1
|
Song H, Du X, Zhang Y, Liu W, Luo Y, Liu Y, Xue Y, Xu M, Lu J, Jia W, Du Y, Cao L, Lu J, Zhang W, He Z. Gelatin sponge patch grafting of microcryogel-based three-dimensional mesenchymal stem cells to alleviate acute liver failure. Biomaterials 2025; 321:123324. [PMID: 40253733 DOI: 10.1016/j.biomaterials.2025.123324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/24/2025] [Accepted: 04/06/2025] [Indexed: 04/22/2025]
Abstract
The clinical application of human umbilical cord mesenchymal stem cells (hUCMSCs) in the treatment of liver failure faces challenges due to cell quality, short engraftment time, and limited efficacy. Here, gelatin microcryogel (GM) microcarriers with pore sizes ranging from 15 to 36 μm were tuned from mixed gelatin and glutaraldehyde to develop a 3D culture system of hUCMSCs with improved therapeutic effects. Bulk RNA sequencing and in vitro assays showed that 3D-hUCMSCs exhibited significant improvement in signaling pathways related to paracrine secretion and anti-inflammation. These 3D-hUCMSCs superior compared to 2D-hUCMSCs not only in terms of paracrine secretion, protection from oxidation, and resistance to mechanical force damage, but also had better liver function improvement effect than 2D-hUCMSCs when they were transplanted as single cells into liver injury mice. Furthermore, a gelatin sponge patch grafting (GSPG) strategy was developed to enable the direct engraftment of 3D-hUCMSCs within the GM microcarriers. The results showed that overall engraftment in the host liver was significantly improved, and the life span of transplanted hosts was extended. Our study provided a practical strategy to achieve high engraftment and long retraining time of 3D-hUCMSCs in rescuing acute liver failure with gelatin matrixes.
Collapse
Affiliation(s)
- Haimeng Song
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, PR China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, PR China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, PR China
| | - Xinyue Du
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, PR China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, PR China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, PR China
| | - Yuanyuan Zhang
- Beijing CytoNiche Biotechnology Co. Ltd., Beijing, 100195, PR China
| | - Wei Liu
- Beijing CytoNiche Biotechnology Co. Ltd., Beijing, 100195, PR China
| | - Yi Luo
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, PR China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, PR China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, PR China
| | - Yuxin Liu
- Jinzhou Medical University, Jinzhou, Liaoning, 121001, PR China
| | - Yongjia Xue
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, PR China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, PR China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, PR China
| | - Mingyang Xu
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, PR China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, PR China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, PR China
| | - Jizhen Lu
- Institute for Regenerative Medicine, National Stem Cell Translational Resource Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, PR China
| | - Wenwen Jia
- Institute for Regenerative Medicine, National Stem Cell Translational Resource Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, PR China
| | - Yanan Du
- School of Biomedical Engineering, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Lining Cao
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 201619, PR China
| | - Jianfeng Lu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 201619, PR China.
| | - Wencheng Zhang
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, PR China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, PR China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, PR China.
| | - Zhiying He
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, PR China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, PR China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, PR China.
| |
Collapse
|
2
|
Qin Z, Li Y, Shao X, Li K, Bai Y, Wang B, Ma F, Shi W, Song L, Zhuang A, He F, Ding C, Yang W. HNF4A functions as a hepatocellular carcinoma oncogene or tumor suppressor depending upon the AMPK pathway activity status. Cancer Lett 2025; 623:217732. [PMID: 40254090 DOI: 10.1016/j.canlet.2025.217732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 04/10/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
Cancer cells frequently undergo energy metabolic stress induced by the increased dynamics of nutrient supply. Hepatocyte nuclear factor 4A (HNF4A) is a master transcription factor (TF) in hepatocytes that regulates metabolism and differentiation. However, the mechanism underlying how HNF4A functions in cancer progression remains unclear due to conflicting results observed in numerous studies. To address the roles of HNF4A in hepatocellular carcinoma (HCC), we investigated the regulatory functions of HNF4A in HCC cells under different glucose supply conditions. We found that HNF4A exhibited tumor-suppressive effects on the proliferation and migration of HCC cells in glucose-sufficient conditions and tumor-promotive effects on HCC cells in glucose-insufficient conditions. Further investigation revealed that this diverse function of HNF4A was dependent upon the AMPK pathway activity. Similarly, the prognosis predicted by HNF4A was also correlated with whether the AMPKa expression levels were low or high in clinical HCC patients. Multiomics approaches consisting of proteomics and ChIP-seq revealed that key HNF4A target genes, including NEDD4 and RPS6KA2, are involved in the diverse function of HNF4A in HCC in response to the AMPK activity status. Specifically, HNF4A could bind to the promoter region of NEDD4 and RPS6KA2, and upregulating their expression. Our study has demonstrated the relationship between and synergism of AMPK and HNF4A in the progression of HCC under diverse nutrient conditions.
Collapse
Affiliation(s)
- Zhaoyu Qin
- Department of Pediatric Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; State Key Laboratory of Genetics and Development of Complex Phenotypes, Institutes of Biomedical Sciences, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200032, China
| | - Yan Li
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Institutes of Biomedical Sciences, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200032, China
| | - Xiexiang Shao
- Department of Pediatric Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Kai Li
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Institutes of Biomedical Sciences, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200032, China
| | - Yihe Bai
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Institutes of Biomedical Sciences, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200032, China
| | - Bing Wang
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Institutes of Biomedical Sciences, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200032, China
| | - Fahan Ma
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Institutes of Biomedical Sciences, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200032, China
| | - Wenhao Shi
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Lei Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China
| | - Aojia Zhuang
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Institutes of Biomedical Sciences, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200032, China
| | - Fuchu He
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Institutes of Biomedical Sciences, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200032, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Chen Ding
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Institutes of Biomedical Sciences, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200032, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China
| | - Wenjun Yang
- Department of Pediatric Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
3
|
Yang D, Guo X, Xi R. The Chromatin Accessibility Landscape in Cell Plasticity and Reprogramming: Understanding and Overcoming the Barriers. Bioessays 2025; 47:e70005. [PMID: 40207579 DOI: 10.1002/bies.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/11/2025]
Abstract
Cell plasticity enables the dynamic changes in cell identities necessary for normal development and tissue repair. Induced cell reprogramming, which leverages this plasticity, holds great promise for regenerative medicine and personalized therapies. However, the success of cell reprogramming is often impeded by various molecular barriers, such as epigenetic marks, cell senescence, and the activation of alternative or refractory routes. In this review, we examine the cell reprogramming events that occur within or between germ layers and adult stem cell lineages and propose that the overall similarity in the pre-existing chromatin accessibility landscape is a major determinant of reprogramming efficiency from one cell type to another. A better understanding of the regulation and control of chromatin accessibility should facilitate the development of new methods and strategies to improve cell reprogramming efficiency and advance translational research.
Collapse
Affiliation(s)
- Diyi Yang
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xingting Guo
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing, China
| | - Rongwen Xi
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| |
Collapse
|
4
|
Appleton E, Tao J, Liu S, Glass C, Fonseca G, Church G. Machine-guided cell-fate engineering. Cell Rep 2025; 44:115726. [PMID: 40382774 DOI: 10.1016/j.celrep.2025.115726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/06/2025] [Accepted: 04/30/2025] [Indexed: 05/20/2025] Open
Abstract
The creation of induced pluripotent stem cells (iPSCs) has enabled scientists to explore the function, mechanisms, and differentiation processes of many types of cells. One of the fastest and most efficient approaches is transcription factor (TF) over-expression. However, finding the right combination of TFs to over-express to differentiate iPSCs directly into other cell types is a difficult task. Here, we describe a machine-learning (ML) pipeline, called CellCartographer, that uses chromatin accessibility and transcriptomics data to design multiplex TF pooled-screening experiments for cell-type conversions that then may be iteratively refined. We validate this method by differentiating iPSCs into twelve cell types at low efficiency in preliminary screens and iteratively refine our TF combinations to achieve high-efficiency differentiation for six of these cell types in <6 days. Finally, we functionally characterize iPSC-derived cytotoxic T cells (iCytoTs), regulatory T cells (iTregs), type II astrocytes (iAstIIs), and hepatocytes (iHeps) to validate functionally accurate differentiation.
Collapse
Affiliation(s)
- Evan Appleton
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | - Jenhan Tao
- Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA.
| | - Songlei Liu
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher Glass
- Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Gregory Fonseca
- Meakins-Christe Laboratories, Research Institute of McGill University Health Centre, Montréal, QC H4A-3J1, Canada; Quantitative Life Sciences, McGill University, Montréal, QC H4A-3J1, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC H4A-3J1, Canada
| | - George Church
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Russo CJ, Husain K, Murugan A. Soft Modes as a Predictive Framework for Low-Dimensional Biological Systems Across Scales. Annu Rev Biophys 2025; 54:401-426. [PMID: 39971349 PMCID: PMC12079786 DOI: 10.1146/annurev-biophys-081624-030543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
All biological systems are subject to perturbations arising from thermal fluctuations, external environments, or mutations. Yet, while biological systems consist of thousands of interacting components, recent high-throughput experiments have shown that their response to perturbations is surprisingly low dimensional: confined to only a few stereotyped changes out of the many possible. In this review, we explore a unifying dynamical systems framework-soft modes-to explain and analyze low dimensionality in biology, from molecules to ecosystems. We argue that this soft mode framework makes nontrivial predictions that generalize classic ideas from developmental biology to disparate systems, namely phenocopying, dual buffering, and global epistasis. While some of these predictions have been borne out in experiments, we discuss how soft modes allow for a surprisingly far-reaching and unifying framework in which to analyze data from protein biophysics to microbial ecology.
Collapse
Affiliation(s)
- Christopher Joel Russo
- James Franck Institute, University of Chicago, Chicago, Illinois, USA
- Program in Biophysical Sciences, University of Chicago, Chicago, Illinois, USA
| | - Kabir Husain
- James Franck Institute, University of Chicago, Chicago, Illinois, USA
- Department of Physics, University College London, London, United Kingdom
| | - Arvind Murugan
- James Franck Institute, University of Chicago, Chicago, Illinois, USA
- Department of Physics, University of Chicago, Chicago, Illinois, USA;
| |
Collapse
|
6
|
Igarashi R, Oda M, Okada R, Yano T, Takahashi S, Pastuhov S, Matano M, Masuda N, Togasaki K, Ohta Y, Sato S, Hishiki T, Suematsu M, Itoh M, Fujii M, Sato T. Generation of human adult hepatocyte organoids with metabolic functions. Nature 2025:10.1038/s41586-025-08861-y. [PMID: 40240606 DOI: 10.1038/s41586-025-08861-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/04/2025] [Indexed: 04/18/2025]
Abstract
Proliferating hepatocytes often undergo ductal metaplasia to balance the energy trade-off between cellular functions and replication, hindering the expansion of human adult hepatocytes with functional competency1. Here we demonstrate that the combined activation of Wnt and STAT3 signalling enables long-term self-renewal of human adult hepatocyte organoids. YAP activation facilitates hepatocyte proliferation but commits it towards the biliary duct lineage. By contrast, STAT3 activation by oncostatin M induces hepatocyte proliferation while counteracting ductal metaplasia and maintaining the hepatic identity. Xenotransplanted hepatocyte organoids repopulate the recipient mouse liver and reconstitute the metabolic zonation structure. Upon niche factor removal and hormone supplementation, hepatocyte organoids form cord-like structures with bile canalicular networks and exhibit major liver metabolic functions comparable to those of in vivo hepatocytes. Hepatocyte organoids are amenable to gene editing, prompting functional modelling of inherent metabolic liver diseases. The new culture system offers a promising avenue for developing therapeutic strategies against human liver diseases.
Collapse
Affiliation(s)
- Ryo Igarashi
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Mayumi Oda
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Ryo Okada
- JSR-Keio University Medical and Chemical Innovation Center (JKiC), JSR Corporation, Tokyo, Japan
| | - Tomoki Yano
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Sirirat Takahashi
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Strahil Pastuhov
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Mami Matano
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Norio Masuda
- JSR-Keio University Medical and Chemical Innovation Center (JKiC), JSR Corporation, Tokyo, Japan
| | - Kazuhiro Togasaki
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Yuki Ohta
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Saeko Sato
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Takako Hishiki
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Makoto Suematsu
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Manabu Itoh
- JSR-Keio University Medical and Chemical Innovation Center (JKiC), JSR Corporation, Tokyo, Japan
| | - Masayuki Fujii
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Toshiro Sato
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan.
