1
|
Gaynor L, Singh H, Tie G, Badarinath K, Madha S, Mancini A, Bhattacharya S, Hoshino M, de Sauvage FJ, Murata K, Jadhav U, Shivdasani RA. Crypt density and recruited enhancers underlie intestinal tumour initiation. Nature 2025; 640:231-239. [PMID: 39778708 DOI: 10.1038/s41586-024-08573-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/23/2024] [Indexed: 01/11/2025]
Abstract
Oncogenic mutations that drive colorectal cancer can be present in healthy intestines for long periods without overt consequence1,2. Mutation of Apc, the most common initiating event in conventional adenomas3, activates Wnt signalling, thus conferring fitness on mutant intestinal stem cells (ISCs)4,5. Apc mutations may occur in ISCs that arise by routine self-renewal or by dedifferentiation of their progeny. Although ISCs of these different origins are fundamentally similar6,7, it is unclear whether both generate tumours equally well in uninjured intestines. It is also unknown whether cis-regulatory elements are substantively modulated upon Wnt hyperactivation or as a feature of subsequent tumours. Here we show in two mouse models that adenomas are not an obligatory outcome of Apc deletion in either ISC source, but require proximity of mutant intestinal crypts. Reduced crypt density abrogates, and aggregation of mutant colonic crypts augments, adenoma formation. Moreover, adenoma-resident ISCs open chromatin at thousands of enhancers that are inaccessible in Apc-null ISCs that are not associated with adenomas. These cis elements explain adenoma-selective gene activity and persist, with little further expansion of the repertoire, as other oncogenic mutations accumulate. Thus, cooperativity between neighbouring mutant crypts and new accessibility at specific enhancers are key steps early in intestinal tumorigenesis.
Collapse
Affiliation(s)
- Liam Gaynor
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
| | - Harshabad Singh
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Guodong Tie
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Krithika Badarinath
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Shariq Madha
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Andrew Mancini
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA
| | - Swarnabh Bhattacharya
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | | | - Kazutaka Murata
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Unmesh Jadhav
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Ramesh A Shivdasani
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
2
|
Cortez VS, Viragova S, Koga S, Liu M, O'Leary CE, Ricardo-Gonzalez RR, Schroeder AW, Kochhar N, Klein OD, Diamond MS, Liang HE, Locksley RM. IL-25-induced memory ILC2s mediate long-term small intestinal adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.645270. [PMID: 40196473 PMCID: PMC11974837 DOI: 10.1101/2025.03.25.645270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The adaptation of intestinal helminths to vertebrates evolved strategies to attenuate host tissue damage to support reproductive needs of parasites necessary to disseminate offspring to the environment. Helminths initiate the IL-25-mediated tuft cell-ILC2 circuit that enhances barrier protection of the host although viable parasites can target and limit the pathway. We used IL-25 to create small intestinal adaptation marked by anatomic, cell compositional and immunologic changes that persisted months after induction. Small intestinal adaptation was associated with heightened resistance to barrier pathogens, including in the lung, and sustained by transcriptionally and epigenetically modified, tissue-resident, memory-effector ILC2s distinct from those described by innate 'training'; epithelial stem cells remained unaltered. Despite requiring IL-25 for induction, memory ILC2s maintained an activated state in the absence of multiple alarmins and supported mucosal resilience while avoiding adverse sensitization to chronic inflammation, revealing a pathway for deploying innate immune cells to coordinate a distributed mucosal defense.
Collapse
|
3
|
Moraitis I, Taelman J, Arozamena B, Mularoni L, Wienskowska O, Sanjuan Garriga X, Arregui L, Stefanovic M, Modolell Farré I, Guedea F, Diaz M, Guiu J. Mucosal Macrophages Govern Intestinal Regeneration in Response to Injury. Gastroenterology 2025:S0016-5085(25)00465-2. [PMID: 40086603 DOI: 10.1053/j.gastro.2025.01.252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 01/15/2025] [Accepted: 01/30/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND & AIMS Radiation-induced enteritis develops in cancer patients treated with radiotherapy in the abdominal and pelvic cavity, a condition that impairs their quality of life. Radiation injury depletes proliferative intestinal stem cells; in response to this, the epithelium activates a regenerative program that facilitates the healing of the intestine. However, the mechanisms that induce the activation of the intestinal regenerative program are poorly characterized. METHODS In this study, we induced radiation-induced enteritis in mice through abdominal irradiation, mimicking clinical scenarios. Through imaging and flow cytometric analysis, we investigated the recruitment of macrophages to the small intestine during injury and healing. Additionally, we developed a coculture system for mouse and human intestinal organoids and macrophages to explore the cross talk between these cells. Then by combining in vivo ablation of macrophages, fluorescent lineage tracing, imaging, bulk RNA-sequencing (RNA-seq), single-cell RNA-seq, human intestinal organoids, and cell trajectory analysis, we studied the macrophage induction of intestinal regeneration at the cellular and molecular level. RESULTS Our findings revealed that macrophages are recruited around the intestinal stem cell compartment upon radiation injury, promoting a fetal-like reprogramming and proliferation of epithelial cells that drives the regeneration process. In contrast, macrophage ablation led to compromised regeneration. Moreover, our single-cell RNA-seq analysis identified key secreted molecules, neuregulin 1 and osteopontin, as pivotal players in regulating this process. Additionally, characterization of human macrophage/organoid cocultures and cell trajectory inference confirmed the conservation of macrophages' role in triggering the regenerative program in primary human cells. CONCLUSIONS This study identifies macrophages as essential contributors to intestinal regeneration beyond their innate immune response. Targeting macrophages therapeutically may hold promise in enhancing regeneration and improving the quality of life for cancer survivors.
Collapse
Affiliation(s)
- Ilias Moraitis
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jasin Taelman
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Borja Arozamena
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Loris Mularoni
- Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Olga Wienskowska
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Xavier Sanjuan Garriga
- Department of Pathology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Laura Arregui
- Hospital Universitari de Bellvitge - Duran i Reynals Hospital-IDIBELL Biobank, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Milica Stefanovic
- Department of Radiobiology and Cancer, ONCOBELL-IDIBELL, Barcelona, Spain; Department of Radiation Oncology, Institut Català d'Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ignasi Modolell Farré
- Servei de Física Mèdica i Protecció Radiològica, Institut Català d'Oncologia. l'Hospitalet del Llobregat, Barcelona, Spain
| | - Ferran Guedea
- Department of Radiobiology and Cancer, ONCOBELL-IDIBELL, Barcelona, Spain; Department of Radiation Oncology, Institut Català d'Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Mònica Diaz
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jordi Guiu
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), L'Hospitalet de Llobregat, Barcelona, Spain; Centre for Networked Biomedical Research on Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain.
| |
Collapse
|
4
|
Yue SSK, Tong Y, Siu HC, Ho SL, Law SYK, Tsui WY, Chan D, Huang Y, Chan ASY, Yun SW, Hui HS, Choi JE, Hsu MSS, Lai FPL, Chan AS, Yuen ST, Clevers H, Leung SY, Yan HHN. Divergent lineage trajectories and genetic landscapes in human gastric intestinal metaplasia organoids associated with early neoplastic progression. Gut 2025; 74:522-538. [PMID: 39572083 DOI: 10.1136/gutjnl-2024-332594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/27/2024] [Indexed: 03/08/2025]
Abstract
BACKGROUND Gastric intestinal metaplasia (IM) is a precancerous stage spanning a morphological spectrum that is poorly represented by human cell line models. OBJECTIVE We aim to establish and characterise human IM cell models to better understand IM progression along the cancer spectrum. DESIGN A large human gastric IM organoid (IMO) cohort (n=28), their clonal derivatives and normal gastric organoids (n=42) for comparison were established. Comprehensive multi-omics profiling and functional characterisation were performed. RESULTS Single-cell transcriptomes revealed IMO cells spanning a spectrum from hybrid gastric/intestinal to advanced intestinal differentiation. Their lineage trajectories connected different cycling and quiescent stem and progenitors, highlighting differences in gastric to IM transition and the potential origin of IM from STMN1 cycling isthmus stem cells. Hybrid IMOs showed impaired differentiation potential, high lineage plasticity beyond gastric or intestinal fates and reactivation of a fetal gene programme.Cell populations in gastric IM and cancer tissues were highly similar to those derived from IMOs and exhibited a fetal signature. Genomically, IMOs showed elevated mutation burden, frequent chromosome 20 gain and epigenetic deregulation of many intestinal and gastric genes. Functionally, IMOs were FGF10 independent and showed downregulated FGFR2. Several IMOs exhibited a cell-matrix adhesion independent subpopulation that displayed chromosome 20 gain but lacked key cancer driver mutations, potentially representing the earliest neoplastic precursor of IM-induced gastric cancer. CONCLUSIONS Overall, our IMO biobank captured the heterogeneous nature of IM, revealing mechanistic insights on IM pathogenesis and progression, offering an ideal platform for studying early gastric neoplastic transformation and chemoprevention.
Collapse
Affiliation(s)
- Sarah S K Yue
- Department of Pathology, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Yin Tong
- Department of Pathology, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Hoi Cheong Siu
- Department of Pathology, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Siu Lun Ho
- Department of Pathology, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Simon Y K Law
- Department of Surgery, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Wai Yin Tsui
- Department of Pathology, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Dessy Chan
- Department of Pathology, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Yuanhua Huang
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Statistics and Actuarial Science, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Annie S Y Chan
- Department of Pathology, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Shui Wa Yun
- Department of Pathology, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ho Sang Hui
- Department of Pathology, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jee-Eun Choi
- Department of Pathology, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Matthew S S Hsu
- Department of Pathology, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Frank P L Lai
- Department of Pathology, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - April S Chan
- Department of Pathology, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Siu Tsan Yuen
- Department of Pathology, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Pathology, St. Paul's Hospital, No. 2, Eastern Hospital Road, Causeway Bay, Hong Kong SAR, China
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Uppsalalaan 8, Oncode Institute, Utrecht, The Netherlands
| | - Suet Yi Leung
- Department of Pathology, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
- The Jockey Club Centre for Clinical Innovation and Discovery, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for PanorOmic Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Helen H N Yan
- Department of Pathology, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| |
Collapse
|
5
|
Karpenko DV. Immune modulatory stem cells represent a significant component of the immune system. Front Immunol 2025; 16:1543495. [PMID: 40098974 PMCID: PMC11911480 DOI: 10.3389/fimmu.2025.1543495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/18/2025] [Indexed: 03/19/2025] Open
|
6
|
Jeong H, Lee B, Cho SY, Lee Y, Kim J, Hur S, Cho K, Kim KH, Kim SH, Nam KT. Microbiota-derived short-chain fatty acids determine stem cell characteristics of gastric chief cells. Dev Cell 2025; 60:599-612.e6. [PMID: 39642880 DOI: 10.1016/j.devcel.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/07/2024] [Accepted: 11/08/2024] [Indexed: 12/09/2024]
Abstract
The gastric mucosa is a highly dynamic tissue that undergoes constant self-renewal through stem cell differentiation. Chief cells maintain a quiescent state in homeostasis but are responsible for regeneration after injury. Although the role of microbiome-host interactions in the intestine is well studied, less is known about these interactions in the stomach. Using the mouse organoid and germ-free mouse models, we show that microbiota-derived short-chain fatty acids (SCFAs) suppress the proliferation of chief cells in mice. This effect is mediated by activation of G-protein-coupled receptor 43. Most importantly, through metabolomics and transplantation studies, we show butyrate-producing Lactobacillus intestinalis modulates the proliferation of chief cells in mice. Our findings identify a mechanism by which the microbiota regulates the cell characteristics of chief cells, providing insight into the complex interplay between the host and its microbial environment and the mechanisms underlying gastric homeostasis, with potential therapeutic implications for gastric diseases.
