1
|
Qin R, Tang Y, Yuan Y, Meng F, Zheng K, Yang X, Zhao J, Yang C. Studies on the functional role of UFMylation in cells (Review). Mol Med Rep 2025; 32:191. [PMID: 40341950 PMCID: PMC12076054 DOI: 10.3892/mmr.2025.13556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 04/16/2025] [Indexed: 05/11/2025] Open
Abstract
Protein post‑translational modifications (PTMs) play crucial roles in various life activities and aberrant protein modifications are closely associated with numerous major human diseases. Ubiquitination, the first identified protein modification system, involves the covalent attachment of ubiquitin molecules to lysine residues of target proteins. UFMylation, a recently discovered ubiquitin‑like modification, shares similarities with ubiquitination. The precursor form of ubiquitin fold modifier 1 (UFM1) undergoes synthesis and cleavage by UFM1‑specific protease 1 or UFM1‑specific protease 2 to generate activated UFM1‑G83. Subsequently, UFM1‑G83 is activated by a specific E1‑like activase, UFM1‑activating enzyme 5. UFM1‑conjugating enzyme 1 and an E3‑like ligase, UFM1‑specific ligase 1, recognize the target protein and facilitate UFMylation, leading to the degradation of the target protein. Current knowledge regarding UFMylation remains limited. Previous studies have demonstrated that defects in the UFMylation pathway can result in embryonic lethality in mice and various human diseases, highlighting the critical biological functions of UFMylation. However, the precise mechanisms underlying UFMylation remain elusive. This present review aimed to summarize recent research advances in UFMylation, with the aim of providing novel insights and perspectives for future investigations into this essential protein modification system.
Collapse
Affiliation(s)
- Rong Qin
- Yunan Key Laboratory of Breast Cancer Precision Medicine, School of Biomedical Engineering, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yu Tang
- Yunan Key Laboratory of Breast Cancer Precision Medicine, The Third Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yuhang Yuan
- Yunan Key Laboratory of Breast Cancer Precision Medicine, School of Biomedical Engineering, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Fangyu Meng
- Yunan Key Laboratory of Breast Cancer Precision Medicine, School of Biomedical Engineering, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Kepu Zheng
- Department of Hepato-Biliary-Pancreatic Surgery, The Affiliated Calmette Hospital of Kunming Medical University, The First People's Hospital of Kunming, Kunming, Yunnan 650000, P.R. China
| | - Xingyu Yang
- Yunan Key Laboratory of Breast Cancer Precision Medicine, The Third Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Jiumei Zhao
- Department of Laboratory, Chongqing Nanchuan District People's Hospital, Chongqing Medical University, Chongqing 408400, P.R. China
| | - Chuanhua Yang
- Department of General Surgery, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
2
|
Liu L, Che B, Zhang W, Du D, Zhang D, Li J, Chen Z, Yu X, Ye M, Wang W, Li Z, Xie F, Wang Q, Chen L, Shao J. Mechanistic insights into the role of FAT10 in modulating NCOA4-mediated ferroptosis in pancreatic acinar cells during acute pancreatitis. Cell Death Dis 2025; 16:385. [PMID: 40374601 DOI: 10.1038/s41419-025-07715-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 04/25/2025] [Accepted: 05/02/2025] [Indexed: 05/17/2025]
Abstract
Acute pancreatitis (AP) is characterised by inflammation and cell death in pancreatic tissue, with ferroptosis playing a critical role in its pathophysiology by mediating cellular damage and exacerbating inflammation. This study investigated the role of human leukocyte antigen (HLA)-F adjacent transcript 10 (FAT10) in AP, specifically its involvement in ferroptosis within pancreatic acinar cells. We observed that FAT10 expression was significantly elevated in AP tissues, which correlated with increased ferroptosis. Overexpression of FAT10 in pancreatic acinar cells enhances ferroptosis, whereas its knockdown reduced levels of ferroptosis markers. Furthermore, we confirmed that FAT10 enhanced ferroptosis in pancreatic acinar cells primarily by upregulating nuclear receptor coactivator 4 (NCOA4) expression. Mechanistic investigations revealed that FAT10 regulates NCOA4 expression to promote ferroptosis in a complex manner. FAT10 inhibits NCOA4 ubiquitination by reducing ubiquitin-NCOA4 complexes. Meanwhile, NCOA4 expression increased alongside the increase in FAT10-NCOA4 complexes, which are resistant to proteasomal degradation. Notably, we identified silibinin, a natural compound, as an effective inhibitor of the FAT10-NCOA4 axis, leading to reduced ferroptosis and alleviation of pancreatic damage in vivo. Silibinin treatment decreased the levels of ferroptosis-related proteins and inflammatory markers in both cell and animal models. Our findings highlight the FAT10-NCOA4 axis as a crucial regulator of ferroptosis in pancreatic acinar cells and suggest that targeting this pathway could offer a therapeutic strategy for mitigating AP. This study provides new insights into the regulatory mechanisms of ferroptosis in pancreatic acinar cells, identifying FAT10 as a potential therapeutic target for AP management.
Collapse
Affiliation(s)
- Lingpeng Liu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Liver Cancer Institute, Nanchang University, Nanchang, China
- Jiangxi Province Clinical Research Center of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ben Che
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Liver Cancer Institute, Nanchang University, Nanchang, China
- Jiangxi Province Clinical Research Center of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenming Zhang
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Liver Cancer Institute, Nanchang University, Nanchang, China
- Jiangxi Province Clinical Research Center of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dongnian Du
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Liver Cancer Institute, Nanchang University, Nanchang, China
- Jiangxi Province Clinical Research Center of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dandan Zhang
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Liver Cancer Institute, Nanchang University, Nanchang, China
- Jiangxi Province Clinical Research Center of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiajuan Li
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Liver Cancer Institute, Nanchang University, Nanchang, China
- Jiangxi Province Clinical Research Center of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zehao Chen
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Liver Cancer Institute, Nanchang University, Nanchang, China
- Jiangxi Province Clinical Research Center of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuzhe Yu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Liver Cancer Institute, Nanchang University, Nanchang, China
- Jiangxi Province Clinical Research Center of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Miao Ye
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Liver Cancer Institute, Nanchang University, Nanchang, China
- Jiangxi Province Clinical Research Center of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Wang
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Liver Cancer Institute, Nanchang University, Nanchang, China
- Jiangxi Province Clinical Research Center of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zijing Li
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Liver Cancer Institute, Nanchang University, Nanchang, China
- Jiangxi Province Clinical Research Center of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fei Xie
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Liver Cancer Institute, Nanchang University, Nanchang, China
- Jiangxi Province Clinical Research Center of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qing Wang
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Liver Cancer Institute, Nanchang University, Nanchang, China
- Jiangxi Province Clinical Research Center of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Leifeng Chen
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China.
- Jiangxi Province Clinical Research Center of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China.
- Precision Oncology Medicine Center, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China.
| | - Jianghua Shao
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China.
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China.
- Liver Cancer Institute, Nanchang University, Nanchang, China.
- Jiangxi Province Clinical Research Center of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Nanchang University, Nanchang, China.
| |
Collapse
|
3
|
Wang X, Norgate E, Dai J, Benoit F, Bristow T, England RM, Kalapothakis JMD, Barran PE. Conformational landscapes of rigid and flexible molecules explored with variable temperature ion mobility-mass spectrometry. Nat Commun 2025; 16:4183. [PMID: 40324998 PMCID: PMC12052783 DOI: 10.1038/s41467-025-59065-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/10/2025] [Indexed: 05/07/2025] Open
Abstract
Understanding the effect of temperature to the structural integrity of proteins is relevant to diverse areas such as biotechnology and climate change. Variable temperature ion mobility-mass spectrometry (VT-IM-MS) can measure the effect of temperature on conformational landscapes. To delineate collision effects from structural change we report measurements using molecules with different degrees of rigidity namely: poly (L-lysine) (PLL) dendrimer, ubiquitin, β-casein and α-synuclein from 190-350 K. The CCS of PLL dendrimer varies with temperature consistent with collision theory, by contrast, the structure of each protein alters with notable restructuring at 350 K and 250 K, following predicted in vitro stability curves. At 210 K and 190 K we kinetically trap unfolding intermediates. For alpha-synuclein, the 13+ ions present two distinct conformers and VT-IM-MS measurements allow us to calculate the transition rate and activation energies of their conversion. These data exemplify the capacity of VT-IM-MS to provide insights on the thermodynamics of conformational restructuring.
Collapse
Affiliation(s)
- Xudong Wang
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Emma Norgate
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Junxiao Dai
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Florian Benoit
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Tony Bristow
- Chemical Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Charter Way, Macclesfield, SK102NA, UK
| | - Richard M England
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, SK10 2NA, UK
| | - Jason M D Kalapothakis
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Perdita E Barran
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
4
|
Sharma R, Chirom O, Mujib A, Prasad M, Prasad A. UFMylation: Exploring a lesser known post translational modification. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 354:112435. [PMID: 39993644 DOI: 10.1016/j.plantsci.2025.112435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/06/2025] [Accepted: 02/18/2025] [Indexed: 02/26/2025]
Abstract
Ubiquitination is a highly conserved post-translational modification (PTM) in which ubiquitin (Ub) is covalently attached to substrate proteins resulting in the alteration of protein structure, function, and stability. Another class of PTM mediated by ubiquitin-like proteins (UBLs) has gained significant attention among researchers in recent years. This article focuses on one such UBL-mediated PTM i.e. UFMylation. The enzymatic mechanism of UFMylation is similar to ubiquitination, involving three steps regulated by three different enzymes. In plants, reports suggest that UFMylation is predominantly involved in maintaining ER homeostasis including ER-phagy. However, studies related to this PTM are limited and future studies might reveal other molecular pathways regulated by UFMylation.
Collapse
Affiliation(s)
- Rohit Sharma
- Department of Botany, Kurukshetra University, Kurukshetra, India
| | - Oceania Chirom
- Department of Botany, Jamia Hamdard University, New Delhi, India
| | - Abdul Mujib
- Department of Botany, Jamia Hamdard University, New Delhi, India
| | - Manoj Prasad
- Department of Genetics, University of Delhi South Campus, New Delhi, India; National Institute of Plant Genome Research, New Delhi, India.
| | - Ashish Prasad
- Department of Botany, Kurukshetra University, Kurukshetra, India.
| |
Collapse
|
5
|
Zhao H, Fu Y, Lv W, Zhang X, Li J, Yang D, Shi L, Wang H, Li W, Huang H, Zhao S, Li C, Yang J. PuUBL5-mediated ZINC FINGER PROTEIN 1 stability is critical for root development under drought stress in Populus ussuriensis. PLANT PHYSIOLOGY 2025; 198:kiaf181. [PMID: 40366207 DOI: 10.1093/plphys/kiaf181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 03/26/2025] [Indexed: 05/15/2025]
Abstract
C2H2-type zinc finger protein (ZFP) transcription factors influence root growth and development. However, their potential roles in inhibiting adventitious root (AR) and lateral root (LR) formation in trees remain unclear. Here, we report that the ABA-responsive C2H2-type zinc finger protein transcription factor (PuZFP1) regulates Populus ussuriensis root development to enhance drought tolerance. PuZFP1 negatively regulates LR development by binding to the PuWRKY46 promoter and inhibiting its expression. At the same time, PuZFP1 promotes AR elongation by repressing Clade E Growth-Regulating (EGR) Type 2C protein phosphatases (PuEGR1). In PuZFP1-overexpressing lines, a higher ABA/IAA ratio in the differentiated zone (DZ) drives PuWRKY46-mediated LR inhibition. Conversely, a lower ABA/IAA ratio is associated with AR elongation and the expression of the downstream target gene PuEGR1 in the elongation zone (EZ). Notably, PuZFP1 physically interacts with Ubiquitin-like protein 5 (PuUBL5) and undergoes 26S proteasome-mediated degradation. Taken together, our findings shed light on the role of the PuUBL5-PuZFP1 module in mediating the crosstalk between LR emergence and AR elongation via ABA/auxin signaling in drought-stressed P. ussuriensis, and provide insights into the regulatory network underlying PuZFP1-mediated root growth in poplar.
