1
|
Khaleel AQ, Jasim SA, Menon SV, Kaur M, Sivaprasad GV, Rab SO, Hjazi A, Kumar A, Husseen B, Mustafa YF. siRNA-based knockdown of lncRNAs: A new modality to target tumor progression. Pathol Res Pract 2024; 266:155746. [PMID: 39657398 DOI: 10.1016/j.prp.2024.155746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024]
Abstract
This study examines the potential of small interfering RNA (siRNA) as a therapeutic agent for cancer targeting long non-coding RNAs (lncRNAs). The article begins with an analysis of the structure and biogenesis of lncRNA. It explains the diverse functions of lncRNAs in cancer, establishing a foundation for assessing approaches to inhibit these molecules. The analysis focuses on the consequences of lncRNA suppression through siRNA on signaling pathways associated with cancer, connecting theoretical understanding to practical applications. An evaluation of ongoing clinical trials and applications contributes to the discourse by revealing the potential for siRNA-mediated interventions to be practiced. Furthermore, an evaluation of the advantages and disadvantages of this therapeutic approach offers a nuanced viewpoint. In conclusion, the paper synthesizes significant discoveries and outlines potential avenues for future research, contributing to the dialogue surrounding personalized cancer therapeutics and precision medicine. Future challenges in using siRNA to target lncRNAs in oncology include optimizing delivery systems for efficient tumor cell uptake, minimizing off-target effects, enhancing RNA stability for a longer therapeutic window, and overcoming barriers in the tumor microenvironment. Addressing these factors is essential for the practical application of siRNA-based cancer therapies.
Collapse
Affiliation(s)
- Abdulrahman Qais Khaleel
- Department of Medical Instruments Engineering, Al-Maarif University College, Al Anbar 31001, Iraq.
| | | | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Mandeep Kaur
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India.
| | - G V Sivaprasad
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India.
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia.
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, Ekaterinburg 620002, Russia; Department of Technical Sciences, Western Caspian University, Baku, Azerbaijan; Department of Mechanical Engineering, Karpagam Academy of Higher Education, Coimbatore, 641021, India.
| | - Beneen Husseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq; Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq.
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq.
| |
Collapse
|
2
|
Jogdeo CM, Panja S, Kumari N, Tang W, Kapoor E, Siddhanta K, Das A, Boesen EI, Foster KW, Oupický D. Inulin-based nanoparticles for targeted siRNA delivery in acute kidney injury. J Control Release 2024; 376:577-592. [PMID: 39419450 DOI: 10.1016/j.jconrel.2024.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
RNA interference has emerged as a promising therapeutic strategy to tackle acute kidney injury (AKI). Development of targeted delivery systems is highly desired for selective renal delivery of RNA and improved therapeutic outcomes in AKI. Inulin is a plant polysaccharide traditionally employed to measure glomerular filtration rate. Here, we describe the synthesis of inulin modified with α-cyclam-p-toluic acid (CPTA) to form a novel renal-targeted polymer, Inulin-CPTA (IC), which is capable of selective siRNA delivery to the injured kidneys. We show that conjugating CPTA to inulin imparts IC with targeting properties for cells that overexpress the C-X-C chemokine receptor 4 (CXCR4). Self-assembled IC/siRNA nanoparticles (polyplexes) demonstrated rapid accumulation in the injured kidneys with selective uptake and prolonged retention in injured renal tubules overexpressing the CXCR4 receptor. Tumor-suppressor protein p53 contributes significantly to the pathogenesis of AKI. siRNA-induced silencing of p53 has shown therapeutic potential in several preclinical studies, making it an important target in the treatment of AKI. Systemically administered nanoparticles formulated using IC and siRNA against p53 selectively accumulated in the injured kidneys and potently silenced p53 expression. Selective p53 knockdown led to positive therapeutic outcomes in mice with cisplatin-induced AKI, as seen by reduced tubular cell death, renal injury, inflammation, and overall improved renal function. These findings indicate that IC is a promising new carrier for renal-targeted delivery of RNA for the treatment of AKI.
Collapse
Affiliation(s)
- Chinmay M Jogdeo
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sudipta Panja
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Neha Kumari
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Weimin Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ekta Kapoor
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kasturi Siddhanta
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ashish Das
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Erika I Boesen
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kirk W Foster
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
3
|
Li Q, Dong M, Chen P. Advances in structural-guided modifications of siRNA. Bioorg Med Chem 2024; 110:117825. [PMID: 38954918 DOI: 10.1016/j.bmc.2024.117825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
To date, the US Food and Drug Administration (FDA) has approved six small interfering RNA (siRNA) drugs: patisiran, givosiran, lumasiran, inclisiran, vutrisiran, and nedosiran, serving as compelling evidence of the promising potential of RNA interference (RNAi) therapeutics. The successful implementation of siRNA therapeutics is improved through a combination of various chemical modifications and diverse delivery approaches. The utilization of chemically modified siRNA at specific sites on either the sense strand (SS) or antisense strand (AS) has the potential to enhance resistance to ribozyme degradation, improve stability and specificity, and prolong the efficacy of drugs. Herein, we provide comprehensive analyses concerning the correlation between chemical modifications and structure-guided siRNA design. Various modifications, such as 2'-modifications, 2',4'-dual modifications, non-canonical sugar modifications, and phosphonate mimics, are crucial for the activity of siRNA. We also emphasize the essential strategies for enhancing overhang stability, improving RISC loading efficacy and strand selection, reducing off-target effects, and discussing the future of targeted delivery.
Collapse
Affiliation(s)
- Qiang Li
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266021, China; Research and Development Department, NanoPeptide (Qingdao) Biotechnology Ltd., Qingdao, China.
| | - Mingxin Dong
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| | - Pu Chen
- Research and Development Department, NanoPeptide (Qingdao) Biotechnology Ltd., Qingdao, China; Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
4
|
Wu L, Yuan R, Wen T, Qin Y, Wang Y, Luo X, Liu JW. Recent advances in functional nucleic acid decorated nanomaterials for cancer imaging and therapy. Biomed Pharmacother 2024; 174:116546. [PMID: 38603885 DOI: 10.1016/j.biopha.2024.116546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/19/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024] Open
Abstract
Nanomaterials possess unusual physicochemical properties including unique optical, magnetic, electronic properties, and large surface-to-volume ratio. However, nanomaterials face some challenges when they were applied in the field of biomedicine. For example, some nanomaterials suffer from the limitations such as poor selectivity and biocompatibility, low stability, and solubility. To address the above-mentioned obstacles, functional nucleic acid has been widely served as a powerful and versatile ligand for modifying nanomaterials because of their unique characteristics, such as ease of modification, excellent biocompatibility, high stability, predictable intermolecular interaction and recognition ability. The functionally integrating functional nucleic acid with nanomaterials has produced various kinds of nanocomposites and recent advances in applications of functional nucleic acid decorated nanomaterials for cancer imaging and therapy were summarized in this review. Further, we offer an insight into the future challenges and perspectives of functional nucleic acid decorated nanomaterials.
Collapse
Affiliation(s)
- Liu Wu
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Ruitao Yuan
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Tong Wen
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Yingfeng Qin
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Yumin Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Xiaoling Luo
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China.
| | - Jin-Wen Liu
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
5
|
Tang Q, Khvorova A. RNAi-based drug design: considerations and future directions. Nat Rev Drug Discov 2024; 23:341-364. [PMID: 38570694 PMCID: PMC11144061 DOI: 10.1038/s41573-024-00912-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 04/05/2024]
Abstract
More than 25 years after its discovery, the post-transcriptional gene regulation mechanism termed RNAi is now transforming pharmaceutical development, proved by the recent FDA approval of multiple small interfering RNA (siRNA) drugs that target the liver. Synthetic siRNAs that trigger RNAi have the potential to specifically silence virtually any therapeutic target with unprecedented potency and durability. Bringing this innovative class of medicines to patients, however, has been riddled with substantial challenges, with delivery issues at the forefront. Several classes of siRNA drug are under clinical evaluation, but their utility in treating extrahepatic diseases remains limited, demanding continued innovation. In this Review, we discuss principal considerations and future directions in the design of therapeutic siRNAs, with a particular emphasis on chemistry, the application of informatics, delivery strategies and the importance of careful target selection, which together influence therapeutic success.
Collapse
Affiliation(s)
- Qi Tang
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
6
|
Chen J, Liu Z, Fang H, Su Q, Fan Y, Song L, He S. Therapeutic efficacy of a novel self-assembled immunostimulatory siRNA combining apoptosis promotion with RIG-I activation in gliomas. J Transl Med 2024; 22:395. [PMID: 38685028 PMCID: PMC11057130 DOI: 10.1186/s12967-024-05151-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/30/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Current cancer therapies often fall short in addressing the complexities of malignancies, underscoring the urgent need for innovative treatment strategies. RNA interference technology, which specifically suppresses gene expression, offers a promising new approach in the fight against tumors. Recent studies have identified a novel immunostimulatory small-interfering RNA (siRNA) with a unique sequence (sense strand, 5'-C; antisense strand, 3'-GGG) capable of activating the RIG-I/IRF3 signaling pathway. This activation induces the release of type I and III interferons, leading to an effective antiviral immune response. However, this class of immunostimulatory siRNA has not yet been explored in cancer therapy. METHODS IsiBCL-2, an innovative immunostimulatory siRNA designed to suppress the levels of B-cell lymphoma 2 (BCL-2), contains a distinctive motif (sense strand, 5'-C; antisense strand, 3'-GGG). Glioblastoma cells were subjected to 100 nM isiBCL-2 treatment in vitro for 48 h. Morphological changes, cell viability (CCK-8 assay), proliferation (colony formation assay), migration/invasion (scratch test and Transwell assay), apoptosis rate, reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) were evaluated. Western blotting and immunofluorescence analyses were performed to assess RIG-I and MHC-I molecule levels, and ELISA was utilized to measure the levels of cytokines (IFN-β and CXCL10). In vivo heterogeneous tumor models were established, and the anti-tumor effect of isiBCL-2 was confirmed through intratumoral injection. RESULTS IsiBCL-2 exhibited significant inhibitory effects on glioblastoma cell growth and induced apoptosis. BCL-2 mRNA levels were significantly decreased by 67.52%. IsiBCL-2 treatment resulted in an apoptotic rate of approximately 51.96%, accompanied by a 71.76% reduction in MMP and a 41.87% increase in ROS accumulation. Western blotting and immunofluorescence analyses demonstrated increased levels of RIG-I, MAVS, and MHC-I following isiBCL-2 treatment. ELISA tests indicated a significant increase in IFN-β and CXCL10 levels. In vivo studies using nude mice confirmed that isiBCL-2 effectively impeded the growth and progression of glioblastoma tumors. CONCLUSIONS This study introduces an innovative method to induce innate signaling by incorporating an immunostimulatory sequence (sense strand, 5'-C; antisense strand, 3'-GGG) into siRNA, resulting in the formation of RNA dimers through Hoogsteen base-pairing. This activation triggers the RIG-I signaling pathway in tumor cells, causing further damage and inducing a potent immune response. This inventive design and application of immunostimulatory siRNA offer a novel perspective on tumor immunotherapy, holding significant implications for the field.