Collapse
Affiliation(s)
- Haengdueng Jeong
- Department of Biomedical Science, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Buhyun Lee
- Department of Biomedical Science, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Soo Young Cho
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea
| | - Yura Lee
- Department of Biomedical Science, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jiseon Kim
- Department of Biomedical Science, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sumin Hur
- Department of Biomedical Science, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Kyungrae Cho
- Department of Biomedical Science, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Kwang H Kim
- Department of Biomedical Science, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sung-Hee Kim
- Department of Biomedical Science, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Ki Taek Nam
- Department of Biomedical Science, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| |
Collapse
|
7
|
Yan Z, Li Y, Chang M, Xia T, Wang Y, Yu H, Zhang L, Shen P, Bai Z, Wang N, Zhou W, Ni Z, Dou Y, Gao Y. Maintained homeostasis: LGYD facilitated the restoration of ISCs following radiation exposure by activating Hes1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156506. [PMID: 39954618 DOI: 10.1016/j.phymed.2025.156506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/11/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Radiation-induced Intestinal Injury (RIII) affects quality of life in radiotherapy patients; Liangxue Guyuan Yishen Decoction (LGYD) offers protection but requires further study on its mechanism. PURPOSE The aim of this study was to investigate the heterogeneity of cellular responses in the intestine at a single-cell level following radiation and LGYD treatment. STUDY DESIGN This study's design includes in vivo and in vitro assessments to evaluate LGYD's effects on intestinal cells post-radiation, targeting survival, recovery, and molecular pathways. METHODS Mice were categorized into four groups: LGYD group, NC group, IR group, and Am group. Each group received daily drug administrations. All groups, except for the NC group, were subjected to a single whole-body irradiation at a dose rate of 70 R/min with a source-to-skin distance of 250 cm. Subsequent experiments were conducted following the irradiation, which led to severe survival impairments in the mice. RESULTS Our findings demonstrate that LGYD intervention substantially improves survival rates following lethal doses (8.5 Gy, 70R/min) of whole-body irradiation. Moreover, LGYD expedites the recovery period for intestinal injury on the fifth day after radiation by promoting repair mechanisms within intestinal tissue, with particular focus on mitigating intestinal stem cells (ISCs) damage and immune disorders. Through both in vivo and in vitro experiments, we have discovered that LGYD effectively treats RIII by activating Hes1 transcription factor activity through its key active ingredients in drug-containing serum. This activation further upregulates the downstream Stat3 and Akt gene, thereby facilitating repair processes within intestinal stem cells. CONCLUSION In this study, we discovered that LGYD can enhance the downstream expression and phosphorylation pathways of Stat3 and Akt by upregulating the expression of Hes1 gene following high-dose radiation exposure.
Collapse
Affiliation(s)
- Ziqiao Yan
- Department of Traditional Chinese Medicine, the Sixth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, PR China; Chinese PLA Medical School, Chinese People's Liberation Army (PLA) General Hospital, Beijing, PR China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Yangshuo Li
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, PR China
| | - Mingyang Chang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, PR China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Tiantian Xia
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, PR China; Medical College of Qinghai University, Xining, PR China
| | - Yuguo Wang
- Department of Traditional Chinese Medicine, the Sixth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, PR China
| | - Hongyang Yu
- Department of Traditional Chinese Medicine, the Sixth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, PR China; Chinese PLA Medical School, Chinese People's Liberation Army (PLA) General Hospital, Beijing, PR China
| | - Liangliang Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, PR China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Pan Shen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Zhijie Bai
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Ningning Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Wei Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Zhexin Ni
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, PR China.
| | - Yongqi Dou
- Department of Traditional Chinese Medicine, the Sixth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, PR China; Chinese PLA Medical School, Chinese People's Liberation Army (PLA) General Hospital, Beijing, PR China.
| | - Yue Gao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, PR China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, PR China.
| |
Collapse
|
8
|
Deng L, He XC, Chen S, Zhang N, Deng F, Scott A, He Y, Tsuchiya D, Smith SE, Epp M, Malloy S, Liu F, Hembree M, Mu Q, Haug JS, Malagola E, Hassan H, Petentler K, Egidy R, Maddera L, Russell J, Wang Y, Li H, Zhao C, Perera A, Wang TC, Kuo CJ, Li L. Frizzled5 controls murine intestinal epithelial cell plasticity through organization of chromatin accessibility. Dev Cell 2025; 60:352-363.e6. [PMID: 39579769 PMCID: PMC11794035 DOI: 10.1016/j.devcel.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 04/15/2024] [Accepted: 10/29/2024] [Indexed: 11/25/2024]
Abstract
The homeostasis of the intestinal epithelium relies on intricate yet insufficiently understood mechanisms of intestinal epithelial plasticity. Here, we elucidate the pivotal role of Frizzled5 (Fzd5), a Wnt pathway receptor, as a determinant of murine intestinal epithelial cell fate. Deletion of Fzd5 in Lgr5+ intestinal stem cells (ISCs) impairs their self-renewal, whereas its deletion in Krt19+ cells disrupts lineage generation, without affecting crypt integrity in either case. However, a broader deletion of Fzd5 across the epithelium leads to substantial crypt deterioration. Integrated analysis of single-cell RNA sequencing (scRNA-seq) and single-cell ATAC-seq (scATAC-seq) identifies that Fzd5 governs chromatin accessibility, orchestrating the regulation of stem- and lineage-related gene expression mainly in ISCs and progenitor cells. In summary, our findings provide insights into the regulatory role of Fzd5 in governing intestinal epithelial plasticity.
Collapse
Affiliation(s)
- Lu Deng
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Xi C He
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Shiyuan Chen
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Ning Zhang
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Fengyan Deng
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Allison Scott
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Yanfeng He
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Dai Tsuchiya
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Sarah E Smith
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Michael Epp
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Seth Malloy
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Fang Liu
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Mark Hembree
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Qinghui Mu
- Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Jeffrey S Haug
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Ermanno Malagola
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Huzaifa Hassan
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | - Rhonda Egidy
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Lucinda Maddera
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jonathon Russell
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Yan Wang
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Hua Li
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Chongbei Zhao
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Anoja Perera
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Calvin J Kuo
- Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Linheng Li
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Pathology and Laboratory Medicine and Division of Medical Oncology, Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
9
|
Mu Q, Ha A, Santos AJM, Lo YH, van Unen V, Miao Y, Tomaske M, Guzman VK, Alwahabi S, Yuan JJ, Deng L, Li L, Garcia KC, Kuo CJ. FZD5 controls intestinal crypt homeostasis and colonic Wnt surrogate agonist response. Dev Cell 2025; 60:342-351.e5. [PMID: 39579768 DOI: 10.1016/j.devcel.2024.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 04/16/2024] [Accepted: 10/29/2024] [Indexed: 11/25/2024]
Abstract
The rapidly regenerating intestinal epithelium requires crypt intestinal stem cells (ISCs). Wnt/β-catenin signaling maintains crypt homeostasis and Lgr5+ ISCs, and WNT ligands bind Frizzled receptors (FZD1-10). Identifying specific FZD(s) essential for intestinal homeostasis has been elusive; however, bioengineered antagonists blocking Wnt binding to FZD5 and FZD8 deplete the gut epithelium in vivo, highlighting potential roles. Here, an epithelial-specific Fzd5 knockout (KO) elicited lethal pan-intestinal crypt and villus loss, whereas an Lgr5+ ISC-specific Fzd5 KO depleted Lgr5+ ISCs via premature differentiation and repressed Wnt target genes. Fzd5-null phenotypes were rescued by constitutive β-catenin activation in vivo and in both mouse and human enteroids. KO of Fzd5, not Fzd8, in enteroids ablated responsiveness to dual-specificity FZD5/FZD8-selective Wnt surrogate agonists, which ameliorated DSS-induced colitis in wild-type and Fzd8 KO mice. Overall, FZD5 is a dominant and essential regulator of crypt homeostasis, Lgr5+ ISCs, and intestinal response to Wnt surrogate agonists, with implications for therapeutic mucosal repair.
Collapse
Affiliation(s)
- Qinghui Mu
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew Ha
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Antonio J M Santos
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yuan-Hung Lo
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vincent van Unen
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yi Miao
- Department of Molecular and Cellular Physiology, Department of Structural Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Madeline Tomaske
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Veronica K Guzman
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Samira Alwahabi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jenny J Yuan
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lu Deng
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Linheng Li
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Department of Structural Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Calvin J Kuo
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
10
|
Biswas P, Kumar A, Upreti M, Kumar G, Saikia P. Kolkata's green oasis: a comprehensive analysis of urban green spaces for ecosystem sustainability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:5040-5061. [PMID: 39894878 DOI: 10.1007/s11356-024-35756-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/06/2024] [Indexed: 02/04/2025]
Abstract
In the present study, the impact of urban growth on green spaces in Kolkata Metropolitan City (KMC) was evaluated using the multi-temporal satellite observations spanning the last four decades (1990-2022). The study exhibited a rapid rise in urban areas (178.38% growth; net increase 498 sq.km), leading to a significant conversion of areas into moderate to very high built-up density zones. This urbanization has markedly altered the green-blue infrastructure, notably causing a 27% decline in urban green space (UGS) resulting a net loss of 254 sq.km. Fragmentation analysis exhibited a trend of compact, infill development in urban regions, contrasting with outgrowth, which has influenced both the cluster size and quality of UGS over the decades. The multi-indices and biophysical characterization of UGS concluded a deteriorating trend in terms of quantity (- 27.9%) and quality as well with reference. However, the existing UGS are primarily scattered and having less dense. Spatial estimation of above ground biomass (AGB) of UGS using regression analysis of field-derived AGB and L-band SAR backscatter depicted a dominance of low AGB (< 30 t/ha-1) across KMC, while the certain zones with improved UGS exhibited moderate AGB levels (50-100 t/ha-1). The fuzzy AHP-based multi-criteria analysis of urban ecological quality exhibited severe ecological deterioration in the central urban areas, moderate to high in peri-urban regions, and comparatively improved ecological conditions in the peripheral rural parts of KMC. The study also identified major native tree species for plantation strategies comprising urban afforestation, rooftop gardens, and the development of green corridors in ecologically deficient hotspot zones to improve the ecological quality within the urban landscape.
Collapse
Affiliation(s)
- Poushali Biswas
- Department of Geoinformatics, Central University of Jharkhand, Ranchi, 835205, India
| | - Amit Kumar
- Department of Geography, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
- Department of Forestry & Natural Resources, Purdue University, West Lafayette, IN, 47906, USA.
- Commission of Ecosystem Management, IUCN, Gland, Switzerland.
| | - Manjari Upreti
- Department of Geoinformatics, Central University of Jharkhand, Ranchi, 835205, India
| | - Gajendra Kumar
- Department of Geoinformatics, Central University of Jharkhand, Ranchi, 835205, India
| | - Purabi Saikia
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
- Commission of Ecosystem Management, IUCN, Gland, Switzerland
| |
Collapse
|
11
|
Pashos ARS, Meyer AR, Bussey-Sutton C, O'Connor ES, Coradin M, Coulombe M, Riemondy KA, Potlapelly S, Strahl BD, Hansson GC, Dempsey PJ, Brumbaugh J. H3K36 methylation regulates cell plasticity and regeneration in the intestinal epithelium. Nat Cell Biol 2025; 27:202-217. [PMID: 39779942 DOI: 10.1038/s41556-024-01580-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025]
Abstract
Plasticity is needed during development and homeostasis to generate diverse cell types from stem and progenitor cells. Following differentiation, plasticity must be restricted in specialized cells to maintain tissue integrity and function. For this reason, specialized cell identity is stable under homeostatic conditions; however, cells in some tissues regain plasticity during injury-induced regeneration. While precise gene expression controls these processes, the regulatory mechanisms that restrict or promote cell plasticity are poorly understood. Here we use the mouse small intestine as a model system to study cell plasticity. We find that H3K36 methylation reinforces expression of cell-type-associated genes to maintain specialized cell identity in intestinal epithelial cells. Depleting H3K36 methylation disrupts lineage commitment and activates regenerative gene expression. Correspondingly, we observe rapid and reversible remodelling of H3K36 methylation following injury-induced regeneration. These data suggest a fundamental role for H3K36 methylation in reinforcing specialized lineages and regulating cell plasticity and regeneration.