Collapse
Affiliation(s)
- Haoqin Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yanrui Fu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Wanqiu Lv
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xin Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jingjing Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Da Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Lin Shi
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Hanzeng Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Wanxin Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Haijiao Huang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Shicheng Zhao
- School of Pharmacy, Harbin University of Commerce, Harbin 150040, China
| | - Chenghao Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jingli Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
6
|
Kumar M, Banerjee S, Cohen-Kfir E, Mitelberg MB, Tiwari S, Isupov MN, Dessau M, Wiener R. UFC1 reveals the multifactorial and plastic nature of oxyanion holes in E2 conjugating enzymes. Nat Commun 2025; 16:3912. [PMID: 40280917 PMCID: PMC12032130 DOI: 10.1038/s41467-025-58826-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
The conjugation of ubiquitin (Ub) or ubiquitin-like proteins (UBL) to target proteins is a crucial post-translational modification that typically involves nucleophilic attack by a lysine on a charged E2 enzyme (E2~Ub/UBL), forming an oxyanion intermediate. Stabilizing this intermediate through an oxyanion hole is vital for progression of the reaction. Still, the mechanism of oxyanion stabilization in E2 enzymes remains unclear, although an asparagine residue in the conserved HPN motif of E2 enzymes was suggested to stabilize the oxyanion intermediate. Here, we study the E2 enzyme UFC1, which presents a TAK rather than an HPN motif. Crystal structures of UFC1 mutants, including one that mimics the oxyanion intermediate, combined with in vitro activity assays, suggest that UFC1 utilizes two distinct types of oxyanion holes, one that stabilizes the oxyanion intermediate during trans-ufmylation mediated by the E3 ligase, and another that stabilizes cis-driven auto-ufmylation. Our findings indicate that oxyanion stabilization is influenced by multiple factors, including C-alpha hydrogen bonding, and is adaptable, enabling different modes of action.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel
| | - Sayanika Banerjee
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel
| | - Einav Cohen-Kfir
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel
| | - Marissa Basia Mitelberg
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel
| | - Suryakant Tiwari
- Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, 1311502, Israel
| | - Michail N Isupov
- The Henry Wellcome Building for Biocatalysis, Biosciences, University of Exeter, Exeter, UK
| | - Moshe Dessau
- Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, 1311502, Israel
| | - Reuven Wiener
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel.
| |
Collapse
|
7
|
Shao GC, Chen ZL, Lu S, Wu QC, Sheng Y, Wang J, Ma Y, Sui JH, Chi H, Qi XB, He SM, Du LL, Dong MQ. Global analysis of protein and small-molecule substrates of ubiquitin-like proteins (UBLs). Mol Cell Proteomics 2025:100975. [PMID: 40254064 DOI: 10.1016/j.mcpro.2025.100975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025] Open
Abstract
Ubiquitin-like proteins (UBLs) constitute a family of evolutionarily conserved proteins that share similarities with ubiquitin in 3D structures and modification mechanisms. For most UBLs including Small-Ubiquitin-like Modifiers (SUMO), their modification sites on substrate proteins cannot be identified using the mass spectrometry-based method that has been successful for identifying ubiquitination sites, unless a UBL protein is mutated accordingly. To identify UBL modification sites without having to mutate UBL, we have developed a dedicated search engine pLink-UBL on the basis of pLink, a software tool for identification of cross-linked peptide pairs. pLink-UBL exhibited superior precision, sensitivity, and speed than "make-do" search engines such as MaxQuant, pFind, and pLink. For example, compared to MaxQuant, pLink-UBL increased the number of identified SUMOylation sites by 50 ∼ 300% from the same datasets. Additionally, we present a method for identifying small-molecule modifications of UBLs. This method involves antibody enrichment of a UBL C-terminal peptide following enrichment of a UBL protein, followed by LC-MS/MS analysis and a pFind 3 blind search to identify unexpected modifications. Using this method, we have discovered non-protein substrates of SUMO, of which spermidine is the major one for fission yeast SUMO Pmt3. Spermidine can be conjugated to the C-terminal carboxylate group of Pmt3 through its N1 or also likely, N8 amino group in the presence of SUMO E1, E2, and ATP. Pmt3-spermidine conjugation does not require E3 and can be reversed by SUMO isopeptidase Ulp1. SUMO-spermidine conjugation is present in mice and humans. Also, spermidine can be conjugated to ubiquitin in vitro by E1 and E2 in the presence of ATP. The above observations suggest that spermidine may be a common small molecule substrate of SUMO and possibly ubiquitin across eukaryotic species.
Collapse
Affiliation(s)
- Guang-Can Shao
- National Institute of Biological Sciences, Beijing, 102206, Beijing, China
| | - Zhen-Lin Chen
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, 100190, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Lu
- National Institute of Biological Sciences, Beijing, 102206, Beijing, China
| | - Qing-Cui Wu
- National Institute of Biological Sciences, Beijing, 102206, Beijing, China
| | - Yao Sheng
- National Institute of Biological Sciences, Beijing, 102206, Beijing, China
| | - Jing Wang
- National Institute of Biological Sciences, Beijing, 102206, Beijing, China
| | - Yan Ma
- National Institute of Biological Sciences, Beijing, 102206, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 102206, Beijing, China
| | - Jian-Hua Sui
- National Institute of Biological Sciences, Beijing, 102206, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 102206, Beijing, China
| | - Hao Chi
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, 100190, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Bing Qi
- National Institute of Biological Sciences, Beijing, 102206, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 102206, Beijing, China
| | - Si-Min He
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, 100190, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing, 102206, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 102206, Beijing, China.
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, 102206, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 102206, Beijing, China.
| |
Collapse
|
8
|
Fiorentino F, Thoms M, Wild K, Denk T, Cheng J, Zeman J, Sinning I, Hurt E, Beckmann R. Highly conserved ribosome biogenesis pathways between human and yeast revealed by the MDN1-NLE1 interaction and NLE1 containing pre-60S subunits. Nucleic Acids Res 2025; 53:gkaf255. [PMID: 40207627 PMCID: PMC11983104 DOI: 10.1093/nar/gkaf255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/08/2025] [Accepted: 03/21/2025] [Indexed: 04/11/2025] Open
Abstract
The assembly of ribosomal subunits, primarily occurring in the nucleolar and nuclear compartments, is a highly complex process crucial for cellular function. This study reveals the conservation of ribosome biogenesis between yeast and humans, illustrated by the structural similarities of ribosomal subunit intermediates. By using X-ray crystallography and cryo-EM, the interaction between the human AAA+ ATPase MDN1 and the 60S assembly factor NLE1 is compared with the yeast homologs Rea1 and Rsa4. The MDN1-MIDAS and NLE1-Ubl complex structure at 2.3 Å resolution mirrors the highly conserved interaction patterns observed in yeast. Moreover, human pre-60S intermediates bound to the dominant negative NLE1-E85A mutant revealed at 2.8 Å resolution an architecture that largely matched the equivalent yeast structures. Conformation of rRNA, assembly factors and their interaction networks are highly conserved. Additionally, novel human pre-60S intermediates with a non-rotated 5S RNP and processed ITS2/foot structure but incomplete intersubunit surface were identified to be similar to counterparts observed in yeast. These findings confirm that the MDN1-NLE1-driven transition phase of the 60S assembly is essentially identical, supporting the idea that ribosome biogenesis is a highly conserved process across eukaryotic cells, employing an evolutionary preservation of ribosomal assembly mechanisms.
Collapse
MESH Headings
- Humans
- Saccharomyces cerevisiae Proteins/metabolism
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae/genetics
- Ribosome Subunits, Large, Eukaryotic/metabolism
- Ribosome Subunits, Large, Eukaryotic/chemistry
- Ribosome Subunits, Large, Eukaryotic/ultrastructure
- Cryoelectron Microscopy
- Crystallography, X-Ray
- Ribosomal Proteins/metabolism
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/genetics
- Models, Molecular
- Protein Binding
- Nuclear Proteins/metabolism
- Nuclear Proteins/chemistry
- Nuclear Proteins/genetics
- ATPases Associated with Diverse Cellular Activities/metabolism
- ATPases Associated with Diverse Cellular Activities/chemistry
- ATPases Associated with Diverse Cellular Activities/genetics
- Ribosomes/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/metabolism
Collapse
Affiliation(s)
- Federica Fiorentino
- Biochemistry Center (BZH), University of Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Matthias Thoms
- Gene Center and Department of Biochemistry, University of Munich LMU, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Klemens Wild
- Biochemistry Center (BZH), University of Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Timo Denk
- Gene Center and Department of Biochemistry, University of Munich LMU, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Jingdong Cheng
- Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Fudan University, Dong’an Road 131, 200032 Shanghai, China
| | - Jakub Zeman
- Gene Center and Department of Biochemistry, University of Munich LMU, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Irmgard Sinning
- Biochemistry Center (BZH), University of Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Ed Hurt
- Biochemistry Center (BZH), University of Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Roland Beckmann
- Gene Center and Department of Biochemistry, University of Munich LMU, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| |
Collapse
|
9
|
Mousa R, Shkolnik D, Alalouf Y, Brik A. Chemical approaches to explore ubiquitin-like proteins. RSC Chem Biol 2025; 6:492-509. [PMID: 39950163 PMCID: PMC11817102 DOI: 10.1039/d4cb00220b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Chemical protein synthesis has emerged as a powerful approach for producing ubiquitin (Ub) and ubiquitin-like modifiers (Ubls) in both their free and conjugated forms, particularly when recombinant or enzymatic strategies are challenging. By providing precise control over the assembly of Ub and Ubls, chemical synthesis enables the generation of complex constructs with site-specific modifications that facilitate detailed functional and structural studies. Ub and Ubls are central regulators of protein homeostasis, regulating a wide range of cellular processes such as cell cycle progression, transcription, DNA repair, and apoptosis. Ubls share an evolutionary link with Ub, resembling its structure and following a parallel conjugation pathway that results in a covalent isopeptide bond with their cellular substrates. Despite their structural similarities and sequence homology, Ub and Ubls exhibit distinct functional differences. Understanding Ubl biology is essential for unraveling how cells maintain their regulatory networks and how disruptions in these pathways contribute to various diseases. In this review, we highlight the chemical methodologies and strategies available for studying Ubls and advancing our comprehensive understanding of the Ubl system in health and disease.
Collapse
Affiliation(s)
- Reem Mousa
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Haifa 3200008 Israel
| | - Dana Shkolnik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Haifa 3200008 Israel
| | - Yam Alalouf
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Haifa 3200008 Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Haifa 3200008 Israel
| |
Collapse
|
10
|
Gilloteaux J, Charlier C, Suain V, Nicaise C. Astrocyte alterations during Osmotic Demyelination Syndrome: intermediate filaments, aggresomes, proteasomes, and glycogen storages. Ultrastruct Pathol 2025; 49:170-215. [PMID: 40062739 DOI: 10.1080/01913123.2025.2468700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/31/2025] [Accepted: 02/14/2025] [Indexed: 03/27/2025]
Abstract
INTRODUCTION A murine model mimicking the human osmotic demyelination syndrome (ODS) revealed with histology demyelinated alterations in the relay posterolateral (VPL) and ventral posteromedial (VPM) thalamic nuclei 12 h and 48 h after chronic hyponatremia due to a fast reinstatement of osmolality. Abnormal expression astrocyte markers ALDHL1 and GFAP with immunohistochemistry in these ODS altered zones, prompted aims to verify in both protoplasmic and fibrillar astrocytes with ultrastructure those changes and other associated subcellular modifications. METHOD This ODS investigation included four groups of mice: Sham (NN; n = 13), hyponatremic (HN; n = 11), those sacrificed 12 h after a fast restoration of normal natremia (ODS12h; n = 6), and mice sacrificed 48 h afterward, or ODS48 h (n = 9). Out of those four groups of mice, with LM and ultrastructure microscopy, the thalamic zones included NN (n = 2), HN (n = 2), ODS12h (n = 3) and ODS48h (n = 3) samples. There, comparisons between astrocytes included organelles, GFAP, and glycogen content changes. RESULTS Thalamic ODS epicenter damages comprised both protoplasmic (PA) and fibrillar (FA) astrocyte necroses along with those of neuropil destructions and neuron Wallerian demyelinated injuries surrounded by a centrifugal region gradient revealing worse to mild destructions. Ultrastructure aspects of resilient HN and ODS12h PAs disclosed altered mitochondria and accumulations of beta- to alpha-glycogen granules that became eventually captured into phagophores as glycophagosomes in ODS48h. HN and ODS12h time lapse FAs accumulated ribonucleoproteins, cytoskeletal aggresomes, and proteasomes but distant and resilient ODS48h FAs maintained GFAP fibrils along with typical mitochondria and dispersed β-glycogen, including in their neuropil surroundings. Thus, ODS triggered astrocyte injuries that involved both post-transcriptional and post-translational modifications such that astrocytes were unable to use glycogen and metabolites due to their own mitochondria defects while accumulated stalled ribonucleoproteins, cytoskeletal aggresomes were associated with proteasomes and GFAP ablation. Resilient but distant astrocytes revealed restitution of amphibolism where typical carbohydrate storages were revealed along with GFAP, as tripartite extensions supply for restored nerve axon initial segments, neural Ranvier's junctions, and oligodendrocyte -neuron junctional contacts. CONCLUSION ODS caused astrocyte damage associated with adjacent neuropil destruction that included a regional demyelination caused by a loss of dispatched energetic and metabolic exchanges within the injured region, bearing proportional and collateral centrifugal injuries, which involved reactive repairs time after rebalanced osmolarity.
Collapse
Affiliation(s)
- Jacques Gilloteaux
- Department of Medicine, Laboratory of Neurodegeneration and Regeneration URPHyM, NARILIS, University of Namur, Namur, Belgium
- Department of Anatomical Sciences, St George's University School of Medicine, KB Taylor Global Scholar's Program at the Northumbria University, Newcastle upon Tyne, UK
| | - Corry Charlier
- Electron Microscopy Platform, MORPH-IM, Université de Namur, Bruxelles, Belgium
| | - Valérie Suain
- CMMI - The Center for Microscopy and Molecular Imaging, Gosselies, Belgium
| | - Charles Nicaise
- Department of Medicine, Laboratory of Neurodegeneration and Regeneration URPHyM, NARILIS, University of Namur, Namur, Belgium
| |
Collapse
|
11
|
Connolly JG, Plant LD. SUMO Regulation of Ion Channels in Health and Disease. Physiology (Bethesda) 2025; 40:0. [PMID: 39499247 DOI: 10.1152/physiol.00034.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/10/2024] [Accepted: 10/30/2024] [Indexed: 11/07/2024] Open
Abstract
The small ubiquitin-like modifier (SUMO) protein pathway governs a panoply of vital biological processes including cell death, proliferation, differentiation, metabolism, and signal transduction by diversifying the functions, half-lives, and partnerships of target proteins in situ. More recently, SUMOylation has emerged as a key regulator of ion homeostasis and excitability across multiple tissues due to the regulation of a plethora of ion channels expressed in a range of tissue subtypes. Altogether, the balance of SUMOylation states among relevant ion channels can result in graded biophysical effects that tune excitability and contribute to a range of disease states including cardiac arrhythmia, epilepsy, pain transmission, and inflammation. Here, we consolidate these concepts by focusing on the role of ion channel SUMOylation in the central nervous system, peripheral nervous system, and cardiovascular system. In addition, we review what is known about the enigmatic factors that regulate the SUMO pathway and consider the emerging role of small molecule SUMO modulators as potential therapeutics in a range of diseases.