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
7
|
Jiang N, Li G, Luo S, Kong X, Yin S, Peng J, Jiang Y, Tao W, Li C, Xie H, Deng H, Xie B. Single-cell transcriptomics reveals liver developmental trajectory during lineage reprogramming of human induced hepatocyte-like cells. Cell Mol Life Sci 2025; 82:139. [PMID: 40188417 PMCID: PMC11973031 DOI: 10.1007/s00018-025-05677-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/11/2025] [Accepted: 03/24/2025] [Indexed: 04/08/2025]
Abstract
Hepatocytes are crucial for drug screening, disease modeling, and clinical transplantation, yet generating functional hepatocytes in vitro is challenging due to the difficulty of establishing their authentic gene regulatory networks (GRNs). We have previously developed a two-step lineage reprogramming strategy to generate functionally competent human induced hepatocytes (hiHeps), providing an effective model for studying the establishment of hepatocyte-specific GRNs. In this study, we utilized high-throughput single-cell RNA sequencing (scRNA-seq) to explore the cell-fate transition and the establishment of hepatocyte-specific GRNs involved in the two-step reprogramming process. Our findings revealed that the late stage of the reprogramming process mimics the natural trajectory of liver development, exhibiting similar transcriptional waves of developmental genes. CD24 and DLK1 were identified as surface markers enriching two distinct hepatic progenitor populations respectively. Lipid metabolism emerged as a key enhancer of hiHeps maturation. Furthermore, transcription factors HNF4A and HHEX were identified as pivotal gatekeepers directing cell fate decisions between hepatocytes and intestinal cells. Collectively, this study provides valuable insights into the establishment of hepatocyte-specific GRNs during hiHeps induction at single-cell resolution, facilitating more efficient production of functional hepatocytes for therapeutic applications.
Collapse
Affiliation(s)
- Nan Jiang
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
| | - Guangya Li
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Sen Luo
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
| | - Xi Kong
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
| | - Shigang Yin
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
| | - Jianhua Peng
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
| | - Yong Jiang
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
| | - Wei Tao
- Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Cheng Li
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, China
| | - Huangfan Xie
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China.
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China.
| | - Hongkui Deng
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- Changping Laboratory, Beijing, China.
| | - Bingqing Xie
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China.
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China.
| |
Collapse
|
8
|
Qin S, Bo X, Liu H, Zhang Z, Zhao Z, Xia Q. Cell therapies and liver organogenesis technologies: Promising strategies for end-stage liver disease. Hepatology 2025:01515467-990000000-01231. [PMID: 40178487 DOI: 10.1097/hep.0000000000001321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/14/2025] [Indexed: 04/05/2025]
Abstract
End-stage liver disease represents a critical hepatic condition with high mortality, for which liver transplantation remains the only effective treatment. However, the scarcity of suitable donors results in numerous patients dying while awaiting transplantation. Novel strategies, including cell therapies and technologies mimicking liver organogenesis, offer promising alternatives for treating end-stage liver disease by potentially providing new sources of liver grafts. Recently, significant progress has been made in this field, including stem cell transplantation, hepatocyte transplantation, in vitro liver tissue generation, and liver replacement technologies. Several clinical studies have demonstrated that stem cell transplantation and hepatocyte transplantation can prolong patient survival and serve as a bridge to liver transplantation. Furthermore, in vitro liver tissue generation technologies, such as liver organoids and three-dimensional bioprinting, can generate hepatic tissues with sophisticated structures and functions, making them promising transplantation materials. Notably, liver replacement technologies hold considerable potential for producing biologically functional and transplantable liver grafts. In this review, we discuss the fundamental principles and recent advancements in cell therapies and liver organogenesis technologies while also addressing the challenges and future prospects in this rapidly evolving field.
Collapse
Affiliation(s)
- Shaoyang Qin
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaochen Bo
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyuan Liu
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhishuo Zhang
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhicong Zhao
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Sino-German Gene and Cell Therapy Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
- Department of General Surgery, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Sino-German Gene and Cell Therapy Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| |
Collapse
|
9
|
Zhu F, Nie G. Cell reprogramming: methods, mechanisms and applications. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:12. [PMID: 40140235 PMCID: PMC11947411 DOI: 10.1186/s13619-025-00229-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/05/2025] [Accepted: 03/09/2025] [Indexed: 03/28/2025]
Abstract
Cell reprogramming represents a powerful approach to achieve the conversion cells of one type into cells of another type of interest, which has substantially changed the landscape in the field of developmental biology, regenerative medicine, disease modeling, drug discovery and cancer immunotherapy. Cell reprogramming is a complex and ordered process that involves the coordination of transcriptional, epigenetic, translational and metabolic changes. Over the past two decades, a range of questions regarding the facilitators/barriers, the trajectories, and the mechanisms of cell reprogramming have been extensively investigated. This review summarizes the recent advances in cell reprogramming mediated by transcription factors or chemical molecules, followed by elaborating on the important roles of biophysical cues in cell reprogramming. Additionally, this review will detail our current understanding of the mechanisms that govern cell reprogramming, including the involvement of the recently discovered biomolecular condensates. Finally, the review discusses the broad applications and future directions of cell reprogramming in developmental biology, disease modeling, drug development, regenerative/rejuvenation therapy, and cancer immunotherapy.
Collapse
Affiliation(s)
- Fei Zhu
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing, 100190, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
10
|
Liu K, Li L, He Y, Zhang S, You H, Wang P. Hepatic progenitor cells reprogrammed from mouse fibroblasts repopulate hepatocytes in Wilson's disease mice. Stem Cell Res Ther 2025; 16:131. [PMID: 40069754 PMCID: PMC11899129 DOI: 10.1186/s13287-025-04253-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Wilson's disease (WD) is a genetic disorder that impairs the excretion of copper in hepatocytes and results in excessive copper deposition in multiple organs. The replacement of disordered hepatocytes with functional hepatocytes can serve as a lifelong therapeutic strategy for the treatment of WD. The aim of this study was to determine the hepatocyte repopulation effects of fibroblast-derived hepatic progenitor cells in the treatment of WD. METHODS Induced hepatic progenitor cells (iHPCs) were generated through direct reprogramming of adult mouse fibroblasts infected with lentivirus carrying both the Foxa3 and Hnf4α genes. These iHPCs were subsequently identified and transplanted into copper-overload WD mice with the Atp7b (H1071Q) mutation via caudal vein injection. RESULTS After lentivirus infection, the fibroblasts transformed into Foxa3- and Hnf4α-overexpressing cobblestone-like cells with reduced expression of fibroblast markers and increased expression of epithelial cell and hepatic progenitor cell markers, i.e., iHPCs. Sixteen weeks after transplantation into WD mice, approximately 2% of hepatocytes were derived from iHPCs, and these iHPC-derived hepatocytes expressed a tight junction-associated protein of the bile canal, tight junction protein 1 (Zo1). There was a decrease in the serum copper concentration and relative activity of serum ceruloplasmin at weeks 4 and 8 after iHPCs transplantation compared with those of WD fed mice administered saline or fibroblasts. Furthermore, iHPC transplantation markedly reduced the proportion of CD8+ T lymphocytes and natural killer cells compared with those in fibroblast-transplanted WD mice and downregulated the transcription of the inflammatory cytokines, including tumor necrosis factor α (Tnfα), interleukin 1β (IL-1β), and IL-6, compared with those in WD mice and in fibroblast-transplanted WD mice. CONCLUSION iHPCs reprogrammed from adult fibroblasts can repopulate hepatocytes and exert therapeutic effects in WD mice, representing a potential replacement therapy for clinical application.
Collapse
Affiliation(s)
- Kai Liu
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Beijing, 100050, China.
- Beijing Clinical Research Institute, Beijing, 100050, China.
| | - Li Li
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing, 100069, China
| | - Yu He
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing, 100069, China
| | - Song Zhang
- Beijing Clinical Research Institute, Beijing, 100050, China
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- National Clinical Research Center for Digestive Disease, Beijing, 100069, China.
| | - Ping Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- National Clinical Research Center for Digestive Disease, Beijing, 100069, China.
| |
Collapse
|
11
|
Yan B, Lu Q, Gao T, Xiao K, Zong Q, Lv H, Lv G, Wang L, Liu C, Yang W, Jiang G. CD146 regulates the stemness and chemoresistance of hepatocellular carcinoma via JAG2-NOTCH signaling. Cell Death Dis 2025; 16:150. [PMID: 40032820 PMCID: PMC11876685 DOI: 10.1038/s41419-025-07470-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/29/2025] [Accepted: 02/20/2025] [Indexed: 03/05/2025]
Abstract
CD146 plays a key role in cancer progression and metastasis. Cancer stem cells (CSCs) are responsible for tumor initiation, drug resistance, metastasis, and recurrence. In this study, we explored the role of CD146 in the regulation of liver CSCs. Here, we demonstrated that CD146 was highly expressed in liver CSCs. CD146 overexpression promoted the self-renewal ability and chemoresistance of Hepatocellular Carcinoma (HCC) cells in vitro and tumorigenicity in vivo. Inversely, knockdown of CD146 restrained these abilities. Mechanistically, CD146 activated the NF-κB signaling to up-regulate JAG2 expression and activated the Notch signaling, which resulted in increased stemness of HCC. Furthermore, JAG2 overexpression restored the Notch signaling activity, the stemness, and chemotherapeutic resistance caused by CD146 knockdown. These results demonstrated that CD146 positively regulates HCC stemness by activating the JAG2-NOTCH signaling. Combined targeting of CD146 and JAG2 may represent a novel therapeutic strategy for HCC treatment.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/drug therapy
- Humans
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/drug therapy
- Jagged-2 Protein/metabolism
- Jagged-2 Protein/genetics
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Neoplastic Stem Cells/drug effects
- Signal Transduction
- Receptors, Notch/metabolism
- Drug Resistance, Neoplasm/genetics
- Animals
- CD146 Antigen/metabolism
- CD146 Antigen/genetics
- Mice
- Cell Line, Tumor
- Mice, Nude
- Gene Expression Regulation, Neoplastic
- Mice, Inbred BALB C
- Male
Collapse
Affiliation(s)
- Bing Yan
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, Yangzhou, 225000, China
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225000, China
- Department of General Surgery, Pingxiang People's Hospital, Pingxiang, 337000, China
| | - QiuYu Lu
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Naval Medical University (Second Military Medical University), Shanghai, 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - TianMing Gao
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, Yangzhou, 225000, China
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225000, China
| | - KunQing Xiao
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, Yangzhou, 225000, China
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225000, China
| | - QianNi Zong
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Naval Medical University (Second Military Medical University), Shanghai, 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - HongWei Lv
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Naval Medical University (Second Military Medical University), Shanghai, 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - GuiShuai Lv
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Naval Medical University (Second Military Medical University), Shanghai, 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - Liang Wang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Naval Medical University (Second Military Medical University), Shanghai, 200438, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - ChunYing Liu
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Naval Medical University (Second Military Medical University), Shanghai, 200438, China.
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China.
- Shanghai Key Laboratory of Hepatobiliary Tumor Biology, Shanghai, 200438, China.
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai, 200438, China.
| | - Wen Yang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Naval Medical University (Second Military Medical University), Shanghai, 200438, China.
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China.
- Shanghai Key Laboratory of Hepatobiliary Tumor Biology, Shanghai, 200438, China.
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai, 200438, China.
| | - GuoQing Jiang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, Yangzhou, 225000, China.
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225000, China.
| |
Collapse
|
12
|
Mirizio G, Sampson S, Iwafuchi M. Interplay between pioneer transcription factors and epigenetic modifiers in cell reprogramming. Regen Ther 2025; 28:246-252. [PMID: 39834592 PMCID: PMC11745816 DOI: 10.1016/j.reth.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/05/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025] Open
Abstract
The generation of induced pluripotent stem cells (iPSCs) from differentiated somatic cells by Yamanaka factors, including pioneer transcription factors (TFs), has greatly reshaped our traditional understanding of cell plasticity and demonstrated the remarkable potential of pioneer TFs. In addition to iPSC reprogramming, pioneer TFs are pivotal in direct reprogramming or transdifferentiation where somatic cells are converted into different cell types without passing through a pluripotent state. Pioneer TFs initiate a reprogramming process through chromatin opening, thereby establishing competence for new gene regulatory programs. The action of pioneer TFs is both influenced by and exerts influence on epigenetic regulation. Despite significant advances, many direct reprogramming processes remain inefficient, which limits their reliability for clinical applications. In this review, we discuss the molecular mechanisms underlying pioneer TF-driven reprogramming, with a focus on their interactions with epigenetic modifiers, including Polycomb repressive complexes (PRCs), nucleosome remodeling and deacetylase (NuRD) complexes, and the DNA methylation machinery. A deeper understanding of the dynamic interplay between pioneer TFs and epigenetic modifiers will be essential for advancing reprogramming technologies and unlocking their full clinical potential.
