokine expression and secretion in different muscle fiber types has not been systematically examined. Here, we assessed changes in 66 mouse cytokines in serum, and in glycolytic (plantaris) and oxidative (soleus) muscles, in response to sprint, endurance, or chronic wheel running. Both acute and short-term exercise significantly altered a large fraction of cytokines in both serum and muscle, twenty-three of which are considered novel exercise-regulated myokines. Most of the secreted cytokine receptors profiled were also altered by physical activity, suggesting an exercise-regulated mechanism that modulates the generation of soluble receptors found in circulation. A greater overlap in cytokine profile was seen between endurance and chronic wheel running. Between fiber types, both acute and chronic exercise induced significantly more cytokine changes in oxidative compared with glycolytic muscle. Further, changes in a subset of circulating cytokines were not matched by their changes in muscle, but instead reflected altered expression in liver and adipose tissues. Last, exercise-induced changes in cytokine mRNA and protein were only minimally correlated in soleus and plantaris. In sum, our results indicate that exercise regulates many cytokines whose pleiotropic actions may be linked to positive health outcomes. These data provide a framework to further understand potential crosstalk between skeletal muscle and other organ compartments.
Collapse
Affiliation(s)
- Hannah C Little
- From the ‡Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.,§Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Stefanie Y Tan
- From the ‡Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.,§Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Francesca M Cali
- From the ‡Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.,§Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Susana Rodriguez
- From the ‡Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.,§Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Xia Lei
- From the ‡Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.,§Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Andrew Wolfe
- ¶Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Christopher Hug
- ‖Division of Pulmonary Medicine, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts
| | - G William Wong
- From the ‡Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; .,§Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
47
|
Yeo J, Morales DA, Chen T, Crawford EL, Zhang X, Blomquist TM, Levin AM, Massion PP, Arenberg DA, Midthun DE, Mazzone PJ, Nathan SD, Wainz RJ, Nana-Sinkam P, Willey PFS, Arend TJ, Padda K, Qiu S, Federov A, Hernandez DAR, Hammersley JR, Yoon Y, Safi F, Khuder SA, Willey JC. RNAseq analysis of bronchial epithelial cells to identify COPD-associated genes and SNPs. BMC Pulm Med 2018; 18:42. [PMID: 29506519 PMCID: PMC5838965 DOI: 10.1186/s12890-018-0603-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/23/2018] [Indexed: 01/09/2023] Open
Abstract
Background There is a need for more powerful methods to identify low-effect SNPs that contribute to hereditary COPD pathogenesis. We hypothesized that SNPs contributing to COPD risk through cis-regulatory effects are enriched in genes comprised by bronchial epithelial cell (BEC) expression patterns associated with COPD. Methods To test this hypothesis, normal BEC specimens were obtained by bronchoscopy from 60 subjects: 30 subjects with COPD defined by spirometry (FEV1/FVC < 0.7, FEV1% < 80%), and 30 non-COPD controls. Targeted next generation sequencing was used to measure total and allele-specific expression of 35 genes in genome maintenance (GM) genes pathways linked to COPD pathogenesis, including seven TP53 and CEBP transcription factor family members. Shrinkage linear discriminant analysis (SLDA) was used to identify COPD-classification models. COPD GWAS were queried for putative cis-regulatory SNPs in the targeted genes. Results On a network basis, TP53 and CEBP transcription factor pathway gene pair network connections, including key DNA repair gene ERCC5, were significantly different in COPD subjects (e.g., Wilcoxon rank sum test for closeness, p-value = 5.0E-11). ERCC5 SNP rs4150275 association with chronic bronchitis was identified in a set of Lung Health Study (LHS) COPD GWAS SNPs restricted to those in putative regulatory regions within the targeted genes, and this association was validated in the COPDgene non-hispanic white (NHW) GWAS. ERCC5 SNP rs4150275 is linked (D’ = 1) to ERCC5 SNP rs17655 which displayed differential allelic expression (DAE) in BEC and is an expression quantitative trait locus (eQTL) in lung tissue (p = 3.2E-7). SNPs in linkage (D’ = 1) with rs17655 were predicted to alter miRNA binding (rs873601). A classifier model that comprised gene features CAT, CEBPG, GPX1, KEAP1, TP73, and XPA had pooled 10-fold cross-validation receiver operator characteristic area under the curve of 75.4% (95% CI: 66.3%–89.3%). The prevalence of DAE was higher than expected (p = 0.0023) in the classifier genes. Conclusions GM genes comprised by COPD-associated BEC expression patterns were enriched for SNPs with cis-regulatory function, including a putative cis-rSNP in ERCC5 that was associated with COPD risk. These findings support additional total and allele-specific expression analysis of gene pathways with high prior likelihood for involvement in COPD pathogenesis. Electronic supplementary material The online version of this article (10.1186/s12890-018-0603-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiyoun Yeo
