1
|
Adelfio M, Callen GE, He X, Paster BJ, Hasturk H, Ghezzi CE. Engineered Tissue Models to Decode Host-Microbiota Interactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2417687. [PMID: 40364768 DOI: 10.1002/advs.202417687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 04/13/2025] [Indexed: 05/15/2025]
Abstract
A mutualistic co-evolution exists between the host and its associated microbiota in the human body. Bacteria establish ecological niches in various tissues of the body, locally influencing their physiology and functions, but also contributing to the well-being of the whole organism through systemic communication with other distant niches (axis). Emerging evidence indicates that when the composition of the microbiota inhabiting the niche changes toward a pathogenic state (dysbiosis) and interactions with the host become unbalanced, diseases may present. In addition, imbalances within a single niche can cause dysbiosis in distant organs. Current research efforts are focused on elucidating the mechanisms leading to dysbiosis, with the goal of restoring tissue homeostasis. In vitro models can provide critical experimental platforms to address this need, by reproducing the niche cyto-architecture and physiology with high fidelity. This review surveys current in in vitro host-microbiota research strategies and provides a roadmap that can guide the field in further developing physiologically relevant in vitro models of ecological niches, thus enabling investigation of the role of the microbiota in human health and diseases. Lastly, given the Food and Drug Administration Modernization Act 2.0, this review highlights emerging in vitro strategies to support the development and validation of new therapies on the market.
Collapse
Affiliation(s)
- Miryam Adelfio
- Department of Biomedical Engineering, University of Massachusetts-Lowell, Lowell, MA, 01854, USA
| | - Grace E Callen
- Department of Biomedical Engineering, University of Massachusetts-Lowell, Lowell, MA, 01854, USA
| | - Xuesong He
- ADA Forsyth Institute, 245 First St, Cambridge, MA, 02142, USA
| | - Bruce J Paster
- ADA Forsyth Institute, 245 First St, Cambridge, MA, 02142, USA
| | - Hatice Hasturk
- ADA Forsyth Institute, 245 First St, Cambridge, MA, 02142, USA
| | - Chiara E Ghezzi
- Department of Biomedical Engineering, University of Massachusetts-Lowell, Lowell, MA, 01854, USA
| |
Collapse
|
2
|
Fanizzi F, D'Amico F, Zanotelli Bombassaro I, Zilli A, Furfaro F, Parigi TL, Cicerone C, Fiorino G, Peyrin-Biroulet L, Danese S, Allocca M. The Role of Fecal Microbiota Transplantation in IBD. Microorganisms 2024; 12:1755. [PMID: 39338430 PMCID: PMC11433743 DOI: 10.3390/microorganisms12091755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Gut microbiota dysbiosis has a critical role in the pathogenesis of inflammatory bowel diseases, prompting the exploration of novel therapeutic approaches like fecal microbiota transplantation, which involves the transfer of fecal microbiota from a healthy donor to a recipient with the aim of restoring a balanced microbial community and attenuating inflammation. Fecal microbiota transplantation may exert beneficial effects in inflammatory bowel disease through modulation of immune responses, restoration of mucosal barrier integrity, and alteration of microbial metabolites. It could alter disease course and prevent flares, although long-term durability and safety data are lacking. This review provides a summary of current evidence on fecal microbiota transplantation in inflammatory bowel disease management, focusing on its challenges, such as variability in donor selection criteria, standardization of transplant protocols, and long-term outcomes post-transplantation.
Collapse
Affiliation(s)
- Fabrizio Fanizzi
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Ferdinando D'Amico
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Isadora Zanotelli Bombassaro
- Department of Gastroenterology and Endoscopy, Santa Casa de Misericordia de Porto Alagre, Porto Alegre 90020-090, Brazil
| | - Alessandra Zilli
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Federica Furfaro
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Tommaso Lorenzo Parigi
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Clelia Cicerone
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Gionata Fiorino
- Department of Gastroenterology and Digestive Endoscopy, San Camillo-Forlanini Hospital, 00152 Rome, Italy
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology, Nancy University Hospital, F-54500 Vandœuvre-lès-Nancy, France
- INSERM, Nutrition-Genetics and Exposure to Environmental Risks Research Unit (NGERE), University of Lorraine, F-54000 Nancy, France
- INFINY Institute, Nancy University Hospital, F-54500 Vandœuvre-lès-Nancy, France
- Fédération Hospitalo-Universitaire CARE, Nancy University Hospital, F-54500 Vandœuvre-lès-Nancy, France
- Groupe Hospitalier Privé Ambroise Paré-Hartmann, Paris IBD Center, F-92200 Neuilly sur Seine, France
- Division of Gastroenterology and Hepatology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Silvio Danese
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Mariangela Allocca
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
3
|
Jin DM, Morton JT, Bonneau R. Meta-analysis of the human gut microbiome uncovers shared and distinct microbial signatures between diseases. mSystems 2024; 9:e0029524. [PMID: 39078158 PMCID: PMC11334437 DOI: 10.1128/msystems.00295-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/08/2024] [Indexed: 07/31/2024] Open
Abstract
Microbiome studies have revealed gut microbiota's potential impact on complex diseases. However, many studies often focus on one disease per cohort. We developed a meta-analysis workflow for gut microbiome profiles and analyzed shotgun metagenomic data covering 11 diseases. Using interpretable machine learning and differential abundance analysis, our findings reinforce the generalization of binary classifiers for Crohn's disease (CD) and colorectal cancer (CRC) to hold-out cohorts and highlight the key microbes driving these classifications. We identified high microbial similarity in disease pairs like CD vs ulcerative colitis (UC), CD vs CRC, Parkinson's disease vs type 2 diabetes (T2D), and schizophrenia vs T2D. We also found strong inverse correlations in Alzheimer's disease vs CD and UC. These findings, detected by our pipeline, provide valuable insights into these diseases. IMPORTANCE Assessing disease similarity is an essential initial step preceding a disease-based approach for drug repositioning. Our study provides a modest first step in underscoring the potential of integrating microbiome insights into the disease similarity assessment. Recent microbiome research has predominantly focused on analyzing individual diseases to understand their unique characteristics, which by design excludes comorbidities in individuals. We analyzed shotgun metagenomic data from existing studies and identified previously unknown similarities between diseases. Our research represents a pioneering effort that utilizes both interpretable machine learning and differential abundance analysis to assess microbial similarity between diseases.
Collapse
Affiliation(s)
- Dong-Min Jin
- Center for Genomics and Systems Biology, New York University, New York, New York, USA
| | - James T. Morton
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, New York, USA
| | - Richard Bonneau
- Center for Genomics and Systems Biology, New York University, New York, New York, USA
- Genentech, New York, New York, USA
| |
Collapse
|
4
|
Zhang B, Magnaye KM, Stryker E, Moltzau-Anderson J, Porsche CE, Hertz S, McCauley KE, Smith BJ, Zydek M, Pollard KS, Ma A, El-Nachef N, Lynch SV. Sustained mucosal colonization and fecal metabolic dysfunction by Bacteroides associates with fecal microbial transplant failure in ulcerative colitis patients. Sci Rep 2024; 14:18558. [PMID: 39122767 PMCID: PMC11316000 DOI: 10.1038/s41598-024-62463-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 05/16/2024] [Indexed: 08/12/2024] Open
Abstract
Fecal microbial transplantation (FMT) offers promise for treating ulcerative colitis (UC), though the mechanisms underlying treatment failure are unknown. This study harnessed longitudinally collected colonic biopsies (n = 38) and fecal samples (n = 179) from 19 adults with mild-to-moderate UC undergoing serial FMT in which antimicrobial pre-treatment and delivery mode (capsules versus enema) were assessed for clinical response (≥ 3 points decrease from the pre-treatment Mayo score). Colonic biopsies underwent dual RNA-Seq; fecal samples underwent parallel 16S rRNA and shotgun metagenomic sequencing as well as untargeted metabolomic analyses. Pre-FMT, the colonic mucosa of non-responsive (NR) patients harbored an increased burden of bacteria, including Bacteroides, that expressed more antimicrobial resistance genes compared to responsive (R) patients. NR patients also exhibited muted mucosal expression of innate immune antimicrobial response genes. Post-FMT, NR and R fecal microbiomes and metabolomes exhibited significant divergence. NR metabolomes had elevated concentrations of immunostimulatory compounds including sphingomyelins, lysophospholipids and taurine. NR fecal microbiomes were enriched for Bacteroides fragilis and Bacteroides salyersiae strains that encoded genes capable of taurine production. These findings suggest that both effective mucosal microbial clearance and reintroduction of bacteria that reshape luminal metabolism associate with FMT success and that persistent mucosal and fecal colonization by antimicrobial-resistant Bacteroides species may contribute to FMT failure.
Collapse
Affiliation(s)
- Bing Zhang
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Kevin M Magnaye
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
- The Benioff Center for Microbiome Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Emily Stryker
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Jacqueline Moltzau-Anderson
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
- The Benioff Center for Microbiome Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Cara E Porsche
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Sandra Hertz
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
| | - Kathryn E McCauley
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Byron J Smith
- The Gladstone Institutes, Data Science and Biotechnology, San Francisco, CA, 94158, USA
| | - Martin Zydek
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Katherine S Pollard
- The Gladstone Institutes, Data Science and Biotechnology, San Francisco, CA, 94158, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, 94158, USA
- Chan Zuckerberg Biohub, San Francisco, CA University of California, San Francisco, CA, 94158, USA
| | - Averil Ma
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Najwa El-Nachef
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
- Division of Gastroenterology, Henry Ford Health System, Detroit, MI, 48208, USA
| | - Susan V Lynch
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA.
- The Benioff Center for Microbiome Medicine, University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
5
|
Jin DM, Morton JT, Bonneau R. Meta-analysis of the human gut microbiome uncovers shared and distinct microbial signatures between diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582333. [PMID: 38464323 PMCID: PMC10925178 DOI: 10.1101/2024.02.27.582333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Microbiome studies have revealed gut microbiota's potential impact on complex diseases. However, many studies often focus on one disease per cohort. We developed a meta-analysis workflow for gut microbiome profiles and analyzed shotgun metagenomic data covering 11 diseases. Using interpretable machine learning and differential abundance analysis, our findings reinforce the generalization of binary classifiers for Crohn's disease (CD) and colorectal cancer (CRC) to hold-out cohorts and highlight the key microbes driving these classifications. We identified high microbial similarity in disease pairs like CD vs ulcerative colitis (UC), CD vs CRC, Parkinson's disease vs type 2 diabetes (T2D), and schizophrenia vs T2D. We also found strong inverse correlations in Alzheimer's disease vs CD and UC. These findings detected by our pipeline provide valuable insights into these diseases.
Collapse
Affiliation(s)
- Dong-Min Jin
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - James T. Morton
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Richard Bonneau
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
- Genentech, New York, NY, USA
| |
Collapse
|
6
|
Gilliland A, Chan JJ, De Wolfe TJ, Yang H, Vallance BA. Pathobionts in Inflammatory Bowel Disease: Origins, Underlying Mechanisms, and Implications for Clinical Care. Gastroenterology 2024; 166:44-58. [PMID: 37734419 DOI: 10.1053/j.gastro.2023.09.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023]
Abstract
The gut microbiota plays a significant role in the pathogenesis of both forms of inflammatory bowel disease (IBD), namely, Crohn's disease (CD) and ulcerative colitis (UC). Although evidence suggests dysbiosis and loss of beneficial microbial species can exacerbate IBD, many new studies have identified microbes with pathogenic qualities, termed "pathobionts," within the intestines of patients with IBD. The concept of pathobionts initiating or driving the chronicity of IBD has largely focused on the putative aggravating role that adherent invasive Escherichia coli may play in CD. However, recent studies have identified additional bacterial and fungal pathobionts in patients with CD and UC. This review will highlight the characteristics of these pathobionts and their implications for IBD treatment. Beyond exploring the origins of pathobionts, we discuss those associated with specific clinical features and the potential mechanisms involved, such as creeping fat (Clostridium innocuum) and impaired wound healing (Debaryomyces hansenii) in patients with CD as well as the increased fecal proteolytic activity (Bacteroides vulgatus) seen as a biomarker for UC severity. Finally, we examine the potential impact of pathobionts on current IBD therapies, and several new approaches to target pathobionts currently in the early stages of development. Despite recognizing that pathobionts likely contribute to the pathogenesis of IBD, more work is needed to define their modes of action. Determining whether causal relationships exist between pathobionts and specific disease characteristics could pave the way for improved care for patients, particularly for those not responding to current IBD therapies.
Collapse
Affiliation(s)
- Ashley Gilliland
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Jocelyn J Chan
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Travis J De Wolfe
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Hyungjun Yang
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Bruce A Vallance
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital and the University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
7
|
Bonmatí-Carrión MÁ, Rol MA. Melatonin as a Mediator of the Gut Microbiota-Host Interaction: Implications for Health and Disease. Antioxidants (Basel) 2023; 13:34. [PMID: 38247459 PMCID: PMC10812647 DOI: 10.3390/antiox13010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
In recent years, the role played by melatonin on the gut microbiota has gained increasingly greater attention. Additionally, the gut microbiota has been proposed as an alternative source of melatonin, suggesting that this antioxidant indoleamine could act as a sort of messenger between the gut microbiota and the host. This review analyses the available scientific literature about possible mechanisms involved in this mediating role, highlighting its antioxidant effects and influence on this interaction. In addition, we also review the available knowledge on the effects of melatonin on gut microbiota composition, as well as its ability to alleviate dysbiosis related to sleep deprivation or chronodisruptive conditions. The melatonin-gut microbiota relationship has also been discussed in terms of its role in the development of different disorders, from inflammatory or metabolic disorders to psychiatric and neurological conditions, also considering oxidative stress and the reactive oxygen species-scavenging properties of melatonin as the main factors mediating this relationship.
Collapse
Affiliation(s)
- María-Ángeles Bonmatí-Carrión
- Chronobiology Laboratory, Department of Physiology, College of Biology, Mare Nostrum Campus, University of Murcia, Instituto Universitario de Investigación en Envejecimiento, Instituto Murciano de Investigación Biosanitaria-Arrixaca, 30100 Murcia, Spain;
- Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maria-Angeles Rol
- Chronobiology Laboratory, Department of Physiology, College of Biology, Mare Nostrum Campus, University of Murcia, Instituto Universitario de Investigación en Envejecimiento, Instituto Murciano de Investigación Biosanitaria-Arrixaca, 30100 Murcia, Spain;
- Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
8
|
Azehaf H, Benzine Y, Tagzirt M, Skiba M, Karrout Y. Microbiota-sensitive drug delivery systems based on natural polysaccharides for colon targeting. Drug Discov Today 2023; 28:103606. [PMID: 37146964 DOI: 10.1016/j.drudis.2023.103606] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
Colon targeting is an ongoing challenge, particularly for the oral administration of biological drugs or local treatment of inflammatory bowel disease (IBD). In both cases, drugs are known to be sensitive to the harsh conditions of the upper gastrointestinal tract (GIT) and, thus, must be protected. Here, we provide an overview of recently developed colonic site-specific drug delivery systems based on microbiota sensitivity of natural polysaccharides. Polysaccharides act as a substrate for enzymes secreted by the microbiota located in the distal part of GIT. The dosage form is adapted to the pathophysiology of the patient and, thus, a combination of bacteria-sensitive and time-controlled release or pH-dependent systems can be used for delivery.
