1
|
Du Y, Liu Y, Hu J, Peng X, Liu Z. CRISPR/Cas9 systems: Delivery technologies and biomedical applications. Asian J Pharm Sci 2023; 18:100854. [PMID: 38089835 PMCID: PMC10711398 DOI: 10.1016/j.ajps.2023.100854] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/01/2023] [Accepted: 09/19/2023] [Indexed: 10/16/2024] Open
Abstract
The emergence of the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) genome-editing system has brought about a significant revolution in the realm of managing human diseases, establishing animal models, and so on. To fully harness the potential of this potent gene-editing tool, ensuring efficient and secure delivery to the target site is paramount. Consequently, developing effective delivery methods for the CRISPR/Cas9 system has become a critical area of research. In this review, we present a comprehensive outline of delivery strategies and discuss their biomedical applications in the CRISPR/Cas9 system. We also provide an in-depth analysis of physical, viral vector, and non-viral vector delivery strategies, including plasmid-, mRNA- and protein-based approach. In addition, we illustrate the biomedical applications of the CRISPR/Cas9 system. This review highlights the key factors affecting the delivery process and the current challenges facing the CRISPR/Cas9 system, while also delineating future directions and prospects that could inspire innovative delivery strategies. This review aims to provide new insights and ideas for advancing CRISPR/Cas9-based delivery strategies and to facilitate breakthroughs in biomedical research and therapeutic applications.
Collapse
Affiliation(s)
- Yimin Du
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jiaxin Hu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Xingxing Peng
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Molecular Imaging Research Center of Central South University, Changsha 410008, China
| |
Collapse
|
2
|
Kamimura K, Kanefuji T, Suda T, Yokoo T, Zhang G, Aoyagi Y, Liu D. Liver lobe-specific hydrodynamic gene delivery to baboons: A preclinical trial for hemophilia gene therapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:903-913. [PMID: 37346981 PMCID: PMC10280096 DOI: 10.1016/j.omtn.2023.05.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023]
Abstract
Hydrodynamics-based gene transfer has been successfully employed for in vivo gene delivery to the liver of small animals by tail vein injection and of large animals using a computer-assisted and image-guided protocol. In an effort to develop a hydrodynamic gene delivery procedure clinically applicable for gene therapy, we have evaluated the safety and effectiveness of a lobe-specific hydrodynamic delivery procedure for hepatic gene delivery in baboons. Reporter plasmid was used to assess the gene delivery efficiency of the lobe-specific hydrodynamic gene delivery, and plasmid-carrying human factor IX gene was used to examine the pattern of long-term gene expression. The results demonstrated liver lobe-specific gene delivery, therapeutic levels of human factor IX gene expression lasting for >100 days, and the efficacy of repeated hydrodynamic gene delivery into the same liver lobes. Other than a transient increase in blood concentration of liver enzymes right after the injection, no significant adverse events were observed in animals during the study period. The results obtained from this first non-human primate study support the clinical applicability of the procedure for lobe-specific hydrodynamic gene delivery to liver.
Collapse
Affiliation(s)
- Kenya Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan
- Department of General Medicine, Niigata University School of Medicine, Niigata, Niigata 951-8510, Japan
| | - Tsutomu Kanefuji
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan
| | - Takeshi Suda
- Department of Gastroenterology and Hepatology, Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Minami Uonuma, Niigata 949-7302, Japan
| | - Takeshi Yokoo
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan
| | - Guisheng Zhang
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Yutaka Aoyagi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan
| | - Dexi Liu
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
3
|
Suda T, Yokoo T, Kanefuji T, Kamimura K, Zhang G, Liu D. Hydrodynamic Delivery: Characteristics, Applications, and Technological Advances. Pharmaceutics 2023; 15:pharmaceutics15041111. [PMID: 37111597 PMCID: PMC10141091 DOI: 10.3390/pharmaceutics15041111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
The principle of hydrodynamic delivery was initially used to develop a method for the delivery of plasmids into mouse hepatocytes through tail vein injection and has been expanded for use in the delivery of various biologically active materials to cells in various organs in a variety of animal species through systemic or local injection, resulting in significant advances in new applications and technological development. The development of regional hydrodynamic delivery directly supports successful gene delivery in large animals, including humans. This review summarizes the fundamentals of hydrodynamic delivery and the progress that has been made in its application. Recent progress in this field offers tantalizing prospects for the development of a new generation of technologies for broader application of hydrodynamic delivery.
