1
|
Saravanan L, Mahale A, Gota V, Khandelia P, Kulkarni OP. Necrostatin-1 attenuates oral squamous cell carcinoma by modulating tumour immune response in mice. Fundam Clin Pharmacol 2025; 39:e70008. [PMID: 40222051 DOI: 10.1111/fcp.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/15/2025]
Abstract
BACKGROUND Necroptosis has been shown to play an important role in various pathologies, including pancreatic cancer (PDAC). However, its role in the progression of oral cancer (OSCC) remains unclear. OBJECTIVES To determine the expression of key necroptosis pathway markers in an OSCC mouse model and evaluate the therapeutic effect of a necroptosis inhibitor on the progression of OSCC. METHODS AND RESULTS 4-NQO-induced OSCC in mice resembles very closely to human OSCC. The expression of RIPK-1, RIPK-3, MLKL and their respective phosphorylation was increased in OSCC tissues of cancer-bearing mice. In the analysis of the necroptosis pathway in human OSCC with the TCGA database, we found similar overexpression of RIPK-1 in human cancer, which correlated with the severity of cancer in terms of different cancer grades and stages. Pharmacological blockade of necroptosis with necrostatin-1 (NEC-1) reduced the progression and development of OSCC, characterized by reduced number and severity of tumour lesions, improved histology with reduced hyperplasia, dysplasia and invasive carcinoma. Immune profiling of blood, spleen and tumour tissues demonstrated suppressed expression of MDSCs (CD11b+Gr-1+) and M2-macrophages (CD11b+F4/80+CD206+), while M1-macrophages (CD11b+F4/80+MHCII+) were elevated in the treatment group. The ratio of M2/M1 was reduced in the treated group, suggesting the promotion of anti-tumour immune response. Expression of Arg-1, YM1/2, IL-10 and TGF-β was reduced in tumour tissues in the treated group. CONCLUSION In summary, blocking the necroptosis pathway alters the tumour microenvironment (TME) and inhibits the progression of OSCC. Targeting necroptosis could be an effective therapy for treating OSCC in a clinical setup.
Collapse
Affiliation(s)
- Lavanya Saravanan
- Metabolic and Neuroscience Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad, India
| | - Ashutosh Mahale
- Metabolic and Neuroscience Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad, India
| | - Vikram Gota
- Advance Centre for Treatment Research & Education in Cancer, Tata Memorial Centre (ACTREC), Navi Mumbai, Maharashtra, India
| | - Piyush Khandelia
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani, Hyderabad, India
| | - Onkar Prakash Kulkarni
- Metabolic and Neuroscience Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad, India
| |
Collapse
|
2
|
Krishnan RP, Pandiar D, Jayaraman S, Ramani P. Genetic analysis of mixed lineage kinase domain-like pseudokinase (MLKL) in oral squamous cell carcinoma: A comparative evaluation between young and old patients. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2025; 126:102279. [PMID: 39922383 DOI: 10.1016/j.jormas.2025.102279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is characterized by dysregulation of multiple cell signaling pathways, including the necroptotic pathway. Recently, the incidence of OSCC is increasing among the young population (below the age of 40 years). These patients exhibit differences in the pathobiological characteristics and treatment response compared to the older cohorts. There is a notable lack of research exploring the role of necroptotic proteins in younger OSCC patients. AIM To investigate the expression of Mixed Lineage Kinase domain Like Pseudokinase (MLKL), a key necroptotic protein, in young and old patients with OSCC. METHODOLOGY The study included sixty histopathologically confirmed cases of OSCC, categorized into two groups; Group I - 30 patients aged > 40 years and Group II - 30 patients aged ≤ 40 years. Each of these groups consisted of 10 cases each of well differentiated, moderately differentiated and poorly differentiated OSCC. The samples were evaluated for the MLKL gene expression using Real time PCR and the results were analyzed using the 2-ΔΔCT method. RESULTS The real-time PCR analysis showed a 31 % decrease in MLKL gene expression in the younger age group (Group II) compared to the older group. A decrease of 40 % in WDSCC, 67 % in MDSCC, and 38 % in PDSCC was observed in the younger group compared to the older age group. CONCLUSION Our findings suggest age-related differences in necroptotic cell death regulation through MLKL, with decreased MLKL expression observed in younger patients compared to older patients. Modulating necroptotic cell death pathways in OSCC can promote switching between different cell death pathways and provide effective therapeutic strategies.
Collapse
Affiliation(s)
- Reshma Poothakulath Krishnan
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Deepak Pandiar
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Pratibha Ramani
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
3
|
Chen D, Zhao Z, Hong R, Yang D, Gong Y, Wu Q, Wang Y, Cao Y, Chen J, Tai Y, Liu H, Li J, Fan J, Zhang W, Song Y, Zhan Q. Harnessing the FGFR2/NF2/YAP signaling-dependent necroptosis to develop an FGFR2/IL-8 dual blockade therapeutic strategy. Nat Commun 2025; 16:4128. [PMID: 40319089 PMCID: PMC12049493 DOI: 10.1038/s41467-025-59318-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 04/17/2025] [Indexed: 05/07/2025] Open
Abstract
The multifaceted roles and mechanisms of necroptosis in cancer cells remain incompletely understood. Here, we demonstrate that FGFR2 inhibition potently inhibits esophageal squamous cell carcinoma (ESCC) by inducing necroptosis in a RIP1/MLKL-dependent manner and show RIP3 is dispensable in this pathway. Notably, MST1 is identified as a necroptotic pathway component that interacts with RIP1 and MLKL to promote necroptosis by phosphorylating MLKL at Thr216. Additionally, FGFR2 inhibition induces Ser518 phosphorylation and triggers ubiquitin-mediated degradation of NF2, culminating in Hippo pathway suppression. Subsequently, YAP activation promotes RIP1 and MLKL transcriptional upregulation, further amplifying necroptosis. Intriguingly, IL-8 derived from necrotic cells stimulates peripheral surviving tumor cells to increase PD-L1 expression. Dual blockade of FGFR2/PD-L1 or FGFR2/IL-8-CXCR1/2 robustly impedes tumor growth in humanized mouse xenografts. Collectively, our findings delineate an alternative FGFR2-NF2-YAP signaling-dependent necroptotic pathway and shed light on the immunoregulatory role of FGFR2, offering promising avenues for combinatorial therapeutic strategies in clinical cancer management.
Collapse
Affiliation(s)
- Dongshao Chen
- State Key Laboratory of Molecular Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Zitong Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruoxi Hong
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Di Yang
- State Key Laboratory of Molecular Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Ying Gong
- State Key Laboratory of Molecular Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Qingnan Wu
- State Key Laboratory of Molecular Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Wang
- State Key Laboratory of Molecular Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Yiren Cao
- State Key Laboratory of Molecular Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Chen
- State Key Laboratory of Molecular Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Yidi Tai
- State Key Laboratory of Molecular Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Haoyu Liu
- State Key Laboratory of Molecular Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Jinting Li
- State Key Laboratory of Molecular Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiawen Fan
- State Key Laboratory of Molecular Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Weimin Zhang
- State Key Laboratory of Molecular Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China.
- Department of Oncology, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China.
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China.
- Department of Oncology, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China.
- International Cancer Institute, Peking University Health Science Center, Beijing, China.
- Soochow University Cancer institute, Suzhou, Jiangsu, China.
| |
Collapse
|
4
|
Shakiba M, Tuveson DA. Macrophages and fibroblasts as regulators of the immune response in pancreatic cancer. Nat Immunol 2025; 26:678-691. [PMID: 40263612 DOI: 10.1038/s41590-025-02134-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/13/2025] [Indexed: 04/24/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the few cancers that has yet to benefit from immunotherapies. This is primarily a result of its characteristic 'cold' tumor microenvironment composed of cancer-associated fibroblasts (CAFs), a dense network of extracellular matrix and several immune cell types, the most abundant of which are the tumor-associated macrophages (TAMs). Advances in single-cell and spatial technologies have elucidated the vast functional heterogeneity of CAFs and TAMs, their symbiotic relationship and their cooperative role in the tumor microenvironment. In this Review, we provide an overview of the heterogeneity of CAFs and TAMs, how they establish an immunosuppressive microenvironment and their collaboration in the remodeling of the extracellular matrix. Finally, we examine why the impact of immunotherapy in PDAC has been limited and how a detailed molecular and spatial understanding of the combined role of CAFs and TAMs is paramount to the design of effective therapies.
Collapse
Affiliation(s)
- Mojdeh Shakiba
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY, USA
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
5
|
Morgan MJ, Kim YS. RIPK3 in necroptosis and cancer. Mol Cells 2025; 48:100199. [PMID: 40010643 PMCID: PMC11938148 DOI: 10.1016/j.mocell.2025.100199] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 02/28/2025] Open
Abstract
Receptor-interacting protein kinase-3 is essential for the cell death pathway called necroptosis. Necroptosis is activated by the death receptor ligands and pattern recognition receptors of the innate immune system, leading to significant consequences in inflammation and in diseases, particularly cancer. Necroptosis is highly proinflammatory compared with other modes of cell death because cell membrane integrity is lost, resulting in releases of cytokines and damage-associated molecular patterns that potentiate inflammation and activate the immune system. We discuss various ways that necroptosis is triggered along with its potential role in cancer and therapy.
Collapse
Affiliation(s)
- Michael J Morgan
- Department of Natural Sciences, Northeastern State University, Tahlequah, OK 74464, USA.
| | - You-Sun Kim
- Department of Biochemistry, Ajou University School of Medicine, Ajou University, Suwon 16499, Korea; Department of Biomedical Sciences, Graduate School, Ajou University, Suwon 16499, Korea.
| |
Collapse
|
6
|
Yan W, Xiang S, Feng J, Zu X. Role of ubiquitin-specific proteases in programmed cell death of breast cancer cells. Genes Dis 2025; 12:101341. [PMID: 40083330 PMCID: PMC11904532 DOI: 10.1016/j.gendis.2024.101341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/26/2024] [Accepted: 04/11/2024] [Indexed: 03/16/2025] Open
Abstract
Breast cancer (BC) is the most common malignant tumor and the leading cause of cancer-related deaths among women worldwide. Great progress has been recently achieved in controlling breast cancer; however, mortality from breast cancer remains a substantial challenge, and new treatment mechanisms are being actively sought. Programmed cell death (PCD) is associated with the progression and treatment of many types of human cancers. PCD can be divided into multiple pathways including autophagy, apoptosis, mitotic catastrophe, necroptosis, ferroptosis, pyroptosis, and anoikis. Ubiquitination is a post-translational modification process in which ubiquitin, a 76-amino acid protein, is coupled to the lysine residues of other proteins. Ubiquitination is involved in many physiological events and promotes cancer development and progression. This review elaborates the role of ubiquitin-specific protease (USP) in programmed cell death, which is common in breast cancer cells, and lays the foundation for tumor diagnosis and targeted therapy.
Collapse
Affiliation(s)
| | | | - Jianbo Feng
- The First Affiliated Hospital, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan, China
| | - Xuyu Zu
- The First Affiliated Hospital, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan, China
| |
Collapse
|
7
|
Dong J, Zhang J, Yao K, Xu X, Zhou Y, Zhang L, Qin C. Exploring necroptosis: mechanistic analysis and antitumor potential of nanomaterials. Cell Death Discov 2025; 11:211. [PMID: 40301325 PMCID: PMC12041361 DOI: 10.1038/s41420-025-02423-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/26/2025] [Accepted: 03/20/2025] [Indexed: 05/01/2025] Open
Abstract
Necroptosis, a non-apoptotic mode of programmed cell death, is characterized by the disintegration of the plasma membrane, ultimately leading to cell perforation and rupture. Recent studies have disclosed the mechanism of necroptosis and its intimate link with nanomaterials. Nanomedicine represents a novel approach in the development of therapeutic agents utilizing nanomaterials to treat a range of cancers with high efficacy. This article provides an overview of the primary mechanism behind necroptosis, the current research progress in nanomaterials, their potential use in various diseases-notably cancer, safety precautions, and prospects. The goal is to aid in the development of nanomaterials for cancer treatment.
Collapse
Affiliation(s)
- Jiaheng Dong
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Jiale Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Kunhou Yao
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, 475004, China
| | - Xiao Xu
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Yaqi Zhou
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Lei Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, 475004, China.
| | - Changjiang Qin
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, 475004, China.
| |
Collapse
|
8
|
Hong Y, He J, Deng D, Liu Q, Zu X, Shen Y. Targeting kinases that regulate programmed cell death: a new therapeutic strategy for breast cancer. J Transl Med 2025; 23:439. [PMID: 40229646 PMCID: PMC11995514 DOI: 10.1186/s12967-025-06367-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/08/2025] [Indexed: 04/16/2025] Open
Abstract
Breast cancer is one of the most prevalent malignant tumors among women and ranks as the second leading cause of cancer-related deaths in females, primarily due to delays in diagnosis and shortcomings in treatment strategies. Consequently, there is a pressing need to identify reliable therapeutic targets and strategies. In recent years, the identification of effective biomarkers-particularly novel molecular therapeutic targets-has become a focal point in breast cancer research, aimed at predicting disease aggressiveness and monitoring treatment responses. Simultaneously, advancements in understanding the molecular mechanisms underlying cellular programmed death have opened new avenues for targeting kinase-regulated programmed cell death as a viable therapeutic strategy. This review summarizes the latest research progress regarding kinase-regulated programmed death (including apoptosis, pyroptosis, autophagy, necroptosis, and ferroptosis) in breast cancer treatment. It covers the key kinases involved in this mechanism, their roles in the onset and progression of breast cancer, and strategies for modulating these kinases through pharmacological interventions.