Collapse
Affiliation(s)
- Hajar Azehaf
- University of Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - Youcef Benzine
- University of Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - M Tagzirt
- University of Lille, Inserm, CHU Lille, U1011, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - M Skiba
- University of Rouen, Galenic Pharmaceutical Team, INSERM U1239, UFR of Health, 22 Boulevard Gambetta, 76000 Rouen, France
| | - Youness Karrout
- University of Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France.
| |
Collapse
|
9
|
Roy S, Dhaneshwar S. Role of prebiotics, probiotics, and synbiotics in management of inflammatory bowel disease: Current perspectives. World J Gastroenterol 2023; 29:2078-2100. [PMID: 37122604 PMCID: PMC10130969 DOI: 10.3748/wjg.v29.i14.2078] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/29/2022] [Accepted: 03/21/2023] [Indexed: 04/13/2023] Open
Abstract
Experimental evidence supports the fact that changes in the bowel microflora due to environmental or dietary factors have been investigated as implicating factors in the etiopathogenesis of inflammatory bowel disease (IBD). The amassing knowledge that the inhabited microbiome regulates the gut physiology and immune functions in IBD, has led researchers to explore the effectiveness of prebiotics, probiotics, and synbiotics in treating IBD. This therapeutic approach focuses on restoring the dynamic balance between the microflora and host defense mechanisms in the intestinal mucosa to prevent the onset and persistence of intestinal inflammation. Numerous microbial strains and carbohydrate blends, along with their combinations have been examined in experimental colitis models and clinical trials, and the results indicated that it can be an attractive therapeutic strategy for the suppression of inflammation, remission induction, and relapse prevention in IBD with minimal side effects. Several mechanisms of action of probiotics (for e.g., Lactobacillus species, and Bifidobacterium species) have been reported such as suppression of pathogen growth by releasing certain antimicrobial mediators (lactic and hydrogen peroxide, acetic acid, and bacteriocins), immunomodulation and initiation of an immune response, enhancement of barrier activity, and suppression of human T-cell proliferation. Prebiotics such as lactulose, lactosucrose, oligofructose, and inulin have been found to induce the growth of certain types of host microflora, resulting in an enriched enteric function. These non-digestible food dietary components have been reported to exert anti-inflammatory effects by inhibiting the expression of tumor necrosis factor-α-related cytokines while augmenting interleukin-10 levels. Although pro-and prebiotics has established their efficacy in healthy subjects, a better understanding of the luminal ecosystem is required to determine which specific bacterial strain or combination of probiotics and prebiotics would prove to be the ideal treatment for IBD. Clinical trials, however, have given some conflicting results, requiring the necessity to cite the more profound clinical effect of these treatments on IBD remission and prevention. The purpose of this review article is to provide the most comprehensive and updated review on the utility of prebiotics, probiotics, and synbiotics in the management of active Crohn's disease and ulcerative colitis/pouchitis.
Collapse
Affiliation(s)
- Supriya Roy
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector 125, Noida 201313, Uttar Pradesh, India
| | - Suneela Dhaneshwar
- Amity Institute of Pharmacy, Amity University Maharashtra, Mumbai 410206, Maharashtra, India
| |
Collapse
|
10
|
Hoelz H, Heetmeyer J, Tsakmaklis A, Hiergeist A, Siebert K, De Zen F, Häcker D, Metwaly A, Neuhaus K, Gessner A, Vehreschild MJGT, Haller D, Schwerd T. Is Autologous Fecal Microbiota Transfer after Exclusive Enteral Nutrition in Pediatric Crohn’s Disease Patients Rational and Feasible? Data from a Feasibility Test. Nutrients 2023; 15:nu15071742. [PMID: 37049583 PMCID: PMC10096730 DOI: 10.3390/nu15071742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Background: Exclusive enteral nutrition (EEN) is a highly effective therapy for remission induction in pediatric Crohn’s disease (CD), but relapse rates after return to a regular diet are high. Autologous fecal microbiota transfer (FMT) using stool collected during EEN-induced clinical remission might represent a novel approach to maintaining the benefits of EEN. Methods: Pediatric CD patients provided fecal material at home, which was shipped at 4 °C to an FMT laboratory for FMT capsule generation and extensive pathogen safety screening. The microbial community composition of samples taken before and after shipment and after encapsulation was characterized using 16S rRNA amplicon sequencing. Results: Seven pediatric patients provided fecal material for nine test runs after at least three weeks of nutritional therapy. FMT capsules were successfully generated in 6/8 deliveries, but stool weight and consistency varied widely. Transport and processing of fecal material into FMT capsules did not fundamentally change microbial composition, but microbial richness was <30 genera in 3/9 samples. Stool safety screening was positive for potential pathogens or drug resistance genes in 8/9 test runs. Conclusions: A high pathogen burden, low-diversity microbiota, and practical deficiencies of EEN-conditioned fecal material might render autologous capsule-FMT an unsuitable approach as maintenance therapy for pediatric CD patients.
Collapse
Affiliation(s)
- Hannes Hoelz
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Jeannine Heetmeyer
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Anastasia Tsakmaklis
- Clinical Microbiome Research Group, Department of Internal Medicine I, University Hospital of Cologne, 50931 Cologne, Germany
| | - Andreas Hiergeist
- Institute for Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Kolja Siebert
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Federica De Zen
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Deborah Häcker
- Chair of Nutrition and Immunology, Technical University Munich, 85354 Freising-Weihenstephan, Germany
| | - Amira Metwaly
- Chair of Nutrition and Immunology, Technical University Munich, 85354 Freising-Weihenstephan, Germany
| | - Klaus Neuhaus
- ZIEL-Institute for Food and Health, Technical University Munich, 85354 Freising-Weihenstephan, Germany
| | - André Gessner
- Institute for Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Maria J. G. T. Vehreschild
- Clinical Microbiome Research Group, Department of Internal Medicine I, University Hospital of Cologne, 50931 Cologne, Germany
- Section of Infectious Diseases, Department of Internal Medicine II, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany
| | - Dirk Haller
- Chair of Nutrition and Immunology, Technical University Munich, 85354 Freising-Weihenstephan, Germany
- ZIEL-Institute for Food and Health, Technical University Munich, 85354 Freising-Weihenstephan, Germany
| | - Tobias Schwerd
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany
| |
Collapse
|
11
|
Lê A, Mantel M, Marchix J, Bodinier M, Jan G, Rolli-Derkinderen M. Inflammatory bowel disease therapeutic strategies by modulation of the microbiota: how and when to introduce pre-, pro-, syn-, or postbiotics? Am J Physiol Gastrointest Liver Physiol 2022; 323:G523-G553. [PMID: 36165557 DOI: 10.1152/ajpgi.00002.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inflammatory bowel diseases (IBD), a heterogeneous group of inflammatory conditions that encompass both ulcerative colitis and Crohn's disease, represent a major public health concern. The etiology of IBD is not yet fully understood and no cure is available, with current treatments only showing long-term effectiveness in a minority of patients. A need to increase our knowledge on IBD pathophysiology is growing, to define preventive measures, to improve disease outcome, and to develop new effective and lasting treatments. IBD pathogenesis is sustained by aberrant immune responses, associated with alterations of the intestinal epithelial barrier (IEB), modifications of the enteric nervous system, and changes in microbiota composition. Currently, most of the treatments target the inflammation and the immune system, but holistic approaches targeting lifestyle and diet improvements are emerging. As dysbiosis is involved in IBD pathogenesis, pre-, pro-, syn-, and postbiotics are used/tested to reduce the inflammation or strengthen the IEB. The present review will resume these works, pointing out the stage of life, the duration, and the environmental conditions that should go along with microbiota or microbiota-derived treatments.
Collapse
Affiliation(s)
- Amélie Lê
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes Université, Institut National pour la Santé et la Recherche Médicale, Nantes, France
| | - Marine Mantel
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes Université, Institut National pour la Santé et la Recherche Médicale, Nantes, France
- Unité Mixte de Recherche Science et Technologie du Lait et de l'Oeuf, Agrocampus Ouest, Institut Agro, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Rennes, France
| | - Justine Marchix
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes Université, Institut National pour la Santé et la Recherche Médicale, Nantes, France
| | - Marie Bodinier
- Unité de Recherche 1268 Biopolymères Interactions Assemblages, I Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Pays de la Loire, Nantes, France
| | - Gwénaël Jan
- Unité Mixte de Recherche Science et Technologie du Lait et de l'Oeuf, Agrocampus Ouest, Institut Agro, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Rennes, France
| | - Malvyne Rolli-Derkinderen
- The Enteric Nervous System in Gut and Brain Disorders, Institut des Maladies de l'Appareil Digestif, Nantes Université, Institut National pour la Santé et la Recherche Médicale, Nantes, France
| |
Collapse
|
12
|
Hazime R, Eddehbi FE, El Mojadili S, Lakhouaja N, Souli I, Salami A, M’Raouni B, Brahim I, Oujidi M, Guennouni M, Bousfiha AA, Admou B. Inborn errors of immunity and related microbiome. Front Immunol 2022; 13:982772. [PMID: 36177048 PMCID: PMC9513548 DOI: 10.3389/fimmu.2022.982772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/19/2022] [Indexed: 11/15/2022] Open
Abstract
Inborn errors of immunity (IEI) are characterized by diverse clinical manifestations that are dominated by atypical, recurrent, chronic, or severe infectious or non-infectious features, including autoimmunity, lymphoproliferative disease, granulomas, and/or malignancy, which contribute substantially to morbidity and mortality. Some data suggest a correlation between clinical manifestations of IEI and altered gut microbiota. Many IEI display microbial dysbiosis resulting from the proliferation of pro-inflammatory bacteria or a decrease in anti-inflammatory bacteria with variations in the composition and function of numerous microbiota. Dysbiosis is considered more established, mainly within common variable immunodeficiency, selective immunoglobulin A deficiency, severe combined immunodeficiency diseases, Wiskott–Aldrich syndrome, Hyper-IgE syndrome, autoimmune polyendocrinopathy–candidiasis–ectodermal-dystrophy (APECED), immune dysregulation, polyendocrinopathy, enteropathy X-linked (IPEX) syndrome, IL-10 receptor deficiency, chronic granulomatous disease, and Kostmann disease. For certain IEIs, the specific predominance of gastrointestinal, respiratory, and cutaneous involvement, which is frequently associated with dysbiosis, justifies the interest for microbiome identification. With the better understanding of the relationship between gut microbiota, host immunity, and infectious diseases, the integration of microbiota modulation as a therapeutic approach or a preventive measure of infection becomes increasingly relevant. Thus, a promising strategy is to develop optimized prebiotics, probiotics, postbiotics, and fecal microbial transplantation to rebalance the intestinal microbiota and thereby attenuate the disease activity of many IEIs.
Collapse
Affiliation(s)
- Raja Hazime
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
- Biosciences Research Laboratory, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Fatima-Ezzohra Eddehbi
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Saad El Mojadili
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Nadia Lakhouaja
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Ikram Souli
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Abdelmouïne Salami
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Bouchra M’Raouni
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Imane Brahim
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Mohamed Oujidi
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Morad Guennouni
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Ahmed Aziz Bousfiha
- Pediatric infectious and Immunology Department, Ibn Rochd University Hospital, Casablanca, Morocco
- Laboratory of Clinical Immunology inflammation and Allergy, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Brahim Admou
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
- Biosciences Research Laboratory, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
- *Correspondence: Brahim Admou,
| |
Collapse
|
13
|
Reynoso-García J, Miranda-Santiago AE, Meléndez-Vázquez NM, Acosta-Pagán K, Sánchez-Rosado M, Díaz-Rivera J, Rosado-Quiñones AM, Acevedo-Márquez L, Cruz-Roldán L, Tosado-Rodríguez EL, Figueroa-Gispert MDM, Godoy-Vitorino F. A complete guide to human microbiomes: Body niches, transmission, development, dysbiosis, and restoration. FRONTIERS IN SYSTEMS BIOLOGY 2022; 2:951403. [PMID: 38993286 PMCID: PMC11238057 DOI: 10.3389/fsysb.2022.951403] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Humans are supra-organisms co-evolved with microbial communities (Prokaryotic and Eukaryotic), named the microbiome. These microbiomes supply essential ecosystem services that play critical roles in human health. A loss of indigenous microbes through modern lifestyles leads to microbial extinctions, associated with many diseases and epidemics. This narrative review conforms a complete guide to the human holobiont-comprising the host and all its symbiont populations- summarizes the latest and most significant research findings in human microbiome. It pretends to be a comprehensive resource in the field, describing all human body niches and their dominant microbial taxa while discussing common perturbations on microbial homeostasis, impacts of urbanization and restoration and humanitarian efforts to preserve good microbes from extinction.
Collapse
Affiliation(s)
| | | | | | - Kimil Acosta-Pagán
- Department of Microbiology and Medical Zoology, UPR School of Medicine, San Juan, PR, United States
| | - Mitchell Sánchez-Rosado
- Department of Microbiology and Medical Zoology, UPR School of Medicine, San Juan, PR, United States
| | - Jennifer Díaz-Rivera
- Department of Microbiology and Medical Zoology, UPR School of Medicine, San Juan, PR, United States
| | - Angélica M. Rosado-Quiñones
- Department of Biology, UPR Rio Piedras Campus, San Juan, PR, United States
- Department of Microbiology and Medical Zoology, UPR School of Medicine, San Juan, PR, United States
| | - Luis Acevedo-Márquez
- Department of Microbiology and Medical Zoology, UPR School of Medicine, San Juan, PR, United States
| | - Lorna Cruz-Roldán
- Department of Microbiology and Medical Zoology, UPR School of Medicine, San Juan, PR, United States
| | | | | | - Filipa Godoy-Vitorino
- Department of Microbiology and Medical Zoology, UPR School of Medicine, San Juan, PR, United States
| |
Collapse
|
14
|
Wang X, Xing Y, Ji Y, Xi H, Liu X, Yang L, Lei L, Han W, Gu J. The Combination of Phages and Faecal Microbiota Transplantation Can Effectively Treat Mouse Colitis Caused by Salmonella enterica Serovar Typhimurium. Front Microbiol 2022; 13:944495. [PMID: 35875536 PMCID: PMC9301289 DOI: 10.3389/fmicb.2022.944495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is one of the common causes of human colitis. In the present study, two lytic phages vB_SenS-EnJE1 and vB_SenS-EnJE6 were isolated and the therapeutic effect of the combination of phages and faecal microbiota transplantation (FMT) on S. Typhimurium-induced mouse colitis was investigated. The characteristics and genome analysis indicated that they are suitable phages for phage therapy. Results showed that vB_SenS-EnJE1 lysis 41/54 Salmonella strains of serotype O4, and vB_SenS-EnJE6 lysis 46/54 Salmonella strains of serotypes O4 and O9. Severe inflammatory symptoms and disruption of the intestinal barrier were observed in S. Typhimurium -induced colitis. Interestingly, compared with a single phage cocktail (Pc) or single FMT, the combination of Pc and FMT (PcFMT) completely removed S. Typhimurium after 72 h of treatment, and significantly improved pathological damage and restored the intestinal barrier. Furthermore, PcFMT effectively restored the intestinal microbial diversity, especially for Firmicutes/Bacteroidetes [predominantly bacterial phyla responsible for the production of short-chain fatty acids (SCFA)]. Additionally, we found that PcFMT treatment significantly increased the levels of SCFA. All these data indicated that the combination of phages and FMT possesses excellent therapeutic effects on S. Typhimurium -induced intestinal microbiota disorder diseases. Pc and FMT played roles in “eliminating pathogens” and “strengthening vital qi,” respectively. This study provides a new idea for the treatment of intestinal microbiota disorder diseases caused by specific bacterial infections.