Collapse
|
4
|
Ma Y, Bao Y, Wu L, Ke Y, Tan L, Ren H, Song J, Zhang Q, Jin Y. IL-8 exacerbates CCl4-induced liver fibrosis in human IL-8-expressing mice via the PI3K/Akt/HIF-1α pathway. Mol Immunol 2022; 152:111-122. [PMID: 36327908 DOI: 10.1016/j.molimm.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 08/25/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
|
5
|
Navarro-Becerra JA, Song KH, Martinez P, Borden MA. Microbubble Size and Dose Effects on Pharmacokinetics. ACS Biomater Sci Eng 2022; 8:1686-1695. [PMID: 35357814 DOI: 10.1021/acsbiomaterials.2c00043] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Optimization of contrast-enhanced imaging and focused ultrasound therapy requires a comprehensive understanding of in vivo microbubble (MB) pharmacokinetics. Prior studies have focused pharmacokinetic analysis on indirect techniques, such as ultrasound imaging of the blood pool and gas chromatography of exhaled gases. The goal of this work was to measure the MB concentration directly in blood and correlate the pharmacokinetic parameters with the MB size and dose. MB volume dose (MVD) was chosen to combine the size distribution and number into a single-dose parameter. Different MB sizes (2, 3, and 5 μm diameter) at 5-40 μL/kg MVD were intravenously injected. Blood samples were withdrawn at different times (1-10 min) and analyzed by image processing. We found that for an MVD threshold < 40 μL/kg for 2 and 3 μm and <10 μL/kg for 5 μm, MB clearance followed first-order kinetics. When matching MVD, MBs of different sizes had comparable half-lives, indicating that gas dissolution and elimination by the lungs are the primary mechanisms for elimination. Above the MVD threshold, MB clearance followed biexponential kinetics, suggesting a second elimination mechanism mediated by organ retention, possibly in the lung, liver, and spleen. In conclusion, we present the first direct MB pharmacokinetic study, demonstrate the utility of MVD as a unified dose metric, and provide insights into the mechanisms of MB clearance from circulation.
Collapse
Affiliation(s)
- J Angel Navarro-Becerra
- Mechanical Engineering Department, University of Colorado, Boulder, Colorado 80309, United States
| | - Kang-Ho Song
- Mechanical Engineering Department, University of Colorado, Boulder, Colorado 80309, United States
| | - Payton Martinez
- Biomedical Engineering Program, University of Colorado, Boulder, Colorado 80309, United States
| | - Mark A Borden
- Mechanical Engineering Department, University of Colorado, Boulder, Colorado 80309, United States.,Biomedical Engineering Program, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
6
|
Wang Z, Li B, Jiang H, Ma Y, Bao Y, Zhu X, Xia H, Jin Y. IL-8 exacerbates alcohol-induced fatty liver disease via the Akt/HIF-1α pathway in human IL-8-expressing mice. Cytokine 2020; 138:155402. [PMID: 33352397 DOI: 10.1016/j.cyto.2020.155402] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 12/16/2022]
Abstract
Alcoholic fatty liver disease (AFLD) is a disease that causes liver damage due to chronic heavy drinking. AFLD is related to lipid accumulation in liver cells caused by alcohol intake. Interleukin-8 (IL-8) is an inflammatory cytokine associated with chemotaxis (deletion in mice) that has robust effects on the occurrence and development of disease by activating related signal transduction pathways to promote inflammation and cell proliferation. There is significantly increased IL-8 expression in liver disease, which may be related to the pathogenesis of AFLD. In this study, we used hydrodynamic injection to deliver the liver-specific expression vector pLIVE-hIL-8 into mice. We found that hIL-8 can exacerbate alcohol-induced fatty liver disease via the Akt/HIF-1α pathway. Exacerbated liver lipid degeneration in mice, which is characterized by excessive accumulation of triglycerides, and liver damage markers were significantly increased. Moreover, hIL-8 could increase the alcohol-induced release of ROS in fatty liver caused by alcohol and exacerbate fatty liver disease. The expression of liver lipid metabolism-related gene sterol regulatory element-binding protein-1c (SREBP-1c) was increased. Furthermore, the expression of peroxisome proliferator-activated receptor alpha (PPARα), which is related to liver fatty acid oxidation, was decreased. The findings obtained in this study of hIL-8 will help identify a potential target for the clinical treatment of AFLD.
