1
|
Blutt SE, Miller AD, Conner ME. Dendritic cell expression of MyD88 is required for rotavirus-induced B cell activation. J Virol 2025; 99:e0065325. [PMID: 40304491 DOI: 10.1128/jvi.00653-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 05/02/2025] Open
Abstract
Intestinal IgA, produced by local intestinal B cells, is thought to play a major role in protection against intestinal infections. Rotavirus, a well-characterized intestinal virus, induces a rapid viral-specific intestinal IgA response that occurs in the absence of T cells. Previous work has indicated that dendritic cells facilitate the early IgA response to rotavirus. To determine whether the early Peyer's patch B cell activation associated with rotavirus infection in mice requires dendritic cells, we depleted dendritic cells and assessed B cell activation. Depletion of CD11c+ cells in vivo prior to infection resulted in a complete abrogation of Peyer's patch B cell activation. With the use of in vitro cell-based assays, CD11c+, but not T or CD11b+ cells, was shown to be essential for rotavirus-induced activation of B cells. Investigation of several pathways of B cell activation revealed that dendritic cell expression of MyD88 and signaling through the type I interferon receptor were critical for the ability of the virus to induce B cell activation. These findings indicate that CD11c+ dendritic cells can modulate B cell responses to viruses through toll-like receptor and type I interferon signaling pathways.IMPORTANCEDendritic cells are key mediators of immune responses in the intestine. They can capture and process rotavirus antigens and present these antigens to B cells, which produce critical IgA antibody that is essential for clearance of rotavirus infection and protection from reinfection. In the work presented here, we demonstrate that dendritic cell expression of MyD88, a key component of pattern recognition pathways, and not classical IgA pathway molecules such as BAFF and APRIL, is critical for the ability of the dendritic cell to induce the activation of B cells. Our findings emphasize the important role that dendritic cells play in initiating and regulating immune responses including T cell-independent B cell activation. A consideration of the role of dendritic cells in B cell activation and antibody production is an important feature in the development of therapeutic and preventive modalities to combat intestinal viral infections.
Collapse
Affiliation(s)
- Sarah E Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA
| | - Amber D Miller
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Margaret E Conner
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA
- Huffington Department of Education, Innovation, and Technology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
2
|
Yuan Z, Luozhong S, Li R, Gu W, Chen Y, Bhashyam D, Lai R, Jiang S. Transient Macrophage Depletion Circumvents Scavenging and Redirects Biodistribution of mRNA-Lipid Nanoparticles. ACS NANO 2025; 19:14422-14433. [PMID: 40167042 DOI: 10.1021/acsnano.5c02001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The mononuclear phagocytic system is recognized as a major scavenger of mRNA-lipid nanoparticles (LNPs), clearing and redirecting these particles away from their intended targets and thus diminishing their delivery efficacy. Understanding the mechanism by which mRNA-LNPs interact with phagocytes and how this interaction affects the mRNA transfection is critical to enhancing the delivery of mRNA. In this study, we temporarily depleted both circulating and resident macrophages (MF) and evaluated the transfection efficiency and biodistribution of mRNA-LNPs. We first demonstrated the enhanced liver expression using two liver-tropic formulations and the significant improvement of the in vivo gene editing efficiency of CRISPR-Cas9 in the Ai14 mouse model after MF depletion, providing a versatile strategy for enhanced mRNA delivery to the liver regardless of the formulation employed. We then extended our investigations to lung-tropic and lymphoid-tropic LNP formulations and discovered that MF depletion abolishes the targeting capacities of these non-liver-tropic formulations, providing insights into the organ targeting of LNPs. Finally, we screened and compared various clinically relevant MF depletion methods, providing the translation potential of this method on enhanced hepatic delivery of mRNA.
Collapse
Affiliation(s)
- Zhefan Yuan
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Sijin Luozhong
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Ruoxin Li
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Wenchao Gu
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Yu Chen
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Dani Bhashyam
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Rachel Lai
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Shaoyi Jiang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
3
|
Erkert L, Ruder B, Kabisch M, Gamez Belmonte R, Patankar JV, Gonzalez Acera M, Schödel L, Chiriac MT, Cineus R, Gnafakis S, Leupold T, Thoma OM, Stolzer I, Taut A, Thonn V, Zundler S, Günther C, Diefenbach A, Kühl AA, Hegazy AN, Waldner M, Basic M, Bleich A, Neurath MF, Wirtz S, Becker C. TIFA renders intestinal epithelial cells responsive to microbial ADP-heptose and drives colonic inflammation in mice. Mucosal Immunol 2025; 18:453-466. [PMID: 39842611 DOI: 10.1016/j.mucimm.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/18/2024] [Accepted: 01/02/2025] [Indexed: 01/24/2025]
Abstract
Intestinal immune homeostasis relies on intestinal epithelial cells (IECs), which provide an efficient barrier, and warrant a state of tolerance between the microbiome and the mucosal immune system. Thus, proper epithelial microbial sensing and handling of microbes is key to preventing excessive immunity, such as seen in patients with inflammatory bowel disease (IBD). To date, the molecular underpinnings of these processes remain incompletely understood. This study identifies TIFA as a driver of intestinal inflammation and an epithelial signaling hub between the microbiome and mucosal immune cells. TIFA was constitutively expressed in crypt epithelial cells and was highly induced in the intestine of mice and IBD patients with intestinal inflammation. We further identified IL-22 signaling via STAT3 as key mechanism driving TIFA expression in IECs. At the molecular level, we demonstrate that TIFA expression is essential for IEC responsiveness to the bacterial metabolite ADP-heptose. Most importantly, ADP-heptose-induced TIFA signaling orchestrates an inflammatory cellular response in the epithelium, with NF-κB and inflammasome activation, and high levels of chemokine production. Finally, mice lacking TIFA were protected from intestinal inflammation when subjected to a model of experimental colitis. In conclusion, our study implicates that targeting TIFA may be a strategy for future IBD therapy.