Collapse
Affiliation(s)
- Jenna G Connolly
- Department of Pharmaceutical Sciences and the Center for Drug Discovery, The School of Pharmacy and Pharmaceutical SciencesBouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, United States
| | - Leigh D Plant
- Department of Pharmaceutical Sciences and the Center for Drug Discovery, The School of Pharmacy and Pharmaceutical SciencesBouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, United States
| |
Collapse
|
12
|
Wootton LM, Morgan EL. Ubiquitin and ubiquitin-like proteins in HPV-driven carcinogenesis. Oncogene 2025; 44:713-723. [PMID: 40011575 PMCID: PMC11888991 DOI: 10.1038/s41388-025-03310-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/20/2025] [Accepted: 02/12/2025] [Indexed: 02/28/2025]
Abstract
Persistent infection with high-risk (HR) human papillomaviruses (HPVs) is responsible for approximately 5% of cancer cases worldwide, including a growing number of oropharyngeal and anogenital cancers. The major HPV oncoproteins, E6 and E7, act together to manipulate cellular pathways involved in the regulation of proliferation, the cell cycle and cell survival, ultimately driving malignant transformation. Protein ubiquitination and the ubiquitin proteasome system (UPS) is often deregulated upon viral infection and in oncogenesis. HPV E6 and E7 interact with and disrupt multiple components of the ubiquitination machinery to promote viral persistence, which can also result in cellular transformation and the formation of tumours. This review highlights the ways in which HPV manipulates protein ubiquitination and the ubiquitin-like protein pathways and how this contributes to tumour development. Furthermore, we discuss how understanding the interactions between HPV and the protein ubiquitination could lead to novel therapeutic targets that are of urgent need in HPV+ carcinomas.
Collapse
Affiliation(s)
| | - Ethan L Morgan
- School of Life Sciences, University of Sussex, Brighton, UK.
| |
Collapse
|
13
|
Xi Y, Gong C, Zhang Z, Zhu F, Zhang Y, Tang Y, Yan L, Jiang H, Qiao J, Liu Q. NAE1-mediated neddylation coordinates ubiquitination regulation of meiotic recombination during spermatogenesis. Theranostics 2025; 15:3122-3142. [PMID: 40083933 PMCID: PMC11898277 DOI: 10.7150/thno.107843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/28/2025] [Indexed: 03/16/2025] Open
Abstract
Rationale: Meiotic homologous recombination is a critical event in gametogenesis, which is tightly regulated to ensure the generation of crossovers on homologous chromosomes. This process is crucial for ensuring the accurate segregation of genetic material and maintaining genetic diversity within species, ultimately contributing to reproductive success. Nevertheless, comprehensive mechanisms of post-translational modification (PTM) regulating homologous recombination during meiosis require further investigation. The aim of this study is to investigate the regulatory mechanisms and physiological functions of NAE1-mediated neddylation during meiosis of mammalian spermatogenesis and its consequential role in infertility. Methods: The dynamic localization of NAE1 at various sub-stages during spermatogenesis was determined using immunofluorescence staining and seminiferous tubule staging. We explore the role of NAE1-mediated neddylation by utilizing germ cell-specific Nae1-knockout mice. The impact on homologous synapsis and recombination during the meiosis prophase I were verified through chromosome spread fluorescence staining. We used 10 × Genomics single cell transcriptomics and ubiquitinomics to analysis the causes of spermatogenesis arrest and spermatogenic apoptosis. Results: NAE1 exhibited high nuclear expression within spermatocytes from the pachytene stage onwards. Nae1-SKO male mice showed a late-pachytene arrest in spermatocytes, resulting in infertility. In NAE1-deficient spermatocytes, there is an increase in apoptosis. Nae1 deletion led to double-strand break (DSB) repair failure with normal autosomes synapsis. From a mechanistic perspective, we verified excessive recombination intermediate stabilization and failed crossover formation, which ultimately resulted in impaired meiotic recombination. Further analysis showed that ubiquitination regulation coordinated with NAE1-mediated neddylation was implicated in meiotic recombination. Conclusion: NAE1-mediated neddylation regulates ubiquitination during meiosis and is involved in the stabilization of recombination proteins related to crossover differentiation. We provide cytological evidence for the neddylation-ubiquitination system (NUS) in mammalian meiotic recombination during spermatogenesis.
Collapse
Affiliation(s)
- Yu Xi
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Department of Urology, Peking University Third Hospital, Beijing, China
| | - Chenjia Gong
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Zhe Zhang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Department of Urology, Peking University Third Hospital, Beijing, China
| | - Feiyin Zhu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Ying Zhang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Yanlin Tang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Department of Urology, Peking University Third Hospital, Beijing, China
| | - Liying Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Hui Jiang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Department of Urology, Peking University Third Hospital, Beijing, China
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Department of Andrology, Peking University First Hospital, Beijing, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Qiang Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| |
Collapse
|
14
|
Entrenas-García C, Suárez-Cárdenas JM, Fernández-Rodríguez R, Bautista R, Claros MG, Garrido JJ, Zaldívar-López S. miR-215 Modulates Ubiquitination to Impair Inflammasome Activation and Autophagy During Salmonella Typhimurium Infection in Porcine Intestinal Cells. Animals (Basel) 2025; 15:431. [PMID: 39943201 PMCID: PMC11815736 DOI: 10.3390/ani15030431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/25/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
The host response to S. Typhimurium infection can be post-transcriptionally regulated by miRNAs. In this study, we investigated the role of miR-215 using both in vivo porcine infection models and in vitro intestinal epithelial cell lines. Several miRNAs were found to be dysregulated in the porcine ileum during infection with wild-type and SPI2-defective mutant strains of S. Typhimurium, with some changes being SPI2-dependent. Notably, miR-215 was significantly downregulated during infection. To explore its functional role, gain-of-function experiments were performed by transfecting porcine intestinal epithelial cells (IPEC-J2) with a miR-215-5p mimic, followed by label-free quantitative (LFQ) proteomic analysis. This analysis identified 157 proteins, of which 35 were downregulated in response to miR-215 overexpression, suggesting they are potential targets of this miRNA. Among these, E2 small ubiquitin-like modifier (SUMO)-conjugating enzyme UBC9 and E3 ubiquitin-ligase HUWE1 were identified as key targets, both of which are upregulated during S. Typhimurium infection. The miR-215-mediated downregulation of these proteins resulted in a significant decrease in overall ubiquitination, a process crucial for regulating inflammasome activation and autophagy. Consistently, inflammasome markers caspase 1 (CASP1) and apoptosis-associated speck-like protein containing a CARD (ASC), as well as autophagy markers microtubule-associated protein 1A/1B-light chain 3 (LC3B) and Ras-related protein Rab-11 (RAB11A), showed decreased expression in miR-215 mimic-transfected and infected IPEC-J2 cells. To further validate these findings, human intestinal epithelial cells (HT29) were used as a complementary model, providing additional insights into conserved immune pathways and extending the observations made in the porcine system. Overall, our findings demonstrate that miR-215 plays a significant role in modulating host inflammasome activation and autophagy by targeting proteins involved in ubiquitination during S. Typhimurium infection.
Collapse
Affiliation(s)
- Carmen Entrenas-García
- Immunogenomics and Molecular Pathogenesis Group, UIC Zoonosis and Emergent Diseases ENZOEM, Department of Genetics, University of Cordoba, 14014 Cordoba, Spain; (C.E.-G.); (J.M.S.-C.); (R.F.-R.)
| | - José M. Suárez-Cárdenas
- Immunogenomics and Molecular Pathogenesis Group, UIC Zoonosis and Emergent Diseases ENZOEM, Department of Genetics, University of Cordoba, 14014 Cordoba, Spain; (C.E.-G.); (J.M.S.-C.); (R.F.-R.)
- GA-14 Research Group, Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Cordoba, Spain
| | - Raúl Fernández-Rodríguez
- Immunogenomics and Molecular Pathogenesis Group, UIC Zoonosis and Emergent Diseases ENZOEM, Department of Genetics, University of Cordoba, 14014 Cordoba, Spain; (C.E.-G.); (J.M.S.-C.); (R.F.-R.)
- GA-14 Research Group, Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Cordoba, Spain
| | - Rocío Bautista
- Plataforma Andaluza de Bioinformática, Supercomputing and Bioinnovation Center (SCBI), Universidad de Málaga, 29590 Malaga, Spain; (R.B.); (M.G.C.)
- Institute of Biomedical Research in Malaga (IBIMA), IBIMA-RARE, 29590 Malaga, Spain
| | - M. Gonzalo Claros
- Plataforma Andaluza de Bioinformática, Supercomputing and Bioinnovation Center (SCBI), Universidad de Málaga, 29590 Malaga, Spain; (R.B.); (M.G.C.)
- Institute of Biomedical Research in Malaga (IBIMA), IBIMA-RARE, 29590 Malaga, Spain
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM-UMA-CSIC), 29590 Malaga, Spain
- Department of Molecular Biology and Biochemistry, Universidad de Málaga, 29010 Malaga, Spain
- CIBER de Enfermedades Raras (CIBERER) U741, 29071 Malaga, Spain
| | - Juan J. Garrido
- Immunogenomics and Molecular Pathogenesis Group, UIC Zoonosis and Emergent Diseases ENZOEM, Department of Genetics, University of Cordoba, 14014 Cordoba, Spain; (C.E.-G.); (J.M.S.-C.); (R.F.-R.)
- GA-14 Research Group, Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Cordoba, Spain
| | - Sara Zaldívar-López
- Immunogenomics and Molecular Pathogenesis Group, UIC Zoonosis and Emergent Diseases ENZOEM, Department of Genetics, University of Cordoba, 14014 Cordoba, Spain; (C.E.-G.); (J.M.S.-C.); (R.F.-R.)
- GA-14 Research Group, Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Cordoba, Spain
| |
Collapse
|
15
|
Rodrigues T, Guardiola FA, Almeida D, Antunes A. Aquatic Invertebrate Antimicrobial Peptides in the Fight Against Aquaculture Pathogens. Microorganisms 2025; 13:156. [PMID: 39858924 PMCID: PMC11767717 DOI: 10.3390/microorganisms13010156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/07/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
The intensification of aquaculture has escalated disease outbreaks and overuse of antibiotics, driving the global antimicrobial resistance (AMR) crisis. Antimicrobial peptides (AMPs) provide a promising alternative due to their rapid, broad-spectrum activity, low AMR risk, and additional bioactivities, including immunomodulatory, anticancer, and antifouling properties. AMPs derived from aquatic invertebrates, particularly marine-derived, are well-suited for aquaculture, offering enhanced stability in high-salinity environments. This study compiles and analyzes data from AMP databases and over 200 scientific sources, identifying approximately 350 AMPs derived from aquatic invertebrates, mostly cationic and α-helical, across 65 protein families. While in vitro assays highlight their potential, limited in vivo studies hinder practical application. These AMPs could serve as feed additives, therapeutic agents, or in genetic engineering approaches like CRISPR/Cas9-mediated transgenesis to enhance resilience of farmed species. Despite challenges such as stability, ecological impacts, and regulatory hurdles, advancements in peptidomimetics and genetic engineering hold significant promise. Future research should emphasize refining AMP enhancement techniques, expanding their diversity and bioactivity profiles, and prioritizing comprehensive in vivo evaluations. Harnessing the potential of AMPs represents a significant step forward on the path to aquaculture sustainability, reducing antibiotic dependency, and combating AMR, ultimately safeguarding public health and ecosystem resilience.
Collapse
Affiliation(s)
- Tomás Rodrigues
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Francisco Antonio Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain;
| | - Daniela Almeida
- Department of Zoology and Physical Anthropology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain;
| | - Agostinho Antunes
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| |
Collapse
|
16
|
Bai L, Sarkar R, Lee F, Wu JCS, Vawter MP. Exploratory Analysis of Sleep Deprivation Effects on Gene Expression and Regional Brain Metabolism. Complex Psychiatry 2025; 11:50-71. [PMID: 40337130 PMCID: PMC12054991 DOI: 10.1159/000545461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/11/2025] [Indexed: 05/09/2025] Open
Abstract
Introduction Sleep deprivation affects cognitive performance and immune function, yet its mechanisms and biomarkers remain unclear. This study explored the relationships among gene expression, brain metabolism, sleep deprivation, and sex differences. Methods Fluorodeoxyglucose-18 positron emission tomography measured brain metabolism in regions of interest, and RNA analysis of blood samples assessed gene expression pre- and post-sleep deprivation. Mixed model regression and principal component analysis identified significant genes and regional metabolic changes. Results There were 23 and 28 differentially expressed probe sets for the main effects of sex and sleep deprivation, respectively, and 55 probe sets for their interaction (FDR-corrected p < 0.05). Functional analysis of genes affected by sleep deprivation revealed pathway enrichment in nucleoplasm- and UBL conjugation-related genes. Genes with significant sex effects mapped to chromosomes Y and 19 (Benjamini-Hochberg FDR p < 0.05), with 11 genes (4%) and 29 genes (10.5%) involved, respectively. Differential gene expression highlighted sex-based differences in innate and adaptive immunity. For brain metabolism, sleep deprivation resulted in significant decreases in the left insula, left medial prefrontal cortex (BA32), left somatosensory cortex (BA1/2), and left motor premotor cortex (BA6) and increases in the right inferior longitudinal fasciculus, right primary visual cortex (BA17), right amygdala, left cerebellum, and bilateral pons. Conclusion Sleep deprivation broadly impacts brain metabolism, gene expression, and immune function, revealing cellular stress responses and hemispheric vulnerability. These findings enhance our understanding of the molecular and functional effects of sleep deprivation.