Collapse
Affiliation(s)
- Yun Hong
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-Incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jun He
- Department of Spine Surgery, The Nanhua Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, China
| | - Dan Deng
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-Incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qinyue Liu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-Incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xuyu Zu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
- Hunan Provincial Clinical Medical Research Center for Drug Evaluation of major chronic diseases, Hengyang, China.
| | - Yingying Shen
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
- Hunan Provincial Clinical Medical Research Center for Drug Evaluation of major chronic diseases, Hengyang, China.
| |
Collapse
|
9
|
Cui S, Zheng H, Xu Y, Wu Q, Liu W, Cai Y, Fan L, Tian Y, Qian H, Ding Y, Zhang X, Zhang J, Wu X, Wang R, Li X, Chen X. Plasma proteomic biomarkers predict therapeutic responses in advanced biliary tract cancer patients receiving Camrelizumab plus the GEMOX treatment. NPJ Precis Oncol 2025; 9:102. [PMID: 40195413 PMCID: PMC11977001 DOI: 10.1038/s41698-025-00879-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 03/13/2025] [Indexed: 04/09/2025] Open
Abstract
Biliary tract cancer (BTC) has greatly influenced patient survival for years. Nowadays, immunotherapy represents a promising breakthrough and proteomics is one of powerful technologies in biomarker research. We collected plasma and tissue samples from 37 patients with advanced BTC and 92 proteins were analyzed by proximity extension assay (PEA). Through linear mixed effect models, compared to partial response (PR) group, 8 proteins, IL7, ANGPT2, IL15, HO-1, CXCL1, CXCL5, IL33, and VEGFA, exhibited significantly higher expression in stable disease and progressive disease (SD_PD) group in response-effect analysis. It was also revealed that a subset of proteins increased over time, including PDCD1, TNFRSF4, DCN, CRTAM, VEGFR-2 and ADA in PR group and PDCD1, IL10, ADA, CD28, and PTN in SD_PD group. In interaction-effect analysis, HO-1, ANGPT2, IL15 were three significant differentially expressed proteins (DEPs). Receiver operating characteristic (ROC) analysis further demonstrated that HO-1, ANGPT2, IL15 showed high accuracy in patients with immune checkpoint blockade (ICB) treatment plus chemotherapy (AUC = 0.74). In addition, based on the obtained plasma and tissue samples, two nomogram models were constructed for predicting the prognosis of BTC by genome combined with proteomics. Collectively meaningful proteomic biomarkers are beneficial to evaluate the efficacy of immunotherapy, and these discovered biomarkers may be included in the scope of treatments' evaluation and improvement in future study.
Collapse
Affiliation(s)
- Shiyun Cui
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
- Department of oncology, Chongqing Hospital of Jiangsu Province Hospital (The People's Hospital of Qijiang District), Chongqing, 401420, China
| | - Hejian Zheng
- Department of oncology, Chongqing Hospital of Jiangsu Province Hospital (The People's Hospital of Qijiang District), Chongqing, 401420, China
| | - Yiyang Xu
- Nanjing Medical University, Nanjing, 210029, China
| | - Qiuyu Wu
- Nanjing Medical University, Nanjing, 210029, China
| | - Weici Liu
- Nanjing Medical University, Nanjing, 210029, China
| | - Yucheng Cai
- Nanjing Medical University, Nanjing, 210029, China
| | - Lei Fan
- Department of General Surgery, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Yitong Tian
- Nanjing Medical University, Nanjing, 210029, China
| | - Hao Qian
- Nanjing Medical University, Nanjing, 210029, China
| | - Yuting Ding
- Nanjing Medical University, Nanjing, 210029, China
| | - Xinyi Zhang
- Nanjing Medical University, Nanjing, 210029, China
| | | | - Xiaofeng Wu
- Hepatobiliar k77y Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Rong Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China.
| | - Xiangcheng Li
- Hepatobiliar k77y Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Xiaofeng Chen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China.
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China.
| |
Collapse
|
10
|
Yao GS, Dai JS, Fu LM, Lin J, Tan ZP, Dai L, Chen W, Luo JH, Wei JH. Development and validation of hierarchical signature for precision individualized therapy based on the landscape associated with necroptosis in clear cell renal cell carcinoma. Front Pharmacol 2025; 16:1470145. [PMID: 40255563 PMCID: PMC12006085 DOI: 10.3389/fphar.2025.1470145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 03/04/2025] [Indexed: 04/22/2025] Open
Abstract
Background Increasing evidence is showing that necroptosis has unique clinical significance in the occurrence and development of multiple diseases. Here, we systematically evaluate the role of necroptosis in clear cell renal cell carcinoma (ccRCC) and analyze its regulatory patterns. Methods First, we evaluated the expression and enrichment of necroptotic factors in ccRCC using gene set enrichment analysis (GSEA) and survival analysis in the expression profile from The Cancer Genome Atlas (TCGA) to demonstrate the overall mutation of necroptotic pathway genes. Then, we used unsupervised clustering to divide the samples into two subtypes related to necroptosis with significant differences in overall survival (OS) and subsequently detected the differentially expressed genes (DEGs) between them. Based on this, we constructed the necroptosis scoring system (NSS), which also performed outstandingly in hierarchical data. Finally, we analyzed the association between NSS and clinical parameters, immune infiltration, and the efficacy of immunotherapy containing immune checkpoint inhibitors (ICIs), and we suggested potential therapeutic strategies. Results We screened 97 necroptosis-related genes and demonstrated that they were dysregulated in ccRCC. Using Cox analysis and least absolute shrinkage and selection operator (LASSO) regression, a prognostic prediction signature of seven genes was built. Receiver operating characteristic (ROC) curves and Kaplan-Meier (KM) analyses both showed that the model was accurate, and univariate/multivariate Cox analysis showed that as an independent prognostic factor, the higher the risk score, the poorer the survival outcome. Furthermore, the predicted scores based on the signature were observably associated with immune cell infiltration and the mutation of specific genes. In addition, the risk score could potentially predict patients' responsiveness to different chemotherapy regimens. Specifically, Nivolumab is more effective for patients with higher scores. Conclusion The necroptosis-related signature we constructed can accurately predict the prognosis of ccRCC patients and further provide clues for targeted, individualized therapy.
Collapse
Affiliation(s)
- Gao-Sheng Yao
- Department of Urology, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Jun-Shang Dai
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
- Department of Obstetrics and Gynecology, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Liang-Min Fu
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, China
| | - Juan Lin
- Department of Pediatrics, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhi-Ping Tan
- Department of Urology, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Lei Dai
- Department of Urology, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Wei Chen
- Department of Urology, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Jun-Hang Luo
- Department of Urology, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Institute of Precision Medicine, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Jin-Huan Wei
- Department of Urology, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Li T, Wu X, Li X, Chen M. Cancer-associated fungi: An emerging powerful player in cancer immunotherapy. Biochim Biophys Acta Rev Cancer 2025; 1880:189287. [PMID: 39971202 DOI: 10.1016/j.bbcan.2025.189287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
The role of the human microbiome in cancer has been extensively studied, focusing mainly on bacteria-host interactions and their impact on tumor development and treatment response. However, fungi, an immune-active component of the human microbiome, have received less attention regarding their roles in cancer. Recent studies have identified the widespread and specific colonization and distribution of fungi in multiple sites in patients across various cancer types. Importantly, host-fungal immune interactions significantly influence immune regulation within the tumor microenvironment. The rapid advancement of immune-checkpoint blockade (ICB)-based cancer immunotherapy creates an urgent need for effective biomarkers and synergistic therapeutic targets. Cancer-associated fungi and their associated antifungal immunity demonstrate significant potential and efficacy in enhancing cancer immunotherapy. This review summarizes and discusses the growing evidence of the functions and mechanisms of commensal and pathogenic cancer-associated fungi in cancer immunotherapy. Additionally, we emphasize the potential of fungi as predictive biomarkers and therapeutic targets in cancer immunotherapy.
Collapse
Affiliation(s)
- Tianhang Li
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China; Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China.
| | - Xiangyu Wu
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiangyang Li
- Department of Gastrointestinal Tumor Surgery, Nanjing Tianyinshan Hospital, Affiliated Hospital of China Pharmaceutical University, Nanjing, China.
| | - Ming Chen
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China; Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China.
| |
Collapse
|
12
|
Cheng L, Wang Y, Zhang Y. Dying to survive: harnessing inflammatory cell death for better immunotherapy. Trends Cancer 2025; 11:376-402. [PMID: 39986988 DOI: 10.1016/j.trecan.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/24/2025]
Abstract
Immunotherapy has transformed cancer treatment paradigms, but its effectiveness depends largely on the immunogenicity of the tumor. Unfortunately, the high resemblance of cancer to normal tissues makes most tumors immunologically 'cold', with a poor response to immunotherapy. Danger signals are critical for breaking immune tolerance and mobilizing robust, long-lasting antitumor immunity. Recent studies have identified inflammatory cell death modalities and their power in providing danger signals to trigger optimal tumor suppression. However, key mediators of inflammatory cell death are preferentially silenced during early tumor immunoediting. Strategies to rejuvenate inflammatory cell death hold great promise for broadening immunotherapy-responsive tumors. In this review, we examine how inflammatory cell death enhances tumor immunogenicity, how it is suppressed during immunoediting, and the potential of harnessing it for improved immunotherapy.
Collapse
Affiliation(s)
- Long Cheng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Yibo Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ying Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
13
|
Wang W, Li T, Wu K. Cell death in tumor microenvironment: an insight for exploiting novel therapeutic approaches. Cell Death Discov 2025; 11:93. [PMID: 40064873 PMCID: PMC11894105 DOI: 10.1038/s41420-025-02376-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 02/07/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Cell death is critical in tumor biology. The common cancer therapies can cause cell death and alleviate tumor, while the cancer cells can develop a resistance to cell death and survive from the therapies. Thus, not only observing the alternative mechanisms of tumor cells resistant to cell death, but also understanding the intricate dynamics of cell death processes within the tumor microenvironment (TME), are essential for tailoring effective therapeutic strategies. High-throughput sequencing technologies have revolutionized cancer research by enabling comprehensive molecular profiling. Recent advances in single cell sequencing have unraveled the heterogeneity of TME components, shedding light on their complex interactions. In this review, we explored the interplay between cell death signaling and the TME, summarised the potential drugs inducing cell death in pre-clinical stage, reviewed some studies applying next-generation sequencing technologies in cancer death research, and discussed the future utilization of updated sequencing platforms in screening novel treatment methods targeted cell death. In conclusion, leveraging multi-omics technologies to dissect cell death signaling in the context of the TME holds great promise for advancing cancer research and therapy development.
Collapse
Affiliation(s)
- Wenxin Wang
- BGI Genomics, Shenzhen, 518083, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, 518083, China
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, 310030, China
| | - Tong Li
- BGI Genomics, Shenzhen, 518083, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, 518083, China
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, 310030, China
| | - Kui Wu
- BGI Genomics, Shenzhen, 518083, China.
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, 518083, China.
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, 310030, China.
| |
Collapse
|
14
|
Ng MY, Wang H, Zhang H, Prucker I, Perera L, Goncharova E, Wamiru A, Jessen HJ, Stanley RE, Shears SB, Luo J, O'Keefe BR, Wilson BAP. Biochemical and biophysical characterization of inositol-tetrakisphosphate 1-kinase inhibitors. J Biol Chem 2025; 301:108274. [PMID: 39922495 PMCID: PMC11927698 DOI: 10.1016/j.jbc.2025.108274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/10/2025] Open
Abstract
Inositol phosphates (IPs) and inositol pyrophosphate play critical roles in many biological processes such as signaling molecules in pathways responsible for cellular functions involved in growth and maintenance. The biosynthesis of IPs is carried out by a family of inositol phosphate kinases. In mammals, Inositol tetrakisphosphate kinase-1 (ITPK1) phosphorylates inositol-1,3,4-trisphosphate (Ins(1,3,4)P3) and inositol-3,4,5,6-tetrakisphosphate (IP4), generating inositol-1,3,4,5,6-pentakisphosphate (IP5), which can be further phosphorylated to become inositol hexakisphosphate (IP6). ITPK1 also possesses phosphatase activity that can convert IP5 back to IP4; therefore, ITPK1 may serve as a regulatory step in IP6 production. IP6 utilization has been implicated in processes fundamental to cellular sustainability that are severely perturbed in many disease states including RNA editing, DNA repair, chromatin structure organization, and ubiquitin ligation. Therefore, ITPK1, with no known inhibitors in the literature, is a potential molecular target for modulating important processes in several human diseases. By independently coupling ITPK1 phosphatase and kinase activities to luciferase activity, we have developed and used biochemical high-throughput assays to discover eight ITPK1 inhibitors. Further analysis revealed that three of these leads inhibit ITPK1 in an ATP-competitive manner, with low micromolar to nanomolar affinities. We further demonstrate that the most potent ITPK1 inhibitor can regulate cellular ITPK1 activity. We determined the crystal structure of ITPK1 in complex with this inhibitor at a resolution of 2.25 Å. This work provides insight into the design of potential next-generation inhibitors.
Collapse
Affiliation(s)
- Martin Y Ng
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Huanchen Wang
- Molecular and Cellular Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Haibo Zhang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Isabel Prucker
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany
| | - Lalith Perera
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Ekaterina Goncharova
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA; Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Antony Wamiru
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Henning J Jessen
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany; Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Robin E Stanley
- Molecular and Cellular Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Stephen B Shears
- Molecular and Cellular Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Ji Luo
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
| | - Barry R O'Keefe
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA; Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, Maryland, USA.
| | - Brice A P Wilson
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA.
| |
Collapse
|
15
|
Zhang M, Song S, Wang B, Shang Y, Liu P, Li J. A novel necroptosis-related miRNA signature for predicting the prognosis of esophageal cancer and immune infiltration analysis. Transl Cancer Res 2025; 14:949-965. [PMID: 40104746 PMCID: PMC11912044 DOI: 10.21037/tcr-24-1532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/26/2024] [Indexed: 03/20/2025]
Abstract
Background The prognostic value of necroptosis-related microRNAs (miRNAs), which are important in tumorigenesis and development, remains unclear. Therefore, we aimed to screen prognostic necroptosis-related miRNAs in esophageal cancer (EC). Methods Nine necroptosis-related miRNA expression profiles and associated clinical data of EC patients were obtained from The Cancer Genome Atlas (TCGA) database. The relationships between necroptosis-related miRNAs and overall survival (OS) were determined via Cox regression model analysis. Target genes of the miRNAs were investigated in TargetScan, miRDB, and miRTarBase. The biological functions of these genes were evaluated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. For the most significant correlation between miR-425-5p expression and the survival of EC patients, the effect of miR-425-5p on necroptosis was explored in EC cells. The relationship between targeted gene expression and immune infiltration was also analyzed and validated. Results Hsa-miR-425-5p, hsa-miR-500a-3p, hsa-miR-7-5p and hsa-miR-200a-5p were selected for the construction of a prognostic signature based on their correlation with the survival of EC patients. EC patients were divided into high- and low-risk groups according to the median value of the risk score. Patients in the high-risk group tended to have higher death rates than those in the low-risk group (P<0.05). The risk score was an independent prognostic indicator for the OS of EC patients [hazard ratio (HR) >1, P<0.05]. The prognostic model had good predictive efficiency. The genes targeted by necroptosis-related miRNAs were significantly enriched in apoptosis etc. The inhibition of miR-425-5p promoted necroptosis in EC cells by targeting branched chain amino acid transaminase 1 (BCAT1). The expression level of BCAT1 was significantly correlated with immune infiltration. Conclusions A necroptosis-related four-miRNA model was constructed successfully to predict the potential value of the four miRNAs in the prognosis of EC, which can be conducive to promoting the therapeutic effect on EC.