Collapse
Affiliation(s)
- Junxiao Chen
- Department of Pharmacy, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Ziyuan Liu
- Department of Pharmacy, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Haiting Fang
- Department of Pharmacy, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Qing Su
- Department of Pharmacy, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Yiqi Fan
- Department of Pharmacy, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Luyao Song
- Department of Pharmacy, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, Guangdong, China.
| | - Shuai He
- Department of Pharmacy, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, Guangdong, China.
| |
Collapse
|
7
|
Tieu V, Sotillo E, Bjelajac JR, Chen C, Malipatlolla M, Guerrero JA, Xu P, Quinn PJ, Fisher C, Klysz D, Mackall CL, Qi LS. A versatile CRISPR-Cas13d platform for multiplexed transcriptomic regulation and metabolic engineering in primary human T cells. Cell 2024; 187:1278-1295.e20. [PMID: 38387457 PMCID: PMC10965243 DOI: 10.1016/j.cell.2024.01.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 11/10/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
CRISPR technologies have begun to revolutionize T cell therapies; however, conventional CRISPR-Cas9 genome-editing tools are limited in their safety, efficacy, and scope. To address these challenges, we developed multiplexed effector guide arrays (MEGA), a platform for programmable and scalable regulation of the T cell transcriptome using the RNA-guided, RNA-targeting activity of CRISPR-Cas13d. MEGA enables quantitative, reversible, and massively multiplexed gene knockdown in primary human T cells without targeting or cutting genomic DNA. Applying MEGA to a model of CAR T cell exhaustion, we robustly suppressed inhibitory receptor upregulation and uncovered paired regulators of T cell function through combinatorial CRISPR screening. We additionally implemented druggable regulation of MEGA to control CAR activation in a receptor-independent manner. Lastly, MEGA enabled multiplexed disruption of immunoregulatory metabolic pathways to enhance CAR T cell fitness and anti-tumor activity in vitro and in vivo. MEGA offers a versatile synthetic toolkit for applications in cancer immunotherapy and beyond.
Collapse
Affiliation(s)
- Victor Tieu
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Elena Sotillo
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jeremy R Bjelajac
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Crystal Chen
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Meena Malipatlolla
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Justin A Guerrero
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peng Xu
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Patrick J Quinn
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chris Fisher
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dorota Klysz
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Crystal L Mackall
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, San Francisco, CA 94080, USA.
| |
Collapse
|
8
|
Talbot EJ, Joshi L, Thornton P, Dezfouli M, Tsafou K, Perkinton M, Khoronenkova S. cGAS-STING signalling regulates microglial chemotaxis in genome instability. Nucleic Acids Res 2024; 52:1188-1206. [PMID: 38084916 PMCID: PMC10853792 DOI: 10.1093/nar/gkad1184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 02/10/2024] Open
Abstract
Defective DNA damage signalling and repair is a hallmark of age-related and genetic neurodegenerative disease. One mechanism implicated in disease progression is DNA damage-driven neuroinflammation, which is largely mediated by tissue-resident immune cells, microglia. Here, we utilise human microglia-like cell models of persistent DNA damage and ATM kinase deficiency to investigate how genome instability shapes microglial function. We demonstrate that upon DNA damage the cytosolic DNA sensing cGAS-STING axis drives chronic inflammation and a robust chemokine response, exemplified by production of CCL5 and CXCL10. Transcriptomic analyses revealed that cell migratory pathways were highly enriched upon IFN-β treatment of human iPSC-derived microglia, indicating that the chemokine response to DNA damage mirrors type I interferon signalling. Furthermore, we find that STING deletion leads to a defect in microglial chemotaxis under basal conditions and upon ATM kinase loss. Overall, this work provides mechanistic insights into cGAS-STING-dependent neuroinflammatory mechanisms and consequences of genome instability in the central nervous system.
Collapse
Affiliation(s)
- Emily J Talbot
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Lisha Joshi
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Peter Thornton
- Neuroscience, R&D BioPharmaceuticals, AstraZeneca, Cambridge, UK
| | - Mahya Dezfouli
- Translational Genomics, Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Gothenburg, Sweden
| | - Kalliopi Tsafou
- Department of Data Sciences & Quantitative Biology, AstraZeneca, Cambridge, UK
| | | | | |
Collapse
|
9
|
Yan J, Zhang H, Li G, Su J, Wei Y, Xu C. Lipid nanovehicles overcome barriers to systemic RNA delivery: Lipid components, fabrication methods, and rational design. Acta Pharm Sin B 2024; 14:579-601. [PMID: 38322344 PMCID: PMC10840434 DOI: 10.1016/j.apsb.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/24/2023] [Accepted: 10/08/2023] [Indexed: 02/08/2024] Open
Abstract
Lipid nanovehicles are currently the most advanced vehicles used for RNA delivery, as demonstrated by the approval of patisiran for amyloidosis therapy in 2018. To illuminate the unique superiority of lipid nanovehicles in RNA delivery, in this review, we first introduce various RNA therapeutics, describe systemic delivery barriers, and explain the lipid components and methods used for lipid nanovehicle preparation. Then, we emphasize crucial advances in lipid nanovehicle design for overcoming barriers to systemic RNA delivery. Finally, the current status and challenges of lipid nanovehicle-based RNA therapeutics in clinical applications are also discussed. Our objective is to provide a comprehensive overview showing how to utilize lipid nanovehicles to overcome multiple barriers to systemic RNA delivery, inspiring the development of more high-performance RNA lipid nanovesicles in the future.
Collapse
Affiliation(s)
- Jing Yan
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- Institute of Medicine, Shanghai University, Shanghai 200444, China
| | - Hao Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Guangfeng Li
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai 200941, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Organoid Research Center, Shanghai University, Shanghai 200444, China
| | - Yan Wei
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- Organoid Research Center, Shanghai University, Shanghai 200444, China
| | - Can Xu
- Department of Gastroenterology, Changhai Hospital, Shanghai 200433, China
| |
Collapse
|
10
|
Neary MT, Mulder LM, Kowalski PS, MacLoughlin R, Crean AM, Ryan KB. Nebulised delivery of RNA formulations to the lungs: From aerosol to cytosol. J Control Release 2024; 366:812-833. [PMID: 38101753 DOI: 10.1016/j.jconrel.2023.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
In the past decade RNA-based therapies such as small interfering RNA (siRNA) and messenger RNA (mRNA) have emerged as new and ground-breaking therapeutic agents for the treatment and prevention of many conditions from viral infection to cancer. Most clinically approved RNA therapies are parenterally administered which impacts patient compliance and adds to healthcare costs. Pulmonary administration via inhalation is a non-invasive means to deliver RNA and offers an attractive alternative to injection. Nebulisation is a particularly appealing method due to the capacity to deliver large RNA doses during tidal breathing. In this review, we discuss the unique physiological barriers presented by the lung to efficient nebulised RNA delivery and approaches adopted to circumvent this problem. Additionally, the different types of nebulisers are evaluated from the perspective of their suitability for RNA delivery. Furthermore, we discuss recent preclinical studies involving nebulisation of RNA and analysis in in vitro and in vivo settings. Several studies have also demonstrated the importance of an effective delivery vector in RNA nebulisation therefore we assess the variety of lipid, polymeric and hybrid-based delivery systems utilised to date. We also consider the outlook for nebulised RNA medicinal products and the hurdles which must be overcome for successful clinical translation. In summary, nebulised RNA delivery has demonstrated promising potential for the treatment of several lung-related conditions such as asthma, COPD and cystic fibrosis, to which the mode of delivery is of crucial importance for clinical success.
Collapse
Affiliation(s)
- Michael T Neary
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland
| | | | - Piotr S Kowalski
- School of Pharmacy, University College Cork, Ireland; APC Microbiome, University College Cork, Cork, Ireland
| | | | - Abina M Crean
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland
| | - Katie B Ryan
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland.
| |
Collapse
|
11
|
Goel A, Rastogi A, Jain M, Niveriya K. RNA-based Therapeutics: Past, Present and Future Prospects, Challenges in Cancer Treatment. Curr Pharm Biotechnol 2024; 25:2125-2137. [PMID: 38347795 DOI: 10.2174/0113892010291042240130171709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 09/10/2024]
Abstract
It is becoming more and harder in today's climate to disregard the impact of cancer on social health. Even though a significant amount of money is spent annually on cancer research, it still ranks as the second leading cause of death worldwide. Additionally, only about half of the patients suffering from complex forms of cancer survive a year after receiving traditional cancer therapies. A method for silencing genes is called RNA interference (RNAi). Such a method is very effective in focusing on genes linked to cancer. Most gene products implicated in cancer have recently been used as RNA interference (RNAi) therapeutic targets. According to the findings from this research, RNAi application is necessary for today's cancer treatment to target functioning carcinogenic molecules and tumor resistance to chemotherapy and radiation. Proapoptotic and antiproliferative activity has been reported from previous research studies on cell culture systems, animal models, and clinical trials through the knockdown of gene products from RNAi technology. Numerous novel RNAi-based medications are now in the clinical trial stages thanks to the discovery of the RNAi mechanism and advancements in the area. In the future, genomic-based personalized medicines can be developed through this RNAi therapy. Hopefully, cancer sufferers will find this sort of therapy to be one of the most effective ones. Various kinds of RNA-based treatments, such as aptamers, small interfering RNAs, microRNAs, antisense oligonucleotides, and messenger RNA, are covered in broad terms in this study. We also present an overview of the RNA-based therapies that have received regulatory approval in the past or are now undergoing clinical studies.
Collapse
Affiliation(s)
- Anjana Goel
- Department of Biotechnology, GLA University, Mathura, India
| | - Amisha Rastogi
- Department of Biotechnology, GLA University, Mathura, India
| | - Mansi Jain
- Department of Biotechnology, GLA University, Mathura, India
| | | |
Collapse
|
12
|
Ebrahimi N, Manavi MS, Nazari A, Momayezi A, Faghihkhorasani F, Rasool Riyadh Abdulwahid AH, Rezaei-Tazangi F, Kavei M, Rezaei R, Mobarak H, Aref AR, Fang W. Nano-scale delivery systems for siRNA delivery in cancer therapy: New era of gene therapy empowered by nanotechnology. ENVIRONMENTAL RESEARCH 2023; 239:117263. [PMID: 37797672 DOI: 10.1016/j.envres.2023.117263] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/17/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023]
Abstract
RNA interference (RNAi) is a unique treatment approach used to decrease a disease's excessive gene expression, including cancer. SiRNAs may find and destroy homologous mRNA sequences within the cell thanks to RNAi processes. However, difficulties such poor cellular uptake, off-target effects, and susceptibility to destruction by serum nucleases in the bloodstream restrict the therapeutic potential of siRNAs. Since some years ago, siRNA-based therapies have been in the process of being translated into the clinic. Therefore, the primary emphasis of this work is on sophisticated nanocarriers that aid in the transport of siRNA payloads, their administration in combination with anticancer medications, and their use in the treatment of cancer. The research looks into molecular manifestations, difficulties with siRNA transport, the design and development of siRNA-based delivery methods, and the benefits and drawbacks of various nanocarriers. The trapping of siRNA in endosomes is a challenge for the majority of delivery methods, which affects the therapeutic effectiveness. Numerous techniques for siRNA release, including as pH-responsive release, membrane fusion, the proton sponge effect, and photochemical disruption, have been studied to overcome this problem. The present state of siRNA treatments in clinical trials is also looked at in order to give a thorough and systematic evaluation of siRNA-based medicines for efficient cancer therapy.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Iran
| | | | - Ahmad Nazari
- Tehran University of Medical Science, Tehran, Iran
| | - Amirali Momayezi
- School of Chemical Engineering, Iran University of Science, and Technology, Tehran, Iran
| | | | | | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Science, Fasa, Iran
| | - Mohammed Kavei
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| | - Roya Rezaei
- Department of Microbiology, College of Science, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Halimeh Mobarak
- Clinical Pathologist, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Reza Aref
- Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.
| | - Wei Fang
- Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| |
Collapse
|
13
|
Zhang J, Chen B, Gan C, Sun H, Zhang J, Feng L. A Comprehensive Review of Small Interfering RNAs (siRNAs): Mechanism, Therapeutic Targets, and Delivery Strategies for Cancer Therapy. Int J Nanomedicine 2023; 18:7605-7635. [PMID: 38106451 PMCID: PMC10725753 DOI: 10.2147/ijn.s436038] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/29/2023] [Indexed: 12/19/2023] Open
Abstract
Small interfering RNA (siRNA) delivery by nanocarriers has been identified as a promising strategy in the study and treatment of cancer. Short nucleotide sequences are synthesized exogenously to create siRNA, which triggers RNA interference (RNAi) in cells and silences target gene expression in a sequence-specific way. As a nucleic acid-based medicine that has gained popularity recently, siRNA exhibits novel potential for the treatment of cancer. However, there are still many obstacles to overcome before clinical siRNA delivery devices can be developed. In this review, we discuss prospective targets for siRNA drug design, explain siRNA drug properties and benefits, and give an overview of the current clinical siRNA therapeutics for the treatment of cancer. Additionally, we introduce the siRNA chemical modifications and delivery systems that are clinically sophisticated and classify bioresponsive materials for siRNA release in a methodical manner. This review will serve as a reference for researchers in developing more precise and efficient targeted delivery systems, promoting ongoing advances in clinical applications.