Collapse
Affiliation(s)
- Xinwu Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Jilin, China
| | - Yating Xing
- The Second Hospital of Jilin University, Changchun, China
| | - Yalu Ji
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Jilin, China
| | - Hengyu Xi
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Jilin, China
| | - Xiaohe Liu
- The Second Hospital of Jilin University, Changchun, China
| | - Li Yang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Jilin, China
| | - Liancheng Lei
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Jilin, China
| | - Wenyu Han
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Jilin, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jingmin Gu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Jilin, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- *Correspondence: Jingmin Gu,
| |
Collapse
|
15
|
Fecal Microbiota Transplants for Inflammatory Bowel Disease Treatment: Synthetic- and Engineered Communities-Based Microbiota Transplants Are the Future. Gastroenterol Res Pract 2022; 2022:9999925. [PMID: 35140783 PMCID: PMC8820897 DOI: 10.1155/2022/9999925] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 01/12/2022] [Indexed: 12/21/2022] Open
Abstract
The human intestine harbors a huge number of diverse microorganisms where a variety of complex interactions take place between the microbes as well as the host and gut microbiota. Significant long-term variations in the gut microbiota (dysbiosis) have been associated with a variety of health conditions including inflammatory bowel disease (IBD). Conventional fecal microbiota transplantations (FMTs) have been utilized to treat IBD and have been proved promising. However, various limitations such as transient results, pathogen transfer, storage, and reproducibility render conventional FMT less safe and less sustainable. Defined synthetic microbial communities (SynCom) have been used to dissect the host-microbiota-associated functions using gnotobiotic animals or in vitro cell models. This review focuses on the potential use of SynCom in IBD and its advantages and relative safety over conventional FMT. Additionally, this review reinforces how various technological advances could be combined with SynCom to have a better understanding of the complex microbial interactions in various gut inflammatory diseases including IBD. Some technological advances including the availability of a gut-on-a-chip system, intestinal organoids, ex vivo intestinal cultures, AI-based refining of the microbiome structural and functional data, and multiomic approaches may help in making more practical in vitro models of the human host. Additionally, an increase in the cultured diversity from gut microbiota and the availability of their genomic information would further make the design and utilization of SynCom more feasible. Taken together, the combined use of the available knowledge of the gut microbiota in health and disease and recent technological advances and the development of defined SynCom seem to be a promising, safe, and sustainable alternative to conventional FMT in treating IBD.
Collapse
|
16
|
Junca H, Pieper DH, Medina E. The emerging potential of microbiome transplantation on human health interventions. Comput Struct Biotechnol J 2022; 20:615-627. [PMID: 35140882 PMCID: PMC8801967 DOI: 10.1016/j.csbj.2022.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 02/08/2023] Open
Abstract
The human microbiome has been the subject of intense research over the past few decades, in particular as a promising area for new clinical interventions. The microbiota colonizing the different body surfaces are of benefit for multiple physiological and metabolic processes of the human host and increasing evidence suggests an association between disturbances in the composition and functionality of the microbiota and several pathological conditions. This has provided a rationale for beneficial modulation of the microbiome. One approach being explored for modulating the microbiota in diseased individuals is transferring microbiota or microbiota constituents from healthy donors via microbiome transplantation. The great success of fecal microbiome transplantation for the treatment of Clostridioides difficile infections has encouraged the application of this procedure for the treatment of other diseases such as vaginal disorders via transplantation of vaginal microbiota, or of skin pathologies via the transplantation of skin microbiota. Microbiome modulation could even become a novel strategy for improving the efficacy of cancer therapies. This review discusses the principle, advantages and limitations of microbiome transplantation as well as different clinical contexts where microbiome transplantation has been applied.
Collapse
Affiliation(s)
- Howard Junca
- Microbial Interactions and Processes Research Group, Helmholtz-Zentrum für Infektionsforschung, Braunschweig, Germany
| | - Dietmar H. Pieper
- Microbial Interactions and Processes Research Group, Helmholtz-Zentrum für Infektionsforschung, Braunschweig, Germany
| | - Eva Medina
- Infection Immunology Research Group, Helmholtz-Zentrum für Infektionsforschung, Braunschweig, Germany
| |
Collapse
|
17
|
Yuan D, Li C, Huang Q, Fu X, Dong H. Current advances in the anti-inflammatory effects and mechanisms of natural polysaccharides. Crit Rev Food Sci Nutr 2022; 63:5890-5910. [PMID: 35021901 DOI: 10.1080/10408398.2022.2025535] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic, multifactorial and inflammatory disease occurring in the colon tract. Bioactive polysaccharides from natural resources have attracted extensive attention due to their safety, accessibility and good bioactivities. In recent years, a variety of natural bioactive polysaccharides have been proven to possess anti-inflammatory effects on treating acute colitis. The objective of this review was to give an up-to-date review on the anti-inflammatory effects and mechanisms of natural polysaccharides on acute colitis. The anti-inflammatory effects of natural polysaccharides on acute colitis concerning clinical symptoms amelioration, colon tissue repairment, anti-oxidative stress alleviation, anti-inflammation, immune regulation, and gut microbiota modulation were comprehensively summarized. In addition, inducible murine models for assessing the anti-inflammatory effects of natural polysaccharides on acute colitis were also concluded. This review will offer the comprehensive understanding of anti-inflammatory mechanisms of natural polysaccharides in acute colitis, and render theoretical basis for the development and application of natural polysaccharides in drug and functional food.
Collapse
Affiliation(s)
- Dan Yuan
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Chao Li
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Qiang Huang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Hao Dong
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
18
|
Li H, Zhang Y, Liu M, Fan C, Feng C, Lu Q, Xiang C, Lu H, Yang X, Wu B, Zou D, Tang W. Targeting PDE4 as a promising therapeutic strategy in chronic ulcerative colitis through modulating mucosal homeostasis. Acta Pharm Sin B 2022; 12:228-245. [PMID: 35127382 PMCID: PMC8799862 DOI: 10.1016/j.apsb.2021.04.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023] Open
Abstract
Phosphodiesterase-4 (PDE4) functions as a catalyzing enzyme targeting hydrolyzation of intracellular cyclic adenosine monophosphate (cAMP) and inhibition of PDE4 has been proven to be a competitive strategy for dermatological and pulmonary inflammation. However, the pathological role of PDE4 and the therapeutic feasibility of PDE4 inhibitors in chronic ulcerative colitis (UC) are less clearly understood. This study introduced apremilast, a breakthrough in discovery of PDE4 inhibitors, to explore the therapeutic capacity in dextran sulfate sodium (DSS)-induced experimental murine chronic UC. In the inflamed tissues, overexpression of PDE4 isoforms and defective cAMP-mediating pathway were firstly identified in chronic UC patients. Therapeutically, inhibition of PDE4 by apremilast modulated cAMP-predominant protein kinase A (PKA)–cAMP-response element binding protein (CREB) signaling and ameliorated the clinical symptoms of chronic UC, as evidenced by improvements on mucosal ulcerations, tissue fibrosis, and inflammatory infiltrations. Consequently, apremilast maintained a normal intestinal physical and chemical barrier function and rebuilt the mucosal homeostasis by interfering with the cross-talk between human epithelial cells and immune cells. Furthermore, we found that apremilast could remap the landscape of gut microbiota and exert regulatory effects on antimicrobial responses and the function of mucus in the gut microenvironment. Taken together, the present study revealed that intervene of PDE4 provided an infusive therapeutic strategy for patients with chronic and relapsing UC.
Collapse
Affiliation(s)
- Heng Li
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Zhang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Moting Liu
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Fan
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chunlan Feng
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qiukai Lu
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caigui Xiang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huimin Lu
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqian Yang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Bing Wu
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Duowu Zou
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Corresponding authors.
| | - Wei Tang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
- Corresponding authors.
| |
Collapse
|
19
|
Rumen Fermentation-Microbiota-Host Gene Expression Interactions to Reveal the Adaptability of Tibetan Sheep in Different Periods. Animals (Basel) 2021; 11:ani11123529. [PMID: 34944301 PMCID: PMC8697948 DOI: 10.3390/ani11123529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 01/03/2023] Open
Abstract
Simple Summary The Qinghai-Tibet Plateau has a unique ecological environment, involving high altitude, low oxygen levels, strong ultraviolet rays, and severe imbalances in seasonal forage supply, which poses a serious threat to the livestock that feeds on natural pastures to maintain their survival. We have carried out a long-term follow-up study on rumen fermentation characteristics, the microbiota, and rumen epithelial gene expression of local Tibetan sheep. Correlation analysis showed that there were interactions among rumen fermentation characteristics, the microbiota, and host gene expression, mainly by adjusting the amino acid metabolism pathway and energy metabolism pathway to improve energy utilization. At the same time, we adjusted the balance of the rumen “core microbiota”, which was regulated to promote the development of rumen and maintain the homeostasis of rumen environment (which relies Tibetan sheep can better adapt to the harsh environment in different periods of the Qinghai-Tibet Plateau). This provides a theoretical basis for the breeding and management of Tibetan sheep on the Qinghai-Tibet Plateau. Abstract As an important ruminant on the Qinghai-Tibet Plateau, Tibetan sheep can maintain their population reproduction rate in the harsh high-altitude environment of low temperature and low oxygen, which relies on their special plateau adaptations mechanism that they have formed for a long time. Microbiomes (known as “second genomes”) are closely related to the nutrient absorption, adaptability, and health of the host. In this study, rumen fermentation characteristics, the microbiota, and rumen epithelial gene expression of Tibetan sheep in various months were analyzed. The results show that the rumen fermentation characteristics of Tibetan sheep differed in different months. The total SCFAs (short-chain fatty acids), acetate, propionate, and butyrate concentrations were highest in October and lowest in June. The CL (cellulase) activity was highest in February, while the ACX (acid xylanase) activity was highest in April. In addition, the diversity and abundance of rumen microbes differed in different months. Bacteroidetes (53.4%) and Firmicutes (27.4%) were the dominant phyla. Prevotella_1 and Rikenellaceae_RC9_gut_group were the dominant genera. The abundance of Prevotella_1 was highest in June (27.8%) and lowest in December (17.8%). In addition, the expression of CLAUDIN4 (Claudin-4) and ZO1 (Zonula occludens 1) was significantly higher in April than in August and December, while the expression of SGLT1 (Sodium glucose linked transporter 1) was highest in August. Correlation analysis showed that there were interactions among rumen fermentation characteristics, the microbiota, and host gene expression, mainly by adjusting the amino acid metabolism pathway and energy metabolism pathway to improve energy utilization. At the same time, we adjusted the balance of the rumen “core microbiota” to promote the development of rumen and maintain the homeostasis of rumen environment, which makes Tibetan sheep better able to adapt to the harsh environment in different periods of the Qinghai-Tibet Plateau.
Collapse
|
20
|
Wang Y, Dykes GA. Direct modulation of the gut microbiota as a therapeutic approach for Alzheimer's disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:14-25. [PMID: 34365962 DOI: 10.2174/1871527320666210806165751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/18/2021] [Accepted: 05/24/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease is a neurodegenerative disease characterized by a progressive decline in memory and cognitive functions. It is a multifactorial disease involving a wide range of pathological factors that are not fully understood. As supported by a growing amount of evidence in recent years, the gut microbiota plays an important role in the pathogenesis of Alzheimer's disease through the brain-gut-microbiota axis. This suggests that direct modulation of the gut microbiota can be a potential therapeutic target for Alzheimer's disease. This review summarizes recent research findings on the modulation of the gut microbiota by probiotic therapies and faecal microbiota transplantation for controlling the pathologies of Alzheimer's disease. Current limitations and future research directions of this field are also discussed.
Collapse
Affiliation(s)
- Yi Wang
- School of Agriculture and Food Sciences, the University of Queensland, Keyhole Road, St Lucia, Queensland 4072. Australia
| | - Gary A Dykes
- School of Agriculture and Food Sciences, the University of Queensland, Keyhole Road, St Lucia, Queensland 4072. Australia
| |
Collapse
|
21
|
Danne C, Rolhion N, Sokol H. Recipient factors in faecal microbiota transplantation: one stool does not fit all. Nat Rev Gastroenterol Hepatol 2021; 18:503-513. [PMID: 33907321 DOI: 10.1038/s41575-021-00441-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/15/2021] [Indexed: 02/08/2023]
Abstract
Faecal microbiota transplantation (FMT) is a promising therapy for chronic diseases associated with gut microbiota alterations. FMT cures 90% of recurrent Clostridioides difficile infections. However, in complex diseases, such as inflammatory bowel disease, irritable bowel syndrome and metabolic syndrome, its efficacy remains variable. It is accepted that donor selection and sample administration are key determinants of FMT success, yet little is known about the recipient factors that affect it. In this Perspective, we discuss the effects of recipient parameters, such as genetics, immunity, microbiota and lifestyle, on donor microbiota engraftment and clinical efficacy. Emerging evidence supports the possibility that controlling inflammation in the recipient intestine might facilitate engraftment by reducing host immune system pressure on the newly transferred microbiota. Deciphering FMT engraftment rules and developing novel therapeutic strategies are priorities to alleviate the burden of chronic diseases associated with an altered gut microbiota such as inflammatory bowel disease.