Collapse
Affiliation(s)
- Miao Zhang
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shaoran Song
- Department of Radiotherapy, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Bo Wang
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yangyang Shang
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Peijun Liu
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Juan Li
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
16
|
Hu Y, Jiang XY, Cai X, Chen S, Chen QF, Yi JZ, Zhong SX, Wang JL, Xu J, Tan GJ, Lyu N, Zhao M. Efficacy and safety of arterial FOLFOX chemotherapy plus anti-PD-(L)1 immunotherapy as a first-line treatment for unresectable intrahepatic cholangiocarcinoma: a propensity score matching analysis. J Gastrointest Oncol 2025; 16:209-225. [PMID: 40115910 PMCID: PMC11921421 DOI: 10.21037/jgo-24-552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/12/2024] [Indexed: 03/23/2025] Open
Abstract
Background Given the limited efficacy of current first-line therapies, there is an urgent need to develop novel treatment strategies to improve the prognosis of patients with unresectable intrahepatic cholangiocarcinoma (uICC). This study aimed to evaluate the efficacy and safety of hepatic arterial infusion chemotherapy (HAIC) with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX) regimens (HAIC-FO) plus anti-programmed death-(ligand) 1 immunotherapy [αPD-(L)1] antibody [HAIC+αPD-(L)1] compared to systemic chemotherapy (SYS) plus αPD-(L)1 antibody [SYS+αPD-(L)1] as a first-line treatment for patients with uICC. Methods In this retrospective study, treatment-naive uICC patients who were treated with HAIC+αPD-(L)1 or SYS+αPD-(L)1 were included. The clinical characteristics, therapeutic outcomes, and adverse events (AEs) of the patients in the two groups were compared. Propensity score matching (PSM) was performed to minimize biases between groups. Results From January 2019 to January 2023, a total of 182 patients were enrolled; 147 patients were included in the HAIC+αPD-(L)1 group and 35 patients were included in the SYS+αPD-(L)1 group. After PSM, 61 and 26 patients were included in the HAIC+αPD-(L)1 and SYS+αPD-(L)1 groups, respectively. The HAIC+αPD-(L)1 group had longer median overall survival (mOS), median progression-free survival (mPFS), and median intrahepatic PFS (mIPFS) than did the SYS+αPD-(L)1 group (mOS: 14.5 vs. 10.5 months, P=0.02; mPFS: 10.4 vs. 6.4 months, P=0.02; mIPFS: 11.4 vs. 6.5 months, P<0.001). The overall incidence of AEs was comparable between the two groups, but the HAIC+αPD-(L)1 group had a lower incidence of grade 3-4 AEs related to anemia, leukopenia, weight loss, and fatigue. Conclusions HAIC+αPD-(L)1 had acceptable toxic effects and might improve outcomes compared to SYS+αPD-(L)1 as a first-line treatment for patients with uICC.
Collapse
Affiliation(s)
- Yue Hu
- Department of Minimally Invasive Interventional Therapy, Liver Cancer Study and Service Group, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiong-Ying Jiang
- Department of Minimally Invasive Interventional Therapy, Liver Cancer Study and Service Group, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xi Cai
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Song Chen
- Department of Minimally Invasive Interventional Therapy, Liver Cancer Study and Service Group, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qi-Feng Chen
- Department of Minimally Invasive Interventional Therapy, Liver Cancer Study and Service Group, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jun-Zhe Yi
- Department of Minimally Invasive Interventional Therapy, Liver Cancer Study and Service Group, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Sui-Xing Zhong
- Department of Minimally Invasive Interventional Therapy, Liver Cancer Study and Service Group, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiong-Liang Wang
- Department of Minimally Invasive Interventional Therapy, Liver Cancer Study and Service Group, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jie Xu
- Department of Minimally Invasive Interventional Therapy, Liver Cancer Study and Service Group, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Gen-Jun Tan
- Department of Minimally Invasive Interventional Therapy, Liver Cancer Study and Service Group, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ning Lyu
- Department of Minimally Invasive Interventional Therapy, Liver Cancer Study and Service Group, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ming Zhao
- Department of Minimally Invasive Interventional Therapy, Liver Cancer Study and Service Group, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
17
|
Schneider AT, Koppe C, Crouchet E, Papargyriou A, Singer MT, Büttner V, Keysberg L, Szydlowska M, Jühling F, Moehlin J, Chen MC, Leone V, Mueller S, Neuß T, Castoldi M, Lesina M, Bergmann F, Hackert T, Steiger K, Knoefel WT, Zaufel A, Kather JN, Esposito I, Gaida MM, Ghallab A, Hengstler JG, Einwächter H, Unger K, Algül H, Gassler N, Schmid RM, Rad R, Baumert TF, Reichert M, Heikenwalder M, Kondylis V, Vucur M, Luedde T. A decision point between transdifferentiation and programmed cell death priming controls KRAS-dependent pancreatic cancer development. Nat Commun 2025; 16:1765. [PMID: 39971907 PMCID: PMC11839950 DOI: 10.1038/s41467-025-56493-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/21/2025] [Indexed: 02/21/2025] Open
Abstract
KRAS-dependent acinar-to-ductal metaplasia (ADM) is a fundamental step in the development of pancreatic ductal adenocarcinoma (PDAC), but the involvement of cell death pathways remains unclear. Here, we show that key regulators of programmed cell death (PCD) become upregulated during KRAS-driven ADM, thereby priming transdifferentiated cells to death. Using transgenic mice and primary cell and organoid cultures, we show that transforming growth factor (TGF)-β-activated kinase 1 (TAK1), a kinase regulating cell survival and inflammatory pathways, prevents the elimination of transdifferentiated cells through receptor-interacting protein kinase 1 (RIPK1)-mediated apoptosis and necroptosis, enabling PDAC development. Accordingly, pharmacological inhibition of TAK1 induces PCD in patient-derived PDAC organoids. Importantly, cell death induction via TAK1 inhibition does not appear to elicit an overt injury-associated inflammatory response. Collectively, these findings suggest that TAK1 supports cellular plasticity by suppressing spontaneous PCD activation during ADM, representing a promising pharmacological target for the prevention and treatment of PDAC.
Collapse
Affiliation(s)
- Anne T Schneider
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Duesseldorf, Germany
| | - Christiane Koppe
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Duesseldorf, Germany
| | - Emilie Crouchet
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease (ITM), UMR_S1110, Strasbourg, France
| | - Aristeidis Papargyriou
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Michael T Singer
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Duesseldorf, Germany
| | - Veronika Büttner
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Duesseldorf, Germany
| | - Leonie Keysberg
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Duesseldorf, Germany
| | - Marta Szydlowska
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Jühling
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease (ITM), UMR_S1110, Strasbourg, France
| | - Julien Moehlin
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease (ITM), UMR_S1110, Strasbourg, France
| | - Min-Chun Chen
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Valentina Leone
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Research Unit Radiation Cytogenetics, Helmholtz-Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Sebastian Mueller
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, TU Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Thorsten Neuß
- Lehrstuhl für Biophysik E27, Center for Protein Assemblies (CPA), Technical University Munich (TUM), Garching, Germany
| | - Mirco Castoldi
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Duesseldorf, Germany
| | - Marina Lesina
- Comprehensive Cancer Center München, Institute for Tumor Metabolism, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Frank Bergmann
- Institut of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Pathology, Klinikum Darmstadt GmbH, Darmstadt, Germany
| | - Thilo Hackert
- Department of General, Visceral, and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Katja Steiger
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Wolfram T Knoefel
- Department of Surgery A, Heinrich-Heine-University Düsseldorf and University Hospital Düsseldorf, Duesseldorf, Germany
| | - Alex Zaufel
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Duesseldorf, Germany
| | - Jakob N Kather
- Else Kroener Fresenius Center for Digital Health (EFFZ), Technical University Dresden, Dresden, Germany
- Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
- Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Irene Esposito
- Institute of Pathology, University Hospital Duesseldorf, Heinrich-Heine University, Duesseldorf, Germany
| | - Matthias M Gaida
- Institute of Pathology, University Medical Center Mainz, JGU-Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, JGU-Mainz, Mainz, Germany
- Joint Unit Immunopathology, Institute of Pathology, University Medical Center, JGU-Mainz, Mainz, Germany
- TRON, Translational Oncology at the University Medical Center, JGU-Mainz, Mainz, Germany
| | - Ahmed Ghallab
- Leibniz Research Centre for Working Environment and Human Factors (IfADo) at the Technical University Dortmund, Dortmund, Germany
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo) at the Technical University Dortmund, Dortmund, Germany
| | - Henrik Einwächter
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Kristian Unger
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- Research Unit Translational Metabolic Oncology, Institute for Diabetes and Cancer, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Hana Algül
- Comprehensive Cancer Center München, Institute for Tumor Metabolism, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Nikolaus Gassler
- Section Pathology of the Institute of Forensic Medicine, University Hospital Jena, Jena, Germany
| | - Roland M Schmid
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Roland Rad
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas F Baumert
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease (ITM), UMR_S1110, Strasbourg, France
- Pôle des Pathologies Hépatiques et Digestives, Service d'Hepato-Gastroenterologie, Strasbourg University Hospitals, Strasbourg, France
- Institut Hospitalo-Universitaire (IHU) Strasbourg, Strasbourg, France
- Institut Universitaire de France (IUF), Paris, France
| | - Maximilian Reichert
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
- Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich, Garching, Germany
- German Center for Translational Cancer Research (DKTK), Munich, Germany
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- The M3 Research Institute, Karls Eberhards Universität Tübingen, Tübingen, Germany
| | - Vangelis Kondylis
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Duesseldorf, Germany
| | - Mihael Vucur
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Duesseldorf, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-University, Duesseldorf, Germany.
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany.
| |
Collapse
|
18
|
Suzuki Y, Yamaguchi K, Hardell KNL, Ota K, Kamikado T, Kawamura Y, Buffenstein R, Oka K, Miura K. Establishment of primary and immortalized fibroblasts reveals resistance to cytotoxic agents and loss of necroptosis-inducing ability in long-lived Damaraland mole-rats. GeroScience 2025; 47:1381-1396. [PMID: 39623066 PMCID: PMC11872962 DOI: 10.1007/s11357-024-01420-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/27/2024] [Indexed: 03/04/2025] Open
Abstract
The Damaraland mole-rat (DMR; Fukomys damarensis) is a long-lived (~ 20 years) Bathyergid rodent that diverged 26 million years ago from its close relative, the naked mole-rat (NMR). While the properties of NMR cultured fibroblasts have been extensively studied and have revealed several unusual features of this cancer-resistant, long-lived species, comparative DMR studies are extremely limited. We optimized conditions for successfully culturing primary DMR skin fibroblasts and also established immortalized DMR cells using simian virus 40 early region expression. Like NMRs, DMR fibroblasts are more resistant than mice to various cytotoxins including heavy metals, DNA-damaging agents, oxidative stressors, and proteasome inhibitors. DMR genome sequencing analyses revealed the presence of premature stop codons in the master regulator genes of necroptosis, an inflammatory programmed cell death-receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL), although these mutations have different locations to those found in the NMR. DMR cells, like NMR cells, did not show significantly increased cell death in response to necroptosis induction. Our data suggest that both Bathyergid species require species-specific cell culture conditions for optimized growth, display similar resistance to cytotoxins, and show loss-of-function mutations abrogating the ability to employ necroptosis. These shared traits may contribute to their evolved adaptations to their subterranean lifestyle and prolonged longevity. These convergent insights and valuable resource may be pertinent to biomedical research.
Collapse
Affiliation(s)
- Yusuke Suzuki
- Department of Aging and Longevity Research, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Kanta Yamaguchi
- Department of Aging and Longevity Research, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | | | - Kurumi Ota
- Department of Aging and Longevity Research, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Taira Kamikado
- Department of Aging and Longevity Research, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Yoshimi Kawamura
- Department of Aging and Longevity Research, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Rochelle Buffenstein
- Calico Life Sciences LLC, South San Francisco, USA
- Department of Biological Sciences, University of Illinois, Chicago, USA
| | - Kaori Oka
- Department of Aging and Longevity Research, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan.
| | - Kyoko Miura
- Department of Aging and Longevity Research, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan.
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, 860-8556, Japan.
| |
Collapse
|
19
|
Qian S, Tan G, Lei G, Zhang X, Xie Z. Programmed cell death in nasopharyngeal carcinoma: Mechanisms and therapeutic targets. Biochim Biophys Acta Rev Cancer 2025; 1880:189265. [PMID: 39809344 DOI: 10.1016/j.bbcan.2025.189265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
Programmed cell death is a type of autonomic and orderly cell death mode controlled by genes that maintain homeostasis and growth. Tumor is a typical manifestation of an imbalance in environmental homeostasis in the human body. Currently, several tumor treatments are designed to trigger the death of tumor cells. Nasopharyngeal carcinoma is one of the most common malignant tumors in China. It displays obvious regional and ethnic differences in its incidence, being typically high in the south and low in the north of China. Nasopharyngeal carcinoma is currently considered to be a polygenic inherited disease and is often mediated by the interaction between multiple genes or between genes and the environment. Apoptosis has long been considered the key to tumor treatment, while other cell death pathways have often been overlooked. The current study provides an overview of the relationship among apoptosis, autophagy, pyroptosis, necroptosis, ferroptosis, and nasopharyngeal carcinoma, and the regulatory pathways of nasopharyngeal carcinoma based on five cell death modes were synthesized from the view of molecule. We hope this review will help explore additional, novel programmed cell death targets for the treatment of nasopharyngeal carcinoma and thus promote in-depth research.