Collapse
Affiliation(s)
- Gerardo Mirizio
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, OH, 45229, USA
| | - Samuel Sampson
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, OH, 45229, USA
| | - Makiko Iwafuchi
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, OH, 45229, USA
| |
Collapse
|
13
|
O'Dwyer MR, Azagury M, Furlong K, Alsheikh A, Hall-Ponsele E, Pinto H, Fyodorov DV, Jaber M, Papachristoforou E, Benchetrit H, Ashmore J, Makedonski K, Rahamim M, Hanzevacki M, Yassen H, Skoda S, Levy A, Pollard SM, Skoultchi AI, Buganim Y, Soufi A. Nucleosome fibre topology guides transcription factor binding to enhancers. Nature 2025; 638:251-260. [PMID: 39695228 PMCID: PMC11798873 DOI: 10.1038/s41586-024-08333-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/01/2024] [Indexed: 12/20/2024]
Abstract
Cellular identity requires the concerted action of multiple transcription factors (TFs) bound together to enhancers of cell-type-specific genes. Despite TFs recognizing specific DNA motifs within accessible chromatin, this information is insufficient to explain how TFs select enhancers1. Here we compared four different TF combinations that induce different cell states, analysing TF genome occupancy, chromatin accessibility, nucleosome positioning and 3D genome organization at the nucleosome resolution. We show that motif recognition on mononucleosomes can decipher only the individual binding of TFs. When bound together, TFs act cooperatively or competitively to target nucleosome arrays with defined 3D organization, displaying motifs in particular patterns. In one combination, motif directionality funnels TF combinatorial binding along chromatin loops, before infiltrating laterally to adjacent enhancers. In other combinations, TFs assemble on motif-dense and highly interconnected loop junctions, and subsequently translocate to nearby lineage-specific sites. We propose a guided-search model in which motif grammar on nucleosome fibres acts as signpost elements, directing TF combinatorial binding to enhancers.
Collapse
Affiliation(s)
- Michael R O'Dwyer
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Institute of Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Meir Azagury
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Katharine Furlong
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Institute of Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Scotland Centre, University of Edinburgh, Edinburgh, UK
| | - Amani Alsheikh
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Institute of Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Health Sector, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Elisa Hall-Ponsele
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Institute of Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Hugo Pinto
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Dmitry V Fyodorov
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Mohammad Jaber
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Eleni Papachristoforou
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Hana Benchetrit
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - James Ashmore
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Kirill Makedonski
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Moran Rahamim
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Marta Hanzevacki
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Institute of Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Hazar Yassen
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Samuel Skoda
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Institute of Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Adi Levy
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Steven M Pollard
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Scotland Centre, University of Edinburgh, Edinburgh, UK
| | - Arthur I Skoultchi
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Yosef Buganim
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| | - Abdenour Soufi
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK.
- Institute of Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
- Cancer Research UK Scotland Centre, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
14
|
Zhang Y, Li L, Dong L, Cheng Y, Huang X, Xue B, Jiang C, Cao Y, Yang J. Hydrogel-Based Strategies for Liver Tissue Engineering. CHEM & BIO ENGINEERING 2024; 1:887-915. [PMID: 39975572 PMCID: PMC11835278 DOI: 10.1021/cbe.4c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/15/2024] [Accepted: 09/15/2024] [Indexed: 02/21/2025]
Abstract
The liver's role in metabolism, detoxification, and immune regulation underscores the urgency of addressing liver diseases, which claim millions of lives annually. Due to donor shortages in liver transplantation, liver tissue engineering (LTE) offers a promising alternative. Hydrogels, with their biocompatibility and ability to mimic the liver's extracellular matrix (ECM), support cell survival and function in LTE. This review analyzes recent advances in hydrogel-based strategies for LTE, including decellularized liver tissue hydrogels, natural polymer-based hydrogels, and synthetic polymer-based hydrogels. These materials are ideal for in vitro cell culture and obtaining functional hepatocytes. Hydrogels' tunable properties facilitate creating artificial liver models, such as organoids, 3D bioprinting, and liver-on-a-chip technologies. These developments demonstrate hydrogels' versatility in advancing LTE's applications, including hepatotoxicity testing, liver tissue regeneration, and treating acute liver failure. This review highlights the transformative potential of hydrogels in LTE and their implications for future research and clinical practice.
Collapse
Affiliation(s)
- Yu Zhang
- National
Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
- Jinan
Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Luofei Li
- National
Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Liang Dong
- National
Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Yuanqi Cheng
- National
Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Xiaoyu Huang
- National
Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Bin Xue
- National
Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Chunping Jiang
- Jinan
Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Yi Cao
- National
Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
- Jinan
Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Jiapeng Yang
- National
Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
- Jinan
Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| |
Collapse
|
15
|
Wang X, Xu Y, Wang Y, Tang X, Zhou X, Lu W, Chen W, Li L, Zhou L, Ye J. S-Nitrosylation of NOTCH1 Regulates Mesenchymal Stem Cells Differentiation Into Hepatocyte-Like Cells by Inhibiting Notch Signalling Pathway. J Cell Mol Med 2024; 28:e70274. [PMID: 39656437 PMCID: PMC11629812 DOI: 10.1111/jcmm.70274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024] Open
Abstract
The differentiation of mesenchymal stem cells (MSCs) into hepatocyte-like cells (HLCs) is considered one of the most promising strategies for alternative hepatocyte transplantation to treat end-stage liver disease. To advance this method, it is crucial to gain a deeper understanding of the mechanisms governing hepatogenic differentiation. The study demonstrated that suppression of the intracellular domain release of the Notch pathway receptor via the γ-secretase inhibitor N-[(3, 5-difluorophenyl)acetyl]-L-alanyl-2-phenylglycine-1, 1-dimethylethyl ester (DAPT) significantly promotes the expression of hepatocyte-related genes and proteins in HLCs. Increased expression of intracellular inducible NO synthase (iNOS) during differentiation led to elevated endogenous NO production. Biotin switch assays revealed a gradual increase in S-nitrosylation (SNO)-NOTCH1 and a decrease in overall NOTCH1 expression during hepatogenic differentiation. The addition of the exogenous NO donor S-nitrosoglutathione (GSNO) and the SNO inhibitor dithiothreitol (DTT) further demonstrated that the elevated expression of SNO-NOTCH1 promotes the differentiation of MSCs into mature hepatocytes. Briefly, our results fully demonstrated that the modification of the extracellular domain of NOTCH1 by NO, leading to the formation of SNO-NOTCH1, significantly promotes hepatogenic differentiation by inhibiting the Notch signalling pathway. Our study highlights the critical role of SNO-NOTCH1 in regulating the Notch signalling pathway and offers new insights into the mechanisms driving this differentiation process.
Collapse
Affiliation(s)
- Xuesong Wang
- Subcenter for Stem Cell Clinical TranslationFirst Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxiChina
- School of Rehabilitation MedicineGannan Medical UniversityGanzhouJiangxiChina
- Ganzhou Key Laboratory of Stem Cell and Regenerative MedicineGanzhouJiangxiChina
| | - Yan Xu
- Subcenter for Stem Cell Clinical TranslationFirst Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxiChina
- School of Rehabilitation MedicineGannan Medical UniversityGanzhouJiangxiChina
- Ganzhou Key Laboratory of Stem Cell and Regenerative MedicineGanzhouJiangxiChina
| | - Yue Wang
- Subcenter for Stem Cell Clinical TranslationFirst Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxiChina
- College of Nursing, Gannan Medical UniversityGanzhouJiangxiChina
| | - Xingkun Tang
- Subcenter for Stem Cell Clinical TranslationFirst Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxiChina
- School of Rehabilitation MedicineGannan Medical UniversityGanzhouJiangxiChina
- Ganzhou Key Laboratory of Stem Cell and Regenerative MedicineGanzhouJiangxiChina
| | - Xiaolei Zhou
- Subcenter for Stem Cell Clinical TranslationFirst Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxiChina
- School of Rehabilitation MedicineGannan Medical UniversityGanzhouJiangxiChina
- Ganzhou Key Laboratory of Stem Cell and Regenerative MedicineGanzhouJiangxiChina
| | - Wenming Lu
- Subcenter for Stem Cell Clinical TranslationFirst Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxiChina
- School of Rehabilitation MedicineGannan Medical UniversityGanzhouJiangxiChina
- Ganzhou Key Laboratory of Stem Cell and Regenerative MedicineGanzhouJiangxiChina
| | - Wenjie Chen
- Subcenter for Stem Cell Clinical TranslationFirst Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxiChina
- School of Rehabilitation MedicineGannan Medical UniversityGanzhouJiangxiChina
| | - Lincai Li
- Subcenter for Stem Cell Clinical TranslationFirst Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxiChina
- Ganzhou Key Laboratory of Stem Cell and Regenerative MedicineGanzhouJiangxiChina
- Jiangxi Provincial Key Laboratory of Tissue EngineeringGannan Medical UniversityGanzhouJiangxiChina
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular DiseasesMinistry of Education, Gannan Medical UniversityGanzhouJiangxiChina
| | - Lin Zhou
- Subcenter for Stem Cell Clinical TranslationFirst Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxiChina
- Ganzhou Key Laboratory of Stem Cell and Regenerative MedicineGanzhouJiangxiChina
- Jiangxi Provincial Key Laboratory of Tissue EngineeringGannan Medical UniversityGanzhouJiangxiChina
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular DiseasesMinistry of Education, Gannan Medical UniversityGanzhouJiangxiChina
| | - Junsong Ye
- Subcenter for Stem Cell Clinical TranslationFirst Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxiChina
- Ganzhou Key Laboratory of Stem Cell and Regenerative MedicineGanzhouJiangxiChina
- Jiangxi Provincial Key Laboratory of Tissue EngineeringGannan Medical UniversityGanzhouJiangxiChina
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular DiseasesMinistry of Education, Gannan Medical UniversityGanzhouJiangxiChina
| |
Collapse
|
16
|
Shi H, Ding Y, Sun P, Lv Z, Wang C, Ma H, Lu J, Yu B, Li W, Wang C. Chemical approaches targeting the hurdles of hepatocyte transplantation: mechanisms, applications, and advances. Front Cell Dev Biol 2024; 12:1480226. [PMID: 39544361 PMCID: PMC11560891 DOI: 10.3389/fcell.2024.1480226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024] Open
Abstract
Hepatocyte transplantation (HTx) has been a novel cell-based therapy for severe liver diseases, as the donor livers for orthotopic liver transplantation are of great shortage. However, HTx has been confronted with two main hurdles: limited high-quality hepatocyte sources and low cell engraftment and repopulation rate. To cope with, researchers have investigated on various strategies, including small molecule drugs with unique advantages. Small molecules are promising chemical tools to modulate cell fate and function for generating high quality hepatocyte sources. In addition, endothelial barrier, immune responses, and low proliferative efficiency of donor hepatocytes mainly contributes to low cell engraftment and repopulation rate. Interfering these biological processes with small molecules is beneficial for improving cell engraftment and repopulation. In this review, we will discuss the applications and advances of small molecules in modulating cell differentiation and reprogramming for hepatocyte resources and in improving cell engraftment and repopulation as well as its underlying mechanisms.
Collapse
Affiliation(s)
- Huanxiao Shi
- Department of Cell Biology, Naval Medical University, Shanghai, China
| | - Yi Ding
- Experimental Teaching Center, Naval Medical University, Shanghai, China
| | - Pingxin Sun
- Department of Cell Biology, Naval Medical University, Shanghai, China
| | - Zhuman Lv
- Department of Cell Biology, Naval Medical University, Shanghai, China
| | - Chunyan Wang
- Department of Cell Biology, Naval Medical University, Shanghai, China
| | - Haoxin Ma
- Department of Cell Biology, Naval Medical University, Shanghai, China
| | - Junyu Lu
- Department of Cell Biology, Naval Medical University, Shanghai, China
| | - Bing Yu
- Department of Cell Biology, Naval Medical University, Shanghai, China
| | - Wenlin Li
- Department of Cell Biology, Naval Medical University, Shanghai, China
- Shanghai Key Laboratory of Cell Engineering, Naval Medical University, Shanghai, China
| | - Chao Wang
- Department of Cell Biology, Naval Medical University, Shanghai, China
| |
Collapse
|
17
|
Parmar B, Bhatia D. Small Molecular Approaches for Cellular Reprogramming and Tissue Engineering: Functions as Mediators of the Cell Signaling Pathway. Biochemistry 2024; 63:2542-2556. [PMID: 39312802 DOI: 10.1021/acs.biochem.4c00427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Utilizing induced pluripotent stem cells (iPSCs) in drug screening and cell replacement therapy has emerged as a method with revolutionary applications. With the advent of patient-specific iPSCs and the subsequent development of cells that exhibit disease phenotypes, the focus of medication research will now shift toward the pathology of human diseases. Regular iPSCs can also be utilized to generate cells that assess the negative impacts of medications. These cells provide a much more precise and cost-efficient approach compared to many animal models. In this review, we explore the utilization of small-molecule drugs to enhance the growth of iPSCs and gain insights into the process of reprogramming. We mainly focus on the functions of small molecules in modulating different signaling pathways, thereby modulating cell fate. Understanding the way small molecule drugs interact with iPSC technology has the potential to significantly enhance the understanding of physiological pathways in stem cells and practical applications of iPSC-based therapy and screening systems, revolutionizing the treatment of diseases.