Collapse
Affiliation(s)
- Camille Danne
- INRA, UMR1319 Micalis & AgroParisTech, Jouy en Josas, France.,Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.,Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, Paris, France
| | - Nathalie Rolhion
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.,Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, Paris, France.,French Group of Fecal Microbiota Transplantation (GFTF), Paris, France
| | - Harry Sokol
- INRA, UMR1319 Micalis & AgroParisTech, Jouy en Josas, France. .,Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France. .,Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, Paris, France. .,French Group of Fecal Microbiota Transplantation (GFTF), Paris, France. .,AP-HP Fecal Microbiota transplantation Center, Saint Antoine Hospital, Paris, France.
| |
Collapse
|
22
|
Lin R, Wang Z, Cao J, Gao T, Dong Y, Chen Y. Role of melatonin in murine "restraint stress"-induced dysfunction of colonic microbiota. J Microbiol 2021; 59:500-512. [PMID: 33630247 DOI: 10.1007/s12275-021-0305-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/16/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023]
Abstract
Intestinal diseases caused by physiological stress have become a severe public health threat worldwide. Disturbances in the gut microbiota-host relationship have been associated with irritable bowel disease (IBD), while melatonin (MT) has anti-inflammatory and antioxidant effects. The objective of this study was to investigate the mechanisms by which MT-mediated protection mitigated stress-induced intestinal microbiota dysbiosis and inflammation. We successfully established a murine restraint stress model with and without MT supplementation. Mice subjected to restraint stress had significantly elevated corticosterone (CORT) levels, decreased MT levels in their plasma, elevated colonic ROS levels and increased bacterial abundance, including Bacteroides and Tyzzerella, in their colon tract, which led to elevated expression of Toll-like receptor (TLR) 2/4, p-P65 and p-IKB. In contrast, supplementation with 20 mg/kg MT reversed the elevation of the plasma CORT levels, downregulated the colon ROS levels and inhibited the changes in the intestinal microbiota induced by restraint stress. These effects, in turn, inhibited the activities of TLR2 and TLR4, p-P65 and p-IκB, and decreased the inflammatory reaction induced by restraint stress. Our results suggested that MT may mitigate "restraint stress"-induced colonic microbiota dysbiosis and intestinal inflammation by inhibiting the activation of the NF-κB pathway.
Collapse
Affiliation(s)
- Rutao Lin
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China
| | - Zixu Wang
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China
| | - Jing Cao
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China
| | - Ting Gao
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China
| | - Yulan Dong
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China.
| | - Yaoxing Chen
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China.
| |
Collapse
|
23
|
Deleu S, Machiels K, Raes J, Verbeke K, Vermeire S. Short chain fatty acids and its producing organisms: An overlooked therapy for IBD? EBioMedicine 2021; 66:103293. [PMID: 33813134 PMCID: PMC8047503 DOI: 10.1016/j.ebiom.2021.103293] [Citation(s) in RCA: 385] [Impact Index Per Article: 96.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/01/2021] [Accepted: 03/07/2021] [Indexed: 02/07/2023] Open
Abstract
The gut microbiome and the intestinal immune system are driving contributors to inflammatory bowel diseases (IBD). Both have an important signalling factor in common: short-chain fatty acids (SCFAs). SCFAs (acetate, propionate and butyrate) are produced by bacterial fermentation in the gut and exert several effects on host metabolism and immune system. This review provides an overview of the current knowledge of these effects, with specific focus on energy metabolism, intestinal barrier, immune system, and disease activity in IBD. To conclude, more research is needed on the cross-feeding mechanisms in the gut microbiome, as well as on the therapeutic potential of SCFAs on different disease models. Also randomized controlled trials and prospective cohort studies should investigate the clinical impact of SCFA administration.
Collapse
Affiliation(s)
- Sara Deleu
- Department of Chronic Diseases, Metabolism & Ageing [CHROMETA], Translational Research Center for Gastrointestinal Disorders [TARGID], KU Leuven, Leuven, Belgium
| | - Kathleen Machiels
- Department of Chronic Diseases, Metabolism & Ageing [CHROMETA], Translational Research Center for Gastrointestinal Disorders [TARGID], KU Leuven, Leuven, Belgium
| | - Jeroen Raes
- Center for Microbiology, VIB, Leuven, Belgium; Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Kristin Verbeke
- Department of Chronic Diseases, Metabolism & Ageing [CHROMETA], Translational Research Center for Gastrointestinal Disorders [TARGID], KU Leuven, Leuven, Belgium
| | - Séverine Vermeire
- Department of Chronic Diseases, Metabolism & Ageing [CHROMETA], Translational Research Center for Gastrointestinal Disorders [TARGID], KU Leuven, Leuven, Belgium; Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium.
| |
Collapse
|
24
|
Olesen SW, Gerardin Y. Re-Evaluating the Evidence for Faecal Microbiota Transplantation 'Super-Donors' in Inflammatory Bowel Disease. J Crohns Colitis 2021; 15:453-461. [PMID: 32808030 DOI: 10.1093/ecco-jcc/jjaa170] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Faecal microbiota transplantation [FMT] is a recommended treatment for recurrent Clostridioides difficile infection, and there is promise that FMT may be effective for conditions such as inflammatory bowel disease [IBD]. Previous FMT clinical trials have considered the possibility of a 'donor effect', that is, that FMT material from different donors has different clinical efficacies. METHODS Here we re-evaluate evidence for donor effects in published FMT clinical trials for IBD. RESULTS In ten of 12 published studies, no statistically significant donor effect was detected when rigorously re-evaluating the original analyses. One study showed statistically significant separation of microbiota composition of pools of donor stool when stratified by patient outcome. One study reported a significant effect but did not have underlying data available for re-evaluation. When quantifying the uncertainty on the magnitude of the donor effect, confidence intervals were large, including both zero donor effects and very substantial donor effects. CONCLUSION Although we found very little evidence for donor effects, the existing data cannot rule out the possibility that donor effects are clinically important. Large clinical trials prospectively designed to detect donor effects are probably needed to determine if donor effects are clinically relevant for IBD.
Collapse
Affiliation(s)
- Scott W Olesen
- OpenBiome, Cambridge, MA, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | |
Collapse
|
25
|
Тикунов АЮ, Морозов ВВ, Швалов АН, Бардашева АВ, Шрайнер ЕВ, Максимова ОА, Волошина ИО, Морозова ВВ, Власов ВВ, Тикунова НВ. [Fecal microbiome change in patients with ulcerative colitis after fecal microbiota transplantation]. Vavilovskii Zhurnal Genet Selektsii 2021; 24:168-175. [PMID: 33659796 PMCID: PMC7716530 DOI: 10.18699/vj20.610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Intestinal human microbiota is a dynamic system that is under the pressures of its host organism and external factors. Microbiota disruption caused by these factors can lead to severe diseases including inflammatory and oncological diseases of the gastrointestinal tract. One of the possible approaches in managing the intestinal microbiota is fecal microbiota transplantation (FT) - transfer of the microbiota from the stool of a healthy donor to the intestinal tract of a recipient patient. Currently, this procedure is recognized as an efficacious method to normalize the intestinal microbiota mainly in inflammatory diseases of the gastrointestinal tract. In Russia, pilot studies of the effectiveness of FT in patients with ulcerative colitis have been conducted for several years, and these studies were started in Novosibirsk. The aim of this study was to assess the change of intestinal microbiome in 20 patients with ulcerative colitis after a single FT procedure. The main method is a comparative analysis of 16S ribosomal RNA sequence libraries constructed using fecal samples obtained from patients with ulcerative colitis before and after FT and sequenced on the Illumina MiSeq platform. The obtained results showed that FT led to an increase in average biodiversity in samples after FT compared to samples before FT; however, the difference was not significant. In the samples studied, the proportion of Firmicutes sequences, the major gastrointestinal microbiota of healthy people, was decreased (~32 % vs. >70 %), while the proportion of Proteobacteria sequences was increased (>9 % vs. <5 %). In some samples collected before FT, sequences of pathogenic Firmicutes and Proteobacteria were detected, including Acinetobacter spp., Enterococcus spp., Klebsiella pneumoniae, Proteus mirabilis, Staphylococcus aureus, Stenotrophomonas maltophylia, Streptococcus spp. In most cases, the proportion of such sequences after FT substantially decreased in appropriate samples. The exception was the Clostridium difficile sequences, which accounted for <0.5 % of the sequences in samples from almost half of the patients and after FT, the share of such C. difficile sequences was significantly reduced only in samples from three patients. It should be noted that the proportion of Lactobacillus spp. increased ten-fold and their species composition significantly expanded. According to the obtained results, a preliminary conclusion can be made that even a single FT procedure can lead to an increase in the biodiversity of the gastrointestinal microbiota in patients and to the optimization of the taxonomic composition of the microbiota.
Collapse
Affiliation(s)
- А Ю Тикунов
- Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, Новосибирск, Россия
| | - В В Морозов
- Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, Новосибирск, Россия
| | - А Н Швалов
- Государственный научный центр вирусологии и биотехнологии «Вектор» Роспотребнадзора Российской Федерации, р. п. Кольцово, Новосибирская область, Россия 3 ООО «Центр персонализированной
| | - А В Бардашева
- Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, Новосибирск, Россия
| | - Е В Шрайнер
- Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, Новосибирск, Россия
| | - О А Максимова
- ООО «Центр персонализированной медицины», Новосибирск, Россия
| | - И О Волошина
- ООО «Центр персонализированной медицины», Новосибирск, Россия
| | - В В Морозова
- Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, Новосибирск, Россия
| | - В В Власов
- Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, Новосибирск, Россия
| | - Н В Тикунова
- Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, Новосибирск, Россия
| |
Collapse
|
26
|
Mocanu V, Rajaruban S, Dang J, Kung JY, Deehan EC, Madsen KL. Repeated Fecal Microbial Transplantations and Antibiotic Pre-Treatment Are Linked to Improved Clinical Response and Remission in Inflammatory Bowel Disease: A Systematic Review and Pooled Proportion Meta-Analysis. J Clin Med 2021; 10:959. [PMID: 33804464 PMCID: PMC7957789 DOI: 10.3390/jcm10050959] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
The response of patients with inflammatory bowel disease (IBD) to fecal microbial transplantation (FMT) has been inconsistent possibly due to variable engraftment of donor microbiota. This failure to engraft has resulted in the use of several different strategies to attempt optimization of the recipient microbiota following FMT. The purpose of our study was to evaluate the effects of two distinct microbial strategies-antibiotic pre-treatment and repeated FMT dosing-on IBD outcomes. A systematic literature review was designed and implemented in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A medical librarian conducted comprehensive searches in MEDLINE, Embase, Scopus, Web of Science Core Collection, and Cochrane Library on 25 November 2019 and updated on 29 January 2021. Primary outcomes of interest included comparing relapse and remission rates in patients with IBD for a single FMT dose, repeated FMT dosages, and antibiotic pre-treatment groups. Twenty-eight articles (six randomized trials, 20 cohort trials, two case series) containing 976 patients were identified. Meta-analysis revealed that both repeated FMT and antibiotic pre-treatment strategies demonstrated improvements in pooled response and remission rates. These clinical improvements were associated with increases in fecal microbiota richness and α-diversity, as well as the enrichment of several short-chain fatty acid (SCFA)-producing anaerobes including Bifidobacterium, Roseburia, Lachnospiraceae, Prevotella, Ruminococcus, and Clostridium related species.
Collapse
Affiliation(s)
- Valentin Mocanu
- Department of Surgery, University of Alberta Hospital, University of Alberta, 8440 112 Street NW, Edmonton, AB T6G 2B7, Canada;
| | - Sabitha Rajaruban
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2E1, Canada; (S.R.); (E.C.D.); (K.L.M.)
| | - Jerry Dang
- Department of Surgery, University of Alberta Hospital, University of Alberta, 8440 112 Street NW, Edmonton, AB T6G 2B7, Canada;
| | - Janice Y. Kung
- John W. Scott Health Sciences Library, University of Alberta, 2K3.28 Walter C. Mackenzie Health Sciences Centre, Edmonton, AB T6G 2R7, Canada;
| | - Edward C. Deehan
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2E1, Canada; (S.R.); (E.C.D.); (K.L.M.)
| | - Karen L. Madsen
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2E1, Canada; (S.R.); (E.C.D.); (K.L.M.)
| |
Collapse
|
27
|
Su Y, Li X, Li D, Sun J. Fecal Microbiota Transplantation Shows Marked Shifts in the Multi-Omic Profiles of Porcine Post-weaning Diarrhea. Front Microbiol 2021; 12:619460. [PMID: 33708182 PMCID: PMC7940351 DOI: 10.3389/fmicb.2021.619460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/03/2021] [Indexed: 12/14/2022] Open
Abstract
Weaning is the most critical phase in pig production and is generally associated with significant impacts on intestinal morphology, structure, physiology, and immune responses, which can lead to subsequent production inefficiencies such as decreases in growth and intake and increases in morbidity and mortality. In the present study, we attempted to explore the effects of fecal microbiota transplantation (FMT) on the fecal microbiota, fecal metabolites, and transcriptome in the jejunum, colon, liver, spleen, and oral mucosa in piglets with post-weaning diarrhea and to evaluate the therapeutic potential of FMT in piglets with post-weaning diarrhea. We found that FMT partially relieved the symptoms of diarrhea in piglets, and microbiota analysis results indicated that unclassified_f_Prevotellaceae was identified as an FMT-associated bacterial family at 66 day and that the Shannon index in the healthy group at 34, 38, and 66 days were higher than that at 21 day. Functional enrichment analysis of the oral mucosa, liver, jejunum, and colon showed that most of the differentially expressed genes (DEGs) were enriched in the terms metabolic process, immune response, and inflammatory response. Moreover, the enriched fecal metabolites focused mostly on apoptosis, beta-alanine metabolism, glutathione metabolism, and sphingolipid metabolism. We tried to detect specific "metabolite-bacterium" pairs, such as "g_Catenisphaera-stigmastentriol," "p_Bacteroidetes-(6beta,22E)-6-hydroxystigmasta-4,22-dien-3-one," and "g_Prevotellaceae_NK3B31_group-stenocereol." Overall, the present study provides a theoretical basis for the alleviation of weaning stress and contributes to the realization of effective and sustainable application of FMT in the pig production industry in the future.
Collapse
Affiliation(s)
- Yuan Su
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaolei Li
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Chongqing Academy of Animal Sciences, Chongqing, China
| | - Diyan Li
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jing Sun
- Chongqing Academy of Animal Sciences, Chongqing, China.,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China.,Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| |
Collapse
|
28
|
Michaudel C, Sokol H. The Gut Microbiota at the Service of Immunometabolism. Cell Metab 2020; 32:514-523. [PMID: 32946809 DOI: 10.1016/j.cmet.2020.09.004] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/10/2020] [Accepted: 08/27/2020] [Indexed: 01/10/2023]
Abstract
The gut microbiota is implicated in immune system functions. Regulation of the metabolic processes occurring in immune cells is crucial for the maintenance of homeostasis and immunopathogenesis. Emerging data demonstrate that the gut microbiota is an actor in immunometabolism, notably through the effect of metabolites such as short-chain fatty acids, bile acids, and tryptophan metabolites. In this Perspective, we discuss the impact of the gut microbiota on the intracellular metabolism of the different subtypes of immune cells, including intestinal epithelial cells. Besides the effects on health, we discuss the potential consequences in infection context and inflammatory bowel diseases.