Collapse
Affiliation(s)
- Lena Erkert
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Barbara Ruder
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Melanie Kabisch
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Reyes Gamez Belmonte
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Jay V Patankar
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Miguel Gonzalez Acera
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Lena Schödel
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Mircea T Chiriac
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Roodline Cineus
- Department of Gastroenterology, Infectiology and Rheumatology, Charité Universitätsmedizin Berlin, Germany
| | - Stylianos Gnafakis
- Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Germany
| | - Tamara Leupold
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Oana-Maria Thoma
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Iris Stolzer
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Astrid Taut
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Veronika Thonn
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Sebastian Zundler
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Claudia Günther
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Andreas Diefenbach
- Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Germany
| | - Anja A Kühl
- iPATH.Berlin, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ahmed N Hegazy
- Department of Gastroenterology, Infectiology and Rheumatology, Charité Universitätsmedizin Berlin, Germany; Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Maximilian Waldner
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Marijana Basic
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Markus F Neurath
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany.
| |
Collapse
|
4
|
Sachen KL, Hammaker D, Sarabia I, Stoveken B, Hartman J, Leppard KL, Manieri NA, Bao P, Greving C, Lacy ER, DuPrie M, Wertheimer J, Deming JD, Brown J, Hart A, Li H(H, Freeman TC, Keyes B, Kohler K, White I, Karpowich N, Steele R, Elloso MM, Fakharzadeh S, Goyal K, Lavie F, Abreu MT, Allez M, Atreya R, Bissonnette R, Eyerich K, Krueger JG, McGonagle D, McInnes IB, Ritchlin C, Fourie AM. Guselkumab binding to CD64 + IL-23-producing myeloid cells enhances potency for neutralizing IL-23 signaling. Front Immunol 2025; 16:1532852. [PMID: 40145093 PMCID: PMC11937023 DOI: 10.3389/fimmu.2025.1532852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/10/2025] [Indexed: 03/28/2025] Open
Abstract
IL-23 is implicated in the pathogenesis of immune-mediated inflammatory diseases, and myeloid cells that express Fc gamma receptor 1 (FcγRI or CD64) on their surface have been recently identified as a primary source of IL-23 in inflamed tissue. Our complementary analyses of transcriptomic datasets from psoriasis and IBD showed increased expression of CD64 and IL-23 transcripts in inflamed tissue, and greater abundance of cell types with co-expression of CD64 and IL-23. These findings led us to explore potential implications of CD64 binding on the function of IL-23-targeting monoclonal antibodies (mAbs). Guselkumab and risankizumab are mAbs that target the IL-23p19 subunit. Guselkumab has a native Fc domain while risankizumab contains mutations that diminish binding to FcγRs. In flow cytometry assays, guselkumab, but not risankizumab, showed Fc-mediated binding to CD64 on IFNγ-primed monocytes. Guselkumab bound CD64 on IL-23-producing inflammatory monocytes and simultaneously captured IL-23 secreted from these cells. Guselkumab binding to CD64 did not induce cytokine production. In live-cell confocal imaging of CD64+ macrophages, guselkumab, but not risankizumab, mediated IL-23 internalization to low-pH intracellular compartments. Guselkumab and risankizumab demonstrated similar potency for inhibition of IL-23 signaling in cellular assays with exogenous addition of IL-23. However, in a co-culture of IL-23-producing CD64+ THP-1 cells with an IL-23-responsive reporter cell line, guselkumab demonstrated Fc-dependent enhanced potency compared to risankizumab for inhibiting IL-23 signaling. These in vitro data highlight the potential for guselkumab binding to CD64 in inflamed tissue to contribute to the potent neutralization of IL-23 at its cellular source.
Collapse
Affiliation(s)
| | | | | | | | - John Hartman
- Johnson & Johnson, Spring House, PA, United States
| | | | | | - Phuc Bao
- Johnson & Johnson, San Diego, CA, United States
| | | | | | | | | | | | | | - Amy Hart
- Johnson & Johnson, Spring House, PA, United States
| | | | | | - Brice Keyes
- Johnson & Johnson, San Diego, CA, United States
| | | | - Ian White
- Johnson & Johnson, Spring House, PA, United States
| | | | - Ruth Steele
- Johnson & Johnson, Spring House, PA, United States
| | | | | | | | | | - Maria T. Abreu
- University of Miami, Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Matthieu Allez
- Hôpital Saint-Louis, Université Paris Cité, Paris, France
| | - Raja Atreya
- Department of Medicine 1, Erlangen University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Kilian Eyerich
- Medical Center, University of Freiburg, Freiburg, Germany
- Department of Medicine – Division of Dermatology and Venereology, Karolinska Institute, Stockholm, Sweden
| | - James G. Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, United States
| | - Dennis McGonagle
- Leeds Biomedical Research Centre, University of Leeds, Leeds, United Kingdom
| | - Iain B. McInnes
- College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Christopher Ritchlin
- Center for Musculoskeletal Research, Allergy, Immunology, and Rheumatology Division, University of Rochester, Rochester, NY, United States
| | | |
Collapse
|
5
|
Du Z, Liu X, Xie Z, Wang Q, Lv Z, Li L, Wang H, Xue D, Zhang Y. The relationship between a high-fat diet, gut microbiome, and systemic chronic inflammation: insights from integrated multiomics analysis. Am J Clin Nutr 2025; 121:643-653. [PMID: 39746397 DOI: 10.1016/j.ajcnut.2024.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 10/29/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND The detrimental effects of a high-fat diet (HFD) extend beyond metabolic consequences and include systemic chronic inflammation (SCI), immune dysregulation, and gut health disruption. OBJECTIVES In this study, we used Mendelian randomization (MR) to investigate the relationship between HFD, gut microbiota, and SCI. METHODS Genetic variants associated with dietary fat were utilized to explore causal relationships. Genome-wide association study data for the analyses of the gut microbiota, inflammatory cytokines, immune cell characteristics, and serum metabolites were obtained from European individuals. Mediation analysis was used to reveal potential mediating factors. The GMrepo database was used to analyze the bacterial composition in different groups. Transcriptomic and single-cell sequencing analyses explored inflammation and barrier function in colonic tissue. RESULTS HFD consumption was linked to changes in the abundance of 3 bacterial families and 11 bacterial genera. Combined with the GMrepo database, the increased abundance of the genus Lachnospiraceae_FCS020group and the decreased abundance of genus Bacteroides and genus Barnesiella are consistent with the MR results. Transcriptomic and single-cell sequencing analyses revealed intestinal inflammation and mucosal barrier dysfunction in HFD-fed mice. MR revealed a link between HFD consumption and increased levels of interleukin (IL)-18 [odds ratio (OR): 3.64, 95%CI: 1.24, 10.69, P = 0.02], MIG (OR = 3.14, 95%CI: 1.17, 8.47, P = 0.02), IL-13 [OR = 3.21, 95% confidence interval (CI): 1.08, -9.52, P = 0.04], and IL-2RA (OR = 2.93, 95%CI: 1.01, 8.53, P = 0.049). Twenty-nine immune cell signatures, including altered monocyte and T-cell subsets, were affected by HFD consumption. Twenty-six serum metabolites that are linked to HFD consumption, particularly lipid and amino acid metabolites, were identified. The positive gut microbiota exhibit extensive associations with inflammatory cytokines. In particular, Lachnospiraceae_FCS020 group (OR: 1.93, 95% CI: 1.11, 3.37, P = 0.02) may play a mediating role in HFD-induced increases in IL-2RA concentrations. CONCLUSIONS Microbial dysbiosis appears to be an important mechanism for HFD-induced SCI. The Lachnospiraceae_FCS020 group may act as a key genus in HFD-mediated elevation of IL-2RA.