Collapse
Affiliation(s)
- Lily Bai
- Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Ramanuj Sarkar
- Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Faith Lee
- University of California, Irvine, CA, USA
| | - Joseph Chong-Sang Wu
- Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA
| | - Marquis P. Vawter
- Functional Genomics Laboratory, Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
17
|
Li Y, Luo H, Pang H, Qin B. Epigenetic Targeting for Controlling Persistent Neurotropic Infections Caused by Borna Virus and HIV. Rev Med Virol 2025; 35:e70000. [PMID: 39643925 DOI: 10.1002/rmv.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 12/09/2024]
Abstract
Long-lasting persistence within infected cells is a major challenge for viral pathogens, as it necessitates an exact regulation of viral replication to reduce viral cytopathic effects. This is particularly challenging for viruses that persistently infect cells with limited renewal capabilities, such as neurons. Accordingly, neurotropic viruses have evolved various specific mechanisms to promote a long-lasting persistent infection in the host cells without inducing an exacerbated cytopathic effect. Borna disease virus (BDV) and Human immunodeficiency virus (HIV) are two neurotropic RNA viruses that, in contrast to other RNA viruses, can establish long-lasting intranuclear infections within the nervous system. These viruses interact with different cellular processes such as epigenetic modifications to develop a successful persistence infection. Studies show that cellular epigenetic mechanisms play a significant role in the pathogenesis of BDV and HIV and their neurological disorders. Hence, targeting these mechanisms by epigenetic modulator agents can be regarded as a novel therapeutic strategy to manage BDV- and HIV-associated neurological diseases. This review provides an overview of different epigenetic modulator compounds as a potential therapeutic target for controlling persistent neurotropic intranuclear infections caused by BDV and HIV.
Collapse
Affiliation(s)
- Yadi Li
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huating Luo
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Pang
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Qin
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
18
|
Coux O, Farràs R. ProteoCure: A European network to fine-tune the proteome. Biochimie 2024; 226:4-9. [PMID: 38901793 DOI: 10.1016/j.biochi.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
Proteins are essential molecular actors in every cellular process. From their synthesis to their degradation, they are subject to continuous quality control mechanisms to ensure that they fulfil cellular needs in proper and timely fashion. Proteostasis is a key process allowing cells or organisms to maintain an appropriate but dynamic equilibrium of their proteome (the ensemble of all their proteins). It relies on multiple mechanisms that together control the level, fate and function of individual proteins, and ensure elimination of abnormal ones. The proteostasis network is essential for development and adaptation to environmental changes or challenges. Its dysfunctions can lead to accumulation of deleterious proteins or, conversely, to excessive degradation of beneficial ones, and are implicated in many diseases such as cancers, neurodegeneration, or developmental and aging disorders. Manipulating this network to control abundance of selected target proteins is therefore a strategy with enormous therapeutic or biotechnological potential. The ProteoCure COST Action gathers more than 350 researchers and their teams (31 countries represented) from the academic, clinical, and industrial sectors, who share the conviction that our understanding of proteostasis is mature enough to develop novel and highly specific therapies based on selective tuning of protein levels. Towards this objective, the Action organizes community-building activities to foster synergies among its participants and reinforce training of the next generation of European researchers. Its ambition is to function as a knowledge-based network and a creative exchange hub on normal and pathologic proteostasis, focusing on developing innovative tools modulating the level of specific protein(s).
Collapse
Affiliation(s)
- Olivier Coux
- IGMM-CNRS, 1919 Route de Mende, 34293, Montpellier, cedex 5, France; Université de Montpellier, Montpellier, France.
| | - Rosa Farràs
- Centro de Investigación Príncipe Felipe, CIPF, Calle de Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| |
Collapse
|
19
|
Kim HS, Roche B, Bhattacharjee S, Todeschini L, Chang AY, Hammell C, Verdel A, Martienssen RA. Clr4 SUV39H1 ubiquitination and non-coding RNA mediate transcriptional silencing of heterochromatin via Swi6 phase separation. Nat Commun 2024; 15:9384. [PMID: 39477922 PMCID: PMC11526040 DOI: 10.1038/s41467-024-53417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/02/2024] [Indexed: 11/02/2024] Open
Abstract
Transcriptional silencing by RNAi paradoxically relies on transcription, but how the transition from transcription to silencing is achieved has remained unclear. The Cryptic Loci Regulator complex (CLRC) in Schizosaccharomyces pombe is a cullin-ring E3 ligase required for silencing that is recruited by RNAi. We found that the E2 ubiquitin conjugating enzyme Ubc4 interacts with CLRC and mono-ubiquitinates the histone H3K9 methyltransferase Clr4SUV39H1, promoting the transition from co-transcriptional gene silencing (H3K9me2) to transcriptional gene silencing (H3K9me3). Ubiquitination of Clr4 occurs in an intrinsically disordered region (Clr4IDR), which undergoes liquid droplet formation in vitro, along with Swi6HP1 the effector of transcriptional gene silencing. Our data suggests that phase separation is exquisitely sensitive to non-coding RNA (ncRNA) which promotes self-association of Clr4, chromatin association, and di-, but not tri- methylation instead. Ubc4-CLRC also targets the transcriptional co-activator Bdf2BRD4, down-regulating centromeric transcription and small RNA (sRNA) production. The deubiquitinase Ubp3 counteracts both activities.
Collapse
Affiliation(s)
- Hyun-Soo Kim
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA
| | - Benjamin Roche
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA
- University of North Dakota, School of Medicine & Health Sciences, 1301 N Columbia Rd. Stop 9037, Grand Forks, ND, 58202, USA
| | | | - Leila Todeschini
- Institute for Advanced Biosciences, UMR InsermU1209/CNRS5309/UGA, University of Grenoble Alpes, Grenoble, France
| | - An-Yun Chang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA
| | | | - André Verdel
- Institute for Advanced Biosciences, UMR InsermU1209/CNRS5309/UGA, University of Grenoble Alpes, Grenoble, France
| | - Robert A Martienssen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA.
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA.
| |
Collapse
|
20
|
Kwon DH, Shin S, Nam YS, Choe N, Lim Y, Jeong A, Lee YG, Kim YK, Kook H. CBL-b E3 ligase-mediated neddylation and activation of PARP-1 induce vascular calcification. Exp Mol Med 2024; 56:2246-2259. [PMID: 39349831 PMCID: PMC11541702 DOI: 10.1038/s12276-024-01322-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/24/2024] [Accepted: 07/16/2024] [Indexed: 10/03/2024] Open
Abstract
Vascular calcification (VC) refers to the accumulation of mineral deposits on the walls of arteries and veins, and it is closely associated with increased mortality in cardiovascular disease patients, particularly among high-risk patients with diabetes and chronic kidney disease (CKD). Neuronal precursor cell-expressed developmentally downregulated protein 8 (NEDD8) is a ubiquitin-like protein that plays a pivotal role in various cellular functions, primarily through its conjugation to target proteins and subsequent relay of biological signals. However, the role of NEDDylation in VC has not been investigated. In our study, we observed that MLN4924, an inhibitor of the NEDD8-activating E1 enzyme, effectively impedes the progression of VC. LC‒MS/MS analysis revealed that poly(ADP‒ribose) polymerase 1 (PARP-1) is subjected to NEDD8 conjugation, leading to an increase in PARP-1 activity during VC. We subsequently revealed that PARP-1 NEDDylation is mediated by the E3 ligase CBL proto-oncogene B (CBL-b) and is reversed by NEDD8-specific protease 1 (NEDP-1) during VC. Furthermore, the CBL-b C373 peptide effectively mitigated the inactive form of the E3 ligase activity of CBL-b, ultimately preventing VC. These findings provide compelling evidence that the NEDD8-dependent activation of PARP-1 represents a novel mechanism underlying vascular calcification and suggests a promising new therapeutic target for VC.
Collapse
Affiliation(s)
- Duk-Hwa Kwon
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea.
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea.
- BK21 plus Center for Creative Biomedical Scientists, Chonnam National University, Gwangju, Republic of Korea.
| | - Sera Shin
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Yoon Seok Nam
- Institute of Well-Aging Medicare & CSU G-LAMP Project Group, Chosun University, Gwangju, Republic of Korea
| | - Nakwon Choe
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Yongwoon Lim
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Anna Jeong
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
- BK21 plus Center for Creative Biomedical Scientists, Chonnam National University, Gwangju, Republic of Korea
| | - Yun-Gyeong Lee
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Young-Kook Kim
- BK21 plus Center for Creative Biomedical Scientists, Chonnam National University, Gwangju, Republic of Korea
- Department of Biochemistry, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Hyun Kook
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea.
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea.
- BK21 plus Center for Creative Biomedical Scientists, Chonnam National University, Gwangju, Republic of Korea.
| |
Collapse
|
21
|
Gervason S, Sen S, Fontecave M, Golinelli-Pimpaneau B. [4Fe-4S]-dependent enzymes in non-redox tRNA thiolation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119807. [PMID: 39106920 DOI: 10.1016/j.bbamcr.2024.119807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/09/2024]
Abstract
Post-transcriptional modification of nucleosides in transfer RNAs (tRNAs) is an important process for accurate and efficient translation of the genetic information during protein synthesis in all domains of life. In particular, specific enzymes catalyze the biosynthesis of sulfur-containing nucleosides, such as the derivatives of 2-thiouridine (s2U), 4-thiouridine (s4U), 2-thiocytidine (s2C), and 2-methylthioadenosine (ms2A), within tRNAs. Whereas the mechanism that has prevailed for decades involved persulfide chemistry, more and more tRNA thiolation enzymes have now been shown to contain a [4Fe-4S] cluster. This review summarizes the information over the last ten years concerning the biochemical, spectroscopic and structural characterization of [4Fe-4S]-dependent non-redox tRNA thiolation enzymes.
Collapse
Affiliation(s)
- Sylvain Gervason
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris cedex 05, France
| | - Sambuddha Sen
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris cedex 05, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris cedex 05, France
| | - Béatrice Golinelli-Pimpaneau
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris cedex 05, France.
| |
Collapse
|
22
|
Ip WH, Fiedler M, Gornott B, Morische M, Bertzbach LD, Dobner T. Cellular SUMO-specific proteases regulate HAdV-C5 E1B-55K SUMOylation and virus-induced cell transformation. Front Cell Infect Microbiol 2024; 14:1484241. [PMID: 39397864 PMCID: PMC11466889 DOI: 10.3389/fcimb.2024.1484241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024] Open
Abstract
Various viral proteins are post-translationally modified by SUMO-conjugation during the human adenovirus (HAdV) replication cycle. This modification leads to diverse consequences for target proteins as it influences their intracellular localization or cell transformation capabilities. SUMOylated HAdV proteins include the multifunctional oncoprotein E1B-55K. Our previous research, along with that of others, has demonstrated a substantial influence of yet another adenoviral oncoprotein, E4orf6, on E1B-55K SUMOylation levels. Protein SUMOylation can be reversed by cellular sentrin/SUMO-specific proteases (SENPs). In this study, we investigated the interaction of E1B-55K with cellular SENPs to understand deSUMOylation activities and their consequences for cell transformation mediated by this adenoviral oncoprotein. We show that E1B-55K interacts with and is deSUMOylated by SENP 1, independently of E4orf6. Consistent with these results, we found that SENP 1 prevents E1A/E1B-dependent focus formation in rodent cells. We anticipate these findings to be the groundwork for future studies on adenovirus-host interactions, the mechanisms that underlie E1B-55K SUMOylation, as well as the role of this major adenoviral oncoprotein in HAdV-mediated cell transformation.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas Dobner
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| |
Collapse
|
23
|
Ju J, Wang K, Liu F, Liu CY, Wang YH, Wang SC, Zhou LY, Li XM, Wang YQ, Chen XZ, Li RF, Xu SJ, Chen C, Zhang MH, Yang SM, Tian JW, Wang K. Crotonylation of NAE1 Modulates Cardiac Hypertrophy via Gelsolin Neddylation. Circ Res 2024; 135:806-821. [PMID: 39229723 DOI: 10.1161/circresaha.124.324733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Cardiac hypertrophy and its associated remodeling are among the leading causes of heart failure. Lysine crotonylation is a recently discovered posttranslational modification whose role in cardiac hypertrophy remains largely unknown. NAE1 (NEDD8 [neural precursor cell expressed developmentally downregulated protein 8]-activating enzyme E1 regulatory subunit) is mainly involved in the neddylation modification of protein targets. However, the function of crotonylated NAE1 has not been defined. This study aims to elucidate the effects and mechanisms of NAE1 crotonylation on cardiac hypertrophy. METHODS Crotonylation levels were detected in both human and mouse subjects with cardiac hypertrophy through immunoprecipitation and Western blot assays. Tandem mass tag (TMT)-labeled quantitative lysine crotonylome analysis was performed to identify the crotonylated proteins in a mouse cardiac hypertrophic model induced by transverse aortic constriction. We generated NAE1 knock-in mice carrying a crotonylation-defective K238R (lysine to arginine mutation at site 238) mutation (NAE1 K238R) and NAE1 knock-in mice expressing a crotonylation-mimicking K238Q (lysine to glutamine mutation at site 238) mutation (NAE1 K238Q) to assess the functional role of crotonylation of NAE1 at K238 in pathological cardiac hypertrophy. Furthermore, we combined coimmunoprecipitation, mass spectrometry, and dot blot analysis that was followed by multiple molecular biological methodologies to identify the target GSN (gelsolin) and corresponding molecular events contributing to the function of NAE1 K238 (lysine residue at site 238) crotonylation. RESULTS The crotonylation level of NAE1 was increased in mice and patients with cardiac hypertrophy. Quantitative crotonylomics analysis revealed that K238 was the main crotonylation site of NAE1. Loss of K238 crotonylation in NAE1 K238R knock-in mice attenuated cardiac hypertrophy and restored the heart function, while hypercrotonylation mimic in NAE1 K238Q knock-in mice significantly enhanced transverse aortic constriction-induced pathological hypertrophic response, leading to impaired cardiac structure and function. The recombinant adenoviral vector carrying NAE1 K238R mutant attenuated, while the K238Q mutant aggravated Ang II (angiotensin II)-induced hypertrophy. Mechanistically, we identified GSN as a direct target of NAE1. K238 crotonylation of NAE1 promoted GSN neddylation and, thus, enhanced its protein stability and expression. NAE1 crotonylation-dependent increase of GSN promoted actin-severing activity, which resulted in adverse cytoskeletal remodeling and progression of pathological hypertrophy. CONCLUSIONS Our findings provide new insights into the previously unrecognized role of crotonylation on nonhistone proteins during cardiac hypertrophy. We found that K238 crotonylation of NAE1 plays an essential role in mediating cardiac hypertrophy through GSN neddylation, which provides potential novel therapeutic targets for pathological hypertrophy and cardiac remodeling.