Collapse
Affiliation(s)
- Shen'er Qian
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Guolin Tan
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guang Lei
- Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School Of Medicine, Central South University, Changsha, Hunan, China
| | - Xiaowei Zhang
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Zuozhong Xie
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Laboratory of Otolaryngology Head and Neck Cancer, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Otology, Central South University, Changsha, Hunan, China.
| |
Collapse
|
20
|
Linnemann L, Antwi-Ekwuruke J, Gnanapragassam V, Bang C, Rühlemann M, Ruland J, Hartmann W, Heepmann L, Dörken S, Yunus SM, Viebrock B, Schlosser A, Lepenies B, Breloer M. The C-type lectin receptor MINCLE interferes with eosinophil function and protective intestinal immunity in Strongyloides ratti-infected mice. Mucosal Immunol 2025; 18:220-231. [PMID: 39581231 DOI: 10.1016/j.mucimm.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/23/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024]
Abstract
Strongyloides ratti is a helminth parasite that displays tissue-migrating and intestinal life stages. Myeloid C-type lectin receptors (CLRs) are pattern recognition receptors that recognize pathogen-derived ligands and initiate immune responses. To date, the role of CLRs in S. ratti infection has not been investigated. Here, we show that S. ratti-derived ligands are recognized by the CLR Macrophage inducible Ca2+-dependent lectin receptor (MINCLE). While MINCLE-deficiency did not affect initiation of a protective anti-S. ratti type 2 immunity, MINCLE-deficient mice had a transient advantage in intestinal immunity. Unravelling the underlying mechanism, we show that next to macrophages, dendritic cells and neutrophils, a fraction of eosinophils express MINCLE and expand during S. ratti infection. MINCLE-deficient eosinophils exhibited a more active phenotype and prolonged expansion in vivo and displayed increased capacity to reduce S. ratti motility and produce reactive oxygen species in vitro, compared to wild-type (WT) eosinophils. Depletion of eosinophils in S. ratti-infected mice after the tissue-migration phase elevated intestinal worm burden in MINCLE-deficient mice to the WT level. Thus, our findings establish a central contribution of eosinophils to parasite ejection from the intestine and suggest that S. ratti-triggered signalling via MINCLE interferes with eosinophil mediated ejection of S. ratti from the intestine.
Collapse
Affiliation(s)
- Lara Linnemann
- Section Interface, Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
| | | | - Vinayaga Gnanapragassam
- Institute for Immunology, University of Veterinary Medicine Hannover, 30559, Hanover, Germany; Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559, Hanover, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, University Kiel, 24118, Kiel, Germany
| | - Malte Rühlemann
- Institute of Clinical Molecular Biology, University Kiel, 24118, Kiel, Germany
| | - Jürgen Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, 81675, Munich, Germany; Center for Translational Cancer Research (TranslaTUM), 81675, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, Germany
| | - Wiebke Hartmann
- Section Interface, Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
| | - Lennart Heepmann
- Section Interface, Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
| | - Sara Dörken
- Section Interface, Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
| | - Saleh M Yunus
- Section Interface, Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
| | - Birte Viebrock
- Section Interface, Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
| | - Annette Schlosser
- Section Interface, Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
| | - Bernd Lepenies
- Institute for Immunology, University of Veterinary Medicine Hannover, 30559, Hanover, Germany; Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559, Hanover, Germany
| | - Minka Breloer
- Section Interface, Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany; Department for Biology, University Hamburg, 20148, Hamburg, Germany.
| |
Collapse
|
21
|
Guo Z, Liu Y, Chen D, Sun Y, Li D, Meng Y, Zhou Q, Zeng F, Deng G, Chen X. Targeting regulated cell death: Apoptosis, necroptosis, pyroptosis, ferroptosis, and cuproptosis in anticancer immunity. J Transl Int Med 2025; 13:10-32. [PMID: 40115032 PMCID: PMC11921819 DOI: 10.1515/jtim-2025-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
In the evolving landscape of cancer treatment, the strategic manipulation of regulated cell death (RCD) pathways has emerged as a crucial component of effective anti-tumor immunity. Evidence suggests that tumor cells undergoing RCD can modify the immunogenicity of the tumor microenvironment (TME), potentially enhancing its ability to suppress cancer progression and metastasis. In this review, we first explore the mechanisms of apoptosis, necroptosis, pyroptosis, ferroptosis, and cuproptosis, along with the crosstalk between these cell death modalities. We then discuss how these processes activate antigen-presenting cells, facilitate the cross-priming of CD8+ T cells, and trigger anti-tumor immune responses, highlighting the complex effects of novel forms of tumor cell death on TME and tumor biology. Furthermore, we summarize potential drugs and nanoparticles that can induce or inhibit these emerging RCD pathways and their therapeutic roles in cancer treatment. Finally, we put forward existing challenges and future prospects for targeting RCD in anti-cancer immunity. Overall, this review enhances our understanding of the molecular mechanisms and biological impacts of RCD-based therapies, providing new perspectives and strategies for cancer treatment.
Collapse
Affiliation(s)
- Ziyu Guo
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan Province, China
- Furong Laboratory, Changsha 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Yihuang Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan Province, China
- Furong Laboratory, Changsha 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Danyao Chen
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Yuming Sun
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Daishi Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan Province, China
- Furong Laboratory, Changsha 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Yu Meng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan Province, China
- Furong Laboratory, Changsha 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Qian Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan Province, China
- Furong Laboratory, Changsha 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Furong Zeng
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan Province, China
- Furong Laboratory, Changsha 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan Province, China
- Furong Laboratory, Changsha 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| |
Collapse
|
22
|
Zhang Y, Yi S, Luan M. Advances in non-apoptotic regulated cell death: implications for malignant tumor treatment. Front Oncol 2025; 15:1519119. [PMID: 39949740 PMCID: PMC11821507 DOI: 10.3389/fonc.2025.1519119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Cell death mechanisms are broadly classified into accidental cell death (ACD) and regulated cell death (RCD). ACD such as necrosis, is an uncontrolled, accidental process, while RCD is tightly regulated by specific signaling pathways and molecular mechanisms. Tumor cells are characterized by their ability to evade cell death and sustain uncontrolled proliferation. The failure of programmed cell death is a key contributor to tumor initiation, progression, and resistance to cancer therapies. Traditionally, research has focused primarily on apoptosis as the dominant form of RCD in cancer. However, emerging evidence highlights the importance of other non-apoptotic forms of RCD, such as pyroptosis, ferroptosis, necroptosis, and parthanatos, in tumorigenesis and treatment response. These pathways are gaining attention for their potential roles in overcoming therapy resistance. In this review, we will discuss the recent advances in the study of non-apoptotic cell death pathways in malignant tumors and explore their therapeutic implications, offering insights into new targets for cancer treatment strategies.
Collapse
Affiliation(s)
- Yizheng Zhang
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Shiqi Yi
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, China
| | - Mingyuan Luan
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| |
Collapse
|
23
|
Yu L, Guo Q, Li Y, Mao M, Liu Z, Li T, Wang L, Zhang X. CHMP4C promotes pancreatic cancer progression by inhibiting necroptosis via the RIPK1/RIPK3/MLKL pathway. J Adv Res 2025:S2090-1232(25)00058-X. [PMID: 39870301 DOI: 10.1016/j.jare.2025.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/10/2025] [Accepted: 01/24/2025] [Indexed: 01/29/2025] Open
Abstract
INTRODUCTION Pancreatic cancer (PC) cannot currently be completely cured and has a poor prognosis. Necroptosis is a distinct form of regulated cell death that differs from both necrosis and apoptosis. Understanding the role of necroptosis during PC progression would open new avenues for targeted therapy. OBJECTIVES The purpose of this study is to examine the impact of necroptosis on the progression of PC and related mechanisms. METHODS RNA sequencing was performed to identify necroptosis-related genes that are differentially expressed in PC tissues. The biological functions of CHMP4C and its necroptosis effects were determined in vitro and in vivo. RNA immunoprecipitation, MeRIP-qPCR, Co-immunoprecipitation assays were conducted to evaluate the interaction among CHMP4C, YBX1 and caspase-8 mRNA. Extracellular vesicles were isolated using the differential ultracentrifugation method. The expression of CHMP4C, p-MLKL and CD117 were detected on a PC tissue microarray using multiplex immunofluorescence staining. RESULTS CHMP4C was significantly overexpressed in PC cells and tissues. It promoted cell growth and suppressed necroptosis of PC cells in both in vivo and in vitro settings. Mechanistically, CHMP4C interacted with YBX1 to mediate m5C modification of caspase-8 mRNA, resulting in increased caspase-8 expression and inhibition of RIPK1/RIPK3/MLKL pathway phosphorylation. Furthermore, CHMP4C promoted extracellular exocytosis of p-MLKL to further suppress necroptosis. Additionally, PC cells used CHMP4C within extracellular vesicles to recruit and stimulate mast cells (MCs), which in turn promoted PC cell proliferation. In PC tissues, the expression of CHMP4C showed a negative correlation with p-MLKL and a positive association with CD117. High expression levels of CHMP4C in patients were associated with poorer overall survival outcomes. CONCLUSIONS CHMP4C promotes PC progression by inhibiting necroptosis, which has potential as a biomarker and therapeutic target in PC.
Collapse
Affiliation(s)
- Longchen Yu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012 China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012 China
| | - Qining Guo
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012 China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012 China
| | - Yaping Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012 China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012 China
| | - Mai Mao
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012 China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012 China
| | - Zhenping Liu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012 China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012 China
| | - Tingting Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012 China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012 China
| | - Lei Wang
- Department of Orthodontics, Qilu Hospital of Shandong University, Jinan 250012 China.
| | - Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012 China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan 250012 China.
| |
Collapse
|
24
|
Chen XY, Zhi LJ, Chen J, Li R, Long KL. Research hotspots and future trends in sepsis-associated acute kidney injury: a bibliometric and visualization analysis. Front Med (Lausanne) 2025; 11:1456535. [PMID: 39839617 PMCID: PMC11747655 DOI: 10.3389/fmed.2024.1456535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/29/2024] [Indexed: 01/23/2025] Open
Abstract
Objectives Sepsis-associated acute kidney injury (SA-AKI) commonly occurs in critically ill patients and is closely associated with adverse outcomes. A comprehensive analysis of the current research landscape in SA-AKI can help uncover trends and key issues in this field. This study aims to provide a scientific basis for research directions and critical issues through bibliometric analysis. Methods We searched all articles on SA-AKI indexed in the SCI-Expanded of WoSCC up to May 7, 2024, and conducted bibliometric and visual analyses using bibliometric software CiteSpace and VOSviewer. Results Over the past 20 years, there has been a steady increase in literature related to renal repair following AKI. China and the United States contribute over 60% of the publications, driving research in this field. The University of Pittsburgh is the most active academic institution, producing the highest number of publications. J. A. Kellum is both the most prolific and the most cited author in this area. "Shock" and "American Journal of Physiology-Renal Physiology" are the most popular journals, publishing the highest number of articles. Recent high-frequency keywords in this field include "septic AKI," "mitochondrial dysfunction," "inflammasome," "ferroptosis," and "macrophage." The terms "mitochondrial dysfunction," "inflammasome," "ferroptosis," and "macrophage" represent current research hotspots and potential targets in this area. Conclusion This is the first comprehensive bibliometric study to summarize the trends and advancements in SA-AKI research in recent years. These findings identify current research frontiers and hot topics, providing valuable insights for scholars studying SA-AKI.
Collapse
Affiliation(s)
- Xing-Yue Chen
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li-Jia Zhi
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Chen
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kun-Lan Long
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
25
|
Peng J, Sun J, Yu Y, Yuan Q, Zhang Y. Integrative multi-omics analysis reveals the role of toll-like receptor signaling in pancreatic cancer. Sci Rep 2025; 15:52. [PMID: 39747201 PMCID: PMC11696379 DOI: 10.1038/s41598-024-84062-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
As one of the most destructive and invasive cancers, pancreatic cancer exhibits complex tumor heterogeneity, which has been a major challenge for clinicians in terms of patient treatment and prognosis. The toll-like receptor (TLR) pathway is closely related to the immune microenvironment within various cancer tissues. To explore the development pattern of pancreatic cancer and find an ideal biomarker, our research has explored the mechanism of the TLR pathway in pancreatic cancer. We collected single-cell expression data from 57,024 cells and transcriptomic data from 945 pancreatic cancer patients, and conducted a series of analyses at both the single-cell and transcriptomic levels. By calculating the TLR pathway score, we clustered pancreatic cancer patients and conducted a series of analyses including metabolic pathways, immune microenvironment, drug sensitivity and so on. In the process of building prognostic models, we screened 33 core genes related to the prognosis of pancreatic cancer, and combined a series of machine learning algorithms to build the prognosis model of pancreatic cancer. We used single cell sequencing to clarify the complex intrinsic relationship between TLR pathway and pancreatic cancer. The strongest TLR signals were observed in macrophages and endothelial cells. With the occurrence of pancreatic cancer, the TLR signal of various cell types gradually increased, but with the increase of the malignant degree of ductal epithelial cells, the TLR signal gradually weakened. Cluster analysis showed that patients with the most active TLR pathway had severe dysregulation of immune microenvironment and the worst prognosis. Finally, we combined a series of machine learning algorithms to build a pancreatic cancer prognosis model that includes four genes (NT5E, TGFBI, ANLN, and FAM83A). The model showed strong performance in predicting the survival state of pancreatic cancer samples. We explored the important role of TLR pathway in pancreatic cancer and established and validated a new prognosis model for pancreatic cancer based on TLR-related genes.