Collapse
Affiliation(s)
- Alison R S Pashos
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anne R Meyer
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Cameron Bussey-Sutton
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Erin S O'Connor
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mariel Coradin
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Marilyne Coulombe
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kent A Riemondy
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sanjana Potlapelly
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brian D Strahl
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gunnar C Hansson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Peter J Dempsey
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, USA.
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Justin Brumbaugh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA.
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, USA.
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
12
|
Mehra L, Bhowmik S, Makharia GK, Das P. Intestinal stem cell niche: An upcoming area of immense importance in gastrointestinal disorders. Indian J Gastroenterol 2025; 44:8-23. [PMID: 39514159 DOI: 10.1007/s12664-024-01699-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/29/2024] [Indexed: 11/16/2024]
Abstract
The intestinal stem cell (ISC) niche is vital for maintaining the integrity and function of the intestinal epithelium. ISC populations, characterized by their high proliferation and multipotency, reside within a specialized microenvironment at the base of crypts. Crypt base columnar (CBC) cells at the deepest part of crypts serve as replicating ISCs, while position 4 label-retaining cells (LRCs) located higher up in the crypts are also important for ISC maintenance during experiments. The interplay between CBCs, position 4 LRCs, transient amplifying (TA) cells and other niche components, including the pericrypt stromal cells, ensures a continuous supply of differentiated epithelial cells. Recent advancements in ISC biomarker studies have provided valuable insights into their molecular signatures, regulatory pathways and roles in the pathogenesis of intestinal disorders. Understanding the ISC niche has significant therapeutic implications, as manipulating ISC behaviors and regenerating damaged or diseased intestinal tissue show promise for novel therapeutic approaches. ISC organoids have also provided a platform for studying intestinal diseases and testing personalized therapies. This comprehensive review covers the anatomical composition, physiological regulation, ISC biomarker studies, contribution to intestinal disorder pathogenesis and potential therapeutic implications of the ISC niche.
Collapse
Affiliation(s)
- Lalita Mehra
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India
| | - Subham Bhowmik
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India
| | - Govind K Makharia
- Department of Gastroenterology and Human Nutritions, All India Institute of Medical Sciences, New Delhi, 110 029, India
| | - Prasenjit Das
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India.
| |
Collapse
|
13
|
Lorzadeh A, Ye G, Sharma S, Jadhav U. Motif distribution and DNA methylation underlie distinct Cdx2 binding during development and homeostasis. Nat Commun 2025; 16:929. [PMID: 39843425 PMCID: PMC11754732 DOI: 10.1038/s41467-025-56187-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025] Open
Abstract
Transcription factors guide tissue development by binding to developmental stage-specific targets and establishing an appropriate enhancer landscape. In turn, DNA and chromatin modifications direct the genomic binding of transcription factors. However, how transcription factors navigate chromatin features to selectively bind a small subset of all the possible genomic target loci remains poorly understood. Here we show that Cdx2-a lineage defining transcription factor that binds distinct targets in developing versus adult intestinal epithelial cells-has a preferential affinity for a non-canonical CpG-containing motif in vivo. A higher frequency of this motif at embryonic Cdx2 targets and methylated state of the CpG during development enables selective Cdx2 binding and activation of developmental enhancers and genes. In adult cells, demethylation at these enhancers prevents ectopic Cdx2 binding, instead directing Cdx2 to its canonical motif without a CpG. This shift in Cdx2 binding facilitates Ctcf and Hnf4 recruitment, establishing super-enhancers during development and homeostatic enhancers in adult cells, respectively. Induced DNA methylation in adult mouse epithelium or cultured cells recruits Cdx2 to developmental targets, promoting corecruitment of partner transcription factors. Thus, Cdx2's differential CpG motif preferences enable it to navigate distinct DNA methylation profiles, activating genes specific to appropriate developmental stages.
Collapse
Affiliation(s)
- Alireza Lorzadeh
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - George Ye
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sweta Sharma
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Unmesh Jadhav
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Shaban D, Najm N, Droin L, Nijnik A. Hematopoietic Stem Cell Fates and the Cellular Hierarchy of Mammalian Hematopoiesis: from Transplantation Models to New Insights from in Situ Analyses. Stem Cell Rev Rep 2025; 21:28-44. [PMID: 39222178 DOI: 10.1007/s12015-024-10782-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Hematopoiesis is the process that generates the cells of the blood and immune system from hematopoietic stem and progenitor cells (HSPCs) and represents the system with the most rapid cell turnover in a mammalian organism. HSPC differentiation trajectories, their underlying molecular mechanisms, and their dysfunctions in hematologic disorders are the focal research questions of experimental hematology. While HSPC transplantations in murine models are the traditional tool in this research field, recent advances in genome editing and next generation sequencing resulted in the development of many fundamentally new approaches for the analyses of mammalian hematopoiesis in situ and at single cell resolution. The current review will cover many recent developments in this field in murine models, from the bulk lineage tracing studies of HSPC differentiation to the barcoding of individual HSPCs with Cre-recombinase, Sleeping Beauty transposase, or CRISPR/Cas9 tools, to map hematopoietic cell fates, together with their transcriptional and epigenetic states. We also address studies of the clonal dynamics of human hematopoiesis, from the tracing of HSPC clonal behaviours based on viral integration sites in gene therapy patients to the recent analyses of unperturbed human hematopoiesis based on naturally accrued mutations in either nuclear or mitochondrial genomes. Such studies are revolutionizing our understanding of HSPC biology and hematopoiesis both under homeostatic conditions and in the response to various forms of physiological stress, reveal the mechanisms responsible for the decline of hematopoietic function with age, and in the future may advance the understanding and management of the diverse disorders of hematopoiesis.
Collapse
Affiliation(s)
- Dania Shaban
- Department of Physiology, McGill University, 368 Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Nay Najm
- Department of Physiology, McGill University, 368 Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Lucie Droin
- Department of Physiology, McGill University, 368 Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Anastasia Nijnik
- Department of Physiology, McGill University, 368 Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada.
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada.
| |
Collapse
|
15
|
Shay JES, Yilmaz ÖH. Dietary and metabolic effects on intestinal stem cells in health and disease. Nat Rev Gastroenterol Hepatol 2025; 22:23-38. [PMID: 39358589 DOI: 10.1038/s41575-024-00980-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 10/04/2024]
Abstract
Diet and nutritional metabolites exhibit wide-ranging effects on health and disease partly by altering tissue composition and function. With rapidly rising rates of obesity, there is particular interest in how obesogenic diets influence tissue homeostasis and risk of tumorigenesis; epidemiologically, these diets have a positive correlation with various cancers, including colorectal cancer. The gastrointestinal tract is a highly specialized, continuously renewing tissue with a fundamental role in nutrient uptake and is, in turn, influenced by diet composition and host metabolic state. Intestinal stem cells are found at the base of the intestinal crypt and can generate all mature lineages that comprise the intestinal epithelium and are uniquely influenced by host diet, metabolic by-products and energy dynamics. Similarly, tumour growth and metabolism can also be shaped by nutrient availability and host diet. In this Review, we discuss how different diets and metabolic changes influence intestinal stem cells in homeostatic and pathological conditions, as well as tumorigenesis. We also discuss how dietary changes and composition affect the intestinal epithelium and its surrounding microenvironment.
Collapse
Affiliation(s)
- Jessica E S Shay
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ömer H Yilmaz
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
| |
Collapse
|
16
|
Sonnentag SJ, Ibrahim NSM, Orian-Rousseau V. CD44: a stemness driver, regulator, and marker-all in one? Stem Cells 2024; 42:1031-1039. [PMID: 39364735 DOI: 10.1093/stmcls/sxae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/23/2024] [Indexed: 10/05/2024]
Abstract
Although the concept of cancer stem cells is still controversial, previous studies have shown that blood cancers, as well as specific types of solid cancers such as colorectal cancer, rely on stem cells during the onset of tumor growth and further tumor development. Moreover, resistance to therapeutic treatment in leukemias such as acute myeloid leukemia and in colorectal cancer can be attributed to a small population of cells with stemness properties known as minimal residual disease. In this review, we look back on the discovery of cancer stem cells and the contribution of the findings in blood cancer to a parallel discovery in solid cancers. We focus on CD44 as a stem cell marker, both in blood cancers and in several types of solid cancers, particularly of the gastrointestinal tract. This review highlights newly discovered molecular mechanisms of action of CD44 which indicate that CD44 has indeed a function in stemness, stem cell maintenance, and drug resistance. We attempt here to make the link between the functions of CD44 isoforms in stemness and their involvement in specific steps of tumor growth and metastasis.
Collapse
Affiliation(s)
- Steffen J Sonnentag
- Karlsruhe Institute of Technology, Institute of Biological and Chemical Systems-Functional Molecular Systems, Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Nagwa S M Ibrahim
- Karlsruhe Institute of Technology, Institute of Biological and Chemical Systems-Functional Molecular Systems, Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Veronique Orian-Rousseau
- Karlsruhe Institute of Technology, Institute of Biological and Chemical Systems-Functional Molecular Systems, Kaiserstraße 12, 76131 Karlsruhe, Germany
| |
Collapse
|
17
|
Fink M, Njah K, Patel SJ, Cook DP, Man V, Ruso F, Rajan A, Narimatsu M, Obersterescu A, Pye MJ, Trcka D, Chan K, Ayyaz A, Wrana JL. Chromatin remodelling in damaged intestinal crypts orchestrates redundant TGFβ and Hippo signalling to drive regeneration. Nat Cell Biol 2024; 26:2084-2098. [PMID: 39548329 DOI: 10.1038/s41556-024-01550-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 09/27/2024] [Indexed: 11/17/2024]
Abstract
Cell state dynamics underlying successful tissue regeneration are undercharacterized. In the intestine, damage prompts epithelial reprogramming into revival stem cells (revSCs) that reconstitute Lgr5+ intestinal stem cells (ISCs). Here single-nuclear multi-omics of mouse crypts regenerating from irradiation shows revSC chromatin accessibility overlaps with ISCs and differentiated lineages. While revSC genes themselves are accessible throughout homeostatic epithelia, damage-induced remodelling of chromatin in the crypt converges on Hippo and the transforming growth factor-beta (TGFβ) signalling pathway, which we show is transiently activated and directly induces functional revSCs. Combinatorial gene expression analysis further suggests multiple sources of revSCs, and we demonstrate TGFβ can reprogramme enterocytes, goblet and paneth cells into revSCs and show individual revSCs form organoids. Despite this, loss of TGFβ signalling yields mild regenerative defects, whereas interference in both Hippo and TGFβ leads to profound defects and death. Intestinal regeneration is thus poised for activation by a compensatory system of crypt-localized, transient morphogen cues that support epithelial reprogramming and robust intestinal repair.
Collapse
Affiliation(s)
- Mardi Fink
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Kizito Njah
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Shyam J Patel
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - David P Cook
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Cancer Research Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Vanessa Man
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Francesco Ruso
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Arsheen Rajan
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Masahiro Narimatsu
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Andreea Obersterescu
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Melanie J Pye
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Daniel Trcka
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Kin Chan
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Network Biology Collaboration Centre, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Arshad Ayyaz
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jeffrey L Wrana
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
18
|
Lee J, Gleizes A, Janto NV, Appell LL, Sun S, Takaesu F, Webster SF, Hailstock T, Barker N, Gracz AD. Lgr5 + intestinal stem cells are required for organoid survival after genotoxic injury. Development 2024; 151:dev202941. [PMID: 39503201 PMCID: PMC11634038 DOI: 10.1242/dev.202941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024]
Abstract
Progenitors and mature cells can maintain the intestinal epithelium by dedifferentiation and facultative intestinal stem cell (fISC) function when active ISCs (aISCs) are lost to damage. Here, we modeled fISC activation in mouse intestinal organoids with doxorubicin (DXR) treatment, a chemotherapeutic known to ablate Lgr5+ aISCs in vivo. Similar fISC gene activation was observed between organoids treated with low versus high DXR, despite significantly decreased survival at the higher dose. aISCs exhibited dose-dependent loss after DXR treatment but survived at doses compatible with organoid survival. We ablated residual aISCs after DXR treatment using a Lgr52A-DTR allele and observed that aISC survival of the initial genotoxic insult is required for organoid survival following DXR treatment. These results suggest that although typical fISC genes are activated by DXR-induced injury in organoids, functional stemness remains dependent on the aISC pool. Finally, we show that human intestinal organoids require higher doses of DXR to induce loss of survival and downregulation of LGR5. Our data establish a reproducible model of DXR-induced injury in intestinal organoids and reveal differences in in vitro responses to an established in vivo damage modality.