Collapse
Affiliation(s)
- Jiaying Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, People’s Republic of China
| | - Bo Chen
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, People’s Republic of China
| | - Chunyuan Gan
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, People’s Republic of China
| | - Hongyan Sun
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, People’s Republic of China
| | - Jiaxin Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
- Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Lin Feng
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, People’s Republic of China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, People’s Republic of China
| |
Collapse
|
14
|
Man HSJ, Moosa VA, Singh A, Wu L, Granton JT, Juvet SC, Hoang CD, de Perrot M. Unlocking the potential of RNA-based therapeutics in the lung: current status and future directions. Front Genet 2023; 14:1281538. [PMID: 38075698 PMCID: PMC10703483 DOI: 10.3389/fgene.2023.1281538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/06/2023] [Indexed: 02/12/2024] Open
Abstract
Awareness of RNA-based therapies has increased after the widespread adoption of mRNA vaccines against SARS-CoV-2 during the COVID-19 pandemic. These mRNA vaccines had a significant impact on reducing lung disease and mortality. They highlighted the potential for rapid development of RNA-based therapies and advances in nanoparticle delivery systems. Along with the rapid advancement in RNA biology, including the description of noncoding RNAs as major products of the genome, this success presents an opportunity to highlight the potential of RNA as a therapeutic modality. Here, we review the expanding compendium of RNA-based therapies, their mechanisms of action and examples of application in the lung. The airways provide a convenient conduit for drug delivery to the lungs with decreased systemic exposure. This review will also describe other delivery methods, including local delivery to the pleura and delivery vehicles that can target the lung after systemic administration, each providing access options that are advantageous for a specific application. We present clinical trials of RNA-based therapy in lung disease and potential areas for future directions. This review aims to provide an overview that will bring together researchers and clinicians to advance this burgeoning field.
Collapse
Affiliation(s)
- H. S. Jeffrey Man
- Temerty Faculty of Medicine, Institute of Medical Science, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, ON, Canada
- Division of Respirology and Critical Care Medicine, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Vaneeza A. Moosa
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, ON, Canada
- Division of Thoracic Surgery, Toronto General Hospital, Toronto, ON, Canada
| | - Anand Singh
- Thoracic Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Licun Wu
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, ON, Canada
- Division of Thoracic Surgery, Toronto General Hospital, Toronto, ON, Canada
| | - John T. Granton
- Division of Respirology and Critical Care Medicine, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Stephen C. Juvet
- Temerty Faculty of Medicine, Institute of Medical Science, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, ON, Canada
- Division of Respirology and Critical Care Medicine, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Chuong D. Hoang
- Thoracic Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Marc de Perrot
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, ON, Canada
- Division of Thoracic Surgery, Toronto General Hospital, Toronto, ON, Canada
| |
Collapse
|
15
|
Koo J, Gurusamy D, Palli SR. Inefficient uptake of small interfering RNAs is responsible for their inability to trigger RNA interference in Colorado potato beetle cells. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:1-12. [PMID: 37452750 PMCID: PMC10528746 DOI: 10.1002/arch.22036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
There has been limited success in the usage of exogenous small interference RNA (siRNA) or small hairpin RNA (shRNA) to trigger RNA interference (RNAi) in insects. Instead, long double-stranded RNAs (dsRNA) are used to induce knockdown of target genes in insects. Here, we compared the potency of si/sh RNAs and dsRNA in Colorado potato beetle (CPB) cells. CPB cells showed highly efficient RNAi response to dsRNA. However, si/sh RNAs were inefficient in triggering RNAi in CPB cells. Confocal microscopy observations of Cy3 labeled-si/sh RNA cellular uptake revealed reduced si/sh RNA uptake compared to dsRNA. si/sh RNAs were stable in the conditioned media of CPB cells. Although in a small amount, when internalized by CPB cells, the si/sh RNAs were processed by the Dicer enzyme. Lipid-mediated transfection and chimeric dsRNA approaches were used to improve the delivery of si/sh RNAs. Our results suggest that the uptake of si/sh RNAs is inefficient in CPB cells, resulting in ineffective RNAi response. However, with the help of effective delivery methods, si/sh RNA could be a useful option for developing target-specific RNAi-mediated biopesticides.
Collapse
Affiliation(s)
- Jinmo Koo
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546, USA
| | - Dhandapani Gurusamy
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546, USA
- Current address, Department of Botany, Kongunadu Arts and Science College (Autonomous), Bharathiar University, Coimbatore, India
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
16
|
Swart LE, Fens MHAM, van Oort A, Waranecki P, Mata Casimiro LD, Tuk D, Hendriksen M, van den Brink L, Schweighart E, Seinen C, Nelson R, Krippner-Heidenreich A, O'Toole T, Schiffelers RM, Kooijmans S, Heidenreich O. Increased Bone Marrow Uptake and Accumulation of Very-Late Antigen-4 Targeted Lipid Nanoparticles. Pharmaceutics 2023; 15:1603. [PMID: 37376052 DOI: 10.3390/pharmaceutics15061603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/17/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Lipid nanoparticles (LNPs) have evolved rapidly as promising delivery systems for oligonucleotides, including siRNAs. However, current clinical LNP formulations show high liver accumulation after systemic administration, which is unfavorable for the treatment of extrahepatic diseases, such as hematological disorders. Here we describe the specific targeting of LNPs to hematopoietic progenitor cells in the bone marrow. Functionalization of the LNPs with a modified Leu-Asp-Val tripeptide, a specific ligand for the very-late antigen 4 resulted in an improved uptake and functional siRNA delivery in patient-derived leukemia cells when compared to their non-targeted counterparts. Moreover, surface-modified LNPs displayed significantly improved bone-marrow accumulation and retention. These were associated with increased LNP uptake by immature hematopoietic progenitor cells, also suggesting similarly improved uptake by leukemic stem cells. In summary, we describe an LNP formulation that successfully targets the bone marrow including leukemic stem cells. Our results thereby support the further development of LNPs for targeted therapeutic interventions for leukemia and other hematological disorders.
Collapse
Affiliation(s)
- Laura E Swart
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Marcel H A M Fens
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Anita van Oort
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Piotr Waranecki
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - L Daniel Mata Casimiro
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - David Tuk
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Martijn Hendriksen
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Luca van den Brink
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Elizabeth Schweighart
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Cor Seinen
- CDL Research, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Ryan Nelson
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | | | - Tom O'Toole
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Raymond M Schiffelers
- CDL Research, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Sander Kooijmans
- CDL Research, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Olaf Heidenreich
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
- Wolfson Childhood Cancer Research Centre, Newcastle University, Newcastle upon Tyne NE1 7RY, UK
| |
Collapse
|
17
|
Jing X, Arya V, Reynolds KS, Rogers H. Clinical Pharmacology of RNA Interference-Based Therapeutics: A Summary Based on Food and Drug Administration-Approved Small Interfering RNAs. Drug Metab Dispos 2023; 51:193-198. [PMID: 36332914 PMCID: PMC9900864 DOI: 10.1124/dmd.122.001107] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
RNA-based oligonucleotide therapeutics are revolutionizing drug development for disease treatment. This class of therapeutics differs from small molecules and protein therapeutics in various ways, including both its mechanism of action and clinical pharmacology characteristics. These unique characteristics, along with evolving oligonucleotide-associated conjugates allowing specific tissue targeting, have fueled interest in the evaluation of RNA-based oligonucleotide therapeutics in a rapidly increasing number of therapeutic areas. With these unique attributes as well as growing therapeutic potential, oligonucleotide therapeutics have generated significant interest from a clinical pharmacology perspective. The Food and Drug Administration (FDA) previously published results of a survey that summarized clinical pharmacology studies supporting oligonucleotide therapies approved and in development between 2012 and 2018. Since the first approval of a small interfering RNA (siRNA) therapeutic in 2018, this class of modalities has gained momentum in various therapeutic areas. Hence, a comprehensive examination of the clinical pharmacology of FDA-approved siRNA therapeutics would benefit the path forward for many stakeholders. Thus, in this current review, we thoroughly examine and summarize clinical pharmacology data of the FDA-approved siRNA therapeutics approved from 2018 (year of first approval) to 2022, aimed at facilitating future drug development and regulatory decision making. SIGNIFICANCE STATEMENT: This review systematically summarizes the clinical pharmacology information of Food and Drug Administration (FDA)-approved small interfering RNAs (siRNA) therapeutics. SiRNAs are revolutionizing the drug development field. Unique clinical pharmacology characteristics represent a differentiating factor for this class of therapeutics. The FDArecently published a draft guidance for clinical pharmacology considerations for developing oligonucleotide therapeutics. As clinical development of this class of therapeutics is fast growing, this review will inform discovery and clinical-stage evaluation of upcoming siRNA-associated drug candidates.
Collapse
Affiliation(s)
- Xing Jing
- Divisions of Infectious Disease Pharmacology (X.J., V.A., K.S.R.) and Translational and Precision Medicine (H.R.), Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Vikram Arya
- Divisions of Infectious Disease Pharmacology (X.J., V.A., K.S.R.) and Translational and Precision Medicine (H.R.), Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Kellie Schoolar Reynolds
- Divisions of Infectious Disease Pharmacology (X.J., V.A., K.S.R.) and Translational and Precision Medicine (H.R.), Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Hobart Rogers
- Divisions of Infectious Disease Pharmacology (X.J., V.A., K.S.R.) and Translational and Precision Medicine (H.R.), Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
18
|
Laderach DJ, Compagno D. Inhibition of galectins in cancer: Biological challenges for their clinical application. Front Immunol 2023; 13:1104625. [PMID: 36703969 PMCID: PMC9872792 DOI: 10.3389/fimmu.2022.1104625] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Galectins play relevant roles in tumor development, progression and metastasis. Accordingly, galectins are certainly enticing targets for medical intervention in cancer. To date, however, clinical trials based on galectin inhibitors reported inconclusive results. This review summarizes the galectin inhibitors currently being evaluated and discusses some of the biological challenges that need to be addressed to improve these strategies for the benefit of cancer patients.