Collapse
Affiliation(s)
- Jie Ju
- Department of Cardiovascular Surgery, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, China (J.J., Kai Wang, C.-Y.L., S.-C.W., L.-Y.Z., X.-M.L., Y.-Q.W., X.-Z.C., R.-F.L., S.-M.Y., Kun Wang)
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao University, Jinan, China (J.J., M.-H.Z., Kun Wang)
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China (J.J.)
| | - Kai Wang
- Department of Cardiovascular Surgery, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, China (J.J., Kai Wang, C.-Y.L., S.-C.W., L.-Y.Z., X.-M.L., Y.-Q.W., X.-Z.C., R.-F.L., S.-M.Y., Kun Wang)
| | - Fang Liu
- Department of Anatomy, Center of Diabetic Systems Medicine, and Guangxi Key Laboratory of Excellence, Guilin Medical University, China (F.L.)
| | - Cui-Yun Liu
- Department of Cardiovascular Surgery, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, China (J.J., Kai Wang, C.-Y.L., S.-C.W., L.-Y.Z., X.-M.L., Y.-Q.W., X.-Z.C., R.-F.L., S.-M.Y., Kun Wang)
| | - Yun-Hong Wang
- Hypertension Center (Y.-H.W.), Beijing Anzhen Hospital, Capital Medical University, China
| | - Shao-Cong Wang
- Department of Cardiovascular Surgery, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, China (J.J., Kai Wang, C.-Y.L., S.-C.W., L.-Y.Z., X.-M.L., Y.-Q.W., X.-Z.C., R.-F.L., S.-M.Y., Kun Wang)
| | - Lu-Yu Zhou
- Department of Cardiovascular Surgery, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, China (J.J., Kai Wang, C.-Y.L., S.-C.W., L.-Y.Z., X.-M.L., Y.-Q.W., X.-Z.C., R.-F.L., S.-M.Y., Kun Wang)
| | - Xin-Min Li
- Department of Cardiovascular Surgery, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, China (J.J., Kai Wang, C.-Y.L., S.-C.W., L.-Y.Z., X.-M.L., Y.-Q.W., X.-Z.C., R.-F.L., S.-M.Y., Kun Wang)
| | - Yu-Qin Wang
- Department of Cardiovascular Surgery, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, China (J.J., Kai Wang, C.-Y.L., S.-C.W., L.-Y.Z., X.-M.L., Y.-Q.W., X.-Z.C., R.-F.L., S.-M.Y., Kun Wang)
| | - Xin-Zhe Chen
- Department of Cardiovascular Surgery, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, China (J.J., Kai Wang, C.-Y.L., S.-C.W., L.-Y.Z., X.-M.L., Y.-Q.W., X.-Z.C., R.-F.L., S.-M.Y., Kun Wang)
| | - Rui-Feng Li
- Department of Cardiovascular Surgery, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, China (J.J., Kai Wang, C.-Y.L., S.-C.W., L.-Y.Z., X.-M.L., Y.-Q.W., X.-Z.C., R.-F.L., S.-M.Y., Kun Wang)
| | - Shi-Jun Xu
- Department of Cardiac Surgery (S.-J.X.), Beijing Anzhen Hospital, Capital Medical University, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (C.C.)
| | - Mei-Hua Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao University, Jinan, China (J.J., M.-H.Z., Kun Wang)
| | - Su-Min Yang
- Department of Cardiovascular Surgery, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, China (J.J., Kai Wang, C.-Y.L., S.-C.W., L.-Y.Z., X.-M.L., Y.-Q.W., X.-Z.C., R.-F.L., S.-M.Y., Kun Wang)
| | - Jin-Wei Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, China (J.-W.T.)
| | - Kun Wang
- Department of Cardiovascular Surgery, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, China (J.J., Kai Wang, C.-Y.L., S.-C.W., L.-Y.Z., X.-M.L., Y.-Q.W., X.-Z.C., R.-F.L., S.-M.Y., Kun Wang)
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao University, Jinan, China (J.J., M.-H.Z., Kun Wang)
| |
Collapse
|
24
|
Upadhyay A, Joshi V. The Ubiquitin Tale: Current Strategies and Future Challenges. ACS Pharmacol Transl Sci 2024; 7:2573-2587. [PMID: 39296276 PMCID: PMC11406696 DOI: 10.1021/acsptsci.4c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 09/21/2024]
Abstract
Ubiquitin (Ub) is often considered a structurally conserved protein. Ubiquitination plays a prominent role in the regulation of physiological pathways. Since the first mention of Ub in protein degradation pathways, a plethora of nonproteolytic functions of this post-translational modification have been identified and investigated in detail. In addition, several other structurally and functionally related proteins have been identified and investigated for their Ub-like structures and functions. Ubiquitination and Ub-like modifications play vital roles in modulating the pathways involved in crucial biological processes and thus affect the global proteome. In this Review, we provide a snapshot of pathways, substrates, diseases, and novel therapeutic targets that are associated with ubiquitination or Ub-like modifications. In the past few years, a large number of proteomic studies have identified pools of ubiquitinated proteins (ubiquitylomes) involved or induced in healthy or stressed conditions. These comprehensive studies involving identification of new ubiquitination substrates and sites contribute enormously to our understanding of ubiquitination in more depth. However, with the current tools, there are certain limitations that need to be addressed. We review recent technological advancements in ubiquitylomic studies and their limitations and challenges. Overall, large-scale ubiquitylomic studies contribute toward understanding global ubiquitination in the contexts of normal and disease conditions.
Collapse
Affiliation(s)
- Arun Upadhyay
- Department of Bioscience and Biomedical Engineering, Indian Institute of Technology Bhilai, Durg, Chhattisgarh 491001, India
| | - Vibhuti Joshi
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh 201310, India
| |
Collapse
|
25
|
Ghosh S, Mellado Sanchez M, Sue-Ob K, Roy D, Jones A, Blazquez MA, Sadanandom A. Charting the evolutionary path of the SUMO modification system in plants reveals molecular hardwiring of development to stress adaptation. THE PLANT CELL 2024; 36:3131-3144. [PMID: 38923935 PMCID: PMC11371177 DOI: 10.1093/plcell/koae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
SUMO modification is part of the spectrum of Ubiquitin-like (UBL) systems that give rise to proteoform complexity through post-translational modifications (PTMs). Proteoforms are essential modifiers of cell signaling for plant adaptation to changing environments. Exploration of the evolutionary emergence of Ubiquitin-like (UBL) systems unveils their origin from prokaryotes, where it is linked to the mechanisms that enable sulfur uptake into biomolecules. We explore the emergence of the SUMO machinery across the plant lineage from single-cell to land plants. We reveal the evolutionary point at which plants acquired the ability to form SUMO chains through the emergence of SUMO E4 ligases, hinting at its role in facilitating multicellularity. Additionally, we explore the possible mechanism for the neofunctionalization of SUMO proteases through the fusion of conserved catalytic domains with divergent sequences. We highlight the pivotal role of SUMO proteases in plant development and adaptation, offering new insights into target specificity mechanisms of SUMO modification during plant evolution. Correlating the emergence of adaptive traits in the plant lineage with established experimental evidence for SUMO in developmental processes, we propose that SUMO modification has evolved to link developmental processes to adaptive functions in land plants.
Collapse
Affiliation(s)
- Srayan Ghosh
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | | | - Kawinnat Sue-Ob
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 3BX, UK
| | - Dipan Roy
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Andrew Jones
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 3BX, UK
| | - Miguel A Blazquez
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, 46022, Spain
| | - Ari Sadanandom
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| |
Collapse
|
26
|
Trinidad DD, Macdonald CB, Rosenberg OS, Fraser JS, Coyote-Maestas W. Deep mutational scanning of EccD 3 reveals the molecular basis of its essentiality in the mycobacterium ESX secretion system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609456. [PMID: 39229178 PMCID: PMC11370616 DOI: 10.1101/2024.08.23.609456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Tuberculosis remains the deadliest infectious disease in the world and requires novel therapeutic targets. The ESX-3 secretion system, which is essential for iron and zinc homeostasis and thus M. tuberculosis survival, is a promising target. In this study, we perform a deep mutational scan on the ESX-3 core protein EccD3 in the model organism M. smegmatis. We systematically investigated the functional roles of 145 residues across the soluble ubiquitin-like domain, the conformationally distinct flexible linker, and selected transmembrane helices of EccD3. Our data combined with structural comparisons to ESX-5 complexes support a model where EccD3 stabilizes the complex, with the hinge motif within the linker being particularly sensitive to disruption. Our study is the first deep mutational scan in mycobacteria, which could help guide drug development toward novel treatment of tuberculosis. This study underscores the importance of context-specific mutational analyses for discovering essential protein interactions within mycobacterial systems.
Collapse
Affiliation(s)
| | - Christian B Macdonald
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Oren S Rosenberg
- Department of Medicine, University of California, San Francisco
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - James S Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Willow Coyote-Maestas
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California, San Francisco, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
27
|
Ma Q, Hao S, Hong W, Tergaonkar V, Sethi G, Tian Y, Duan C. Versatile function of NF-ĸB in inflammation and cancer. Exp Hematol Oncol 2024; 13:68. [PMID: 39014491 PMCID: PMC11251119 DOI: 10.1186/s40164-024-00529-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/06/2024] [Indexed: 07/18/2024] Open
Abstract
Nuclear factor-kappaB (NF-ĸB) plays a crucial role in both innate and adaptive immune systems, significantly influencing various physiological processes such as cell proliferation, migration, differentiation, survival, and stemness. The function of NF-ĸB in cancer progression and response to chemotherapy has gained increasing attention. This review highlights the role of NF-ĸB in inflammation control, biological mechanisms, and therapeutic implications in cancer treatment. NF-ĸB is instrumental in altering the release of inflammatory factors such as TNF-α, IL-6, and IL-1β, which are key in the regulation of carcinogenesis. Specifically, in conditions including colitis, NF-ĸB upregulation can intensify inflammation, potentially leading to the development of colorectal cancer. Its pivotal role extends to regulating the tumor microenvironment, impacting components such as macrophages, fibroblasts, T cells, and natural killer cells. This regulation influences tumorigenesis and can dampen anti-tumor immune responses. Additionally, NF-ĸB modulates cell death mechanisms, notably by inhibiting apoptosis and ferroptosis. It also has a dual role in stimulating or suppressing autophagy in various cancers. Beyond these functions, NF-ĸB plays a role in controlling cancer stem cells, fostering angiogenesis, increasing metastatic potential through EMT induction, and reducing tumor cell sensitivity to chemotherapy and radiotherapy. Given its oncogenic capabilities, research has focused on natural products and small molecule compounds that can suppress NF-ĸB, offering promising avenues for cancer therapy.
Collapse
Affiliation(s)
- Qiang Ma
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230022, P.R. China
| | - Shuai Hao
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, P.R. China
| | - Weilong Hong
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, 60532, USA.
| | - Chenyang Duan
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China.
| |
Collapse
|
28
|
Zhuang Y, Fischer JB, Nishanth G, Schlüter D. Cross-regulation of Listeria monocytogenes and the host ubiquitin system in listeriosis. Eur J Cell Biol 2024; 103:151401. [PMID: 38442571 DOI: 10.1016/j.ejcb.2024.151401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/30/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024] Open
Abstract
The facultative intracellular bacterium Listeria (L.) monocytogenes may cause severe diseases in humans and animals. The control of listeriosis/L. monocytogenes requires the concerted action of cells of the innate and adaptive immune systems. In this regard, cell-intrinsic immunity of infected cells, activated by the immune responses, is crucial for the control and elimination intracellular L. monocytogenes. Both the immune response against L. monocytogenes and cell intrinsic pathogen control are critically regulated by post-translational modifications exerted by the host ubiquitin system and ubiquitin-like modifiers (Ubls). In this review, we discuss our current understanding of the role of the ubiquitin system and Ubls in listeriosis, as well as future directions of research.
Collapse
Affiliation(s)
- Yuan Zhuang
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover 30625, Germany.
| | - Johanna B Fischer
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover 30625, Germany
| | - Gopala Nishanth
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover 30625, Germany
| | - Dirk Schlüter
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover 30625, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, Hannover 30625, Germany
| |
Collapse
|
29
|
Ilhan M, Hastar N, Kampfrath B, Spierling DN, Jatzlau J, Knaus P. BMP Stimulation Differentially Affects Phosphorylation and Protein Stability of β-Catenin in Breast Cancer Cell Lines. Int J Mol Sci 2024; 25:4593. [PMID: 38731813 PMCID: PMC11083028 DOI: 10.3390/ijms25094593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Increased expression and nuclear translocation of β-CATENIN is frequently observed in breast cancer, and it correlates with poor prognosis. Current treatment strategies targeting β-CATENIN are not as efficient as desired. Therefore, detailed understanding of β-CATENIN regulation is crucial. Bone morphogenetic proteins (BMP) and Wingless/Integrated (WNT) pathway crosstalk is well-studied for many cancer types including colorectal cancer, whereas it is still poorly understood for breast cancer. Analysis of breast cancer patient data revealed that BMP2 and BMP6 were significantly downregulated in tumors. Since mutation frequency in genes enhancing β-CATENIN protein stability is relatively low in breast cancer, we aimed to investigate whether decreased BMP ligand expression could contribute to a high protein level of β-CATENIN in breast cancer cells. We demonstrated that downstream of BMP stimulation, SMAD4 is required to reduce β-CATENIN protein stability through the phosphorylation in MCF7 and T47D cells. Consequently, BMP stimulation reduces β-CATENIN levels and prevents its nuclear translocation and target gene expression in MCF7 cells. Conversely, BMP stimulation has no effect on β-CATENIN phosphorylation or stability in MDA-MB-231 and MDA-MB-468 cells. Likewise, SMAD4 modulation does not alter the response of those cells, indicating that SMAD4 alone is insufficient for BMP-induced β-CATENIN phosphorylation. While our data suggest that considering BMP activity may serve as a prognostic marker for understanding β-CATENIN accumulation risk, further investigation is needed to elucidate the differential responsiveness of breast cancer cell lines.