Collapse
Affiliation(s)
- Zhihao Wang
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Anhui Medical University, 230032 Hefei, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 230032 Hefei, China; Institute for Liver Diseases of Anhui Medical University, 230032 Hefei, China
| | - Biao Li
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Anhui Medical University, 230032 Hefei, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 230032 Hefei, China; Institute for Liver Diseases of Anhui Medical University, 230032 Hefei, China
| | - Haiyan Jiang
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Anhui Medical University, 230032 Hefei, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 230032 Hefei, China; Institute for Liver Diseases of Anhui Medical University, 230032 Hefei, China
| | - Yuchen Ma
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Anhui Medical University, 230032 Hefei, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 230032 Hefei, China; Institute for Liver Diseases of Anhui Medical University, 230032 Hefei, China
| | - Yanni Bao
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Anhui Medical University, 230032 Hefei, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 230032 Hefei, China; Institute for Liver Diseases of Anhui Medical University, 230032 Hefei, China
| | - Xiangyu Zhu
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Anhui Medical University, 230032 Hefei, China
| | - Hongguang Xia
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Anhui Medical University, 230032 Hefei, China
| | - Yong Jin
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Anhui Medical University, 230032 Hefei, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 230032 Hefei, China; Institute for Liver Diseases of Anhui Medical University, 230032 Hefei, China.
| |
Collapse
|
7
|
Min Q, Molina L, Li J, Adebayo Michael AO, Russell JO, Preziosi ME, Singh S, Poddar M, Matz-Soja M, Ranganathan S, Bell AW, Gebhardt R, Gaunitz F, Yu J, Tao J, Monga SP. β-Catenin and Yes-Associated Protein 1 Cooperate in Hepatoblastoma Pathogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1091-1104. [PMID: 30794807 DOI: 10.1016/j.ajpath.2019.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 02/06/2023]
Abstract
Hepatoblastoma (HB), the most common pediatric primary liver neoplasm, shows nuclear localization of β-catenin and yes-associated protein 1 (YAP1) in almost 80% of the cases. Co-expression of constitutively active S127A-YAP1 and ΔN90 deletion-mutant β-catenin (YAP1-ΔN90-β-catenin) causes HB in mice. Because heterogeneity in downstream signaling is being identified owing to mutational differences even in the β-catenin gene alone, we investigated if co-expression of point mutants of β-catenin (S33Y or S45Y) with S127A-YAP1 led to similar tumors as YAP1-ΔN90-β-catenin. Co-expression of S33Y/S45Y-β-catenin and S127A-YAP1 led to activation of Yap and Wnt signaling and development of HB, with 100% mortality by 13 to 14 weeks. Co-expression with YAP1-S45Y/S33Y-β-catenin of the dominant-negative T-cell factor 4 or dominant-negative transcriptional enhanced associate domain 2, the respective surrogate transcription factors, prevented HB development. Although histologically similar, HB in YAP1-S45Y/S33Y-β-catenin, unlike YAP1-ΔN90-β-catenin HB, was glutamine synthetase (GS) positive. However, both ΔN90-β-catenin and point-mutant β-catenin comparably induced GS-luciferase reporter in vitro. Finally, using a previously reported 16-gene signature, it was shown that YAP1-ΔN90-β-catenin HB tumors exhibited genetic similarities with more proliferative, less differentiated, GS-negative HB patient tumors, whereas YAP1-S33Y/S45Y-β-catenin HB exhibited heterogeneity and clustered with both well-differentiated GS-positive and proliferative GS-negative patient tumors. Thus, we demonstrate that β-catenin point mutants can also collaborate with YAP1 in HB development, albeit with a distinct molecular profile from the deletion mutant, which may have implications in both biology and therapy.
Collapse
Affiliation(s)
- Qian Min
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Laura Molina
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jing Li
- Department of Gynecology, Shiyan Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, Shiyan, China
| | - Adeola O Adebayo Michael
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jacquelyn O Russell
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Morgan E Preziosi
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sucha Singh
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Minakshi Poddar
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Madlen Matz-Soja
- Department of Neurosurgery, University Hospital Leipzig, Leipzig, Germany
| | - Sarangarajan Ranganathan
- Division of Pediatric Pathology, Department of Pathology, Children's Hospital, Pittburgh, Pennsylvania; Pittsburgh Liver Research Center, Pittsburgh, Pennsylvania
| | - Aaron W Bell
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, Pittsburgh, Pennsylvania
| | - Rolf Gebhardt
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Frank Gaunitz
- Department of Neurosurgery, University Hospital Leipzig, Leipzig, Germany
| | - Jinming Yu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China; Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Science, Jinan, China.
