1
|
Li X, Lou C, Ren H, Cui L, Chen K. Fundamental knowledge and research regarding the role of immunity in triple-negative breast cancer from 2014-2024: A bibliometric analysis. Hum Vaccin Immunother 2025; 21:2483022. [PMID: 40135819 PMCID: PMC11951696 DOI: 10.1080/21645515.2025.2483022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/27/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025] Open
Abstract
Immunity has vital research value and promising applications in triple-negative breast cancer (TNBC). Nevertheless, few bibliometric analyses have systematically investigated this area. This study aimed to comprehensively review the collaboration and impact of countries, institutions, authors, and journals on the role of immunity in TNBC from a bibliometric perspective, evaluate the keyword co-occurrence of the knowledge structure, and identify hot trends and emerging topics. Articles and reviews related to immunity in TNBC were retrieved from the Web of Science core collection using subject search. A bibliometric study was conducted primarily using CiteSpace and VOSviewer. A total of 3,104 articles and reviews were included from January 1, 2014, through December 31, 2024. The number of articles on immunization in TNBC is rising. These publications are mainly from 415 institutions in 82 countries, led by China and the USA. Among these publications, Lajos Pusztai published the most papers, while Peter Schmid was co-cited the most. The most productive journals focused on molecular biology, biological immunology, and clinical medicine. Furthermore, co-citation analysis revealed that tumor microenvironment, biomarkers, and immune checkpoint inhibitors are current and developing research areas. The keywords "immunotherapy" and "nanoparticles" are also likely to be new trends and focal points for future research. This study adopted bibliometric and visualization methods to provide a comprehensive review of the research on immunization in TNBC. This article will help researchers better understand the dynamic evolution of the role of immunity in TNBC and identify areas for future research.
Collapse
Affiliation(s)
- Xudong Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chun Lou
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - He Ren
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lina Cui
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Kexin Chen
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
2
|
Zhao R, Zhu X, Wei W, Zhen L. The role of HSPA14 in breast cancer: implications for tumorigenesis, immune response modulation, and personalized therapies. Int J Hyperthermia 2025; 42:2452922. [PMID: 39828281 DOI: 10.1080/02656736.2025.2452922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/26/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Heat shock proteins have been implicated in the process of carcinogenesis. HSPA14, a member of the heat shock protein family, remains poorly understood in terms of its significance and pathomechanisms in breast cancer. METHODS We analyzed the expression levels of HSPA14 and its prognostic significance in breast cancer using TCGA data. TCGA data was used to investigate the association between HSPA14 expression and clinicopathological features in breast cancer patients. GSEA analysis was conducted to identify the biological function of HSPA14. Spearman's correlation analysis was performed to examine the correlation between HSPA14 expression and immune cell infiltration, as well as immune checkpoint genes. Single cell transcriptomic data from GSE114727 was utilized to calculate the expression of HSPA14 in different cell subpopulations. The data on HSPA14 levels and drug sensitivity were extracted from the CellMiner dataset. The mRNA expression of HSPA14 was validated through cell experiments. RESULTS HSPA14 expression is elevated in breast cancer, which is associated with poor overall survival. It can serve as a diagnostic biomarker for breast cancer patients. Pathway analysis revealed that HSPA14-associated differential genes are involved in cell cycle, apoptosis, cellular response to heat stress, and more. Additionally, HSPA14 expression is significantly correlated with the immune microenvironment. The expression of HSPA14 may also indicate drug sensitivity. CONCLUSION Our study elucidates the involvement of HSPA14 in tumorigenesis, particularly in modulating the immune response, shaping the immune microenvironment, and contributing to drug resistance, which are pivotal for the development of personalized breast cancer therapies.
Collapse
Affiliation(s)
- Ruipeng Zhao
- Department of Thyroid and Breast Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Xiaocun Zhu
- Department of Thyroid and Breast Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Wan Wei
- Department of Thyroid and Breast Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Linlin Zhen
- Department of Thyroid and Breast Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| |
Collapse
|
3
|
Xu JX, Su YX, Chen YY, Huang YY, Chen ZS, Peng YC, Qi LN. Immune infiltration landscape and potential drug-targeted implications for hepatocellular carcinoma with 'progression/hyper-progression' recurrence. Ann Med 2025; 57:2456113. [PMID: 39865865 PMCID: PMC11774162 DOI: 10.1080/07853890.2025.2456113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 12/20/2024] [Accepted: 01/08/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND AND AIMS Hepatocellular carcinoma (HCC) recurrence was previously characterized into four types, and patients with progression/hyper-progression recurrence (type III-IV) have an extremely poor prognosis. However, the immune background of resectable HCC, particularly in patients who experience recurrence, remains underexplored. Therefore, this study aimed to describe the immune landscape of resectable HCC, especially postoperative type III-IV recurrent HCC, and explore potential immune-targeted anti-relapse strategies for treated populations. METHODS The differences in gene expression in patients with recurrent HCC (type I-II (solitary or multi-intrahepatic oligo recurrence) vs. type III-IV) were investigated using bulk sequencing. Multiple immune infiltration methods (single-sample gene set enrichment analysis (GSEA), Microenvironment Cell Populations-counter and ESTIMATE) were used, and patients were divided into four groups to identify four distinct immune subtypes: immune-enrichment/matrix-poor (IE1), immune-enrichment/matrix-rich (IE2), immune intermediate/matrix-rich (ITM) and immune desert/matrix-poor (ID). Co-expression and protein interaction analyses were used to identify characteristic genes in ITM closely associated with type III-IV recurrence, which was matched with drug targets for Huaier granules (HG) and lenvatinib. Virtual docking was used to identify potential therapeutic targets, and the results were verified using single-nuclei RNA sequencing and histological analysis. RESULTS ITM was closely related to type III-IV recurrence and exhibited immunotherapy potential. The potential efficacy of inhibiting CCNA2, VEGFA, CXCL8, PLK2, TIMP1, ITGB2, ALDOA, ANXA5 and CSK in ITM reversal was determined. Molecular docking demonstrated that the proteins of these genes could bind to HG or lenvatinib. The immunohistochemical findings demonstrated differential VEGFA (p < .01) and PLK2 (p < .001) expression in ITM type and ID in type III-IV recurrent HCC. CONCLUSIONS Three primary immunotypes of resectable HCC (IE2, ITM and ID) were identified, and HG and lenvatinib could potentially overcome immune checkpoint blockade (ICB) resistance in ITM patients with HCC, particularly those classified as type III-IV.
Collapse
Affiliation(s)
- Jing-Xuan Xu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumour, Ministry of Education, Nanning, China
| | - Yue-Xiang Su
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumour, Ministry of Education, Nanning, China
| | - Yuan-Yuan Chen
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yi-Yue Huang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumour, Ministry of Education, Nanning, China
| | - Zu-Shun Chen
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yu-Chong Peng
- Department of General Surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Lu-Nan Qi
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumour, Ministry of Education, Nanning, China
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, China
| |
Collapse
|
4
|
Cui J, Ou Y, Yue K, Wu Y, Duan Y, Liu G, Chen Z, Wei M, Wang X. Comprehensive characterization of the molecular feature of T cells in laryngeal cancer: evidence from integrated single-cell and bulk RNA sequencing data using multiple machine learning approaches. Ann Med 2025; 57:2477287. [PMID: 40179028 PMCID: PMC11980214 DOI: 10.1080/07853890.2025.2477287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/03/2024] [Accepted: 02/10/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND The clinical relevance of T cell-related molecules at single-cell resolution in laryngeal cancer (LC) has not been clarified. MATERIALS AND METHODS Three LC tissues and matching adjoining normal tissues from the hospital were used to perform 10X single-cell RNA sequencing. Hub T cell-related genes (TCRGs) were detected by applying ten machine learning (ML) techniques based TCGA and GEO databases, which were also utilized to create a prediction model (TCRG classifier) and a multicenter validation model. Lastly, we conducted a comprehensive analysis of the TCRG's correlation with immunological properties. RESULTS The analysis of single-cell RNA-seq data revealed that T cells are the primary components of the tumor microenvironment (TME), are significantly involved in cell differentiation pathways, and play a considerable role in intercellular communication. Based on 10 ML approaches, TCRG classifier were identified to develop and validate. The TCRG classifier exhibited excellent prognostic values with a mean C-index of 0.66 in six cohorts, serving as an independent risk factor (p < 0.01). Additionally, the TCRG exhibited a significant relationship with immune score, immune cell infiltration, immune-associated pathways, immune checkpoint inhibitors, human leukocyte antigen, and immunogenicity. Lastly, IPS, TCIC, TIDE, and IMvigor210 cohort analysis illustrated that the immunotherapy response may be accurately predicted using TCRG. CONCLUSION A TCRG classifier is an excellent resource for predicting a patient's prognosis, potentially guiding the preservation of laryngeal function, and identifying patients who may have a positive response to immunotherapy, which might have profound effects on therapeutic practice.
Collapse
Affiliation(s)
- Jie Cui
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, PR China
| | - Yangpeng Ou
- Department of Oncology, Huizhou Third People’s Hospital, Guangzhou Medical University, Huizhou, PR China
| | - Kai Yue
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, PR China
| | - Yansheng Wu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, PR China
| | - Yuansheng Duan
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, PR China
| | - Genglong Liu
- School of Medicine, Southern Medical University, Foshan, PR China
- Editor Office, iMeta, Shenzhen, PR China
| | - Zhen Chen
- Department of Intensive Care Unit, Shunde Hospital, Southern Medical University (the First People’s Hospital of Shunde), Foshan, PR China
| | - Minghui Wei
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, PR China
| | - Xudong Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, PR China
| |
Collapse
|
5
|
Roberti MP, Charoentong P, Lyu Y, Meyer M, Eichmüller SB, Schmidt P, Momburg F, Cetin M, Hartmann F, Valous NA, Stenzinger A, Michel L, Lichter P, Schneeweiss A, Thewes V, Fremd C, Zörnig I, Jäger D. Isolation of a tumor neoantigen specific CD8+ TCR from a skin biopsy of a vaccination site. Oncoimmunology 2025; 14:2457793. [PMID: 39902862 PMCID: PMC11796541 DOI: 10.1080/2162402x.2025.2457793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 02/06/2025] Open
Abstract
T cells that recognize tumor-specific mutations are crucial for cancer immunosurveillance and in adoptive transfer of TILs or transgenic-TCR T cell products. However, their challenging identification and isolation limits their use in clinical practice. Therefore, novel approaches to isolate tumor-specific T cells are needed. Here, we report the isolation of neoantigen-specific CD8+ T cells from a vaccination site of a metastatic breast cancer patient who received a personalized vaccine. Based on the somatic mutations, potential MHC binding epitopes were predicted, of which 17 were selected to generate a peptide vaccine. Cutaneous biopsies were processed after the fifth vaccination cycle to obtain infiltrating lymphocytes from the vaccination site (VILs). IFNγ ELISpot revealed reactivity to four peptides used in the vaccine. Reactive T cells from VILs were non-overlapping with those detected in the blood and the tumor-microenvironment. ScTCR Seq analysis revealed the presence of a clonotype in VILs that further expanded after a round of in vitro stimulation and validated to be specific against a private mutation, namely NCOR1L1475R, presented in the context of HLA-B * 07:02, with no reactivity to the wild-type peptide. Our study shows, for the first time, that tumor mutation - specific T cells are generated at high frequencies in the vaccination site and can be isolated with standard methods for TCR screening. The easy and safe accessibility of skin biopsies overcomes the major hurdles of current TCR screening approaches and present exciting opportunities for the development of innovative immunotherapeutic strategies.
Collapse
Affiliation(s)
- Maria Paula Roberti
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, Department of Medical Oncology and Internal Medicine VI, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, A partnership between DKFZ and Heidelberg University Medical Center, Heidelberg, Germany
| | - Pornpimol Charoentong
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, Department of Medical Oncology and Internal Medicine VI, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, A partnership between DKFZ and Heidelberg University Medical Center, Heidelberg, Germany
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (Bioquant), Heidelberg University, Heidelberg, Germany
| | - Yanhong Lyu
- Medical Faculty Heidelberg, Department of Medical Oncology and Internal Medicine VI, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (Bioquant), Heidelberg University, Heidelberg, Germany
| | - Marten Meyer
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, Department of Medical Oncology and Internal Medicine VI, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, A partnership between DKFZ and Heidelberg University Medical Center, Heidelberg, Germany
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan B. Eichmüller
- GMP and T Cell Therapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patrick Schmidt
- Medical Faculty Heidelberg, Department of Medical Oncology and Internal Medicine VI, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, A partnership between DKFZ and Heidelberg University Medical Center, Heidelberg, Germany
- GMP and T Cell Therapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Momburg
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, Department of Medical Oncology and Internal Medicine VI, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Miray Cetin
- Systems Immunology and Single Cell Biology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Felix Hartmann
- Systems Immunology and Single Cell Biology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Core Center Heidelberg, Heidelberg, Germany
| | - Nektarios A. Valous
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, Department of Medical Oncology and Internal Medicine VI, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (Bioquant), Heidelberg University, Heidelberg, Germany
| | | | - Laura Michel
- Medical Faculty Heidelberg, Department of Medical Oncology and Internal Medicine VI, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- Division of Gynecological Oncology, National Center for Tumor Diseases (NCT), A partnership between DKFZ and Heidelberg University Medical Center, Heidelberg University Hospital, Heidelberg, Germany
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Lichter
- National Center for Tumor Diseases (NCT) Heidelberg, A partnership between DKFZ and Heidelberg University Medical Center, Heidelberg, Germany
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Schneeweiss
- Division of Gynecological Oncology, National Center for Tumor Diseases (NCT), A partnership between DKFZ and Heidelberg University Medical Center, Heidelberg University Hospital, Heidelberg, Germany
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Verena Thewes
- National Center for Tumor Diseases (NCT) Heidelberg, A partnership between DKFZ and Heidelberg University Medical Center, Heidelberg, Germany
- Division of Gynecological Oncology, National Center for Tumor Diseases (NCT), A partnership between DKFZ and Heidelberg University Medical Center, Heidelberg University Hospital, Heidelberg, Germany
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carlo Fremd
- Medical Faculty Heidelberg, Department of Medical Oncology and Internal Medicine VI, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- Division of Gynecological Oncology, National Center for Tumor Diseases (NCT), A partnership between DKFZ and Heidelberg University Medical Center, Heidelberg University Hospital, Heidelberg, Germany
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Inka Zörnig
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, Department of Medical Oncology and Internal Medicine VI, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, A partnership between DKFZ and Heidelberg University Medical Center, Heidelberg, Germany
| | - Dirk Jäger
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, Department of Medical Oncology and Internal Medicine VI, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, A partnership between DKFZ and Heidelberg University Medical Center, Heidelberg, Germany
| |
Collapse
|
6
|
Sultan MH, Zhan Q, Wang Y, Xia Y, Jia X. Precision oncolytic viral therapy in colorectal cancer: Genetic targeting and immune modulation for personalized treatment (Review). Int J Mol Med 2025; 56:104. [PMID: 40342021 PMCID: PMC12081034 DOI: 10.3892/ijmm.2025.5545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 04/09/2025] [Indexed: 05/11/2025] Open
Abstract
Colorectal cancer (CRC) is a leading health issue and treatments to eradicate it, such as conventional chemotherapy, are non‑selective and come with a number of complications. The present review focuses on the relatively new area of precision oncolytic viral therapy (OVT), with genetic targeting and immune modifications that offer a new future for CRC treatment. In the present review, an overview of the selection factors that are considered optimal for an oncolytic virus, mechanisms of oncolysis and immunomodulation applied to the OVT, as well as new strategies to improve the efficacy of this method are described. Additionally, cause‑and‑effect relationships are examined for OVT efficacy, mediated by the tumor microenvironment, and directions for genetic manipulation of viral specificity are explored. The possibility of synergy between OVT and immune checkpoint inhibitors and other treatment approaches are demonstrated. Incorporating the details of the present review, biomarker‑guided combination therapies in precision OVT for individualized CRC care, significant issues and future trends in this required area of medicine are highlighted. Increasingly, OVT is leaving the experimental stage and may become routine practice; it provides a new perspective on overcoming CRC and highlights the importance of further research and clinical work.