Collapse
Affiliation(s)
- Jie Peng
- Ningde Clinical Medical College of Fujian Medical University, Fujian, China
- Ningde Municipal Hospital of Ningde Normal University, Fujian, China
| | - Jiaao Sun
- First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Youfeng Yu
- Ningde Clinical Medical College of Fujian Medical University, Fujian, China
- Ningde Municipal Hospital of Ningde Normal University, Fujian, China
| | - Qihang Yuan
- First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Yong Zhang
- Ningde Clinical Medical College of Fujian Medical University, Fujian, China.
- Ningde Municipal Hospital of Ningde Normal University, Fujian, China.
| |
Collapse
|
26
|
Li YT, Zeng XZ. Establishment and Validation of the Novel Necroptosis-related Genes for Predicting Stemness and Immunity of Hepatocellular Carcinoma via Machine-learning Algorithm. Comb Chem High Throughput Screen 2025; 28:146-165. [PMID: 39641162 DOI: 10.2174/0113862073271292231108113547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/21/2023] [Accepted: 09/21/2023] [Indexed: 12/07/2024]
Abstract
BACKGROUND Necroptosis, a recently identified mechanism of programmed cell death, exerts significant influence on various aspects of cancer biology, including tumor cell proliferation, stemness, metastasis, and immunosuppression. However, the role of necroptosis-related genes (NRGs) in Hepatocellular Carcinoma (HCC) remains elusive. METHODS In this study, we assessed the mutation signature, copy number variation, and expression of 37 NRGs in HCC using the TCGA-LIHC dataset. We further validated our results using the ICGC-LIRI-JP dataset. To construct our prognostic model, we utilized the least absolute shrinkage and selection operator (LASSO), and evaluated the predictive efficacy of the NRGs-score using various machine learning algorithms, including K-M curves, time-ROC curves, univariate and multivariate Cox regression, and nomogram. In addition, we analyzed immune infiltration using the CIBERSOFT and ssGSEA algorithms, calculated the stemness index through the one-class logistic regression (OCLR) algorithm, and performed anti-cancer stem cells (CSCs) drug sensitivity analysis using oncoPredict. Finally, we validated the expression of the prognostic NRGs through qPCR both in vitro and in vivo. RESULTS About 18 out of 37 NRGs were found to be differentially expressed in HCC and correlated with clinical outcomes. To construct a prognostic model, six signature genes (ALDH2, EZH2, PGAM5, PLK1, SQSTM1, and TARDBP) were selected using LASSO analysis. These genes were then employed to categorize HCC patients into two subgroups based on NRGs-score (low vs. high). A high NRGs score was associated with a worse prognosis. Furthermore, univariate and multivariate Cox regression analyses were performed to confirm the NRGs-score as an independent risk factor. These analyses revealed strong associations between NRGs-score and critical factors, such as AFP, disease stage, and tumor grade in the HCC cohort. NRGs-score effectively predicted the 1-, 3-, and 5-year survival of HCC patients. Immune infiltration analysis further revealed that the expression of immune checkpoint molecules was significantly enhanced in the high NRGs-score group. Stemness analysis in the HCC cohort showed that NRGs-score was positively correlated with mRNA stemness index, and patients with high NRGs-score were sensitive to CSCs inhibitors. The findings from the external validation cohort provided confirmation that the NRGs-score presented a trait with universal applicability in accurately predicting the survival of HCC. Additionally, the six prognostic genes were consistently differentially expressed in both the HCC cell line and the mouse HCC model. CONCLUSION Our study demonstrated the pivotal role of NRGs in promoting stemness and immune suppression in HCC and established a robust model which could successfully predict HCC prognosis.
Collapse
Affiliation(s)
- Yao-Ting Li
- Department of Forensic Science, Guangdong Police College, 500 Binjiang East Road, Guangzhou 510230, Guangdong, China
| | - Xue-Zhen Zeng
- Department of Pharmacy, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| |
Collapse
|
27
|
Hänggi K, Li J, Gangadharan A, Liu X, Celias DP, Osunmakinde O, Keske A, Davis J, Ahmad F, Giron A, Anadon CM, Gardner A, DeNardo DG, Shaw TI, Beg AA, Yu X, Ruffell B. Interleukin-1α release during necrotic-like cell death generates myeloid-driven immunosuppression that restricts anti-tumor immunity. Cancer Cell 2024; 42:2015-2031.e11. [PMID: 39577420 PMCID: PMC11631672 DOI: 10.1016/j.ccell.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/27/2024] [Accepted: 10/25/2024] [Indexed: 11/24/2024]
Abstract
Necroptosis can promote antigen-specific immune responses, suggesting induced necroptosis as a therapeutic approach for cancer. Here we sought to determine the mechanism of immune activation but found the necroptosis mediators RIPK3 and MLKL dispensable for tumor growth in genetic and implantable models of breast or lung cancer. Surprisingly, inducing necroptosis within established breast tumors generates a myeloid suppressive microenvironment that inhibits T cell function, promotes tumor growth, and reduces survival. This was dependent upon the release of the nuclear alarmin interleukin-1α (IL-1α) by dying cells. Critically, IL-1α release occurs during chemotherapy and targeting this molecule reduces the immunosuppressive capacity of tumor myeloid cells and promotes CD8+ T cell recruitment and effector function. Neutralizing IL-1α enhances the efficacy of single agent paclitaxel or combination therapy with PD-1 blockade in preclinical models. Low IL1A levels correlates with positive patient outcome in several solid malignancies, particularly in patients treated with chemotherapy.
Collapse
Affiliation(s)
- Kay Hänggi
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| | - Jie Li
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Cancer Biology PhD Program, University of South Florida, Tampa, FL 33620, USA
| | - Achintyan Gangadharan
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Cancer Biology PhD Program, University of South Florida, Tampa, FL 33620, USA
| | - Xiaoxian Liu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Daiana P Celias
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Olabisi Osunmakinde
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Cancer Biology PhD Program, University of South Florida, Tampa, FL 33620, USA
| | - Aysenur Keske
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Joshua Davis
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Faiz Ahmad
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Auriane Giron
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Carmen M Anadon
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Alycia Gardner
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Cancer Biology PhD Program, University of South Florida, Tampa, FL 33620, USA
| | - David G DeNardo
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Timothy I Shaw
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Amer A Beg
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Xiaoqing Yu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Brian Ruffell
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
28
|
Wang S, Xu S, Li J, Wang N, Zheng Y, Wang Z. XIAOPI formula inhibits chemoresistance and metastasis of triple-negative breast cancer by suppressing extracellular vesicle/CXCL1-induced TAM/PD-L1 signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156039. [PMID: 39303510 DOI: 10.1016/j.phymed.2024.156039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/02/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is challenged by the low chemotherapy response and poor prognosis. Emerging evidence suggests that cytotoxic chemotherapy may lead to the pro-metastatic tumor microenvironment (TME) by eliciting pro-tumor extracellular vesicles (EVs) from cancer cells. However, the precise mechanisms and therapeutic approaches remain inadequately understood. PURPOSE This study aims to determine whether XIAOPI formula (Chinese name XIAOPI San, XPS), a nationally sanctioned medication for mammary hyperplasia, can chemosensitize TNBC by remodeling the TME via modulating EV signaling, and exploring its underlying mechanisms. METHODS Multiple methodologies, such as EV isolation, transmission electron microscope, flow cytometry, dual-luciferase reporter assays, co-immunoprecipitation and in vivo breast cancer xenograft, were employed to elucidate the effect and molecular mechanisms of XPS on paclitaxel-induced EV signaling (EV-dead) of TNBC. RESULTS XPS, at non-toxic concentrations, synergized with PTX to inhibit the invasion and chemoresistance of TNBC cells co-cultured with macrophages. Compared to EV-dead, XPS co-treatment-elicited EVs (EV-deadXPS) exhibited a decreased capacity to promote the invasion, chemoresistance and cancer stem cell subpopulation of the co-cultured TNBC cells. Mechanistically, XPS administration led to a reduction in CXCL1 cargo in EV-dead, and thereby attenuated its activation effect on macrophage polarization into M2 phenotype through the transcriptional downregulation of PD-L1 expression. Furthermore, XPS effectively reduced the number of EV-dead from TNBC cells by inhibiting CXCL1-mediated intraluminal vesicle (ILV) biogenesis in multivesicular bodies (MVBs). Moreover, molecular explorations revealed that XPS impaired ILV biogenesis by disrupting the RAB31/FLOT2 complex via suppressing the CXCL1/Myc signaling. Importantly, XPS significantly chemosensitized paclitaxel to inhibit TNBC growth and metastasis in vivo by suppressing EV-deadCXCL1-induced PD-L1 activation and M2 polarization of macrophages. CONCLUSION This pioneering study not only sheds novel light on EV-deadCXCL1 as a potential therapeutic target to suppress TNBC chemoresistance and metastasis, but also provides XPS as a promising adjuvant formula to chemosensitize TNBC by remodeling EV-deadCXCL1-mediated immunosuppressive TME.
Collapse
Affiliation(s)
- Shengqi Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Breast Disease Specialist Hospital of Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, PR China; The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Shang Xu
- Breast Disease Specialist Hospital of Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, PR China; The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Jing Li
- Breast Disease Specialist Hospital of Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, PR China; The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Neng Wang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, PR China; The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yifeng Zheng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Breast Disease Specialist Hospital of Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, PR China; The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Zhiyu Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Breast Disease Specialist Hospital of Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, PR China; The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, PR China.
| |
Collapse
|
29
|
Xu L, Liu Y, Jiao Y, Zhong K, Li J, Guan Y, Wei H, Lou W, Ge J. Enzyme-free method for preparation of sturgeon extracts with antioxidant, hepatoprotective and immune-enhancing functions. Food Chem 2024; 459:140327. [PMID: 38986199 DOI: 10.1016/j.foodchem.2024.140327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/05/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Sturgeon has a long lifespan and slow evolutionary rate due to their powerful endogenous antioxidant system. This work aimed to assess the in vitro and in vivo antioxidant activity of sturgeon extracts from both muscle and roe. The extraction process without enzyme hydrolysis is not only simple, but also can produce extracts with better free radicals scavenging abilities than enzymatic hydrolysates in both cellular and in vivo experiments. Moreover, in mouse models with liver injury and immunosuppression treatment, the sturgeon extracts demonstrated strong hepatoprotective and immune-enhancing functions, comparable to vitamin C and ginseng extract supplements, which were attributed to abundant antioxidant peptides of the extracts. The 15 isolated peptides exhibited diverse free radical scavenging ability. Therefore, the sturgeon extracts showed high potential to be applied in food and biomedical industries.
Collapse
Affiliation(s)
- Lijun Xu
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.
| | - Yu Liu
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.
| | - Yi Jiao
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Kangrong Zhong
- Guizhou Province Qianxun Biotechnology Co., Ltd, Guizhou 556000, People's Republic of China
| | - Jinming Li
- Guizhou Province Qianxun Biotechnology Co., Ltd, Guizhou 556000, People's Republic of China
| | - Yongjian Guan
- Guizhou Province Qianxun Biotechnology Co., Ltd, Guizhou 556000, People's Republic of China
| | - Huaning Wei
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518107, People's Republic of China.
| | - Wenyong Lou
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China.
| | - Jun Ge
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China; Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518107, People's Republic of China.
| |
Collapse
|
30
|
Weth AF, Dangerfield EM, Timmer MSM, Stocker BL. Recent Advances in the Development of Mincle-Targeting Vaccine Adjuvants. Vaccines (Basel) 2024; 12:1320. [PMID: 39771982 PMCID: PMC11680293 DOI: 10.3390/vaccines12121320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 01/11/2025] Open
Abstract
The Macrophage-inducible C-type lectin (Mincle) is a pattern-recognition receptor (PRR), which has shown much promise as a molecular target for the development of TH1/TH17-skewing vaccine adjuvants. In 2009, the first non-proteinaceous Mincle ligands, trehalose dimycolate (TDM) and trehalose dibehenate (TDB), were identified. This prompted a search for other Mincle agonists and the exploration of Mincle agonists as vaccine adjuvants for both preventative and therapeutic (anti-cancer) vaccines. In this review, we discuss those classes of Mincle agonists that have been explored for their adjuvant potential. These Mincle agonists have been used as stand-alone adjuvants or in combination with other pathogen-associated molecular patterns (PAMPs) or immunomodulatory agents. We will also highlight recently identified Mincle ligands with hitherto unknown adjuvanticity. Conjugate vaccines that contain covalently linked adjuvants and/or adjuvant-antigen combinations are also presented, as well as the different formulations (e.g., oil-in-water emulsions, liposomes, and particulate delivery systems) that have been used for the codelivery of antigens and adjuvants. Insofar the reader is presented with a thorough review of the potential of Mincle-mediated vaccine adjuvants, including historical context, present-day research and clinical trials, and outstanding research questions, such as the role of ligand presentation and Mincle clustering, which, if better understood, will aid in the development of the much-needed TH1/TH17-skewing vaccine adjuvants.
Collapse
Affiliation(s)
| | | | - Mattie S. M. Timmer
- School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Bridget L. Stocker
- School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| |
Collapse
|
31
|
Li L, Ren J, Guo M, An Z, Duan W, Lv J, Tan Z, Yang J, Zhu Y, Yang H, Liu Y, Ma Y, Guo H. SAP130 mediates crosstalk between hepatocyte ferroptosis and M1 macrophage polarization in PFOS-induced hepatotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175612. [PMID: 39163934 DOI: 10.1016/j.scitotenv.2024.175612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/30/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
Perfluorooctane sulfonate (PFOS) is a persistent organic pollutant widely utilized in industrial manufacturing and daily life, leading to significant environmental accumulation and various public health issues. This study aims to characterize spliceosome-associated protein 130 (SAP130) as a key mediator of crosstalk between hepatocytes and macrophages, elucidating its role in PFOS-induced liver inflammation. The data demonstrate that PFOS exposure induces ferroptosis in mouse liver and AML12 cells. During ferroptosis, SAP130 is released from injured hepatocytes into the microenvironment, binding to macrophage-inducible C-type lectin (Mincle) and activating the Mincle/Syk signaling pathway in macrophages, ultimately promoting M1 polarization and exacerbating liver injury. Treatment with the ferroptosis inhibitor Ferrostatin-1 reduces SAP130 release, inhibits Mincle/Syk signaling activation, and mitigates inflammatory response. Furthermore, siSAP130 suppresses the activation of the Mincle signaling pathway and M1 polarization in BMDM cells. Conversely, treatment with the ferroptosis agonist Erastin enhances paracrine secretion of SAP130 and exacerbates inflammation. These findings emphasize the significance of hepatocyte-macrophage crosstalk as a critical pathway for PFOS-induced liver injury in mice while highlighting SAP130 as a pivotal regulator of ferroptosis and inflammation, thereby elucidating the potential mechanism of PFOS-induced liver injury.