| | - Junyan Tao
- Department of Gynecology, Shiyan Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, Shiyan, China; Pittsburgh Liver Research Center, Pittsburgh, Pennsylvania
| | - Satdarshan P Monga
- Department of Gynecology, Shiyan Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, Shiyan, China; Pittsburgh Liver Research Center, Pittsburgh, Pennsylvania.
| |
Collapse
|
8
|
Improved Lentiviral Gene Delivery to Mouse Liver by Hydrodynamic Vector Injection through Tail Vein. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:672-683. [PMID: 30092403 PMCID: PMC6083003 DOI: 10.1016/j.omtn.2018.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 12/15/2022]
Abstract
Delivery of genes to mouse liver is routinely accomplished by tail-vein injections of viral vectors or naked plasmid DNA. While viral vectors are typically injected in a low-pressure and -volume fashion, uptake of naked plasmid DNA to hepatocytes is facilitated by high pressure and volumes, also known as hydrodynamic delivery. In this study, we compare the efficacy and specificity of delivery of vesicular stomatitis virus G glycoprotein (VSV-G) pseudotyped lentiviral vectors to mouse liver by a number of injection schemes. Exploiting in vivo bioluminescence imaging as a readout after lentiviral gene transfer, we compare delivery by (1) “conventional” tail-vein injections, (2) “primed” injections, (3) “hydrodynamic” injections, or (4) direct “intrahepatic” injections into exposed livers. Reporter gene activity demonstrate potent and targeted delivery to liver by hydrodynamic injections. Enhanced efficacy is confirmed by analysis of liver sections from mice treated with GFP-encoding vectors, demonstrating 10-fold higher transduction rates and gene delivery to ∼80% of hepatocytes after hydrodynamic vector delivery. In summary, lentiviral vector transfer to mouse liver can be strongly augmented by hydrodynamic tail-vein injections, resulting in both reduced off-target delivery and transduction of the majority of hepatocytes. Our findings pave the way for more effective use of lentiviral gene delivery in the mouse.
Collapse
|
9
|
Hubner EK, Lechler C, Rösner TN, Kohnke-Ertel B, Schmid RM, Ehmer U. Constitutive and Inducible Systems for Genetic In Vivo Modification of Mouse Hepatocytes Using Hydrodynamic Tail Vein Injection. J Vis Exp 2018. [PMID: 29443066 DOI: 10.3791/56613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In research models of liver cancer, regeneration, inflammation, and fibrosis, flexible systems for in vivo gene expression and silencing are highly useful. Hydrodynamic tail vein injection of transposon-based constructs is an efficient method for genetic manipulation of hepatocytes in adult mice. In addition to constitutive transgene expression, this system can be used for more advanced applications, such as shRNA-mediated gene knock-down, implication of the CRISPR/Cas9 system to induce gene mutations, or inducible systems. Here, the combination of constitutive CreER expression together with inducible expression of a transgene or miR-shRNA of choice is presented as an example of this technique. We cover the multi-step procedure starting from the preparation of sleeping beauty-transposon constructs, to the injection and treatment of mice, and the preparation of liver tissue for analysis by immunostaining. The system presented is a reliable and efficient approach to achieve complex genetic manipulations in hepatocytes. It is specifically useful in combination with Cre/loxP-based mouse strains and can be applied to a variety of models in the research of liver disease.