Collapse
Affiliation(s)
- Joseph Lee
- Department of Medicine, Division of Digestive Diseases, Emory University, Atlanta, GA 30322, USA
| | - Antoine Gleizes
- Department of Medicine, Division of Digestive Diseases, Emory University, Atlanta, GA 30322, USA
| | - Nicolas V. Janto
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, GA 30322, USA
| | - Lito L. Appell
- Department of Medicine, Division of Digestive Diseases, Emory University, Atlanta, GA 30322, USA
| | - Siyang Sun
- Department of Medicine, Division of Digestive Diseases, Emory University, Atlanta, GA 30322, USA
| | - Felipe Takaesu
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, GA 30322, USA
| | - Sarah F. Webster
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, GA 30322, USA
| | - Taylor Hailstock
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, GA 30322, USA
| | - Nick Barker
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593
| | - Adam D. Gracz
- Department of Medicine, Division of Digestive Diseases, Emory University, Atlanta, GA 30322, USA
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, GA 30322, USA
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
19
|
Li Y, Wang X, Huang M, Wang X, Li C, Li S, Tang Y, Yu S, Wang Y, Song W, Wu W, Liu Y, Chen YG. BMP suppresses Wnt signaling via the Bcl11b-regulated NuRD complex to maintain intestinal stem cells. EMBO J 2024; 43:6032-6051. [PMID: 39433900 PMCID: PMC11612440 DOI: 10.1038/s44318-024-00276-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/22/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024] Open
Abstract
Lgr5+ intestinal stem cells (ISCs) are crucial for the intestinal epithelium renewal and regeneration after injury. However, the mechanism underlying the interplay between Wnt and BMP signaling in this process is not fully understood. Here we report that Bcl11b, which is downregulated by BMP signaling, enhances Wnt signaling to maintain Lgr5+ ISCs and thus promotes the regeneration of the intestinal epithelium upon injury. Loss of Bcl11b function leads to a significant decrease of Lgr5+ ISCs in both intestinal crypts and cultured organoids. Mechanistically, BMP suppresses the expression of Bcl11b, which can positively regulate Wnt target genes by inhibiting the function of the Nucleosome Remodeling and Deacetylase (NuRD) complex and facilitating the β-catenin-TCF4 interaction. Bcl11b can also promote intestinal epithelium repair after injuries elicited by both irradiation and DSS-induced inflammation. Furthermore, Bcl11b deletion prevents proliferation and tumorigenesis of colorectal cancer cells. Together, our findings suggest that BMP suppresses Wnt signaling via Bcl11b regulation, thus balancing homeostasis and regeneration in the intestinal epithelium.
Collapse
Affiliation(s)
- Yehua Li
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaodan Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Meimei Huang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xu Wang
- Guangzhou National Laboratory, Guangzhou, 510700, China
| | - Chunlin Li
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Siqi Li
- Guangzhou National Laboratory, Guangzhou, 510700, China
| | - Yuhui Tang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shicheng Yu
- Guangzhou National Laboratory, Guangzhou, 510700, China
| | - Yalong Wang
- Guangzhou National Laboratory, Guangzhou, 510700, China
| | - Wanglu Song
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wei Wu
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuan Liu
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Guangzhou National Laboratory, Guangzhou, 510700, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
20
|
Baghdadi MB, Houtekamer RM, Perrin L, Rao-Bhatia A, Whelen M, Decker L, Bergert M, Pérez-Gonzàlez C, Bouras R, Gropplero G, Loe AKH, Afkhami-Poostchi A, Chen X, Huang X, Descroix S, Wrana JL, Diz-Muñoz A, Gloerich M, Ayyaz A, Matic Vignjevic D, Kim TH. PIEZO-dependent mechanosensing is essential for intestinal stem cell fate decision and maintenance. Science 2024; 386:eadj7615. [PMID: 39607940 DOI: 10.1126/science.adj7615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 07/27/2024] [Accepted: 10/07/2024] [Indexed: 11/30/2024]
Abstract
Stem cells perceive and respond to biochemical and physical signals to maintain homeostasis. Yet, it remains unclear how stem cells sense mechanical signals from their niche in vivo. In this work, we investigated the roles of PIEZO mechanosensitive channels in the intestinal stem cell (ISC) niche. We used mouse genetics and single-cell RNA sequencing analysis to assess the requirement for PIEZO channels in ISC maintenance. In vivo measurement of basement membrane stiffness showed that ISCs reside in a more rigid microenvironment at the bottom of the crypt. Three-dimensional and two-dimensional organoid systems combined with bioengineered substrates and a stretching device revealed that PIEZO channels sense extracellular mechanical stimuli to modulate ISC function. This study delineates the mechanistic cascade of PIEZO activation that coordinates ISC fate decision and maintenance.
Collapse
Affiliation(s)
- Meryem B Baghdadi
- Institut Curie, PSL Research University, CNRS UMR 144, Paris, France
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ronja M Houtekamer
- Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Louisiane Perrin
- Institut Curie, PSL Research University, CNRS UMR 144, Paris, France
| | - Abilasha Rao-Bhatia
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Myles Whelen
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Linda Decker
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Martin Bergert
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Réda Bouras
- Institut Curie, PSL Research University, CNRS UMR 144, Paris, France
| | - Giacomo Gropplero
- Institut Curie, IPGG, PSL Research University, CNRS UMR 168, Paris, France
| | - Adrian K H Loe
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Amin Afkhami-Poostchi
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Xin Chen
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Xi Huang
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Stephanie Descroix
- Institut Curie, IPGG, PSL Research University, CNRS UMR 168, Paris, France
| | - Jeffrey L Wrana
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Laboratory Medicine, St. Michael's Hospital, Toronto, ON, Canada
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Martijn Gloerich
- Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Arshad Ayyaz
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Tae-Hee Kim
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Walther N, Anantakrishnan S, Graham TGW, Dailey GM, Tjian R, Darzacq X. Automated live-cell single-molecule tracking in enteroid monolayers reveals transcription factor dynamics probing lineage-determining function. Cell Rep 2024; 43:114914. [PMID: 39480809 DOI: 10.1016/j.celrep.2024.114914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/29/2024] [Accepted: 10/10/2024] [Indexed: 11/02/2024] Open
Abstract
Lineage transcription factors (TFs) provide one regulatory level of differentiation crucial for the generation and maintenance of healthy tissues. To probe TF function by measuring their dynamics during adult intestinal homeostasis, we established HILO-illumination-based live-cell single-molecule tracking (SMT) in mouse small intestinal enteroid monolayers recapitulating tissue differentiation hierarchies in vitro. To increase the throughput, capture cellular features, and correlate morphological characteristics with diffusion parameters, we developed an automated imaging and analysis pipeline, broadly applicable to two-dimensional culture systems. Studying two absorptive lineage-determining TFs, we found an expression level-independent contrasting diffusive behavior: while Hes1, key determinant of absorptive lineage commitment, displays a large cell-to-cell variability and an average fraction of DNA-bound molecules of ∼32%, Hnf4g, conferring enterocyte identity, exhibits more uniform dynamics and a bound fraction of ∼56%. Our results suggest that TF diffusive behavior could indicate the progression of differentiation and modulate early versus late differentiation within a lineage.
Collapse
Affiliation(s)
- Nike Walther
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, California Institute for Regenerative Medicine (CIRM) Center of Excellence, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Sathvik Anantakrishnan
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, California Institute for Regenerative Medicine (CIRM) Center of Excellence, University of California, Berkeley, Berkeley, CA 94720, USA; Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Thomas G W Graham
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, California Institute for Regenerative Medicine (CIRM) Center of Excellence, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Gina M Dailey
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, California Institute for Regenerative Medicine (CIRM) Center of Excellence, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Robert Tjian
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, California Institute for Regenerative Medicine (CIRM) Center of Excellence, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, Berkeley, CA 94720, USA.
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, California Institute for Regenerative Medicine (CIRM) Center of Excellence, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
22
|
Kim M, Park Y, Kim YS, Ko S. Cellular Plasticity in Gut and Liver Regeneration. Gut Liver 2024; 18:949-960. [PMID: 39081200 PMCID: PMC11565004 DOI: 10.5009/gnl240005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 11/16/2024] Open
Abstract
The intestine and liver share a unique regenerative property that sets them apart from other mammalian visceral organs. The intestinal epithelium exhibits rapid renewal, making it one of the fastest renewing tissues in humans. Under physiological conditions, intestinal stem cells within each intestinal crypt continuously differentiate into the different types of intestinal epithelial cells to maintain intestinal homeostasis. However, when exposed to tissue damage or stressful conditions such as inflammation, intestinal epithelial cells in the gastrointestinal tract exhibit plasticity, allowing fully differentiated cells to regain their stem cell properties. Likewise, hepatic epithelial cells possess a remarkable regenerative capacity to restore lost liver mass through proliferation-mediated liver regeneration. When the proliferation-mediated regenerative capacity is impaired, hepatocytes and biliary epithelial cells (BECs) can undergo plasticity-mediated regeneration and replenish each other. The transition of mammalian liver progenitor cells to hepatocytes/BECs can be observed under tightly controlled experimental conditions such as severe hepatocyte injury accompanied by the loss of regenerative capacity. In this review, we will discuss the mechanism by which cellular plasticity contributes to the regeneration process and the potential therapeutic implications of understanding and harnessing cellular plasticity in the gut and liver.
Collapse
Affiliation(s)
- Minwook Kim
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yoojeong Park
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - You Sun Kim
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Internal Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Sungjin Ko
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
23
|
Chakravorty A, Simons BD, Yoshida S, Cai L. Spatial Transcriptomics Reveals the Temporal Architecture of the Seminiferous Epithelial Cycle and Precise Sertoli-Germ Synchronization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620681. [PMID: 39554074 PMCID: PMC11565904 DOI: 10.1101/2024.10.28.620681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Spermatogenesis is characterized by the seminiferous epithelial cycle, a periodic pattern of germ cell differentiation with a wave-like progression along the length of seminiferous tubules. While key signaling and metabolic components of the cycle are known, the transcriptional changes across the cycle and the correlations between germ cell and somatic lineages remain undefined. Here, we use spatial transcriptomics via RNA SeqFISH+ to profile 2,638 genes in 216,090 cells in mouse testis and identify a periodic transcriptional pattern across tubules that precisely recapitulates the seminiferous epithelial cycle, enabling us to map cells to specific timepoints along the developmental cycle. Analyzing gene expression in somatic cells reveals that Sertoli cells exhibit a cyclic transcriptional profile closely synchronized with germ cell development while other somatic cells do not demonstrate such synchronization. Remarkably, in mouse testis with drug-induced ablation of germ cells, Sertoli cells independently maintain their cyclic transcriptional dynamics. By analyzing expression data, we identify an innate retinoic acid cycle, a network of transcription factors with cyclic activation, and signaling from germ cells that could interact with this network. Together, this work leverages spatial geometries for mapping the temporal dynamics and reveals a regulatory mechanism in spermatogenesis where Sertoli cells oscillate and coordinate with the cyclical progression of germ cell development.