Collapse
Affiliation(s)
- Longfei Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Jingyi Ren
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Mingmei Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Ziwen An
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Wenjing Duan
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Junli Lv
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Zhenzhen Tan
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Jing Yang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yiming Zhu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Huiling Yang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China
| | - Yi Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China.
| | - Huicai Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, PR China.
| |
Collapse
|
32
|
Ge Y, Jiang L, Yang C, Dong Q, Tang C, Xu Y, Zhong X. Interactions between tumor-associated macrophages and regulated cell death: therapeutic implications in immuno-oncology. Front Oncol 2024; 14:1449696. [PMID: 39575419 PMCID: PMC11578871 DOI: 10.3389/fonc.2024.1449696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 10/21/2024] [Indexed: 11/24/2024] Open
Abstract
Tumor-associated macrophages (TAMs) play a pivotal role in sculpting the tumor microenvironment and influencing cancer progression, particularly through their interactions with various forms of regulated cell death (RCD), including apoptosis, pyroptosis, ferroptosis, and necroptosis. This review examines the interplay between TAMs and these RCD pathways, exploring the mechanisms through which they interact to promote tumor growth and advancement. We examine the underlying mechanisms of these intricate interactions, emphasizing their importance in cancer progression and treatment. Moreover, we present potential therapeutic strategies for targeting TAMs and manipulating RCD to enhance anti-tumor responses. These strategies encompass reprogramming TAMs, inhibiting their recruitment, and selectively eliminating them to enhance anti-tumor functions, alongside modulating RCD pathways to amplify immune responses. These insights offer a novel perspective on tumor biology and provide a foundation for the development of more efficacious cancer therapies.
Collapse
Affiliation(s)
- Yifei Ge
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lixue Jiang
- Department of Breast Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chengru Yang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Qingfu Dong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chengwu Tang
- Department of Hepatopancreatobiliary Surgery, Huzhou Key Laboratory of Translational Medicine, First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Hepatopancreatobiliary Surgery, Huzhou Key Laboratory of Translational Medicine, First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, China
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xiangyu Zhong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
33
|
Zhang X, Feng Y, Gao F, Li T, Guo Y, Ge S, Wang N. Expression and clinical significance of U2AF homology motif kinase 1 in oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 138:626-634. [PMID: 39129074 DOI: 10.1016/j.oooo.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/03/2024] [Accepted: 07/14/2024] [Indexed: 08/13/2024]
Abstract
OBJECTIVE U2AF homology motif kinase 1 (UHMK1) is a newly discovered molecule that may have multiple functions. Recent studies have revealed that UHMK1 had aberrant expression in many tumors and was associated with tumor progression. However, UHMK1 was rarely reported in oral squamous cell carcinoma (OSCC). STUDY DESIGN In this study, Western blot, quantitative real-time polymerase chain reaction (PCR), and immunohistochemistry were used to detect the expression of UHMK1 in OSCC and peritumoral non-neoplastic tissues. Then, its relationship with clinicopathologic parameters was analyzed. The Kaplan-Meier method and Cox regression model were used to analyze the effects of UHMK1 expression on the prognosis and survival of OSCC patients. RESULTS Our results showed that UHMK1 had higher expression in OSCC tissues compared with in peritumoral non-neoplastic tissues, and its high expression was associated with high TNM stage and lymph node metastasis. High UHMK1 expression was related to short overall and disease-free survival times. Moreover, UHMK1 expression was identified as an independent prognostic factor that influences overall and disease-free survival of OSCC patients. CONCLUSIONS High expression of UHMK1 is associated with the poor prognosis of patients, and it can be used as a potential prognostic molecule for OSCC.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Yuanyong Feng
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Fei Gao
- Deparment of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tongtong Li
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Yan Guo
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Shengyou Ge
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Ning Wang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China.
| |
Collapse
|
34
|
Li P, Zhang H, Dai M. Current status and prospect of gut and oral microbiome in pancreatic cancer: Clinical and translational perspectives. Cancer Lett 2024; 604:217274. [PMID: 39307411 DOI: 10.1016/j.canlet.2024.217274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Pancreatic cancer is a highly lethal malignancy, and its diagnosis and treatment continue to pose significant challenges. Despite advancements in surgical and comprehensive treatment methods, the five-year survival rate remains below 12 %. With the rapid development of microbiome science, the gut and oral microbiota, which are readily accessible and can be sampled non-invasively, have emerged as a novel area of interest in pancreatic cancer research. Dysbiosis in these microbial communities can induce persistent inflammatory responses and affect the host's immune system, promoting cancer development and impacting the efficacy of treatments like chemotherapy and immunotherapy. This review provides an up-to-date overview of the roles of both gut and oral microbiota in the onset, progression, diagnosis, and treatment of pancreatic cancer. It analyzes the potential of utilizing these microbiomes as biomarkers and therapeutic targets from a clinical application perspective. Furthermore, it discusses future research directions aimed at harnessing these insights to advance the diagnosis and treatment strategies for pancreatic cancer. By focusing on the microbiome's role in clinical and translational medicine, this review offers insights into improving pancreatic cancer diagnosis and treatment outcomes.
Collapse
Affiliation(s)
- Pengyu Li
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Hanyu Zhang
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Menghua Dai
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
35
|
Zhao T, Zhang X, Liu X, Jiang X, Chen S, Li H, Ji H, Wang S, Liang Q, Ni S, Du M, Liu L. Characterizing PANoptosis gene signature in prognosis and chemosensitivity of colorectal cancer. J Gastrointest Oncol 2024; 15:2129-2144. [PMID: 39554569 PMCID: PMC11565111 DOI: 10.21037/jgo-24-245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/09/2024] [Indexed: 11/19/2024] Open
Abstract
Background PANoptosis is a cell death pathway involved in pyroptosis, apoptosis and necrosis, and plays a key role in the development of malignant tumors. However, the molecular signature of PANoptosis in colorectal cancer (CRC) prognosis has not been thoroughly explored. The present study aimed to develop a novel prognostic model based on PANoptosis-related genes in CRC. Methods We initially included transcriptome data of 404 CRC samples from The Cancer Genome Atlas (TCGA) cohort and identified differentially expressed genes related to PANoptosis. We then employed Cox, least absolute shrinkage and selection operator (LASSO) regression, and Random Forest methods to determine the prognostic value and constructed a PANoptosis prognostic model, followed by the validation on both internal (TCGA) and external datasets [Nanjing Colorectal Cancer (NJCRC) and Gene Expression Omnibus (GEO), n=635]. We performed immune infiltration analysis and gene set enrichment analysis to reveal biological processes and pathways against differential risk score. Ultimately, we carried out drug sensitivity analysis to predict the response of CRC patients to diverse treatment strategies. Results We constructed a predictive model based on four PANoptosis-related genes (TIMP1, CDKN2A, CAMK2B, and TLR3), with a high performance [area under the curve (AUC)1-year =0.702, AUC3-year =0.725, AUC5-year =0.668] and being an independent prognostic factor in predicting the prognosis of CRC patients. Notably, colorectal tumor with high PANoptosis risk score performed higher levels of macrophage infiltration and immune scores, but a greater reduction of Tumor Microenvironment Score (TMEscore) and DNA replication. Particularly, patients in high-risk group exhibited higher sensitivity to fluorouracil, oxaliplatin and lapatinib compared to the low-risk group. Conclusions This study highlights the prognostic potential of PANoptosis-related features in CRC, demonstrating their role as key biomarkers significantly associated with patient survival and aiding in the identification of high-risk patients, thereby advancing immunotherapy approaches.
Collapse
Affiliation(s)
- Tingyu Zhao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao Liu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xingyu Jiang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Silu Chen
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Huiqin Li
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongsheng Ji
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Sumeng Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qi Liang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Siqi Ni
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mulong Du
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lingxiang Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
36
|
Mao Z, Gu Y, Tao G, Dai Q, Xu Y, Fei Z. The co-expression of Crohn's disease and colon cancer network was analyzed by bioinformatics-CXCL1 tumour microenvironment and prognosis-related gene CXCL1. Discov Oncol 2024; 15:557. [PMID: 39402186 PMCID: PMC11479648 DOI: 10.1007/s12672-024-01423-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/03/2024] [Indexed: 10/17/2024] Open
Abstract
PURPOSE This study aimed to investigate the molecular links and mechanisms between Crohn's disease (CD) and colorectal cancer (CRC). METHODS This study used the Gene Expression Omnibus (GEO) database to identify Differentially expressed genes (DEGs) in CD (GSE112366) and CRC (GSE110224), analyzed by 'edgeR' and 'limma'. The Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes explored DEG functions, and the Search Tool for the Retrieval of Interacting Genes (STRING) informed the protein-protein interaction network construction visualized in Cytoscape (version 3.7.2). Cyto-Hubba identified key genes, whose biomarker potential for CD and CRC was evaluated. RESULTS The study discovered 61 DEGs, with 44 up- and 17 down-regulated, linked to immune responses and signaling pathways. CXCL1, highly expressed in colon cancer, correlated with better prognosis and lower staging. It also showed associations with immune infiltration and checkpoint molecules, suggesting a role in cancer progression and retreat. CONCLUSION CXCL1 may play a role in the development of colorectal cancer from inflammatory bowel disease.
Collapse
Affiliation(s)
- Zijuan Mao
- Department of Radiotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yuyang Gu
- Department of Oncology, The First Affiliated Hospital of Jiaxing University, No. 1882, Zhonghuan South Road, Jiaxing, 314000, Zhejiang, People's Republic of China
| | - Ganxue Tao
- Department of Radiotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Qiang Dai
- Department of Medical Oncology, Rui'an People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, 108 Wansong Road, Rui'an, 325200, China
| | - Yangjie Xu
- Department of Oncology, Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, China.
| | - Zhenghua Fei
- Department of Radiotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
37
|
La Marca JE, Kelly GL, Strasser A, Diepstraten ST. Don't fear the reaper: The role of regulated cell death in tumorigenesis and BH3-mimetics for cancer therapy. Dev Cell 2024; 59:2532-2548. [PMID: 39378839 DOI: 10.1016/j.devcel.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/20/2024] [Accepted: 06/20/2024] [Indexed: 10/10/2024]
Abstract
From its earliest characterization, it has been recognized that there is a role for regulated (programmed) cell death in cancer. As our understanding of the different types of programmed cell death processes and their molecular control has advanced, so have the technologies that allow us to manipulate these processes to, for example, fight against cancer. In this review, we describe the roles of the different forms of regulated cell death in the development of cancer as well as their potential therapeutic exploitation. In that vein, we explore the development and use of BH3-mimetics, a unique class of drugs that can directly activate the apoptotic cell death machinery to treat cancer. Finally, we address key challenges that face the field to improve the use of these therapeutics and the efforts that are being undertaken to do so.
Collapse
Affiliation(s)
- John E La Marca
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Genome Engineering and Cancer Modelling Program, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia.
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Andreas Strasser
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Sarah T Diepstraten
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
38
|
Zhang Y, Chen D, Ang B, Deng X, Li B, Bai Y, Zhang Y. A necroptosis-regulated model from single-cell analysis that predicts survival and identifies the Pivotal role of MAGEA6 in hepatocellular carcinoma. Heliyon 2024; 10:e37711. [PMID: 39315163 PMCID: PMC11417173 DOI: 10.1016/j.heliyon.2024.e37711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Objective Hepatocellular carcinoma (HCC) ranks as the third leading cause of cancer-related deaths, constituting 75%-85 % of all primary liver cancers. The objective of this study was to develop a necroptosis-related gene signature using single-cell and bulk RNA sequencing to predict HCC patient prognoses. Methods A total of 25 key necroptosis regulators were identified from previous literature. We evaluated the necroptosis scores of different cell types using single-cell sequencing data from HCC and analyzed 168 necroptosis-related genes. The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) dataset served as the training set for establishing a novel necroptosis-related gene risk signature, employing univariate and multivariate Cox regression analyses. Additionally, the study examined the model's relevance in immunity and immunotherapy, and predicted chemosensitivity in HCC patients based on the gene signature. The key genes were validated by the biological experiments. Results Compared to other cell types, hepatoma cells displayed the lowest necroptosis scores. A new six-gene necroptosis-related signature (S100A11, MAGEC2, MAGEA6, CTP2C9, SOX4, AKR1B10) was developed using the TCGA database and validated in the ICGC database. Patients in the high-risk category had poorer prognoses, with the risk score serving as an independent prognostic indicator beyond other clinical factors. These high-risk patients also exhibited greater immune infiltration but demonstrated a weaker anti-tumor response due to elevated expression of immune checkpoints. Pathways involving hypoxia, glycolysis, and P53, as well as the frequency of P53 somatic mutations, were notably heightened in the high-risk group. Additionally, the six genes in the model showed significantly different mRNA expression in hepatoma cell lines compared to normal hepatocytes, with the role of MAGEA6 in liver cancer being elucidated through critical experiments. Conclusions This study successfully developed a six-gene necroptosis-related signature to predict prognoses in HCC patients. It further explored the roles of necroptosis in hepatoma cells and the tumor microenvironment.