Collapse
Affiliation(s)
- Chloé Michaudel
- INRA, UMR1319 Micalis and AgroParisTech, Jouy en Josas, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Harry Sokol
- INRA, UMR1319 Micalis and AgroParisTech, Jouy en Josas, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France; Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, 75012 Paris, France.
| |
Collapse
|
29
|
Wang Z, Liang Y, Yu J, Zhang D, Ren L, Zhang Z, Liu Y, Wu X, Liu L, Tang Z. Guchang Zhixie Wan protects mice against dextran sulfate sodium-induced colitis through modulating the gut microbiota in colon. JOURNAL OF ETHNOPHARMACOLOGY 2020; 260:112991. [PMID: 32442592 DOI: 10.1016/j.jep.2020.112991] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 05/07/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Guchang Zhixie Wan (GC) is a traditional Chinese patent medicine used in the treatment of colitis in clinical trials. Though the notable effect of GC on colitis, the concrete mechanism of GC remain elusive. Emerging evidence showed that the imbalances of inflammatory cytokines and gut microbiota were both closely related to the initiation and progression of colitis. AIM OF THE STUDY To elucidate the relationship between the protective effects of GC on colitis and gut microbiota. MATERIALS AND METHODS Male Kunming (KM) mice were enrolled in our work to establish colitis model induced by dextran sulfate sodium (DSS). The colitis mice were randomly divided into different groups and treated orally with 125 mg/kg of sulfasalazine (positive control) and 25, 50, 100 mg/kg of GC for 7 days, respectively. Inflammation cytokines of IL-1β, IL-4, IL-6, IL-8, IL-11, IL-12 and TNF-α were detected by ELISA analysis and the histological changes were detected by H&E staining. Gut microbiota diversity was analyzed by 16S rDNA sequencing. Metagenomes analysis were also conducted to reflect the protective effects of GC on colitis. RESULTS The results of CAS (Clinical Activity Score) confirmed the protective effects of GC on colitis. After administration of GC, the levels of pro-inflammatory cytokines IL-1β, IL-6, IL-8, IL-11, IL-12 and TNF-α were all decreased while the anti-inflammatory cytokines IL-4 was slightly increased, indicating that GC could down regulate pro-inflammatory cytokines. H&E staining revealed that GC could improve the histopathological structure of the colon tissue. The results of 16S rDNA sequences analysis showed that GC could decrease the relative abundance of Turicibacter and increase the relative abundance of Ruminococcaceae_UCG-005. CONCLUSION GC greatly improve the health condition of colitis mice induced by DSS through improving the imbalances of inflammatory cytokines and gut microbiota.
Collapse
Affiliation(s)
- Zheng Wang
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, 712083, China.
| | - Yanni Liang
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, 712083, China.
| | - Jingao Yu
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, 712083, China.
| | - Dongbo Zhang
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, 712083, China.
| | - Langlang Ren
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, 712083, China.
| | - Zhen Zhang
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, 712083, China.
| | - Yanru Liu
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, 712083, China.
| | - Xue Wu
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, 712083, China.
| | - Li Liu
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, 712083, China.
| | - Zhishu Tang
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, 712083, China.
| |
Collapse
|
30
|
Quagliariello A, Del Chierico F, Reddel S, Russo A, Onetti Muda A, D’Argenio P, Angelino G, Romeo EF, Dall’Oglio L, De Angelis P, Putignani L. Fecal Microbiota Transplant in Two Ulcerative Colitis Pediatric Cases: Gut Microbiota and Clinical Course Correlations. Microorganisms 2020; 8:microorganisms8101486. [PMID: 32992653 PMCID: PMC7599854 DOI: 10.3390/microorganisms8101486] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/11/2020] [Accepted: 09/23/2020] [Indexed: 01/10/2023] Open
Abstract
Fecal microbiota transplantation (FMT) is a promising strategy in the management of inflammatory bowel disease (IBD). The clinical effects of this practice are still largely unknown and unpredictable. In this study, two children affected by mild and moderate ulcerative colitis (UC), were pre- and post-FMT monitored for clinical conditions and gut bacterial ecology. Microbiota profiling relied on receipts’ time-point profiles, donors and control cohorts’ baseline descriptions. After FMT, the improvement of clinical conditions was recorded for both patients. After 12 months, the mild UC patient was in clinical remission, while the moderate UC patient, after 12 weeks, had a clinical worsening. Ecological analyses highlighted an increase in microbiota richness and phylogenetic distance after FMT. This increase was mainly due to Collinsella aerofaciens and Eubacterium biforme, inherited by respective donors. Moreover, a decrease of Proteus and Blautia producta, and the increment of Parabacteroides, Mogibacteriaceae, Bacteroides eggerthi, Bacteroides plebeius, Ruminococcus bromii, and BBacteroidesovatus were associated with remission of the patient’s condition. FMT results in a long-term response in mild UC, while in the moderate form there is probably need for multiple FMT administrations. FMT leads to a decrease in potential pathogens and an increase in microorganisms correlated to remission status.
Collapse
Affiliation(s)
- Andrea Quagliariello
- Area of Genetics and Rare Diseases, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.Q.); (S.R.)
| | - Federica Del Chierico
- Area of Genetics and Rare Diseases, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.Q.); (S.R.)
- Correspondence: ; Tel.: +39-0668594061; Fax: +39-0668592904
| | - Sofia Reddel
- Area of Genetics and Rare Diseases, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.Q.); (S.R.)
| | - Alessandra Russo
- Department of Laboratories, Unit of Parasitology, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Andrea Onetti Muda
- Department of Laboratories, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Patrizia D’Argenio
- Academic Department of Pediatrics, Unit of Immune and Infectious Diseases, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Giulia Angelino
- Digestive Surgery and Endoscopy Unit, Bambino Gesù Children’s Hospital IRCCS, 00165 Rome, Italy; (G.A.); (E.F.R.); (L.D.); (P.D.A.)
| | - Erminia Francesca Romeo
- Digestive Surgery and Endoscopy Unit, Bambino Gesù Children’s Hospital IRCCS, 00165 Rome, Italy; (G.A.); (E.F.R.); (L.D.); (P.D.A.)
| | - Luigi Dall’Oglio
- Digestive Surgery and Endoscopy Unit, Bambino Gesù Children’s Hospital IRCCS, 00165 Rome, Italy; (G.A.); (E.F.R.); (L.D.); (P.D.A.)
| | - Paola De Angelis
- Digestive Surgery and Endoscopy Unit, Bambino Gesù Children’s Hospital IRCCS, 00165 Rome, Italy; (G.A.); (E.F.R.); (L.D.); (P.D.A.)
| | - Lorenza Putignani
- Department of Laboratories, Unit of Parasitology and Area of Genetics and Rare Diseases, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | | |
Collapse
|
31
|
Shabat Y, Lichtenstein Y, Ilan Y. Short-Term Cohousing of Sick with Healthy or Treated Mice Alleviates the Inflammatory Response and Liver Damage. Inflammation 2020; 44:518-525. [PMID: 32978699 DOI: 10.1007/s10753-020-01348-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/19/2020] [Accepted: 09/22/2020] [Indexed: 01/08/2023]
Abstract
Cohousing of sick with healthy or treated animals is based on the concept of sharing an intestinal ecosystem and coprophagy, the consumption of feces, which includes sharing of the microbiome and of active drug metabolites secreted in the feces or urine. To develop a model for short-term cohousing, enabling the study of the effect of sharing an ecosystem on inflammatory states. To determine the impact of cohousing of sick and healthy mice on the immune-mediated disorders, mice injected with concanavalin A (ConA) were cohoused with healthy or sick mice or with steroid-treated or untreated mice. To determine the effect of cohousing on acetaminophen (APAP)-induced liver damage, APAP-injected mice were cohoused with N-acetyl-cysteine (NAC)-treated or untreated mice. In the ConA-induced immune-mediated hepatitis model, cohousing of sick with healthy mice was associated with the alleviation of liver damage in sick animals. Similarly, a significant decrease in serum ALT was noted in ConA-injected mice kept in the same cage as ConA-injected mice treated with steroids. A trend for reduction in liver enzymes in APAP-injected mice was observed upon cohousing with NAC-treated animals. Cohousing of sick mice with healthy or treated mice ameliorated the immune-mediated inflammatory state induced by ConA and APAP. These models for liver damage can serve as biological systems for determining the effects of alterations in the ecosystem on the immune system.
Collapse
Affiliation(s)
- Yehudit Shabat
- Gastroenterology and Liver Units, Department of Medicine, Hebrew University-Hadassah Medical Center, Ein-Kerem, POB 1200, IL91120, Jerusalem, Israel
| | - Yoav Lichtenstein
- Gastroenterology and Liver Units, Department of Medicine, Hebrew University-Hadassah Medical Center, Ein-Kerem, POB 1200, IL91120, Jerusalem, Israel
| | - Yaron Ilan
- Gastroenterology and Liver Units, Department of Medicine, Hebrew University-Hadassah Medical Center, Ein-Kerem, POB 1200, IL91120, Jerusalem, Israel.
| |
Collapse
|
32
|
Abstract
Periodontitis is a complex disease: (a) various causative factors play a role simultaneously and interact with each other; and (b) the disease is episodic in nature, and bursts of disease activity can be recognized, ie, the disease develops and cycles in a nonlinear fashion. We recognize that various causative factors determine the immune blueprint and, consequently, the immune fitness of a subject. Normally, the host lives in a state of homeostasis or symbiosis with the oral microbiome; however, disturbances in homeostatic balance can occur, because of an aberrant host response (inherited and/or acquired during life). This imbalance results from hyper- or hyporesponsiveness and/or lack of sufficient resolution of inflammation, which in turn is responsible for much of the disease destruction seen in periodontitis. The control of this destruction by anti-inflammatory processes and proresolution processes limits the destruction to the tissues surrounding the teeth. The local inflammatory processes can also become systemic, which in turn affect organs such as the heart. Gingival inflammation also elicits changes in the ecology of the subgingival environment providing optimal conditions for the outgrowth of gram-negative, anaerobic species, which become pathobionts and can propagate periodontal inflammation and can further negatively impact immune fitness. The factors that determine immune fitness are often the same factors that determine the response to the resident biofilm, and are clustered as follows: (a) genetic and epigenetic factors; (b) lifestyle factors, such as smoking, diet, and psychosocial conditions; (c) comorbidities, such as diabetes; and (d) local and dental factors, as well as randomly determined factors (stochasticity). Of critical importance are the pathobionts in a dysbiotic biofilm that drive the viscious cycle. Focusing on genetic factors, currently variants in at least 65 genes have been suggested as being associated with periodontitis based on genome-wide association studies and candidate gene case control studies. These studies have found pleiotropy between periodontitis and cardiovascular diseases. Most of these studies point to potential pathways in the pathogenesis of periodontal disease. Also, most contribute to a small portion of the total risk profile of periodontitis, often limited to specific racial and ethnic groups. To date, 4 genetic loci are shared between atherosclerotic cardiovascular diseases and periodontitis, ie, CDKN2B-AS1(ANRIL), a conserved noncoding element within CAMTA1 upstream of VAMP3, PLG, and a haplotype block at the VAMP8 locus. The shared genes suggest that periodontitis is not causally related to atherosclerotic diseases, but rather both conditions are sequelae of similar (the same?) aberrant inflammatory pathways. In addition to variations in genomic sequences, epigenetic modifications of DNA can affect the genetic blueprint of the host responses. This emerging field will yield new valuable information about susceptibility to periodontitis and subsequent persisting inflammatory reactions in periodontitis. Further studies are required to verify and expand our knowledge base before final cause and effect conclusions about the role of inflammation and genetic factors in periodontitis can be made.
Collapse
Affiliation(s)
- Bruno G Loos
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Thomas E Van Dyke
- Center for Clinical and Translational Research, Forsyth Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
33
|
Integrated omics profiling of dextran sodium sulfate-induced colitic mice supplemented with Wolfberry ( Lycium barbarum). NPJ Sci Food 2020; 4:5. [PMID: 32258419 PMCID: PMC7109062 DOI: 10.1038/s41538-020-0065-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 02/14/2020] [Indexed: 12/11/2022] Open
Abstract
We used a multi-omics profiling approach to investigate the suppressive effects of 2% Wolfberry (WOL)-enriched diets on dextran sodium sulfate (DSS)-induced colitis in mice. It was observed that in mice fed the WOL diet, the disease activity index, colon shortening, plasma concentrations of matrix metalloproteinase-3 and relative mesenteric fat weight were significantly improved as compared to the DSS group. Results from colon transcriptome and proteome profiles showed that WOL supplementation significantly ameliorated the expression of genes and proteins associated with the integrity of the colonic mucosal wall and colonic inflammation. Based on the hepatic transcriptome, proteome and metabolome data, genes involved in fatty acid metabolism, proteins involved in inflammation and metabolites related to glycolysis were downregulated in WOL mice, leading to lowered inflammation and changes in these molecules may have led to improvement in body weight loss. The integrated nutrigenomic approach thus revealed the molecular mechanisms underlying the ameliorative effect of whole WOL fruit consumption on inflammatory bowel disease.
Collapse
|
34
|
Dang X, Xu M, Liu D, Zhou D, Yang W. Assessing the efficacy and safety of fecal microbiota transplantation and probiotic VSL#3 for active ulcerative colitis: A systematic review and meta-analysis. PLoS One 2020; 15:e0228846. [PMID: 32182248 PMCID: PMC7077802 DOI: 10.1371/journal.pone.0228846] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Fecal microbiota transplantation is an effective treatment for many gastrointestinal diseases, such as Clostridium difficile infection and inflammatory bowel disease, especially ulcerative colitis. Changes in colonic microflora may play an important role in the pathogenesis of ulcerative colitis, and improvements in the intestinal microflora may relieve the disease. Fecal bacterial transplants and oral probiotics are becoming important ways to relieve active ulcerative colitis. PURPOSE This systematic review with meta-analysis compared the efficacy and safety of basic treatment combined with fecal microbiota transplantation or mixed probiotics therapy in relieving mild to moderate ulcerative colitis. METHODS The PubMed, Embase, and Cochrane libraries (updated September 2019) were searched to identify randomized, placebo-controlled, or head-to-head trials assessing fecal microbiota transplantation or probiotic VSL#3 as induction therapy in active ulcerative colitis. We analyze data using the R program to obtain evidence of direct comparison and to generate intermediate variables for indirect treatment comparisons. RESULTS Seven randomized, double-blind, placebo-controlled trials were used as the sources of the induction data. All treatments were superior to placebo. In terms of clinical remission and clinical response to active ulcerative colitis, direct comparisons showed fecal microbiota transplantation (OR = 3.47, 95% CI = 1.93-6.25) (OR = 2.48, 95% CI = 1.18-5.21) and mixed probiotics VSL#3 (OR = 2.40, 95% CI = 1.49-3.88) (OR = 3.09, 95% CI = 1.53-6.25) to have better effects than the placebo. Indirect comparison showed fecal microbiota transplantation and probiotic VSL#3 did not reach statistical significance either in clinical remission (RR = 1.20, 95% CI = 0.70-2.06) or clinical response (RR = 0.95, 95% CI = 0.62-1.45). In terms of safety, fecal microbiota transplantation (OR = 1.15, 95% CI = 0.51-2.61) and VSL #3 (OR = 0.90, 95% CI = 0.33-2.49) showed no statistically significant increase in adverse events compared with the control group. In terms of serious adverse events, there was no statistical difference between the fecal microbiota transplantation group and the control group (OR = 1.29, 95% CI = 0.46-3.57). The probiotics VSL#3 seems more safer than fecal microbiota transplantation, because serious adverse events were not reported in the VSL#3 articles. CONCLUSIONS Fecal microbiota transplantation or mixed probiotics VSL#3 achieved good results in clinical remission and clinical response in active ulcerative colitis, and there was no increased risk of adverse reactions. There was no statistical difference between the therapeutic effect of fecal microbiota transplantation and that of mixed probiotics VSL#3. However, the use of fecal microbiota transplantation and probiotics still has many unresolved problems in clinical applications, and more randomized controlled trials are required to confirm its efficacy.