Collapse
|
24
|
Vallmajo-Martin Q, Ma Z, Srinivasan S, Murali D, Dravis C, Mukund K, Subramaniam S, Wahl GM, Lytle NK. The molecular chronology of mammary epithelial cell fate switching. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617155. [PMID: 39415993 PMCID: PMC11482796 DOI: 10.1101/2024.10.08.617155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The adult mammary gland is maintained by lineage-restricted progenitor cells through pregnancy, lactation, involution, and menopause. Injury resolution, transplantation-associated mammary gland reconstitution, and tumorigenesis are unique exceptions, wherein mammary basal cells gain the ability to reprogram to a luminal state. Here, we leverage newly developed cell-identity reporter mouse strains, and time-resolved single-cell epigenetic and transcriptomic analyses to decipher the molecular programs underlying basal-to-luminal fate switching in vivo. We demonstrate that basal cells rapidly reprogram toward plastic cycling intermediates that appear to hijack molecular programs we find in bipotent fetal mammary stem cells and puberty-associatiated cap cells. Loss of basal-cell specifiers early in dedifferentiation coincides with activation of Notch and BMP, among others. Pharmacologic blockade of each pathway disrupts basal-to-luminal transdifferentiation. Our studies provide a comprehensive map and resource for understanding the coordinated molecular changes enabling terminally differentiated epithelial cells to transition between cell lineages and highlights the stunning rapidity by which epigenetic reprogramming can occur in response to disruption of tissue structure.
Collapse
Affiliation(s)
- Queralt Vallmajo-Martin
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- These authors contributed equally
| | - Zhibo Ma
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- These authors contributed equally
| | - Sumana Srinivasan
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- These authors contributed equally
| | - Divya Murali
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- These authors contributed equally
| | - Christopher Dravis
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Kavitha Mukund
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Geoffrey M. Wahl
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Nikki K. Lytle
- Department of Surgery, Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA
- These authors contributed equally
| |
Collapse
|
25
|
Gulino ME, Ordóñez-Morán P, Mahida YR. Establishment of a 3D organoid culture model for the investigation of adult slow-cycling putative intestinal stem cells. Histochem Cell Biol 2024; 162:351-362. [PMID: 39073425 DOI: 10.1007/s00418-024-02312-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
The study of intestinal stem cells is a prerequisite for the development of therapies aimed at regenerating the gut. To enable investigation of adult slow-cycling H2B-GFP-retaining putative small intestinal (SI) stem cells in vitro, we have developed a three-dimensional (3D) SI organoid culture model based on the Tet-Op histone 2 B (H2B)-green fluorescent protein (GFP) fusion protein (Tet-Op-H2B-GFP) transgenic mouse. SI crypts were isolated from 6- to 12-week-old Tet-Op-H2B-GFP transgenic mice and cultured with appropriate growth factors and an animal-derived matrix (Matrigel). For in vitro transgene expression, doxycycline was added to the culture medium for 24 h. By pulse-chase experiments, H2B-GFP expression and retention were assessed through direct GFP fluorescence observations, both by confocal and fluorescence microscopy and by immunohistochemistry. The percentages of H2B-GFP-retaining putative SI stem cells and H2B-GFP-retaining Paneth cells persisting in organoids were determined by scoring relevant GFP-positive cells. Our results indicate that 24 h exposure to doxycycline (pulse) induced ubiquitous expression of H2B-GFP in the SI organoids. During subsequent culture, in the absence of doxycycline (chase), there was a gradual loss (due to cell division) of H2B-GFP. At 6-day chase, slow-cycling H2B-GFP-retaining putative SI stem cells and H2B-GFP-retaining Paneth cells were detected in the SI organoids. The developed culture model allows detection of slow-cycling H2B-GFP-retaining putative SI stem cells and will enable the study of self-renewal and regeneration for further characterization of these cells.
Collapse
Affiliation(s)
- Maria Eugenia Gulino
- Translational Medical Sciences, School of Medicine, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK.
| | - Paloma Ordóñez-Morán
- Translational Medical Sciences Unit, School of Medicine, Centre for Cancer Sciences, Biodiscovery Institute-3, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Yashwant R Mahida
- Translational Medical Sciences, School of Medicine, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| |
Collapse
|
26
|
Zhang R, Perekatt A, Chen L. Metabolic regulation of intestinal homeostasis: molecular and cellular mechanisms and diseases. MedComm (Beijing) 2024; 5:e776. [PMID: 39465140 PMCID: PMC11502721 DOI: 10.1002/mco2.776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 10/29/2024] Open
Abstract
Metabolism serves not only as the organism's energy source but also yields metabolites crucial for maintaining tissue homeostasis and overall health. Intestinal stem cells (ISCs) maintain intestinal homeostasis through continuous self-renewal and differentiation divisions. The intricate relationship between metabolic pathways and intestinal homeostasis underscores their crucial interplay. Metabolic pathways have been shown to directly regulate ISC self-renewal and influence ISC fate decisions under homeostatic conditions, but the cellular and molecular mechanisms remain incompletely understood. Understanding the intricate involvement of various pathways in maintaining intestinal homeostasis holds promise for devising innovative strategies to address intestinal diseases. Here, we provide a comprehensive review of recent advances in the regulation of intestinal homeostasis. We describe the regulation of intestinal homeostasis from multiple perspectives, including the regulation of intestinal epithelial cells, the regulation of the tissue microenvironment, and the key role of nutrient metabolism. We highlight the regulation of intestinal homeostasis and ISC by nutrient metabolism. This review provides a multifaceted perspective on how intestinal homeostasis is regulated and provides ideas for intestinal diseases and repair of intestinal damage.
Collapse
Affiliation(s)
- Ruolan Zhang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human DiseaseSoutheast UniversityNanjingChina
| | - Ansu Perekatt
- Department of Chemistry and Chemical BiologyStevens Institute of TechnologyHobokenNew JerseyUSA
| | - Lei Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human DiseaseSoutheast UniversityNanjingChina
- Institute of Microphysiological SystemsSoutheast UniversityNanjingChina
| |
Collapse
|
27
|
Liao C, Ji M, Wang ZE, Drucker DJ, Liang HE, Locksley RM. Telocytes link epithelial nutrient sensing with amplification of the ILC2-tuft cell circuit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618111. [PMID: 39463951 PMCID: PMC11507662 DOI: 10.1101/2024.10.14.618111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Group 2 innate lymphocytes (ILC2s) are prevalent in small intestine but engagement of type 2 immunity during basal processes are incompletely described. Thymic stromal lymphopoietin (TSLP), a cytokine implicated in ILC2 activation, was constitutively expressed in villus telocytes and crypt-associated trophocytes, specialized fibroblasts that sustain epithelial identity. Feeding increased TSLP and induced ILC2 type 2 cytokines that were attenuated by deletion of TSLP in PDGFRα + stromal cells or TSLP receptor on ILC2s. Mouse and human telocytes expressed receptors for glucagon-like peptide-2 (GLP-2), which is released by enteroendocrine cells (EECs) after eating. GLP-2 induced intestinal TSLP, TSLP-dependent ILC2 cytokine production, and tuft cell hyperplasia. The telocyte-alarmin relay couples EEC nutrient detection with amplification of a tuft cell chemosensory circuit that diversifies surveillance of ingested cargo. One-Sentence Summary Intestinal telocyte TSLP relays signals from enteroendocrine cells to ILC2s to amplify the tuft cell circuit in response to feeding.
Collapse
|
28
|
Chen SM, Guo BJ, Feng AQ, Wang XL, Zhang SL, Miao CY. Pathways regulating intestinal stem cells and potential therapeutic targets for radiation enteropathy. MOLECULAR BIOMEDICINE 2024; 5:46. [PMID: 39388072 PMCID: PMC11467144 DOI: 10.1186/s43556-024-00211-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Radiotherapy is a pivotal intervention for cancer patients, significantly impacting their treatment outcomes and survival prospects. Nevertheless, in the course of treating those with abdominal, pelvic, or retroperitoneal malignant tumors, the procedure inadvertently exposes adjacent intestinal tissues to radiation, posing risks of radiation-induced enteropathy upon reaching threshold doses. Stem cells within the intestinal crypts, through their controlled proliferation and differentiation, support the critical functions of the intestinal epithelium, ensuring efficient nutrient absorption while upholding its protective barrier properties. Intestinal stem cells (ISCs) regulation is intricately orchestrated by diverse signaling pathways, among which are the WNT, BMP, NOTCH, EGF, Hippo, Hedgehog and NF-κB, each contributing to the complex control of these cells' behavior. Complementing these pathways are additional regulators such as nutrient metabolic states, and the intestinal microbiota, all of which contribute to the fine-tuning of ISCs behavior in the intestinal crypts. It is the harmonious interplay among these signaling cascades and modulating elements that preserves the homeostasis of intestinal epithelial cells (IECs), thereby ensuring the gut's overall health and function. This review delves into the molecular underpinnings of how stem cells respond in the context of radiation enteropathy, aiming to illuminate potential biological targets for therapeutic intervention. Furthermore, we have compiled a summary of several current treatment methodologies. By unraveling these mechanisms and treatment methods, we aspire to furnish a roadmap for the development of novel therapeutics, advancing our capabilities in mitigating radiation-induced intestinal damage.
Collapse
Affiliation(s)
- Si-Min Chen
- Department of Pharmacology, Second Military Medical University/Naval Medical University, 325 Guo He Road, Shanghai, 200433, China
| | - Bing-Jie Guo
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - An-Qiang Feng
- Department of Digestive Disease, Xuzhou Central Hospital, Xuzhou, China
| | - Xue-Lian Wang
- School of Medicine, Shanghai University, Shanghai, China
| | - Sai-Long Zhang
- Department of Pharmacology, Second Military Medical University/Naval Medical University, 325 Guo He Road, Shanghai, 200433, China.
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University/Naval Medical University, 325 Guo He Road, Shanghai, 200433, China.
| |
Collapse
|
29
|
Jeong J, Sun S, Kim YJ, Sohn KY, Kim JW, Lee JS. Mitigating the Effects of 1-Palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol on Gastrointestinal Acute Radiation Syndrome after Total-Body Irradiation in Mice. Radiat Res 2024; 202:706-718. [PMID: 39187264 DOI: 10.1667/rade-24-00126.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/23/2024] [Indexed: 08/28/2024]
Abstract
Total-body irradiation (TBI) with gamma rays can damage organisms in various unexpected ways and trigger several organ dysfunction syndromes, such as acute radiation syndrome (ARS). Hematopoietic cells and enterocytes are particularly sensitive to radiation due to their self-renewal ability and rapid division, which leads to hematopoietic ARS (H-ARS) and gastrointestinal ARS (GI-ARS). We previously showed that a lipid-based small molecule, 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG), improved 30-day survival and alleviated H-ARS symptoms in BALB/c mice after a lethal dose (LD70/30) of gamma-ray TBI. In this study, we investigated the mitigating effects of PLAG on radiation-induced GI damage that occurs under the same conditions as H-ARS in BALB/c mice. Our study showed that PLAG facilitated the structural restoration of intestinal tissues by increasing villus height, crypt depth, crypt number, mucin-producing goblet cells, and proliferating cell nuclear antigen (PCNA)-positive crypt cells. PLAG significantly improved intestinal absorptive capacity and reduced intestinal injury-induced bacterial translocation. In addition, PLAG effectively inhibited radiation-induced necroptosis signaling activation in the intestinal crypt cells, which was responsible for sustained tissue damage and the release of high mobility group box 1 (HMGB1), a typical damage-associated molecular pattern. Overall, our findings support the radiation-mitigating potential of PLAG against GI-ARS after accidental radiation exposure.