- Department of Pathology, The University of Toledo College of Medicine, 3000 Arlington Avenue, HEB 219, Toledo, OH, 43614, USA
| | - Diego A Morales
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Toledo College of Medicine, 3000 Arlington Avenue, HEB 219, Toledo, OH, 43614, USA
| | - Tian Chen
- Department of Mathematics and Statistics, The University of Toledo, 2801 W. Bancroft Street, Toledo, OH, 43606, USA
| | - Erin L Crawford
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Toledo College of Medicine, 3000 Arlington Avenue, HEB 219, Toledo, OH, 43614, USA
| | - Xiaolu Zhang
- Department of Medicine, The University of Toledo College of Medicine, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Thomas M Blomquist
- Department of Pathology, The University of Toledo College of Medicine, 3000 Arlington Avenue, HEB 219, Toledo, OH, 43614, USA
| | - Albert M Levin
- Department of Biostatistics, Henry Ford Health System, 1 Ford Place Detroit, MI, Detroit, MI, 48202, USA
| | - Pierre P Massion
- Thoracic Program, Vanderbilt Ingram Cancer Center, Nashville, TN, 37232, USA
| | | | - David E Midthun
- Department of Pulmonary and Critical Care Medicine, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Peter J Mazzone
- Department of Pulmonary Medicine, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - Steven D Nathan
- Department of Pulmonary Medicine, Inova Fairfax Hospital, 3300 Gallows Road, Falls Church, VA, 22042-3300, USA
| | - Ronald J Wainz
- The Toledo Hospital, 2142 N Cove Blvd, Toledo, OH, 43606, USA
| | - Patrick Nana-Sinkam
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, USA, Richmond, VA, 23284-2512, USA.,Ohio State University James Comprehensive Cancer Center and Solove Research Institute, Columbus, OH, USA
| | - Paige F S Willey
- American Enterprise Institute, 1789 Massachusetts Ave NW, Washington, DC, 20036, USA
| | - Taylor J Arend
- The University of Toledo College of Medicine, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Karanbir Padda
- Emory University School of Medicine, 1648 Pierce Dr NE, Atlanta, GA, 30307, USA
| | - Shuhao Qiu
- Department of Medicine, The University of Toledo Medical Center, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Alexei Federov
- Department of Mathematics and Statistics, The University of Toledo, 2801 W. Bancroft Street, Toledo, OH, 43606, USA.,Department of Medicine, The University of Toledo College of Medicine, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Dawn-Alita R Hernandez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Toledo College of Medicine, 3000 Arlington Avenue, RHC 0012, Toledo, OH, 43614, USA
| | - Jeffrey R Hammersley
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Toledo College of Medicine, 3000 Arlington Avenue, RHC 0012, Toledo, OH, 43614, USA
| | - Youngsook Yoon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Toledo College of Medicine, 3000 Arlington Avenue, RHC 0012, Toledo, OH, 43614, USA
| | - Fadi Safi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Toledo College of Medicine, 3000 Arlington Avenue, RHC 0012, Toledo, OH, 43614, USA
| | - Sadik A Khuder
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Toledo College of Medicine, 3000 Arlington Avenue, RHC 0012, Toledo, OH, 43614, USA
| | - James C Willey
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Toledo College of Medicine, 3000 Arlington Avenue, Toledo, OH, 43614, USA.
| |
Collapse
|
48
|
Obayashi T, Aoki Y, Tadaka S, Kagaya Y, Kinoshita K. ATTED-II in 2018: A Plant Coexpression Database Based on Investigation of the Statistical Property of the Mutual Rank Index. PLANT & CELL PHYSIOLOGY 2018; 59:e3. [PMID: 29216398 PMCID: PMC5914358 DOI: 10.1093/pcp/pcx191] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/25/2017] [Indexed: 05/17/2023]
Abstract
ATTED-II (http://atted.jp) is a coexpression database for plant species to aid in the discovery of relationships of unknown genes within a species. As an advanced coexpression analysis method, multispecies comparisons have the potential to detect alterations in gene relationships within an evolutionary context. However, determining the validity of comparative coexpression studies is difficult without quantitative assessments of the quality of coexpression data. ATTED-II (version 9) provides 16 coexpression platforms for nine plant species, including seven species supported by both microarray- and RNA sequencing (RNAseq)-based coexpression data. Two independent sources of coexpression data enable the assessment of the reproducibility of coexpression. The latest coexpression data for Arabidopsis (Ath-m.c7-1 and Ath-r.c3-0) showed the highest reproducibility (Jaccard coefficient = 0.13) among previous coexpression data in ATTED-II. We also investigated the statistical basis of the mutual rank (MR) index as a coexpression measure by bootstrap sampling of experimental units. We found that the error distribution of the logit-transformed MR index showed normality with equal variances for each coexpression platform. Because the MR error was strongly correlated with the number of samples for the coexpression data, typical confidence intervals for the MR index can be estimated for any coexpression platform. These new, high-quality coexpression data can be analyzed with any tool in ATTED-II and combined with external resources to obtain insight into plant biology.