Collapse
Affiliation(s)
- Eric K Hubner
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München; Department of Pneumology, Center for Medicine, Medical Center University of Freiburg
| | - Christian Lechler
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München
| | - Thomas N Rösner
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München
| | - Birgit Kohnke-Ertel
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München
| | - Roland M Schmid
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München
| | - Ursula Ehmer
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München;
| |
Collapse
|
10
|
Alhamhoom Y, Zhang G, Gao M, Cai H, Liu D. In vivo growth and responses to treatment of renal cell carcinoma in different environments. Am J Cancer Res 2017; 7:301-311. [PMID: 28337378 PMCID: PMC5336503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 01/02/2017] [Indexed: 06/06/2023] Open
Abstract
Renal cell carcinoma is the most common type of kidney cancer in adults and is associated with poor prognosis. The hydrodynamic cell delivery technique was employed in this study to establish tumor growth in mouse lung, liver and kidneys. We demonstrate that RencaLuc cells exhibit different growth rates and responses to the cancer treatment of 5-florouracil and cytokine gene therapy when growing in different organs. The tumor growth rate was faster in the kidneys compared to that in the lung and liver. The liver is the second-best organ in support of tumor growth. Tumors in the liver and lung respond to 5-florouracil treatment but are less responsive in the kidneys. IL-12 gene therapy resulted in whole-body tumor suppression and prolonged animal survival. IFN-β gene therapy was effective in suppressing tumor growth in the liver but not effective for those in the lung and kidneys. These results suggest that kidney cancer cells, once metastasized in different organs, show different growth patterns and respond differently to treatment. Our data also imply that an animal model with multi-organ tumor growth is critical for development of a new strategy for treatment of tumors when metastasis is suspected. At the same time, the results also provide direct evidence in support of the usefulness of the hydrodynamic tail vein injection as a tool for establishment of tumor growth in the lung, liver and kidneys.
Collapse
Affiliation(s)
- Yahya Alhamhoom
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, GA 30602, USA
| | - Guisheng Zhang
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, GA 30602, USA
| | - Mingming Gao
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, GA 30602, USA
| | - Houjian Cai
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, GA 30602, USA
| | - Dexi Liu
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, GA 30602, USA
| |
Collapse
|
11
|
Herrero MJ, Sendra L, Miguel A, Aliño SF. Physical Methods of Gene Delivery. SAFETY AND EFFICACY OF GENE-BASED THERAPEUTICS FOR INHERITED DISORDERS 2017:113-135. [DOI: 10.1007/978-3-319-53457-2_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
12
|
Yokoo T, Kamimura K, Abe H, Kobayashi Y, Kanefuji T, Ogawa K, Goto R, Oda M, Suda T, Terai S. Liver-targeted hydrodynamic gene therapy: Recent advances in the technique. World J Gastroenterol 2016; 22:8862-8868. [PMID: 27833377 PMCID: PMC5083791 DOI: 10.3748/wjg.v22.i40.8862] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/03/2016] [Accepted: 08/23/2016] [Indexed: 02/06/2023] Open
Abstract
One of the major research focuses in the field of gene therapy is the development of clinically applicable, safe, and effective gene-delivery methods. Since the first case of human gene therapy was performed in 1990, a number of gene-delivery methods have been developed, evaluated for efficacy and safety, and modified for human application. To date, viral-vector-mediated deliveries have shown effective therapeutic results. However, the risk of lethal immune response and carcinogenesis have been reported, and it is still controversial to be applied as a standard therapeutic option. On the other hand, delivery methods for nonviral vector systems have been developed, extensively studied, and utilized in in vivo gene-transfer studies. Compared to viral-vector mediated gene transfer, nonviral systems have less risk of biological reactions. However, the lower gene-transfer efficiency was a critical hurdle for applying them to human gene therapy. Among a number of nonviral vector systems, our studies focus on hydrodynamic gene delivery to utilize physical force to deliver naked DNA into the cells in the living animals. This method achieves a high gene-transfer level by DNA solution injections into the tail vein of rodents, especially in the liver. With the development of genome editing methods, in vivo gene-transfer therapy using this method is currently the focus in this research field. This review explains the method principle, efficiency, safety, and procedural modifications to achieve a high level of reproducibility in large-animal models.
Collapse
|
13
|
Alsaggar M, Yao Q, Cai H, Liu D. Differential growth and responsiveness to cancer therapy of tumor cells in different environments. Clin Exp Metastasis 2016; 33:115-24. [PMID: 26476830 PMCID: PMC5124331 DOI: 10.1007/s10585-015-9761-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/14/2015] [Indexed: 11/24/2022]
Abstract
Tumor metastasis often confers poor prognosis for cancer patients due to lack of comprehensive strategy in dealing with cells growing in different environment. Current anticancer therapies have incomplete effectiveness because they were designed assuming metastatic tumors behave similarly in different organs. We hypothesize that tumors growing in different sites are biologically heterogeneous in growth potential, as well as in tumor response to anti-cancer therapies. To test this hypothesis, we have developed a multi-organ tumor growth model using the hydrodynamic cell delivery method to establish simultaneous and quantifiable tumor growth in the liver, lungs and kidneys of mice. We demonstrated that growth rate of melanoma tumor in the liver is higher than that of the lungs and kidneys. Tumors in the lungs and kidneys grew minimally at the early stage and aggressively thereafter. Tumors in different organs were also heterogeneous in response to chemotherapy and immune gene therapy using dacarbazine and interferon beta gene, respectively. Lung tumors responded to chemotherapy better than tumors in the liver, but showed minimal response to interferon beta gene therapy, compared to tumors in the liver and kidneys. We also confirmed differential tumor growth of the metastatic colon cancer in mice. Our results point out the importance of a better understanding of the differences in tumor growing in diverse environments. The biological heterogeneity of metastatic tumors demonstrated in this study necessitates establishing new drug screening strategies that take into account the environmental difference at the sites of tumor growth.