Collapse
Affiliation(s)
- Zhiwei Du
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuxu Liu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhihong Xie
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qiang Wang
- Department of General Surgery, Qilu Hospital of Shandong University, Shandong, China
| | - Zhenyi Lv
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lianghao Li
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Heming Wang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dongbo Xue
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Yingmei Zhang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
6
|
Santamaria de Souza N, Cherrak Y, Andersen TB, Vetsch M, Barthel M, Kroon S, Bakkeren E, Schubert C, Christen P, Kiefer P, Vorholt JA, Nguyen BD, Hardt WD. Context-dependent change in the fitness effect of (in)organic phosphate antiporter glpT during Salmonella Typhimurium infection. Nat Commun 2025; 16:1912. [PMID: 39994176 PMCID: PMC11850910 DOI: 10.1038/s41467-025-56851-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
Salmonella enterica is a frequent cause of foodborne diseases, which is attributed to its adaptability. Even within a single host, expressing a gene can be beneficial in certain infection stages but neutral or even detrimental in others as previously shown for flagellins. Mutants deficient for the conserved glycerol-3-phosphate and phosphate antiporter glpT have been shown to be positively selected in nature, clinical, and laboratory settings. This suggests that different selective pressures select for the presence or absence of GlpT in a context dependent fashion, a phenomenon known as antagonistic pleiotropy. Using mutant libraries and reporters, we investigated the fitness of glpT-deficient mutants during murine orogastric infection. While glpT-deficient mutants thrive during initial growth in the gut lumen, where GlpT's capacity to import phosphate is disadvantageous, they are counter-selected by macrophages. The dichotomy showcases the need to study the spatial and temporal heterogeneity of enteric pathogens' fitness across distinct lifestyles and niches. Insights into the differential adaptation during infection may reveal opportunities for therapeutic interventions.
Collapse
Affiliation(s)
| | - Yassine Cherrak
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Thea Bill Andersen
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Michel Vetsch
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Manja Barthel
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Sanne Kroon
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Erik Bakkeren
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Christopher Schubert
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Philipp Christen
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Patrick Kiefer
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Julia A Vorholt
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Bidong D Nguyen
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Wolf-Dietrich Hardt
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
7
|
Ohara D, Takeuchi Y, Hirota K. Type 17 immunity: novel insights into intestinal homeostasis and autoimmune pathogenesis driven by gut-primed T cells. Cell Mol Immunol 2024; 21:1183-1200. [PMID: 39379604 PMCID: PMC11528014 DOI: 10.1038/s41423-024-01218-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024] Open
Abstract
The IL-23 signaling pathway in both innate and adaptive immune cells is vital for orchestrating type 17 immunity, which is marked by the secretion of signature cytokines such as IL-17, IL-22, and GM-CSF. These proinflammatory mediators play indispensable roles in maintaining intestinal immune equilibrium and mucosal host defense; however, their involvement has also been implicated in the pathogenesis of chronic inflammatory disorders, such as inflammatory bowel diseases and autoimmunity. However, the implications of type 17 immunity across diverse inflammation models are complex. This review provides a comprehensive overview of the multifaceted roles of these cytokines in maintaining gut homeostasis and in perturbing gut barrier integrity, leading to acute and chronic inflammation in various models of gut infection and colitis. Additionally, this review focuses on type 17 immunity interconnecting multiple organs in autoimmune conditions, with a particular emphasis on the pathogenesis of autoimmune arthritis and neuroinflammation driven by T cells primed within the gut microenvironment.
Collapse
Affiliation(s)
- Daiya Ohara
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yusuke Takeuchi
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Keiji Hirota
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
- ImmunoSensation Cluster of Excellence, University of Bonn, Bonn, Germany.
| |
Collapse
|
8
|
Curci D, Lucafò M, Decorti G, Stocco G. Monoclonal antibodies against pediatric ulcerative colitis: a review of clinical progress. Expert Opin Biol Ther 2024; 24:1133-1144. [PMID: 39285823 DOI: 10.1080/14712598.2024.2404076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/10/2024] [Indexed: 09/21/2024]
Abstract
INTRODUCTION In children, ulcerative colitis (UC) is often more severe and extensive than in adults and hospitalization for acute exacerbations occurs in around a quarter of subjects. There is a need for effective drugs, which could avoid or reduce the use of corticosteroids which, especially in children, are burdened by a number of severe side effects. The introduction in therapy of monoclonal antibodies has completely changed the therapeutic scenario and the prognosis of the disease. AREAS COVERED In this review, the use of the monoclonal antibodies directed against tumor necrosis factor (TNF)α or other inflammatory targets for the treatment of pediatric UC will be discussed. A search of the literature was done using the keywords 'pediatric,' 'ulcerative colitis,' 'inflammatory bowel disease,' 'monoclonal antibodies;' 'infliximab,' 'adalimumab,' 'golimumab,' vedolizumab," 'ustekinumab' and 'risankizumab.' EXPERT OPINION The use of monoclonal antibodies has greatly increased in recent years in pediatric UC, both in patients who did not respond to conventional therapies, and, more often, as initial therapy. Thanks to therapeutic drug monitoring and to the availability of biologics with different targets, therapy has become more targeted and personalized, with a significant improvement in response, in quality of life, and with a good safety profile.