Collapse
Affiliation(s)
- Muhammad Haris Sultan
- College of Life Sciences and Medicine, Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
- Center for Translational Medicine and Precision Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, P.R. China
| | - Qi Zhan
- College of Life Sciences and Medicine, Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Yigang Wang
- College of Life Sciences and Medicine, Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Yulong Xia
- Center for Translational Medicine and Precision Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiaoyuan Jia
- College of Life Sciences and Medicine, Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| |
Collapse
|
7
|
Chen L, Li Y, Zhao H, Huang J, Yan H, Lin X, Zhao B. Pan-cancer analysis of MET mutation and its association with the efficacy of immune checkpoint blockade. Genes Dis 2025; 12:101450. [PMID: 40330151 PMCID: PMC12053711 DOI: 10.1016/j.gendis.2024.101450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/15/2024] [Accepted: 08/25/2024] [Indexed: 05/08/2025] Open
Abstract
The mesenchymal-epithelial transition factor (MET) proto-oncogene plays important roles during tumor development. Recently, evidence has revealed MET signaling may impact tumor immunogenicity and regulate the immune response. Here we conducted a comprehensive bioinformatic and clinical analysis to explore the characteristics of MET mutation and its association with the outcomes in pan-cancer immunotherapy. In 4149 patients with 12 tumor types treated with immune checkpoint inhibitors, MET mutation indicated favorable overall survival (hazard ratio = 0.61; 95% CI, 0.50-0.74; P < 0.001), progression-free survival (hazard ratio = 0.74; 95% CI, 0.60-0.92; P = 0.01), and objective response rate (40.3% vs. 28.1%; P = 0.003). Moreover, we developed a nomogram to estimate the 12-month and 24-month survival probabilities after the initiation of immunotherapy. Further multi-omics analysis on both intrinsic and extrinsic immune landscapes revealed that MET mutation enhanced tumor immunogenicity, enriched infiltration of immune cells, and improved immune responses. In summary, MET mutation improves cancer immunity and is an independent biomarker for favorable outcomes in pan-cancer immunotherapy. These results may influence clinical practices, guide treatment decision-making, and develop immunotherapy for personalized care.
Collapse
Affiliation(s)
- Lijin Chen
- Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
- Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Yingying Li
- Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Hong Zhao
- The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong 519000, China
| | - Jinyuan Huang
- Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Huimeng Yan
- Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Xiaoyan Lin
- Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
| | - Bin Zhao
- Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, China
| |
Collapse
|
8
|
Zheng X, Zhang X, Yu J, Zheng J. Pan-cancer analysis identifies EIPR1 as a potential prognostic and immunological biomarker for lung adenocarcinoma and its functional validation. Gene 2025; 954:149439. [PMID: 40154585 DOI: 10.1016/j.gene.2025.149439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/15/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND EARP and GARP complex-interacting protein 1 (EIPR1) may be a new oncogene in tumors, influencing the prognosis and invasion of cancer. However, a systematic analysis of the function of EIPR1 in various cancers remains vacant. Thus, we proceeded with a comprehensive analysis to ascertain the role of EIPR1 among various cancers. METHODS We explored EIPR1 expression in pan-cancer, and its association with clinical stage, survival, gene mutations and methylation by the TIMER 2.0, GEPIA2, cBioPortal, and UALCAN. The protein-protein interaction (PPI) network, immune infiltration, and immune checkpoint assessments of EIPR1 was performed using the STRING and SangerBox. The role of EIPR1 expression in lung adenocarcinoma (LUAD) was explored by the R software. The impact of EIPR1 expression on LUAD progression was studied through in vitro assays. RESULTS EIPR1 was overexpressed in most cancers and revealed as a potential prognostic biomarker in tumors, involving in tumorigenesis by affecting its methylation and gene mutations. The immune infiltration and immune checkpoints of tumors were related to the expression of EIPR1. Additionally, EIPR1 expression affected the survival, diagnosis, clinicopathological features, tumor microenvironment, and drug sensitivity of LUAD patients. Validation studies demonstrated that EIPR1 knockdown suppressed the malignant growth, invasion, and migration of LUAD cells. CONCLUSIONS This study delivers an extensive landscape for the oncogenesis and immunological characteristics of EIPR1, which reveals that EIPR1 may serve as a potential biological target for future prognosis and immune treatment in tumors, especially in LUAD.
Collapse
Affiliation(s)
- Xin Zheng
- Department of Diagnostic Pathology, Shandong Second Medical University, Weifang 261053, China
| | - Xiao Zhang
- Department of Ultrasound, Weifang People's Hospital, Weifang 261041, China
| | - Jie Yu
- Department of Diagnostic Pathology, Shandong Second Medical University, Weifang 261053, China
| | - Jie Zheng
- Department of Diagnostic Pathology, Shandong Second Medical University, Weifang 261053, China; Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China.
| |
Collapse
|
9
|
Tanaka M, Lum L, Hu KH, Chaudhary P, Hughes S, Ledezma-Soto C, Samad B, Superville D, Ng K, Chumber A, Benson C, Adams ZN, Kersten K, Aguilar OA, Fong L, Combes AJ, Krummel MF, Reeves MQ. Tumor cell heterogeneity drives spatial organization of the intratumoral immune response. J Exp Med 2025; 222:e20242282. [PMID: 40167599 PMCID: PMC11960709 DOI: 10.1084/jem.20242282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Intratumoral heterogeneity (ITH)-defined as genetic and cellular diversity within a tumor-is linked to failure of immunotherapy and an inferior anti-tumor immune response. We modeled heterogeneous tumors comprised of "hot" and "cold" tumor populations (giving rise to T cell-rich and T cell-poor tumors, respectively) and introduced fluorescent labels to enable precise spatial tracking. We found the cold tumor cell population exerted a "dominant cold" effect in mixed tumors. Strikingly, spatial analysis revealed that the tumor cells themselves created distinct local microenvironments within heterogeneous tumors: regions occupied by cold tumor cells showed pronounced immunosuppression, harboring increased CD206Hi macrophages and diminished local T cell function. This inferior T cell activity in cold regions persisted even after immunotherapy and mechanistically was mediated by CX3CL1 produced by the cold tumor cells. An immune cold tumor population within a heterogeneous tumor thus impairs tumor immunity on both a tumor-wide and a highly localized spatial scale.
Collapse
Affiliation(s)
- Miho Tanaka
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Lotus Lum
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Kenneth H. Hu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Piyush Chaudhary
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Savannah Hughes
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Cecilia Ledezma-Soto
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Bushra Samad
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, USA
| | - Daphne Superville
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - Kenneth Ng
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Arun Chumber
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Ciara Benson
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Zoe N. Adams
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Kelly Kersten
- Cancer Metabolism and Microenvironment Program, NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, LA Jolla, CA, USA
| | - Oscar A. Aguilar
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, University of California San Francisco, San Francisco, CA, USA
| | - Lawrence Fong
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Alexis J. Combes
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, USA
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Matthew F. Krummel
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Melissa Q. Reeves
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
10
|
Wei L, Wang H, Ye X, Yue J, Guo H, Mao D, Li X, Sun Y, Liu C, Liu Y, Chen Y. Oxymatrine and astragaloside IV co-loaded liposomes: Scale-up purposes and their enhancement of anti-PD-1 efficacy against breast cancer. Mater Today Bio 2025; 32:101634. [PMID: 40177381 PMCID: PMC11964553 DOI: 10.1016/j.mtbio.2025.101634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/23/2025] [Accepted: 03/02/2025] [Indexed: 04/05/2025] Open
Abstract
The response rate of programmed cell death protein-1 (PD-1) inhibitors in breast cancer remains unsatisfactory, primarily due to the limited infiltration and activity of tumor-infiltrating T lymphocytes (TILs). Previous studies demonstrated that oxymatrine (Om) and astragaloside IV (As) could enhance TIL infiltration and function by inhibiting cancer-associated fibroblasts (CAFs) and promoting mitochondrial activity in TILs, respectively. Thus, combining Om and As may be a promising strategy to improve the antitumor effects of PD-1 inhibitors in breast cancer. However, co-delivery above drugs into breast cancer tissue is challenging due to their low bioavailability and distinct physicochemical properties. This study addresses this challenge by formulating Om and As co-loaded liposomes (Om-As-Lip) and comparing the scale-up production methods: high-pressure homogenization (EP-HPH) and microfluidics. Om-As-Lip prepared via microfluidics demonstrated superior entrapment efficiency (As: 99.03 ± 0.04 %, Om: 67.01 ± 0.02 %) and a significantly higher production rate (22.12 mL/min) compared to EP-HPH (1.19 mL/min). Additionally, Om-As-Lip produced by microfluidics increased the area under the curve (AUC) (Om: 6.17-fold, As: 2.07-fold) and maximum concentration (Cmax) (Om: 1.58-fold, As: 3.49-fold) compared to the free drugs. Importantly, Om-As-Lip enhanced the antitumor efficacy of α-PD-1 by inhibiting CAF activation and boosting TIL activity, resulting in a tumor inhibition rate of 61.2 % and extended survival in mice. This work presents a novel perspective for scaling up co-delivered formulations of drugs with differing polarities to improve breast cancer immunotherapy.
Collapse
Affiliation(s)
- Liangyin Wei
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Hong Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Xietao Ye
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Junfan Yue
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Hong Guo
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Dengxuan Mao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Xia Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Yeyang Sun
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Congyan Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Yuping Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Yan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| |
Collapse
|
11
|
Ma L, Mao JH, Barcellos-Hoff MH. Systemic inflammation in response to radiation drives the genesis of an immunosuppressed tumor microenvironment. Neoplasia 2025; 64:101164. [PMID: 40184664 PMCID: PMC11999686 DOI: 10.1016/j.neo.2025.101164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
The composition of the tumor immune microenvironment has become a major determinant of response to therapy, particularly immunotherapy. Clinically, a tumor microenvironment lacking lymphocytes, so-called "cold" tumors, are considered poor candidates for immune checkpoint inhibition. In this review, we describe the diversity of the tumor immune microenvironment in breast cancer and how radiation exposure alters carcinogenesis. We review the development and use of a radiation-genetic mammary chimera model to clarify the mechanism by which radiation acts. Using the chimera model, we demonstrate that systemic inflammation elicited by a low dose of radiation is key to the construction of an immunosuppressive tumor microenvironment, resulting in aggressive, rapidly growing tumors lacking lymphocytes. Our experimental studies inform the non-mutagenic mechanisms by which radiation affects cancer and provide insight into the genesis of cold tumors.
Collapse
Affiliation(s)
- Lin Ma
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, China
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology, School of Medicine, Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA 94143 USA.
| |
Collapse
|
12
|
Wang K, Baird L, Yamamoto M. The clinical-grade CBP/ p300 inhibitor CCS1477 represses the global NRF2-dependent cytoprotective transcription program and re-sensitizes cancer cells to chemotherapeutic drugs. Free Radic Biol Med 2025; 233:102-117. [PMID: 40127850 DOI: 10.1016/j.freeradbiomed.2025.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/14/2025] [Accepted: 03/22/2025] [Indexed: 03/26/2025]
Abstract
Constitutive activation of NRF2 provides a selective advantage to malignant tumour clones through the hijacking of the NRF2-dependent cytoprotective transcriptional program, which allows the cancer cells to survive and thrive in the chemically stressful tumour niche, whilst also providing resistance to anti-cancer drugs due to the upregulation of xenobiotic metabolizing enzymes and drug efflux pumps. Through a small-molecule epigenetic screen carried out in KEAP1 mutant lung cancer cells, in this study, we identified CCS1477 (Inobrodib) to be an inhibitor of the global NRF2-dependent transcription program. Mechanistically, CCS1477 is able to repress NRF2's cytoprotective response through the inhibition of its obligate transcriptional activator partner CBP/p300. Importantly, in addition to repressing NRF2-dependent anti-oxidative stress and xenobiotic metabolizing enzyme gene expression, CCS1477 treatment is also able to reverse the chemoresistance phenotype and re-sensitize NRF2-activated tumour cells to anti-cancer drugs. Furthermore, in co-culture experiments of KEAP1 mutant cancer cells with primary human T cells, CCS1477 treatment suppressed the acquisition of the T cell exhaustion transcriptional state, which should function to augment the anti-cancer immune response. Thus, CCS1477-mediated inhibition of CBP/p300 represents a novel therapeutic strategy with which to target the currently untreatable tumours with aberrant NRF2 activation.
Collapse
Affiliation(s)
- Ke Wang
- Department of Biochemistry and Molecular Biology, Tohoku University, Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan
| | - Liam Baird
- Department of Biochemistry and Molecular Biology, Tohoku University, Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan; Advanced Research Center for Innovations in Next-Generation Medicine (INGEM), Tohoku University, Sendai, 980-8575, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Miyagi, Japan.
| | - Masayuki Yamamoto
- Department of Biochemistry and Molecular Biology, Tohoku University, Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan; Advanced Research Center for Innovations in Next-Generation Medicine (INGEM), Tohoku University, Sendai, 980-8575, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Miyagi, Japan.