Collapse
Affiliation(s)
- Bhagyesh Parmar
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Palaj, Gandhinagar 382355, India
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Palaj, Gandhinagar 382355, India
| |
Collapse
|
18
|
Chen M, Wu G, Lu Y, Sun S, Yu Z, Pan X, Chen W, Xu H, Qiu H, He W, Li X, Wang X, Luo Y, Du Y, Wu J, Wei K, Zhang W, Liu Z, He Z. A p21-ATD mouse model for monitoring and eliminating senescent cells and its application in liver regeneration post injury. Mol Ther 2024; 32:2992-3011. [PMID: 38582962 PMCID: PMC11403235 DOI: 10.1016/j.ymthe.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/10/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024] Open
Abstract
Cellular senescence associates with pathological aging and tissue dysfunctions. Studies utilizing mouse models for cell lineage tracings have emphasized the importance of senescence heterogeneity in different organs and cell types. Here, we constructed a p21- (Akaluc - tdTomato - Diphtheria Toxin Receptor [DTR]) (ATD) mouse model to specifically study the undefined mechanism for p21-expressing senescent cells in the aged and liver injury animals. The successful expressions of these genes enabled in vitro flow cytometric sorting, in vivo tracing, and elimination of p21-expressing senescent cells. During the natural aging process, p21-expressing cells were found in various tissues of p21-ATD mice. Eliminating p21-expressing cells in the aged p21-ATD mice recovered their multiple biological functions. p21-ATD/Fah-/- mice, bred from p21-ATD mice and fumarylacetoacetate hydrolase (Fah)-/- mice of liver injury, showed that the majority of their senescent hepatocytes were the phenotype of p21+ rather than p16+. Furthermore, eliminating the p21-expressing hepatocytes significantly promoted the engraftment of grafted hepatocytes and facilitated liver repopulation, resulting in significant recovery from liver injury. Our p21-ATD mouse model serves as an optimal model for studying the pattern and function of p21-expressing senescent cells under the physical and pathological conditions during aging.
Collapse
Affiliation(s)
- Miaomiao Chen
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Guoxiu Wu
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Yanli Lu
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Shiwen Sun
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Zhao Yu
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Xin Pan
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Wenjian Chen
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Hongyu Xu
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Hua Qiu
- Department of General Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, P.R. China
| | - Weizhi He
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Xiuhua Li
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Xicheng Wang
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Yi Luo
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Yuan Du
- Department of General Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, P.R. China
| | - Jialing Wu
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Ke Wei
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China
| | - Wencheng Zhang
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Zhongmin Liu
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China; Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Zhiying He
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China.
| |
Collapse
|
19
|
Luo X, Gong Y, Gong Z, Fan K, Suo T, Liu H, Ni X, Ni X, Abudureyimu M, Liu H. Liver and bile duct organoids and tumoroids. Biomed Pharmacother 2024; 178:117104. [PMID: 39024834 DOI: 10.1016/j.biopha.2024.117104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/23/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024] Open
Abstract
Organoids refer to 3D cultures established to recapitulate histology, pathology, architecture, and genetic traits of various organs and tissues in the body, thereby replacing 2D cell cultures, xenograft, and animal models. Organoids form a 3D in vitro mimic of original tissues like the liver and are derived from embryonic or adult tissue stem cells. Liver and bile duct tumor organoids, also called, tumoroids capture genetic diversity, cellular, and pathophysiological properties of original tumors. Moreover, co-culture techniques along with genetic modulation of organoids allow for using tumoroids in liver and bile duct cancer research and drug screening/testing. Therefore, tumoroids are promising platforms for studying liver and bile duct cancer, which paves the way for the new era of personalized therapies. In the current review, we aimed to discuss liver and bile duct organoids with special emphasis on tumoroids and their applications, advantages, and shortcomings.
Collapse
Affiliation(s)
- Xuanming Luo
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China; Department of General Surgery, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China
| | - Yuda Gong
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China
| | - Zijun Gong
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China
| | - Kun Fan
- Department of General Surgery, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China
| | - Tao Suo
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China
| | - Han Liu
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China
| | - Xiaoling Ni
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China
| | - Xiaojian Ni
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China
| | - Miyesaier Abudureyimu
- Cardiovascular Department, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China.
| | - Houbao Liu
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China; Department of General Surgery, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
20
|
Wang S, Wang X, Wang Y. The Progress and Promise of Lineage Reprogramming Strategies for Liver Regeneration. Cell Mol Gastroenterol Hepatol 2024; 18:101395. [PMID: 39218152 PMCID: PMC11530608 DOI: 10.1016/j.jcmgh.2024.101395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The liver exhibits remarkable regenerative capacity. However, the limited ability of primary human hepatocytes to proliferate in vitro, combined with a compromised regenerative capacity induced by pathological conditions in vivo, presents significant obstacles to effective liver regeneration following liver injuries and diseases. Developing strategies to compensate for the loss of endogenous hepatocytes is crucial for overcoming these challenges, and this remains an active area of investigation. Lineage reprogramming, the process of directly converting one cell type into another bypassing the intermediate pluripotent state, has emerged as a promising method for generating specific cell types for therapeutic purposes in regenerative medicine. Here, we discuss the recent progress and emergent technologies in lineage reprogramming into hepatic cells, and their potential applications in enhancing liver regeneration or treating liver disease models. We also address controversies and challenges that confront this field.
Collapse
Affiliation(s)
- Shuyong Wang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China.
| | - Xuan Wang
- Hepatopancreatobiliary Center, Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Yunfang Wang
- Hepatopancreatobiliary Center, Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Beijing, China.
| |
Collapse
|
21
|
Freund MM, Harrison MM, Torres-Zelada EF. Exploring the reciprocity between pioneer factors and development. Development 2024; 151:dev201921. [PMID: 38958075 PMCID: PMC11266817 DOI: 10.1242/dev.201921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Development is regulated by coordinated changes in gene expression. Control of these changes in expression is largely governed by the binding of transcription factors to specific regulatory elements. However, the packaging of DNA into chromatin prevents the binding of many transcription factors. Pioneer factors overcome this barrier owing to unique properties that enable them to bind closed chromatin, promote accessibility and, in so doing, mediate binding of additional factors that activate gene expression. Because of these properties, pioneer factors act at the top of gene-regulatory networks and drive developmental transitions. Despite the ability to bind target motifs in closed chromatin, pioneer factors have cell type-specific chromatin occupancy and activity. Thus, developmental context clearly shapes pioneer-factor function. Here, we discuss this reciprocal interplay between pioneer factors and development: how pioneer factors control changes in cell fate and how cellular environment influences pioneer-factor binding and activity.
Collapse
Affiliation(s)
- Meghan M. Freund
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 52706, USA
| | - Melissa M. Harrison
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 52706, USA
| | - Eliana F. Torres-Zelada
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 52706, USA
| |
Collapse
|
22
|
Deng B, Ma Y, Huang J, He R, Luo M, Mao L, Zhang E, Zhao Y, Wang X, Wang Q, Pang M, Mao Y, Yang H, Liu L, Huang P. Revitalizing liver function in mice with liver failure through transplantation of 3D-bioprinted liver with expanded primary hepatocytes. SCIENCE ADVANCES 2024; 10:eado1550. [PMID: 38848358 PMCID: PMC11160470 DOI: 10.1126/sciadv.ado1550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/02/2024] [Indexed: 06/09/2024]
Abstract
The utilization of three-dimensional (3D) bioprinting technology to create a transplantable bioartificial liver emerges as a promising remedy for the scarcity of liver donors. This study outlines our strategy for constructing a 3D-bioprinted liver, using in vitro-expanded primary hepatocytes recognized for their safety and enhanced functional robustness as hepatic cell sources for bioartificial liver construction. In addition, we have developed bioink biomaterials with mechanical and rheological properties, as well as printing capabilities, tailored for 3D bioprinting. Upon heterotopic transplantation into the mesentery of tyrosinemia or 90% hepatectomy mice, our 3D-bioprinted liver effectively restored lost liver functions, consequently extending the life span of mice afflicted with liver injuries. Notably, the inclusion of an artificial blood vessel in our 3D-bioprinted liver allowed for biomolecule exchange with host blood vessels, demonstrating, in principle, the rapid integration of the bioartificial liver into the host vascular system. This model underscores the therapeutic potential of transplantation for the treatment of liver failure diseases.
Collapse
Affiliation(s)
- Bo Deng
- State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Yue Ma
- State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Jialyu Huang
- Center for Reproductive Medicine, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Runbang He
- State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Miaomiao Luo
- State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Lina Mao
- State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Enhua Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Yuanyuan Zhao
- State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Xiaoli Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Qiangsong Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Mingchang Pang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huayu Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lanxia Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Pengyu Huang
- State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
23
|
Luo M, Lai J, Zhang E, Ma Y, He R, Mao L, Deng B, Zhu J, Ding Y, Huang J, Xue B, Wang Q, Zhang M, Huang P. Rapid Self-Assembly Mini-Livers Protect Mice Against Severe Hepatectomy-Induced Liver Failure. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309166. [PMID: 38493495 DOI: 10.1002/advs.202309166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/05/2024] [Indexed: 03/19/2024]
Abstract
The construction of bioartificial livers, such as liver organoids, offers significant promise for disease modeling, drug development, and regenerative medicine. However, existing methods for generating liver organoids have limitations, including lengthy and complex processes (taking 6-8 weeks or longer), safety concerns associated with pluripotency, limited functionality of pluripotent stem cell-derived hepatocytes, and small, highly variable sizes (typically ≈50-500 µm in diameter). Prolonged culture also leads to the formation of necrotic cores, further restricting size and function. In this study, a straightforward and time-efficient approach is developed for creating rapid self-assembly mini-livers (RSALs) within 12 h. Additionally, primary hepatocytes are significantly expanded in vitro for use as seeding cells. RSALs exhibit consistent larger sizes (5.5 mm in diameter), improved cell viability (99%), and enhanced liver functionality. Notably, RSALs are functionally vascularized within 2 weeks post-transplantation into the mesentery of mice. These authentic hepatocyte-based RSALs effectively protect mice from 90%-hepatectomy-induced liver failure, demonstrating the potential of bioartificial liver-based therapy.
Collapse
Affiliation(s)
- Miaomiao Luo
- State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Jiahui Lai
- State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Enhua Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Yue Ma
- State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Runbang He
- State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Lina Mao
- State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Bo Deng
- State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Junjin Zhu
- State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yan Ding
- State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jialyu Huang
- Center for Reproductive Medicine, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, 330006, China
| | - Bin Xue
- Core Laboratory, Department of Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China
| | - Qiangsong Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Mingming Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Pengyu Huang
- State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| |
Collapse
|
24
|
Li S, Yang F, Cheng F, Zhu L, Yan Y. Lipotoxic hepatocyte derived LIMA1 enriched small extracellular vesicles promote hepatic stellate cells activation via inhibiting mitophagy. Cell Mol Biol Lett 2024; 29:82. [PMID: 38822260 PMCID: PMC11140962 DOI: 10.1186/s11658-024-00596-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/10/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Hepatic stellate cells (HSCs) play a crucial role in the development of fibrosis in non-alcoholic fatty liver disease (NAFLD). Small extracellular vesicles (sEV) act as mediators for intercellular information transfer, delivering various fibrotic factors that impact the function of HSCs in liver fibrosis. In this study, we investigated the role of lipotoxic hepatocyte derived sEV (LTH-sEV) in HSCs activation and its intrinsic mechanisms. METHODS High-fat diet (HFD) mice model was constructed to confirm the expression of LIMA1. The relationship between LIMA1-enriched LTH-sEV and LX2 activation was evaluated by measurement of fibrotic markers and related genes. Levels of mitophagy were detected using mt-keima lentivirus. The interaction between LIMA1 and PINK1 was discovered through database prediction and molecular docking. Finally, sEV was injected to investigate whether LIMA1 can accelerate HFD induced liver fibrosis in mice. RESULTS LIMA1 expression was upregulated in lipotoxic hepatocytes and was found to be positively associated with the expression of the HSCs activation marker α-SMA. Lipotoxicity induced by OPA led to an increase in both the level of LIMA1 protein in LTH-sEV and the release of LTH-sEV. When HSCs were treated with LTH-sEV, LIMA1 was observed to hinder LX2 mitophagy while facilitating LX2 activation. Further investigation revealed that LIMA1 derived from LTH-sEV may inhibit PINK1-Parkin-mediated mitophagy, consequently promoting HSCs activation. Knocking down LIMA1 significantly attenuates the inhibitory effects of LTH-sEV on mitophagy and the promotion of HSCs activation. CONCLUSIONS Lipotoxic hepatocyte-derived LIMA1-enriched sEVs play a crucial role in promoting HSCs activation in NAFLD-related liver fibrosis by negatively regulating PINK1 mediated mitophagy. These findings provide new insights into the pathological mechanisms involved in the development of fibrosis in NAFLD.