Collapse
Affiliation(s)
- Debora Curci
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| | - Marianna Lucafò
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Giuliana Decorti
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Gabriele Stocco
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| |
Collapse
|
9
|
Ignacio A, Cipelli M, Takiishi T, Favero Aguiar C, Fernandes Terra F, Ghirotto B, Martins Silva E, Castoldi A, Magalhães YT, Antonio T, Nunes Padovani B, Ioshie Hiyane M, Andrade-Oliveira V, Forti FL, Olsen Saraiva Camara N. Lack of mTORC2 signaling in CD11c+ myeloid cells inhibits their migration and ameliorates experimental colitis. J Leukoc Biol 2024; 116:779-792. [PMID: 38652699 DOI: 10.1093/jleuko/qiae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 01/30/2024] [Accepted: 03/05/2024] [Indexed: 04/25/2024] Open
Abstract
The mammalian target of rapamycin (mTOR) pathway plays a key role in determining immune cells function through modulation of their metabolic status. By specific deletion of Rictor in CD11c+ myeloid cells (referred to here as CD11cRicΔ/Δ), we investigated the role of mTOR complex 2 (mTORC2) signaling in dendritic cells (DCs) function in mice. We showed that upon dextran sulfate sodium-induced colitis, the lack of mTORC2 signaling CD11c+ cells diminishes the colitis score and abrogates DC migration to the mesenteric lymph nodes, thereby diminishing the infiltration of T helper 17 cells in the lamina propria and subsequent inflammation. These findings corroborate with the abrogation of cytoskeleton organization and the decreased activation of Rac1 and Cdc42 GTPases observed in CD11c+-mTORC2-deficient cells. Meta-analysis on colonic samples from ulcerative colitis patients revealed increased gene expression of proinflammatory cytokines, which coincided with augmented expression of the mTOR pathway, a positive correlation between the DC marker ITGAX and interleukin-6, the expression of RICTOR, and CDC42. Together, this work proposes that targeting mTORC2 on DCs offers a key to hamper inflammatory responses, and this way, ameliorates the progression and severity of intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Aline Ignacio
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo. Av. Prof. Lineu Prestes 1730, ICB IV, 05508000 São Paulo, Brazil
| | - Marcella Cipelli
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo. Av. Prof. Lineu Prestes 1730, ICB IV, 05508000 São Paulo, Brazil
| | - Tatiane Takiishi
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo. Av. Prof. Lineu Prestes 1730, ICB IV, 05508000 São Paulo, Brazil
| | - Cristhiane Favero Aguiar
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo. Av. Prof. Lineu Prestes 1730, ICB IV, 05508000 São Paulo, Brazil
| | - Fernanda Fernandes Terra
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo. Av. Prof. Lineu Prestes 1730, ICB IV, 05508000 São Paulo, Brazil
| | - Bruno Ghirotto
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo. Av. Prof. Lineu Prestes 1730, ICB IV, 05508000 São Paulo, Brazil
| | - Eloisa Martins Silva
- Center for Natural and Human Sciences, Federal University of ABC. Alameda da Universidade (UFABC) 09606045, São Bernardo do Campo, SP, Brazil
| | - Angela Castoldi
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo. Av. Prof. Lineu Prestes 1730, ICB IV, 05508000 São Paulo, Brazil
| | - Yuli Thamires Magalhães
- Laboratory of Signaling in Biomolecular Systems, Department of Biochemistry, Institute of Chemistry, University of São Paulo. Av. Prof. Lineu Prestes, 748 05508900, São Paulo, Brazil
| | - Tiago Antonio
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo. Av. Prof. Lineu Prestes 1730, ICB IV, 05508000 São Paulo, Brazil
| | - Barbara Nunes Padovani
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo. Av. Prof. Lineu Prestes 1730, ICB IV, 05508000 São Paulo, Brazil
| | - Meire Ioshie Hiyane
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo. Av. Prof. Lineu Prestes 1730, ICB IV, 05508000 São Paulo, Brazil
| | - Vinicius Andrade-Oliveira
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo. Av. Prof. Lineu Prestes 1730, ICB IV, 05508000 São Paulo, Brazil
| | - Fabio Luis Forti
- Laboratory of Signaling in Biomolecular Systems, Department of Biochemistry, Institute of Chemistry, University of São Paulo. Av. Prof. Lineu Prestes, 748 05508900, São Paulo, Brazil
| | - Niels Olsen Saraiva Camara
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo. Av. Prof. Lineu Prestes 1730, ICB IV, 05508000 São Paulo, Brazil
- Laboratory of Renal Physiology, Department of Medicine, Federal University of São Paulo (UNIFESP). Rua Botucatu 740, 04023-062, São Paulo, Brazil
| |
Collapse
|
10
|
Hsu CY, Mustafa MA, Moath Omar T, Taher SG, Ubaid M, Gilmanova NS, Nasrat Abdulraheem M, Saadh MJ, Athab AH, Mirzaei R, Karampoor S. Gut instinct: harnessing the power of probiotics to tame pathogenic signaling pathways in ulcerative colitis. Front Med (Lausanne) 2024; 11:1396789. [PMID: 39323474 PMCID: PMC11422783 DOI: 10.3389/fmed.2024.1396789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) marked by persistent inflammation of the mucosal lining of the large intestine, leading to debilitating symptoms and reduced quality of life. Emerging evidence suggests that an imbalance of the gut microbiota plays a crucial role in UC pathogenesis, and various signaling pathways are implicated in the dysregulated immune response. Probiotics are live microorganisms that confer health benefits to the host, have attracted significant attention for their potential to restore gut microbial balance and ameliorate inflammation in UC. Recent studies have elucidated the mechanisms by which probiotics modulate these signaling pathways, often by producing anti-inflammatory molecules and promoting regulatory immune cell function. For example, probiotics can inhibit the nuclear factor-κB (NF-κB) pathway by stabilizing Inhibitor of kappa B alpha (IκBα), dampening the production of proinflammatory cytokines. Similarly, probiotics can modulate the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway, suppressing the activation of STAT1 and STAT3 and thus reducing the inflammatory response. A better understanding of the underlying mechanisms of probiotics in modulating pathogenic signaling pathways in UC will pave the way for developing more effective probiotic-based therapies. In this review, we explore the mechanistic role of probiotics in the attenuation of pathogenic signaling pathways, including NF-κB, JAK/STAT, mitogen-activated protein kinases (MAPKs), Wnt/β-catenin, the nucleotide-binding domain (NOD)-, leucine-rich repeat (LRR)- and pyrin domain-containing protein 3 (NLRP3) inflammasome, Toll-like receptors (TLRs), interleukin-23 (IL-23)/IL-17 signaling pathway in UC.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ, United States
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, Imam Jaafar AL-Sadiq University, Baghdad, Iraq
- Department of Pathological Analyzes, College of Applied Sciences, University of Samarra, Samarra, Iraq
| | - Thabit Moath Omar
- Department of Medical Laboratory Technics, College of Health and Medical Technology, Alnoor University, Mosul, Iraq
| | - Sada Gh Taher
- Department of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Mohammed Ubaid
- Department of MTL, Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Nataliya S. Gilmanova
- Department of Prosthetic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | | | - Aya H. Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Li X, Liu Y, Zou Y, Zhang J, Wang Y, Ding Y, Shi Z, Guo X, Zhang S, Yin H, Guo A, Wang S. Echinococcus multilocularis serpin regulates macrophage polarization and reduces gut dysbiosis in colitis. Infect Immun 2024; 92:e0023224. [PMID: 39037247 PMCID: PMC11320943 DOI: 10.1128/iai.00232-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 07/23/2024] Open
Abstract
Helminths serve as principal regulators in modulating host immune responses, and their excretory-secretory proteins are recognized as potential therapeutic agents for inflammatory bowel disease. Nevertheless, our comprehension of the mechanisms underlying immunoregulation remains restricted. This investigation delves into the immunomodulatory role of a secretory protein serpin (Emu-serpin), within the larval stage of Echinococcus multilocularis. Our observations indicate that Emu-serpin effectively alleviates dextran sulfate sodium-induced colitis, yielding a substantial reduction in immunopathology and an augmentation of anti-inflammatory cytokines. Furthermore, this suppressive regulatory effect is concomitant with the reduction of gut microbiota dysbiosis linked to colitis, as evidenced by a marked impediment to the expansion of the pathobiont taxa Enterobacteriaceae. In vivo experiments demonstrate that Emu-serpin facilitates the expansion of M2 phenotype macrophages while concurrently diminishing M1 phenotype macrophages, alongside an elevation in anti-inflammatory cytokine levels. Subsequent in vitro investigations involving RAW264.7 and bone marrow macrophages reveal that Emu-serpin induces a conversion of M2 macrophage populations from a pro-inflammatory to an anti-inflammatory phenotype through direct inhibition. Adoptive transfer experiments reveal the peritoneal macrophages induced by Emu-serpin alleviate colitis and gut microbiota dysbiosis. In summary, these findings propose that Emu-serpin holds the potential to regulate macrophage polarization and maintain gut microbiota homeostasis in colitis, establishing it as a promising candidate for developing helminth therapy for preventing inflammatory diseases.