| |
Collapse
|
13
|
Wang M, Xian H, Xia X, Zhang W, Huang Z, Lu C, Zheng Y, Wang Y, Xie S, Pan R, Yu Y, Wang R, Zheng H, Huang G, Liu H. Establishment of a prognostic model based on ER stress-related cell death genes and proposing a novel combination therapy in acute myeloid leukemia. J Transl Med 2025; 23:566. [PMID: 40399990 PMCID: PMC12093623 DOI: 10.1186/s12967-025-06615-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 05/14/2025] [Indexed: 05/23/2025] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a highly heterogeneous malignancy, presenting significant challenges in accurately predicting patient prognosis. Dysregulation of endoplasmic reticulum (ER) stress and resistance to programmed cell death (PCD) are hallmarks of AML cells. However, the prognostic significance of the interplay between ER stress and cell death pathways in AML remains largely unexplored. METHODS We analyzed RNA sequencing and clinical data from 887 AML patients across 4 cohorts to develop an ER stress-related cell death index (ERCDI) using 10 machine-learning algorithms with 117 unique combinations. Survival and time-dependent Receiver Operating Characteristic Curve (ROC) analyses were performed to assess the model's efficacy. Clinical characteristics, the tumor immune microenvironment, and drug sensitivity differences between the high- and low-risk groups were also analyzed. The CMap database was used to identify potential therapeutic drugs. In vitro and in vivo experiments, including CCK-8, colony formation, flow cytometry, Transwell assays, and xenograft mouse models, were conducted to evaluate the effects of the target genes and candidate drugs. RESULTS The ERCDI demonstrated strong prognostic and predictive performance for prognosis in AML patients. Furthermore, the ERCDI effectively predicted immunotherapy and chemotherapy outcomes and was associated with the immune features of the different risk groups. DNA damage-inducible transcript 4 protein (DDIT4), a key gene associated with ERCDI, is related to poor prognosis in AML patients with high expression. Additionally, the knockdown of DDIT4 significantly inhibited AML cell proliferation, induced cell apoptosis, and promoted cell cycle arrest. Chaetocin was subsequently identified as a candidate compound for AML treatment. Subsequent experiments suggested that combining chaetocin and venetoclax is a potentially promising therapeutic strategy for AML. CONCLUSION The ERCDI provides personalized risk assessment and treatment recommendations for individual AML patients. The combined use of chaetocin and venetoclax can potentially be repurposed for AML therapy.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Endoplasmic Reticulum Stress/genetics
- Endoplasmic Reticulum Stress/drug effects
- Prognosis
- Animals
- Cell Line, Tumor
- Cell Death/genetics
- Cell Death/drug effects
- Female
- Mice
- Male
- Xenograft Model Antitumor Assays
- Apoptosis/genetics
- Apoptosis/drug effects
- Tumor Microenvironment
- Models, Biological
- Middle Aged
Collapse
Affiliation(s)
- Minghui Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huajian Xian
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoli Xia
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjie Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zixuan Huang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chaoqun Lu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuling Zheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixin Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shufeng Xie
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Renyao Pan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - YaoYifu Yu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ruiheng Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Huijian Zheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guorui Huang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Han Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
14
|
Zou Y, Jiang J, Li Y, Ding X, Tong Q, Shi Y, Xiao L, Chen L. Immune Checkpoint PD-L1 Modulates Retinal Microglial Activation to Alleviate Vascular Leakage in Choroidal Neovascularization via ERK. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2400747. [PMID: 40395179 DOI: 10.1002/advs.202400747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/31/2025] [Indexed: 05/22/2025]
Abstract
Neovascular age-related macular degeneration (NVAMD) is a common retinal disease causing vision loss in the elderly. Neuroinflammation significantly contributes to NVAMD's etiology. This study explores the role of Programmed cell death ligand 1 (PD-L1), an immune checkpoint (ICP) in microglia, known for limiting neuroinflammation in neurodegenerative diseases, and its potential function in NVAMD. This work finds increased PD-L1 expression in retinal microglia following laser injury. PD-L1 knockout (KO) or inhibitory PD-L1 antibody treatment worsens vascular leakage and neoangiogenesis in a laser-induced NVAMD mouse model, effects reversible by microglia depletion with PLX5622. This study underscores that choroidal neovascularization (CNV) may be regulated by multiple mechanisms, with PD-L1 modulation representing one of these pathways. Blocking PD-L1 elevated proinflammatory factors and p-ERK levels, indicating microglial overactivation in NVAMD. Conversely, enhancing PD-L1 signaling reduced neuroinflammation and neovascularization via ERK. These findings highlight PD-L1's role in neoangiogenesis and neuroinflammation in NVAMD, suggesting its potential as a target for immunomodulatory treatment in NVAMD.
Collapse
Affiliation(s)
- Yue Zou
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, China
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai, 200032, China
- Department of Ophthalmology, Yunnan Eye Institute & Key Laboratory of Yunnan Province, Yunnan Eye Disease Clinical Medical Center, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, 650021, China
| | - Junliang Jiang
- Department of Orthopedics & Traumatology, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, 650021, China
| | - Yunqin Li
- Department of Ophthalmology, Yunnan Eye Institute & Key Laboratory of Yunnan Province, Yunnan Eye Disease Clinical Medical Center, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, 650021, China
| | - Xinyi Ding
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, China
| | - Qiuping Tong
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Ying Shi
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Lei Xiao
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Ling Chen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031, China
| |
Collapse
|
15
|
Cao Y, Zhao Z, Fang J, Lu Y, Huang Z, Wu G, Gao Q, Li R, Xu L, Xu X. Dual-Responsive Immunomodulatory RNAi Nanoplatform for Effective Immune Checkpoint Blockade and Enhanced Cancer Immunotherapy. Adv Healthc Mater 2025:e2500646. [PMID: 40394949 DOI: 10.1002/adhm.202500646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/24/2025] [Indexed: 05/22/2025]
Abstract
Immune checkpoint blockade (ICB) therapy has become the first-line treatment for cancer patients. However, the low response rate remains a clinical pain-point. Anti-hyperglycemic drug metformin has shown remarkable anticancer effect with the unique characteristic of modulating tumor immune microenvironment (TIME). Therefore, combining ICB with metformin could be a promising strategy for enhanced cancer immunotherapy, which however remains challenged due to the low bioavailability and severe adverse effects of metformin. This work herein designs an amphiphilic reduction-responsive metformin prodrug, which could complex small interfering RNA (siRNA) and then co-assemble with an endosomal pH-responsive PEGylated polymer to form a dual-responsive immunomodulatory RNAi nanoplatform. Using the orthotopic and metastatic breast cancer (BCa) tumor models, this work demonstrates that this RNAi nanoplatform could silence PD-L1 expression on BCa cells and suppress their proliferation via activating AMP-activated protein kinase (AMPK). Moreover, this AMPK activation could suppress the secretion of tumor-derived transforming growth factor β (TGF-β) and interleukin 6 (IL-6), which could enhance the maturation of dendritic cells (DCs) and activation of CD8+ T cells and impair the tumor infiltration of regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), and tumor-associated macrophages (TAMs), ultimately achieving the goal of enhanced cancer immunotherapy and significant inhibition of BCa tumor growth.
Collapse
Affiliation(s)
- Yuan Cao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Zixuan Zhao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, Institute of Pharmacy and Pharmacology, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Junyue Fang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Yanan Lu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Zhuoshan Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Guo Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Qiyuan Gao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Rong Li
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, Institute of Pharmacy and Pharmacology, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Lei Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, Institute of Pharmacy and Pharmacology, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| |
Collapse
|
16
|
Chen Y, Li Q, Wang Z, Sun LV, Hou SX. A novel NFKB1 agonist remodels tumor microenvironment and activates dendritic cells to promote anti-tumor immunity in colorectal cancer. J Transl Med 2025; 23:561. [PMID: 40394677 PMCID: PMC12090520 DOI: 10.1186/s12967-025-06576-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 05/01/2025] [Indexed: 05/22/2025] Open
Abstract
BACKGROUND The immunosuppressive nature of the tumor microenvironment (TME) and the existence of cancer stem cells (CSCs) present significant hurdles in tumor therapy. The identification of therapeutic agents that can target both CSCs and the TME could be a potential approach to overcome treatment resistance. METHODS We conducted an in vivo chemical screen to identify F1929-1458, which is capable of eliciting an organism-wide response to destroy stem cell tumors in Drosophila. We then performed functional validation using a mouse colorectal cancer graft tumor model established with the CT26 cell line characterized by its high content of CSCs. Single-cell sequencing was employed to analyze alterations in the TME. Small molecule pull-down mass spectrometry, cellular thermal shift assay, drug affinity experiment, and molecular docking were utilized to identify the target of F1929-1458. An in vitro co-culture system was applied to establish that the damage-associated molecular patterns (DAMPs) released by the tumor cells are accountable for the activation of dendritic cells (DCs). RESULTS We demonstrated that F1929-1458 treatment enhanced T cell infiltration and T cell mediated tumor regression, its anti-tumor effect was nullified in nude mice and was abolished after anti-CD3 neutralizing antibody treatment. We found that F1929-1458 binds NFKB1 to activate the NF-κB signaling pathway in tumor cells. The activation further elicits cellular stress, causing tumor cells to release DAMPs (HMGB1-gDNA complex, ATP, and OxLDL). These DAMPs, in turn, stimulate the cGAS-STING and NLRP3 inflammasome pathways in DCs, resulting in the generation of type I IFNs and IL-1β. These cytokines facilitate the maturation of DCs and antigen presentation, ultimately enhancing T cell-mediated anti-tumor immunity. Additionally, we showed that the combination of F1929-1458 and the anti-PD-1 antibody exhibited a synergistic anti-tumor effect. CONCLUSION Our study identified a novel NFKB1 agonist that promotes anti-tumor immunity by remodeling the TME and activating DCs and that may provide a new way to overcome resistance to current anti-tumor immunotherapy in colorectal cancer.
Collapse
Affiliation(s)
- Ying Chen
- Department of Cell and Developmental Biology at School of Life Sciences, State Key Laboratory of Genetic Engineering, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Children's Hospital, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Qiaoming Li
- Department of Cell and Developmental Biology at School of Life Sciences, State Key Laboratory of Genetic Engineering, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Children's Hospital, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Zixiang Wang
- Department of Cell and Developmental Biology at School of Life Sciences, State Key Laboratory of Genetic Engineering, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Children's Hospital, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Ling V Sun
- Department of Cell and Developmental Biology at School of Life Sciences, State Key Laboratory of Genetic Engineering, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Children's Hospital, Zhongshan Hospital, Fudan University, Shanghai, 200438, China.
| | - Steven X Hou
- Department of Cell and Developmental Biology at School of Life Sciences, State Key Laboratory of Genetic Engineering, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Children's Hospital, Zhongshan Hospital, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
17
|
Sentís I, Melero JL, Cebria-Xart A, Grzelak M, Soto M, Michel A, Rovira Q, Rodriguez-Hernandez CJ, Caratù G, Urpi A, Sauvage C, Mendizabal-Sasieta A, Maspero D, Lavarino CE, Pascual-Reguant A, Castañeda Heredia A, Muñoz Perez JP, Mora J, Harari A, Nieto JC, Avgustinova A, Heyn H. Spatio-temporal T cell tracking for personalized TCR-T designs in childhood cancer. Ann Oncol 2025:S0923-7534(25)00733-1. [PMID: 40403847 DOI: 10.1016/j.annonc.2025.05.530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/21/2025] [Accepted: 05/08/2025] [Indexed: 05/24/2025] Open
Abstract
BACKGROUND Immune checkpoint inhibition (ICI) has revolutionized oncology, offering extended survival and long-term remission in previously incurable cancers. While highly effective in tumors with high mutational burden, lowly mutated cancers, including pediatric malignancies, present low response rate and limited predictive biomarkers. PATIENTS AND METHODS We present a framework for the identification and validation of tumor-reactive T cells as a biomarker to quantify ICI efficacy and as candidates for a personalized TCR-T cell therapy. Therefore, we profiled a pediatric malignant rhabdoid tumor patient with complete remission after ICI therapy using deep single-cell T cell receptor (TCR) repertoire sequencing of the tumor microenvironment (TME) and the peripheral blood. RESULTS Tracking T cell dynamics longitudinally from the tumor to cells in circulation over a time course of 12 months revealed a systemic response and durable clonal expansion of tumor-resident and ICI-induced TCR clonotypes. We functionally validated tumor reactivity of TCRs identified from the TME and the blood by co-culturing patient-derived tumor cells with TCR-engineered autologous T cells. Here, we observed unexpectedly high frequencies of tumor-reactive TCR clonotypes in the TME and confirmed T cell dynamics in the blood post-ICI to predict tumor-reactivity. CONCLUSION These findings strongly support spatio-temporal tracking of T cell activity in response to ICI to inform therapy efficacy and to serve as a source of tumor-reactive TCRs for personalized TCR-T designs.
Collapse
Affiliation(s)
- I Sentís
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Spain
| | | | - A Cebria-Xart
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Spain
| | | | - M Soto
- Omniscope, Barcelona, Spain
| | - A Michel
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Q Rovira
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Spain
| | | | - G Caratù
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - A Urpi
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Spain
| | - C Sauvage
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | | | - D Maspero
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - C E Lavarino
- Pediatric Cancer Center Barcelona (PCCB), Hospital Sant Joan de Déu, Barcelona, Spain
| | | | - A Castañeda Heredia
- Pediatric Cancer Center Barcelona (PCCB), Hospital Sant Joan de Déu, Barcelona, Spain
| | - J P Muñoz Perez
- Pediatric Cancer Center Barcelona (PCCB), Hospital Sant Joan de Déu, Barcelona, Spain
| | - J Mora
- Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Spain; Pediatric Cancer Center Barcelona (PCCB), Hospital Sant Joan de Déu, Barcelona, Spain
| | - A Harari
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - J C Nieto
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - A Avgustinova
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Spain.
| | - H Heyn
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain; Omniscope, Barcelona, Spain; Universitat de Barcelona (UB), Barcelona, Spain; ICREA, Barcelona, Spain.
| |
Collapse
|
18
|
Lin YH, Chen CW, Chen MY, Xu L, Tian X, Cheung SH, Wu YL, Siriwon N, Wu SH, Mou KY. The Bacterial Outer Membrane Vesicle-Cloaked Immunostimulatory Nanoplatform Reinvigorates T Cell Function and Reprograms Tumor Immunity. ACS NANO 2025. [PMID: 40392526 DOI: 10.1021/acsnano.5c02541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Bacterial outer membrane vesicles (OMVs) represent powerful immunoadjuvant nanocarriers with the capacity to reprogram the tumor microenvironment (TME) and activate immune responses. Here, we investigate a nanotherapeutic platform integrating immunostimulatory cytosine-phosphate-guanine oligodeoxynucleotides (CpG-ODNs, hereafter termed CpG) into mesoporous silica nanoparticles cloaked with OMVs (CpG@MSN-PEG/PEI@OMVs) for cancer immunotherapy. Systemic administration of these nanohybrids facilitates precise tumor targeting, induces antitumor cytokines such as IFNγ, and suppresses immunosuppressive cytokine TGF-β, reshaping the TME. Additionally, CpG@MSN-PEG/PEI@OMVs promote M1 macrophage polarization, dendritic cell maturation, and the generation of durable tumor-specific immune memory, resulting in pronounced tumor regression with minimal systemic toxicity. The platform demonstrates efficacy against metastatic and solid tumor models including 4T1 breast and MC38 colorectal cancers. Transcriptomic analyses reveal that CpG@MSN-PEG/PEI@OMVs enhance mitochondrial oxidative phosphorylation in T cells within tumor-draining lymph nodes, mitigating T cell exhaustion and restoring metabolic fitness. These results support the potential of CpG@MSN-PEG/PEI@OMVs as a modular nanoplatform to modulate innate and adaptive immunity in cancer immunotherapy.
Collapse
Affiliation(s)
- Yu-Han Lin
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chia-Wei Chen
- Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Mei-Yi Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Li Xu
- Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Xuejiao Tian
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Siu-Hung Cheung
- Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Yen-Ling Wu
- Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Natnaree Siriwon
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn 10540, Thailand
| | - Si-Han Wu
- Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Kurt Yun Mou
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 11529, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
19
|
Oh J, Hoelzl J, Carlson JCT, Bill R, Peterson HM, Faquin WC, Pittet MJ, Pai SI, Weissleder R. Spatial analysis identifies DC niches as predictors of pembrolizumab therapy in head and neck squamous cell cancer. Cell Rep Med 2025; 6:102100. [PMID: 40311615 DOI: 10.1016/j.xcrm.2025.102100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/05/2025] [Accepted: 04/08/2025] [Indexed: 05/03/2025]
Abstract
Head and neck squamous cell carcinoma (HNSCC) shows variable response to anti-programmed cell death protein 1 (PD-1) therapy, which can be partially explained by a combined positive score (CPS) of tumor and immune cell expression of programmed death-ligand 1 (PD-L1) within the local tumor microenvironment (TME). To better define TME immune determinants associated with treatment efficacy, we conduct a study of n = 48 HNSCC tumors from patients prior to pembrolizumab therapy. Our investigation combines a rapid bioorthogonal multiplex staining method with computational analysis of whole-slide imaging to capture the single-cell spatial heterogeneity and complexity of the TME. Analyzing 6,316 fields of view (FOVs), we provide comprehensive PD-L1 phenotyping and cell proximity assays across the entirety of tissue sections. While none of the PD-L1 metrics adequately predict response, we find that the spatial organization of CCR7+ dendritic cells (DCs) in niches better predicts overall patient survival than CPS alone. This study highlights the importance of understanding the spatial context of immune networks for immunotherapy.