Collapse
Affiliation(s)
- Jinseon Jeong
- R&D institute, Enzychem Lifesciences, Suwon 16229, Republic of Korea
| | - Sojung Sun
- R&D institute, Enzychem Lifesciences, Suwon 16229, Republic of Korea
- Department of Radiation Oncology, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Yong-Jae Kim
- R&D institute, Enzychem Lifesciences, Suwon 16229, Republic of Korea
| | - Ki-Young Sohn
- R&D institute, Enzychem Lifesciences, Suwon 16229, Republic of Korea
| | - Jae Wha Kim
- Division of Biomaterials Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jae Sam Lee
- R&D institute, Enzychem Lifesciences, Suwon 16229, Republic of Korea
| |
Collapse
|
30
|
Shi G, Li Y, Shen H, He Q, Zhu P. Intestinal stem cells in intestinal homeostasis and colorectal tumorigenesis. LIFE MEDICINE 2024; 3:lnae042. [PMID: 39872442 PMCID: PMC11749485 DOI: 10.1093/lifemedi/lnae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/24/2024] [Indexed: 01/30/2025]
Abstract
Colorectal cancer (CRC), one of the most common tumors in the world, is generally proposed to be generated from intestinal stem cells (ISCs). Leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5)-positive ISCs are located at the bottom of the crypt and harbor self-renewal and differentiation capacities, serving as the resource of all intestinal epithelial cells and CRC cells as well. Here we review recent progress in ISCs both in non-tumoral and tumoral contexts. We summarize the molecular mechanisms of ISC self-renewal, differentiation, and plasticity for intestinal homeostasis and regeneration. We also discuss the function of ISCs in colorectal tumorigenesis as cancer stem cells and summarize fate dynamic, competition, niche regulation, and remote environmental regulation of ISCs for CRC initiation and propagation.
Collapse
Affiliation(s)
- Gaoli Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yang Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Haihong Shen
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Qiankun He
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Pingping Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
31
|
Jiang L, Tian J, Yang J, Luo R, Zhang Y, Shao C, Guo B, Wu X, Dan J, Luo Y. p21 Regulates Wnt-Notch balance via DREAM/MMB/Rb-E2F1 and maintains intestinal stem cell homeostasis. Cell Death Discov 2024; 10:413. [PMID: 39341834 PMCID: PMC11438959 DOI: 10.1038/s41420-024-02192-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024] Open
Abstract
The crosstalk and balance regulation of Wnt-Notch have been known to be essential for cell fate decision and tissue regeneration, however, how this balance is maintained and how the Wnt-Notch pathways are connected with cell cycle regulation is still not clear. By analyzing the molecular alterations in mouse model with accelerated aging phenotypes due to loss of p21 function in a Werner syndrome background, we observed that Wnt3 and β-Catenin were down-regulated, while Notch1 and Hes1 were up-regulated. This disruption in Wnt-Notch signaling was accompanied by the loss of intestinal stem cell compartment, increase in Bmi1 positive cells, loss of Olfm4/Lgr5 positive cells, and reduced secretory Paneth cells and goblet cells in the intestinal crypts of p21TKO mice. BrdU incorporation, cleaved caspase 3, and Tunel assay results revealed the fast turnover of intestinal epithelia, which may result in abnormal stem cell mobilization and exhaustion of the stem cell reservoir in the intestinal crypts. We further identified shift of DREAM complex towards MMB complex due to the loss of p21 as the cause for faster turnover of intestinal epithelia. Importantly, we identified the E2F1 as the transcriptional regulator for Notch1, which linked the p21-DREAM/MMB/Rb-E2F1 pathway with Wnt-Notch pathway. The overexpression of p21 rescued the DREAM pathway, as well as the imbalance of Wnt-Notch pathway. In summary, our data identify p21 as an important factor in maintaining sequential mobilization, proliferation, and homeostasis of intestinal stem cells.
Collapse
Affiliation(s)
- Liangxia Jiang
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jie Tian
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jun Yang
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ronggang Luo
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yongjin Zhang
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Chihao Shao
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Bing Guo
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaoming Wu
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Juhua Dan
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ying Luo
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
32
|
González A, Fullaondo A, Odriozola A. Host genetics-associated mechanisms in colorectal cancer. ADVANCES IN GENETICS 2024; 112:83-122. [PMID: 39396843 DOI: 10.1016/bs.adgen.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) represents the second leading cause of cancer incidence and the third leading cause of cancer deaths worldwide. There is currently a lack of understanding of the onset of CRC, hindering the development of effective prevention strategies, early detection methods and the selection of appropriate therapies. This article outlines the key aspects of host genetics currently known about the origin and development of CRC. The organisation of the colonic crypts is described. It discusses how the transformation of a normal cell to a cancer cell occurs and how that malignant cell can populate an entire colonic crypt, promoting colorectal carcinogenesis. Current knowledge about the cell of origin of CRC is discussed, and the two morphological pathways that can give rise to CRC, the classical and alternative pathways, are presented. Due to the molecular heterogeneity of CRC, each of these pathways has been associated with different molecular mechanisms, including chromosomal and microsatellite genetic instability, as well as the CpG island methylator phenotype. Finally, different CRC classification systems are described based on genetic, epigenetic and transcriptomic alterations, allowing diagnosis and treatment personalisation.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| |
Collapse
|
33
|
Hua X, Zhao C, Tian J, Wang J, Miao X, Zheng G, Wu M, Ye M, Liu Y, Zhou Y. A Ctnnb1 enhancer transcriptionally regulates Wnt signaling dosage to balance homeostasis and tumorigenesis of intestinal epithelia. eLife 2024; 13:RP98238. [PMID: 39320349 PMCID: PMC11424096 DOI: 10.7554/elife.98238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
The β-catenin-dependent canonical Wnt signaling is pivotal in organ development, tissue homeostasis, and cancer. Here, we identified an upstream enhancer of Ctnnb1 - the coding gene for β-catenin, named ieCtnnb1 (intestinal enhancer of Ctnnb1), which is crucial for intestinal homeostasis. ieCtnnb1 is predominantly active in the base of small intestinal crypts and throughout the epithelia of large intestine. Knockout of ieCtnnb1 led to a reduction in Ctnnb1 transcription, compromising the canonical Wnt signaling in intestinal crypts. Single-cell sequencing revealed that ieCtnnb1 knockout altered epithelial compositions and potentially compromised functions of small intestinal crypts. While deletion of ieCtnnb1 hampered epithelial turnovers in physiologic conditions, it prevented occurrence and progression of Wnt/β-catenin-driven colorectal cancers. Human ieCTNNB1 drove reporter gene expression in a pattern highly similar to mouse ieCtnnb1. ieCTNNB1 contains a single-nucleotide polymorphism associated with CTNNB1 expression levels in human gastrointestinal epithelia. The enhancer activity of ieCTNNB1 in colorectal cancer tissues was stronger than that in adjacent normal tissues. HNF4α and phosphorylated CREB1 were identified as key trans-factors binding to ieCTNNB1 and regulating CTNNB1 transcription. Together, these findings unveil an enhancer-dependent mechanism controlling the dosage of Wnt signaling and homeostasis in intestinal epithelia.
Collapse
Affiliation(s)
- Xiaojiao Hua
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Chen Zhao
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Junbao Wang
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Gen Zheng
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wu
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Mei Ye
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ying Liu
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Yan Zhou
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, China
| |
Collapse
|
34
|
Lei X, Xu Z, Huang Y, Huang L, Lang J, Qu M, Liu D. Regulation of Mitochondrial Quality Control of Intestinal Stem Cells in Homeostasis and Diseases. Antioxid Redox Signal 2024. [PMID: 39225500 DOI: 10.1089/ars.2023.0489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Significance: Intestinal stem cells (ISCs) are crucial for the continuous renewal and regeneration of the small intestinal epithelium. ISC fate decisions are strictly controlled by metabolism. Mitochondria act as the central hubs of energetic metabolism and dynamically remodel their morphology to perform required metabolic functions. Mitochondrial dysfunction is closely associated with a variety of gastrointestinal diseases. Recent Advances: In recent years, several studies have reported that mitochondria are potential therapeutic targets for regulating ISC function to alleviate intestinal diseases. However, how mitochondrial quality control mediates ISCs under physiological conditions and protects against intestinal injury remains to be comprehensively reviewed. Critical Issues: In this review, we summarize the available studies about how mitochondrial metabolism, redox state, dynamics, autophagy, and proteostasis impact ISC proliferation, differentiation, and regeneration, respectively. Future Directions: We propose that remodeling the function of mitochondria in ISCs may be a promising potential future direction for the treatment of intestinal diseases. This review may provide new strategies for therapeutically targeting the mitochondria of ISCs in intestinal diseases.
Collapse
Affiliation(s)
- Xudan Lei
- Department of Experimental Research, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital and Institute, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Zhenni Xu
- Department of Experimental Research, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital and Institute, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yujun Huang
- Department of Experimental Research, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital and Institute, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Lingxiao Huang
- Department of Experimental Research, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital and Institute, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Jinyi Lang
- Department of Experimental Research, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital and Institute, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Mingyue Qu
- The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Dengqun Liu
- Department of Experimental Research, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital and Institute, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
35
|
Gorelov R, Weiner A, Huebner A, Yagi M, Haghani A, Brooke R, Horvath S, Hochedlinger K. Dissecting the impact of differentiation stage, replicative history, and cell type composition on epigenetic clocks. Stem Cell Reports 2024; 19:1242-1254. [PMID: 39178844 PMCID: PMC11411293 DOI: 10.1016/j.stemcr.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/26/2024] Open
Abstract
Epigenetic clocks, built on DNA methylation patterns of bulk tissues, are powerful age predictors, but their biological basis remains incompletely understood. Here, we conducted a comparative analysis of epigenetic age in murine muscle, epithelial, and blood cell types across lifespan. Strikingly, our results show that cellular subpopulations within these tissues, including adult stem and progenitor cells as well as their differentiated progeny, exhibit different epigenetic ages. Accordingly, we experimentally demonstrate that clocks can be skewed by age-associated changes in tissue composition. Mechanistically, we provide evidence that the observed variation in epigenetic age among adult stem cells correlates with their proliferative state, and, fittingly, forced proliferation of stem cells leads to increases in epigenetic age. Collectively, our analyses elucidate the impact of cell type composition, differentiation state, and replicative potential on epigenetic age, which has implications for the interpretation of existing clocks and should inform the development of more sensitive clocks.