Collapse
Affiliation(s)
- Diego José Laderach
- Molecular and Functional Glyco-Oncology Laboratory, Instituto de Química Biológica de la Facutad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Buenos Aires, Argentina,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina,Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina,*Correspondence: Diego José Laderach,
| | - Daniel Compagno
- Molecular and Functional Glyco-Oncology Laboratory, Instituto de Química Biológica de la Facutad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Buenos Aires, Argentina,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
19
|
Identifying differentially expressed genes and miRNAs in Kawasaki disease by bioinformatics analysis. Sci Rep 2022; 12:21879. [PMID: 36536067 PMCID: PMC9763244 DOI: 10.1038/s41598-022-26608-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Kawasaki disease (KD) is an acute systemic immune vasculitis caused by infection, and its etiology and underlying mechanisms are not completely clear. This study aimed to identify differentially expressed genes (DEGs) with diagnostic and treatment potential for KD using bioinformatics analysis. In this study, three KD datasets (GSE68004, GSE73461, GSE18606) were downloaded from the Gene Expression Omnibus (GEO) database. Identification of DEGs between normal and KD whole blood was performed using the GEO2R online tool. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis of DEGs was undertaken with Metascape. Analysis and visualization of protein-protein interaction networks (PPI) were carried out with STRING and Cytoscape. Lastly, miRNA-genes regulatory networks were built by Cytoscape to predict the underlying microRNAs (miRNAs) associated with DEGs. Overall, 269 DEGs were identified, including 230 up-regulated and 39 down-regulated genes. The enrichment functions and pathways of DEGs involve regulation of defense response, inflammatory response, response to bacterium, and T cell differentiation. KEGG analysis indicates that the genes were significantly enriched in Neutrophil extracellular trap formation, TNF signaling pathway, Cytokine-cytokine receptor interaction, and Primary immunodeficiency. After combining the results of the protein-protein interaction (PPI) network and CytoHubba, 9 hub genes were selected, including TLR8, ITGAX, HCK, LILRB2, IL1B, FCGR2A, S100A12, SPI1, and CD8A. Based on the DEGs-miRNAs network construction, 3 miRNAs including mir-126-3p, mir-375 and mir-146a-5p were determined to be potential key miRNAs. To summarize, a total of 269 DEGs, 9 hub genes and 3 miRNAs were identified, which could be considered as KD biomarkers. However, further studies are needed to clarify the biological roles of these genes in KD.
Collapse
|
20
|
Salama AKAA, Trkulja MV, Casanova E, Uras IZ. Targeted Protein Degradation: Clinical Advances in the Field of Oncology. Int J Mol Sci 2022; 23:15440. [PMID: 36499765 PMCID: PMC9741350 DOI: 10.3390/ijms232315440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The field of targeted protein degradation (TPD) is a rapidly developing therapeutic modality with the promise to tame disease-relevant proteins in ways that are difficult or impossible to tackle with other strategies. While we move into the third decade of TPD, multiple degrader drugs have entered the stage of the clinic and many more are expected to follow. In this review, we provide an update on the most recent advances in the field of targeted degradation with insights into possible clinical implications for cancer prevention and treatment.
Collapse
Affiliation(s)
| | | | | | - Iris Z. Uras
- Department of Pharmacology, Center of Physiology and Pharmacology & Comprehensive Cancer Center (CCC), Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
21
|
Sarli SL, Watts JK. Harnessing nucleic acid technologies for human health on earth and in space. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:113-126. [PMID: 36336357 PMCID: PMC11845088 DOI: 10.1016/j.lssr.2022.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/01/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Nucleic acid therapeutics are a versatile class of sequence-programmable drugs that offer a robust and clinically viable strategy to modulate expression or correct genetic defects contributing to disease. The majority of drugs currently on the market target proteins; however, proteins only represent a subset of possible disease targets. Nucleic acid therapeutics allow intuitive engagement with genome sequences providing a more direct way to target many diseases at their genetic root cause. Their clinical success depends on platform technologies which can support durable and well tolerated pharmacological activity in a given tissue. Nucleic acid drugs possess a potent combination of target specificity and adaptability required to advance drug development for many diseases. As these therapeutic technologies mature, their clinical applications can also expand access to personalized therapies for patients with rare or solo genetic diseases. Spaceflight crew members exposed to the unique hazards of spaceflight, especially those related to galactic cosmic radiation (GCR) exposure, represent another patient subset who may also benefit from nucleic acid drugs as countermeasures. In this review, we will discuss the various classes of RNA- and DNA-targeted nucleic acid drugs, provide an overview of their present-day clinical applications, and describe major strategies to improve their delivery, safety, and overall efficacy.
Collapse
Affiliation(s)
- Samantha L Sarli
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jonathan K Watts
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
22
|
Si L, Bai H, Oh CY, Jiang A, Hong F, Zhang T, Ye Y, Jordan TX, Logue J, McGrath M, Belgur C, Calderon K, Nurani A, Cao W, Carlson KE, Prantil-Baun R, Gygi SP, Yang D, Jonsson CB, tenOever BR, Frieman M, Ingber DE. Self-assembling short immunostimulatory duplex RNAs with broad-spectrum antiviral activity. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:923-940. [PMID: 36032397 PMCID: PMC9398551 DOI: 10.1016/j.omtn.2022.08.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/16/2022] [Indexed: 01/21/2023]
Abstract
The current coronavirus disease 2019 (COVID-19) pandemic highlights the need for broad-spectrum antiviral therapeutics. Here we describe a new class of self-assembling immunostimulatory short duplex RNAs that potently induce production of type I and type III interferon (IFN-I and IFN-III). These RNAs require a minimum of 20 base pairs, lack any sequence or structural characteristics of known immunostimulatory RNAs, and instead require a unique sequence motif (sense strand, 5'-C; antisense strand, 3'-GGG) that mediates end-to-end dimer self-assembly. The presence of terminal hydroxyl or monophosphate groups, blunt or overhanging ends, or terminal RNA or DNA bases did not affect their ability to induce IFN. Unlike previously described immunostimulatory small interfering RNAs (siRNAs), their activity is independent of Toll-like receptor (TLR) 7/8, but requires the RIG-I/IRF3 pathway that induces a more restricted antiviral response with a lower proinflammatory signature compared with immunostimulant poly(I:C). Immune stimulation mediated by these duplex RNAs results in broad-spectrum inhibition of infections by many respiratory viruses with pandemic potential, including severe acute respiratory syndrome coronavirus (SARS-CoV)-2, SARS-CoV, Middle East respiratory syndrome coronavirus (MERS-CoV), human coronavirus (HCoV)-NL63, and influenza A virus in cell lines, human lung chips that mimic organ-level lung pathophysiology, and a mouse SARS-CoV-2 infection model. These short double-stranded RNAs (dsRNAs) can be manufactured easily, and thus potentially could be harnessed to produce broad-spectrum antiviral therapeutics.
Collapse
Affiliation(s)
- Longlong Si
- Wyss Institute for Biologically Inspired Engineering, Harvard University, CLSB5, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Haiqing Bai
- Wyss Institute for Biologically Inspired Engineering, Harvard University, CLSB5, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Crystal Yuri Oh
- Wyss Institute for Biologically Inspired Engineering, Harvard University, CLSB5, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Amanda Jiang
- Wyss Institute for Biologically Inspired Engineering, Harvard University, CLSB5, 3 Blackfan Circle, Boston, MA 02115, USA
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Fan Hong
- Wyss Institute for Biologically Inspired Engineering, Harvard University, CLSB5, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Tian Zhang
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Yongxin Ye
- Department of Genetics, Harvard Medical School, Boston, MA 02155, USA
| | - Tristan X. Jordan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - James Logue
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Marisa McGrath
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Chaitra Belgur
- Wyss Institute for Biologically Inspired Engineering, Harvard University, CLSB5, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Karina Calderon
- Wyss Institute for Biologically Inspired Engineering, Harvard University, CLSB5, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Atiq Nurani
- Wyss Institute for Biologically Inspired Engineering, Harvard University, CLSB5, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Wuji Cao
- Wyss Institute for Biologically Inspired Engineering, Harvard University, CLSB5, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Kenneth E. Carlson
- Wyss Institute for Biologically Inspired Engineering, Harvard University, CLSB5, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Rachelle Prantil-Baun
- Wyss Institute for Biologically Inspired Engineering, Harvard University, CLSB5, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Dong Yang
- Regional Biocontainment Laboratory, The University of Tennessee Health Science Center, Memphis, TN 38105, USA
| | - Colleen B. Jonsson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38105, USA
| | - Benjamin R. tenOever
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Matthew Frieman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Donald E. Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, CLSB5, 3 Blackfan Circle, Boston, MA 02115, USA
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA 02139, USA
| |
Collapse
|
23
|
Sultana A, Zare M, Thomas V, Kumar TS, Ramakrishna S. Nano-based drug delivery systems: Conventional drug delivery routes, recent developments and future prospects. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
24
|
Goyal R, Chopra H, singh I, Dua K, Gautam RK. Insights on prospects of nano-siRNA based approaches in treatment of Cancer. Front Pharmacol 2022; 13:985670. [PMID: 36091772 PMCID: PMC9452808 DOI: 10.3389/fphar.2022.985670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
siRNA interference, commonly referred to as gene silence, is a biological mechanism that inhibits gene expression in disorders such as cancer. It may enhance the precision, efficacy, and stability of medicines, especially genetic therapies to some extent. However, obstacles such as the delivery of oligonucleotide drugs to inaccessible areas of the body and the prevalence of severe side effects must be overcome. To maximize their potential, it is thus essential to optimize their distribution to target locations and limit their toxicity to healthy cells. The action of siRNA may be harnessed to delete a similar segment of mRNA that encodes a protein that causes sickness. The absence of an efficient delivery mechanism that shields siRNA from nuclease degradation, delivers it to cancer cells and releases it into the cytoplasm of specific cancer cells without causing side effects is currently the greatest obstacle to the practical implementation of siRNA therapy. This article focuses on combinations of siRNA with chemotherapeutic drug delivery systems for the treatment of cancer and gives an overview of several nanocarrier formulations in both research and clinical applications.
Collapse
Affiliation(s)
- Rajat Goyal
- MM School of Pharmacy, MM University, Sadopur-Ambala, Haryana, India
- MM College of Pharmacy, MM (Deemed to be University), Mullana-Ambala, Haryana, India
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Patiala, Punjab, India
| | - Inderbir singh
- Chitkara College of Pharmacy, Chitkara University, Patiala, Punjab, India
| | - Kamal Dua
- Discipline of Pharmacy Graduate School of Health Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine (ARCCIM) University of Technology Sydney, Sydney, NSW, Australia
- *Correspondence: Kamal Dua, ; Rupesh K. Gautam,
| | - Rupesh K. Gautam
- MM School of Pharmacy, MM University, Sadopur-Ambala, Haryana, India
- *Correspondence: Kamal Dua, ; Rupesh K. Gautam,
| |
Collapse
|
25
|
Abstract
The highly specific induction of RNA interference-mediated gene knockdown, based on the direct application of small interfering RNAs (siRNAs), opens novel avenues towards innovative therapies. Two decades after the discovery of the RNA interference mechanism, the first siRNA drugs received approval for clinical use by the US Food and Drug Administration and the European Medicines Agency between 2018 and 2022. These are mainly based on an siRNA conjugation with a targeting moiety for liver hepatocytes, N-acetylgalactosamine, and cover the treatment of acute hepatic porphyria, transthyretin-mediated amyloidosis, hypercholesterolemia, and primary hyperoxaluria type 1. Still, the development of siRNA therapeutics faces several challenges and issues, including the definition of optimal siRNAs in terms of target, sequence, and chemical modifications, siRNA delivery to its intended site of action, and the absence of unspecific off-target effects. Further siRNA drugs are in clinical studies, based on different delivery systems and covering a wide range of different pathologies including metabolic diseases, hematology, infectious diseases, oncology, ocular diseases, and others. This article reviews the knowledge on siRNA design and chemical modification, as well as issues related to siRNA delivery that may be addressed using different delivery systems. Details on the mode of action and clinical status of the various siRNA therapeutics are provided, before giving an outlook on issues regarding the future of siRNA drugs and on their potential as one emerging standard modality in pharmacotherapy. Notably, this may also cover otherwise un-druggable diseases, the definition of non-coding RNAs as targets, and novel concepts of personalized and combination treatment regimens.