Collapse
Affiliation(s)
- Xiaolu Li
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
| | - Yihui Liu
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
| | - Yang Zou
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
| | - Jiayun Zhang
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
| | - Yugui Wang
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
| | - Yingying Ding
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
| | - Zhiqi Shi
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
| | - Xiaola Guo
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
| | - Shaohua Zhang
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
| | - Hong Yin
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Aijiang Guo
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Shuai Wang
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou, Gansu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| |
Collapse
|
12
|
Li Y, Xiang Y, Mou B, Song X. Causal influence of immune factors on the risk of diabetic retinopathy: a mendelian randomization study. Diabetol Metab Syndr 2024; 16:194. [PMID: 39135059 PMCID: PMC11318264 DOI: 10.1186/s13098-024-01441-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
OBJECTIVES Diabetic retinopathy (DR) is a prevalent microvascular complication in diabetic patients. Various mechanisms have been implicated in the pathogenesis of DR. Previous studies have observed the relationship between immune factors and DR, but the causal relationship has not been determined. METHODS We conducted a two-sample Mendelian randomization (MR) analysis of 731 immune cells and DR, using publicly available genome-wide association study (GWAS) summary statistics, to evaluate potential causal relationships between them. Four types of immune traits were included in the analysis through flow cytometry. GWAS statistics for DR were obtained from the Finngen database, which performed GWAS on 190,594 European individuals (Ncase = 14,584, Ncontrol = 176,010) to assess genetically predicted DR. The primary method used to perform causality analysis was inverse variance weighting (IVW). RESULTS Following false discovery rate (FDR) correction, 11MFI-DR, 5AC-DR, 5RC-DR, and 1MP-DR reached a significant causal association level (PFDR < 0.05). Notably, all AC traits exhibited potential associations with a decreased risk of DR(OR < 1), while a majority of MFI traits, along with the singular MP trait, exhibited potential associations with an increased risk of DR (OR > 1). The highest proportion of T-cell subsets in the final results. CONCLUSION This study elucidates that the progression of DR is intricately influenced by immune responses, thereby confirming the immunological susceptibility of DR. Our findings may offer new targets for diagnosing and treating DR, as well as aid in developing therapeutic strategies from an immunological standpoint.
Collapse
Affiliation(s)
- Yuanyuan Li
- Hubei Minzu University, Enshi, Hubei Province, China
- Ophthalmology Center, The Central Hospital Of Enshi Tujia And Miao Autonomous Prefecture, Affiliated Hospital of Hubei University for Nationalities, Enshi, Hubei Province, China
| | - Ying Xiang
- Ophthalmology Center, The Central Hospital Of Enshi Tujia And Miao Autonomous Prefecture, Affiliated Hospital of Hubei University for Nationalities, Enshi, Hubei Province, China
- Hubei Institute of Selenium and Human Health, Enshi, Hubei Province, China
| | - Bo Mou
- Hubei Minzu University, Enshi, Hubei Province, China
- Ophthalmology Center, The Central Hospital Of Enshi Tujia And Miao Autonomous Prefecture, Affiliated Hospital of Hubei University for Nationalities, Enshi, Hubei Province, China
| | - Xiusheng Song
- Hubei Minzu University, Enshi, Hubei Province, China.
- Ophthalmology Center, The Central Hospital Of Enshi Tujia And Miao Autonomous Prefecture, Affiliated Hospital of Hubei University for Nationalities, Enshi, Hubei Province, China.
- Hubei Institute of Selenium and Human Health, Enshi, Hubei Province, China.
| |
Collapse
|
13
|
Sudduth ER, López Ruiz A, Trautmann-Rodriguez M, Fromen CA. Age-dependent changes in phagocytic activity: in vivo response of mouse pulmonary antigen presenting cells to direct lung delivery of charged PEGDA nanoparticles. J Nanobiotechnology 2024; 22:476. [PMID: 39135064 PMCID: PMC11318229 DOI: 10.1186/s12951-024-02743-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Current needle-based vaccination for respiratory viruses is ineffective at producing sufficient, long-lasting local immunity in the elderly. Direct pulmonary delivery to the resident local pulmonary immune cells can create long-term mucosal responses. However, criteria for drug vehicle design rules that can overcome age-specific changes in immune cell functions have yet to be established. RESULTS Here, in vivo charge-based nanoparticle (NP) uptake was compared in mice of two age groups (2- and 16-months) within the four notable pulmonary antigen presenting cell (APC) populations: alveolar macrophages (AM), interstitial macrophages (IM), CD103+ dendritic cells (DCs), and CD11b+ DCs. Both macrophage populations exhibited preferential uptake of anionic nanoparticles but showed inverse rates of phagocytosis between the AM and IM populations across age. DC populations demonstrated preferential uptake of cationic nanoparticles, which remarkably did not significantly change in the aged group. Further characterization of cell phenotypes post-NP internalization demonstrated unique surface marker expression and activation levels for each APC population, showcasing heightened DC inflammatory response to NP delivery in the aged group. CONCLUSION The age of mice demonstrated significant preferences in the charge-based NP uptake in APCs that differed greatly between macrophages and DCs. Carefully balance of the targeting and activation of specific types of pulmonary APCs will be critical to produce efficient, age-based vaccines for the growing elderly population.