Collapse
Affiliation(s)
- Shihui Li
- Department of Laboratory Medicine, Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Fuji Yang
- Department of Laboratory Medicine, Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Fang Cheng
- Department of Laboratory Medicine, Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Ling Zhu
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated With Jiangsu University (Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, China
| | - Yongmin Yan
- Department of Laboratory Medicine, Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, China.
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated With Jiangsu University (Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, China.
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine, Jiangsu University, Changzhou, 213017, China.
| |
Collapse
|
25
|
Ferrer J, Dimitrova N. Transcription regulation by long non-coding RNAs: mechanisms and disease relevance. Nat Rev Mol Cell Biol 2024; 25:396-415. [PMID: 38242953 PMCID: PMC11045326 DOI: 10.1038/s41580-023-00694-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 01/21/2024]
Abstract
Long non-coding RNAs (lncRNAs) outnumber protein-coding transcripts, but their functions remain largely unknown. In this Review, we discuss the emerging roles of lncRNAs in the control of gene transcription. Some of the best characterized lncRNAs have essential transcription cis-regulatory functions that cannot be easily accomplished by DNA-interacting transcription factors, such as XIST, which controls X-chromosome inactivation, or imprinted lncRNAs that direct allele-specific repression. A growing number of lncRNA transcription units, including CHASERR, PVT1 and HASTER (also known as HNF1A-AS1) act as transcription-stabilizing elements that fine-tune the activity of dosage-sensitive genes that encode transcription factors. Genetic experiments have shown that defects in such transcription stabilizers often cause severe phenotypes. Other lncRNAs, such as lincRNA-p21 (also known as Trp53cor1) and Maenli (Gm29348) contribute to local activation of gene transcription, whereas distinct lncRNAs influence gene transcription in trans. We discuss findings of lncRNAs that elicit a function through either activation of their transcription, transcript elongation and processing or the lncRNA molecule itself. We also discuss emerging evidence of lncRNA involvement in human diseases, and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Jorge Ferrer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| | - Nadya Dimitrova
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
26
|
Wang Z, Xie D, Li J, Zhai Z, Lu Z, Tian X, Niu Y, Zhao Q, Zheng P, Dong L, Wang C. Molecular force-induced liberation of transforming growth factor-beta remodels the spleen for ectopic liver regeneration. J Hepatol 2024; 80:753-763. [PMID: 38244845 DOI: 10.1016/j.jhep.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/08/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND & AIMS Ectopic liver regeneration in the spleen is a promising alternative to organ transplantation for treating liver failure. To accommodate transplanted liver cells, the splenic tissue must undergo structural changes to increase extracellular matrix content, demanding a safe and efficient approach for tissue remodelling. METHODS We synthesised sulphated hyaluronic acid (sHA) with an affinity for the latent complex of transforming growth factor-β (TGF-β) and cross-linked it into a gel network (sHA-X) via click chemistry. We injected this glycan into the spleens of mice to induce splenic tissue remodelling via supraphysiological activation of endogenous TGF-β. RESULTS sHA-X efficiently bound to the abundant latent TGF-β in the spleen. It provided the molecular force to liberate the active TGF-β dimers from their latent complex, mimicking the 'bind-and-pull' mechanism required for physiological activation of TGF-β and reshaping the splenic tissue to support liver cell growth. Hepatocytes transplanted into the remodelled spleen developed into liver tissue with sufficient volume to rescue animals with a metabolic liver disorder (Fah-/- transgenic model) or following 90% hepatectomy, with no adverse effects observed and no additional drugs required. CONCLUSION Our findings highlight the efficacy and translational potential of using sHA-X to remodel a specific organ by mechanically activating one single cytokine, representing a novel strategy for the design of biomaterials-based therapies for organ regeneration. IMPACT AND IMPLICATIONS Cell transplantation may provide a lifeline to millions of patients with end-stage liver diseases, but their severely damaged livers being unable to accommodate the transplanted cells is a crucial hurdle. Herein, we report an approach to restore liver functions in another organ - the spleen - by activating one single growth factor in situ. This approach, based on a chemically designed polysaccharide that can mechanically liberate the active transforming growth factor-β to an unusually high level, promotes the function of abundant allogenic liver cells in the spleen, rescuing animals from lethal models of liver diseases and showing a high potential for clinical translation.
Collapse
Affiliation(s)
- Zhenzhen Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Daping Xie
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Jiayi Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Ziyu Zhai
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zhuojian Lu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Xuejiao Tian
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yiming Niu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Qi Zhao
- Department of Biomedical Sciences, Faculty of Health Science, University of Macau, Taipa, Macau SAR, China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China; Chemistry and Biomedicine Innovative Center, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China; National Resource Center for Mutant Mice, Nanjing, Jiangsu, 210023, China; Chemistry and Biomedicine Innovative Center, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China; Department of Pharmaceutical Sciences, Faculty of Health Science, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
27
|
Umeyama T, Matsuda T, Nakashima K. Lineage Reprogramming: Genetic, Chemical, and Physical Cues for Cell Fate Conversion with a Focus on Neuronal Direct Reprogramming and Pluripotency Reprogramming. Cells 2024; 13:707. [PMID: 38667322 PMCID: PMC11049106 DOI: 10.3390/cells13080707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Although lineage reprogramming from one cell type to another is becoming a breakthrough technology for cell-based therapy, several limitations remain to be overcome, including the low conversion efficiency and subtype specificity. To address these, many studies have been conducted using genetics, chemistry, physics, and cell biology to control transcriptional networks, signaling cascades, and epigenetic modifications during reprogramming. Here, we summarize recent advances in cellular reprogramming and discuss future directions.
Collapse
Affiliation(s)
- Taichi Umeyama
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Taito Matsuda
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | | |
Collapse
|
28
|
Zhong Z, Du J, Zhu X, Guan L, Hu Y, Zhang P, Wang H. Highly efficient conversion of mouse fibroblasts into functional hepatic cells under chemical induction. J Mol Cell Biol 2024; 15:mjad071. [PMID: 37996395 PMCID: PMC11121195 DOI: 10.1093/jmcb/mjad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 06/25/2023] [Accepted: 11/22/2023] [Indexed: 11/25/2023] Open
Abstract
Previous studies have shown that hepatocyte-like cells can be generated from fibroblasts using either lineage-specific transcription factors or chemical induction methods. However, these methods have their own deficiencies that restrict the therapeutic applications of such induced hepatocytes. In this study, we present a transgene-free, highly efficient chemical-induced direct reprogramming approach to generate hepatocyte-like cells from mouse embryonic fibroblasts (MEFs). Using a small molecule cocktail (SMC) as an inducer, MEFs can be directly reprogrammed into hepatocyte-like cells, bypassing the intermediate stages of pluripotent and immature hepatoblasts. These chemical-induced hepatocyte-like cells (ciHeps) closely resemble mature primary hepatocytes in terms of morphology, biological behavior, gene expression patterns, marker expression levels, and hepatic functions. Furthermore, transplanted ciHeps can integrate into the liver, promote liver regeneration, and improve survival rates in mice with acute liver damage. ciHeps can also ameliorate liver fibrosis caused by chronic injuries and enhance liver function. Notably, ciHeps exhibit no tumorigenic potential either in vitro or in vivo. Mechanistically, SMC-induced mesenchymal-to-epithelial transition and suppression of SNAI1 contribute to the fate conversion of fibroblasts into ciHeps. These results indicate that this transgene-free, chemical-induced direct reprogramming technique has the potential to serve as a valuable means of producing alternative hepatocytes for both research and therapeutic purposes. Additionally, this method also sheds light on the direct reprogramming of other cell types under chemical induction.
Collapse
Affiliation(s)
- Zhi Zhong
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- National Center for Liver Cancer, Naval Medical University, Shanghai 201805, China
| | - Jiangchuan Du
- National Center for Liver Cancer, Naval Medical University, Shanghai 201805, China
| | - Xiangjie Zhu
- National Center for Liver Cancer, Naval Medical University, Shanghai 201805, China
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Lingting Guan
- National Center for Liver Cancer, Naval Medical University, Shanghai 201805, China
| | - Yanyu Hu
- National Center for Liver Cancer, Naval Medical University, Shanghai 201805, China
| | - Peilin Zhang
- National Center for Liver Cancer, Naval Medical University, Shanghai 201805, China
| | - Hongyang Wang
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- National Center for Liver Cancer, Naval Medical University, Shanghai 201805, China
| |
Collapse
|
29
|
Ma Y, Deng B, He R, Huang P. Advancements of 3D bioprinting in regenerative medicine: Exploring cell sources for organ fabrication. Heliyon 2024; 10:e24593. [PMID: 38318070 PMCID: PMC10838744 DOI: 10.1016/j.heliyon.2024.e24593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/02/2024] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
3D bioprinting has unlocked new possibilities for generating complex and functional tissues and organs. However, one of the greatest challenges lies in selecting the appropriate seed cells for constructing fully functional 3D artificial organs. Currently, there are no cell sources available that can fulfill all requirements of 3D bioprinting technologies, and each cell source possesses unique characteristics suitable for specific applications. In this review, we explore the impact of different 3D bioprinting technologies and bioink materials on seed cells, providing a comprehensive overview of the current landscape of cell sources that have been used or hold potential in 3D bioprinting. We also summarized key points to guide the selection of seed cells for 3D bioprinting. Moreover, we offer insights into the prospects of seed cell sources in 3D bioprinted organs, highlighting their potential to revolutionize the fields of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
| | | | - Runbang He
- State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Pengyu Huang
- State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| |
Collapse
|
30
|
Guo T, Wang J, Pang M, Liu W, Zhang X, Fan A, Liu H, Liu Q, Wei T, Li C, Zhao X, Lu Y. Reprogramming and multi-lineage transdifferentiation attenuate the tumorigenicity of colorectal cancer cells. J Biol Chem 2024; 300:105534. [PMID: 38072050 PMCID: PMC10801221 DOI: 10.1016/j.jbc.2023.105534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/18/2023] [Accepted: 11/27/2023] [Indexed: 01/02/2024] Open
Abstract
Significant advances have been made in reprogramming various somatic cells into induced pluripotent stem cells (iPSCs) and in multi-lineage differentiation (transdifferentiation) into different tissues. These manipulable transdifferentiating techniques may be applied in cancer therapy. Limited works have been reported that cancer cell malignancy can be switched to benign phenotypes through reprogramming techniques. Here, we reported that two colorectal cancer (CRC) cell lines (DLD1, HT29) could be reprogrammed into iPSCs (D-iPSCs, H-iPSCs). D- and H-iPSCs showed reduced tumorigenesis. Furthermore, we successfully induced D- and H-iPSCs differentiation into terminally differentiated cell types such as cardiomyocyte, neuron, and adipocyte-like cells. Impressively, the differentiated cells exhibited further attenuated tumorigenesis in vitro and in vivo. RNA-Seq further indicated that epigenetic changes occurred after reprogramming and transdifferentiation that caused reduced tumorigenicity. Overall, our study indicated that CRC cells can be reprogrammed and further differentiated into terminally differentiated lineages with attenuation of their malignancy in vitro and in vivo. The current work sheds light on a potential multi-lineage differentiation therapeutic strategy for colorectal cancer.
Collapse
Affiliation(s)
- Tongtong Guo
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Juan Wang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Maogui Pang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China; Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wanning Liu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaohui Zhang
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ahui Fan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hengtao Liu
- Jiaen Genetics Laboratory, Beijing Jiaen Hospital, Beijing, China
| | - Qianqian Liu
- Jiaen Genetics Laboratory, Beijing Jiaen Hospital, Beijing, China
| | - Tianying Wei
- Jiaen Genetics Laboratory, Beijing Jiaen Hospital, Beijing, China
| | - Cunxi Li
- Jiaen Genetics Laboratory, Beijing Jiaen Hospital, Beijing, China; Cytogenetics Laboratory, Beijing Institute of Human Genetics and Reproduction Medicine, Beijing, China.
| | - Xiaodi Zhao
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Yuanyuan Lu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
31
|
Jin ZL, Xu K, Kim J, Guo H, Yao X, Xu YN, Li YH, Ryu D, Kim KP, Hong K, Kim YJ, Wang L, Cao Q, Kim KH, Kim NH, Han DW. 3D hepatic organoid production from human pluripotent stem cells. Differentiation 2024; 135:100742. [PMID: 38104501 DOI: 10.1016/j.diff.2023.100742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 10/30/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Hepatic organoids might provide a golden opportunity for realizing precision medicine in various hepatic diseases. Previously described hepatic organoid protocols from pluripotent stem cells rely on complicated multiple differentiation steps consisting of both 2D and 3D differentiation procedures. Therefore, the spontaneous formation of hepatic organoids from 2D monolayer culture is associated with a low-throughput production, which might hinder the standardization of hepatic organoid production and hamper the translation of this technology to the clinical or industrial setting. Here we describe the stepwise and fully 3D production of hepatic organoids from human pluripotent stem cells. We optimized every differentiation step by screening for optimal concentrations and timing of differentiation signals in each differentiation step. Hepatic organoids are stably expandable without losing their hepatic functionality. Moreover, upon treatment of drugs with known hepatotoxicity, we found hepatic organoids are more sensitive to drug-induced hepatotoxicity compared with 2D hepatocytes differentiated from PSCs, making them highly suitable for in vitro toxicity screening of drug candidates. The standardized fully 3D protocol described in the current study for producing functional hepatic organoids might serve as a novel platform for the industrial and clinical translation of hepatic organoid technology.