Collapse
Affiliation(s)
- Juhyun Oh
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jan Hoelzl
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medical Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Jonathan C T Carlson
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Division of Oncology, Massachusetts General Hospital, Boston, MA 02114, USA; Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - Ruben Bill
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Hannah M Peterson
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - William C Faquin
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Mikael J Pittet
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland; AGORA Cancer Research Center, and Swiss Cancer Center Leman, 1011 Lausanne, Switzerland; Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, 1011 Lausanne, Switzerland
| | - Sara I Pai
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA; Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Shang Y, Pang Y, Liu T, Wang W. Application of mass cytometry in the immune microenvironment of breast cancer. Med Oncol 2025; 42:215. [PMID: 40388018 DOI: 10.1007/s12032-025-02770-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/29/2025] [Indexed: 05/20/2025]
Abstract
The rapid development of immunotherapy has shown preliminary clinical efficacy and significant anti-tumor effects in some cancer patients. Although immunotherapy has been approved for breast cancer, some breast cancer patients still do not benefit from it due to issues such as immunotherapy insensitivity and resistance. Mass cytometry, as a mature single-cell proteomic analysis method, with its high-throughput capabilities, has been widely used in the analysis of tumor immune microenvironments and immune cell subpopulations. Using mass cytometry to analyze the immune microenvironment of breast cancer and explore new immunotherapy targets can help improve the current status of breast cancer immunotherapy and develop personalized treatment plans for more patients. This review surveys the recent advancements in analyzing the single-cell components of breast cancer using mass cytometry technology and reviews the immune microenvironment of breast cancer as well as potential targets for immunotherapy. These results provide new insights for the subsequent research of the immune microenvironment of breast cancer and targeted immunotherapy.
Collapse
Affiliation(s)
- Yuefeng Shang
- Department of Radiation Oncology, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
- Department of Breast Surgery, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Yuheng Pang
- Department of Radiation Oncology, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
- Department of Breast Surgery, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Tong Liu
- Department of Radiation Oncology, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
- Department of Breast Surgery, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, No.8, Xi Tou Tiao, Youanmen Wai, Fengtai District, Beijing, 100069, People's Republic of China.
| |
Collapse
|
21
|
He P, Chen Y, Xi M, Mo S, Chen J, Zhong C, Liu F, Zhong W, Zhang L, Deng J, Lu J, Cai C. Integrated multi-omics and experimental approaches identify fascin actin-bundling protein 1 as an unfavorable prognostic biomarker in adrenocortical carcinoma. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 40384267 DOI: 10.3724/abbs.2025067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare epithelial tumor originating from adrenal cortical cells, notable for its high degree of malignancy and poor prognosis. Owing to heterogeneity, patient outcomes vary significantly. Current biomarkers for ACC risk stratification have notable limitations. However, with the advancement of multi-omics sequencing technology, we can utilize multi-omics data to explore the heterogeneity of ACC, thereby identifying novel biomarkers. In this study, we establish multicenter transcriptomics and ATAC-seq data from the TCGA and GEO databases to perform weighted gene coexpression network analysis (WGCNA) clustering and conduct comprehensive analyses of various ACC samples. These findings are integrated with univariate Cox regression, receiver operating characteristic (ROC) curve analysis, and survival analysis to identify potential biomarkers. We establish FSCN1 as an independent risk factor associated with poor ACC prognosis. ATAC-seq data demonstrate higher chromatin accessibility of FSCN1 in ACC patients with progressive disease. Immunohistochemical analysis confirms the expression of FSCN1 at the protein level, while functional cell assays reveal its role in promoting tumor invasion and proliferation. Functional enrichment analyses highlight the biological characteristics of FSCN1, and estimation of TME-infiltrating cells suggests that FSCN1 expression contributes to poor prognosis by inhibiting CD8 + T-cell infiltration within the ACC microenvironment. Finally, multi-omics analyses elucidate the role of FSCN1 at the mutation level. Taken together, our findings highlight FSCN1 as a promising novel biomarker and potential therapeutic target, underscoring its value in guiding the strategic management of ACC.
Collapse
Affiliation(s)
- Pingkaiqi He
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, Guangzhou 510120, China
- Department of Andrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China
| | - Yihao Chen
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou 516001, China
| | - Ming Xi
- Department of Urology, Huadu District People's Hospital, Southern Medical University, Guangzhou 510800, China
| | - Shanshan Mo
- Department of Andrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China
| | - Jiahong Chen
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou 516001, China
| | - Chuanfan Zhong
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Fengping Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa 999078, Macau, China
| | - Weide Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa 999078, Macau, China
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China
| | - Le Zhang
- Institute for Integrative Genome Biology, University of California, Riverside 92507, USA
| | - Junhong Deng
- Department of Andrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China
| | - Jianming Lu
- Department of Andrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China
| | - Chao Cai
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, Guangzhou 510120, China
| |
Collapse
|
22
|
Zang T, Luo X, Mo Y, Lin J, Lu W, Li Z, Zhou Y, Chen S. A novel model for predicting immunotherapy response and prognosis in NSCLC patients. Cancer Cell Int 2025; 25:178. [PMID: 40375214 PMCID: PMC12083170 DOI: 10.1186/s12935-025-03800-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 04/24/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND How to screen beneficiary populations has always been a clinical challenge in the treatment of non-small-cell lung cancer (NSCLC) with immune checkpoint inhibitors (ICIs). Routine blood tests, due to their advantages of being minimally invasive, convenient, and capable of reflecting tumor dynamic changes, have potential value in predicting the efficacy of ICIs treatment. However, there are few models based on routine blood tests to predict the efficacy and prognosis of immunotherapy. METHODS Patients were randomly divided into training cohort and validation cohort at a ratio of 2:1. The random forest algorithm was applied to select important variables based on routine blood tests, and a random forest (RF) model was constructed to predict the efficacy and prognosis of ICIs treatment. For efficacy prediction, we assessed receiver operating characteristic (ROC) curves, decision curve analysis (DCA) curves, clinical impact curve (CIC), integrated discrimination improvement (IDI) and net reclassification improvement (NRI) compared with the Nomogram model. For prognostic evaluation, we utilized the C-index and time-dependent C-index compared with the Nomogram model, Lung Immune Prognostic Index (LIPI) and Systemic Inflammatory Score (SIS). Patients were classified into high-risk and low-risk groups based on RF model, then the Kaplan-Meier (K-M) curve was used to analyze the differences in progression-free survival (PFS) and overall survival (OS) of patients between the two groups. RESULTS The RF model incorporated RDW-SD, MCV, PDW, CD3+CD8+, APTT, P-LCR, Ca, MPV, CD4+/CD8+ ratio, and AST. In the training and validation cohorts, the RF model exhibited an AUC of 1.000 and 0.864, and sensitivity/specificity of (100.0%, 100.0%) and (70.3%, 93.5%), respectively, which had superior performance compared to the Nomogram model (training cohort: AUC = 0.531, validation cohort: AUC = 0.552). The C-index of the RF model was 0.803 in the training cohort and 0.712 in the validation cohort, which was significantly higher than Nomogram model, LIPI and SIS. K-M survival curves revealed that patients in the high-risk group had significantly shorter PFS/OS than those in the low-risk group. CONCLUSIONS In this study, we developed a novel model (RF model) to predict the response to immunotherapy and prognosis in NSCLC patients. The RF model demonstrated better predictive performance for immunotherapy responses than the Nomogram model. Moreover, when predicting the prognosis of immunotherapy, it outperformed the Nomogram model, LIPI, and SIS.
Collapse
Affiliation(s)
- Ting Zang
- The First Clinical Medical College and the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Xiaorong Luo
- The First Clinical Medical College and the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Yangyu Mo
- The First Clinical Medical College and the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Jietao Lin
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
- Baiyun Hospital of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510470, Guangdong, People's Republic of China
| | - Weiguo Lu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Zhiling Li
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China.
| | - Yingchun Zhou
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China.
- Baiyun Hospital of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510470, Guangdong, People's Republic of China.
| | - Shulin Chen
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China.
| |
Collapse
|
23
|
Wang Y, Zhu N, Liu J, Chen F, Song Y, Ma Y, Yang Z, Wang D. Role of tumor microenvironment in ovarian cancer metastasis and clinical advancements. J Transl Med 2025; 23:539. [PMID: 40369674 PMCID: PMC12079989 DOI: 10.1186/s12967-025-06508-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/16/2025] [Indexed: 05/16/2025] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecological malignancy worldwide, characterized by heterogeneity at the molecular, cellular and anatomical levels. Most patients are diagnosed at an advanced stage, characterized by widespread peritoneal metastasis. Despite optimal cytoreductive surgery and platinum-based chemotherapy, peritoneal spread and recurrence of OC are common, resulting in poor prognoses. The overall survival of patients with OC has not substantially improved over the past few decades, highlighting the urgent necessity of new treatment options. Unlike the classical lymphatic and hematogenous metastasis observed in other malignancies, OC primarily metastasizes through widespread peritoneal seeding. Tumor cells (the "seeds") exhibit specific affinities for certain organ microenvironments (the "soil"), and metastatic foci can only form when there is compatibility between the "seeds" and "soil." Recent studies have highlighted the tumor microenvironment (TME) as a critical factor influencing the interactions between the "seeds" and "soil," with ascites and the local peritoneal microenvironment playing pivotal roles in the initiation and progression of OC. Prior to metastasis, the interplay among tumor cells, immunosuppressive cells, and stromal cells leads to the formation of an immunosuppressive pre-metastatic niche in specific sites. This includes characteristic alterations in tumor cells, recruitment and functional anomalies of immune cells, and dysregulation of stromal cell distribution and function. TME-mediated crosstalk between cancer and stromal cells drives tumor progression, therapy resistance, and metastasis. In this review, we summarize the current knowledge on the onset and metastatic progression of OC. We provide a comprehensive discussion of the characteristics and functions of TME related to OC metastasis, as well as its association with peritoneal spread. We also outline ongoing relevant clinical trials, aiming to offer new insights for identifying potential effective biomarkers and therapeutic targets in future clinical practice.
Collapse
Affiliation(s)
- Yang Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People's Republic of China
| | - Na Zhu
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People's Republic of China
| | - Jing Liu
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People's Republic of China
| | - Fang Chen
- Department of Gynecology, People's Hospital of Liaoning Province, Shenyang, Liaoning Province, 110016, People's Republic of China
| | - Yang Song
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Heping District, Shenyang, Liaoning, 110004, People's Republic of China
| | - Yue Ma
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People's Republic of China.
| | - Zhuo Yang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People's Republic of China.
| | - Danbo Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People's Republic of China.
| |
Collapse
|
24
|
Lei S, Gao Y, Wang K, Wu S, Zhu M, Chen X, Zhou W, Chen X, Zhang J, Duan X, Men K. An Implantable Double-Layered Spherical Scaffold Depositing Gene and Cell Agents to Facilitate Collaborative Cancer Immunotherapy. ACS NANO 2025; 19:17653-17673. [PMID: 40304563 DOI: 10.1021/acsnano.5c01366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Gene therapies and adoptive cell therapy (ACT) are promising strategies for cancer immunotherapy. Referring to their different mechanisms, the combination of these two might result in a strategy with potential collaborative and compensatory effects. However, it is challenging to combine gene therapies and ACT that work in a proper logical order. Here, we developed a double-layered spherical scaffold (DLS) to codeliver mRNA and T cells and constructed an implantable hydrogel formulation, named the GD-920 scaffold. With a diameter of 7 mm, this scaffold loaded primary T cells in the inner layer and the Bim mRNA nanocomplex in the outer layer. While maintaining their bioactivities, GD-920 released gene and cell payloads in a controllable and sequential manner. The mRNA complex from the outer layer was first released and induced immunogenic tumor cell death. The produced antigens then migrated into the scaffold with dendritic cells, triggering a tumor-specific immune response. Finally, activated T cells released by the inner layer attacked the tumor tissue via massive infiltration. We showed that in situ implantation of the GD-920 scaffold is capable of effectively inhibiting tumor growth and is far more potent than that of control scaffolds containing a single payload. Our results demonstrated the outstanding potential of this DLS in combining gene and cell therapeutic approaches to cancer immunotherapy.
Collapse
Affiliation(s)
- Sibei Lei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yan Gao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kaiyu Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shan Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Manfang Zhu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xiaohua Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weilin Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiayu Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xingmei Duan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Ke Men
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
25
|
Zhang Y, Wan P, Wang L, Ren R. Construction of a novel CD8T cell-related index for predicting clinical outcomes and immune landscape in ovarian cancer by combined single-cell and RNA-sequencing analysis. Discov Oncol 2025; 16:738. [PMID: 40354001 PMCID: PMC12069775 DOI: 10.1007/s12672-025-02582-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 05/05/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND CD8T cells, also known as cytotoxic T lymphocytes, play a key role in the tumor immune microenvironment (TME) and immune response. The aim of this study was to explore the potential role of CD8T cell-associated biomarkers in predicting prognosis and immunotherapy efficacy in ovarian cancer. METHODS The single-cell sequencing data from the EMTAB8107 cohort were used to identify CD8 T-cell subtypes. The TCGA-OV cohort was involved in constructing a machine learning-based CD8T cell-associated index (CCAI). Additionally, independent ovarian cancer cohorts GSE26712 and GSE26193 were used to validate the predictive validity of CCAI. Multifactorial Cox regression and ROC analysis were applied to assess CCAI. The STRING database was used to clarify the interactions of CD8 T-cell-associated molecules. Furthermore, immune landscape analysis was performed using CIBERSORT, ssGSEA, TIMER, and ESTIMATE algorithms. Tumor mutation burden (TMB) analysis and drug sensitivity analysis were used to evaluate the potential predictive value of CCAI. RESULTS The CCAI, comprising LRP1, PLAUR, OGN, TAP1, ISG20, CXCR4, IL2RG, LCK, and CD3G, serves as a reliable prognostic marker for ovarian cancer patients, demonstrating robust predictive accuracy across various patient cohorts. Notably, individuals with low CCAI tend to exhibit immunoinflammatory tumor characteristics. CONCLUSIONS The developed CCAI serves as a promising prognostic biomarker for ovarian cancer, accurately predicting patient outcomes. Additionally, it differentiates between patients with distinct immune landscape profiles. This insight enables personalized treatment strategies and facilitates the exploration of underlying mechanisms involving CCAI-related molecules.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, China.