Collapse
Affiliation(s)
- Emma R Sudduth
- Chemical and Biomolecular Engineering Department, University of Delaware, 150 Academy St, Newark, DE, 19716, USA
| | - Aida López Ruiz
- Chemical and Biomolecular Engineering Department, University of Delaware, 150 Academy St, Newark, DE, 19716, USA
| | - Michael Trautmann-Rodriguez
- Chemical and Biomolecular Engineering Department, University of Delaware, 150 Academy St, Newark, DE, 19716, USA
| | - Catherine A Fromen
- Chemical and Biomolecular Engineering Department, University of Delaware, 150 Academy St, Newark, DE, 19716, USA.
| |
Collapse
|
14
|
Kaur R, Harvey JM, Brambilla R, Chandrasekharan UM, Elaine Husni M. Targeting dendritic cell-specific TNFR2 improves skin and joint inflammation by inhibiting IL-12/ IFN-γ pathways in a mouse model of psoriatic arthritis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.598545. [PMID: 38979358 PMCID: PMC11230259 DOI: 10.1101/2024.06.20.598545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Psoriasis (PsO) and Psoriatic arthritis (PsA) are immune-mediated inflammatory diseases affecting the skin and joints. Approximately, 30% of patients with PsO develop PsA over time with both conditions being associated with elevated tumor necrosis factor-alpha (TNF-α) expression. TNF-α mediates its effect through two membrane receptors, TNFR1 and TNFR2. While current TNF-α-neutralizing agents, targeting both TNFR1 and TNFR2 receptors, constitute the primary treatment for psoriatic diseases, their long-term use is limited due to an increase in opportunistic infections, tuberculosis reactivation and malignancies likely attributed to TNFR1 inactivation. Recent findings suggest a pivotal role of TNFR2 in psoriatic disease, as evidenced by its amelioration in global TNFR2-knockout (TNFR2KO) mice, but not in TNFR1KO mice. The diminished disease phenotype in TNFR2KO mice is accompanied by a decrease in DC populations. However, the specific contribution of TNFR2 in dendritic cells (DCs) remains unclear. Here, utilizing a mannan-oligosaccharide (MOS)-induced PsA model, we demonstrate a significant reduction in PsA-like skin scaling and joint inflammation in dendritic cell-specific TNFR2 knockout mice (DC-TNFR2KO). Notably, MOS treatment in control mice (TNFR2 fl/fl) led to an increase in conventional type 1 dendritic cells (cDC1) population in the spleen, a response inhibited in DC-TNFR2KO mice. Furthermore, DC-TNFR2KO mice exhibited reduced levels of interleukin-12 (IL-12), a Th1 cell activator, as well as diminished Th1 cells, and interferon-gamma (IFN-γ) levels in the serum compared to controls following MOS stimulation. In summary, our study provides compelling evidence supporting the role of TNFR2 in promoting PsA-like inflammation through cDC1/Th1 activation pathways.
Collapse
|
15
|
Kurumi H, Yokoyama Y, Hirano T, Akita K, Hayashi Y, Kazama T, Isomoto H, Nakase H. Cytokine Profile in Predicting the Effectiveness of Advanced Therapy for Ulcerative Colitis: A Narrative Review. Biomedicines 2024; 12:952. [PMID: 38790914 PMCID: PMC11117845 DOI: 10.3390/biomedicines12050952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Cytokine-targeted therapies have shown efficacy in treating patients with ulcerative colitis (UC), but responses to these advanced therapies can vary. This variability may be due to differences in cytokine profiles among patients with UC. While the etiology of UC is not fully understood, abnormalities of the cytokine profiles are deeply involved in its pathophysiology. Therefore, an approach focused on the cytokine profile of individual patients with UC is ideal. Recent studies have demonstrated that molecular analysis of cytokine profiles in UC can predict response to each advanced therapy. This narrative review summarizes the molecules involved in the efficacy of various advanced therapies for UC. Understanding these associations may be helpful in selecting optimal therapeutic agents.
Collapse
Affiliation(s)
- Hiroki Kurumi
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo 060-8543, Hokkaido, Japan; (H.K.)
- Division of Gastroenterology and Nephrology, Department of Multidisciplinary Internal Medicine, Tottori University Faculty of Medicine, 36-1, Nishi-cho, Yonago 683-8504, Tottori, Japan
| | - Yoshihiro Yokoyama
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo 060-8543, Hokkaido, Japan; (H.K.)
| | - Takehiro Hirano
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo 060-8543, Hokkaido, Japan; (H.K.)
| | - Kotaro Akita
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo 060-8543, Hokkaido, Japan; (H.K.)
| | - Yuki Hayashi
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo 060-8543, Hokkaido, Japan; (H.K.)
| | - Tomoe Kazama
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo 060-8543, Hokkaido, Japan; (H.K.)
| | - Hajime Isomoto
- Division of Gastroenterology and Nephrology, Department of Multidisciplinary Internal Medicine, Tottori University Faculty of Medicine, 36-1, Nishi-cho, Yonago 683-8504, Tottori, Japan
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo 060-8543, Hokkaido, Japan; (H.K.)
| |
Collapse
|
16
|
Brown M, Dodd A, Shi F, Greenwood E, Nagpal S, Kolachala VL, Kugathasan S, Gibson G. Concordant B and T Cell Heterogeneity Inferred from the Multiomic Landscape of Peripheral Blood Mononuclear Cells in a Crohn's Disease Cohort. J Crohns Colitis 2024; 18:jjae055. [PMID: 38613150 PMCID: PMC11637485 DOI: 10.1093/ecco-jcc/jjae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 04/14/2024]
Abstract
BACKGROUND AND AIMS Crohn's disease is characterized by inflammation in the gastrointestinal tract due to a combination of genetic, immune, and environmental factors. Transcriptomic and epigenomic profiling of intestinal tissue of Crohn's disease patients have revealed valuable insights into pathology, however have not been conducted jointly on less invasive peripheral blood mononuclear cells (PBMCs). Furthermore, the heterogeneous responses to treatments among individuals with Crohn's disease imply hidden diversity of pathological mechanisms. METHODS We employed single nucleus multiomic analysis, integrating both snRNA-seq and snATAC-seq of PBMCs with a variety of open source bioinformatics applications. RESULTS Our findings reveal a diverse range of transcriptional signatures among individuals, highlighting the heterogeneity in PBMC profiles. Nevertheless, striking concordance between three heterogeneous groups was observed across B cells and T cells. Differential gene regulatory mechanisms partially explain these profiles, notably including a signature involving TGFß signaling in two individuals with Crohn's disease. A mutation mapped to a transcription factor binding site within a differentially accessible peak associated with the expression of this pathway, with implications for a personalized approach to understanding disease pathology. CONCLUSIONS This study highlights how multiomic analysis can reveal common regulatory mechanisms that underlie heterogeneity of PBMC profiles, one of which may be specific to inflammatory disease.