Collapse
Affiliation(s)
- Rebecca Gorelov
- Massachusetts General Hospital Department of Molecular Biology, Boston, MA 02114, USA; Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Boston, MA 02114, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02139, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Aaron Weiner
- Massachusetts General Hospital Department of Molecular Biology, Boston, MA 02114, USA; Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Boston, MA 02114, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02139, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Aaron Huebner
- Massachusetts General Hospital Department of Molecular Biology, Boston, MA 02114, USA; Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Boston, MA 02114, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02139, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Masaki Yagi
- Massachusetts General Hospital Department of Molecular Biology, Boston, MA 02114, USA; Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Boston, MA 02114, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02139, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Amin Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Altos Labs, San Diego, CA 92121, USA
| | - Robert Brooke
- Epigenetic Clock Development Foundation, Torrance, CA 90502, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Altos Labs, San Diego, CA 92121, USA; Epigenetic Clock Development Foundation, Torrance, CA 90502, USA; Department of Biostatistics, School of Public Health, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Konrad Hochedlinger
- Massachusetts General Hospital Department of Molecular Biology, Boston, MA 02114, USA; Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Boston, MA 02114, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02139, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
36
|
Zhu H, Gu B, Zhao D, Ma Y, Mehmood MA, Li Y, Yang K, Wang Y, He M, Zheng J, Wang N. Wuliangye strong aroma baijiu promotes intestinal homeostasis by improving gut microbiota and regulating intestinal stem cell proliferation and differentiation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7417-7428. [PMID: 38760970 DOI: 10.1002/jsfa.13562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Wuliangye strong aroma baijiu (hereafter, Wuliangye baijiu) is a traditional Chinese grain liquor containing short-chain fatty acids, ethyl caproate, ethyl lactate, other trace components, and a large proportion of ethanol. The effects of Wuliangye baijiu on intestinal stem cells and intestinal epithelial development have not been elucidated. Here, the role of Wuliangye baijiu in intestinal epithelial regeneration and gut microbiota modulation was investigated by administering a Lieber-DeCarli chronic ethanol liquid diet in a mouse model to mimic long-term (8 weeks') light/moderate alcohol consumption (1.6 g kg-1 day-1) in healthy human adults. RESULTS Wuliangye baijiu promoted colonic crypt proliferation in mice. According to immunofluorescence and reverse transcription-quantitative polymerase chain reaction analyses, compared with the ethanol-only treatment, Wuliangye baijiu increased the number of intestinal stem cells and goblet cells and the expression of enteroendocrine cell differentiation markers in the mouse colon. Furthermore, gut microbiota analysis showed an increase in the relative abundance of microbiota related to intestinal homeostasis following Wuliangye baijiu administration. Notably, increased abundance of Bacteroidota, Faecalibaculum, Lachnospiraceae, and Blautia may play an essential role in promoting stem-cell-mediated intestinal epithelial development and maintaining intestinal homeostasis. CONCLUSIONS In summary, these findings suggest that Wuliangye baijiu can be used to regulate intestinal stem cell proliferation and differentiation in mice and to alter gut microbiota distributions, thereby promoting intestinal homeostasis. This research elucidates the mechanism by which Wuliangye baijiu promotes intestinal health. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hui Zhu
- School of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, Yibin, China
- Wuliangye Group Co., Ltd., Yibin, China
| | - Baoxiang Gu
- School of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, Yibin, China
| | - Dong Zhao
- Wuliangye Group Co., Ltd., Yibin, China
| | - Yi Ma
- School of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, Yibin, China
| | - Muhammad Aamer Mehmood
- School of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
- Bioenergy Research Center, Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Yuzhu Li
- Wuliangye Group Co., Ltd., Yibin, China
| | | | | | - Manli He
- Laboratory Animal Center, Southwest Medical University, Luzhou, China
| | - Jia Zheng
- Wuliangye Group Co., Ltd., Yibin, China
| | - Ning Wang
- School of Bioengineering, Sichuan University of Science and Engineering, Yibin, China
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, Yibin, China
| |
Collapse
|
37
|
Shaikh NA, Liu C, Yin Y, Baylink DJ, Tang X. 1,25-Dihydroxyvitamin D Enhances the Regenerative Function of Lgr5 + Intestinal Stem Cells In Vitro and In Vivo. Cells 2024; 13:1465. [PMID: 39273035 PMCID: PMC11394149 DOI: 10.3390/cells13171465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder in the intestines without a cure. Current therapies suppress inflammation to prevent further intestinal damage. However, healing already damaged intestinal epithelia is still an unmet medical need. Under physiological conditions, Lgr5+ intestinal stem cells (ISCs) in the intestinal crypts replenish the epithelia every 3-5 days. Therefore, understanding the regulation of Lgr5+ ISCs is essential. Previous data suggest vitamin D signaling is essential to maintain normal Lgr5+ ISC function in vivo. Our recent data indicate that to execute its functions in the intestines optimally, 1,25(OH)2D requires high concentrations that, if present systemically, can cause hypercalcemia (i.e., blood calcium levels significantly higher than physiological levels), leading to severe consequences. Using 5-bromo-2'-deoxyuridine (BrdU) to label the actively proliferating ISCs, our previous data suggested that de novo synthesized locally high 1,25(OH)2D concentrations effectively enhanced the migration and differentiation of ISCs without causing hypercalcemia. However, although sparse in the crypts, other proliferating cells other than Lgr5+ ISCs could also be labeled with BrdU. This current study used high-purity Lgr5+ ISC lines and a mouse strain, in which Lgr5+ ISCs and their progeny could be specifically tracked, to investigate the effects of de novo synthesized locally high 1,25(OH)2D concentrations on Lgr5+ ISC function. Our data showed that 1,25(OH)2D at concentrations significantly higher than physiological levels augmented Lgr5+ ISC differentiation in vitro. In vivo, de novo synthesized locally high 1,25(OH)2D concentrations significantly elevated local 1α-hydroxylase expression, robustly suppressed experimental colitis, and promoted Lgr5+ ISC differentiation. For the first time, this study definitively demonstrated 1,25(OH)2D's role in Lgr5+ ISCs, underpinning 1,25(OH)2D's promise in IBD therapy.
Collapse
Affiliation(s)
- Nisar Ali Shaikh
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA
| | - Chenfan Liu
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA
- Shandong Public Health Clinical Center, Shandong University, Jinan 250013, China
| | - Yue Yin
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA
| | - David J. Baylink
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Xiaolei Tang
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| |
Collapse
|
38
|
Oh SJ, Seo Y, Kim HS. Navigating the Landscape of Intestinal Regeneration: A Spotlight on Quiescence Regulation and Fetal Reprogramming. Int J Stem Cells 2024; 17:213-223. [PMID: 38267367 PMCID: PMC11361849 DOI: 10.15283/ijsc23176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024] Open
Abstract
Tissue-specific adult stem cells are pivotal in maintaining tissue homeostasis, especially in the rapidly renewing intestinal epithelium. At the heart of this process are leucine-rich repeat-containing G protein-coupled receptor 5-expressing crypt base columnar cells (CBCs) that differentiate into various intestinal epithelial cells. However, while these CBCs are vital for tissue turnover, they are vulnerable to cytotoxic agents. Recent advances indicate that alternative stem cell sources drive the epithelial regeneration post-injury. Techniques like lineage tracing and single-cell RNA sequencing, combined with in vitro organoid systems, highlight the remarkable cellular adaptability of the intestinal epithelium during repair. These regenerative responses are mediated by the reactivation of conserved stem cells, predominantly quiescent stem cells and revival stem cells. With focus on these cells, this review unpacks underlying mechanisms governing intestinal regeneration and explores their potential clinical applications.
Collapse
Affiliation(s)
- Su-Jeong Oh
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Korea
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan, Korea
- Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan, Korea
| | - Yoojin Seo
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Hyung-Sik Kim
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Korea
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan, Korea
- Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan, Korea
| |
Collapse
|
39
|
van Luyk ME, Krotenberg Garcia A, Lamprou M, Suijkerbuijk SJE. Cell competition in primary and metastatic colorectal cancer. Oncogenesis 2024; 13:28. [PMID: 39060237 PMCID: PMC11282291 DOI: 10.1038/s41389-024-00530-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Adult tissues set the scene for a continuous battle between cells, where a comparison of cellular fitness results in the elimination of weaker "loser" cells. This phenomenon, named cell competition, is beneficial for tissue integrity and homeostasis. In fact, cell competition plays a crucial role in tumor suppression, through elimination of early malignant cells, as part of Epithelial Defense Against Cancer. However, it is increasingly apparent that cell competition doubles as a tumor-promoting mechanism. The comparative nature of cell competition means that mutational background, proliferation rate and polarity all factor in to determine the outcome of these processes. In this review, we explore the intricate and context-dependent involvement of cell competition in homeostasis and regeneration, as well as during initiation and progression of primary and metastasized colorectal cancer. We provide a comprehensive overview of molecular and cellular mechanisms governing cell competition and its parallels with regeneration.
Collapse
Affiliation(s)
- Merel Elise van Luyk
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Ana Krotenberg Garcia
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Maria Lamprou
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Saskia Jacoba Elisabeth Suijkerbuijk
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
40
|
Viragova S, Li D, Klein OD. Activation of fetal-like molecular programs during regeneration in the intestine and beyond. Cell Stem Cell 2024; 31:949-960. [PMID: 38971147 PMCID: PMC11235077 DOI: 10.1016/j.stem.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 07/08/2024]
Abstract
Tissue regeneration after damage is generally thought to involve the mobilization of adult stem cells that divide and differentiate into progressively specialized progeny. However, recent studies indicate that tissue regeneration can be accompanied by reversion to a fetal-like state. During this process, cells at the injury site reactivate programs that operate during fetal development but are typically absent in adult homeostasis. Here, we summarize our current understanding of the molecular signals and epigenetic mediators that orchestrate "fetal-like reversion" during intestinal regeneration. We also explore evidence for this phenomenon in other organs and species and highlight open questions that merit future examination.
Collapse
Affiliation(s)
- Sara Viragova
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Dong Li
- Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA, USA
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA, USA.
| |
Collapse
|
41
|
Verhagen MP, Joosten R, Schmitt M, Välimäki N, Sacchetti A, Rajamäki K, Choi J, Procopio P, Silva S, van der Steen B, van den Bosch TPP, Seinstra D, de Vries AC, Doukas M, Augenlicht LH, Aaltonen LA, Fodde R. Non-stem cell lineages as an alternative origin of intestinal tumorigenesis in the context of inflammation. Nat Genet 2024; 56:1456-1467. [PMID: 38902475 PMCID: PMC11250264 DOI: 10.1038/s41588-024-01801-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/15/2024] [Indexed: 06/22/2024]
Abstract
According to conventional views, colon cancer originates from stem cells. However, inflammation, a key risk factor for colon cancer, has been shown to suppress intestinal stemness. Here, we used Paneth cells as a model to assess the capacity of differentiated lineages to trigger tumorigenesis in the context of inflammation in mice. Upon inflammation, Paneth cell-specific Apc mutations led to intestinal tumors reminiscent not only of those arising in patients with inflammatory bowel disease, but also of a larger fraction of human sporadic colon cancers. The latter is possibly because of the inflammatory consequences of western-style dietary habits, a major colon cancer risk factor. Machine learning methods designed to predict the cell-of-origin of cancer from patient-derived tumor samples confirmed that, in a substantial fraction of sporadic cases, the origins of colon cancer reside in secretory lineages and not in stem cells.
Collapse
Affiliation(s)
- Mathijs P Verhagen
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Rosalie Joosten
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mark Schmitt
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Institute of Pharmacology, University of Marburg, Marburg, Germany
| | - Niko Välimäki
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Andrea Sacchetti
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Kristiina Rajamäki
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Jiahn Choi
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Paola Procopio
- Institute of Pharmacology, University of Marburg, Marburg, Germany
| | - Sara Silva
- Institute of Pharmacology, University of Marburg, Marburg, Germany
| | - Berdine van der Steen
- Department of Otorhinolaryngology and Head & Neck Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Danielle Seinstra
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Annemarie C de Vries
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Michail Doukas
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Leonard H Augenlicht
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Lauri A Aaltonen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Riccardo Fodde
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
42
|
Fey SK, Vaquero-Siguero N, Jackstadt R. Dark force rising: Reawakening and targeting of fetal-like stem cells in colorectal cancer. Cell Rep 2024; 43:114270. [PMID: 38787726 DOI: 10.1016/j.celrep.2024.114270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/14/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Stem cells play pivotal roles in maintaining intestinal homeostasis, orchestrating regeneration, and in key steps of colorectal cancer (CRC) initiation and progression. Intriguingly, adult stem cells are reduced during many of these processes. On the contrary, primitive fetal programs, commonly detected in development, emerge during tissue repair, CRC metastasis, and therapy resistance. Recent findings indicate a dynamic continuum between adult and fetal stem cell programs. We discuss critical mechanisms facilitating the plasticity between stem cell states and highlight the heterogeneity observed upon the appearance of fetal-like states. We focus on therapeutic opportunities that arise by targeting fetal-like CRC cells and how those concepts can be translated into the clinic.
Collapse
Affiliation(s)
- Sigrid K Fey
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Nuria Vaquero-Siguero
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Rene Jackstadt
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), DKFZ, Core Center Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
43
|
Ghuwalewala S, Jiang K, Ragi S, Shalloway D, Tumbar T. A transit-amplifying progenitor with biphasic behavior contributes to epidermal renewal. Development 2024; 151:dev202389. [PMID: 38934416 PMCID: PMC11234368 DOI: 10.1242/dev.202389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
Transit-amplifying (TA) cells are progenitors that undergo an amplification phase followed by transition into an extinction phase. A long postulated epidermal TA progenitor with biphasic behavior has not yet been experimentally observed in vivo. Here, we identify such a TA population using clonal analysis of Aspm-CreER genetic cell-marking in mice, which uncovers contribution to both homeostasis and injury repair of adult skin. This TA population is more frequently dividing than a Dlx1-CreER-marked long-term self-renewing (e.g. stem cell) population. Newly developed generalized birth-death modeling of long-term lineage tracing data shows that both TA progenitors and stem cells display neutral competition, but only the stem cells display neutral drift. The quantitative evolution of a nascent TA cell and its direct descendants shows that TA progenitors indeed amplify the basal layer before transition and that the homeostatic TA population is mostly in extinction phase. This model will be broadly useful for analyzing progenitors whose behavior changes with their clone age. This work identifies a long-missing class of non-self-renewing biphasic epidermal TA progenitors and has broad implications for understanding tissue renewal mechanisms.