- Chemoradiotherapy Center of Oncology, The Affifiliated People's Hospital of Ningbo University, Ningbo, China.
| | - Peng Wan
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, China
- Chemoradiotherapy Center of Oncology, The Affifiliated People's Hospital of Ningbo University, Ningbo, China
| | - Liangliang Wang
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, China
- Chemoradiotherapy Center of Oncology, The Affifiliated People's Hospital of Ningbo University, Ningbo, China
| | - Ruiping Ren
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, China
- Chemoradiotherapy Center of Oncology, The Affifiliated People's Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
26
|
Gu J, Bao S, Han L, Yu X, Jia Z, Huang C. Prediction of PD-1 Expression and Outcomes of Combined Therapy in Hepatocellular Carcinoma: an MRI-Based Radiomics Approach. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2025:10.1007/s10278-024-01381-7. [PMID: 40355688 DOI: 10.1007/s10278-024-01381-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 05/14/2025]
Abstract
This study aims to assess the value of clinical and MRI radiomics features in noninvasively predicting programmed cell death protein 1 (PD-1) expression level and the response to anti-PD-1 immunotherapy combined with transcatheter arterial chemoembolization (TACE) in hepatocellular carcinoma (HCC). A total of 107 HCC patients (85 in training set and 22 in validation set) with PD-1 positive (n = 41) and negative (n = 66) were enrolled. Radiomics features were extracted from T2-weighted, fat suppression T2-weighted, contrast-enhanced, and diffusion-weighted images. A clinical model was constructed based on independent clinical risk factors (p < 0.05), while a radiomics model was developed utilizing the optimal radiomics signature. A radiomics nomogram model for predicting PD-1 integrated the significant clinical and radiomics features. The performance of nomogram was evaluated with respect to its discrimination and clinical utility and compared with that of clinical and radiomics prediction models. The radiomics nomogram, combining the clinical factors with the Rad-score, had best prediction performance (area under the curve [AUC]: 0.95 in the training set; AUC: 0.86 in the validation set). Decision curve analysis (DCA) showed that the nomogram exhibited superior accuracy in clinical assessment compared to the other models. The predicted high-risk group of PD-1 had longer overall survival (OS) than the predicted low-risk group after receiving anti-PD-1 therapy combined with TACE. The MRI-based radiomics nomogram performed well for identifying high-risk PD-1 group for combination therapy and may inform personalized treatment decision-making strategies.
Collapse
Affiliation(s)
- Jingxiao Gu
- Research Centre of Molecular Medicine, Nantong Health College of Jiangsu Province, Nantong, 226001, The People's Republic of China
- Department of Vascular Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, The People's Republic of China
| | - Shanlei Bao
- Department of Nuclear Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Lu Han
- Philips Healthcare, Shanghai, China
| | - Xiao Yu
- Philips Healthcare, Shanghai, China
| | - Zhongzheng Jia
- Department of Radiology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China.
| | - Chen Huang
- Department of Vascular Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, The People's Republic of China.
| |
Collapse
|
27
|
Chen J, Yang Y, Luan S, Xu W, Gao Y. Tertiary lymphoid structures in gliomas: impact on tumour immunity and progression. J Transl Med 2025; 23:528. [PMID: 40346572 PMCID: PMC12065291 DOI: 10.1186/s12967-025-06510-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/16/2025] [Indexed: 05/11/2025] Open
Abstract
Tertiary lymphoid structures (TLSs) are ectopic lymphoid formations that develop in chronically inflamed tissues, including various solid tumours. In the context of gliomas, the presence of TLSs has recently attracted considerable attention because of their potential implications in tumour immunology and therapy. The tumour immune microenvironment (TIME) plays a crucial role in cancer progression, and tumour-infiltrating immune cells (TILs) are key players in this environment. These immune cell aggregates, known as TLSs, display distinct characteristics across different solid tumours. However, central nervous system (CNS) tumours are highly heterogeneous, and the immune environment within these tumours is often more deficient than that of peripheral tissue tumours. This leads to differences in the formation and function of TLSs in CNS tumours. These variations are particularly relevant in the context of glioma immunotherapy and could have important implications for treatment strategies. This review focuses on the composition and function of TLSs, examines the complexity of the glioblastoma (GBM) immune microenvironment, and highlights the unique characteristics of TLSs in GBM, providing new theoretical insights and practical foundations for targeting TLSs in glioma immunotherapy.
Collapse
Affiliation(s)
- Jiatong Chen
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuechao Yang
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shuang Luan
- Maternity & Child Care Center Of DeZhou, Shanghai, Shandong, China
| | - Wenhao Xu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Yang Gao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
28
|
Pan W, Hao J, Zhang M, Liu H, Tian F, Zhang X, Jiang Z, Chen C, Gao M, Zhang H. Identification and analysis of microplastics in peritumoral and tumor tissues of colorectal cancer. Sci Rep 2025; 15:16130. [PMID: 40341187 PMCID: PMC12062370 DOI: 10.1038/s41598-025-98268-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/10/2025] [Indexed: 05/10/2025] Open
Abstract
The widespread occurrence of microplastics (MPs) in the environment has raised significant concerns regarding their potential health impacts, particularly in relation to carcinogenesis. This study aimed to identify and analyze microplastics present in peritumoral and tumor tissues of patients diagnosed with colorectal cancer (CRC). Utilizing advanced scanning electron microscopy (SEM) and laser direct infrared (LDIR) imaging systems, we systematically examined tissue samples to detect and characterize the microplastics. Our findings revealed a diverse array of microplastic types, notably polyvinyl chloride (PVC) and polyethylene (PE), within both peritumoral and tumor regions. Compared to adjacent non-cancerous tissues, tumor tissues exhibited a greater variety and distribution of microplastics. Furthermore, Clathrin-a key protein involved in endocytosis-was found to be highly expressed in colorectal cancer specimens, facilitating the substantial uptake of microplastics. These results suggest a potential association between exposure to microplastics and the pathogenesis of colorectal cancer. This study highlights the urgent need for increased awareness and regulatory measures aimed at mitigating microplastic pollution along with its associated health risks.
Collapse
Affiliation(s)
- Wen Pan
- Tianjin Institute of Coloproctology, Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin Medical University Cancer Instituteand Hospital, National Clinical Research Center for Cancer, Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin, 300121, China
| | - Jie Hao
- Tianjin Institute of Coloproctology, Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin Medical University Cancer Instituteand Hospital, National Clinical Research Center for Cancer, Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin, 300121, China
| | - Mingqing Zhang
- Tianjin Institute of Coloproctology, Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin Medical University Cancer Instituteand Hospital, National Clinical Research Center for Cancer, Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin, 300121, China
| | - Hui Liu
- Tianjin Institute of Coloproctology, Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin Medical University Cancer Instituteand Hospital, National Clinical Research Center for Cancer, Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin, 300121, China
| | - Fei Tian
- Tianjin Institute of Coloproctology, Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin Medical University Cancer Instituteand Hospital, National Clinical Research Center for Cancer, Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin, 300121, China
| | - Xipeng Zhang
- Tianjin Institute of Coloproctology, Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin Medical University Cancer Instituteand Hospital, National Clinical Research Center for Cancer, Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin, 300121, China.
| | - Zhansheng Jiang
- Tianjin Institute of Coloproctology, Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin Medical University Cancer Instituteand Hospital, National Clinical Research Center for Cancer, Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin, 300121, China.
| | - Chong Chen
- Tianjin Institute of Coloproctology, Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin Medical University Cancer Instituteand Hospital, National Clinical Research Center for Cancer, Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin, 300121, China.
| | - Ming Gao
- Tianjin Institute of Coloproctology, Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin Medical University Cancer Instituteand Hospital, National Clinical Research Center for Cancer, Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin, 300121, China.
| | - Haiyang Zhang
- Tianjin Institute of Coloproctology, Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin Medical University Cancer Instituteand Hospital, National Clinical Research Center for Cancer, Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin, 300121, China.
| |
Collapse
|
29
|
Eskazan T, Saribas S, Kocazeybek B. Prognostic value of the triglyceride-glucose index in gastric cancer. World J Gastroenterol 2025; 31:104651. [DOI: 10.3748/wjg.v31.i17.104651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/04/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
Advanced gastric cancer (GC) remains a high-mortality malignancy despite progress in diagnosis and treatment, including immunotherapy. Reliable prognostic markers are essential for better patient stratification. The triglyceride-glucose (TyG) index, a marker of insulin resistance, has shown promise in various cancers, but its role in GC remains unclear. Yao et al investigated its prognostic value in 300 patients with advanced GC receiving immunotherapy and chemotherapy. Their model, which integrates the TyG index, programmed death-ligand 1 expression, and Eastern Cooperative Oncology Group performance status, underscores the impact of metabolic dysfunction on immune response and treatment efficacy. This letter examines the TyG index’s potential as a prognostic tool in GC and its implications for treatment strategies guided by metabolic and immune factors, as demonstrated in Yao et al research.
Collapse
Affiliation(s)
- Tugce Eskazan
- Department of Internal Medicine, İstanbul University Cerrahpaşa Faculty of Medicine, İstanbul 34640, Türkiye
| | - Suat Saribas
- Department of Medical Microbiology, Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Istanbul 34098, Türkiye
| | - Bekir Kocazeybek
- Department of Medical Microbiology, Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Istanbul 34098, Türkiye
| |
Collapse
|
30
|
Che Y, Lee J, Abou-Taleb F, Rieger KE, Satpathy AT, Chang ALS, Chang HY. Induced B cell receptor diversity predicts PD-1 blockade immunotherapy response. Proc Natl Acad Sci U S A 2025; 122:e2501269122. [PMID: 40314973 PMCID: PMC12067265 DOI: 10.1073/pnas.2501269122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/01/2025] [Indexed: 05/03/2025] Open
Abstract
Immune checkpoint inhibitors such as anti-Programmed Death-1 antibodies (aPD-1) can be effective in treating advanced cancers. However, many patients do not respond, and the mechanisms underlying these differences remain incompletely understood. In this study, we profile a cohort of patients with locally advanced or metastatic basal cell carcinoma undergoing aPD-1 therapy using single-cell RNA sequencing, high-definition spatial transcriptomics in tumors and draining lymph nodes, and spatial immunoreceptor profiling, with long-term clinical follow-up. We find that successful responses to PD-1 inhibition are characterized by an induction of B cell receptor (BCR) clonal diversity after treatment initiation. These induced BCR clones spatially colocalize with T cell clones, facilitate their activation, and traffic alongside them between tumor and draining lymph nodes to enhance tumor clearance. Furthermore, we validated aPD-1-induced BCR diversity as a predictor of clinical response in a larger cohort of glioblastoma, melanoma, and head and neck squamous cell carcinoma patients, suggesting that this is a generalizable predictor of treatment response across many types of cancers. We find that pretreatment tumors harbor a characteristic gene expression signature that portends a higher probability of inducing BCR clonal diversity after aPD-1 therapy, and we develop a machine learning model that predicts PD-1-induced BCR clonal diversity from baseline tumor RNA sequencing. These findings underscore a dynamic role of B cell diversity during immunotherapy, highlighting its importance as a prognostic marker and a potential target for intervention in non-responders.
Collapse
Affiliation(s)
- Yonglu Che
- Department of Dermatology, Stanford University School of Medicine, Redwood City, CA94063
| | - Jinwoo Lee
- Department of Dermatology, Stanford University School of Medicine, Redwood City, CA94063
| | - Farah Abou-Taleb
- Department of Dermatology, Stanford University School of Medicine, Redwood City, CA94063
| | - Kerri E. Rieger
- Department of Dermatology, Stanford University School of Medicine, Redwood City, CA94063
- Department of Pathology, Stanford University School of Medicine, Stanford, CA94304
| | - Ansuman T. Satpathy
- Department of Pathology, Stanford University School of Medicine, Stanford, CA94304
| | - Anne Lynn S. Chang
- Department of Dermatology, Stanford University School of Medicine, Redwood City, CA94063
| | - Howard Y. Chang
- Department of Dermatology, Stanford University School of Medicine, Redwood City, CA94063
- Department of Pathology, Stanford University School of Medicine, Stanford, CA94304
- Department of Genetics, Stanford University School of Medicine, Stanford, CA94305
- HHMI, Stanford University School of Medicine, Stanford, CA94305
| |
Collapse
|
31
|
Tin E, Rutella S, Khatri I, Na Y, Yan Y, MacLean N, Vadakekolathu J, Minden MD, Schimmer AD, Lee J, Zhang L. SOCS1 Protects Acute Myeloid Leukemia against Allogeneic T Cell-Mediated Cytotoxicity. Blood Cancer Discov 2025; 6:217-232. [PMID: 39928733 PMCID: PMC12050964 DOI: 10.1158/2643-3230.bcd-24-0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/14/2024] [Accepted: 01/28/2025] [Indexed: 02/12/2025] Open
Abstract
SIGNIFICANCE Our investigation of the SOCS1 pathway in AML and T-cell interactions provides insights into potential mechanisms of resistance of AML to allogeneic hematopoietic stem cell transplantation and demonstrates the potential of targeting SOCS1 and its downstream mediators to enhance antileukemic T-cell activity. See related commentary by Fry, p. 157.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Suppressor of Cytokine Signaling 1 Protein/metabolism
- Suppressor of Cytokine Signaling 1 Protein/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Hematopoietic Stem Cell Transplantation
- Transplantation, Homologous
- Cytotoxicity, Immunologic
- Animals
Collapse
Affiliation(s)
- Enoch Tin
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Sergio Rutella
- John van Geest Cancer Research Center, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Ismat Khatri
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Yoosu Na
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Yongran Yan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Neil MacLean
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Jayakumar Vadakekolathu
- John van Geest Cancer Research Center, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Mark D. Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Aaron D. Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - JongBok Lee
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Li Zhang
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| |
Collapse
|
32
|
Joly F, Castel H, Compter A, Nicola C, Duivon M, Lange M. Neuropsychological and central neurologic effects of cancer immunotherapy: the start of a new challenge. J Clin Exp Neuropsychol 2025:1-20. [PMID: 40323211 DOI: 10.1080/13803395.2025.2498713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 04/22/2025] [Indexed: 05/15/2025]
Abstract
INTRODUCTION Cognitive difficulties are frequently reported after cancer treatments, such as chemotherapy or hormone therapy, and have a negative impact on patients' quality of life. Recently, some studies have shown that new cancer treatments, such as immunotherapy agents, can induce cognitive changes. METHOD This review presents the central neurological immune adverse events of immunotherapy treatments including Immune Checkpoint Inhibitors (ICI) and Chimeric Antigen Receptor (CAR) T-cell therapy. The physiopathological mechanisms and risk factors are developed and clinical studies on immunotherapy agents and cognition (among adult patients, using validated questionnaires and/or cognitive tests), psychological factors and quality of life were presented. RESULTS Neurological toxicities are frequently observed with CAR-T cell therapies at acute stage, such as the immune effector cell-associated neurotoxicity syndrome (ICANS), inducing cognitive disorders such as disorientation and aphasia. However, few studies have accurately assessed the impact of immunotherapy on cognition. The methodology of these studies is heterogeneous and they mainly included nonspecific self-report questionnaires of cognitive complaints. Variable results have been obtained concerning the cognitive impact of ICI and CAR-T cell several months following immunotherapy: overall, while some studies reported cognitive difficulties (mainly processing speed and executive functions), the majority has not. Although anxiety and depression are frequently reported in patients treated with ICI or CAR-T cells, these symptoms tend to decrease after the start of immunotherapy. The current neurobiological investigations are too fragmentary to explain neurological symptoms and potential cognitive alteration, but neuroinflammation, vascular inflammation, brain blood barrier disruption, and immune cell brain infiltration would constitute common mechanisms relayed by CAR-T and to a lesser degree, ICI. CONCLUSIONS Acute neurological toxicities following CAR-T cell therapies are a major issue. Further studies are needed to better assess cognitive difficulties after the initiation of immunotherapy, in particular ICI, to better understand the physiopathology, including imaging studies, and risk factors.