Collapse
Affiliation(s)
- Xiaofei Dang
- Department of Clinical Microbiology, Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Mingjie Xu
- Department of Clinical Microbiology, Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Duanrui Liu
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Dajie Zhou
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Weihua Yang
- Department of Clinical Microbiology, Medical Research & Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
35
|
Sokol H, Landman C, Seksik P, Berard L, Montil M, Nion-Larmurier I, Bourrier A, Le Gall G, Lalande V, De Rougemont A, Kirchgesner J, Daguenel A, Cachanado M, Rousseau A, Drouet É, Rosenzwajg M, Hagege H, Dray X, Klatzman D, Marteau P, Beaugerie L, Simon T. Fecal microbiota transplantation to maintain remission in Crohn's disease: a pilot randomized controlled study. MICROBIOME 2020; 8:12. [PMID: 32014035 PMCID: PMC6998149 DOI: 10.1186/s40168-020-0792-5] [Citation(s) in RCA: 235] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/19/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND The role of the gut microbiota in Crohn's disease (CD) is established and fecal microbiota transplantation (FMT) is an attractive therapeutic strategy. No randomized controlled clinical trial results are available. We performed a randomized, single-blind, sham-controlled pilot trial of FMT in adults with colonic or ileo-colonic CD. METHOD Patients enrolled while in flare received oral corticosteroid. Once in clinical remission, patients were randomized to receive either FMT or sham transplantation during a colonoscopy. Corticosteroids were tapered and a second colonoscopy was performed at week 6. The primary endpoint was the implantation of the donor microbiota at week 6 (Sorensen index > 0.6). RESULTS Eight patients received FMT and nine sham transplantation. None of the patients reached the primary endpoint. The steroid-free clinical remission rate at 10 and 24 weeks was 44.4% (4/9) and 33.3% (3/9) in the sham transplantation group and 87.5% (7/8) and 50.0% (4/8; one patient loss of follow-up while in remission at week 12 and considered in flare at week 24) in the FMT group. Crohn's Disease Endoscopic Index of Severity decreased 6 weeks after FMT (p = 0.03) but not after sham transplantation (p = 0.8). Conversely, the CRP level increased 6 weeks after sham transplantation (p = 0.008) but not after FMT (p = 0.5). Absence of donor microbiota engraftment was associated with flare. No safety signal was identified. CONCLUSION The primary endpoint was not reached for any patient. In this pilot study, higher colonization by donor microbiota was associated with maintenance of remission. These results must be confirmed in larger studies (NCT02097797). Video abstract.
Collapse
Affiliation(s)
- Harry Sokol
- Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint Antoine, Service de Gastroenterologie, Sorbonne Université, Inserm, 75012, Paris, France.
- Department of Gastroenterology, Saint Antoine Hospital, Assitance Publique-Hopitaux de Paris (APHP), 184 rue du Faubourg Saint-Antoine, 75571, Paris, CEDEX 12, France.
- INRA, UMR1319 Micalis & AgroParisTech, Jouy en Josas, France.
- French Group of Fecal Transplantation (GFTF), Paris, France.
- Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Paris, France.
| | - Cecilia Landman
- Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint Antoine, Service de Gastroenterologie, Sorbonne Université, Inserm, 75012, Paris, France
- Department of Gastroenterology, Saint Antoine Hospital, Assitance Publique-Hopitaux de Paris (APHP), 184 rue du Faubourg Saint-Antoine, 75571, Paris, CEDEX 12, France
- French Group of Fecal Transplantation (GFTF), Paris, France
| | - Philippe Seksik
- Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint Antoine, Service de Gastroenterologie, Sorbonne Université, Inserm, 75012, Paris, France
- Department of Gastroenterology, Saint Antoine Hospital, Assitance Publique-Hopitaux de Paris (APHP), 184 rue du Faubourg Saint-Antoine, 75571, Paris, CEDEX 12, France
- French Group of Fecal Transplantation (GFTF), Paris, France
- Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Paris, France
| | - Laurence Berard
- Clinical Research Platform (URC-CRC-CRB), AP-HP Saint-Antoine Hospital, Paris, France
| | - Mélissa Montil
- Clinical Research Platform (URC-CRC-CRB), AP-HP Saint-Antoine Hospital, Paris, France
| | - Isabelle Nion-Larmurier
- Department of Gastroenterology, Saint Antoine Hospital, Assitance Publique-Hopitaux de Paris (APHP), 184 rue du Faubourg Saint-Antoine, 75571, Paris, CEDEX 12, France
| | - Anne Bourrier
- Department of Gastroenterology, Saint Antoine Hospital, Assitance Publique-Hopitaux de Paris (APHP), 184 rue du Faubourg Saint-Antoine, 75571, Paris, CEDEX 12, France
| | - Guillaume Le Gall
- Department of Gastroenterology, Saint Antoine Hospital, Assitance Publique-Hopitaux de Paris (APHP), 184 rue du Faubourg Saint-Antoine, 75571, Paris, CEDEX 12, France
| | - Valérie Lalande
- Department of Microbiology, Saint Antoine Hospital, Assitance Publique-Hopitaux de Paris (APHP), Paris, France
| | - Alexis De Rougemont
- National reference center for enteric virus, Virology laboratory, CHU de Dijon, France; UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
| | - Julien Kirchgesner
- Department of Gastroenterology, Saint Antoine Hospital, Assitance Publique-Hopitaux de Paris (APHP), 184 rue du Faubourg Saint-Antoine, 75571, Paris, CEDEX 12, France
| | - Anne Daguenel
- Department of Pharmacy, Saint Antoine Hospital, Assitance Publique-Hopitaux de Paris (APHP), Paris, France
| | - Marine Cachanado
- Clinical Research Platform (URC-CRC-CRB), AP-HP Saint-Antoine Hospital, Paris, France
| | - Alexandra Rousseau
- Clinical Research Platform (URC-CRC-CRB), AP-HP Saint-Antoine Hospital, Paris, France
| | - Élodie Drouet
- Clinical Research Platform (URC-CRC-CRB), AP-HP Saint-Antoine Hospital, Paris, France
| | - Michelle Rosenzwajg
- Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Paris, France
- Immunology-Immunopathology-Immunotherapy (I3), Sorbonne University-UPMC Univ Paris 06, INSERM UMR S959, 75005, Paris, France
- Biotherapy (CIC-BTi), Pitié- Salpêtrière Hospital, AP-HP, 75013, Paris, France
| | - Hervé Hagege
- Department of Gastroenterology, CHI Créteil, Créteil, France
| | - Xavier Dray
- Department of Hepato-Gastroenterology, APHP, Saint Antoine Hospital, Sorbonne University, Paris, France
| | - David Klatzman
- Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Paris, France
- Immunology-Immunopathology-Immunotherapy (I3), Sorbonne University-UPMC Univ Paris 06, INSERM UMR S959, 75005, Paris, France
- Biotherapy (CIC-BTi), Pitié- Salpêtrière Hospital, AP-HP, 75013, Paris, France
| | - Philippe Marteau
- Department of Hepato-Gastroenterology, APHP, Saint Antoine Hospital, Sorbonne University, Paris, France
| | - Laurent Beaugerie
- Department of Gastroenterology, Saint Antoine Hospital, Assitance Publique-Hopitaux de Paris (APHP), 184 rue du Faubourg Saint-Antoine, 75571, Paris, CEDEX 12, France
- Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Paris, France
| | - Tabassome Simon
- Clinical Research Platform (URC-CRC-CRB), AP-HP Saint-Antoine Hospital, Paris, France
- Department of Clinical Pharmacology, APHP, Saint Antoine Hospital, Paris, France
| |
Collapse
|
36
|
Lleal M, Sarrabayrouse G, Willamil J, Santiago A, Pozuelo M, Manichanh C. A single faecal microbiota transplantation modulates the microbiome and improves clinical manifestations in a rat model of colitis. EBioMedicine 2019; 48:630-641. [PMID: 31628021 PMCID: PMC6838378 DOI: 10.1016/j.ebiom.2019.10.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 12/13/2022] Open
Abstract
Background Faecal microbiota transplantation (FMT) is a novel potential therapy for inflammatory bowel diseases, but it is poorly characterised. Methods We evaluated the performance of the mouse and rat as a pre-clinical model for human microbiota engraftment. We then characterised the effect of a single human stool transfer (HST) on a humanised model of DSS-induced colitis. Colonic and faecal microbial communities were analysed using the 16S rRNA approach and clinical manifestations were assessed in a longitudinal setting. Findings The microbial community of rats showed greater similarity to that of humans, while the microbiome of mice showed less similarity to that of humans. Moreover, rats captured more human microbial species than mice after a single HST. Using the rat model, we showed that HST compensated faecal dysbiosis by restoring alpha-diversity and by increasing the relative abundance of health-related microbial genera. To some extent, HST also modulated the microbial composition of colonic tissue. These faecal and colonic microbial communities alterations led to a relative restoration of colon length, and a significant decrease in both epithelium damage and disease severity. Remarkably, stopping inflammation by removing DSS before HST caused a faster and greater recovery of both microbiome and clinical manifestation features. Interpretation Our results indicate that the rat outperforms the mouse as a model for human microbiota engraftment and show that the efficacy of HST can be enhanced when inflammation stimulation is withdrawn. Finally, our findings support a new therapeutic strategy based on the use FMT combined with anti-inflammatory drugs.
Collapse
Affiliation(s)
- Marina Lleal
- Department of Gastroenterology, Vall d'Hebron Research Institute, Barcelona, Spain
| | | | - Joseane Willamil
- Department of Gastroenterology, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Alba Santiago
- Department of Gastroenterology, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Marta Pozuelo
- Department of Gastroenterology, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Chaysavanh Manichanh
- Department of Gastroenterology, Vall d'Hebron Research Institute, Barcelona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
37
|
Breyner NM, Vilas Boas PB, Fernandes G, de Carvalho RD, Rochat T, Michel ML, Chain F, Sokol H, de Azevedo M, Myioshi A, Azevedo VA, Langella P, Bermúdez-Humarán LG, Chatel JM. Oral delivery of pancreatitis-associated protein by Lactococcus lactis displays protective effects in dinitro-benzenesulfonic-acid-induced colitis model and is able to modulate the composition of the microbiota. Environ Microbiol 2019; 21:4020-4031. [PMID: 31325218 PMCID: PMC6899824 DOI: 10.1111/1462-2920.14748] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 07/14/2019] [Indexed: 12/26/2022]
Abstract
Antimicrobial peptides secreted by intestinal immune and epithelial cells are important effectors of innate immunity. They play an essential role in the maintenance of intestinal homeostasis by limiting microbial epithelium interactions and preventing unnecessary microbe‐driven inflammation. Pancreatitis‐associated protein (PAP) belongs to Regenerating islet‐derived III proteins family and is a C‐type (Ca+2 dependent) lectin. PAP protein plays a protective effect presenting anti‐inflammatory properties able to reduce the severity of colitis, preserving gut barrier and epithelial inflammation. Here, we sought to determine whether PAP delivered at intestinal lumen by recombinant Lactococcus lactis strain (LL‐PAP) before and after chemically induced colitis is able to reduce the severity in two models of colitis. After construction and characterization of our recombinant strains, we tested their effects in dinitro‐benzenesulfonic‐acid (DNBS) and Dextran sulfate sodium (DSS) colitis model. After the DNBS challenge, mice treated with LL‐PAP presented less severe colitis compared with PBS and LL‐empty‐treated mice groups. After the DSS challenge, no protective effects of LL‐PAP could be detected. We determined that after 5 days administration, LL‐PAP increase butyrate producer's bacteria, especially Eubacterium plexicaudatum. Based on our findings, we hypothesize that a treatment with LL‐PAP shifts the microbiota preventing the severity of colon inflammation in DNBS colitis model. These protective roles of LL‐PAP in DNBS colitis model might be through intestinal microbiota modulation.
Collapse
Affiliation(s)
- Natalia M Breyner
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,Federal University of Minas Gerais (UFMG-ICB), Belo Horizonte, MG, Brazil
| | - Priscilla Bagano Vilas Boas
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,Federal University of Minas Gerais (UFMG-ICB), Belo Horizonte, MG, Brazil
| | | | | | | | - Marie-Laure Michel
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Florian Chain
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Harry Sokol
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Marcela de Azevedo
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Anderson Myioshi
- Federal University of Minas Gerais (UFMG-ICB), Belo Horizonte, MG, Brazil
| | - Vasco A Azevedo
- Federal University of Minas Gerais (UFMG-ICB), Belo Horizonte, MG, Brazil
| | - Philippe Langella
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Luis G Bermúdez-Humarán
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Jean-Marc Chatel
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| |
Collapse
|
38
|
Ji J, Ge X, Chen Y, Zhu B, Wu Q, Zhang J, Shan J, Cheng H, Shi L. Daphnetin ameliorates experimental colitis by modulating microbiota composition and T reg/T h17 balance. FASEB J 2019; 33:9308-9322. [PMID: 31145641 DOI: 10.1096/fj.201802659rr] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel diseases (IBDs) are characterized by chronic pathologies associated with extensive gut dysbiosis and intestinal inflammation. Hence, endeavors to improve the inflammatory pathology by manipulating gut microbiota are ongoing. Daphnetin (DAPH) is a coumarin derivative extracted from Daphne odora var with anti-inflammatory and immune-regulatory properties that has been widely used in treating inflammatory disorders. Herein, we showed that DAPH remarkably alleviated experimental colitis by reducing colonic inflammation, improving colonic integrity, and reestablishing immune and metabolic homeostasis in the inflicted intestines. Our analysis showed that DAPH modified the composition of gut microbiota and altered the metabolic profiles in dextran sulfate sodium-treated mice. In particular, this agent significantly elevated the abundance of short-chain fatty acid (SCFA)-producing gut microbiota, causatively related with the enhanced development of Treg cells and the reduced proinflammatory Th17 cell differentiation. More critically, the protective effect of DAPH was shown to be transmissible among colitic mice through cohousing or fecal microbiota transplantation, further substantiating the importance of SCFA-producing gut microbiota in DAPH action. We thus for the first time reveal the potential of DAPH in resetting the gut microbiome and reestablishing immune homeostasis in colitic mice, which may have clinical implications for treating IBD.-Ji, J., Ge, X., Chen, Y., Zhu, B., Wu, Q., Zhang, J., Shan, J., Cheng, H., Shi, L. Daphnetin ameliorates experimental colitis by modulating microbiota composition and Treg/Th17 balance.