Collapse
Affiliation(s)
- Mustafa Ilhan
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany; (M.I.); (N.H.); (B.K.); (D.N.S.)
- Berlin School of Integrative Oncology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Nurcan Hastar
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany; (M.I.); (N.H.); (B.K.); (D.N.S.)
- Brandenburg School for Regenerative Therapies, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Branka Kampfrath
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany; (M.I.); (N.H.); (B.K.); (D.N.S.)
| | - Deniz Neslihan Spierling
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany; (M.I.); (N.H.); (B.K.); (D.N.S.)
| | - Jerome Jatzlau
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany; (M.I.); (N.H.); (B.K.); (D.N.S.)
- Brandenburg School for Regenerative Therapies, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Petra Knaus
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany; (M.I.); (N.H.); (B.K.); (D.N.S.)
- Berlin School of Integrative Oncology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany
- Brandenburg School for Regenerative Therapies, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany
| |
Collapse
|
30
|
Foster BM, Wang Z, Schmidt CK. DoUBLing up: ubiquitin and ubiquitin-like proteases in genome stability. Biochem J 2024; 481:515-545. [PMID: 38572758 PMCID: PMC11088880 DOI: 10.1042/bcj20230284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Maintaining stability of the genome requires dedicated DNA repair and signalling processes that are essential for the faithful duplication and propagation of chromosomes. These DNA damage response (DDR) mechanisms counteract the potentially mutagenic impact of daily genotoxic stresses from both exogenous and endogenous sources. Inherent to these DNA repair pathways is the activity of protein factors that instigate repair processes in response to DNA lesions. The regulation, coordination, and orchestration of these DDR factors is carried out, in a large part, by post-translational modifications, such as phosphorylation, ubiquitylation, and modification with ubiquitin-like proteins (UBLs). The importance of ubiquitylation and UBLylation with SUMO in DNA repair is well established, with the modified targets and downstream signalling consequences relatively well characterised. However, the role of dedicated erasers for ubiquitin and UBLs, known as deubiquitylases (DUBs) and ubiquitin-like proteases (ULPs) respectively, in genome stability is less well established, particularly for emerging UBLs such as ISG15 and UFM1. In this review, we provide an overview of the known regulatory roles and mechanisms of DUBs and ULPs involved in genome stability pathways. Expanding our understanding of the molecular agents and mechanisms underlying the removal of ubiquitin and UBL modifications will be fundamental for progressing our knowledge of the DDR and likely provide new therapeutic avenues for relevant human diseases, such as cancer.
Collapse
Affiliation(s)
- Benjamin M. Foster
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, U.K
| | - Zijuan Wang
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, U.K
| | - Christine K. Schmidt
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, U.K
| |
Collapse
|
31
|
Zhang T, Su F, Wang B, Liu L, Lu Y, Su H, Ling R, Yue P, Dai H, Yang T, Yang J, Chen R, Wu R, Zhu K, Zhao D, Hou X. Ubiquitin specific peptidase 38 epigenetically regulates KLF transcription factor 5 to augment malignant progression of lung adenocarcinoma. Oncogene 2024; 43:1190-1202. [PMID: 38409551 DOI: 10.1038/s41388-024-02985-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/28/2024]
Abstract
Protein ubiquitination is a common post-translational modification and a critical mechanism for regulating protein stability. This study aimed to explore the role and potential molecular mechanism of ubiquitin-specific peptidase 38 (USP38) in the progression of lung adenocarcinoma (LUAD). USP38 expression was significantly higher in patients with LUAD than in their counterparts, and higher USP38 expression was closely associated with a worse prognosis. USP38 silencing suppresses the proliferation of LUAD cells in vitro and impedes the tumorigenic activity of cells in xenograft mouse models in vivo. Further, we found that USP38 affected the protein stability of transcription factor Krüppel-like factors 5 (KLF5) by inhibiting its degradation. Subsequent mechanistic investigations showed that the N-terminal of USP38 (residues 1-400aa) interacted with residues 1-200aa of KLF5, thereby stabilizing the KLF5 protein by deubiquitination. Moreover, we found that PIAS1-mediated SUMOylation of USP38 was promoted, whereas SENP2-mediated de-SUMOylation of USP38 suppressed the deubiquitination effects of USP38 on KLF5. Additionally, our results demonstrated that KLF5 overexpression restored the suppression of the malignant properties of LUAD cells by USP38 knockdown. SUMOylation of USP38 enhances the deubiquitination and stability of KLF5, thereby augmenting the malignant progression of LUAD.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China
| | - Fei Su
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China.
| | - Bofang Wang
- The second clinical medical college of Lanzhou University, Lanzhou, Gansu, PR China
| | - Lixin Liu
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China
| | - Yongbin Lu
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China
| | - Hongxin Su
- Department of Radiotherapy, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China
| | - Ruijiang Ling
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China
| | - Peng Yue
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China
| | - Huanyu Dai
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China
| | - Tianning Yang
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China
| | - Jingru Yang
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China
| | - Rui Chen
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China
| | - Ruiyue Wu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, PR China
| | - Kaili Zhu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, PR China
| | - Da Zhao
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China.
| | - Xiaoming Hou
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, PR China.
| |
Collapse
|
32
|
Campos Alonso M, Knobeloch KP. In the moonlight: non-catalytic functions of ubiquitin and ubiquitin-like proteases. Front Mol Biosci 2024; 11:1349509. [PMID: 38455765 PMCID: PMC10919355 DOI: 10.3389/fmolb.2024.1349509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
Proteases that cleave ubiquitin or ubiquitin-like proteins (UBLs) are critical players in maintaining the homeostasis of the organism. Concordantly, their dysregulation has been directly linked to various diseases, including cancer, neurodegeneration, developmental aberrations, cardiac disorders and inflammation. Given their potential as novel therapeutic targets, it is essential to fully understand their mechanisms of action. Traditionally, observed effects resulting from deficiencies in deubiquitinases (DUBs) and UBL proteases have often been attributed to the misregulation of substrate modification by ubiquitin or UBLs. Therefore, much research has focused on understanding the catalytic activities of these proteins. However, this view has overlooked the possibility that DUBs and UBL proteases might also have significant non-catalytic functions, which are more prevalent than previously believed and urgently require further investigation. Moreover, multiple examples have shown that either selective loss of only the protease activity or complete absence of these proteins can have different functional and physiological consequences. Furthermore, DUBs and UBL proteases have been shown to often contain domains or binding motifs that not only modulate their catalytic activity but can also mediate entirely different functions. This review aims to shed light on the non-catalytic, moonlighting functions of DUBs and UBL proteases, which extend beyond the hydrolysis of ubiquitin and UBL chains and are just beginning to emerge.
Collapse
Affiliation(s)
- Marta Campos Alonso
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klaus-Peter Knobeloch
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS—Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
33
|
Johnson BA, Clark KA, Bushin LB, Spolar CN, Seyedsayamdost MR. Expanding the Landscape of Noncanonical Amino Acids in RiPP Biosynthesis. J Am Chem Soc 2024; 146:3805-3815. [PMID: 38316431 DOI: 10.1021/jacs.3c10824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Advancements in DNA sequencing technologies and bioinformatics have enabled the discovery of new metabolic reactions from overlooked microbial species and metagenomic sequences. Using a bioinformatic co-occurrence strategy, we previously generated a network of ∼600 uncharacterized quorum-sensing-regulated biosynthetic gene clusters that code for ribosomally synthesized and post-translationally modified peptide (RiPP) natural products and are tailored by radical S-adenosylmethionine (RaS) enzymes in streptococci. The most complex of these is the GRC subfamily, named after a conserved motif in the precursor peptide and found exclusively in Streptococcus pneumoniae, the causative agent of bacterial pneumonia. In this study, using both in vivo and in vitro approaches, we have elucidated the modifications installed by the grc biosynthetic enzymes, including a ThiF-like adenylyltransferase/cyclase that generates a C-terminal Glu-to-Cys thiolactone macrocycle, and two RaS enzymes, which selectively epimerize the β-carbon of threonine and desaturate histidine to generate the first instances of l-allo-Thr and didehydrohistidine in RiPP biosynthesis. RaS-RiPPs that have been discovered thus far have stood out for their exotic macrocycles. The product of the grc cluster breaks this trend by generating two noncanonical residues rather than an unusual macrocycle in the peptide substrate. These modifications expand the landscape of nonproteinogenic amino acids in RiPP natural product biosynthesis and motivate downstream biocatalytic applications of the corresponding enzymes.
Collapse
Affiliation(s)
- Brooke A Johnson
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Kenzie A Clark
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Leah B Bushin
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Calvin N Spolar
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
34
|
Dong B, Wang X, Song X, Wang J, Liu X, Yu Z, Zhou Y, Deng J, Wu Y. RNF20 contributes to epigenetic immunosuppression through CDK9-dependent LSD1 stabilization. Proc Natl Acad Sci U S A 2024; 121:e2307150121. [PMID: 38315842 PMCID: PMC10873621 DOI: 10.1073/pnas.2307150121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 12/28/2023] [Indexed: 02/07/2024] Open
Abstract
Cyclin-dependent kinase 9 (CDK9) plays a critical role in transcription initiation and is essential for maintaining gene silencing at heterochromatic loci. Inhibition of CDK9 increases sensitivity to immunotherapy, but the underlying mechanism remains unclear. We now report that RNF20 stabilizes LSD1 via K29-mediated ubiquitination, which is dependent on CDK9-mediated phosphorylation. This CDK9- and RNF20-dependent LSD1 stabilization is necessary for the demethylation of histone H3K4, then subsequent repression of endogenous retrovirus, and an interferon response, leading to epigenetic immunosuppression. Moreover, we found that loss of RNF20 sensitizes cancer cells to the immune checkpoint inhibitor anti-PD-1 in vivo and that this effect can be rescued by the expression of ectopic LSD1. Our findings are supported by the observation that RNF20 levels correlate with LSD1 levels in human breast cancer specimens. This study sheds light on the role of RNF20 in CDK9-dependent LSD1 stabilization, which is crucial for epigenetic silencing and immunosuppression. Our findings explore the potential importance of targeting the CDK9-RNF20-LSD1 axis in the development of new cancer therapies.
Collapse
Affiliation(s)
- Bo Dong
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY40508
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY40508
| | - Xinzhao Wang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY40508
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY40508
- Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong250355, People’s Republic of China
| | - Xiang Song
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY40508
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY40508
- Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong250355, People’s Republic of China
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong250355, People’s Republic of China
| | - Jianlin Wang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY40508
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY40508
| | - Xia Liu
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY40508
| | - Zhiyong Yu
- Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong250355, People’s Republic of China
| | - Yongkun Zhou
- Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong250355, People’s Republic of China
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong250355, People’s Republic of China
| | - Jiong Deng
- Medical Research Institute, Binzhou Medical University Hospital, Binzhou256600, People’s Republic of China
| | - Yadi Wu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY40508
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY40508
| |
Collapse
|
35
|
Brewitz L, Henry Chan HT, Lukacik P, Strain-Damerell C, Walsh MA, Duarte F, Schofield CJ. Mass spectrometric assays monitoring the deubiquitinase activity of the SARS-CoV-2 papain-like protease inform on the basis of substrate selectivity and have utility for substrate identification. Bioorg Med Chem 2023; 95:117498. [PMID: 37857256 PMCID: PMC10933793 DOI: 10.1016/j.bmc.2023.117498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
The SARS-CoV-2 papain-like protease (PLpro) and main protease (Mpro) are nucleophilic cysteine enzymes that catalyze hydrolysis of the viral polyproteins pp1a/1ab. By contrast with Mpro, PLpro is also a deubiquitinase (DUB) that accepts post-translationally modified human proteins as substrates. Here we report studies on the DUB activity of PLpro using synthetic Nε-lysine-branched oligopeptides as substrates that mimic post-translational protein modifications by ubiquitin (Ub) or Ub-like modifiers (UBLs), such as interferon stimulated gene 15 (ISG15). Mass spectrometry (MS)-based assays confirm the DUB activity of isolated recombinant PLpro. They reveal that the sequence of both the peptide fragment derived from the post-translationally modified protein and that derived from the UBL affects PLpro catalysis; the nature of substrate binding in the S sites appears to be more important for catalytic efficiency than binding in the S' sites. Importantly, the results reflect the reported cellular substrate selectivity of PLpro, i.e. human proteins conjugated to ISG15 are better substrates than those conjugated to Ub or other UBLs. The combined experimental and modelling results imply that PLpro catalysis is affected not only by the identity of the substrate residues binding in the S and S' sites, but also by the substrate fold and the conformational dynamics of the blocking loop 2 of the PLpro:substrate complex. Nε-Lysine-branched oligopeptides thus have potential to help the identification of PLpro substrates. More generally, the results imply that MS-based assays with Nε-lysine-branched oligopeptides have potential to monitor catalysis by human DUBs and hence to inform on their substrate preferences.