Collapse
Affiliation(s)
- Florence Joly
- ANTICIPE U1086 INSERM-UCN, Equipe Labellisée Ligue Contre le Cancer, Centre François Baclesse, Normandie Université UNICAEN, Caen, France
- Services Unit PLATON, Cancer and Cognition Platform, University of Caen Normandy, Caen, France
- Clinical Research Department, Centre François Baclesse, Caen, France
- Medical oncology department, CHU de Caen, Caen, France
| | - Hélène Castel
- Services Unit PLATON, Cancer and Cognition Platform, University of Caen Normandy, Caen, France
- UNIROUEN, INSERM, U1245, Cancer and Brain Genomics, Normandie University, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Annette Compter
- Department of Neuro-Oncology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Celeste Nicola
- UNIROUEN, INSERM, U1245, Cancer and Brain Genomics, Normandie University, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Mylène Duivon
- ANTICIPE U1086 INSERM-UCN, Equipe Labellisée Ligue Contre le Cancer, Centre François Baclesse, Normandie Université UNICAEN, Caen, France
- Services Unit PLATON, Cancer and Cognition Platform, University of Caen Normandy, Caen, France
| | - Marie Lange
- ANTICIPE U1086 INSERM-UCN, Equipe Labellisée Ligue Contre le Cancer, Centre François Baclesse, Normandie Université UNICAEN, Caen, France
- Services Unit PLATON, Cancer and Cognition Platform, University of Caen Normandy, Caen, France
- Clinical Research Department, Centre François Baclesse, Caen, France
| |
Collapse
|
33
|
Ji C, Kumpf S, Qian J, Federspiel JD, Sheehan M, Capunitan D, Atallah E, Astbury S, Arat S, Oziolor E, Ocana MF, Ramaiah SK, Grove J, Aithal GP, Lanz TA. Transcriptomic and proteomic characterization of cell and protein biomarkers of checkpoint inhibitor-induced liver injury. Cancer Immunol Immunother 2025; 74:190. [PMID: 40317333 PMCID: PMC12049347 DOI: 10.1007/s00262-025-04033-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/24/2025] [Indexed: 05/07/2025]
Abstract
Immune checkpoint inhibitors (ICI) targeting CTLA-4 and PD-1 have shown remarkable antitumor efficacy, but can also cause immune-related adverse events, including checkpoint inhibitor-induced liver injury (ChILI). This multi-omic study aimed to investigate changes in blood samples from treated cancer patients who developed ChILI. PBMCs were sequenced for by transcriptomic and T cell receptor repertoire (bulk and single-cell immune profiling), and extracellular vesicle (EV) enrichment from plasma was analyzed by mass spectroscopy proteomics. Data were analyzed by comparing the ChILI patient group to the control group who did not develop ChILI and by comparing the onset of ChILI to pre-ICI treatment baseline. We identified significant changes in T cell clonality, gene expression, and proteins in peripheral blood mononuclear cells (PBMCs) and plasma in response to liver injury. Onset of ChILI was accompanied by an increase in T cell clonality. Pathway analysis highlighted the involvement of innate and cellular immune responses, mitosis, pyroptosis, and oxidative stress. Single-cell RNA sequencing revealed that these changes were primarily found in select T cell subtypes (including CD8 + effector memory cells), while CD16 + monocytes exhibited enrichment in metabolic pathways. Proteomic analysis of plasma extracellular vesicles showed enrichment in liver-associated proteins among differentially expressed proteins. Interestingly, an increase in PBMC PD-L1 gene expression and plasma PD-L1 protein was also found to be associated with ChILI onset. These findings provide valuable insights into the immune and molecular mechanisms underlying ChILI as well as potential biomarkers of ChILI.Trial registration number NCT04476563.
Collapse
Affiliation(s)
- Changhua Ji
- Drug Safety R&D, Pfizer Inc, 10777 Science Center Dr., La Jolla, CA, 92121, USA.
| | - Steven Kumpf
- Drug Safety R&D, Pfizer Inc, Eastern Point Rd, 274-3715A, Groton, CT, 06340, USA
| | - Jessie Qian
- Drug Safety R&D, Pfizer Inc, Eastern Point Rd, 274-3715A, Groton, CT, 06340, USA
| | | | - Mark Sheehan
- Drug Safety R&D, Pfizer Inc, Eastern Point Rd, 274-3715A, Groton, CT, 06340, USA
| | - Darien Capunitan
- Drug Safety R&D, Pfizer Inc, Eastern Point Rd, 274-3715A, Groton, CT, 06340, USA
| | - Edmond Atallah
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Stuart Astbury
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Seda Arat
- Drug Safety R&D, Pfizer Inc, Eastern Point Rd, 274-3715A, Groton, CT, 06340, USA
| | - Elias Oziolor
- Drug Safety R&D, Pfizer Inc, Eastern Point Rd, 274-3715A, Groton, CT, 06340, USA
| | | | | | - Jane Grove
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Guruprasad P Aithal
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Thomas A Lanz
- Drug Safety R&D, Pfizer Inc, Eastern Point Rd, 274-3715A, Groton, CT, 06340, USA.
| |
Collapse
|
34
|
Chen R, Li Y, Zuo L, Xiong H, Sun R, Song X, Liu H. Astragalus polysaccharides inhibits tumor proliferation and enhances cisplatin sensitivity in bladder cancer by regulating the PI3K/AKT/FoxO1 axis. Int J Biol Macromol 2025; 311:143739. [PMID: 40318719 DOI: 10.1016/j.ijbiomac.2025.143739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 04/09/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Cisplatin (DDP) resistance presents a major challenge in bladder cancer (BLCA) treatment. Recent evidence suggests that Astragalus polysaccharide (APS), extracted from Astragalus membranaceus, may sensitize tumors to DDP. However, the precise mechanisms by which APS modulates DDP sensitivity in BLCA are not fully elucidated. The study employed computational biology, bioinformatics, and both in vitro and in vivo experiments to explore the role of APS in BLCA. The results demonstrate that APS inhibits BLCA cell proliferation, induces apoptosis in vitro, and suppresses tumor growth in vivo. Additionally, APS induces G0/G1 cell cycle arrest in BLCA cells by downregulating CCND1 expression. Moreover, APS further enhances DDP-induced apoptosis by downregulating PI3K-p110β and p-AKT expression, while upregulating FoxO1 expression. Bioinformatics analysis indicates that APS may remodel the tumor microenvironment (TME) and influence cell-cell interactions, specifically through modulation of macrophage M2 polarization and CD8+ T cell exhaustion, thereby overcoming DDP resistance. In conclusion, APS potentiates DDP-induced apoptosis in BLCA cells via the PI3K/AKT/FoxO1 axis and may act as an immunomodulator to remodel the TME, offering a potential strategy to combat DDP resistance in BLCA.
Collapse
Affiliation(s)
- Ruiqi Chen
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province 524001, China
| | - Yutong Li
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province 524001, China
| | - Ling Zuo
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province 524003, China
| | - Hong Xiong
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province 524001, China
| | - Ruixu Sun
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province 524001, China
| | - Xingyu Song
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province 524001, China
| | - Hongwei Liu
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province 524001, China.
| |
Collapse
|
35
|
Qu WF, Zhu GQ, Yang R, Chu TH, Guan ZQ, Huang R, Tian MX, Jiang XF, Tao CY, Fang Y, Gao J, Wu XL, Chen JF, Zhao QF, Wang Y, Bu YC, Zhou J, Fan J, Liu WR, Tang Z, Shi YH. Targeting HMGB2 acts as dual immunomodulator by bolstering CD8 + T cell function and inhibiting tumor growth in hepatocellular carcinoma. SCIENCE ADVANCES 2025; 11:eads8597. [PMID: 40315321 PMCID: PMC12047442 DOI: 10.1126/sciadv.ads8597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 03/27/2025] [Indexed: 05/04/2025]
Abstract
T cell exhaustion is a critical obstacle for durable treatment response in hepatocellular carcinoma (HCC). Developing drugs that control tumor growth and simultaneously bolster immune function is of great significance. Although high-mobility group box 2 (HMGB2) has been reported to be crucial to HCC prognosis, its role in the tumor microenvironment remains unclear. Here, we found HMGB2+ CD8+ T cells as being associated with immune exhaustion and resistance to anti-PD-1 treatment through single-cell RNA sequencing. Mechanistically, HMGB2 impaired the oxidative phosphorylation in CD8+ T cells and inactivated the interferon-γ response in tumor cells, reducing the antitumor effector function. Tannic acid, a specific inhibitor of HMGB2, synergized with PD-1 antibody to attenuate tumor growth and reverse T cell exhaustion. Our findings highlight the unique role of HMGB2 as an immune exhaustion associated molecule. Targeting HMGB2 on both CD8+ T cells and tumor cells contributed to promising treatment strategies for HCC.
Collapse
Affiliation(s)
- Wei-Feng Qu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
- Department of Thyroid and Breast Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gui-Qi Zhu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Rui Yang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Tian-Hao Chu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhi-Qi Guan
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Run Huang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
- Department of Thyroid and Breast Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Meng-Xin Tian
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xi-Fei Jiang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Chen-Yang Tao
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan Fang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Jun Gao
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao-Ling Wu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Jia-Feng Chen
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Qian-Fu Zhao
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Yi Wang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Yi-Chao Bu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Jian Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Jia Fan
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei-Ren Liu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Zheng Tang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Ying-Hong Shi
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
36
|
Di Giacomo AM, Subudhi S, Vos W, Andreatta M, Carmona S, McTavish W, Seliger B, Ibrahim R, Lahn M, Smith M, Eggermont A, Fox BA, Maio M. Perspectives on the role of "-Omics" in predicting response to immunotherapy. Eur J Cancer 2025; 220:115393. [PMID: 40168935 DOI: 10.1016/j.ejca.2025.115393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 03/27/2025] [Indexed: 04/03/2025]
Abstract
The annual Immuno-Oncology "Think Tank" held in October 2023 in Siena reviewed the rapidly evolving systems-biological approaches which are now providing a deeper understanding of tumor and tumor microenvironment heterogeneity. Based on this understanding opportunities for novel therapies may be identified to overcome resistance to immunotherapy. There is increasing evidence that malignant disease processes are not limited to purely intracellular or genetic events but constitute a dynamic interaction between the host and disease. Tumor responses are influenced by many host tissue determinants across different cellular compartments, which can now be investigated by high-throughput molecular profiling technologies, often labelled with a suffix "-omics". "Omics" together with ever increasing computational power, fast developments in machine learning, and high-resolution detection tools offer an unrivalled opportunity to connect high-dimensional data and create a holistic view of disease processes in cancer. This review describes advances in several state-of-the-art "-omics" approaches with perspectives on how these can be applied to the clinical development of new immunotherapeutic strategies and ultimately adopted in clinical practice.
Collapse
Affiliation(s)
- Anna Maria Di Giacomo
- University of Siena, Siena, Italy; Center for Immuno-Oncology, University Hospitalof Siena, Viale Bracci 16, Siena 53100, Italy; NIBIT Foundation Onlus, Italy.
| | - Sumit Subudhi
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Wim Vos
- Radiomics.bio (Oncoradiomics SA), Liège 4000, Belgium.
| | - Massimo Andreatta
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland; Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland.
| | - Santiago Carmona
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland; Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland.
| | - Will McTavish
- Nanostring Technologies Inc, 530 Fairview Ave N, Seattle, WA 98109, USA
| | - Barbara Seliger
- Institute of Translational Medicine, Brandenburg Medical School "Theodor Fontane" & Faculty of Health Sciences, Gertrud-Piter Platz 7, Brandenburg 14770, Germany; Medical Faculty, Martin Luther University Halle-Wittenberg, Halle and Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany.
| | - Ramy Ibrahim
- Georgiamune Inc., 942 Clopper Rd, Gaithersburg, MD 20878, USA
| | - Michael Lahn
- iOnctura SA, Avenue Secheron 15, Geneva 1202, Switzerland.
| | - Michael Smith
- iOnctura SA, Avenue Secheron 15, Geneva 1202, Switzerland
| | - Alexander Eggermont
- Princess Máxima Center and the University Medical Center Utrecht, Heidelberglaan 25, Utrecht 3584, the Netherlands; Comprehensive Cancer Center Munich of the Technical University Munich and the Ludwig Maximiliaan University, Munich, Germany.
| | - Bernard A Fox
- Earle A. Chiles Research Institute at the Robert W. Franz Cancer Center, Providence Cancer Institute, 4805 NE Glisan St. Suite 2N35, Portland, OR 97213, USA; Department of Molecular Microbiology and Immunology, and Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97213, USA.
| | - Michele Maio
- University of Siena, Siena, Italy; Center for Immuno-Oncology, University Hospitalof Siena, Viale Bracci 16, Siena 53100, Italy; NIBIT Foundation Onlus, Italy.
| |
Collapse
|
37
|
Zhao Y, Cai Y, Pan Z, Tang F, Ma C, Wang Z, Li G, Chang H, Tian S, Li Z. Novel CHI3L1-Associated Angiogenic Phenotypes Define Glioma Microenvironments: Insights From Multi-Omics Integration. Cancer Sci 2025; 116:1433-1448. [PMID: 39989140 PMCID: PMC12044658 DOI: 10.1111/cas.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/05/2025] [Accepted: 02/14/2025] [Indexed: 02/25/2025] Open
Abstract
The CHI3L1 signaling pathway significantly influences glioma angiogenesis, but its role in the tumor microenvironment (TME) remains elusive. We propose a novel CHI3L1-associated vascular phenotype classification for glioma through integrative analyses of multiple datasets with bulk and single-cell transcriptome, genomics, digital pathology, and clinical data. We investigated the biological characteristics, genomic alterations, therapeutic vulnerabilities, and immune profiles within these phenotypes through a comprehensive multi-omics approach. We constructed the vascular-related risk (VR) score based on CHI3L1-associated vascular signatures (CAVS) identified by machine learning algorithms. Utilizing unsupervised consensus clustering, gliomas were stratified into three distinct vascular phenotypes: Cluster A, marked by high vascularization and stromal activation with a relatively low levels of tumor-infiltrating lymphocytes (TILs); Cluster B, characterized by moderate vascularization and stromal activity, coupled with a high density of TILs; and Cluster C, defined by low vascularization and sparse immune cell infiltration. We observed that the CAVS effectively indicated glioma-associated angiogenesis and immune suppression by single-cell RNA-seq analysis. Moreover, the high-VR-score group exhibited enhanced angiogenic activity, reduced immune response, resistance to immunotherapy, and poorer clinical outcomes. The VR score independently predicted glioma prognosis and, combined with a nomogram, provided a robust clinical decision-making tool. Potential drug prediction based on transcription factors for high-risk patients was also performed. Our study reveals that CHI3L1-associated vascular phenotypes shape distinct immune landscapes in gliomas, offering insights for optimizing therapeutic strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Yu‐Hang Zhao
- Brain Glioma Center & Department of NeurosurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Yu‐Xiang Cai
- Department of PathologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Zhi‐Yong Pan
- Brain Glioma Center & Department of NeurosurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Feng Tang
- Brain Glioma Center & Department of NeurosurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Chao Ma
- Brain Glioma Center & Department of NeurosurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Ze‐Fen Wang
- Department of PhysiologyWuhan University School of Basic Medical SciencesWuhanChina
| | - Gang Li
- Department of Biological RepositoriesZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Hang Chang
- Berkeley Biomedical Data Science CenterLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Su‐Fang Tian
- Department of PathologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Zhi‐Qiang Li
- Brain Glioma Center & Department of NeurosurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei International Science and Technology Cooperation Base for Research and Clinical Techniques for Brain Glioma Diagnosis and TreatmentHubeiChina
| |
Collapse
|
38
|
Howell HJ, McGale JP, Choucair A, Shirini D, Aide N, Postow MA, Wang L, Tordjman M, Lopci E, Lecler A, Champiat S, Chen DL, Deandreis D, Dercle L. Artificial Intelligence for Drug Discovery: An Update and Future Prospects. Semin Nucl Med 2025; 55:406-422. [PMID: 39966029 DOI: 10.1053/j.semnuclmed.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/20/2025]
Abstract
Artificial intelligence (AI) has become a pivotal tool for medical image analysis, significantly enhancing drug discovery through improved diagnostics, staging, prognostication, and response assessment. At a high level, AI-driven image analysis enables the quantification and synthesis of previously qualitative imaging characteristics, facilitating the identification of novel disease-specific biomarkers, patient risk stratification, prognostication, and adverse event prediction. In addition, AI can assist in response assessment by capturing changes in imaging "phenotype" over time, allowing for optimized treatment plans based on real-time analysis. Integrating this emerging technology into drug discovery pipelines has the potential to accelerate the identification and development of new pharmaceuticals by assisting in target identification and patient selection, as well as reducing the incidence, and therefore cost, of failed trials through high-throughput, reproducible, and data-driven insights. Continued progress in AI applications will shape the future of medical imaging, ultimately fostering more efficient, accurate, and tailored drug discovery processes. Herein, we offer a comprehensive overview of how AI enhances medical imaging to inform drug development and therapeutic strategies.