Collapse
Affiliation(s)
- Zhe-Long Jin
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China; International Healthcare Innovation Institute (Jiangmen), Jianghai, Jiangmen, Guangdong Province, China; Research and Development Department, Qingdao Haier Biotech Co. Ltd, Qingdao, China
| | - KangHe Xu
- Department of Surgery, College of Medicine, Chungbuk National University, Cheongju, 28864, Republic of Korea
| | - Jonghun Kim
- Department of Genetics, Yale Stem Cell Center, Yale Child Study Center, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Hao Guo
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China; International Healthcare Innovation Institute (Jiangmen), Jianghai, Jiangmen, Guangdong Province, China; Research and Development Department, Qingdao Haier Biotech Co. Ltd, Qingdao, China
| | - Xuerui Yao
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China; International Healthcare Innovation Institute (Jiangmen), Jianghai, Jiangmen, Guangdong Province, China; Research and Development Department, Qingdao Haier Biotech Co. Ltd, Qingdao, China
| | - Yong-Nan Xu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Ying-Hua Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - DongHee Ryu
- Department of Surgery, College of Medicine, Chungbuk National University, Cheongju, 28864, Republic of Korea; Department of Surgery, Chungbuk National University Hospital, Cheongju, 28864, Republic of Korea
| | - Kee-Pyo Kim
- Department of Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology and Humanized Pig Center (SRC), Konkuk University, Seoul, 05029, Republic of Korea
| | - Yong-June Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, 28864, Republic of Korea; Department of Urology, Chungbuk National University Hospital, Cheongju, 28864, Republic of Korea
| | - Lin Wang
- Research and Development Department, Qingdao Haier Biotech Co. Ltd, Qingdao, China
| | - Qilong Cao
- Research and Development Department, Qingdao Haier Biotech Co. Ltd, Qingdao, China
| | - Kyun-Hwan Kim
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Nam-Hyung Kim
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China; Research and Development Department, Qingdao Haier Biotech Co. Ltd, Qingdao, China; Laboratory of Stem Cells and Organoids, OrganFactory Co., Ltd., Cheongju, 28864, Republic of Korea.
| | - Dong Wook Han
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China; Research and Development Department, Qingdao Haier Biotech Co. Ltd, Qingdao, China; Laboratory of Stem Cells and Organoids, OrganFactory Co., Ltd., Cheongju, 28864, Republic of Korea.
| |
Collapse
|
32
|
Horisawa K, Miura S, Araki H, Miura F, Ito T, Suzuki A. Transcription factor-mediated direct cellular reprogramming yields cell-type specific DNA methylation signature. Sci Rep 2023; 13:22317. [PMID: 38102164 PMCID: PMC10724236 DOI: 10.1038/s41598-023-49546-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023] Open
Abstract
Direct reprogramming, inducing the conversion of one type of somatic cell into another by the forced expression of defined transcription factors, is a technology with anticipated medical applications. However, due to the many unresolved aspects of the induction mechanisms, it is essential to thoroughly analyze the epigenomic state of the generated cells. Here, we performed comparative genome-wide DNA methylation analyses of mouse embryonic fibroblasts (MEFs) and cells composing organoids formed by intestinal stem cells (ISCs) or induced ISCs (iISCs) that were directly induced from MEFs. We found that the CpG methylation state was similar between cells forming ISC organoids and iISC organoids, while they differed widely from those in MEFs. Moreover, genomic regions that were differentially methylated between ISC organoid- and iISC organoid-forming cells did not significantly affect gene expression. These results demonstrate the accuracy and safety of iISC induction, leading to the medical applications of this technology.
Collapse
Affiliation(s)
- Kenichi Horisawa
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shizuka Miura
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Hiromitsu Araki
- Insect Science and Creative Entomology Center, Kyushu University Graduate School of Agriculture, Fukuoka, 819-0395, Japan
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Atsushi Suzuki
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
33
|
Lin P, Bai Y, Nian X, Chi J, Chen T, Zhang J, Zhang W, Zhou B, Liu Y, Zhao Y. Chemically induced revitalization of damaged hepatocytes for regenerative liver repair. iScience 2023; 26:108532. [PMID: 38144457 PMCID: PMC10746372 DOI: 10.1016/j.isci.2023.108532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/13/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
In prolonged liver injury, hepatocytes undergo partial identity loss with decreased regenerative capacity, resulting in liver failure. Here, we identified a five compound (5C) combination that could restore hepatocyte identity and reverse the damage-associated phenotype (e.g., dysfunction, senescence, epithelial to mesenchymal transition, growth arrest, and pro-inflammatory gene expression) in damaged hepatocytes (dHeps) from CCl4-induced mice with chronic liver injury, resembling a direct chemical reprogramming approach. Systemic administration of 5C in mice with chronic liver injury promoted hepatocyte regeneration, improved liver function, and ameliorated liver fibrosis. The hepatocyte-associated transcriptional networks were reestablished with chemical treatment as revealed by motif analysis of ATAC-seq, and a hepatocyte-enriched transcription factor, Foxa2, was found to be essential for hepatocyte revitalization. Overall, our findings indicate that the phenotype and transcriptional program of dHeps can be reprogrammed to generate functional and regenerative hepatocytes by using only small molecules, as an alternative approach to liver repair and regeneration.
Collapse
Affiliation(s)
- Pengyan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
- Plastech Pharmaceutical Technology Co., Ltd, Nanjing 210043, China
| | - Yunfei Bai
- State Key Laboratory of Natural and Biomimetic Drugs, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
- Plastech Pharmaceutical Technology Co., Ltd, Nanjing 210043, China
| | - Xinxin Nian
- Peking-Tsinghua Center for Life Science, Peking University, Beijing 100871, China
| | - Jun Chi
- Plastech Pharmaceutical Technology Co., Ltd, Nanjing 210043, China
| | - Tianzhe Chen
- Plastech Pharmaceutical Technology Co., Ltd, Nanjing 210043, China
| | - Jing Zhang
- Plastech Pharmaceutical Technology Co., Ltd, Nanjing 210043, China
| | - Wenpeng Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Bin Zhou
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yang Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
- Plastech Pharmaceutical Technology Co., Ltd, Nanjing 210043, China
| | - Yang Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
- Plastech Pharmaceutical Technology Co., Ltd, Nanjing 210043, China
- Peking-Tsinghua Center for Life Science, Peking University, Beijing 100871, China
| |
Collapse
|
34
|
Jiang M, Ren J, Belmonte JCI, Liu GH. Hepatocyte reprogramming in liver regeneration: Biological mechanisms and applications. FEBS J 2023; 290:5674-5688. [PMID: 37556833 DOI: 10.1111/febs.16930] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/17/2023] [Accepted: 08/08/2023] [Indexed: 08/11/2023]
Abstract
The liver is one of the few organs that retain the capability to regenerate in adult mammals. This regeneration process is mainly facilitated by the dynamic behavior of hepatocytes, which are the major functional constituents in the liver. In response to liver injury, hepatocytes undergo remarkable alterations, such as reprogramming, wherein they lose their original identity and acquire properties from other cells. This phenomenon of hepatocyte reprogramming, coupled with hepatocyte expansion, plays a central role in liver regeneration, and its underlying mechanisms are complex and multifaceted. Understanding the fate of reprogrammed hepatocytes and the mechanisms of their conversion has significant implications for the development of innovative therapeutics for liver diseases. Herein, we review the plasticity of hepatocytes in response to various forms of liver injury, with a focus on injury-induced hepatocyte reprogramming. We provide a comprehensive summary of current knowledge on the molecular and cellular mechanisms governing hepatocyte reprogramming, specifically in the context of liver regeneration, providing insight into potential applications of this process in the treatment of liver disorders, including chronic liver diseases and liver cancer.
Collapse
Affiliation(s)
- Mengmeng Jiang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jie Ren
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of RNA Science and Engineering, CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
- Aging Biomarker Consortium, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | | | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Aging Biomarker Consortium, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
35
|
Horisawa K, Suzuki A. The role of pioneer transcription factors in the induction of direct cellular reprogramming. Regen Ther 2023; 24:112-116. [PMID: 37397229 PMCID: PMC10314230 DOI: 10.1016/j.reth.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
Regenerative medicine is a highly advanced medical field that aims to restore tissues and organs lost due to diseases and injury using a person's own cells or those of others. Direct cellular reprogramming is a promising technology that can directly induce cell-fate conversion from terminally differentiated cells to other cell types and is expected to play a pivotal role in applications in regenerative medicine. The induction of direct cellular reprogramming requires one or more master transcription factors with the potential to reconstitute cell type-specific transcription factor networks. The set of master transcription factors may contain unique transcription factors called pioneer factors that can open compacted chromatin structures and drive the transcriptional activation of target genes. Therefore, pioneer factors may play a central role in direct cellular reprogramming. However, our understanding of the molecular mechanisms by which pioneer factors induce cell-fate conversion is still limited. This review briefly summarizes the outcomes of recent findings and discusses future perspectives, focusing on the role of pioneer factors in direct cellular reprogramming.
Collapse
|
36
|
Xie Y, Van Handel B, Qian L, Ardehali R. Recent advances and future prospects in direct cardiac reprogramming. NATURE CARDIOVASCULAR RESEARCH 2023; 2:1148-1158. [PMID: 39196156 DOI: 10.1038/s44161-023-00377-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/09/2023] [Indexed: 08/29/2024]
Abstract
Cardiovascular disease remains a leading cause of death worldwide despite important advances in modern medical and surgical therapies. As human adult cardiomyocytes have limited regenerative ability, cardiomyocytes lost after myocardial infarction are replaced by fibrotic scar tissue, leading to cardiac dysfunction and heart failure. To replace lost cardiomyocytes, a promising approach is direct cardiac reprogramming, in which cardiac fibroblasts are transdifferentiated into induced cardiomyocyte-like cells (iCMs). Here we review cardiac reprogramming cocktails (including transcription factors, microRNAs and small molecules) that mediate iCM generation. We also highlight mechanistic studies exploring the barriers to and facilitators of this process. We then review recent progress in iCM reprogramming, with a focus on single-cell '-omics' research. Finally, we discuss obstacles to clinical application.
Collapse
Affiliation(s)
- Yifang Xie
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ben Van Handel
- Department of Orthopedic Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Li Qian
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Reza Ardehali
- Section of Cardiology, Department of Internal Medicine, Baylor College of Medicine, Houston, TX, USA.
- The Texas Heart Institute, Houston, TX, USA.
| |
Collapse
|
37
|
Xie Y, Wang Q, Yang Y, Near D, Wang H, Colon M, Nguyen C, Slattery C, Keepers B, Farber G, Wang TW, Lee SH, Shih YYI, Liu J, Qian L. Translational landscape of direct cardiac reprogramming reveals a role of Ybx1 in repressing cardiac fate acquisition. NATURE CARDIOVASCULAR RESEARCH 2023; 2:1060-1077. [PMID: 38524149 PMCID: PMC10959502 DOI: 10.1038/s44161-023-00344-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/06/2023] [Indexed: 03/26/2024]
Abstract
Direct reprogramming of fibroblasts into induced cardiomyocytes holds great promise for heart regeneration. Although considerable progress has been made in understanding the transcriptional and epigenetic mechanisms of iCM reprogramming, its translational regulation remains largely unexplored. Here, we characterized the translational landscape of iCM reprogramming through integrative ribosome and transcriptomic profiling, and found extensive translatome repatterning during this process. Loss of function screening for translational regulators uncovered Ybx1 as a critical barrier to iCM induction. In a mouse model of myocardial infarction, removing Ybx1 enhanced in vivo reprogramming, resulting in improved heart function and reduced scar size. Mechanistically, Ybx1 depletion de-repressed the translation of its direct targets SRF and Baf60c, both of which mediated the effect of Ybx1 depletion on iCM generation. Furthermore, removal of Ybx1 allowed single factor Tbx5-mediated iCM conversion. In summary, this study revealed a new layer of regulatory mechanism that controls cardiac reprogramming at the translational level.