Collapse
Affiliation(s)
- Lennart Brewitz
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom; The Ineos Oxford Institute for Antimicrobial Research, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom.
| | - H T Henry Chan
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Petra Lukacik
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, OX11 0DE Didcot, United Kingdom; Research Complex at Harwell, Harwell Science and Innovation Campus, OX11 0FA Didcot, United Kingdom
| | - Claire Strain-Damerell
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, OX11 0DE Didcot, United Kingdom; Research Complex at Harwell, Harwell Science and Innovation Campus, OX11 0FA Didcot, United Kingdom
| | - Martin A Walsh
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, OX11 0DE Didcot, United Kingdom; Research Complex at Harwell, Harwell Science and Innovation Campus, OX11 0FA Didcot, United Kingdom
| | - Fernanda Duarte
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom; The Ineos Oxford Institute for Antimicrobial Research, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom.
| |
Collapse
|
36
|
Millrine D, Peter JJ, Kulathu Y. A guide to UFMylation, an emerging posttranslational modification. FEBS J 2023; 290:5040-5056. [PMID: 36680403 PMCID: PMC10952357 DOI: 10.1111/febs.16730] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Ubiquitin Fold Modifier-1 (UFM1) is a ubiquitin-like modifier (UBL) that is posttranslationally attached to lysine residues on substrates via a dedicated system of enzymes conserved in most eukaryotes. Despite the structural similarity between UFM1 and ubiquitin, the UFMylation machinery employs unique mechanisms that ensure fidelity. While physiological triggers and consequences of UFMylation are not entirely clear, its biological importance is epitomized by mutations in the UFMylation pathway in human pathophysiology including musculoskeletal and neurodevelopmental diseases. Some of these diseases can be explained by the increased endoplasmic reticulum (ER) stress and disrupted translational homeostasis observed upon loss of UFMylation. The roles of UFM1 in these processes likely stem from its function at the ER where ribosomes are UFMylated in response to translational stalling. In addition, UFMylation has been implicated in other cellular processes including DNA damage response and telomere maintenance. Hence, the study of UFM1 pathway mechanics and its biological function will reveal insights into fundamental cell biology and is likely to afford new therapeutic opportunities for the benefit of human health. To this end, we herein provide a comprehensive guide to the current state of knowledge of UFM1 biogenesis, conjugation, and function with an emphasis on the underlying mechanisms.
Collapse
Affiliation(s)
- David Millrine
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC‐PPU), School of Life SciencesUniversity of DundeeUK
| | - Joshua J. Peter
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC‐PPU), School of Life SciencesUniversity of DundeeUK
| | - Yogesh Kulathu
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC‐PPU), School of Life SciencesUniversity of DundeeUK
| |
Collapse
|
37
|
Ma X, Zhao C, Xu Y, Zhang H. Roles of host SUMOylation in bacterial pathogenesis. Infect Immun 2023; 91:e0028323. [PMID: 37725062 PMCID: PMC10580907 DOI: 10.1128/iai.00283-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
Bacteria frequently interfere with the post-translational modifications of host cells to facilitate their survival and growth after invasion. SUMOylation, a reversible post-translational modification process, plays an important role in biological life activities. In addition to being critical to host cell metabolism and survival, SUMOylation also regulates gene expression and cell signal transmission. Moreover, SUMOylation in eukaryotic cells can be used by a variety of bacterial pathogens to advance bacterial invasion. In this minireview, we focused on the role and mechanism of host SUMOylation in the pathogenesis of six important clinical bacterial pathogens (Listeria monocytogenes, Shigella flexneri, Salmonella Typhimurium, Klebsiella pneumoniae, Staphylococcus aureus, and Escherichia coli). Taken together, this review provided new insights for understanding the unique pathogen-host interaction based on host SUMOylation and provided a novel perspective on the development of new strategies to combat bacterial infections in the future.
Collapse
Affiliation(s)
- Xin Ma
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chenhao Zhao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yuyao Xu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Clinical Laboratory, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
| | - Haifang Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
38
|
Song SE, Kim Y, Jeong H, Lee B, Lee J, Roh JS, So MW, Lee SG, Sohn DH. FAT10 differentially stabilizes MYPT2 isoforms. Biochem Biophys Res Commun 2023; 676:115-120. [PMID: 37506472 DOI: 10.1016/j.bbrc.2023.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
Myosin phosphatase (MP) is an enzyme complex that regulates muscle contraction and plays important roles in various physiological and pathological conditions. Myosin phosphatase targeting subunit (MYPT) 2, a subunit of MP, interacts with protein phosphatase 1c to regulate its phosphatase activity. MYPT2 exists in various isoforms that differ in the composition of essential motifs that contribute to its function. However, regulatory mechanisms underlying these isoforms are poorly understood. Human leukocyte antigen-F adjacent transcript 10 (FAT10) is a ubiquitin-like modifier that not only targets proteins for proteasomal degradation but also stabilizes its interacting proteins. In this study, we investigated the effect of the interaction between FAT10 and MYPT2 isoform a (the canonical full-length form of MYPT2) or MYPT2 isoform f (the natural truncated form of MYPT2). FAT10 interacted with both MYPT2 isoforms a and f; however, only MYPT2 isoform f was increased by FAT10, whereas MYPT2 isoform a remained unaffected by FAT10. We further confirmed that, in contrast to MYPT2 isoform a, MYPT2 isoform f undergoes rapid degradation via the ubiquitin-proteasome pathway and that FAT10 stabilizes MYPT2 isoform f by inhibiting its ubiquitination. Therefore, our findings suggest that the interaction between FAT10 and MYPT2 isoforms leads to distinct stabilization effects on each isoform, potentially modulating MP activity.
Collapse
Affiliation(s)
- Seong Eun Song
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Yerin Kim
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Hoim Jeong
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Beomgu Lee
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Jihyeon Lee
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Jong Seong Roh
- Department of Herbal Prescription, College of Korean Medicine, Daegu Haany University, Gyeongsan, Republic of Korea
| | - Min Wook So
- Division of Rheumatology, Department of Internal Medicine, Pusan National University School of Medicine, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Seung-Geun Lee
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea; Division of Rheumatology, Department of Internal Medicine, Pusan National University School of Medicine, Pusan National University Hospital, Busan, Republic of Korea
| | - Dong Hyun Sohn
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea.
| |
Collapse
|
39
|
Weng W, Gu X, Yang Y, Zhang Q, Deng Q, Zhou J, Cheng J, Zhu MX, Feng J, Huang O, Li Y. N-terminal α-amino SUMOylation of cofilin-1 is critical for its regulation of actin depolymerization. Nat Commun 2023; 14:5688. [PMID: 37709794 PMCID: PMC10502023 DOI: 10.1038/s41467-023-41520-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
Small ubiquitin-like modifier (SUMO) typically conjugates to target proteins through isopeptide linkage to the ε-amino group of lysine residues. This posttranslational modification (PTM) plays pivotal roles in modulating protein function. Cofilins are key regulators of actin cytoskeleton dynamics and are well-known to undergo several different PTMs. Here, we show that cofilin-1 is conjugated by SUMO1 both in vitro and in vivo. Using mass spectrometry and biochemical and genetic approaches, we identify the N-terminal α-amino group as the SUMO-conjugation site of cofilin-1. Common to conventional SUMOylation is that the N-α-SUMOylation of cofilin-1 is also mediated by SUMO activating (E1), conjugating (E2), and ligating (E3) enzymes and reversed by the SUMO deconjugating enzyme, SENP1. Specific to the N-α-SUMOylation is the physical association of the E1 enzyme to the substrate, cofilin-1. Using F-actin co-sedimentation and actin depolymerization assays in vitro and fluorescence staining of actin filaments in cells, we show that the N-α-SUMOylation promotes cofilin-1 binding to F-actin and cofilin-induced actin depolymerization. This covalent conjugation by SUMO at the N-α amino group of cofilin-1, rather than at an internal lysine(s), serves as an essential PTM to tune cofilin-1 function during regulation of actin dynamics.
Collapse
Affiliation(s)
- Weiji Weng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaokun Gu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yang Yang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qiao Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qi Deng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jie Zhou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jinke Cheng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Junfeng Feng
- Brain Injury Centre, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Shanghai Institute of Head Trauma, Shanghai, 200127, China.
| | - Ou Huang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yong Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
40
|
Duncan-Lowey J, Crabill E, Jarret A, Reed SCO, Roy CR. The Coxiella burnetii effector EmcB is a deubiquitinase that inhibits RIG-I signaling. Proc Natl Acad Sci U S A 2023; 120:e2217602120. [PMID: 36893270 PMCID: PMC10089202 DOI: 10.1073/pnas.2217602120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/25/2023] [Indexed: 03/11/2023] Open
Abstract
Eukaryotes have cytosolic surveillance systems to detect invading microorganisms and initiate protective immune responses. In turn, host-adapted pathogens have evolved strategies to modulate these surveillance systems, which can promote dissemination and persistence in the host. The obligate intracellular pathogen Coxiella burnetii infects mammalian hosts without activating many innate immune sensors. The Defect in Organelle Trafficking/Intracellular Multiplication (Dot/Icm) protein secretion system is necessary for C. burnetii to establish a vacuolar niche inside of host cells, which sequesters these bacteria in a specialized organelle that could evade host surveillance systems. However, bacterial secretion systems often introduce agonists of immune sensors into the host cytosol during infection. For instance, nucleic acids are introduced to the host cytosol by the Dot/Icm system of Legionella pneumophila, which results in type I interferon production. Despite host infection requiring a homologous Dot/Icm system, C. burnetii does not induce type I interferon production during infection. Here, it was found that type I interferons are detrimental to C. burnetii infection and that C. burnetii blocks type I interferon production mediated by retionic acid inducible gene I (RIG-I) signaling. Two Dot/Icm effector proteins, EmcA and EmcB, are required for C. burnetii inhibition of RIG-I signaling. EmcB is sufficient to block RIG-I signaling and is a ubiquitin-specific cysteine protease capable of deconjugating ubiquitin chains from RIG-I that are necessary for signaling. EmcB preferentially cleaves K63-linked ubiquitin chains of three or more monomers, which represent ubiquitin chains that potently activate RIG-I signaling. Identification of a deubiquitinase encoded by C. burnetii provides insights into how a host-adapted pathogen antagonizes immune surveillance.
Collapse
Affiliation(s)
- Jeffrey Duncan-Lowey
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT06536
| | - Emerson Crabill
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT06536
- Department of Biology, Angelo State University, San Angelo, TX76909
| | - Abigail Jarret
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT06536
| | - Shawna C. O. Reed
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT06536
| | - Craig R. Roy
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT06536
| |
Collapse
|
41
|
Shepelev N, Dontsova O, Rubtsova M. Post-Transcriptional and Post-Translational Modifications in Telomerase Biogenesis and Recruitment to Telomeres. Int J Mol Sci 2023; 24:5027. [PMID: 36902458 PMCID: PMC10003056 DOI: 10.3390/ijms24055027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Telomere length is associated with the proliferative potential of cells. Telomerase is an enzyme that elongates telomeres throughout the entire lifespan of an organism in stem cells, germ cells, and cells of constantly renewed tissues. It is activated during cellular division, including regeneration and immune responses. The biogenesis of telomerase components and their assembly and functional localization to the telomere is a complex system regulated at multiple levels, where each step must be tuned to the cellular requirements. Any defect in the function or localization of the components of the telomerase biogenesis and functional system will affect the maintenance of telomere length, which is critical to the processes of regeneration, immune response, embryonic development, and cancer progression. An understanding of the regulatory mechanisms of telomerase biogenesis and activity is necessary for the development of approaches toward manipulating telomerase to influence these processes. The present review focuses on the molecular mechanisms involved in the major steps of telomerase regulation and the role of post-transcriptional and post-translational modifications in telomerase biogenesis and function in yeast and vertebrates.
Collapse
Affiliation(s)
- Nikita Shepelev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Olga Dontsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Maria Rubtsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| |
Collapse
|
42
|
Marie PP, Fan S, Mason J, Wells A, Mendes CC, Wainwright SM, Scott S, Fischer R, Harris AL, Wilson C, Goberdhan DCI. Accessory ESCRT-III proteins are conserved and selective regulators of Rab11a-exosome formation. J Extracell Vesicles 2023; 12:e12311. [PMID: 36872252 PMCID: PMC9986085 DOI: 10.1002/jev2.12311] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 01/18/2023] [Accepted: 02/09/2023] [Indexed: 03/07/2023] Open
Abstract
Exosomes are secreted nanovesicles with potent signalling activity that are initially formed as intraluminal vesicles (ILVs) in late Rab7-positive multivesicular endosomes, and also in recycling Rab11a-positive endosomes, particularly under some forms of nutrient stress. The core proteins of the Endosomal Sorting Complex Required for Transport (ESCRT) participate in exosome biogenesis and ILV-mediated destruction of ubiquitinylated cargos. Accessory ESCRT-III components have reported roles in ESCRT-III-mediated vesicle scission, but their precise functions are poorly defined. They frequently only appear essential under stress. Comparative proteomics analysis of human small extracellular vesicles revealed that accessory ESCRT-III proteins, CHMP1A, CHMP1B, CHMP5 and IST1, are increased in Rab11a-enriched exosome preparations. We show that these proteins are required to form ILVs in Drosophila secondary cell recycling endosomes, but unlike core ESCRTs, they are not involved in degradation of ubiquitinylated proteins in late endosomes. Furthermore, CHMP5 knockdown in human HCT116 colorectal cancer cells selectively inhibits Rab11a-exosome production. Accessory ESCRT-III knockdown suppresses seminal fluid-mediated reproductive signalling by secondary cells and the growth-promoting activity of Rab11a-exosome-containing EVs from HCT116 cells. We conclude that accessory ESCRT-III components have a specific, ubiquitin-independent role in Rab11a-exosome generation, a mechanism that might be targeted to selectively block pro-tumorigenic activities of these vesicles in cancer.
Collapse
Affiliation(s)
- Pauline P. Marie
- Department of Physiology Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Shih‐Jung Fan
- Department of Physiology Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - John Mason
- Department of Physiology Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Adam Wells
- Department of Physiology Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Cláudia C. Mendes
- Department of Physiology Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - S. Mark Wainwright
- Department of Physiology Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Sheherezade Scott
- Department of Physiology Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Roman Fischer
- Target Discovery InstituteUniversity of OxfordOxfordUK
| | | | - Clive Wilson
- Department of Physiology Anatomy and GeneticsUniversity of OxfordOxfordUK
| | | |
Collapse
|
43
|
Zhang H, Chen B, Waliullah ASM, Aramaki S, Ping Y, Takanashi Y, Zhang C, Zhai Q, Yan J, Oyama S, Kahyo T, Setou M. A New Potential Therapeutic Target for Cancer in Ubiquitin-Like Proteins-UBL3. Int J Mol Sci 2023; 24:ijms24021231. [PMID: 36674743 PMCID: PMC9863382 DOI: 10.3390/ijms24021231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Ubiquitin-like proteins (Ubls) are involved in a variety of biological processes through the modification of proteins. Dysregulation of Ubl modifications is associated with various diseases, especially cancer. Ubiquitin-like protein 3 (UBL3), a type of Ubl, was revealed to be a key factor in the process of small extracellular vesicle (sEV) protein sorting and major histocompatibility complex class II ubiquitination. A variety of sEV proteins that affects cancer properties has been found to interact with UBL3. An increasing number of studies has implied that UBL3 expression affects cancer cell growth and cancer prognosis. In this review, we provide an overview of the relationship between various Ubls and cancers. We mainly introduce UBL3 and its functions and summarize the current findings of UBL3 and examine its potential as a therapeutic target in cancers.