Collapse
Affiliation(s)
- Jianjian Ji
- Key Laboratory of Inflammation and Immunoregulation, School of Medical and Life Science, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoyin Ge
- Key Laboratory of Inflammation and Immunoregulation, School of Medical and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yugen Chen
- Department of Colorectal Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Bo Zhu
- Key Laboratory of Inflammation and Immunoregulation, School of Medical and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qinan Wu
- Collaborative Innovation Centers of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Junfeng Zhang
- Key Laboratory of Inflammation and Immunoregulation, School of Medical and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Haibo Cheng
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liyun Shi
- Key Laboratory of Inflammation and Immunoregulation, School of Medical and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
39
|
The Clinical and Steroid-Free Remission of Fecal Microbiota Transplantation to Patients with Ulcerative Colitis: A Meta-Analysis. Gastroenterol Res Pract 2019; 2019:1287493. [PMID: 31178906 PMCID: PMC6501134 DOI: 10.1155/2019/1287493] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/14/2019] [Accepted: 03/17/2019] [Indexed: 12/26/2022] Open
Abstract
Background and Purpose Since the first case of fecal microbiota transplantation for the treatment of ulcerative colitis was described in the year 1989, there have been an increment of case reports, case series, cohort studies, and randomized controlled trials (RCTs). In this study, we were going to investigate general clinical remission, clinical response, and steroid-free remission of fecal microbiota transplantation. Methods We searched Ovid Medline, Ovid EMBASE, and Cochrane Library, focusing prospective studies including randomized controlled trials and cohort studies. The outcomes were clinical remission, clinical response, steroid-free remission, and serious adverse events. We used RevMan 5.3 software for meta-analyses. Key Results A total of 4 RCTs and 2 cohort studies (340 cases from 5 countries) were included. We found that FMT might be more effective than placebo on clinical remission (OR, 3.85 [2.21, 6.7]; P < 0.001; I 2 = 0%) and clinical response (OR, 2.75 [1.33, 5.67]; P = 0.006; I 2 = 49%), but no statistical difference on steroid-free remission (OR, 2.08 [0.41, 10.5]; P = 0.37; I 2 = 69%) and serious adverse events (OR, 2.0 [0.17, 22.97]; P = 0.44; I 2 = 0%). Conclusions and Inferences Fecal microbiota transplantations were associated with significant clinical remission and response in ulcerative colitis patients while there was no significant difference found between FMT and placebo in steroid-free remission. Moreover, a common consensus on the route, volume, timing, preferred donor characteristics, and frequency of fecal administration is necessary to achieve remission.
Collapse
|
40
|
M'Koma AE. The Multifactorial Etiopathogeneses Interplay of Inflammatory Bowel Disease: An Overview. GASTROINTESTINAL DISORDERS 2019; 1:75-105. [PMID: 37577036 PMCID: PMC10416806 DOI: 10.3390/gidisord1010007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal system where inflammatory bowel disease occurs is central to the immune system where the innate and the adaptive/acquired immune systems are balanced in interactions with gut microbes under homeostasis conditions. This article overviews the high-throughput research screening on multifactorial interplay between genetic risk factors, the intestinal microbiota, urbanization, modernization, Westernization, the environmental influences and immune responses in the etiopathogenesis of inflammatory bowel disease in humans. Inflammatory bowel disease is an expensive multifactorial debilitating disease that affects thousands new people annually worldwide with no known etiology or cure. The conservative therapeutics focus on the established pathology where the immune dysfunction and gut injury have already happened but do not preclude or delay the progression. Inflammatory bowel disease is evolving globally and has become a global emergence disease. It is largely known to be a disease in industrial-urbanized societies attributed to modernization and Westernized lifestyle associated with environmental factors to genetically susceptible individuals with determined failure to process certain commensal antigens. In the developing nations, increasing incidence and prevalence of inflammatory bowel disease (IBD) has been associated with rapid urbanization, modernization and Westernization of the population. In summary, there are identified multiple associations to host exposures potentiating the landscape risk hazards of inflammatory bowel disease trigger, that include: Western life-style and diet, host genetics, altered innate and/or acquired/adaptive host immune responses, early-life microbiota exposure, change in microbiome symbiotic relationship (dysbiosis/dysbacteriosis), pollution, changing hygiene status, socioeconomic status and several other environmental factors have long-standing effects/influence tolerance. The ongoing multipronged robotic studies on gut microbiota composition disparate patterns between the rural vs. urban locations may help elucidate and better understand the contribution of microbiome disciplines/ecology and evolutionary biology in potentially protecting against the development of inflammatory bowel disease.
Collapse
Affiliation(s)
- Amosy E M'Koma
- Meharry Medical College School of Medicine, Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Nashville, TN 37208, USA
- Vanderbilt University School of Medicine, Department of Surgery, Colon and Rectal Surgery, Nashville, TN 37232, USA
- The American Society of Colon and Rectal Surgeons (ASCRS), Arlington Heights, IL 60005, USA
- The American Gastroenterological Association (AGA), Bethesda, MD 20814, USA
- Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
41
|
Cho YS. Multi-session fecal microbiota transplantation using colonoscopy has favorable outcomes for the treatment of steroid-dependent ulcerative colitis. Intest Res 2019; 17:6-8. [PMID: 30678444 PMCID: PMC6361027 DOI: 10.5217/ir.2018.00171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 12/29/2018] [Indexed: 12/26/2022] Open
Affiliation(s)
- Young-Seok Cho
- Division of Gastroenterology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
42
|
Effects of Early Intervention with Maternal Fecal Microbiota and Antibiotics on the Gut Microbiota and Metabolite Profiles of Piglets. Metabolites 2018; 8:metabo8040089. [PMID: 30563199 PMCID: PMC6316024 DOI: 10.3390/metabo8040089] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/29/2018] [Accepted: 12/02/2018] [Indexed: 12/24/2022] Open
Abstract
We investigated the effects of early intervention with maternal fecal microbiota and antibiotics on gut microbiota and the metabolites. Five litters of healthy neonatal piglets (Duroc × Landrace × Yorkshire, nine piglets in each litter) were used. Piglets in each litter were orally treated with saline (CO), amoxicillin treatment (AM), or maternal fecal microbiota transplantation (MFMT) on days 1–6, with three piglets in each treatment. Results were compared to the CO group. MFMT decreased the relative abundances of Clostridium sensu stricto and Parabacteroides in the colon on day 7, whereas the abundance of Blautia increased, and the abundance of Corynebacterium in the stomach reduced on day 21. AM reduced the abundance of Arcanobacterium in the stomach on day 7 and reduced the abundances of Streptococcus and Lachnoclostridium in the ileum and colon on day 21, respectively. The metabolite profile indicated that MFMT markedly influenced carbohydrate metabolism and amino acid (AA) metabolism on day 7. On day 21, carbohydrate metabolism and AA metabolism were affected by AM. The results suggest that MFMT and AM discriminatively modulate gastrointestinal microflora and alter the colonic metabolic profiles of piglets and show different effects in the long-term. MFMT showed a location-specific influence on the gastrointestinal microbiota.
Collapse
|
43
|
Sokol H, Mahlaoui N, Aguilar C, Bach P, Join-Lambert O, Garraffo A, Seksik P, Danion F, Jegou S, Straube M, Lenoir C, Neven B, Moshous D, Blanche S, Pigneur B, Goulet O, Ruemmele F, Suarez F, Beaugerie L, Pannier S, Mazingue F, Lortholary O, Galicier L, Picard C, de Saint Basile G, Latour S, Fischer A. Intestinal dysbiosis in inflammatory bowel disease associated with primary immunodeficiency. J Allergy Clin Immunol 2018; 143:775-778.e6. [PMID: 30312711 DOI: 10.1016/j.jaci.2018.09.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 09/20/2018] [Accepted: 09/28/2018] [Indexed: 10/28/2022]
Affiliation(s)
- Harry Sokol
- Sorbonne Universités, UPMC Univ. Paris 06, École normale supérieure, PSL Research University, CNRS, INSERM, Assistance Publique Hôpitaux de Paris (APHP), Laboratoire des Biomolécules (LBM), rue de Chaligny, Paris, France; INRA, UMR1319 Micalis & AgroParisTech, Jouy en Josas, France; Department of Gastroenterology, Saint Antoine Hospital, AP-HP, UPMC Univ. Paris 06, Paris, France; French National Reference Center for Primary Immune Deficiency (CEREDIH), Necker-Enfants Malades University Hospital, APHP, Paris, France
| | - Nizar Mahlaoui
- French National Reference Center for Primary Immune Deficiency (CEREDIH), Necker-Enfants Malades University Hospital, APHP, Paris, France; Paediatric Haematology-Immunology and Rheumatology Department, Hôpital Necker-Enfants Malades, APHP, Paris, France
| | - Claire Aguilar
- Infectious Diseases and Tropical Medicine Department Paris Descartes University, Necker-Pasteur Infectious Diseases Center, Necker-Enfants Malades Hospital APHP, Paris, France; INSERM UMR 1163, Imagine Institute, Paris, France
| | - Perrine Bach
- French National Reference Center for Primary Immune Deficiency (CEREDIH), Necker-Enfants Malades University Hospital, APHP, Paris, France
| | - Olivier Join-Lambert
- Microbiology Department, Paris Descartes University, Necker-Enfants Malades Hospital, APHP, Paris, France
| | - Aurélie Garraffo
- Infectious Diseases and Tropical Medicine Department Paris Descartes University, Necker-Pasteur Infectious Diseases Center, Necker-Enfants Malades Hospital APHP, Paris, France
| | - Philippe Seksik
- Sorbonne Universités, UPMC Univ. Paris 06, École normale supérieure, PSL Research University, CNRS, INSERM, Assistance Publique Hôpitaux de Paris (APHP), Laboratoire des Biomolécules (LBM), rue de Chaligny, Paris, France; Department of Gastroenterology, Saint Antoine Hospital, AP-HP, UPMC Univ. Paris 06, Paris, France
| | - François Danion
- Infectious Diseases and Tropical Medicine Department Paris Descartes University, Necker-Pasteur Infectious Diseases Center, Necker-Enfants Malades Hospital APHP, Paris, France
| | - Sarah Jegou
- Sorbonne Universités, UPMC Univ. Paris 06, École normale supérieure, PSL Research University, CNRS, INSERM, Assistance Publique Hôpitaux de Paris (APHP), Laboratoire des Biomolécules (LBM), rue de Chaligny, Paris, France
| | - Marjolene Straube
- Sorbonne Universités, UPMC Univ. Paris 06, École normale supérieure, PSL Research University, CNRS, INSERM, Assistance Publique Hôpitaux de Paris (APHP), Laboratoire des Biomolécules (LBM), rue de Chaligny, Paris, France
| | | | - Bénédicte Neven
- Paediatric Haematology-Immunology and Rheumatology Department, Hôpital Necker-Enfants Malades, APHP, Paris, France; INSERM UMR 1163, Imagine Institute, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Despina Moshous
- Paediatric Haematology-Immunology and Rheumatology Department, Hôpital Necker-Enfants Malades, APHP, Paris, France; INSERM UMR 1163, Imagine Institute, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Stéphane Blanche
- Paediatric Haematology-Immunology and Rheumatology Department, Hôpital Necker-Enfants Malades, APHP, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Bénédicte Pigneur
- INSERM UMR 1163, Imagine Institute, Paris, France; Paediatric Gastroenterology Hepatology and Nutrition Department, Paris Descartes University, Hôpital Necker-Enfants Malades, APHP, Paris, France
| | - Olivier Goulet
- INSERM UMR 1163, Imagine Institute, Paris, France; Paediatric Gastroenterology Hepatology and Nutrition Department, Paris Descartes University, Hôpital Necker-Enfants Malades, APHP, Paris, France
| | - Frank Ruemmele
- INSERM UMR 1163, Imagine Institute, Paris, France; Paediatric Gastroenterology Hepatology and Nutrition Department, Paris Descartes University, Hôpital Necker-Enfants Malades, APHP, Paris, France
| | - Felipe Suarez
- French National Reference Center for Primary Immune Deficiency (CEREDIH), Necker-Enfants Malades University Hospital, APHP, Paris, France; INSERM UMR 1163, Imagine Institute, Paris, France; Hematology Department, Paris Descartes University, Necker-Enfants Malades University Hospital, APHP, Paris, France
| | - Laurent Beaugerie
- Department of Gastroenterology, Saint Antoine Hospital, AP-HP, UPMC Univ. Paris 06, Paris, France
| | - Stéphanie Pannier
- Study Center for Primary Immunodeficiencies, Necker-Enfants Malades University Hospital, APHP, Paris, France; Department of Orthopedic Pediatrics, Necker-Enfants Malades University Hospital, APHP, Paris, France
| | - Françoise Mazingue
- Department of Pediatrics, Hôpital Jeanne de Flandre, University Hospital of Lille, Lille, France
| | - Olivier Lortholary
- French National Reference Center for Primary Immune Deficiency (CEREDIH), Necker-Enfants Malades University Hospital, APHP, Paris, France; Infectious Diseases and Tropical Medicine Department Paris Descartes University, Necker-Pasteur Infectious Diseases Center, Necker-Enfants Malades Hospital APHP, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Lionel Galicier
- Department of Clinical Immunology, Saint-Louis Hospital, APHP, Paris, France
| | - Capucine Picard
- French National Reference Center for Primary Immune Deficiency (CEREDIH), Necker-Enfants Malades University Hospital, APHP, Paris, France; INSERM UMR 1163, Imagine Institute, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Imagine Institute, Paris, France; Study Center for Primary Immunodeficiencies, Necker-Enfants Malades University Hospital, APHP, Paris, France
| | - Geneviève de Saint Basile
- INSERM UMR 1163, Imagine Institute, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Imagine Institute, Paris, France; Study Center for Primary Immunodeficiencies, Necker-Enfants Malades University Hospital, APHP, Paris, France
| | - Sylvain Latour
- INSERM UMR 1163, Imagine Institute, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Alain Fischer
- French National Reference Center for Primary Immune Deficiency (CEREDIH), Necker-Enfants Malades University Hospital, APHP, Paris, France; Paediatric Haematology-Immunology and Rheumatology Department, Hôpital Necker-Enfants Malades, APHP, Paris, France; INSERM UMR 1163, Imagine Institute, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Imagine Institute, Paris, France; Collège de France, Paris, France.
| |
Collapse
|
44
|
Abstract
Studies of the human intestinal microbiome in patients with inflammatory bowel disease (IBD) consistently show that there are differences (an abnormal or unbalanced microbiome, "dysbiosis") when compared to healthy subjects. We sought to describe changes in the microbiome in individual patients over time, and determine the clinical factors that are associated with significant alteration. Forty-two mucosal biopsies were collected from 20 patients that were spaced an average of 2.4 years apart. These were analysed using bacterial 16S rRNA gene high-throughput sequencing methods. Presence of active inflammation was determined endoscopically and histologically. Inferred metagenomics analysis was conducted using the PICRUSt package. We found that the differences in the microbiome over time in individual patients were greatest in the presence of ongoing intestinal inflammation, as determined by the Yue and Clayton theta distance between sample pairs (adjusted p = 0.00031). Samples from patients with previous abdominal surgery had lower alpha (within sample) diversity compared with those with no prior operations (mean Shannon index 2.083, 2.510 respectively, p = 0.017). There were no changes in the inferred bacterial metagenomic profile. The microbiome in IBD undergoes considerable fluctuation over time. These changes are greatest when there is histologically confirmed inflammation at both time-points.