Collapse
Affiliation(s)
- Maik Friedrich
- Faculty of Leipzig, Institute of Clinical Immunology, Max-Bürger-Forschungszentrum (MBFZ), University of Leipzig, Leipzig, Germany.,Department of Vaccines and Infection Models, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Achim Aigner
- Rudolf-Boehm Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Haertelstrasse 16-18, 04107, Leipzig, Germany.
| |
Collapse
|
26
|
Nilsen KE, Skjesol A, Frengen Kojen J, Espevik T, Stenvik J, Yurchenko M. TIRAP/Mal Positively Regulates TLR8-Mediated Signaling via IRF5 in Human Cells. Biomedicines 2022; 10:biomedicines10071476. [PMID: 35884781 PMCID: PMC9312982 DOI: 10.3390/biomedicines10071476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 11/21/2022] Open
Abstract
Toll-like receptor 8 (TLR8) recognizes single-stranded RNA of viral and bacterial origin as well as mediates the secretion of pro-inflammatory cytokines and type I interferons by human monocytes and macrophages. TLR8, as other endosomal TLRs, utilizes the MyD88 adaptor protein for initiation of signaling from endosomes. Here, we addressed the potential role of the Toll-interleukin 1 receptor domain-containing adaptor protein (TIRAP) in the regulation of TLR8 signaling in human primary monocyte-derived macrophages (MDMs). To accomplish this, we performed TIRAP gene silencing, followed by the stimulation of cells with synthetic ligands or live bacteria. Cytokine-gene expression and secretion were analyzed by quantitative PCR or Bioplex assays, respectively, while nuclear translocation of transcription factors was addressed by immunofluorescence and imaging, as well as by cell fractionation and immunoblotting. Immunoprecipitation and Akt inhibitors were also used to dissect the signaling mechanisms. Overall, we show that TIRAP is recruited to the TLR8 Myddosome signaling complex, where TIRAP contributes to Akt-kinase activation and the nuclear translocation of interferon regulatory factor 5 (IRF5). Recruitment of TIRAP to the TLR8 signaling complex promotes the expression and secretion of the IRF5-dependent cytokines IFNβ and IL-12p70 as well as, to a lesser degree, TNF. These findings reveal a new and unconventional role of TIRAP in innate immune defense.
Collapse
Affiliation(s)
- Kaja Elisabeth Nilsen
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; (K.E.N.); (A.S.); (J.F.K.); (T.E.); (J.S.)
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Astrid Skjesol
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; (K.E.N.); (A.S.); (J.F.K.); (T.E.); (J.S.)
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - June Frengen Kojen
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; (K.E.N.); (A.S.); (J.F.K.); (T.E.); (J.S.)
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Terje Espevik
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; (K.E.N.); (A.S.); (J.F.K.); (T.E.); (J.S.)
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Jørgen Stenvik
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; (K.E.N.); (A.S.); (J.F.K.); (T.E.); (J.S.)
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
- Department of Infectious Diseases, Clinic of Medicine, St. Olavs Hospital HF, Trondheim University Hospital, NO-7006 Trondheim, Norway
| | - Maria Yurchenko
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; (K.E.N.); (A.S.); (J.F.K.); (T.E.); (J.S.)
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
- Department of Infectious Diseases, Clinic of Medicine, St. Olavs Hospital HF, Trondheim University Hospital, NO-7006 Trondheim, Norway
- Correspondence:
| |
Collapse
|
27
|
de Brito e Cunha D, Frederico ABT, Azamor T, Melgaço JG, da Costa Neves PC, Bom APDA, Tilli TM, Missailidis S. Biotechnological Evolution of siRNA Molecules: From Bench Tool to the Refined Drug. Pharmaceuticals (Basel) 2022; 15:ph15050575. [PMID: 35631401 PMCID: PMC9146980 DOI: 10.3390/ph15050575] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022] Open
Abstract
The depth and versatility of siRNA technologies enable their use in disease targets that are undruggable by small molecules or that seek to achieve a refined turn-off of the genes for any therapeutic area. Major extracellular barriers are enzymatic degradation of siRNAs by serum endonucleases and RNAases, renal clearance of the siRNA delivery system, the impermeability of biological membranes for siRNA, activation of the immune system, plasma protein sequestration, and capillary endothelium crossing. To overcome the intrinsic difficulties of the use of siRNA molecules, therapeutic applications require nanometric delivery carriers aiming to protect double-strands and deliver molecules to target cells. This review discusses the history of siRNAs, siRNA design, and delivery strategies, with a focus on progress made regarding siRNA molecules in clinical trials and how siRNA has become a valuable asset for biopharmaceutical companies.
Collapse
Affiliation(s)
- Danielle de Brito e Cunha
- Immunological Technology Laboratory, Institute of Technology in Immunobiologicals, Bio-Manguinhos, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro 21040-900, Brazil; (D.d.B.e.C.); (A.B.T.F.); (T.A.); (J.G.M.); (P.C.d.C.N.); (A.P.D.A.B.); (S.M.)
| | - Ana Beatriz Teixeira Frederico
- Immunological Technology Laboratory, Institute of Technology in Immunobiologicals, Bio-Manguinhos, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro 21040-900, Brazil; (D.d.B.e.C.); (A.B.T.F.); (T.A.); (J.G.M.); (P.C.d.C.N.); (A.P.D.A.B.); (S.M.)
| | - Tamiris Azamor
- Immunological Technology Laboratory, Institute of Technology in Immunobiologicals, Bio-Manguinhos, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro 21040-900, Brazil; (D.d.B.e.C.); (A.B.T.F.); (T.A.); (J.G.M.); (P.C.d.C.N.); (A.P.D.A.B.); (S.M.)
| | - Juliana Gil Melgaço
- Immunological Technology Laboratory, Institute of Technology in Immunobiologicals, Bio-Manguinhos, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro 21040-900, Brazil; (D.d.B.e.C.); (A.B.T.F.); (T.A.); (J.G.M.); (P.C.d.C.N.); (A.P.D.A.B.); (S.M.)
| | - Patricia Cristina da Costa Neves
- Immunological Technology Laboratory, Institute of Technology in Immunobiologicals, Bio-Manguinhos, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro 21040-900, Brazil; (D.d.B.e.C.); (A.B.T.F.); (T.A.); (J.G.M.); (P.C.d.C.N.); (A.P.D.A.B.); (S.M.)
| | - Ana Paula Dinis Ano Bom
- Immunological Technology Laboratory, Institute of Technology in Immunobiologicals, Bio-Manguinhos, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro 21040-900, Brazil; (D.d.B.e.C.); (A.B.T.F.); (T.A.); (J.G.M.); (P.C.d.C.N.); (A.P.D.A.B.); (S.M.)
| | - Tatiana Martins Tilli
- Translational Oncology Platform, Center for Technological Development in Health, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro 21040-900, Brazil
- Laboratory of Cardiovascular Research, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro 21040-900, Brazil
- Correspondence: ; Tel.: +55-21-2562-1312
| | - Sotiris Missailidis
- Immunological Technology Laboratory, Institute of Technology in Immunobiologicals, Bio-Manguinhos, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro 21040-900, Brazil; (D.d.B.e.C.); (A.B.T.F.); (T.A.); (J.G.M.); (P.C.d.C.N.); (A.P.D.A.B.); (S.M.)
| |
Collapse
|
28
|
Si L, Bai H, Oh CY, Zhang T, Hong F, Jiang A, Ye Y, Jordan TX, Logue J, McGrath M, Belgur C, Nurani A, Cao W, Prantil-Baun R, Gygi SP, Powers RK, Frieman M, tenOever BR, Ingber DE. Self-assembling short immunostimulatory duplex RNAs with broad spectrum antiviral activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.11.19.469183. [PMID: 34845453 PMCID: PMC8629196 DOI: 10.1101/2021.11.19.469183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The current COVID-19 pandemic highlights the need for broad-spectrum antiviral therapeutics. Here we describe a new class of self-assembling immunostimulatory short duplex RNAs that potently induce production of type I and type III interferon (IFN-I and IFN-III), in a wide range of human cell types. These RNAs require a minimum of 20 base pairs, lack any sequence or structural characteristics of known immunostimulatory RNAs, and instead require a unique conserved sequence motif (sense strand: 5'-C, antisense strand: 3'-GGG) that mediates end-to-end dimer self-assembly of these RNAs by Hoogsteen G-G base-pairing. The presence of terminal hydroxyl or monophosphate groups, blunt or overhanging ends, or terminal RNA or DNA bases did not affect their ability to induce IFN. Unlike previously described immunostimulatory siRNAs, their activity is independent of TLR7/8, but requires the RIG-I/IRF3 pathway that induces a more restricted antiviral response with a lower proinflammatory signature compared with poly(I:C). Immune stimulation mediated by these duplex RNAs results in broad spectrum inhibition of infections by many respiratory viruses with pandemic potential, including SARS-CoV-2, SARS-CoV, MERS-CoV, and influenza A, as well as the common cold virus HCoV-NL63 in both cell lines and human Lung Chips that mimic organ-level lung pathophysiology. These short dsRNAs can be manufactured easily, and thus potentially could be harnessed to produce broad-spectrum antiviral therapeutics at low cost.
Collapse
Affiliation(s)
- Longlong Si
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Haiqing Bai
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Crystal Yuri Oh
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Tian Zhang
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Fan Hong
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Amanda Jiang
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yongxin Ye
- Department of Genetics, Harvard Medical School, Boston, MA 02155, USA
| | - Tristan X. Jordan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James Logue
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Marisa McGrath
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Chaitra Belgur
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Atiq Nurani
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Wuji Cao
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Rachelle Prantil-Baun
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Rani K. Powers
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Matthew Frieman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Benjamin R. tenOever
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Donald E. Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA 02139, USA
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
29
|
Asawa Y, Nishida K, Kawai K, Domae K, Ban HS, Kitazaki A, Asami H, Kohno JY, Okada S, Tokuma H, Sakano D, Kume S, Tanaka M, Nakamura H. Carborane as an Alternative Efficient Hydrophobic Tag for Protein Degradation. Bioconjug Chem 2021; 32:2377-2385. [PMID: 34699716 DOI: 10.1021/acs.bioconjchem.1c00431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Carboranes 1 and 2 were designed and synthesized for hydrophobic tag (HyT)-induced degradation of HaloTag fusion proteins. The levels of the hemagglutinin (HA)-HaloTag2-green fluorescent protein (EGFP) stably expressed in Flp-In 293 cells were significantly reduced by HyT13, HyT55, and carboranes 1 and 2, with expression levels of 49, 79, 43, and 65%, respectively, indicating that carborane is an alternative novel hydrophobic tag (HyT) for protein degradation under an intracellular environment. To clarify the mechanism of HyT-induced proteolysis, bovine serum albumin (BSA) was chosen as an extracellular protein and modified with maleimide-conjugated m-carborane (MIC). The measurement of the ζ-potentials and the lysine residue modification with fluorescein isothiocyanate (FITC) of BSA-MIC conjugates suggested that the conjugation of carborane induced the exposure of lysine residues on BSA, resulting in the degradation via ubiquitin E3 ligase-related proteasome pathways in the cell.