Collapse
Affiliation(s)
- Takeshi Obayashi
- Graduate School of Information Sciences, Tohoku University, 6-3-09, Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-8679 Japan
- Corresponding author: E-mail, ; Fax, +81-22-795-7179
| | - Yuichi Aoki
- Graduate School of Information Sciences, Tohoku University, 6-3-09, Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-8679 Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573 Japan
- Graduate School of Medicine, Tohoku University, Sendai, 980-8573 Japan
| | - Shu Tadaka
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573 Japan
- Graduate School of Medicine, Tohoku University, Sendai, 980-8573 Japan
| | - Yuki Kagaya
- Graduate School of Information Sciences, Tohoku University, 6-3-09, Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-8679 Japan
| | - Kengo Kinoshita
- Graduate School of Information Sciences, Tohoku University, 6-3-09, Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-8679 Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573 Japan
- Institute of Development, Aging, and Cancer, Tohoku University, Sendai, 980-8575 Japan
| |
Collapse
|
49
|
Bayega A, Fahiminiya S, Oikonomopoulos S, Ragoussis J. Current and Future Methods for mRNA Analysis: A Drive Toward Single Molecule Sequencing. Methods Mol Biol 2018; 1783:209-241. [PMID: 29767365 DOI: 10.1007/978-1-4939-7834-2_11] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The transcriptome encompasses a range of species including messenger RNA, and other noncoding RNA such as rRNA, tRNA, and short and long noncoding RNAs. Due to the huge role played by mRNA in development and disease, several methods have been developed to sequence and characterize mRNA, with RNA sequencing (RNA-Seq) emerging as the current method of choice particularly for large high-throughput studies. Short-read RNA-Seq which involves sequencing of short cDNA fragments and computationally assembling them to reconstruct the transcriptome, or aligning them to a reference is the most widely used approach. However, due to inherent limitations of this approach in de novo transcriptome assembly and isoform quantification, long-read RNA-Seq approaches, which also happen to be single molecule sequencing approaches, are increasingly becoming the standard for de novo transcriptome assembly and isoform quantification. In this chapter, we review the technical aspects of the current methods of RNA-Seq, both short and long-read approaches, and data analysis methods available. We discuss recent advances in single-cell RNA-Seq and direct RNA-Seq approaches, which perhaps will dominate the future of RNA-Seq.
Collapse
Affiliation(s)
- Anthony Bayega
- McGill University and Genome Quebec Innovation Centre, Department of Human Genetics, McGill University, Montréal, QC, Canada
| | | | - Spyros Oikonomopoulos
- McGill University and Genome Quebec Innovation Centre, Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Jiannis Ragoussis
- McGill University and Genome Quebec Innovation Centre, Department of Human Genetics, McGill University, Montréal, QC, Canada.
- Department of Bioengineering, McGill University, Montréal, QC, Canada.
- Cancer and Mutagen Unit, Department of Biochemistry, Center of Innovation in Personalized Medicine, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
50
|
Abstract
Microarray data have vastly accumulated in the past two decades. Due to the high-throughput characteristic of microarray techniques, it has transformed biological studies from specific genes to transcriptome level, and deeply boosted many fields of biological studies. While microarray offers great advantages for expression profiling, on the other hand it faces a lot challenges for computational analysis. In this chapter, we demonstrate how to perform standard analysis including data preprocessing, quality assessment, differential expression analysis, and general downstream analyses.
Collapse
Affiliation(s)
- Ming-An Sun
- Epigenomics and Computational Biology Lab, Biocomplexity Institute of Virginia Tech, Blacksburg, VA, USA.
| | - Xiaojian Shao
- Department of Human Genetics, McGill University, Montréal, Canada
- The McGill University and Génome Québec Innovation Centre, Montréal, QC, Canada
| | - Yejun Wang
- Department of Cell Biology and Genetics, School of Basic Medicine, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|