Collapse
Affiliation(s)
- Yifang Xie
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599
| | - Qiaozi Wang
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599
| | - Yuchen Yang
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599
| | - David Near
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599
| | - Haofei Wang
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599
| | - Marazzano Colon
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599
| | - Christopher Nguyen
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599
| | - Conor Slattery
- EIRNA Bio Ltd, BioInnovation Centre, Food Science and Technology Building, College Road, Cork, Ireland, T12 DP07
| | - Benjamin Keepers
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599
| | - Gregory Farber
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599
| | - Tzu-Wen Wang
- Departments of Neurology, University of North Carolina, Chapel Hill, NC 27599
| | - Sung-Ho Lee
- Departments of Neurology, University of North Carolina, Chapel Hill, NC 27599
| | - Yen-Yu Ian Shih
- Departments of Neurology, University of North Carolina, Chapel Hill, NC 27599
| | - Jiandong Liu
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599
| | - Li Qian
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
38
|
Wang J, Wen Y, Zhao W, Zhang Y, Lin F, Ouyang C, Wang H, Yao L, Ma H, Zhuo Y, Huang H, Shi X, Feng L, Lin D, Jiang B, Li Q. Hepatic conversion of acetyl-CoA to acetate plays crucial roles in energy stress. eLife 2023; 12:RP87419. [PMID: 37902629 PMCID: PMC10615369 DOI: 10.7554/elife.87419] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023] Open
Abstract
Accumulating evidence indicates that acetate is increased under energy stress conditions such as those that occur in diabetes mellitus and prolonged starvation. However, how and where acetate is produced and the nature of its biological significance are largely unknown. We observed overproduction of acetate to concentrations comparable to those of ketone bodies in patients and mice with diabetes or starvation. Mechanistically, ACOT12 and ACOT8 are dramatically upregulated in the liver to convert free fatty acid-derived acetyl-CoA to acetate and CoA. This conversion not only provides a large amount of acetate, which preferentially fuels the brain rather than muscle, but also recycles CoA, which is required for sustained fatty acid oxidation and ketogenesis. We suggest that acetate is an emerging novel 'ketone body' that may be used as a parameter to evaluate the progression of energy stress.
Collapse
Affiliation(s)
- Jinyang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Yaxin Wen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Wentao Zhao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Yan Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Furong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Cong Ouyang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Huihui Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Lizheng Yao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Huanhuan Ma
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Yue Zhuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Huiying Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Xiulin Shi
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Province Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Liubin Feng
- High-Field NMR Center, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Donghai Lin
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Bin Jiang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Qinxi Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
39
|
Sun Z, Yuan X, Wu J, Wang C, Zhang K, Zhang L, Hui L. Hepatocyte transplantation: The progress and the challenges. Hepatol Commun 2023; 7:e0266. [PMID: 37695736 PMCID: PMC10497249 DOI: 10.1097/hc9.0000000000000266] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/26/2023] [Indexed: 09/13/2023] Open
Abstract
Numerous studies have shown that hepatocyte transplantation is a promising approach for liver diseases, such as liver-based metabolic diseases and acute liver failure. However, it lacks strong evidence to support the long-term therapeutic effects of hepatocyte transplantation in clinical practice. Currently, major hurdles include availability of quality-assured hepatocytes, efficient engraftment and repopulation, and effective immunosuppressive regimens. Notably, cell sources have been advanced recently by expanding primary human hepatocytes by means of dedifferentiation in vitro. Moreover, the transplantation efficiency was remarkably improved by the established preparative hepatic irradiation in combination with hepatic mitogenic stimuli regimens. Finally, immunosuppression drugs, including glucocorticoid and inhibitors for co-stimulating signals of T cell activation, were proposed to prevent innate and adaptive immune rejection of allografted hepatocytes. Despite remarkable progress, further studies are required to improve in vitro cell expansion technology, develop clinically feasible preconditioning regimens, and further optimize immunosuppression regimens or establish ex vivo gene correction-based autologous hepatocyte transplantation.
Collapse
Affiliation(s)
- Zhen Sun
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiang Yuan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jingqi Wu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Chenhua Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Kun Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ludi Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Lijian Hui
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
40
|
Ma L, Wu Q, Tam PKH. The Current Proceedings of PSC-Based Liver Fibrosis Therapy. Stem Cell Rev Rep 2023; 19:2155-2165. [PMID: 37490204 DOI: 10.1007/s12015-023-10592-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 07/26/2023]
Abstract
Liver fibrosis was initially considered to be an irreversible process which will eventually lead to the occurrence of liver cancer. So far there has been no effective therapeutic approach to treat liver fibrosis although scientists have put tremendous efforts into the underlying mechanisms of this disease. Therefore, in-depth research on novel and safe treatments of liver fibrosis is of great significance to human health. Pluripotent stem cells (PSCs) play important roles in the study of liver fibrosis due to their unique features in self-renewal ability, pluripotency, and paracrine function. This article mainly reviews the applications of PSCs in the study of liver fibrosis in recent years. We discuss the role of PSC-derived liver organoids in the study of liver fibrosis, and the latest research advances on the differentiation of PSCs into hepatocytes or macrophages. We also highlight the importance of exosomes of PSCs for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Li Ma
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Qiang Wu
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China.
| | - Paul Kwong-Hang Tam
- Faculty of Medicine, Macau University of Science and Technology, Taipa, China.
| |
Collapse
|
41
|
Han L, Song B, Zhang P, Zhong Z, Zhang Y, Bo X, Wang H, Zhang Y, Cui X, Zhou W. PC3T: a signature-driven predictor of chemical compounds for cellular transition. Commun Biol 2023; 6:989. [PMID: 37758874 PMCID: PMC10533498 DOI: 10.1038/s42003-023-05225-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 08/07/2023] [Indexed: 09/29/2023] Open
Abstract
Cellular transitions hold great promise in translational medicine research. However, therapeutic applications are limited by the low efficiency and safety concerns of using transcription factors. Small molecules provide a temporal and highly tunable approach to overcome these issues. Here, we present PC3T, a computational framework to enrich molecules that induce desired cellular transitions, and PC3T was able to consistently enrich small molecules that had been experimentally validated in both bulk and single-cell datasets. We then predicted small molecule reprogramming of fibroblasts into hepatic progenitor-like cells (HPLCs). The converted cells exhibited epithelial cell-like morphology and HPLC-like gene expression pattern. Hepatic functions were also observed, such as glycogen storage and lipid accumulation. Finally, we collected and manually curated a cell state transition resource containing 224 time-course gene expression datasets and 153 cell types. Our framework, together with the data resource, is freely available at http://pc3t.idrug.net.cn/ . We believe that PC3T is a powerful tool to promote chemical-induced cell state transitions.
Collapse
Affiliation(s)
- Lu Han
- Beijing Institute of Pharmacology and Toxicology, 100850, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Bin Song
- Department of Pancreatic Surgery, Changhai Hospital, Second Military Medical University, 200438, Shanghai, China
| | - Peilin Zhang
- National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 200438, Shanghai, China
| | - Zhi Zhong
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Yongxiang Zhang
- Beijing Institute of Pharmacology and Toxicology, 100850, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Xiaochen Bo
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, 100850, Beijing, China
| | - Hongyang Wang
- National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 200438, Shanghai, China
| | - Yong Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Xiuliang Cui
- National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 200438, Shanghai, China.
| | - Wenxia Zhou
- Beijing Institute of Pharmacology and Toxicology, 100850, Beijing, China.
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China.
| |
Collapse
|
42
|
Pan Q, Li B, Lin D, Miao YR, Luo T, Yue T, Luo Q, Guo AY, Zhang Z. scLiverDB: a Database of Human and Mouse Liver Transcriptome Landscapes at Single-Cell Resolution. SMALL METHODS 2023; 7:e2201421. [PMID: 37259264 DOI: 10.1002/smtd.202201421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/17/2023] [Indexed: 06/02/2023]
Abstract
The liver is critical for the digestive and immune systems. Although the physiology and pathology of liver have been well studied and many scRNA-seq data are generated, a database and landscape for characterizing cell types and gene expression in different liver diseases or developmental stages at single-cell resolution are lacking. Hence, scLiverDB is developed, a specialized database for human and mouse liver transcriptomes to unravel the landscape of liver cell types, cell heterogeneity and gene expression at single-cell resolution across various liver diseases/cell types/developmental stages. To date, 62 datasets including 9,050 samples and 1,741,734 cells is curated. A uniform workflow is used, which included quality control, dimensional reduction, clustering, and cell-type annotation to analyze datasets on the same platform; integrated manual and automatic methods for accurate cell-type identification and provided a user-friendly web interface with multiscale functions. There are two case studies to show the usefulness of scLiverDB, which identified the LTB (lymphotoxin Beta) gene as a potential biomarker of lymphoid cells differentiation and showed the expression changes of Foxa3 (forkhead box A3) in liver chronic progressive diseases. This work provides a crucial resource to resolve molecular and cellular information in normal, diseased, and developing human and mouse livers.
Collapse
Affiliation(s)
- Qi Pan
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Borui Li
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Dong Lin
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Ya-Ru Miao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Tao Luo
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Tao Yue
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qingming Luo
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - An-Yuan Guo
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhihong Zhang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, Hainan, 570228, China
| |
Collapse
|
43
|
Kurup JT, Kim S, Kidder BL. Identifying Cancer Type-Specific Transcriptional Programs through Network Analysis. Cancers (Basel) 2023; 15:4167. [PMID: 37627195 PMCID: PMC10453000 DOI: 10.3390/cancers15164167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Identifying cancer type-specific genes that define cell states is important to develop effective therapies for patients and methods for detection, early diagnosis, and prevention. While molecular mechanisms that drive malignancy have been identified for various cancers, the identification of cell-type defining transcription factors (TFs) that distinguish normal cells from cancer cells has not been fully elucidated. Here, we utilized a network biology framework, which assesses the fidelity of cell fate conversions, to identify cancer type-specific gene regulatory networks (GRN) for 17 types of cancer. Through an integrative analysis of a compendium of expression data, we elucidated core TFs and GRNs for multiple cancer types. Moreover, by comparing normal tissues and cells to cancer type-specific GRNs, we found that the expression of key network-influencing TFs can be utilized as a survival prognostic indicator for a diverse cohort of cancer patients. These findings offer a valuable resource for exploring cancer type-specific networks across a broad range of cancer types.
Collapse
Affiliation(s)
- Jiji T. Kurup
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (J.T.K.); (S.K.)
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Seongho Kim
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (J.T.K.); (S.K.)
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Benjamin L. Kidder
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (J.T.K.); (S.K.)
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
44
|
Zhang W, Cui Y, Du Y, Yang Y, Fang T, Lu F, Kong W, Xiao C, Shi J, Reid LM, He Z. Liver cell therapies: cellular sources and grafting strategies. Front Med 2023; 17:432-457. [PMID: 37402953 DOI: 10.1007/s11684-023-1002-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/27/2023] [Indexed: 07/06/2023]
Abstract
The liver has a complex cellular composition and a remarkable regenerative capacity. The primary cell types in the liver are two parenchymal cell populations, hepatocytes and cholangiocytes, that perform most of the functions of the liver and that are helped through interactions with non-parenchymal cell types comprising stellate cells, endothelia and various hemopoietic cell populations. The regulation of the cells in the liver is mediated by an insoluble complex of proteins and carbohydrates, the extracellular matrix, working synergistically with soluble paracrine and systemic signals. In recent years, with the rapid development of genetic sequencing technologies, research on the liver's cellular composition and its regulatory mechanisms during various conditions has been extensively explored. Meanwhile breakthroughs in strategies for cell transplantation are enabling a future in which there can be a rescue of patients with end-stage liver diseases, offering potential solutions to the chronic shortage of livers and alternatives to liver transplantation. This review will focus on the cellular mechanisms of liver homeostasis and how to select ideal sources of cells to be transplanted to achieve liver regeneration and repair. Recent advances are summarized for promoting the treatment of end-stage liver diseases by forms of cell transplantation that now include grafting strategies.
Collapse
Affiliation(s)
- Wencheng Zhang
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Yangyang Cui
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
- Postgraduate Training Base of Shanghai East Hospital, Jinzhou Medical University, Jinzhou, 121001, China
| | - Yuan Du
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yong Yang
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Ting Fang
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Fengfeng Lu
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Weixia Kong
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Canjun Xiao
- Department of General Surgery, Ji'an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji'an, 343006, China
| | - Jun Shi
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Department of General Surgery, Ji'an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji'an, 343006, China
| | - Lola M Reid
- Department of Cell Biology and Physiology and Program in Molecular Biology and Biotechnology, UNC School of Medicine, Chapel Hill, NC, 27599, USA.
| | - Zhiying He
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China.