Collapse
Affiliation(s)
- Harrison J Howell
- Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Jeremy P McGale
- Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | | | - Dorsa Shirini
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nicolas Aide
- Centre Havrais d'Imagerie Nucléaire, Octeville, France
| | - Michael A Postow
- Department of Medicine, Memorial Sloan Kettering and Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Lucy Wang
- School of Medicine, New York Medical College, Valhalla, NY
| | - Mickael Tordjman
- Department of Radiology, Biomedical Engineering & Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Egesta Lopci
- Nuclear Medicine Unit, IRCCS-Humanitas Research Hospital, Rozzano, Italy
| | - Augustin Lecler
- Department of Neuroradiology, Foundation Adolphe de Rothschild Hospital, Université Paris Cité, Paris, France
| | - Stéphane Champiat
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Delphine L Chen
- Department of Radiology, University of Washington, Seattle, WA
| | | | - Laurent Dercle
- Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY.
| |
Collapse
|
39
|
Sarlak S, Pagès G, Luciano F. Enhancing radiotherapy techniques for Triple-Negative breast cancer treatment. Cancer Treat Rev 2025; 136:102939. [PMID: 40286498 DOI: 10.1016/j.ctrv.2025.102939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/22/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
Breast cancer is the most prevalent cancer among women worldwide, with various subtypes that require distinct treatment approaches. Among these, Triple-Negative Breast Bancer (TNBC) is recognized as the most aggressive form, often associated with poor prognosis due to its lack of targeted therapeutic options. This review specifically focuses on Radiotherapy (RT) as a treatment modality for TNBC, evaluating recent advancements and ongoing challenges, particularly the issue of radioresistance. RT remains an essential part in the management of breast cancer, including TNBC. Over the years, multiple improvements have been made to enhance RT effectiveness and minimize resistance. The introduction of advanced techniques such as Stereotactic Body Radiation Therapy (SBRT) and Stereotactic Radiosurgery (SRS) has significantly improved precision and reduced toxicity. More recently, proton radiation therapy, a novel RT modality, has been introduced, offering enhanced dose distribution and reducing damage to surrounding healthy tissues. Despite these technological advancements, a subset of TNBC patients continues to exhibit resistance to RT, leading to recurrence and poor treatment outcomes. To overcome radioresistance, there is an increasing interest in combining RT with targeted therapeutic agents that sensitize cancer cells to radiation. Radiosensitizing drugs have been explored to enhance the efficacy of RT by making cancer cells more susceptible to radiation-induced damage. Potential candidates include DNA damage repair inhibitors, immune checkpoint inhibitors, and small-molecule targeted therapies that interfere with key survival pathways in TNBC cells. In conclusion, while RT remains a crucial modality for TNBC treatment, radioresistance remains a significant challenge. Future research should focus on optimizing RT techniques while integrating radiosensitizing agents to improve treatment efficacy. By combining RT with targeted drug therapy, a more effective and personalized treatment approach can be developed, ultimately improving patient outcomes and reducing recurrence rates in TNBC.
Collapse
Affiliation(s)
- Saharnaz Sarlak
- Cote d'Azur University (UCA), Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, France.
| | - Gilles Pagès
- Cote d'Azur University (UCA), Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, France.
| | - Frédéric Luciano
- Cote d'Azur University (UCA), Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, France.
| |
Collapse
|
40
|
Barthélémy D, Vigneron A, Rousset X, Guitton J, Grolleau E, Raffin M, Balandier J, Lescuyer G, Bardou M, Geiguer F, Couraud S, Bardel C, Viallet J, Benzerdjeb N, Payen L. Pharmacological effects of osimertinib on a chicken chorioallantoic membrane xenograft model with the EGFR exon-19-deleted advanced NSCLC mutation. FEBS Open Bio 2025; 15:836-855. [PMID: 39887892 PMCID: PMC12051027 DOI: 10.1002/2211-5463.13970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/17/2024] [Accepted: 01/14/2025] [Indexed: 02/01/2025] Open
Abstract
Non-small cell lung cancer (NSCLC) affects 10-50% of patients with epidermal growth factor receptor (EGFR) mutations. Osimertinib is a third-generation EGFR tyrosine kinase inhibitor (TKI) that radically changes the outcome of patients with tumors bearing EGFR sensitizing or EGFR T790M resistance mutations. However, resistance usually occurs, and new therapeutic combinations need to be explored. The chorioallantoic membrane (CAM) xenograft model is ideal for studying aggressive tumor growth and the responses to complex therapeutic combinations due to its vascularization and complex microenvironment. This study aims to demonstrate the relevance of analyzing a complex therapeutic response to osimertinib treatment, especially through advanced transcriptomic analysis with the CAM model, which has been limited thus far. We engrafted HCC827 cells (EGFR p.E746_A750del) into the CAM model and treated them with various osimertinib doses for 7 days. The study involved supervised multivariate discrimination and ontology analysis of human transcriptional data. We found that CDX tumor growth inversely correlated with osimertinib dosage, with a notable 35% tumor weight reduction at 10 μm. Transcriptomic analysis revealed that osimertinib reduces EGFR pathway activity and its effectors, and dampens chemotaxis, immune recruitment and angiogenesis, indicating that effectiveness extends beyond cellular mechanisms to the tissue level. This was supported by a 15% reduction in blood vessels around the xenograft in osimertinib-treated cases. This study is the first to demonstrate that ontological analysis of transcriptomic data in the CAM model aligns with clinical observations, highlighting the relevance of this methodology for understanding and ameliorating the efficacy of targeted therapy in NSCLC.
Collapse
Affiliation(s)
- David Barthélémy
- Department of Pharmacology‐Physiology‐Toxicology, Institute of Pharmaceutical and Biological Sciences of LyonUniversity Claude Bernard Lyon 1France
- Department of Biochemistry and Molecular BiologyLyon Sud Hospital, Hospices Civils de LyonPierre‐BéniteFrance
- Center for Innovation in Cancerology of Lyon (CICLY) Research Unit 3738, Faculty of Medicine and Maieutic Lyon SudUniversity Claude Bernard Lyon 1OullinsFrance
| | - Arnaud Vigneron
- INSERM U1052‐CNRS UMR5286, Comprehensive Cancer Center Léon Bérard, Cancer Research Center of Lyon, Institut Convergence PlascanUniversity Claude Bernard Lyon 1France
| | | | - Jérome Guitton
- Department of Pharmacology‐Physiology‐Toxicology, Institute of Pharmaceutical and Biological Sciences of LyonUniversity Claude Bernard Lyon 1France
- Department of Biochemistry and Molecular BiologyLyon Sud Hospital, Hospices Civils de LyonPierre‐BéniteFrance
| | - Emmanuel Grolleau
- Department of Acute Respiratory Disease and Thoracic OncologyLyon Sud Hospital, Hospices Civils de LyonPierre‐BéniteFrance
| | - Margaux Raffin
- Department of Biochemistry and Molecular BiologyLyon Sud Hospital, Hospices Civils de LyonPierre‐BéniteFrance
- Center for Innovation in Cancerology of Lyon (CICLY) Research Unit 3738, Faculty of Medicine and Maieutic Lyon SudUniversity Claude Bernard Lyon 1OullinsFrance
- Hospices Civils de Lyon, Circulating Cancer (CIRCAN) Program, Cancer InstitutePierre BéniteFrance
| | - Julie Balandier
- Department of Biochemistry and Molecular BiologyLyon Sud Hospital, Hospices Civils de LyonPierre‐BéniteFrance
- Center for Innovation in Cancerology of Lyon (CICLY) Research Unit 3738, Faculty of Medicine and Maieutic Lyon SudUniversity Claude Bernard Lyon 1OullinsFrance
- Hospices Civils de Lyon, Circulating Cancer (CIRCAN) Program, Cancer InstitutePierre BéniteFrance
| | - Gaëlle Lescuyer
- Department of Biochemistry and Molecular BiologyLyon Sud Hospital, Hospices Civils de LyonPierre‐BéniteFrance
- Center for Innovation in Cancerology of Lyon (CICLY) Research Unit 3738, Faculty of Medicine and Maieutic Lyon SudUniversity Claude Bernard Lyon 1OullinsFrance
- Hospices Civils de Lyon, Circulating Cancer (CIRCAN) Program, Cancer InstitutePierre BéniteFrance
| | - Mathilde Bardou
- Department of PathologyLyon Sud Hospital, Hospices Civils de LyonPierre‐BéniteFrance
| | - Florence Geiguer
- Department of Biochemistry and Molecular BiologyLyon Sud Hospital, Hospices Civils de LyonPierre‐BéniteFrance
- Center for Innovation in Cancerology of Lyon (CICLY) Research Unit 3738, Faculty of Medicine and Maieutic Lyon SudUniversity Claude Bernard Lyon 1OullinsFrance
- Hospices Civils de Lyon, Circulating Cancer (CIRCAN) Program, Cancer InstitutePierre BéniteFrance
| | - Sébastien Couraud
- Center for Innovation in Cancerology of Lyon (CICLY) Research Unit 3738, Faculty of Medicine and Maieutic Lyon SudUniversity Claude Bernard Lyon 1OullinsFrance
- Department of Acute Respiratory Disease and Thoracic OncologyLyon Sud Hospital, Hospices Civils de LyonPierre‐BéniteFrance
| | - Claire Bardel
- Department of BioinformaticsHospices Civils de LyonFrance
- Laboratory of Biometry and Evolutionary Biology, UMR 5558‐CNRSUniversity Claude Bernard Lyon 1VilleurbanneFrance
| | | | - Nazim Benzerdjeb
- Center for Innovation in Cancerology of Lyon (CICLY) Research Unit 3738, Faculty of Medicine and Maieutic Lyon SudUniversity Claude Bernard Lyon 1OullinsFrance
- Department of PathologyLyon Sud Hospital, Hospices Civils de LyonPierre‐BéniteFrance
| | - Léa Payen
- Department of Pharmacology‐Physiology‐Toxicology, Institute of Pharmaceutical and Biological Sciences of LyonUniversity Claude Bernard Lyon 1France
- Department of Biochemistry and Molecular BiologyLyon Sud Hospital, Hospices Civils de LyonPierre‐BéniteFrance
- Center for Innovation in Cancerology of Lyon (CICLY) Research Unit 3738, Faculty of Medicine and Maieutic Lyon SudUniversity Claude Bernard Lyon 1OullinsFrance
- Hospices Civils de Lyon, Circulating Cancer (CIRCAN) Program, Cancer InstitutePierre BéniteFrance
| |
Collapse
|
41
|
Wilson JT. Crucial meeting: molecule helps vaccine to interact with killer T cells. Nature 2025; 641:44-46. [PMID: 40140512 DOI: 10.1038/d41586-025-00900-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
|
42
|
Chen M, Zhou Y, Bao K, Chen S, Song G, Wang S. Multispecific Antibodies Targeting PD-1/PD-L1 in Cancer. BioDrugs 2025; 39:427-444. [PMID: 40106158 DOI: 10.1007/s40259-025-00712-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2025] [Indexed: 03/22/2025]
Abstract
The development of immune checkpoint inhibitors has revolutionized the treatment of patients with cancer. Targeting the programmed cell death protein 1 (PD-1)/programmed cell death 1 ligand 1(PD-L1) interaction using monoclonal antibodies has emerged as a prominent focus in tumor therapy with rapid advancements. However, the efficacy of anti-PD-1/PD-L1 treatment is hindered by primary or acquired resistance, limiting the effectiveness of single-drug approaches. Moreover, combining PD-1/PD-L1 with other immune drugs, targeted therapies, or chemotherapy significantly enhances response rates while exacerbating adverse reactions. Multispecific antibodies, capable of binding to different epitopes, offer improved antitumor efficacy while reducing drug-related side effects, serving as a promising therapeutic approach in cancer treatment. Several bispecific antibodies (bsAbs) targeting PD-1/PD-L1 have received regulatory approval, and many more are currently in clinical development. Additionally, tri-specific antibodies (TsAbs) and tetra-specific antibodies (TetraMabs) are under development. This review comprehensively explores the fundamental structure, preclinical principles, clinical trial progress, and challenges associated with bsAbs targeting PD-1/PD-L1.
Collapse
Affiliation(s)
- Miaomiao Chen
- Department of Oncology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Shenyang, 110004, China
| | - Yuli Zhou
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Kaicheng Bao
- Department of Oncology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Shenyang, 110004, China
| | - Siyu Chen
- Department of Oncology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Shenyang, 110004, China
| | - Guoqing Song
- Department of Oncology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Shenyang, 110004, China.
| | - Siliang Wang
- Department of Oncology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Shenyang, 110004, China.
| |
Collapse
|
43
|
Nejat Dehkordi A, Maddahi M, Vafa P, Ebrahimi N, Aref AR. Salivary biomarkers: a promising approach for predicting immunotherapy response in head and neck cancers. Clin Transl Oncol 2025; 27:1887-1920. [PMID: 39377974 DOI: 10.1007/s12094-024-03742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/21/2024] [Indexed: 04/27/2025]
Abstract
Head and neck cancers, including cancers of the mouth, throat, voice box, salivary glands, and nose, are a significant global health issue. Radiotherapy and surgery are commonly used treatments. However, due to treatment resistance and disease recurrence, new approaches such as immunotherapy are being explored. Immune checkpoint inhibitors (ICIs) have shown promise, but patient responses vary, necessitating predictive markers to guide appropriate treatment selection. This study investigates the potential of non-invasive biomarkers found in saliva, oral rinses, and tumor-derived exosomes to predict ICI response in head and neck cancer patients. The tumor microenvironment significantly impacts immunotherapy efficacy. Oral biomarkers can provide valuable information on composition, such as immune cell presence and checkpoint expression. Elevated tumor mutation load is also associated with heightened immunogenicity and ICI responsiveness. Furthermore, the oral microbiota may influence treatment outcomes. Current research aims to identify predictive salivary biomarkers. Initial studies indicate that tumor-derived exosomes and miRNAs present in saliva could identify immunosuppressive pathways and predict ICI response. While tissue-based markers like PD-L1 have limitations, combining multiple oral fluid biomarkers could create a robust panel to guide treatment decisions and advance personalized immunotherapy for head and neck cancer patients.