Collapse
Affiliation(s)
- Margaret Brown
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Anne Dodd
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Fang Shi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Emily Greenwood
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sini Nagpal
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | - Greg Gibson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
17
|
Ulmert I, Lahl K. IL-23 to see: Gut DCs shine bright in inductive sites. J Exp Med 2024; 221:e20232144. [PMID: 38180806 PMCID: PMC10770875 DOI: 10.1084/jem.20232144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024] Open
Abstract
The cytokine IL-23 plays important roles in intestinal barrier protection and integrity, but is also linked to chronic inflammation. In this issue of JEM, Ohara et al. (https://doi.org/10.1084/jem.20230923) provide clarity on the much-debated question of which cells produce IL-23.
Collapse
Affiliation(s)
- Isabel Ulmert
- Technical University of Denmark, Kongens Lyngby, Denmark
| | - Katharina Lahl
- Technical University of Denmark, Kongens Lyngby, Denmark
- Lund University, Lund, Sweden
- University of Calgary, Calgary, Canada
| |
Collapse
|
18
|
Ji T, Fu H, Wang L, Chen J, Tian S, Wang G, Wang L, Wang Z. Single-cell RNA profiling reveals classification and characteristics of mononuclear phagocytes in colorectal cancer. PLoS Genet 2024; 20:e1011176. [PMID: 38408082 PMCID: PMC10919852 DOI: 10.1371/journal.pgen.1011176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 03/07/2024] [Accepted: 02/08/2024] [Indexed: 02/28/2024] Open
Abstract
Colorectal cancer (CRC) is a major cause of cancer mortality and a serious health problem worldwide. Mononuclear phagocytes are the main immune cells in the tumor microenvironment of CRC with remarkable plasticity, and current studies show that macrophages are closely related to tumor progression, invasion and dissemination. To understand the immunological function of mononuclear phagocytes comprehensively and deeply, we use single-cell RNA sequencing and classify mononuclear phagocytes in CRC into 6 different subsets, and characterize the heterogeneity of each subset. We find that tissue inhibitor of metalloproteinases (TIMPs) involved in the differentiation of proinflammatory and anti-inflammatory mononuclear phagocytes. Trajectory of circulating monocytes differentiation into tumor-associated macrophages (TAMs) and the dynamic changes at levels of transcription factor (TF) regulons during differentiation were revealed. We also find that C5 subset, characterized by activation of lipid metabolism, is in the terminal state of differentiation, and that the abundance of C5 subset is negatively correlated with CRC patients' prognosis. Our findings advance the understanding of circulating monocytes' differentiation into macrophages, identify a new subset associated with CRC prognosis, and reveal a set of TF regulons regulating mononuclear phagocytes differentiation, which are expected to be potential therapeutic targets for reversing immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Tiantian Ji
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan, China
| | - Haoyu Fu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liping Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan, China
| | - Jinyun Chen
- Department of Transfusion, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaobo Tian
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guobin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Dong X, Qi M, Cai C, Zhu Y, Li Y, Coulter S, Sun F, Liddle C, Uboha NV, Halberg R, Xu W, Marker P, Fu T. Farnesoid X receptor mediates macrophage-intrinsic responses to suppress colitis-induced colon cancer progression. JCI Insight 2024; 9:e170428. [PMID: 38258906 PMCID: PMC10906220 DOI: 10.1172/jci.insight.170428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Bile acids (BAs) affect the intestinal environment by ensuring barrier integrity, maintaining microbiota balance, regulating epithelium turnover, and modulating the immune system. As a master regulator of BA homeostasis, farnesoid X receptor (FXR) is severely compromised in patients with inflammatory bowel disease (IBD) and colitis-associated colorectal cancer (CAC). At the front line, gut macrophages react to the microbiota and metabolites that breach the epithelium. We aim to study the role of the BA/FXR axis in macrophages. This study demonstrates that inflammation-induced epithelial abnormalities compromised FXR signaling and altered BAs' profile in a mouse CAC model. Further, gut macrophage-intrinsic FXR sensed aberrant BAs, leading to pro-inflammatory cytokines' secretion, which promoted intestinal stem cell proliferation. Mechanistically, activation of FXR ameliorated intestinal inflammation and inhibited colitis-associated tumor growth, by regulating gut macrophages' recruitment, polarization, and crosstalk with Th17 cells. However, deletion of FXR in bone marrow or gut macrophages escalated the intestinal inflammation. In summary, our study reveals a distinctive regulatory role of FXR in gut macrophages, suggesting its potential as a therapeutic target for addressing IBD and CAC.
Collapse
Affiliation(s)
- Xingchen Dong
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Carbone Cancer Center (UWCCC), University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Ming Qi
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Carbone Cancer Center (UWCCC), University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Chunmiao Cai
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Carbone Cancer Center (UWCCC), University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Yu Zhu
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, California, USA
| | - Yuwenbin Li
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Sally Coulter
- Storr Liver Centre, The Westmead Institute for Medical Research and Sydney Medical School, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia
| | - Fei Sun
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Carbone Cancer Center (UWCCC), University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Christopher Liddle
- Storr Liver Centre, The Westmead Institute for Medical Research and Sydney Medical School, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia
| | | | - Richard Halberg
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Wei Xu
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Paul Marker
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Carbone Cancer Center (UWCCC), University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Ting Fu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Carbone Cancer Center (UWCCC), University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
20
|
Zuo S, Jiang L, Chen L, Wang W, Gu J, Kuai J, Yang X, Ma Y, Han C, Wei W. Involvement of Embryo-Derived and Monocyte-Derived Intestinal Macrophages in the Pathogenesis of Inflammatory Bowel Disease and Their Prospects as Therapeutic Targets. Int J Mol Sci 2024; 25:690. [PMID: 38255764 PMCID: PMC10815613 DOI: 10.3390/ijms25020690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a group of intestinal inflammatory diseases characterized by chronic, recurrent, remitting, or progressive inflammation, which causes the disturbance of the homeostasis between immune cells, such as macrophages, epithelial cells, and microorganisms. Intestinal macrophages (IMs) are the largest population of macrophages in the body, and the abnormal function of IMs is an important cause of IBD. Most IMs come from the replenishment of blood monocytes, while a small part come from embryos and can self-renew. Stimulated by the intestinal inflammatory microenvironment, monocyte-derived IMs can interact with intestinal epithelial cells, intestinal fibroblasts, and intestinal flora, resulting in the increased differentiation of proinflammatory phenotypes and the decreased differentiation of anti-inflammatory phenotypes, releasing a large number of proinflammatory factors and aggravating intestinal inflammation. Based on this mechanism, inhibiting the secretion of IMs' proinflammatory factors and enhancing the differentiation of anti-inflammatory phenotypes can help alleviate intestinal inflammation and promote tissue repair. At present, the clinical medication of IBD mainly includes 5-aminosalicylic acids (5-ASAs), glucocorticoid, immunosuppressants, and TNF-α inhibitors. The general principle of treatment is to control acute attacks, alleviate the condition, reduce recurrence, and prevent complications. Most classical IBD therapies affecting IMs function in a variety of ways, such as inhibiting the inflammatory signaling pathways and inducing IM2-type macrophage differentiation. This review explores the current understanding of the involvement of IMs in the pathogenesis of IBD and their prospects as therapeutic targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chenchen Han
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, China; (S.Z.); (L.J.); (L.C.); (W.W.); (J.G.); (J.K.); (X.Y.); (Y.M.)