Collapse
Affiliation(s)
- Yasunobu Asawa
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Kei Nishida
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazuki Kawai
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Kiyotaka Domae
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Hyun Seung Ban
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, South Korea
| | - Akihiro Kitazaki
- Department of Chemistry, Facility of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Hiroya Asami
- Department of Chemistry, Facility of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Jun-Ya Kohno
- Department of Chemistry, Facility of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Satoshi Okada
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Hiraku Tokuma
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Daisuke Sakano
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Shoen Kume
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hiroyuki Nakamura
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
30
|
Stephan MT. Empowering patients from within: Emerging nanomedicines for in vivo immune cell reprogramming. Semin Immunol 2021; 56:101537. [PMID: 34844835 PMCID: PMC8792224 DOI: 10.1016/j.smim.2021.101537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 12/28/2022]
Abstract
Currently, medicine lacks the ability to reprogram selected immune cells so they possess all the functions which, from a clinical standpoint, physicians might wish them to have. To solve this problem, scientists have been marrying concepts from materials science, immunology, and genetic engineering to develop novel nanotherapeutics that directly genetically reprogram immune cells inside the body. These products could address key limitations of existing ex vivo-engineered cell immunotherapies and substantially enhance patient access and outcomes. This review highlights the latest advances in this rapidly emerging biotech field and discusses challenges in translating these preclinical studies into successful clinical nanomedicines.
Collapse
Affiliation(s)
- Matthias T Stephan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA 98195, USA; Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington, Seattle, 98195, WA, USA.
| |
Collapse
|
31
|
Liu Z, Wang S, Tapeinos C, Torrieri G, Känkänen V, El-Sayed N, Python A, Hirvonen JT, Santos HA. Non-viral nanoparticles for RNA interference: Principles of design and practical guidelines. Adv Drug Deliv Rev 2021; 174:576-612. [PMID: 34019958 DOI: 10.1016/j.addr.2021.05.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/04/2021] [Accepted: 05/15/2021] [Indexed: 02/08/2023]
Abstract
Ribonucleic acid interference (RNAi) is an innovative treatment strategy for a myriad of indications. Non-viral synthetic nanoparticles (NPs) have drawn extensive attention as vectors for RNAi due to their potential advantages, including improved safety, high delivery efficiency and economic feasibility. However, the complex natural process of RNAi and the susceptible nature of oligonucleotides render the NPs subject to particular design principles and requirements for practical fabrication. Here, we summarize the requirements and obstacles for fabricating non-viral nano-vectors for efficient RNAi. To address the delivery challenges, we discuss practical guidelines for materials selection and NP synthesis in order to maximize RNA encapsulation efficiency and protection against degradation, and to facilitate the cytosolic release of oligonucleotides. The current status of clinical translation of RNAi-based therapies and further perspectives for reducing the potential side effects are also reviewed.
Collapse
|
32
|
Scott TP, Nel LH. Rabies Prophylactic and Treatment Options: An In Vitro Study of siRNA- and Aptamer-Based Therapeutics. Viruses 2021; 13:881. [PMID: 34064911 PMCID: PMC8150346 DOI: 10.3390/v13050881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/28/2021] [Accepted: 05/06/2021] [Indexed: 10/26/2022] Open
Abstract
If the goal of eliminating dog-mediated human rabies by 2030 is to be achieved, effective mass dog vaccination needs to be complemented by effective prophylaxis for individuals exposed to rabies. Aptamers and short-interfering RNAs (siRNAs) have been successful in therapeutics, but few studies have investigated their potential as rabies therapeutics. In this study, siRNAs and aptamers-using a novel selection method-were developed and tested against rabies virus (RABV) in a post-infection (p.i.) scenario. Multiple means of delivery were tested for siRNAs, including the use of Lipofectamine and conjugation with the developed aptamers. One siRNA (N53) resulted in an 80.13% reduction in viral RNA, while aptamer UPRET 2.03 demonstrated a 61.3% reduction when used alone at 2 h p.i. At 24 h p.i., chimera UPRET 2.03-N8 (aptamer-siRNA) resulted in a 36.5% inhibition of viral replication. To our knowledge, this is the first study using siRNAs or aptamers that (1) demonstrated significant inhibition of RABV using an aptamer, (2) tested Lipofectamine RNAi-Max as a means for delivery, and (3) produced significant RABV inhibition at 24 h p.i. This study serves as a proof-of-concept to potentially use aptamers and siRNAs as rabies immunoglobulin (RIG) replacements or therapeutic options for RABV and provides strong evidence towards their further investigation.
Collapse
Affiliation(s)
| | - Louis Hendrik Nel
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa;
| |
Collapse
|
33
|
Rautela I, Sharma A, Dheer P, Thapliyal P, Sahni S, Sinha VB, Sharma MD. Extension in the approaches to treat cancer through siRNA system: a beacon of hope in cancer therapy. Drug Deliv Transl Res 2021; 12:1002-1016. [PMID: 33970462 DOI: 10.1007/s13346-021-00995-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2021] [Indexed: 12/14/2022]
Abstract
Along with the evolutionary breakthrough of RNA interference and the applicability for gene knockdown, a subsequent development in siRNA-based therapeutics has been attained. The gene therapy based on RNAi is in transition progress from the research aspects to clinical base. Being a potent tool, siRNA is used as therapeutic against several disorders. Cancer which is one of the deadliest diseases is now treated with an advanced mechanism of siRNA delivery inside the genome, leading to gene silencing; thereby, blocking translation of gene to form protein. siRNA tool delivers remedial effects with the advantages of safe delivery and efficiency. Despite its merits, barriers including instability at physiological conditions, lack of ability to cross biological membranes, off-targets, and safety are also associated with siRNA delivery system. The gene silencing efficiency values both in vitro and in vivo reported in the past years have been reviewed by material type (lipid, polymer, silica, porous silicon, and metal). This review presents a deep insight in the development of targeted delivery of siRNA. Since several clinical trials have also been performed regarding the siRNA delivery against cancer, it can also be stated that the delivery system should be good enough to achieve effective siRNA drug development.
Collapse
Affiliation(s)
- Indra Rautela
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, 248001, Uttarakhand, India
| | - Aditi Sharma
- Department of Biotechnology and Department of Life Sciences, Graphic Era Deemed to be University, Dehradun, 248002, Uttarakhand, India
| | - Pallavi Dheer
- Department of Biotechnology, School of Basic and Applied Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, 248001, Uttarakhand, India
| | - Priya Thapliyal
- Department of Biochemistry, H.N.B. Garhwal (A Central) University, Srinagar, 246174, Uttarakhand, India
| | - Shweta Sahni
- Department of Microbiology, School of Basic and Applied Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, 248001, Uttarakhand, India
| | | | - Manish Dev Sharma
- Department of Biotechnology, School of Basic and Applied Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, 248001, Uttarakhand, India.
| |
Collapse
|
34
|
Ansari AS, K C R, Jiang X, Uludaǧ H. Investigation of water-insoluble hydrophobic polyethylenimines as RNAi vehicles in chronic myeloid leukemia therapy. J Biomed Mater Res A 2021; 109:2306-2321. [PMID: 33964112 DOI: 10.1002/jbm.a.37214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/19/2021] [Accepted: 04/25/2021] [Indexed: 11/10/2022]
Abstract
The discovery of RNA interference (RNAi) more than two decades ago opened avenues for avant-garde cancer treatments that possess the ability to evade issues hampering current chemotherapeutic strategies, owing to its specific gene sequence-driven mechanism of action. A potent short interfering RNA (siRNA) delivery vehicle designed to overcome physiological barriers is imperative for successful RNAi therapy. For this purpose, this study explored the characteristics and therapeutic efficacy of low-molecular weight (MW) polyethylenimine (PEI) with high cholesterol substitution, yielding water-insoluble polymers, in chronic myeloid leukemia (CML) K562 cells. A strong impact of cholesterol grafting on the physicochemical attributes of the resultant polymers and their corresponding complexes with siRNA was observed, with the siRNA binding capacity of polymers increasing and complex dissociation sensitivity decreasing with increase in cholesterol content of the polymers. The modified polymer complexes were significantly smaller in size and possessed higher cationic charge compared to the parent polymer. The interaction with anionic heparan sulfate preoteoglycans present on the cell surface was significant in cellular uptake of the complexes. The therapeutic efficacy of siRNA/polymer complexes was reflected in their ability to effectively silence the reporter green fluorescent protein gene and endogenous CML oncogene BCR-ABL as well as significantly inhibit colony formation by K562 cells post BCR-ABL silencing. The results of this study demonstrated beneficial effects of high levels of hydrophobic substitution on low MW PEI on their functional performance bestowing them the potential to be potent RNAi agents for CML therapy.
Collapse
Affiliation(s)
- Aysha S Ansari
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Remant K C
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Xiaoyan Jiang
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Hasan Uludaǧ
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada.,Department of Biomedical Engineering, Faculty of Medicine, University of Alberta, Edmonton, Canada.,Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
35
|
Targeted RNAi of BIRC5/Survivin Using Antibody-Conjugated Poly(Propylene Imine)-Based Polyplexes Inhibits Growth of PSCA-Positive Tumors. Pharmaceutics 2021; 13:pharmaceutics13050676. [PMID: 34066833 PMCID: PMC8151203 DOI: 10.3390/pharmaceutics13050676] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 11/17/2022] Open
Abstract
Delivery of siRNAs for the treatment of tumors critically depends on the development of efficient nucleic acid carrier systems. The complexation of dendritic polymers (dendrimers) results in nanoparticles, called dendriplexes, that protect siRNA from degradation and mediate non-specific cellular uptake of siRNA. However, large siRNA doses are required for in vivo use due to accumulation of the nanoparticles in sinks such as the lung, liver, and spleen. This suggests the exploration of targeted nanoparticles for enhancing tumor cell specificity and achieving higher siRNA levels in tumors. In this work, we report on the targeted delivery of a therapeutic siRNA specific for BIRC5/Survivin in vitro and in vivo to tumor cells expressing the surface marker prostate stem cell antigen (PSCA). For this, polyplexes consisting of single-chain antibody fragments specific for PSCA conjugated to siRNA/maltose-modified poly(propylene imine) dendriplexes were used. These polyplexes were endocytosed by PSCA-positive 293TPSCA/ffLuc and PC3PSCA cells and caused knockdown of reporter gene firefly luciferase and Survivin expression, respectively. In a therapeutic study in PC3PSCA xenograft-bearing mice, significant anti-tumor effects were observed upon systemic administration of the targeted polyplexes. This indicates superior anti-tumor efficacy when employing targeted delivery of Survivin-specific siRNA, based on the additive effects of siRNA-mediated Survivin knockdown in combination with scFv-mediated PSCA inhibition.
Collapse
|
36
|
Jones CE, Tan WS, Grey F, Hughes DJ. Discovering antiviral restriction factors and pathways using genetic screens. J Gen Virol 2021; 102:001603. [PMID: 34020727 PMCID: PMC8295917 DOI: 10.1099/jgv.0.001603] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/29/2021] [Indexed: 12/24/2022] Open
Abstract
Viral infections activate the powerful interferon (IFN) response that induces the expression of several hundred IFN stimulated genes (ISGs). The principal role of this extensive response is to create an unfavourable environment for virus replication and to limit spread; however, untangling the biological consequences of this large response is complicated. In addition to a seemingly high degree of redundancy, several ISGs are usually required in combination to limit infection as individual ISGs often have low to moderate antiviral activity. Furthermore, what ISG or combination of ISGs are antiviral for a given virus is usually not known. For these reasons, and since the function(s) of many ISGs remains unexplored, genome-wide approaches are well placed to investigate what aspects of this response result in an appropriate, virus-specific phenotype. This review discusses the advances screening approaches have provided for the study of host defence mechanisms, including clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9), ISG expression libraries and RNA interference (RNAi) technologies.