Collapse
Affiliation(s)
- Youcheng Zhang
- The First Central Clinical School, Tianjin Medical University, Tianjin, 300192,China
- Department of Pediatric Surgery, Huai’an Maternal and Child Health Care Center, Huai'an, 223001, Jiangsu Province, China
| | - Dapeng Chen
- The First Central Clinical School, Tianjin Medical University, Tianjin, 300192,China
| | - Bing Ang
- Department of Oncology, Tianjin First Central Hospital Clinic Institute, Tianjin 300192, China
| | - Xiyue Deng
- The First Central Clinical School, Tianjin Medical University, Tianjin, 300192,China
| | - Bing Li
- Department of Pediatric Surgery, Huai’an Maternal and Child Health Care Center, Huai'an, 223001, Jiangsu Province, China
| | - Yi Bai
- Department of Hepatobiliary and Pancreatic Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Yamin Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| |
Collapse
|
39
|
Di Y, Wang Z, Xiao J, Zhang X, Ye L, Wen X, Qin J, Lu L, Wang X, He W. ACSL6-activated IL-18R1-NF-κB promotes IL-18-mediated tumor immune evasion and tumor progression. SCIENCE ADVANCES 2024; 10:eadp0719. [PMID: 39292786 PMCID: PMC11409972 DOI: 10.1126/sciadv.adp0719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/09/2024] [Indexed: 09/20/2024]
Abstract
Aberrant activation of IL-18 signaling regulates tumor immune evasion and progression. However, the underlying mechanism remains unclear. Here, we report that long-chain acyl-CoA synthase 6 (ACSL6) is highly expressed in liver cancer and correlated with poor prognosis. ACSL6 promotes tumor growth, metastasis, and immune evasion mediated by IL-18, independent of its metabolic enzyme activity. Mechanistically, upon IL-18 stimulation, ACSL6 is phosphorylated by ERK2 at S674 and recruits IL-18RAP to interact with IL-18R1, thereby reinforcing the IL-18R1-IL-18RAP heterodimer and triggering NF-κB-dependent gene expression to facilitate tumor development. Furthermore, the up-regulation of CXCL1 and CXCL5 by ACSL6 promotes tumor-associated neutrophil and tumor-associated macrophage recruitment, thereby inhibiting cytotoxic CD8+ T cell infiltration. Ablation or S674A mutation of ACSL6 potentiated anti-PD-1 therapeutic efficacy by increasing the effector activity of intertumoral CD8+ T cells. We revealed that ACSL6 is a potential adaptor that activates IL-18-NF-κB axis-mediated tumor immune evasion and provides valuable insights for developing effective immunotherapy strategies for cancer.
Collapse
Affiliation(s)
- Yuqin Di
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Ziyang Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jing Xiao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, Guangdong 519000, China
| | - Xiang Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Lvlan Ye
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xiangqiong Wen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jiale Qin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, Guangdong 519000, China
| | - Xiongjun Wang
- School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Weiling He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Department of Gastrointestinal Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| |
Collapse
|
40
|
Duangthim N, Lomphithak T, Saito-Koyama R, Miki Y, Inoue C, Sato I, Miyauchi E, Abe J, Sasano H, Jitkaew S. Prognostic significance and response to immune checkpoint inhibitors of RIPK3, MLKL and necroptosis in non-small cell lung cancer. Sci Rep 2024; 14:21625. [PMID: 39285232 PMCID: PMC11405766 DOI: 10.1038/s41598-024-72545-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
Lung cancer remains the leading cause of cancer death. Treatment with immune checkpoint inhibitor (ICI) alone or combination with chemotherapy served as first-line therapy in non-small cell lung cancer (NSCLC). However, only 20-50% of NSCLC patients respond to ICI. Necroptosis, an inflammatory form of cell death plays an important role in the regulation of tumor immune microenvironment which may affect prognosis and ICI response but its clinical significance in NSCLC patients has remained largely unknown. Therefore, we aimed to analyze the correlation between key necroptotic proteins and necroptosis and clinical outcomes, the status of tumor-infiltrating immune cells, and response to ICI in NSCLC patients. The expression of receptor-interacting protein kinase 3 (RIPK3), mixed lineage kinase domain-like protein (MLKL) and phosphorylated MLKL (pMLKL) were immunolocalized in 125 surgically resected NSCLC patients and 23 NSCLC patients administered with ICI therapy. CD8 + and FOXp3 + T cells and CD163 + M2 macrophages were also immunolocalized. High RIPK3 status was positively correlated with survival of the patients and RIPK3 turned out an independent favorable prognostic factor of the patients. RIPK3 was negatively correlated with CD8 + T cells, while MLKL positively correlated with CD163 + M2 macrophages, suggesting the possible involvement of RIPK3 and MLKL in formulating immunosuppressive microenvironment. In addition, high RIPK3 status tended to be associated with clinical resistance to ICI therapy (P-value = 0.057). Furthermore, NSCLC cells-expressing RIPK3 suppressed T cells response to ICI therapy in vitro. Therefore, RIPK3 and MLKL could induce an immunosuppressive microenvironment, resulting in low response to ICI therapy in NSCLC.
Collapse
Affiliation(s)
- Nattaya Duangthim
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanpisit Lomphithak
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ryoko Saito-Koyama
- Department of Pathology, Tohoku University School of Medicine, Sendai, Miyagi, 980-8575, Japan
- Department of Pathology, National Hospital Organization, Sendai Medical Center, Sendai, Miyagi, 980-8575, Japan
| | - Yasuhiro Miki
- Department of Pathology, Tohoku University School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Chihiro Inoue
- Department of Pathology, Tohoku University School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Ikuro Sato
- Department of Pathology, Miyagi Prefectural Cancer Center, Natori, Miyagi, 981-1293, Japan
| | - Eisaku Miyauchi
- Department of Respiratory Medicine, Tohoku University Hospital, Sendai, Miyagi, 980-8575, Japan
| | - Jiro Abe
- Department of Thoracic Surgery, Miyagi Cancer Center, Natori, Miyagi, 981-1293, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Siriporn Jitkaew
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence for Cancer and Inflammation, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
41
|
Ou Y, Jiang HM, Wang YJ, Shuai QY, Cao LX, Guo M, Qi CC, Li ZX, Shi J, Hu HY, Liu YX, Zuo SY, Chen X, Feng MD, Shi Y, Sun PQ, Wang H, Yang S. The Zeb1-Cxcl1 axis impairs the antitumor immune response by inducing M2 macrophage polarization in breast cancer. Am J Cancer Res 2024; 14:4378-4397. [PMID: 39417185 PMCID: PMC11477816 DOI: 10.62347/uais7070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Zeb1, a key epithelial-mesenchymal transition (EMT) regulator, has recently been found to be involved in M2 macrophage polarization in the tumor immune microenvironment, thereby promoting tumor development. However, the underlying mechanism of Zeb1-induced M2 macrophage polarization remains largely unexplored. To identify the potential role of Zeb1 in remodeling the tumor immune microenvironment in breast cancer, we crossed the floxed Zeb1 allele homozygously into PyMT mice to generate PyMT;Zeb1cKO (MMTV-Cre;PyMT;Zeb1fl/fl ) mice. We found that the recruitment of M2-type tumor-associated macrophages (TAMs) was significantly reduced in tumors from PyMT;Zeb1cKO mice, and their tumor suppressive effects were weakened. Mechanistically, Zeb1 played a crucial role in transcriptionally promoting the production of Cxcl1 in tumor cells. In turn, Cxcl1 activated the Cxcr2-Jak-Stat3 pathway to induce M2 polarization of TAMs in a paracrine manner, which eventually led to T-cell inactivation and impaired the antitumor immune response in breast cancer. Our results collectively revealed an important role of Zeb1 in remodeling the tumor microenvironment, suggesting a novel therapeutic intervention for the treatment of advanced breast cancer.
Collapse
Affiliation(s)
- Yang Ou
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Hui-Min Jiang
- Beijing Institute of Brain Disorders, Capital Medical UniversityBeijing, P. R. China
| | - Yan-Jing Wang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Qiu-Ying Shuai
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Li-Xia Cao
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Min Guo
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Chun-Chun Qi
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Zhao-Xian Li
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Jie Shi
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Hua-Yu Hu
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Yu-Xin Liu
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Si-Yu Zuo
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Xiao Chen
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Meng-Dan Feng
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Yi Shi
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Pei-Qing Sun
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical CenterWinston-Salem, NC, USA
| | - Hang Wang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| | - Shuang Yang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, School of Medicine, Nankai UniversityTianjin, P. R. China
| |
Collapse
|
42
|
Man SM, Kanneganti TD. Innate immune sensing of cell death in disease and therapeutics. Nat Cell Biol 2024; 26:1420-1433. [PMID: 39223376 DOI: 10.1038/s41556-024-01491-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
Innate immunity, cell death and inflammation underpin many aspects of health and disease. Upon sensing pathogens, pathogen-associated molecular patterns or damage-associated molecular patterns, the innate immune system activates lytic, inflammatory cell death, such as pyroptosis and PANoptosis. These genetically defined, regulated cell death pathways not only contribute to the host defence against infectious disease, but also promote pathological manifestations leading to cancer and inflammatory diseases. Our understanding of the underlying mechanisms has grown rapidly in recent years. However, how dying cells, cell corpses and their liberated cytokines, chemokines and inflammatory signalling molecules are further sensed by innate immune cells, and their contribution to further amplify inflammation, trigger antigen presentation and activate adaptive immunity, is less clear. Here, we discuss how pattern-recognition and PANoptosome sensors in innate immune cells recognize and respond to cell-death signatures. We also highlight molecular targets of the innate immune response for potential therapeutic development.
Collapse
Affiliation(s)
- Si Ming Man
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia.
| | | |
Collapse
|
43
|
Wang S, He H, Qu L, Shen Q, Dai Y. Dual roles of inflammatory programmed cell death in cancer: insights into pyroptosis and necroptosis. Front Pharmacol 2024; 15:1446486. [PMID: 39257400 PMCID: PMC11384570 DOI: 10.3389/fphar.2024.1446486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/16/2024] [Indexed: 09/12/2024] Open
Abstract
Programmed cell death (PCD) is essential for cellular homeostasis and defense against infections, with inflammatory forms like pyroptosis and necroptosis playing significant roles in cancer. Pyroptosis, mediated by caspases and gasdermin proteins, leads to cell lysis and inflammatory cytokine release. It has been implicated in various diseases, including cancer, where it can either suppress tumor growth or promote tumor progression through chronic inflammation. Necroptosis, involving RIPK1, RIPK3, and MLKL, serves as a backup mechanism when apoptosis is inhibited. In cancer, necroptosis can enhance immune responses or contribute to tumor progression. Both pathways have dual roles in cancer, acting as tumor suppressors or promoting a pro-tumorigenic environment depending on the context. This review explores the molecular mechanisms of pyroptosis and necroptosis, their roles in different cancers, and their potential as therapeutic targets. Understanding the context-dependent effects of these pathways is crucial for developing effective cancer therapies.
Collapse
Affiliation(s)
- Shuai Wang
- Collage of Medicine, Xinyang Normal University, Xinyang, China
| | - Huanhuan He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lailiang Qu
- Collage of Medicine, Xinyang Normal University, Xinyang, China
| | - Qianhe Shen
- Collage of Medicine, Xinyang Normal University, Xinyang, China
| | - Yihang Dai
- Collage of Medicine, Xinyang Normal University, Xinyang, China
| |
Collapse
|
44
|
Xu F, Ye Y, Gao Y, Xu S. Dual Role of Necroptosis in Cervical Cancer: Promoting Tumor Aggression and Modulating the Immune Microenvironment via the JAK2-STAT3 Pathway. J Cancer 2024; 15:5288-5307. [PMID: 39247606 PMCID: PMC11375541 DOI: 10.7150/jca.98738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/28/2024] [Indexed: 09/10/2024] Open
Abstract
In the dynamic landscape of cervical cancer (CC) pathophysiology, this study aimed to elucidate the role of necroptosis in modulating tumor proliferation, invasion, and the immune microenvironment in CC. In this study, the impact of necroptosis on CC was evaluated through a series of bioinformatical analyses and experimental approaches. The impact of necroptosis on CC was illustrated by analyzing its effects on tumor aggression, immune responses, and the JAK2-STAT3 signaling pathway. Bevacizumab, a monoclonal antibody targeting vascular endothelial growth factor (VEGF), was also evaluated for its potential induction of necroptosis in CC cells and its interaction with necroptosis inhibitors. Additionally, the study assessed the influence of necroptosis on the immune microenvironment, particularly in T-cell-related pathways and the expression of tumor suppressor genes in CC. Necroptosis was found to enhance VEGFA expression through the activation of the JAK2-STAT3 pathway, promoting tumor proliferative and invasive capabilities in CC. Bevacizumab induced necroptosis in CC cells, potentially leading to resistance to therapy. The combination of bevacizumab with necroptosis inhibitors attenuated VEGFA expression, suggesting a novel therapeutic strategy. Additionally, necroptosis activated T-cell-related pathways and promoted the infiltration and activation of Jurkat T cells. CD3D-a tumor suppressor gene in CC-was identified as a critical marker and its expression could be upregulated by necroptosis via the JAK2-STAT3 pathway in Jurkat T cells. Treatment of CC cells with supernatants from necroptosis-induced Jurkat cells resulted in reduced tumor cell proliferation and invasion. This study reveals a complex interaction between necroptosis, tumor progression, and the immune response in CC. The findings propose a nuanced approach to leveraging necroptosis for therapeutic interventions, highlighting the potential of combining necroptosis inhibitors with existing therapies to improve treatment outcomes in CC.