Collapse
Affiliation(s)
| | - Moein Maddahi
- Faculty of Density, Yeditepe University, Istanbul, Turkey
| | - Parinaz Vafa
- Faculty of Density, Yeditepe University, Istanbul, Turkey
| | - Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Amir Reza Aref
- Mass General Cancer Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
44
|
Sim ES, Nguyen HCB, Hanna GJ, Uppaluri R. Current Progress and Future Directions of Immunotherapy in Head and Neck Squamous Cell Carcinoma: A Narrative Review. JAMA Otolaryngol Head Neck Surg 2025; 151:521-528. [PMID: 40048196 DOI: 10.1001/jamaoto.2024.5254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Importance For decades, the 3 therapeutic pillars for head and neck squamous cell carcinoma (HNSCC) have been radiation therapy, chemotherapy, and surgery. In recent years, a fourth pillar, immunotherapy, has shifted the existing paradigm of oncologic care by improving survival outcomes. This narrative review highlights key completed and ongoing clinical trials that have led to new therapeutic approaches and are aiming to further alter the current standard of care. Observations Immunotherapy in HNSCC first saw success in phase 3 clinical trials with immune checkpoint inhibitors (ICIs) for programmed cell death 1 protein in patients with recurrent or metastatic (R/M) disease. However, only approximately 15% to 20% of patients with R/M HNSCC achieve durable responses. Subsequent trials aimed to broaden ICIs to the definitive or curative setting, in combination with established chemoradiation modalities. These studies have yielded disappointing results, raising concerns that concurrent administration of ICI with chemoradiation- or radiation-induced attenuation of immune responses may contribute to lack of efficacy. Therefore, recent studies have attempted to introduce ICI sequentially, either prior to standard of care surgery in the neoadjuvant setting or following definitive treatment in the adjuvant or maintenance setting. These trials have demonstrated mixed results but with promising initial results from early phase neoadjuvant trials demonstrating early signals of response. Further trials are currently underway with various combinatorial approaches in the neoadjuvant and adjuvant settings to assess response rates and survival. Conclusions and Relevance The introduction of ICIs has brought a dramatic shift in the treatment landscape of HNSCC. Completed trials have provided new hope for patients, but failures in several settings suggest that further studies based on a biologic understanding of immune responses are required to expand immunotherapeutic approaches.
Collapse
Affiliation(s)
- Edward S Sim
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts
- Division of Otolaryngology-Head and Neck Surgery, Brigham and Women's Hospital, Boston, Massachusetts
- Center for Head and Neck Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Hoang C B Nguyen
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts
- Division of Otolaryngology-Head and Neck Surgery, Brigham and Women's Hospital, Boston, Massachusetts
- Center for Head and Neck Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Glenn J Hanna
- Center for Head and Neck Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ravindra Uppaluri
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts
- Division of Otolaryngology-Head and Neck Surgery, Brigham and Women's Hospital, Boston, Massachusetts
- Center for Head and Neck Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
45
|
Hu J, Jia X, Li M, Duan G, Man K, Dai H, Wen L, Geng H. Enhanced Delivery of Photothermal Gelatin Nanoparticle for Redox Balanced Nanocatalytic Tumor Chemotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411018. [PMID: 40159797 DOI: 10.1002/smll.202411018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/13/2025] [Indexed: 04/02/2025]
Abstract
Nanocatalytic platforms are promising in cancer therapeutics via combining multiple treatments, which can be leveraged through the metabolic dysfunction in cancer progression. However, the lack of effective tumor delivery platforms hampers this approach. Here, a gelatin-based platform is designed that is preloaded with gold nanoparticles and photothermal polypyrrole (GNPs@AuNPs-PPy) with an acid-induced doping enhancement. Benefiting from the tumor associated overexpression of H2O2, peroxidase-like Au nanoparticles induce a burst of oxidative reactive oxygen species in the local tumor microenvironment (TME). Subsequent orchestration of redox surroundings recruits immune cells, showcasing an effective antineoplastic pathway. Under near infrared light (NIR) irradiation, nanohybrids exhibit dual pH/NIR enhanced drug release within the TME, while allowing for multimodal imaging-guided theranostics. Leveraging this modality, GNPs@AuNPs-PPy delivers quercetin (a natural antitumor mediator) in TME, boosting anti-tumor therapy. The gelatin-mediated nanomedicine provides an alternative platform for combinatorial dynamic antitumor treatment.
Collapse
Affiliation(s)
- Jiayi Hu
- Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Key Laboratory of Active Proteins and Peptides Green Biomanufacturing of Guangdong Higher Education Institutes, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Xiaoyu Jia
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, China
| | - Manlin Li
- Department of Radiology, The Fourth Affiliated Hospital of Soochow University, Medical Centre of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Guangxin Duan
- Department of Radiology, The Fourth Affiliated Hospital of Soochow University, Medical Centre of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Kwan Man
- Department of Surgery, HKU-SZH & Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hongliang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, China
| | - Ling Wen
- Department of Radiology, The Fourth Affiliated Hospital of Soochow University, Medical Centre of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Hongya Geng
- Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Key Laboratory of Active Proteins and Peptides Green Biomanufacturing of Guangdong Higher Education Institutes, Tsinghua University, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
46
|
Admasu TD, Yu JS. Harnessing Immune Rejuvenation: Advances in Overcoming T Cell Senescence and Exhaustion in Cancer Immunotherapy. Aging Cell 2025; 24:e70055. [PMID: 40178455 PMCID: PMC12073907 DOI: 10.1111/acel.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/15/2025] [Accepted: 03/14/2025] [Indexed: 04/05/2025] Open
Abstract
Immunotherapy has transformed the landscape of cancer treatment, with T cell-based strategies at the forefront of this revolution. However, the durability of these responses is frequently undermined by two intertwined phenomena: T cell exhaustion and senescence. While exhaustion is driven by chronic antigen exposure in the immunosuppressive tumor microenvironment, leading to a reversible state of diminished functionality, senescence reflects a more permanent, age- or stress-induced arrest in cellular proliferation and effector capacity. Together, these processes represent formidable barriers to sustained anti-tumor immunity. In this review, we dissect the molecular underpinnings of T cell exhaustion and senescence, revealing how these dysfunctions synergistically contribute to immune evasion and resistance across a range of solid tumors. We explore cutting-edge therapeutic approaches aimed at rewiring the exhausted and senescent T cell phenotypes. These include advances in immune checkpoint blockade, the engineering of "armored" CAR-T cells, senolytic therapies that selectively eliminate senescent cells, and novel interventions that reinvigorate the immune system's capacity for tumor eradication. By spotlighting emerging strategies that target both exhaustion and senescence, we provide a forward-looking perspective on the potential to harness immune rejuvenation. This comprehensive review outlines the next frontier in cancer immunotherapy: unlocking durable responses by overcoming the immune system's intrinsic aging and exhaustion, ultimately paving the way for transformative therapeutic breakthroughs.
Collapse
Affiliation(s)
| | - John S. Yu
- Department of NeurosurgeryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Kairos PharmaLos AngelesCaliforniaUSA
| |
Collapse
|
47
|
Safaei S, Yari A, Pourbagherian O, Maleki LA. The role of cytokines in shaping the future of Cancer immunotherapy. Cytokine 2025; 189:156888. [PMID: 40010034 DOI: 10.1016/j.cyto.2025.156888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/13/2025] [Accepted: 02/05/2025] [Indexed: 02/28/2025]
Abstract
As essential immune system regulators, cytokines are essential for modulating both innate and adaptive immunological responses. They have become important tools in cancer immunotherapy, improving the immune system's capacity to identify and destroy tumor cells. This article examines the background, workings, and therapeutic uses of cytokines, such as interleukins, interferons, and granulocyte-macropHage colony-stimulating factors, in the management of cancer. It examines the many ways that cytokines affect immune cell activation, signaling pathways, tumor development, metastasis, and prognosis by modifying the tumor microenvironment. Despite the limited effectiveness of cytokine-based monotherapy, recent developments have concentrated on new fusion molecules such as immunocytokines, cytokine delivery improvements, and combination techniques to maximize treatment efficacy while reducing adverse effects. Current FDA-approved cytokine therapeutics and clinical trial results are also included in this study, which offers insights into how cytokines might be used with other therapies including checkpoint inhibitors, chemotherapy, and radiation therapy to address cancer treatment obstacles. This study addresses the intricacies of cytokine interactions in the tumor microenvironment, highlighting the possibility for innovative treatment methods and suggesting fresh techniques for enhancing cytokine-based immunotherapies. PEGylation, viral vector-mediated cytokine gene transfer, antibody-cytokine fusion proteins (immunocytokines), and other innovative cytokine delivery techniques are among the novelties of this work, which focuses on the most recent developments in cytokine-based immunotherapy. Additionally, the study offers a thorough examination of the little-reviewed topic of cytokine usage in conjunction with other treatment techniques. It also discusses the most recent clinical studies and FDA-approved therapies, providing a modern perspective on the developing field of cancer immunotherapy and suggesting creative ways to improve treatment effectiveness while lowering toxicity. BACKGROUND: Cytokines are crucial in cancer immunotherapy for regulating immune responses and modifying the tumor microenvironment (TME). However, challenges with efficacy and safety have driven research into advanced delivery methods and combination therapies to enhance their therapeutic potential.
Collapse
Affiliation(s)
- Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - AmirHossein Yari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Omid Pourbagherian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
48
|
Bukhalid RA, Duvall JR, Lancaster K, Catcott KC, Malli Cetinbas N, Monnell T, Routhier C, Thomas JD, Bentley KW, Collins SD, Ditty E, Eitas TK, Kelleher EW, Shaw P, Soomer-James J, Ter-Ovanesyan E, Xu L, Zurita J, Toader D, Damelin M, Lowinger TB. XMT-2056, a HER2-Directed STING Agonist Antibody-Drug Conjugate, Induces Innate Antitumor Immune Responses by Acting on Cancer Cells and Tumor-Resident Immune Cells. Clin Cancer Res 2025; 31:1766-1782. [PMID: 40029253 PMCID: PMC12010966 DOI: 10.1158/1078-0432.ccr-24-2449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/24/2024] [Accepted: 02/19/2025] [Indexed: 03/05/2025]
Abstract
PURPOSE Targeted tumor delivery may be required to potentiate the clinical benefit of innate immune modulators. The objective of the study was to apply an antibody-drug conjugate (ADC) approach to STING agonism and develop a clinical candidate. EXPERIMENTAL DESIGN XMT-2056, a HER2-directed STING agonist ADC, was designed, synthesized, and tested in pharmacology and toxicology studies. The ADC was compared with a clinical benchmark intravenously administered a STING agonist. RESULTS XMT-2056 achieved tumor-targeted delivery of the STING agonist upon systemic administration in mice and induced innate antitumor immune responses; single dose administration of XMT-2056 induced tumor regression in a variety of tumor models with high and low HER2 expressions. Notably, XMT-2056 demonstrated superior efficacy and reduced systemic inflammation compared with a free STING agonist. XMT-2056 exhibited concomitant immune-mediated killing of HER2-negative cells specifically in the presence of HER2-positive cancer cells, supporting the potential for activity against tumors with heterogeneous HER2 expression. The antibody does not compete for binding with trastuzumab or pertuzumab, and a benefit was observed when combining XMT-2056 with each of these therapies as well as with trastuzumab deruxtecan ADC. The combination of XMT-2056 with anti-PD-1 conferred benefit on antitumor activity and induced immunologic memory. XMT-2056 was well tolerated in nonclinical toxicology studies. CONCLUSIONS These data provide a robust preclinical characterization of XMT-2056 and provide rationale and strategy for its clinical evaluation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Pamela Shaw
- Mersana Therapeutics, Inc., Cambridge, Massachusetts
| | | | | | - Ling Xu
- Mersana Therapeutics, Inc., Cambridge, Massachusetts
| | | | - Dorin Toader
- Mersana Therapeutics, Inc., Cambridge, Massachusetts
| | - Marc Damelin
- Mersana Therapeutics, Inc., Cambridge, Massachusetts
| | | |
Collapse
|
49
|
Li L, Pu H, Zhang X, Guo X, Li G, Zhang M. Resistance to PD-1/PD-L1 immune checkpoint blockade in advanced non-small cell lung cancer. Crit Rev Oncol Hematol 2025; 209:104683. [PMID: 40024354 DOI: 10.1016/j.critrevonc.2025.104683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025] Open
Abstract
Lung cancer is one of the most common malignant tumors, of which non-small cell lung cancer (NSCLC) accounts for about 85 %. Although immune checkpoint inhibitors (ICIs), particularly PD-1/PD-L1 inhibitors, have significantly improved the prognosis of patients with NSCLC. There are still many patients do not benefit from ICIs. Primary resistance remains a major challenge in advanced NSCLC. The cancer-immunity cycle describes the process from antigen release to T cell recognition and killing of the tumor, which provides a framework for understanding anti-tumor immunity. The classical cycle consists of seven steps, and alterations at each stage can result in resistance. This review examines the current status of PD-1/PD-L1 blockade in the treatment of advanced NSCLC and explores potential mechanisms of resistance. We summarize the latest clinical trials of PD-1/PD-L1 inhibitors combined with other therapies and explore potential targets for overcoming primary resistance to PD-1/PD-L1 inhibitors.
Collapse
Affiliation(s)
- Lijun Li
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Haihong Pu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Xiaoxin Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Xiaotian Guo
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Guangrui Li
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Minghui Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
50
|
Chen S, Wang Y, Dang J, Song N, Chen X, Wang J, Huang GN, Brown CE, Yu J, Weissman IL, Rosen ST, Feng M. CAR macrophages with built-In CD47 blocker combat tumor antigen heterogeneity and activate T cells via cross-presentation. Nat Commun 2025; 16:4069. [PMID: 40307254 PMCID: PMC12043996 DOI: 10.1038/s41467-025-59326-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 04/15/2025] [Indexed: 05/02/2025] Open
Abstract
Macrophage-based cancer cellular therapy has gained substantial interest. However, the capability of engineered macrophages to target cancer heterogeneity and modulate adaptive immunity remains unclear. Here, exploiting the myeloid antibody-dependent cellular phagocytosis biology and phagocytosis checkpoint blockade, we report the enhanced synthetic phagocytosis receptor (eSPR) that integrate FcRγ-driven phagocytic chimeric antigen receptors (CAR) with built-in secreted CD47 blockers. The eSPR engineering empowers macrophages to combat tumor antigen heterogeneity. Transduced by adenoviral vectors, eSPR macrophages are intrinsically pro-inflammatory imprinted and resist tumoral polarization. Transcriptomically and phenotypically, eSPR macrophages elicit a more favorable tumor immune landscape. Mechanistically, eSPR macrophages in situ stimulate CD8 T cells via phagocytosis-dependent antigen cross-presentation. We also validate the functionality of the eSPR system in human primary macrophages.
Collapse
Affiliation(s)
- Siqi Chen
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Yingyu Wang
- City of Hope National Medical Center, Duarte, CA, USA
| | - Jessica Dang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Nuozi Song
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Xiaoxin Chen
- Cardiovascular Research Institute & Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Jinhui Wang
- Integrative Genomics Core, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Guo N Huang
- Cardiovascular Research Institute & Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Christine E Brown
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Jianhua Yu
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
- City of Hope National Medical Center, Duarte, CA, USA
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope, Duarte, CA, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford Medicine, Stanford, CA, USA
- Department of Pathology, Stanford Medicine, Stanford, CA, USA
| | - Steven T Rosen
- City of Hope National Medical Center, Duarte, CA, USA
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
- Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Mingye Feng
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|