Collapse
Affiliation(s)
- Christopher John Kiely
- IBD Research Laboratory, Medical School, College of Medicine, Biology and Environment, Australian National University, Canberra, ACT, Australia,CONTACT Dr. Christopher John Kiely, MBBS IBD Research Laboratory, Level 5, Building 10, ANU Medical School, Canberra Hospital Campus, Yamba Drive, Garran, ACT, Australia, 2605
| | - Paul Pavli
- IBD Research Laboratory, Medical School, College of Medicine, Biology and Environment, Australian National University, Canberra, ACT, Australia,Gastroenterology and Hepatology Unit, Canberra Hospital, ACT, Australia
| | - Claire Louise O'Brien
- IBD Research Laboratory, Medical School, College of Medicine, Biology and Environment, Australian National University, Canberra, ACT, Australia,Gastroenterology and Hepatology Unit, Canberra Hospital, ACT, Australia
| |
Collapse
|
45
|
Landman C, Grill JP, Mallet JM, Marteau P, Humbert L, Le Balc’h E, Maubert MA, Perez K, Chaara W, Brot L, Beaugerie L, Sokol H, Thenet S, Rainteau D, Seksik P, Quévrain E. Inter-kingdom effect on epithelial cells of the N-Acyl homoserine lactone 3-oxo-C12:2, a major quorum-sensing molecule from gut microbiota. PLoS One 2018; 13:e0202587. [PMID: 30157234 PMCID: PMC6114859 DOI: 10.1371/journal.pone.0202587] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND AIMS N-acyl homoserine lactones (AHLs), which are autoinducer quorum-sensing molecules involved in the bacterial communication network, also interact with eukaryotic cells. Searching for these molecules in the context of inflammatory bowel disease (IBD) is appealing. The aims of our study were to look for AHL molecules in faecal samples from healthy subjects (HS) and IBD patients to correlate AHL profiles with the microbiome and investigate the effect of AHLs of interest on epithelial cells. METHODS Using mass spectrometry, we characterised AHL profiles in faecal samples from HS (n = 26) and IBD patients in remission (n = 24) and in flare (n = 25) and correlated the presence of AHLs of interest with gut microbiota composition obtained by real-time qPCR and 16S sequencing. We synthesised AHLs of interest to test the inflammatory response after IL1β stimulation and paracellular permeability on Caco-2 cells. RESULTS We observed 14 different AHLs, among which one was prominent. This AHL corresponded to 3-oxo-C12:2 and was found significantly less frequently in IBD patients in flare (16%) and in remission (37.5%) versus HS (65.4%) (p = 0.001). The presence of 3-oxo-C12:2 was associated with significantly higher counts of Firmicutes, especially Faecalbacterium prausnitzii, and lower counts of Escherichia coli. In vitro, 3-oxo-C12:2 exerted an anti-inflammatory effect on Caco-2 cells. Interestingly, although 3-oxo-C12, the well-known AHL from Pseudomonas aeruginosa, increased paracellular permeability, 3-oxo-C12:2 did not. CONCLUSIONS We identified AHLs in the human gut microbiota and discovered a new and prominent AHL, 3-oxo-C12:2, which correlates with normobiosis and exerts a protective effect on gut epithelial cells.
Collapse
Affiliation(s)
- Cécilia Landman
- Sorbonne Université, École normale supérieure, PSL University, CNRS, INSERM, APHP, Hôpital Saint-Antoine, Laboratoire des biomolécules, LBM, Paris, France
| | - Jean-Pierre Grill
- Sorbonne Université, École normale supérieure, PSL University, CNRS, INSERM, APHP, Hôpital Saint-Antoine, Laboratoire des biomolécules, LBM, Paris, France
| | - Jean-Maurice Mallet
- Sorbonne Université, École normale supérieure, PSL University, CNRS, INSERM, APHP, Hôpital Saint-Antoine, Laboratoire des biomolécules, LBM, Paris, France
| | - Philippe Marteau
- Sorbonne Université, École normale supérieure, PSL University, CNRS, INSERM, APHP, Hôpital Saint-Antoine, Laboratoire des biomolécules, LBM, Paris, France
| | - Lydie Humbert
- Sorbonne Université, École normale supérieure, PSL University, CNRS, INSERM, APHP, Hôpital Saint-Antoine, Laboratoire des biomolécules, LBM, Paris, France
| | - Eric Le Balc’h
- Sorbonne Université, École normale supérieure, PSL University, CNRS, INSERM, APHP, Hôpital Saint-Antoine, Laboratoire des biomolécules, LBM, Paris, France
| | - Marie-Anne Maubert
- Sorbonne Université, École normale supérieure, PSL University, CNRS, INSERM, APHP, Hôpital Saint-Antoine, Laboratoire des biomolécules, LBM, Paris, France
| | - Kevin Perez
- Sorbonne Université, École normale supérieure, PSL University, CNRS, INSERM, APHP, Hôpital Saint-Antoine, Laboratoire des biomolécules, LBM, Paris, France
| | - Wahiba Chaara
- Sorbonne Universités, INSERM, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
| | - Loic Brot
- Sorbonne Université, École normale supérieure, PSL University, CNRS, INSERM, APHP, Hôpital Saint-Antoine, Laboratoire des biomolécules, LBM, Paris, France
| | - Laurent Beaugerie
- Sorbonne Université, École normale supérieure, PSL University, CNRS, INSERM, APHP, Hôpital Saint-Antoine, Laboratoire des biomolécules, LBM, Paris, France
| | - Harry Sokol
- Sorbonne Université, École normale supérieure, PSL University, CNRS, INSERM, APHP, Hôpital Saint-Antoine, Laboratoire des biomolécules, LBM, Paris, France
| | - Sophie Thenet
- Sorbonne Universités, Centre de Recherche des Cordeliers, PSL University, EPHE, Paris, France
| | - Dominique Rainteau
- Sorbonne Université, École normale supérieure, PSL University, CNRS, INSERM, APHP, Hôpital Saint-Antoine, Laboratoire des biomolécules, LBM, Paris, France
| | - Philippe Seksik
- Sorbonne Université, École normale supérieure, PSL University, CNRS, INSERM, APHP, Hôpital Saint-Antoine, Laboratoire des biomolécules, LBM, Paris, France
| | - Elodie Quévrain
- Sorbonne Université, École normale supérieure, PSL University, CNRS, INSERM, APHP, Hôpital Saint-Antoine, Laboratoire des biomolécules, LBM, Paris, France
| | | |
Collapse
|
46
|
D'Odorico I, Di Bella S, Monticelli J, Giacobbe DR, Boldock E, Luzzati R. Role of fecal microbiota transplantation in inflammatory bowel disease. J Dig Dis 2018; 19:322-334. [PMID: 29696802 DOI: 10.1111/1751-2980.12603] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/09/2018] [Accepted: 04/22/2018] [Indexed: 12/11/2022]
Abstract
There is increasing evidence of the key role played by altered intestinal microbiota in the pathogenesis of inflammatory bowel disease (IBD). Management strategies involving immune modulation are effective and widely used, but treatment failures and side effects occur. Fecal microbiota transplantation (FMT) provides a novel, perhaps complementary, strategy to restore the normal gut microbiota in patients with IBD. This review summarizes the available efficacy and safety data on the use of FMT in patients with IBD. Several aspects remain to be clarified about the clinical predictors of the response to FMT, its most appropriate route of administration, and the most appropriate quantity and quality of microbiota to be transplanted. Further studies focusing on long-term outcomes and safety are also warranted.
Collapse
Affiliation(s)
| | - Stefano Di Bella
- Infectious Diseases Division, University Hospital of Trieste, Trieste, Italy
| | - Jacopo Monticelli
- Infectious Diseases Division, University Hospital of Trieste, Trieste, Italy
| | - Daniele R Giacobbe
- Infectious Diseases Unit, OspedalePoliclinico San Martino-IRCCS per l'Oncologia and University of Genoa, Genoa, Italy
| | - Emma Boldock
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Roberto Luzzati
- Infectious Diseases Division, University Hospital of Trieste, Trieste, Italy
| |
Collapse
|
47
|
Chronic stress promotes colitis by disturbing the gut microbiota and triggering immune system response. Proc Natl Acad Sci U S A 2018. [PMID: 29531080 DOI: 10.1073/pnas.1720696115] [Citation(s) in RCA: 269] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic stress is known to promote inflammatory bowel disease (IBD), but the underlying mechanism remains largely unresolved. Here, we found chronic stress to sensitize mice to dextran sulfate sodium (DSS)-induced colitis; to increase the infiltration of B cells, neutrophils, and proinflammatory ly6Chi macrophages in colonic lamina propria; and to present with decreased thymus and mesenteric lymph node (MLN) coefficients. Circulating total white blood cells were significantly increased after stress, and the proportion of MLN-associated immune cells were largely changed. Results showed a marked activation of IL-6/STAT3 signaling by stress. The detrimental action of stress was not terminated in IL-6-/- mice. Interestingly, the composition of gut microbiota was dramatically changed after stress, with expansion of inflammation-promoting bacteria. Furthermore, results showed stress-induced deficient expression of mucin-2 and lysozyme, which may contribute to the disorder of gut microbiota. Of note is that, in the case of cohousing, the stress-induced immune reaction and decreased body weight were abrogated, and transferred gut microbiota from stressed mice to control mice was sufficient to facilitate DSS-induced colitis. The important role of gut microbiota was further reinforced by broad-spectrum antibiotic treatment. Taken together, our results reveal that chronic stress disturbs gut microbiota, triggering immune system response and facilitating DSS-induced colitis.
Collapse
|
48
|
Eom T, Kim YS, Choi CH, Sadowsky MJ, Unno T. Current understanding of microbiota- and dietary-therapies for treating inflammatory bowel disease. J Microbiol 2018; 56:189-198. [PMID: 29492876 DOI: 10.1007/s12275-018-8049-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 02/06/2018] [Accepted: 02/11/2018] [Indexed: 12/20/2022]
Abstract
Inflammatory bowel disease (IBD) is a result of chronic inflammation caused, in some part, by dysbiosis of intestinal microbiota, mainly commensal bacteria. Gut dysbiosis can be caused by multiple factors, including abnormal immune responses which might be related to genetic susceptibility, infection, western dietary habits, and administration of antibiotics. Consequently, the disease itself is characterized as having multiple causes, etiologies, and severities. Recent studies have identified >200 IBD risk loci in the host. It has been postulated that gut microbiota interact with these risk loci resulting in dysbiosis, and this subsequently leads to the development of IBD. Typical gut microbiota in IBD patients are characterized with decrease in species richness and many of the commensal, and beneficial, fecal bacteria such as Firmicutes and Bacteroidetes and an increase or bloom of Proteobacteria. However, at this time, cause and effect relationships have not been rigorously established. While treatments of IBD usually includes medications such as corticosteroids, 5-aminosalicylates, antibiotics, immunomodulators, and anti-TNF agents, restoration of gut dysbiosis seems to be a safer and more sustainable approach. Bacteriotherapies (now called microbiota therapies) and dietary interventions are effective way to modulate gut microbiota. In this review, we summarize factors involved in IBD and studies attempted to treat IBD with probiotics. We also discuss the potential use of microbiota therapies as one promising approach in treating IBD. As therapies based on the modulation of gut microbiota becomes more common, future studies should include individual gut microbiota differences to develop personalized therapy for IBD.
Collapse
Affiliation(s)
- Taekil Eom
- Subtropical/tropical Organism Gene Bank, Jeju National University, Jeju, 63243, Republic of Korea
| | - Yong Sung Kim
- Department of Gastroenterology, Wonkwang Digestive Disease Research Institute, Wonkwang University Sanbon Hospital, Gunpo, 15865, Republic of Korea
| | - Chang Hwan Choi
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, 06974, Republic of Korea
| | - Michael J Sadowsky
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, 55108, USA
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, Minnesota, 55108, USA
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - Tatsuya Unno
- Subtropical/tropical Organism Gene Bank, Jeju National University, Jeju, 63243, Republic of Korea.
- Faculty of Biotechnology, School of life sciences, SARI, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
49
|
O'Toole PW, Jeffery IB. Microbiome-health interactions in older people. Cell Mol Life Sci 2018; 75:119-128. [PMID: 28986601 PMCID: PMC11105677 DOI: 10.1007/s00018-017-2673-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 09/29/2017] [Indexed: 02/07/2023]
Abstract
Alterations in the composition and function of the gut microbiome have been implicated in a range of conditions and diseases. Culture-dependent and culture-independent studies both showed that older people harbour a gut microbiome that differs in composition from that of younger adults. Detailed analyses have identified discrete microbiota subtypes that characterize intermediates between a high diversity microbiota found in healthy community-dwelling subjects and a low diversity microbiota typical for elderly living in long-term residential care. There are also alterations in the microbiome composition associated with biological age, independent of health status. Even after adjusting for confounding factors such as age and medication, trends in microbiota composition correlate with gradients in clinical metadata particularly frailty and inflammatory status. There are few known mechanisms by which these associations might be causative rather than consequential, and this is a subject of intensive research. The strongest candidate effectors are microbial metabolites that could impact host energy balance, act as signalling molecules to modulate host metabolism or inflammation, and potentially also impact on the gut-brain axis.
Collapse
Affiliation(s)
- Paul W O'Toole
- School of Microbiology and APC Microbiome Institute, University College Cork, Cork, T12 YN60, Ireland.
| | - Ian B Jeffery
- School of Microbiology and APC Microbiome Institute, University College Cork, Cork, T12 YN60, Ireland
| |
Collapse
|
50
|
Basson AR, Lam M, Cominelli F. Complementary and Alternative Medicine Strategies for Therapeutic Gut Microbiota Modulation in Inflammatory Bowel Disease and their Next-Generation Approaches. Gastroenterol Clin North Am 2017; 46:689-729. [PMID: 29173517 PMCID: PMC5909826 DOI: 10.1016/j.gtc.2017.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The human gut microbiome exerts a major impact on human health and disease, and therapeutic gut microbiota modulation is now a well-advocated strategy in the management of many diseases, including inflammatory bowel disease (IBD). Scientific and clinical evidence in support of complementary and alternative medicine, in targeting intestinal dysbiosis among patients with IBD, or other disorders, has increased dramatically over the past years. Delivery of "artificial" stool replacements for fecal microbiota transplantation (FMT) could provide an effective, safer alternative to that of human donor stool. Nevertheless, optimum timing of FMT administration in IBD remains unexplored, and future investigations are essential.
Collapse
Affiliation(s)
- Abigail R Basson
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA; Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Minh Lam
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA; Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Fabio Cominelli
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA; Department of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Pathology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|