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China.
| |
Collapse
|
45
|
Ietto G, Iori V, Gritti M, Inversini D, Costantino A, Izunza Barba S, Jiang ZG, Carcano G, Dalla Gasperina D, Pettinato G. Multicellular Liver Organoids: Generation and Importance of Diverse Specialized Cellular Components. Cells 2023; 12:1429. [PMID: 37408262 PMCID: PMC10217024 DOI: 10.3390/cells12101429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 07/07/2023] Open
Abstract
Over 40,000 patients in the United States are estimated to suffer from end-stage liver disease and acute hepatic failure, for which liver transplantation is the only available therapy. Human primary hepatocytes (HPH) have not been employed as a therapeutic tool due to the difficulty in growing and expanding them in vitro, their sensitivity to cold temperatures, and tendency to dedifferentiate following two-dimensional culture. The differentiation of human-induced pluripotent stem cells (hiPSCs) into liver organoids (LO) has emerged as a potential alternative to orthotropic liver transplantation (OLT). However, several factors limit the efficiency of liver differentiation from hiPSCs, including a low proportion of differentiated cells capable of reaching a mature phenotype, the poor reproducibility of existing differentiation protocols, and insufficient long-term viability in vitro and in vivo. This review will analyze various methodologies being developed to improve hepatic differentiation from hiPSCs into liver organoids, paying particular attention to the use of endothelial cells as supportive cells for their further maturation. Here, we demonstrate why differentiated liver organoids can be used as a research tool for drug testing and disease modeling, or employed as a bridge for liver transplantation following liver failure.
Collapse
Affiliation(s)
- Giuseppe Ietto
- General, Emergency and Transplant Surgery Department, ASST-Sette Laghi, 21100 Varese, Italy
- Department of Medicine and Innovation Technology (DiMIT), University of Insubria, 21100 Varese, Italy
| | - Valentina Iori
- General, Emergency and Transplant Surgery Department, ASST-Sette Laghi, 21100 Varese, Italy
- Department of Medicine and Innovation Technology (DiMIT), University of Insubria, 21100 Varese, Italy
| | - Mattia Gritti
- Department of General Surgery, Humanitas Clinical and Research Center, Rozzano, 20089 Milan, Italy
| | - Davide Inversini
- General, Emergency and Transplant Surgery Department, ASST-Sette Laghi, 21100 Varese, Italy
- Department of Medicine and Innovation Technology (DiMIT), University of Insubria, 21100 Varese, Italy
| | - Angelita Costantino
- Department of Drug and Health Sciences, University of Catania, 95124 Catania, Italy;
| | - Sofia Izunza Barba
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Z. Gordon Jiang
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Giulio Carcano
- General, Emergency and Transplant Surgery Department, ASST-Sette Laghi, 21100 Varese, Italy
- Department of Medicine and Innovation Technology (DiMIT), University of Insubria, 21100 Varese, Italy
| | - Daniela Dalla Gasperina
- Department of Medicine and Innovation Technology (DiMIT), University of Insubria, 21100 Varese, Italy
- Department of Infectious Diseases, ASST-Sette Laghi, 21100 Varese, Italy
| | - Giuseppe Pettinato
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
46
|
Li R, Balakrishnan A, Ott M, Sharma AD. Bioartificial liver with reprogrammed hepatocytes ready for prime time. Cell Stem Cell 2023; 30:504-506. [PMID: 37146576 DOI: 10.1016/j.stem.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/07/2023]
Abstract
In this issue, Wang et al.1 provide evidence of the pre-clinical as well as the clinical utility of in vitro-generated directly reprogrammed human hepatocytes in bioartificial liver. This approach will help offer patients a more curative surgical therapy for liver cancer and improve survival rates.
Collapse
Affiliation(s)
- Ruomeng Li
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; Research Group RNA Therapeutics & Liver Regeneration, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Asha Balakrishnan
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Michael Ott
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany.
| | - Amar Deep Sharma
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; Research Group RNA Therapeutics & Liver Regeneration, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
47
|
Brlecic PE, Bonham CA, Rosengart TK, Mathison M. Direct cardiac reprogramming: A new technology for cardiac repair. J Mol Cell Cardiol 2023; 178:51-58. [PMID: 36965701 PMCID: PMC10124164 DOI: 10.1016/j.yjmcc.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/03/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023]
Abstract
Cardiovascular disease is one of the leading causes of morbidity and mortality worldwide, with myocardial infarctions being amongst the deadliest manifestations. Reduced blood flow to the heart can result in the death of cardiac tissue, leaving affected patients susceptible to further complications and recurrent disease. Further, contemporary management typically involves a pharmacopeia to manage the metabolic conditions contributing to atherosclerotic and hypertensive heart disease, rather than regeneration of the damaged myocardium. With modern healthcare extending lifespan, a larger demographic will be at risk for heart disease, driving the need for novel therapeutics that surpass those currently available in efficacy. Transdifferentiation and cellular reprogramming have been looked to as potential methods for the treatment of diseases throughout the body. Specifically targeting the fibrotic cells in cardiac scar tissue as a source to be reprogrammed into induced cardiomyocytes remains an appealing option. This review aims to highlight the history of and advances in cardiac reprogramming and describe its translational potential as a treatment for cardiovascular disease.
Collapse
Affiliation(s)
- Paige E Brlecic
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Clark A Bonham
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Todd K Rosengart
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Megumi Mathison
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
48
|
Hedrich V, Breitenecker K, Ortmayr G, Pupp F, Huber H, Chen D, Sahoo S, Jolly MK, Mikulits W. PRAME Is a Novel Target of Tumor-Intrinsic Gas6/Axl Activation and Promotes Cancer Cell Invasion in Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:2415. [PMID: 37173882 PMCID: PMC10177160 DOI: 10.3390/cancers15092415] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
(1) Background: Activation of the receptor tyrosine kinase Axl by Gas6 fosters oncogenic effects in hepatocellular carcinoma (HCC), associating with increased mortality of patients. The impact of Gas6/Axl signaling on the induction of individual target genes in HCC and its consequences is an open issue. (2) Methods: RNA-seq analysis of Gas6-stimulated Axl-proficient or Axl-deficient HCC cells was used to identify Gas6/Axl targets. Gain- and loss-of-function studies as well as proteomics were employed to characterize the role of PRAME (preferentially expressed antigen in melanoma). Expression of Axl/PRAME was assessed in publicly available HCC patient datasets and in 133 HCC cases. (3) Results: Exploitation of well-characterized HCC models expressing Axl or devoid of Axl allowed the identification of target genes including PRAME. Intervention with Axl signaling or MAPK/ERK1/2 resulted in reduced PRAME expression. PRAME levels were associated with a mesenchymal-like phenotype augmenting 2D cell migration and 3D cell invasion. Interactions with pro-oncogenic proteins such as CCAR1 suggested further tumor-promoting functions of PRAME in HCC. Moreover, PRAME showed elevated expression in Axl-stratified HCC patients, which correlates with vascular invasion and lowered patient survival. (4) Conclusions: PRAME is a bona fide target of Gas6/Axl/ERK signaling linked to EMT and cancer cell invasion in HCC.
Collapse
Affiliation(s)
- Viola Hedrich
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (V.H.)
| | - Kristina Breitenecker
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (V.H.)
| | - Gregor Ortmayr
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (V.H.)
| | - Franziska Pupp
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (V.H.)
| | - Heidemarie Huber
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (V.H.)
| | - Doris Chen
- Department of Chromosome Biology, Max Perutz Labs Vienna, University of Vienna, 1030 Vienna, Austria
| | - Sarthak Sahoo
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Wolfgang Mikulits
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (V.H.)
| |
Collapse
|
49
|
Garcia-Llorens G, Martínez-Sena T, Pareja E, Tolosa L, Castell JV, Bort R. A robust reprogramming strategy for generating hepatocyte-like cells usable in pharmaco-toxicological studies. Stem Cell Res Ther 2023; 14:94. [PMID: 37072803 PMCID: PMC10114490 DOI: 10.1186/s13287-023-03311-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/28/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND High-throughput pharmaco-toxicological testing frequently relies on the use of established liver-derived cell lines, such as HepG2 cells. However, these cells often display limited hepatic phenotype and features of neoplastic transformation that may bias the interpretation of the results. Alternate models based on primary cultures or differentiated pluripotent stem cells are costly to handle and difficult to implement in high-throughput screening platforms. Thus, cells without malignant traits, optimal differentiation pattern, producible in large and homogeneous amounts and with patient-specific phenotypes would be desirable. METHODS We have designed and implemented a novel and robust approach to obtain hepatocytes from individuals by direct reprogramming, which is based on a combination of a single doxycycline-inducible polycistronic vector system expressing HNF4A, HNF1A and FOXA3, introduced in human fibroblasts previously transduced with human telomerase reverse transcriptase (hTERT). These cells can be maintained in fibroblast culture media, under standard cell culture conditions. RESULTS Clonal hTERT-transduced human fibroblast cell lines can be expanded at least to 110 population doublings without signs of transformation or senescence. They can be easily differentiated at any cell passage number to hepatocyte-like cells with the simple addition of doxycycline to culture media. Acquisition of a hepatocyte phenotype is achieved in just 10 days and requires a simple and non-expensive cell culture media and standard 2D culture conditions. Hepatocytes reprogrammed from low and high passage hTERT-transduced fibroblasts display very similar transcriptomic profiles, biotransformation activities and show analogous pattern behavior in toxicometabolomic studies. Results indicate that this cell model outperforms HepG2 in toxicological screening. The procedure also allows generation of hepatocyte-like cells from patients with given pathological phenotypes. In fact, we succeeded in generating hepatocyte-like cells from a patient with alpha-1 antitrypsin deficiency, which recapitulated accumulation of intracellular alpha-1 antitrypsin polymers and deregulation of unfolded protein response and inflammatory networks. CONCLUSION Our strategy allows the generation of an unlimited source of clonal, homogeneous, non-transformed induced hepatocyte-like cells, capable of performing typical hepatic functions and suitable for pharmaco-toxicological high-throughput testing. Moreover, as far as hepatocyte-like cells derived from fibroblasts isolated from patients suffering hepatic dysfunctions, retain the disease traits, as demonstrated for alpha-1-antitrypsin deficiency, this strategy can be applied to the study of other cases of anomalous hepatocyte functionality.
Collapse
Affiliation(s)
- Guillem Garcia-Llorens
- Unidad de Hepatología Experimental y Trasplante Hepático, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politecnico La Fe, Torre A. Lab 6.08, Avda. Fernando Abril Martorell 106, 46026, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, Valencia, Spain
| | - Teresa Martínez-Sena
- Unidad de Hepatología Experimental y Trasplante Hepático, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politecnico La Fe, Torre A. Lab 6.08, Avda. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Eugenia Pareja
- Unidad de Hepatología Experimental y Trasplante Hepático, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politecnico La Fe, Torre A. Lab 6.08, Avda. Fernando Abril Martorell 106, 46026, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Servicio de Cirugía General y Aparato Digestivo, Hospital Universitario Dr. Peset, Valencia, Spain
| | - Laia Tolosa
- Unidad de Hepatología Experimental y Trasplante Hepático, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politecnico La Fe, Torre A. Lab 6.08, Avda. Fernando Abril Martorell 106, 46026, Valencia, Spain
- Centro de Investigación Biomédica en Red de Bioingenieria, Biomateriales y Nanomedicina (CIBER-Bbn), Instituto de Salud Carlos III, Madrid, Spain
| | - José V Castell
- Unidad de Hepatología Experimental y Trasplante Hepático, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politecnico La Fe, Torre A. Lab 6.08, Avda. Fernando Abril Martorell 106, 46026, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, Valencia, Spain
| | - Roque Bort
- Unidad de Hepatología Experimental y Trasplante Hepático, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politecnico La Fe, Torre A. Lab 6.08, Avda. Fernando Abril Martorell 106, 46026, Valencia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
50
|
Yan N, Feng H, Sun Y, Xin Y, Zhang H, Lu H, Zheng J, He C, Zuo Z, Yuan T, Li N, Xie L, Wei W, Sun Y, Zuo E. Cytosine base editors induce off-target mutations and adverse phenotypic effects in transgenic mice. Nat Commun 2023; 14:1784. [PMID: 36997536 PMCID: PMC10063651 DOI: 10.1038/s41467-023-37508-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Base editors have been reported to induce off-target mutations in cultured cells, mouse embryos and rice, but their long-term effects in vivo remain unknown. Here, we develop a Systematic evaluation Approach For gene Editing tools by Transgenic mIce (SAFETI), and evaluate the off-target effects of BE3, high fidelity version of CBE (YE1-BE3-FNLS) and ABE (ABE7.10F148A) in ~400 transgenic mice over 15 months. Whole-genome sequence analysis reveals BE3 expression generated de novo mutations in the offspring of transgenic mice. RNA-seq analysis reveals both BE3 and YE1-BE3-FNLS induce transcriptome-wide SNVs, and the numbers of RNA SNVs are positively correlated with CBE expression levels across various tissues. By contrast, ABE7.10F148A shows no detectable off-target DNA or RNA SNVs. Notably, we observe abnormal phenotypes including obesity and developmental delay in mice with permanent genomic BE3 overexpression during long-time monitoring, elucidating a potentially overlooked aspect of side effects of BE3 in vivo.
Collapse
Affiliation(s)
- Nana Yan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hu Feng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yongsen Sun
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Ying Xin
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Haihang Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hongjiang Lu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Jitan Zheng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Chenfei He
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhenrui Zuo
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Tanglong Yuan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Nana Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Long Xie
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wu Wei
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- Lingang Laboratory, Shanghai, China.
| | - Yidi Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Erwei Zuo
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|