Collapse
Affiliation(s)
- Chloe E. Jones
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Wenfang S. Tan
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Finn Grey
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - David J. Hughes
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, KY16 9ST, UK
| |
Collapse
|
37
|
Tian Z, Liang G, Cui K, Liang Y, Wang Q, Lv S, Cheng X, Zhang L. Insight Into the Prospects for RNAi Therapy of Cancer. Front Pharmacol 2021; 12:644718. [PMID: 33796026 PMCID: PMC8007863 DOI: 10.3389/fphar.2021.644718] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
RNA interference (RNAi), also known as gene silencing, is a biological process that prevents gene expression in certain diseases such as cancer. It can be used to improve the accuracy, efficiency, and stability of treatments, particularly genetic therapies. However, challenges such as delivery of oligonucleotide drug to less accessible parts of the body and the high incidence of toxic side effects are encountered. It is therefore imperative to improve their delivery to target sites and reduce their harmful effects on noncancerous cells to harness their full potential. In this study, the role of RNAi in the treatment of COVID-19, the novel coronavirus disease plaguing many countries, has been discussed. This review aims to ascertain the mechanism and application of RNAi and explore the current challenges of RNAi therapy by identifying some of the cancer delivery systems and providing drug information for their improvement. It is worth mentioning that delivery systems such as lipid-based delivery systems and exosomes have revolutionized RNAi therapy by reducing their immunogenicity and improving their cellular affinity. A deeper understanding of the mechanism and challenges associated with RNAi in cancer therapy can provide new insights into RNAi drug development.
Collapse
Affiliation(s)
- Zhili Tian
- Institute of Molecular Medicine, Henan University, Kaifeng, China.,School of Clinical Medical Sciences, Henan University, Kaifeng, China
| | - Guohui Liang
- Institute of Molecular Medicine, Henan University, Kaifeng, China.,School of Clinical Medical Sciences, Henan University, Kaifeng, China
| | - Kunli Cui
- School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yayu Liang
- Institute of Molecular Medicine, Henan University, Kaifeng, China.,School of Stomatology, Henan University, Kaifeng, China
| | - Qun Wang
- School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Shuangyu Lv
- Institute of Molecular Medicine, Henan University, Kaifeng, China
| | - Xiaoxia Cheng
- School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Lei Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
38
|
Brechin V, Shinohara F, Saito JI, Seitz H, Tomari Y. Mechanistic analysis of the enhanced RNAi activity by 6-mCEPh-purine at the 5' end of the siRNA guide strand. RNA (NEW YORK, N.Y.) 2021; 27:151-162. [PMID: 33177187 PMCID: PMC7812867 DOI: 10.1261/rna.073775.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 10/15/2020] [Indexed: 05/05/2023]
Abstract
A key approach for improving siRNA efficacy is chemical modifications. Through an in silico screening of modifications at the 5'-end nucleobase of the guide strand, an adenine-derived compound called 6-(3-(2-carboxyethyl)phenyl)-purine (6-mCEPh-purine) was identified to improve the RNAi activity in cultured human cells and in vivo mouse models. Nevertheless, it remains unclear how this chemical modification enhances the siRNA potency. Here, we used a series of biochemical approaches to quantitatively evaluate the effect of the 6-mCEPh-purine modification at each step in the assembly of the RNAi effector complex called RISC. We found that the modification improves the formation of mature RISC at least in two different ways, by fixing the loading orientation of siRNA duplexes and increasing the stability of mature RISC after passenger strand ejection. Our data will provide a molecular platform for further development of chemically modified siRNA drugs.
Collapse
Affiliation(s)
- Vincent Brechin
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Fumikazu Shinohara
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
- Research Function Unit, R&D Division, Kyowa Kirin Co. Ltd., Chiyoda-ku, Tokyo 100-0004, Japan
| | - Jun-Ichi Saito
- Research Function Unit, R&D Division, Kyowa Kirin Co. Ltd., Chiyoda-ku, Tokyo 100-0004, Japan
| | - Hervé Seitz
- Institut de Génétique Humaine, UMR 9002 CNRS and Université de Montpellier, 34396 Montpellier, France
| | - Yukihide Tomari
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
39
|
Koravović M, Tasić G, Rmandić M, Marković B. Photocontrollable PROTAC molecules: Structure and mechanism of action. ARHIV ZA FARMACIJU 2021. [DOI: 10.5937/arhfarm71-30785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Traditional drug discovery strategies are usually focused on occupancy of binding sites that directly affect functions of proteins. Hence, proteins that lack such binding sites are generally considered pharmacologically intractable. Modulators of protein activity, especially inhibitors, must be applied in appropriate dosage regimens that often lead to high systemic drug exposures in order to maintain sufficient protein inhibition in vivo. Consequently, there is a risk of undesirable off-target drug binding and side effects. Recently, PROteolysis TArgeting Chimera (PROTAC) technology has emerged as a new pharmacological modality that exploits PROTAC molecules for induced protein degradation. PROTAC molecule is a heterobifunctional structure consisting of a ligand that binds a protein of interest (POI), a ligand for recruiting an E3 ubiquitin ligase (an enzyme involved in the POI ubiquitination) and a linker that connects these two. After POI-PROTAC-E3 ubiquitin ligase ternary complex formation, the POI undergoes ubiquitination (an enzymatic post-translational modification in which ubiquitin is attached to the POI) and degradation. By merging the principles of photopharmacology and PROTAC technology, photocontrollable PROTACs for spatiotemporal control of induced protein degradation have recently emerged. The main advantage of photocontrollable over conventional PROTACs is the possible prevention of off-target toxicity thanks to local photoactivation.
Collapse
|
40
|
Staroseletz Y, Amirloo B, Williams A, Lomzov A, Burusco KK, Clarke DJ, Brown T, Zenkova MA, Bichenkova EV. Strict conformational demands of RNA cleavage in bulge-loops created by peptidyl-oligonucleotide conjugates. Nucleic Acids Res 2020; 48:10662-10679. [PMID: 33010175 PMCID: PMC7641753 DOI: 10.1093/nar/gkaa780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/04/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
Potent knockdown of pathogenic RNA in vivo is an urgent health need unmet by both small-molecule and biologic drugs. ‘Smart’ supramolecular assembly of catalysts offers precise recognition and potent destruction of targeted RNA, hitherto not found in nature. Peptidyl-oligonucleotide ribonucleases are here chemically engineered to create and attack bulge-loop regions upon hybridization to target RNA. Catalytic peptide was incorporated either via a centrally modified nucleotide (Type 1) or through an abasic sugar residue (Type 2) within the RNA-recognition motif to reveal striking differences in biological performance and strict structural demands of ribonuclease activity. None of the Type 1 conjugates were catalytically active, whereas all Type 2 conjugates cleaved RNA target in a sequence-specific manner, with up to 90% cleavage from 5-nt bulge-loops (BC5-α and BC5L-β anomers) through multiple cuts, including in folds nearby. Molecular dynamics simulations provided structural explanation of accessibility of the RNA cleavage sites to the peptide with adoption of an ‘in-line’ attack conformation for catalysis. Hybridization assays and enzymatic probing with RNases illuminated how RNA binding specificity and dissociation after cleavage can be balanced to permit turnover of the catalytic reaction. This is an essential requirement for inactivation of multiple copies of disease-associated RNA and therapeutic efficacy.
Collapse
Affiliation(s)
- Yaroslav Staroseletz
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Laurentiev Avenue, 630090 Novosibirsk, Russia
| | - Bahareh Amirloo
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Aled Williams
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Alexander Lomzov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Laurentiev Avenue, 630090 Novosibirsk, Russia
| | - Kepa K Burusco
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - David J Clarke
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Tom Brown
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Marina A Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Laurentiev Avenue, 630090 Novosibirsk, Russia
| | - Elena V Bichenkova
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
41
|
Ando H, Ishida T. An RNAi therapeutic, DFP-10825, for intraperitoneal and intrapleural malignant cancers. Adv Drug Deliv Rev 2020; 154-155:27-36. [PMID: 32781056 DOI: 10.1016/j.addr.2020.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022]
Abstract
RNA interference (RNAi), a potent post-transcriptional gene-silencing action, has received considerable attentions as a novel therapeutic tool to treat intractable cancers. In recent days, we have developed a novel RNAi-based therapeutic formulation, DFP-10825, for the treatment of intractable advanced cancers developed in coelomic cavities. DFP-10825 was composed of chemically synthesized short hairpin RNA (shRNA) against thymidylate synthase (TS), a key enzyme for cancer proliferation, and cationic liposomes, and achieved high therapeutic effect on the mouse models of peritoneally disseminated gastric and ovarian cancers and malignant pleural mesothelioma without severe side effects by intracoelomic direct treatment. We further designed a freeze-dried DFP-10825 formulation for mass industrial production. DFP-10825 is undergoing in pre-clinical phase and goes to clinical trials. This review introduces a DFP-10825 formulation, a potent novel RNAi-based therapeutic maximizing the benefit of RNAi molecule (shRNA).
Collapse
|
42
|
Tan X, Jia F, Wang P, Zhang K. Nucleic acid-based drug delivery strategies. J Control Release 2020; 323:240-252. [PMID: 32272123 PMCID: PMC8079167 DOI: 10.1016/j.jconrel.2020.03.040] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/21/2020] [Accepted: 03/25/2020] [Indexed: 12/17/2022]
Abstract
Nucleic acids have not been widely considered as an optimal material for drug delivery. Indeed, unmodified nucleic acids are enzymatically unstable, too hydrophilic for cell uptake and payload encapsulation, and may cause unintended biological responses such as immune system activation and prolongation of the blood coagulation pathway. Recently, however, three major areas of development surrounding nucleic acids have made it worthwhile to reconsider their role for drug delivery. These areas include DNA/RNA nanotechnology, multivalent nucleic acid nanostructures, and nucleic acid aptamers, which, respectively, provide the ability to engineer nanostructures with unparalleled levels of structural control, completely reverse certain biological properties of linear/cyclic nucleic acids, and enable antibody-level targeting using an all-nucleic acid construct. These advances, together with nucleic acids' ability to respond to various stimuli (engineered or natural), have led to a rapidly increasing number of drug delivery systems with potential for spatiotemporally controlled drug release. In this review, we discuss recent progress in nucleic acid-based drug delivery strategies, their potential, unique use cases, and risks that must be overcome or avoided.
Collapse
Affiliation(s)
- Xuyu Tan
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Fei Jia
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410007, China
| | - Ke Zhang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410007, China; Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA.
| |
Collapse
|
43
|
Sakaniwa K, Shimizu T. Targeting the innate immune receptor TLR8 using small-molecule agents. Acta Crystallogr D Struct Biol 2020; 76:621-629. [PMID: 32627735 PMCID: PMC7336380 DOI: 10.1107/s2059798320006518] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/15/2020] [Indexed: 12/19/2022] Open
Abstract
Toll-like receptors (TLRs) are pattern-recognition receptors that initiate innate immune responses. Among the TLRs, TLR8 (and TLR7) recognizes single-stranded RNA to mediate downstream signals. In recent years, intensive X-ray crystal structural analyses have provided atomic insights into structures of TLR8 complexed with various agonists or antagonists. Here, structural knowledge of the activation and inactivation mechanisms of the ligands is reviewed. In addition, the potential clinical applications of TLR ligands are examined.