Collapse
Affiliation(s)
- Fangfang Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yingjun Ye
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yueqing Gao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Shaohua Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
45
|
Cao L, Ba Y, Chen F, Zhang S, Zhang H. Exploration of bacterial lipopolysaccharide-related genes signature based on T cells for predicting prognosis in colorectal cancer. Aging (Albany NY) 2024; 16:11606-11625. [PMID: 39115879 PMCID: PMC11346792 DOI: 10.18632/aging.206041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/19/2024] [Indexed: 08/22/2024]
Abstract
PURPOSE The intratumoral microorganisms participates in the progression and immunotherapy of colorectal cancer (CRC). However, due to technical limitations, the impact of microorganisms on CRC has not been fully understood. Therefore, we conducted a systematic analysis of relationship between bacterial lipopolysaccharide (LPS)-associated genes and immune cells to explore new biomarkers for predicting the prognosis of CRC. METHODS The single-cell RNA sequencing data and the Comparative Toxicogenomics Database were used to screen T cells-associated LPS-related genes (TALRGs). Then, we established and validated the TALRGs risk signature in The Cancer Genome Atlas Colon Adenocarcinoma (TCGA-COAD) cohort and GSE39582 cohort. Besides, we compared the differences in tumor-infiltrating immune cell types, immunotherapeutic response, somatic mutation profiles, and tumor mutation burden (TMB) between high-risk group and low-risk group. In addition, the immunotherapeutic cohort (Imvigor210) treated with an anti-PD-L1 agent was performed to explore the potential value of the TALRGs signature on immunotherapy. RESULTS Five prognostic TALRGs were identified and selected to build the prognostic model. The high-risk group had poor prognosis in both TCGA-COAD cohort (P < 0.0001) and GSE39582 cohort (P = 0.00019). The areas under the curves (AUCs) of TALRGs signature were calculated (TCGA-COAD cohort: 0.624 at 1 years, 0.639 at 3 years, 0.648 at 5 years; anti-PD-L1 cohort was 0.59). The high-risk group had advanced pathological stages and higher TMN stages in both TCGA-COAD cohort and GSE39582 cohort. The high-risk group had the higher infiltration of immunosuppressive cells, the expressions of immune checkpoint molecules, the IC50 values of chemotherapy drugs, and TP53 mutation rate (P < 0.05). In addition, patients with high TMB had worse prognosis (P < 0.05). Furthermore, the Imvigor210 also showed patients with high-risk scores had poor prognosis (platinum-treated cohort: P = 0.0032; non-platinum-treated cohort: P = 0.00017). CONCLUSIONS Microorganisms are closely related to the tumor microenvironment to influence the progression and immune response of CRC via stimulating T cells through LPS-related genes. The TALRGs signature contributed to predict the prognosis and immunotherapy of CRC, and became new therapeutic targets and biomarkers of CRC.
Collapse
Affiliation(s)
- Lichao Cao
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, Guangdong, China
- Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, Guangdong, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, China
| | - Ying Ba
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, Guangdong, China
- Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, Guangdong, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, China
| | - Fang Chen
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, Guangdong, China
- Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, Guangdong, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, China
| | - Shenrui Zhang
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, Guangdong, China
- Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, Guangdong, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, China
| | - Hezi Zhang
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, Guangdong, China
- Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, Guangdong, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, China
| |
Collapse
|
46
|
Zhang L, Gu S, Wang L, Zhao L, Li T, Zhao X, Zhang L. M2 macrophages promote PD-L1 expression in triple-negative breast cancer via secreting CXCL1. Pathol Res Pract 2024; 260:155458. [PMID: 39003998 DOI: 10.1016/j.prp.2024.155458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/26/2024] [Accepted: 07/07/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND M2 macrophages are known to play a significant role in the progression of triple-negative breast cancer (TNBC) by creating an immunosuppressive microenvironment. The aim of this study is to investigate the impact of M2 macrophages on TNBC and their correlation with programmed death-ligand 1 (PD-L1) expression. METHODS We employed a co-culture system to analyze the role of the mutual regulation of M2 macrophages and TNBC cells. Employing a multifaceted approach, including bioinformatics analysis, Western blotting, flow cytometry analysis, ELISA, qRT-PCR, lentivirus infection, mouse models, and IHC, we aimed to elucidate the influence and mechanism of M2 macrophages on PD-L1 expression. RESULTS The results showed a substantial infiltration of M2 macrophages in TNBC tissue, which demonstrated a positive correlation with PD-L1 expression. CXCL1 exhibited abnormally high expression in M2 macrophages and enhanced the expression of PD-L1 in TNBC cells. Notably, silencing CXCL1 or its receptor CXCR2 inhibited M2 macrophages-induced expression of PD-L1. Mechanistically, CXCL1 derived from M2 macrophages binding to CXCR2 activated the PI3K/AKT/NF-κB signaling pathway, resulting in increased PD-L1 expression in TNBC. CONCLUSION Broadly speaking, these results provide evidence for the immunosuppressive role of M2 macrophages and CXCL1 in TNBC cells, indicating their potential as therapeutic biomarkers.
Collapse
Affiliation(s)
- Lifen Zhang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Shanzhi Gu
- Department of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Lu Wang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Lin Zhao
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Xinhan Zhao
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Lingxiao Zhang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
47
|
Wang X, Chen Z, Tang J, Cao J. Identification and Validation of a Necroptosis-Related Prognostic Model in Tumor Recurrence and Tumor Immune Microenvironment in Breast Cancer Management. J Inflamm Res 2024; 17:5057-5076. [PMID: 39081870 PMCID: PMC11288355 DOI: 10.2147/jir.s460551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024] Open
Abstract
Background Breast cancer is the leading cause of cancer-related death in women. Necroptosis, a form of programmed necrotic cell death, occurs in many solid tumors, including breast cancer, and influences anti-tumor immunity. The role of necroptosis in managing breast cancer recurrence remains unclear. Methods Gene expression profiles and clinical data of breast cancer patients were obtained from the GEO (GSE20685, GSE21653, GSE25055) and TCGA databases. Data analysis and visualization were performed using R. Unsupervised Consensus Clustering and LASSO-COX regression stratified breast cancer patients. GO, KEGG, GSVA, ESTIMATE, and ROC analyses were used to investigate necroptotic signatures. In vitro and in vivo experiments validated necroptosis's role in breast cancer immunity. Results The potential function of necroptotic signature in immunity was first indicated with GO analysis in BRCA cohort. Next, two prognostic models based on the necroptotic profiles both suggested a link between low-risk group with a particular necroptotic immune signature. And a variety of immune cells and immune pathways were shown to be positively associated with a patient's risk score. As an altered immune checkpoint pattern was observed after regulating necroptotic genes, where TIM-3 and LAGLS9 elevated significantly in low-risk group, further validation in vitro and in vivo demonstrated that manipulating a subset of necroptotic gene set could sensitize tumor response to the co-blockade immunotherapy of anti-TIM-3 and anti-PD-1. Conclusion We demonstrated two strategies to stratify breast cancer patients based on their necroptotic profiles and showed that necroptotic signature could assign patients with different tumor immune microenvironment patterns and different recurrence-related prognosis. A subset of necroptotic gene set, composed of TLR3, RIPK3, NLRP3, CASP1, ALDH2 and EZH2, was identified as a biomarker set for predicting immunotherapy-response and recurrence-related prognosis. Targeting necroptosis could helpfacilitate the development of novel breast cancer treatments and tailor personalized medical treatment.
Collapse
Affiliation(s)
- Xiaobo Wang
- Department of General Surgery, the Second Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
| | - Zongyao Chen
- Department of General Surgery, the Second Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
| | - Jianing Tang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Department of Liver Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Jing Cao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Multidisciplinary Breast Cancer Center, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Clinical Research Center for Breast Cancer in Hunan Province, Changsha, Hunan, People’s Republic of China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, People’s Republic of China
| |
Collapse
|
48
|
Liao CY, Li G, Kang FP, Lin CF, Xie CK, Wu YD, Hu JF, Lin HY, Zhu SC, Huang XX, Lai JL, Chen LQ, Huang Y, Li QW, Huang L, Wang ZW, Tian YF, Chen S. Necroptosis enhances 'don't eat me' signal and induces macrophage extracellular traps to promote pancreatic cancer liver metastasis. Nat Commun 2024; 15:6043. [PMID: 39025845 PMCID: PMC11258255 DOI: 10.1038/s41467-024-50450-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating cancer with dismal prognosis due to distant metastasis, even in the early stage. Using RNA sequencing and multiplex immunofluorescence, here we find elevated expression of mixed lineage kinase domain-like pseudo-kinase (MLKL) and enhanced necroptosis pathway in PDAC from early liver metastasis T-stage (T1M1) patients comparing with non-metastatic (T1M0) patients. Mechanistically, MLKL-driven necroptosis recruits macrophages, enhances the tumor CD47 'don't eat me' signal, and induces macrophage extracellular traps (MET) formation for CXCL8 activation. CXCL8 further initiates epithelial-mesenchymal transition (EMT) and upregulates ICAM-1 expression to promote endothelial adhesion. METs also degrades extracellular matrix, that eventually supports PDAC liver metastasis. Meanwhile, targeting necroptosis and CD47 reduces liver metastasis in vivo. Our study thus reveals that necroptosis facilitates PDAC metastasis by evading immune surveillance, and also suggest that CD47 blockade, combined with MLKL inhibitor GW806742X, may be a promising neoadjuvant immunotherapy for overcoming the T1M1 dilemma and reviving the opportunity for radical surgery.
Collapse
Affiliation(s)
- Cheng-Yu Liao
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
- Fuzhou University, 350001, Fuzhou, China
| | - Ge Li
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, 350001, Fuzhou, China
| | - Feng-Ping Kang
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
| | - Cai-Feng Lin
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
- Fuzhou University, 350001, Fuzhou, China
| | - Cheng-Ke Xie
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
| | - Yong-Ding Wu
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
| | - Jian-Fei Hu
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
| | - Hong-Yi Lin
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
| | - Shun-Cang Zhu
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
| | - Xiao-Xiao Huang
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
- Fuzhou University, 350001, Fuzhou, China
| | - Jian-Lin Lai
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
- Fuzhou University, 350001, Fuzhou, China
| | | | - Yi Huang
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Fuzhou University, 350001, Fuzhou, China
| | - Qiao-Wei Li
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Fujian Provincial Center for Geriatrics, 350001, Fuzhou, China
- Fujian Key Laboratory of Geriatrics, 350001, Fuzhou, China
| | - Long Huang
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
- Fuzhou University, 350001, Fuzhou, China
| | - Zu-Wei Wang
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China.
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China.
- Fuzhou University, 350001, Fuzhou, China.
| | - Yi-Feng Tian
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China.
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China.
- Fuzhou University, 350001, Fuzhou, China.
| | - Shi Chen
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China.
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China.
- Fuzhou University, 350001, Fuzhou, China.
- Fujian Provincial Center for Geriatrics, 350001, Fuzhou, China.
- Fujian Key Laboratory of Geriatrics, 350001, Fuzhou, China.
| |
Collapse
|
49
|
Jin Z, Dai Y, Ji Y, Peng X, Duan W, Ai J, Zhang H. Design, synthesis, and structure-activity relationship studies of 6,7-dihydro-5 H-pyrrolo[1,2- b][1,2,4]triazole derivatives as necroptosis inhibitors. RSC Med Chem 2024; 15:2514-2526. [PMID: 39026642 PMCID: PMC11253868 DOI: 10.1039/d4md00265b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/17/2024] [Indexed: 07/20/2024] Open
Abstract
The development of necroptosis inhibitors has emerged as a promising strategy to effectively mitigate necroptosis-related inflammatory diseases, neurodegenerative diseases, and cancers. In this paper, we reported a series of 6,7-dihydro-5H-pyrrolo[1,2-b][1,2,4]triazole derivatives as potent necroptosis inhibitors. The representative compound 26 displayed potent anti-necroptotic activity in both human and mouse cellular assays and exhibited potent inhibitory activity against receptor-interacting protein kinase 1 (RIPK1). In vivo pharmacokinetic studies were performed to determine the oral exposure of compound 26. Finally, molecular docking elucidated that compound 26 could effectively bind to the allosteric pocket of RIPK1 and serve as a type III inhibitor. Taken together, our findings highlighted that compound 26 represented a promising lead compound for future necroptosis inhibitor development.
Collapse
Affiliation(s)
- Zechen Jin
- Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 China
- School of Pharmacy, University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 China
| | - Yang Dai
- Cancer Research Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 China
- School of Pharmacy, University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 China
| | - Yinchun Ji
- Cancer Research Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 China
| | - Xia Peng
- Cancer Research Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 China
| | - Wenhu Duan
- Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 China
- School of Pharmacy, University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery Yantai Shandong 264117 China
| | - Jing Ai
- Cancer Research Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 China
- School of Pharmacy, University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 China
| | - Hefeng Zhang
- Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 China
| |
Collapse
|
50
|
Xia J, Zhang L, Peng X, Tu J, Li S, He X, Li F, Qiang J, Dong H, Deng Q, Liu C, Xu J, Zhang R, Liu Q, Hu G, Liu C, Jiang YZ, Shao ZM, Chen C, Liu S. IL1R2 Blockade Alleviates Immunosuppression and Potentiates Anti-PD-1 Efficacy in Triple-Negative Breast Cancer. Cancer Res 2024; 84:2282-2296. [PMID: 38657120 DOI: 10.1158/0008-5472.can-23-3429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/29/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with limited therapeutic options. IL1 receptor type 2 (IL1R2) promotes breast tumor-initiating cell (BTIC) self-renewal and tumor growth in TNBC, indicating that targeting it could improve patient treatment. In this study, we observed that IL1R2 blockade strongly attenuated macrophage recruitment and the polarization of tumor-associated macrophages (TAM) to inhibit BTIC self-renewal and CD8+ T-cell exhaustion, which resulted in reduced tumor burden and prolonged survival in TNBC mouse models. IL1R2 activation by TAM-derived IL1β increased PD-L1 expression by interacting with the transcription factor Yin Yang 1 (YY1) and inducing YY1 ubiquitination and proteasomal degradation in both TAMs and TNBC cells. Loss of YY1 alleviated the transcriptional repression of c-Fos, which is a transcriptional activator of PDL-1. Combined treatment with an IL1R2-neutralizing antibodies and anti-PD-1 led to enhanced antitumor efficacy and reduced TAMs, BTICs, and exhausted CD8+ T cells. These results suggest that IL1R2 blockade might be a strategy to potentiate immune checkpoint blockade efficacy in TNBC to improve patient outcomes. Significance: IL1R2 in both macrophages and breast cancer cells orchestrates an immunosuppressive tumor microenvironment by upregulating PD-L1 expression and can be targeted to enhance the efficacy of anti-PD-1 in triple-negative breast cancer.
Collapse
Affiliation(s)
- Jie Xia
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lixing Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xilei Peng
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
| | - Juchuanli Tu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
| | - Siqin Li
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xueyan He
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fengkai Li
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiankun Qiang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haonan Dong
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiaodan Deng
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cuicui Liu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center and Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiahui Xu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rui Zhang
- The Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Quentin Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Guohong Hu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chong Liu
- Department of Neurosurgery of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Precision Cancer Medical Center, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhi-Ming Shao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Precision Cancer Medical Center, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
- Academy of Biomedical Engineering and The Third Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|