Collapse
Affiliation(s)
- Sangeeta Ghuwalewala
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Kevin Jiang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Sara Ragi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - David Shalloway
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Tudorita Tumbar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
44
|
Larue AEM, Atlasi Y. The epigenetic landscape in intestinal stem cells and its deregulation in colorectal cancer. Stem Cells 2024; 42:509-525. [PMID: 38597726 PMCID: PMC11177158 DOI: 10.1093/stmcls/sxae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Epigenetic mechanisms play a pivotal role in controlling gene expression and cellular plasticity in both normal physiology and pathophysiological conditions. These mechanisms are particularly important in the regulation of stem cell self-renewal and differentiation, both in embryonic development and within adult tissues. A prime example of this finely tuned epigenetic control is observed in the gastrointestinal lining, where the small intestine undergoes renewal approximately every 3-5 days. How various epigenetic mechanisms modulate chromatin functions in intestinal stem cells (ISCs) is currently an active area of research. In this review, we discuss the main epigenetic mechanisms that control ISC differentiation under normal homeostasis. Furthermore, we explore the dysregulation of these mechanisms in the context of colorectal cancer (CRC) development. By outlining the main epigenetic mechanisms contributing to CRC, we highlight the recent therapeutics development and future directions for colorectal cancer research.
Collapse
Affiliation(s)
- Axelle E M Larue
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, United Kingdom
| | - Yaser Atlasi
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, United Kingdom
| |
Collapse
|
45
|
Capdevila C, Miller J, Cheng L, Kornberg A, George JJ, Lee H, Botella T, Moon CS, Murray JW, Lam S, Calderon RI, Malagola E, Whelan G, Lin CS, Han A, Wang TC, Sims PA, Yan KS. Time-resolved fate mapping identifies the intestinal upper crypt zone as an origin of Lgr5+ crypt base columnar cells. Cell 2024; 187:3039-3055.e14. [PMID: 38848677 PMCID: PMC11770878 DOI: 10.1016/j.cell.2024.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/16/2024] [Accepted: 05/01/2024] [Indexed: 06/09/2024]
Abstract
In the prevailing model, Lgr5+ cells are the only intestinal stem cells (ISCs) that sustain homeostatic epithelial regeneration by upward migration of progeny through elusive upper crypt transit-amplifying (TA) intermediates. Here, we identify a proliferative upper crypt population marked by Fgfbp1, in the location of putative TA cells, that is transcriptionally distinct from Lgr5+ cells. Using a kinetic reporter for time-resolved fate mapping and Fgfbp1-CreERT2 lineage tracing, we establish that Fgfbp1+ cells are multi-potent and give rise to Lgr5+ cells, consistent with their ISC function. Fgfbp1+ cells also sustain epithelial regeneration following Lgr5+ cell depletion. We demonstrate that FGFBP1, produced by the upper crypt cells, is an essential factor for crypt proliferation and epithelial homeostasis. Our findings support a model in which tissue regeneration originates from upper crypt Fgfbp1+ cells that generate progeny propagating bi-directionally along the crypt-villus axis and serve as a source of Lgr5+ cells in the crypt base.
Collapse
Affiliation(s)
- Claudia Capdevila
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Jonathan Miller
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA; Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Liang Cheng
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Adam Kornberg
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA; Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Joel J George
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Hyeonjeong Lee
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Theo Botella
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Christine S Moon
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA
| | - John W Murray
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA
| | - Stephanie Lam
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Ruben I Calderon
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Ermanno Malagola
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Gary Whelan
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Chyuan-Sheng Lin
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Department of Pathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Arnold Han
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA; Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Timothy C Wang
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Peter A Sims
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA; Departments of Biochemistry & Molecular Biophysics and of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kelley S Yan
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
46
|
Li ML, Sumigray K. Redefining intestinal stemness: The emergence of a new ISC population. Cell 2024; 187:2900-2902. [PMID: 38848673 DOI: 10.1016/j.cell.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 06/09/2024]
Abstract
In tissue homeostasis, intestinal stem cells (ISCs) undergo continuous self-renewal to sustain rapid cellular turnover. In this issue of Cell, Capdevila et al.1 and Malagola, Vasciaveo, et al.2 identify a new ISC population in the upper crypt that can generate Lgr5+ stem cells during homeostasis.
Collapse
Affiliation(s)
- Mei-Lan Li
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Kaelyn Sumigray
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06510, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
47
|
Malagola E, Vasciaveo A, Ochiai Y, Kim W, Zheng B, Zanella L, Wang ALE, Middelhoff M, Nienhüser H, Deng L, Wu F, Waterbury QT, Belin B, LaBella J, Zamechek LB, Wong MH, Li L, Guha C, Cheng CW, Yan KS, Califano A, Wang TC. Isthmus progenitor cells contribute to homeostatic cellular turnover and support regeneration following intestinal injury. Cell 2024; 187:3056-3071.e17. [PMID: 38848678 PMCID: PMC11164536 DOI: 10.1016/j.cell.2024.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/15/2024] [Accepted: 05/01/2024] [Indexed: 06/09/2024]
Abstract
The currently accepted intestinal epithelial cell organization model proposes that Lgr5+ crypt-base columnar (CBC) cells represent the sole intestinal stem cell (ISC) compartment. However, previous studies have indicated that Lgr5+ cells are dispensable for intestinal regeneration, leading to two major hypotheses: one favoring the presence of a quiescent reserve ISC and the other calling for differentiated cell plasticity. To investigate these possibilities, we studied crypt epithelial cells in an unbiased fashion via high-resolution single-cell profiling. These studies, combined with in vivo lineage tracing, show that Lgr5 is not a specific ISC marker and that stemness potential exists beyond the crypt base and resides in the isthmus region, where undifferentiated cells participate in intestinal homeostasis and regeneration following irradiation (IR) injury. Our results provide an alternative model of intestinal epithelial cell organization, suggesting that stemness potential is not restricted to CBC cells, and neither de-differentiation nor reserve ISC are drivers of intestinal regeneration.
Collapse
Affiliation(s)
- Ermanno Malagola
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA
| | | | - Yosuke Ochiai
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Woosook Kim
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Biyun Zheng
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA; Department of Gastroenterology, Fujian Medical University Union Hospital, Fujian 350000, China
| | - Luca Zanella
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Alexander L E Wang
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Moritz Middelhoff
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Henrik Nienhüser
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
| | - Lu Deng
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66107, USA
| | - Feijing Wu
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Quin T Waterbury
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Bryana Belin
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Jonathan LaBella
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Leah B Zamechek
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Melissa H Wong
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, L215, Portland, OR, USA
| | - Linheng Li
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66107, USA
| | - Chandan Guha
- Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Chia-Wei Cheng
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Kelley S Yan
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA; Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA; Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA; Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biochemistry & Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biomedical Informatics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA; Chan Zuckerberg Biohub NY, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA; Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
48
|
Shi R, Wang B. Nutrient metabolism in regulating intestinal stem cell homeostasis. Cell Prolif 2024; 57:e13602. [PMID: 38386338 PMCID: PMC11150145 DOI: 10.1111/cpr.13602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/23/2024] Open
Abstract
Intestinal stem cells (ISCs) are known for their remarkable proliferative capacity, making them one of the most active cell populations in the body. However, a high turnover rate of intestinal epithelium raises the likelihood of dysregulated homeostasis, which is known to cause various diseases, including cancer. Maintaining precise control over the homeostasis of ISCs is crucial to preserve the intestinal epithelium's integrity during homeostasis or stressed conditions. Recent research has indicated that nutrients and metabolic pathways can extensively modulate the fate of ISCs. This review will explore recent findings concerning the influence of various nutrients, including lipids, carbohydrates, and vitamin D, on the delicate balance between ISC proliferation and differentiation.
Collapse
Affiliation(s)
- Ruicheng Shi
- Department of Comparative Biosciences, College of Veterinary MedicineUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Bo Wang
- Department of Comparative Biosciences, College of Veterinary MedicineUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Division of Nutritional Sciences, College of Agricultural, Consumer and Environmental SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Cancer Center at IllinoisUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
49
|
Şişli HB, Şenkal Turhan S, Bulut Okumuş E, Böke ÖB, Erdoğmuş Ö, Kül B, Sümer E, Doğan A. Azoxymethane-induced carcinogenesis-like model of mouse intestine and mouse embryonic stem cell-derived intestinal organoids. Mol Biol Rep 2024; 51:704. [PMID: 38824233 DOI: 10.1007/s11033-024-09660-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Tumor modeling using organoids holds potential in studies of cancer development, enlightening both the intracellular and extracellular molecular mechanisms behind different cancer types, biobanking, and drug screening. Intestinal organoids can be generated in vitro using a unique type of adult stem cells which are found at the base of crypts and are characterized by their high Lgr5 expression levels. METHODS AND RESULTS In this study, we successfully established intestinal cancer organoid models by using both the BALB/c derived and mouse embryonic stem cells (mESCs)-derived intestinal organoids. In both cases, carcinogenesis-like model was developed by using azoxymethane (AOM) treatment. Carcinogenesis-like model was verified by H&E staining, immunostaining, relative mRNA expression analysis, and LC/MS analysis. The morphologic analysis demonstrated that the number of generated organoids, the number of crypts, and the intensity of the organoids were significantly augmented in AOM-treated intestinal organoids compared to non-AOM-treated ones. Relative mRNA expression data revealed that there was a significant increase in both Wnt signaling pathway-related genes and pluripotency transcription factors in the AOM-induced intestinal organoids. CONCLUSION We successfully developed simple carcinogenesis-like models using mESC-based and Lgr5 + stem cell-based intestinal organoids. Intestinal organoid based carcinogenesi models might be used for personalized cancer therapy in the future.
Collapse
Affiliation(s)
- Hatice Burcu Şişli
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, Istanbul, Turkey
| | - Selinay Şenkal Turhan
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, Istanbul, Turkey
| | - Ezgi Bulut Okumuş
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, Istanbul, Turkey
| | - Özüm Begüm Böke
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, Istanbul, Turkey
| | - Özüm Erdoğmuş
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, Istanbul, Turkey
| | - Berke Kül
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, Istanbul, Turkey
| | - Engin Sümer
- Faculty of Medicine, Experimental Research Center, Yeditepe University, Istanbul, Turkey
| | - Ayşegül Doğan
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
50
|
Chen YY, Wang M, Zuo CY, Mao MX, Peng XC, Cai J. Nrf-2 as a novel target in radiation induced lung injury. Heliyon 2024; 10:e29492. [PMID: 38665580 PMCID: PMC11043957 DOI: 10.1016/j.heliyon.2024.e29492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/09/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Radiation-induced lung injury (RILI) is a common and fatal complication of chest radiotherapy. The underlying mechanisms include radiation-induced oxidative stress caused by damage to the deoxyribonucleic acid (DNA) and production of reactive oxygen species (ROS), resulting in apoptosis of lung and endothelial cells and recruitment of inflammatory cells and myofibroblasts expressing NADPH oxidase to the site of injury, which in turn contribute to oxidative stress and cytokine production. Nuclear factor erythroid 2-related factor 2 (Nrf-2) is a vital transcription factor that regulates oxidative stress and inhibits inflammation. Studies have shown that Nrf-2 protects against radiation-induced lung inflammation and fibrosis. This review discusses the protective role of Nrf-2 in RILI and its possible mechanisms.
Collapse
Affiliation(s)
- Yuan-Yuan Chen
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, 434023, PR China
| | - Meng Wang
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, 434023, PR China
| | - Chen-Yang Zuo
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, 434023, PR China
| | - Meng-Xia Mao
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, 434023, PR China
| | - Xiao-Chun Peng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, PR China
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, PR China
| | - Jun Cai
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, 434023, PR China
| |
Collapse
|