Collapse
Affiliation(s)
- Kentaro Sakaniwa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toshiyuki Shimizu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
44
|
Wang Z, Pascal LE, Chandran UR, Chaparala S, Lv S, Ding H, Qi L, Wang Z. ELL2 Is Required for the Growth and Survival of AR-Negative Prostate Cancer Cells. Cancer Manag Res 2020; 12:4411-4427. [PMID: 32606936 PMCID: PMC7294050 DOI: 10.2147/cmar.s248854] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 05/01/2020] [Indexed: 12/20/2022] Open
Abstract
Background Elongation factor for RNA polymerase II 2 (ELL2) was reported as a putative tumor suppressor in the prostate. ELL2 is frequently down-regulated in prostatic adenocarcinoma specimens, and loss of ELL2 induced murine prostatic intraepithelial neoplasia and enhanced AR-positive prostate cancer cell proliferation. However, the ELL2 gene appears to be amplified in AR-negative neuroendocrine prostate tumors, suggesting a potential oncogenic role for ELL2 in AR-negative prostate cancer cells. In this study, we explored the potential function of ELL2 in PC-3 and DU145, two AR-negative prostate cancer cell lines. Materials and Methods The role of ELL2 in PC-3 and DU145 cells was studied using siRNA-mediated ELL2 knockdown. Genes regulated by ELL2 knockdown in PC-3 cells were identified and analyzed using RNA-Seq and bioinformatics. The expression of representative genes was confirmed by Western blot and/or quantitative PCR. Cell growth was determined by BrdU, MTT and colony formation assays. Cell death was analyzed by 7-AAD/Annexin V staining and trypan blue exclusion staining. Cell cycle was determined by PI staining and flow cytometry. Results ELL2 knockdown inhibited the proliferation of PC-3 and DU145 cells. RNA-Seq analysis showed an enrichment in genes associated with cell death and survival following ELL2 knockdown. The interferon-γ pathway was identified as the top canonical pathway comprising of 55.6% of the genes regulated by ELL2. ELL2 knockdown induced an increase in STAT1 and IRF1 mRNA and an induction of total STAT1 and phosphorylated STAT1 protein. Inhibition of cell proliferation by ELL2 knockdown was partly abrogated by STAT1 knockdown. ELL2 knockdown inhibited colony formation and induced apoptosis in both PC-3 and DU145 cells. Furthermore, knockdown of ELL2 caused S-phase cell cycle arrest, inhibition of CDK2 phosphorylation and cyclin D1 expression, and increased expression of cyclin E. Conclusion ELL2 knockdown in PC-3 and DU145 cells induced S-phase cell cycle arrest and profound apoptosis, which was accompanied by the induction of genes associated with cell death and survival pathways. These observations suggest that ELL2 is a potential oncogenic protein required for survival and proliferation in AR-negative prostate cancer cells.
Collapse
Affiliation(s)
- Zhi Wang
- Department of Urology, Xiangya Hospital of Central South University, Changsha, People's Republic of China.,Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Laura E Pascal
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Uma R Chandran
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Srilakshmi Chaparala
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shidong Lv
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Hui Ding
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lin Qi
- Department of Urology, Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Zhou Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
45
|
Pantatosaki E, Papadopoulos GK. Binding Dynamics of siRNA with Selected Lipopeptides: A Computer-Aided Study of the Effect of Lipopeptides' Functional Groups and Stereoisomerism. J Chem Theory Comput 2020; 16:3842-3855. [PMID: 32324997 DOI: 10.1021/acs.jctc.9b01261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The engineering issues pertaining to nanoparticle systems toward targeted gene therapies have not been fully probed. Recent experiments have identified specific structural characteristics of a novel class of lipopeptides (LP) that may lead to potent nanocarriers intended as RNAi therapeutics, albeit the molecular mechanism that underlies their performance remains unexplored. We conducted molecular dynamics simulations in atomistic detail coupled with free energy computations to study the dynamics and thermodynamics of an acrylate- and an epoxide-derived LP, members of the aforesaid class, upon their binding to siRNA in aqueous solution aiming at examining structure-potency relations. We found that the entropic part of the free energy of binding predominates; moreover, the first LP class tends to disrupt the Watson-Crick base pairing of siRNA, whereas the latter leaves the double helix intact. Moreover, the identified tug-of-war effect between LP-water and LP-siRNA hydrogen bonding in the supramolecular complex can underpin synthesis routes toward tuning the association dynamics. Our simulations on two diastereomers of the epoxide-derived LP showed significant structural and energetics differences upon binding, as a result of steric effects imposed by the different absolute configurations at their chiral centers. These findings may serve as crucial design parameters toward modulating the interplay between complex stability and ease of releasing the nucleic acid drug into the cell.
Collapse
Affiliation(s)
- Evangelia Pantatosaki
- School of Chemical Engineering, National Technical University of Athens, 15780 Athens, Greece
| | - George K Papadopoulos
- School of Chemical Engineering, National Technical University of Athens, 15780 Athens, Greece.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
46
|
Chandler M, Panigaj M, Rolband LA, Afonin KA. Challenges to optimizing RNA nanostructures for large scale production and controlled therapeutic properties. Nanomedicine (Lond) 2020; 15:1331-1340. [PMID: 32452262 PMCID: PMC7304434 DOI: 10.2217/nnm-2020-0034] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023] Open
Abstract
Nucleic acids have been utilized to construct an expansive collection of nanoarchitectures varying in design, physicochemical properties, cellular processing and biomedical applications. However, the broader therapeutic adaptation of nucleic acid nanoassemblies in general, and RNA-based nanoparticles in particular, have faced several challenges in moving towards (pre)clinical settings. For one, the large-batch synthesis of nucleic acids is still under development, with multi-stranded and chemically modified assemblies requiring greater production capacity while maintaining consistent medical-grade outputs. Furthermore, the unknown immunostimulation by these nanomaterials poses additional challenges, necessary to be overcome for optimizing future development of clinically approved RNA nanoparticles.
Collapse
Affiliation(s)
- Morgan Chandler
- Nanoscale Science Program, Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Martin Panigaj
- Institute of Biology & Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, Kosice, Slovak Republic
| | - Lewis A Rolband
- Nanoscale Science Program, Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
47
|
A Unique Gene-Silencing Approach, Using an Intelligent RNA Expression Device (iRed), Results in Minimal Immune Stimulation When Given by Local Intrapleural Injection in Malignant Pleural Mesothelioma. Molecules 2020; 25:molecules25071725. [PMID: 32283709 PMCID: PMC7181240 DOI: 10.3390/molecules25071725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/22/2022] Open
Abstract
Background: We have recently introduced an intelligent RNA expression device (iRed), comprising the minimum essential components needed to transcribe short hairpin RNA (shRNA) in cells. Use of iRed efficiently produced shRNA molecules after transfection into cells and alleviated the innate immune stimulation following intravenous injection. Methods: To study the usefulness of iRed for local injection, the engineered iRed encoding luciferase shRNA (Luc iRed), complexed with cationic liposomes (Luc iRed/liposome-complexes), was intrapleurally injected into an orthotopic mesothelioma mouse model. Results: Luc iRed/liposome-complexes markedly suppressed the expression of a luciferase marker gene in pleurally disseminated mesothelioma cells. The suppressive efficiency was correlated with the expression level of shRNA within the mesothelioma cells. In addition, intrapleural injection of iRed/liposome-complexes did not induce IL-6 production in the pleural space and consequently in the blood compartment, although plasmid DNA (pDNA) or dsDNA (the natural construct for iRed) in the formulation did. Conclusion: Local delivery of iRed could augment the in vivo gene silencing effect without eliciting pronounced innate immune stimulation. Our results might hold promise for widespread utilization of iRed as an RNAi-based therapeutic for intracelial malignant cancers.
Collapse
|
48
|
Bajan S, Hutvagner G. RNA-Based Therapeutics: From Antisense Oligonucleotides to miRNAs. Cells 2020; 9:E137. [PMID: 31936122 PMCID: PMC7016530 DOI: 10.3390/cells9010137] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/23/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023] Open
Abstract
The first therapeutic nucleic acid, a DNA oligonucleotide, was approved for clinical use in 1998. Twenty years later, in 2018, the first therapeutic RNA-based oligonucleotide was United States Food and Drug Administration (FDA) approved. This promises to be a rapidly expanding market, as many emerging biopharmaceutical companies are developing RNA interference (RNAi)-based, and RNA-based antisense oligonucleotide therapies. However, miRNA therapeutics are noticeably absent. miRNAs are regulatory RNAs that regulate gene expression. In disease states, the expression of many miRNAs is measurably altered. The potential of miRNAs as therapies and therapeutic targets has long been discussed and in the context of a wide variety of infections and diseases. Despite the great number of studies identifying miRNAs as potential therapeutic targets, only a handful of miRNA-targeting drugs (mimics or inhibitors) have entered clinical trials. In this review, we will discuss whether the investment in finding potential miRNA therapeutic targets has yielded feasible and practicable results, the benefits and obstacles of miRNAs as therapeutic targets, and the potential future of the field.
Collapse
Affiliation(s)
- Sarah Bajan
- Faculty of Science, University of Technology Sydney, Sydney, NSW 2000, Australia
- Health and Sport Science, University of Sunshine Coast, Sunshine Coast, QLD 4556, Australia
| | - Gyorgy Hutvagner
- School of Biomedical Engineering Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2000, Australia
| |
Collapse
|
49
|
Lennox KA, Behlke MA. Chemical Modifications in RNA Interference and CRISPR/Cas Genome Editing Reagents. Methods Mol Biol 2020; 2115:23-55. [PMID: 32006393 DOI: 10.1007/978-1-0716-0290-4_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chemically modified oligonucleotides (ONs) are routinely used in the laboratory to assess gene function, and clinical advances are rapidly progressing as continual efforts are being made to optimize ON efficacy. Over the years, RNA interference (RNAi) has become one of the main tools used to inhibit RNA expression across a wide variety of species. Efforts have been made to improve the exogenous delivery of the double-stranded RNA components to the endogenous intracellular RNAi machinery to direct efficacious degradation of a user-defined RNA target. More recently, synthetic RNA ONs are being used to mimic the bacterial-derived CRISPR/Cas system to direct specific editing of the mammalian genome. Both of these techniques rely on the use of various chemical modifications to the RNA phosphate backbone or sugar in specific positions throughout the ONs to improve the desired biological outcome. Relevant chemical modifications also include conjugated targeting ligands to assist ON delivery to specific cell types. Chemical modifications are most beneficial for therapeutically relevant ONs, as they serve to enhance target binding, increase drug longevity, facilitate cell-specific targeting, improve internalization into productive intracellular compartments, and mitigate both sequence-specific as well as immune-related off-target effects (OTEs). The knowledge gained from years of optimizing RNAi reagents and characterizing the biochemical and biophysical properties of each chemical modification will hopefully accelerate the CRISPR/Cas technology into the clinic, as well as further expand the use of RNAi to treat currently undruggable diseases. This review discusses the most commonly employed chemical modifications in RNAi reagents and CRISPR/Cas guide RNAs and provides an overview of select publications that have demonstrated success in improving ON efficacy and/or mitigating undesired OTEs.
Collapse
Affiliation(s)
- Kim A Lennox
- Integrated DNA Technologies, Inc., Coralville, IA, USA.
| | - Mark A Behlke
- Integrated DNA Technologies, Inc., Coralville, IA, USA
| |
Collapse
|
50
|
Bartoszewski R, Sikorski AF. Editorial focus: understanding off-target effects as the key to successful RNAi therapy. Cell Mol Biol Lett 2019; 24:69. [PMID: 31867046 PMCID: PMC6902517 DOI: 10.1186/s11658-019-0196-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/03/2019] [Indexed: 12/21/2022] Open
Abstract
With the first RNA interference (RNAi) drug (ONPATTRO (patisiran)) on the market, we witness the RNAi therapy field reaching a critical turning point, when further improvements in drug candidate design and delivery pipelines should enable fast delivery of novel life changing treatments to patients. Nevertheless, ignoring parallel development of RNAi dedicated in vitro pharmacological profiling aiming to identify undesirable off-target activity may slow down or halt progress in the RNAi field. Since academic research is currently fueling the RNAi development pipeline with new therapeutic options, the objective of this article is to briefly summarize the basics of RNAi therapy, as well as to discuss how to translate basic research into better understanding of related drug candidate safety profiles early in the process.
Collapse
Affiliation(s)
- Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Aleksander F. Sikorski
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|