Collapse
Affiliation(s)
- Mohammad Alsaggar
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, Athens, GA, 30602, USA
| | - Qian Yao
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, Athens, GA, 30602, USA
- College of Biological Industry, Chengdu University, Chengdu, Sichuan, People's Republic of China
| | - Houjian Cai
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, Athens, GA, 30602, USA
| | - Dexi Liu
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, Athens, GA, 30602, USA.
| |
Collapse
|
14
|
Yokoo T, Kanefuji T, Suda T, Kamimura K, Liu D, Terai S. Site-Specific Impact of a Regional Hydrodynamic Injection: Computed Tomography Study during Hydrodynamic Injection Targeting the Swine Liver. Pharmaceutics 2015; 7:334-43. [PMID: 26389943 PMCID: PMC4588204 DOI: 10.3390/pharmaceutics7030334] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 08/28/2015] [Accepted: 09/03/2015] [Indexed: 02/06/2023] Open
Abstract
A hemodynamic study of hydrodynamic gene delivery (HGD) from the tail vein in rodents has inspired a mechanism and an approach to further improve the efficacy of this procedure. However, there is no report on the hemodynamics of a regional HGD, which is an inevitable approach in large animals. Here, we report the hemodynamics of a regional hydrodynamic injection in detail based on 3D volume data and the dynamism of tissue intensity over time by using computed tomography (CT) both during and after a regional hydrodynamic injection that targeted the liver of a pig weighing 15.6 kg. Contrast medium (CM) was injected at a steady speed of 20 mL/s for 7.5 s under the temporal balloon occlusion of the hepatic vein (HV). A retrograde flow formed a wedge-shaped strong enhancement area downstream of the corresponding HV within 2.5 s, which was followed by drainage into another HV beginning from the target area and the portal vein (PV) toward a non-target area of the liver. After the injection, the CM was readily eliminated from the PV outside the target area. These data suggest that an interventional radiology approach is effective in limiting the hydrodynamic impacts in large animals at a target area and that the burden overflowing into the PV is limited. A further investigation that simultaneously evaluates gene delivery efficiency and hemodynamics using CT is needed to establish feasible parameters for a regional HGD in large animals.
Collapse
Affiliation(s)
- Takeshi Yokoo
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata 950-8510, Japan.
| | - Tsutomu Kanefuji
- Department of Gastroenterology & Hepatology, Uonuma Institute of Community Medicine, Niigata University, 4132 Urasa, Minami Uonuma, Niigata, 949-7392, Japan.
| | - Takeshi Suda
- Department of Gastroenterology & Hepatology, Uonuma Institute of Community Medicine, Niigata University, 4132 Urasa, Minami Uonuma, Niigata, 949-7392, Japan.
| | - Kenya Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata 950-8510, Japan.
| | - Dexi Liu
- Department of Pharmaceutical and Biochemical Sciences, University of Georgia, College of Pharmacy, 250 W. Green street, Athens, GA 30602, USA.
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata 950-8510, Japan.
| |
Collapse
|
15
|
Abstract
Hydrodynamic delivery (HD) is a broadly used procedure for DNA and RNA delivery in rodents, serving as a powerful tool for gene/protein drug discovery, gene function analysis, target validation, and identification of elements in regulating gene expression in vivo. HD involves a pressurized injection of a large volume of solution into a vasculature. New procedures are being developed to satisfy the need for a safe and efficient gene delivery in clinic. Here, we summarize the fundamentals of HD, its applications, and future perspectives for clinical use.
Collapse
Affiliation(s)
- Takeshi Suda
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Dexi Liu
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, School of Pharmacy, Athens, GA, USA
| |
Collapse
|