Collapse
Affiliation(s)
- Hengsen Zhang
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Bin Chen
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - A. S. M. Waliullah
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Shuhei Aramaki
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
- Department of Radiation Oncology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Yashuang Ping
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Yusuke Takanashi
- First Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Chi Zhang
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
- Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics, Education & Research Center, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Qing Zhai
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Jing Yan
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Soho Oyama
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Tomoaki Kahyo
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
- Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics, Education & Research Center, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
- Correspondence: ; Tel.: +81-053-435-2086; Fax: +81-053-435-2468
| |
Collapse
|
44
|
Zhao K, Zheng Y, Lu W, Chen B. Identification of ubiquitination-related gene classification and a novel ubiquitination-related gene signature for patients with triple-negative breast cancer. Front Genet 2023; 13:932027. [PMID: 36685836 PMCID: PMC9853012 DOI: 10.3389/fgene.2022.932027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 12/08/2022] [Indexed: 01/07/2023] Open
Abstract
Background: Ubiquitination-related genes (URGs) are important biomarkers and therapeutic targets in cancer. However, URG prognostic prediction models have not been established in triple-negative breast cancer (TNBC) before. Our study aimed to explore the roles of URGs in TNBC. Methods: The Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) and the Gene Expression Omnibus (GEO) databases were used to identify URG expression patterns in TNBC. Non-negative matrix factorization (NMF) analysis was used to cluster TNBC patients. The least absolute shrinkage and selection operator (LASSO) analysis was used to construct the multi-URG signature in the training set (METABRIC). Next, we evaluated and validated the signature in the test set (GSE58812). Finally, we evaluated the immune-related characteristics to explore the mechanism. Results: We identified four clusters with significantly different immune signatures in TNBC based on URGs. Then, we developed an 11-URG signature with good performance for patients with TNBC. According to the 11-URG signature, TNBC patients can be classified into a high-risk group and a low-risk group with significantly different overall survival. The predictive ability of this 11-URG signature was favorable in the test set. Moreover, we constructed a nomogram comprising the risk score and clinicopathological characteristics with favorable predictive ability. All of the immune cells and immune-related pathways were higher in the low-risk group than in the high-risk group. Conclusion: Our study indicated URGs might interact with the immune phenotype to influence the development of TNBC, which contributes to a further understanding of molecular mechanisms and the development of novel therapeutic targets for TNBC.
Collapse
|
45
|
Recasens-Zorzo C, Gâtel P, Brockly F, Bossis G. A Microbead-Based Flow Cytometry Assay to Assess the Activity of Ubiquitin and Ubiquitin-Like Conjugating Enzymes. Methods Mol Biol 2023; 2602:65-79. [PMID: 36446967 DOI: 10.1007/978-1-0716-2859-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The peptidic posttranslational modifiers of the ubiquitin (Ub) family (ubiquitin-like, UbLs) are conjugated to thousands of proteins to modify their function and fate. Dysregulation of their conjugation/deconjugation pathways is associated with a variety of pathological disorders. However, the techniques currently available to monitor the levels of target modification by UbLs as well as the activity of UbL-conjugating enzymes are limited and generally not quantitative. Here, we describe a microbead-based flow cytometry assay to accurately quantify UbL conjugation activity. It measures the capacity of UbL-conjugating enzymes, either purified or present in cell extracts, to transfer their respective UbL onto target substrates immobilized on color-coded microbeads. Although this protocol describes its use to study protein modification by Ub, SUMO-1 to SUMO-3, and NEDD8, this assay may be applicable to investigating conjugation of any other UbLs. It should therefore prove a precious tool for both screening UbL-conjugating enzymes inhibitors and following UbL pathway dysregulations in both physiological and pathological settings.
Collapse
Affiliation(s)
- Clara Recasens-Zorzo
- IGMM, University of Montpellier, CNRS, Montpellier, France
- Equipe labellisée Ligue contre le Cancer, Paris, France
| | - Pierre Gâtel
- IGMM, University of Montpellier, CNRS, Montpellier, France
- Equipe labellisée Ligue contre le Cancer, Paris, France
| | - Frédérique Brockly
- IGMM, University of Montpellier, CNRS, Montpellier, France
- Equipe labellisée Ligue contre le Cancer, Paris, France
| | - Guillaume Bossis
- IGMM, University of Montpellier, CNRS, Montpellier, France.
- Equipe labellisée Ligue contre le Cancer, Paris, France.
| |
Collapse
|
46
|
Karlowitz R, van Wijk SJL. Surviving death: emerging concepts of RIPK3 and MLKL ubiquitination in the regulation of necroptosis. FEBS J 2023; 290:37-54. [PMID: 34710282 DOI: 10.1111/febs.16255] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/14/2021] [Accepted: 10/27/2021] [Indexed: 01/14/2023]
Abstract
Lytic forms of programmed cell death, like necroptosis, are characterised by cell rupture and the release of cellular contents, often provoking inflammatory responses. In the recent years, necroptosis has been shown to play important roles in human diseases like cancer, infections and ischaemia/reperfusion injury. Coordinated interactions between RIPK1, RIPK3 and MLKL lead to the formation of a dedicated death complex called the necrosome that triggers MLKL-mediated membrane rupture and necroptotic cell death. Necroptotic cell death is tightly controlled by post-translational modifications, among which especially phosphorylation has been characterised in great detail. Although selective ubiquitination is relatively well-explored in the early initiation stages of necroptosis, the mechanisms and functional consequences of RIPK3 and MLKL ubiquitination for necrosome function and necroptosis are only starting to emerge. This review provides an overview on how site-specific ubiquitination of RIPK3 and MLKL regulates, fine-tunes and reverses the execution of necroptotic cell death.
Collapse
Affiliation(s)
- Rebekka Karlowitz
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Germany
| | - Sjoerd J L van Wijk
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Germany
| |
Collapse
|
47
|
Teng T, Song X, Sun G, Ding H, Sun H, Bai G, Shi B. Glucose supplementation improves intestinal amino acid transport and muscle amino acid pool in pigs during chronic cold exposure. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 12:360-374. [PMID: 36788930 PMCID: PMC9898627 DOI: 10.1016/j.aninu.2022.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/26/2022] [Accepted: 10/07/2022] [Indexed: 12/14/2022]
Abstract
Mammals in northern regions chronically suffer from low temperatures during autumn-winter seasons. The aim of this study was to investigate the response of intestinal amino acid transport and the amino acid pool in muscle to chronic cold exposure via Min pig models (cold adaptation) and Yorkshire pig models (non-cold adaptation). Furthermore, this study explored the beneficial effects of glucose supplementation on small intestinal amino acid transport and amino acid pool in muscle of cold-exposed Yorkshire pigs. Min pigs (Exp. 1) and Yorkshire pigs (Exp. 2) were divided into a control group (17 °C, n = 6) and chronic cold exposure group (7 °C, n = 6), respectively. Twelve Yorkshire pigs (Exp. 3) were divided into a cold control group and cold glucose supplementation group (8 °C). The results showed that chronic cold exposure inhibited peptide transporter protein 1 (PepT1) and excitatory amino acid transporter 3 (EAAT3) expression in ileal mucosa and cationic amino acid transporter-1 (CAT-1) in the jejunal mucosa of Yorkshire pigs (P < 0.05). In contrast, CAT-1, PepT1 and EAAT3 expression was enhanced in the duodenal mucosa of Min pigs (P < 0.05). Branched amino acids (BCAA) in the muscle of Yorkshire pigs were consumed by chronic cold exposure, accompanied by increased muscle RING-finger protein-1 (MuRF1) and muscle atrophy F-box (atrogin-1) expression (P < 0.05). More importantly, reduced concentrations of dystrophin were detected in the muscle of Yorkshire pigs (P < 0.05). However, glycine concentration in the muscle of Min pigs was raised (P < 0.05). In the absence of interaction between chronic cold exposure and glucose supplementation, glucose supplementation improved CAT-1 expression in the jejunal mucosa and PepT1 expression in the ileal mucosa of cold-exposed Yorkshire pigs (P < 0.05). It also improved BCAA and inhibited MuRF1 and atrogin-1 expression in muscle (P < 0.05). Moreover, dystrophin concentration was improved by glucose supplementation (P < 0.05). In summary, chronic cold exposure inhibits amino acid absorption in the small intestine, depletes BCAA and promotes protein degradation in muscle. Glucose supplementation ameliorates the negative effects of chronic cold exposure on amino acid transport and the amino acid pool in muscle.
Collapse
|
48
|
Li Z, Wang W, Xiao Y, Du S, Chen Z, Li B, Zhou ZW, Liu K, Gao F, Sun L. Discovery of a small-molecule inhibitor targeting the ovarian tumor domain of a novel Tamdy orthonairoviruse associated with human febrile illness. J Med Virol 2022; 94:5954-5964. [PMID: 36002383 DOI: 10.1002/jmv.28089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/31/2022] [Accepted: 08/19/2022] [Indexed: 01/06/2023]
Abstract
Tick-borne orthonairoviruses have been characterized as a global health threat to humans and animals. Tacheng Tick virus 1 (TcTV-1) from this family was provided as evidence that is associated with the febrile illness syndrome. Here, we first identify and demonstrate that the ovarian tumor (OTU) domain of TcTV-1 has remarkable deubiquitinating activity both in vitro and in vivo. By solving the crystal structure of TcTV-1 OTU (tcOTU) domain and comparing it to that of human deubiquitinating enzymes, we found that overall structures of tcOTU and human OTU family are similar, but the residues involved in the catalytic pocket vary widely. Based on the tcOTU domain we screened 5090 bioactive compounds and found mecobalamin had a good effect on suppressing the deubiquitinating activity. The structural model of tcOTU and mecobalamin suggests that mecobalamin occupies the site of the substrate Ub, by blocking the substrate binding to the enzyme. Thus, our results showed OTU domain of TcTV-1 has a robust deubiquitinating activity and mecobalamin or its derivatives might be promising candidates for the treatment or prevention of disease caused by the TcTV-1 virus.
Collapse
Affiliation(s)
- Zan Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Weijia Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yanshuang Xiao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Shan Du
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Zhuohang Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Bing Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Zhong-Wei Zhou
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Kuancheng Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Feng Gao
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences (CAS), Tianjin, China
| | - Litao Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
49
|
Zhang S, Yazaki E, Sakamoto H, Yamamoto H, Mizushima N. Evolutionary diversification of the autophagy-related ubiquitin-like conjugation systems. Autophagy 2022; 18:2969-2984. [PMID: 35427200 PMCID: PMC9673942 DOI: 10.1080/15548627.2022.2059168] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Two autophagy-related (ATG) ubiquitin-like conjugation systems, the ATG12 and ATG8 systems, play important roles in macroautophagy. While multiple duplications and losses of the ATG conjugation system proteins are found in different lineages, the extent to which the underlying systems diversified across eukaryotes is not fully understood. Here, in order to understand the evolution of the ATG conjugation systems, we constructed a transcriptome database consisting of 94 eukaryotic species covering major eukaryotic clades and systematically identified ATG conjugation system components. Both ATG10 and the C-terminal glycine of ATG12 are essential for the canonical ubiquitin-like conjugation of ATG12 and ATG5. However, loss of ATG10 or the C-terminal glycine of ATG12 occurred at least 16 times in a wide range of lineages, suggesting that possible covalent-to-non-covalent transition is not limited to the species that we previously reported such as Alveolata and some yeast species. Some species have only the ATG8 system (with conjugation enzymes) or only ATG8 (without conjugation enzymes). More than 10 species have ATG8 homologs without the conserved C-terminal glycine, and Tetrahymena has an ATG8 homolog with a predicted transmembrane domain, which may be able to anchor to the membrane independent of the ATG conjugation systems. We discuss the possibility that the ancestor of the ATG12 and ATG8 systems is more similar to ATG8. Overall, our study offers a whole picture of the evolution and diversity of the ATG conjugation systems among eukaryotes, and provides evidence that functional diversifications of the systems are more common than previously thought.Abbreviations: APEAR: ATG8-PE association region; ATG: autophagy-related; LIR: LC3-interacting region; NEDD8: neural precursor cell expressed, developmentally down-regulated gene 8; PE: phosphatidylethanolamine; SAMP: small archaeal modifier protein; SAR: Stramenopiles, Alveolata, and Rhizaria; SMC: structural maintenance of chromosomes; SUMO: small ubiquitin like modifier; TACK: Thaumarchaeota, Aigarchaeota, Crenarchaeota, and Korarchaeota; UBA: ubiquitin like modifier activating enzyme; UFM: ubiquitin fold modifier; URM: ubiquitin related modifier.
Collapse
Affiliation(s)
- Sidi Zhang
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Euki Yazaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan,Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS), RIKEN, Saitama, Japan
| | - Hirokazu Sakamoto
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan,Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan,Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hayashi Yamamoto
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan,CONTACT Noboru Mizushima Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo113-0033, Japan
| |
Collapse
|
50
|
Liang S, Zhou Z, Zhou Z, Liang J, Lin W, Zhang C, Zhou C, Zhao H, Meng X, Zou F, Yu C, Cai S. Blockade of CBX4-mediated β-catenin SUMOylation attenuates airway epithelial barrier dysfunction in asthma. Int Immunopharmacol 2022; 113:109333. [DOI: 10.1016/j.intimp.2022.109333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
|