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, China; (S.Z.); (L.J.); (L.C.); (W.W.); (J.G.); (J.K.); (X.Y.); (Y.M.)
| |
Collapse
|
21
|
Martin MD, Skon-Hegg C, Kim CY, Xu J, Kucaba TA, Swanson W, Pierson MJ, Williams JW, Badovinac VP, Shen SS, Ingersoll MA, Griffith TS. CD115 + monocytes protect microbially experienced mice against E. coli-induced sepsis. Cell Rep 2023; 42:113345. [PMID: 38111515 PMCID: PMC10727454 DOI: 10.1016/j.celrep.2023.113345] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023] Open
Abstract
Uropathogenic E. coli (UPEC) is a primary organism responsible for urinary tract infections and a common cause of sepsis. Microbially experienced laboratory mice, generated by cohousing with pet store mice, exhibit increased morbidity and mortality to polymicrobial sepsis or lipopolysaccharide challenge. By contrast, cohoused mice display significant resistance, compared with specific pathogen-free mice, to a monomicrobial sepsis model using UPEC. CD115+ monocytes mediate protection in the cohoused mice, as depletion of these cells leads to increased mortality and UPEC pathogen burden. Further study of the cohoused mice reveals increased TNF-α production by monocytes, a skewing toward Ly6ChiCD115+ "classical" monocytes, and enhanced egress of Ly6ChiCD115+ monocytes from the bone marrow. Analysis of cohoused bone marrow also finds increased frequency and number of myeloid multipotent progenitor cells. These results show that a history of microbial exposure impacts innate immunity in mice, which can have important implications for the preclinical study of sepsis.
Collapse
Affiliation(s)
- Matthew D. Martin
- Department of Urology, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- These authors contributed equally
| | - Cara Skon-Hegg
- Department of Urology, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- These authors contributed equally
| | - Caleb Y. Kim
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
| | - Julie Xu
- Department of Urology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tamara A. Kucaba
- Department of Urology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Whitney Swanson
- Department of Urology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mark J. Pierson
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jesse W. Williams
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Vladimir P. Badovinac
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Steven S. Shen
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Molly A. Ingersoll
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR 8104, 75014 Paris, France
- Mucosal Inflammation and Immunity, Department of Immunology, Institut Pasteur, Inserm U1223, 75015 Paris, France
| | - Thomas S. Griffith
- Department of Urology, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Minneapolis VA Health Care System, Minneapolis, MN 55417, USA
- Lead contact
| |
Collapse
|
22
|
Fritsch SD, Sukhbaatar N, Gonzales K, Sahu A, Tran L, Vogel A, Mazic M, Wilson JL, Forisch S, Mayr H, Oberle R, Weiszmann J, Brenner M, Vanhoutte R, Hofmann M, Pirnes-Karhu S, Magnes C, Kühnast T, Weckwerth W, Bock C, Klavins K, Hengstschläger M, Moissl-Eichinger C, Schabbauer G, Egger G, Pirinen E, Verhelst SHL, Weichhart T. Metabolic support by macrophages sustains colonic epithelial homeostasis. Cell Metab 2023; 35:1931-1943.e8. [PMID: 37804836 DOI: 10.1016/j.cmet.2023.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 06/23/2023] [Accepted: 09/14/2023] [Indexed: 10/09/2023]
Abstract
The intestinal epithelium has a high turnover rate and constantly renews itself through proliferation of intestinal crypt cells, which depends on insufficiently characterized signals from the microenvironment. Here, we showed that colonic macrophages were located directly adjacent to epithelial crypt cells in mice, where they metabolically supported epithelial cell proliferation in an mTORC1-dependent manner. Specifically, deletion of tuberous sclerosis complex 2 (Tsc2) in macrophages activated mTORC1 signaling that protected against colitis-induced intestinal damage and induced the synthesis of the polyamines spermidine and spermine. Epithelial cells ingested these polyamines and rewired their cellular metabolism to optimize proliferation and defense. Notably, spermine directly stimulated proliferation of colon epithelial cells and colon organoids. Genetic interference with polyamine production in macrophages altered global polyamine levels in the colon and modified epithelial cell proliferation. Our results suggest that macrophages act as "commensals" that provide metabolic support to promote efficient self-renewal of the colon epithelium.
Collapse
Affiliation(s)
| | - Nyamdelger Sukhbaatar
- Center for Pathobiochemsitry & Genetics, Medical University of Vienna, Vienna, Austria
| | - Karine Gonzales
- Center for Pathobiochemsitry & Genetics, Medical University of Vienna, Vienna, Austria
| | - Alishan Sahu
- Center for Pathobiochemsitry & Genetics, Medical University of Vienna, Vienna, Austria
| | - Loan Tran
- Department of Pathology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute Applied Diagnostics (LBI AD), Vienna, Austria
| | - Andrea Vogel
- Institute for Vascular Biology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria; Christian Doppler Laboratory Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Mario Mazic
- Center for Pathobiochemsitry & Genetics, Medical University of Vienna, Vienna, Austria
| | - Jayne Louise Wilson
- Center for Pathobiochemsitry & Genetics, Medical University of Vienna, Vienna, Austria
| | - Stephan Forisch
- Center for Pathobiochemsitry & Genetics, Medical University of Vienna, Vienna, Austria
| | - Hannah Mayr
- Center for Pathobiochemsitry & Genetics, Medical University of Vienna, Vienna, Austria
| | - Raimund Oberle
- Center for Pathobiochemsitry & Genetics, Medical University of Vienna, Vienna, Austria
| | - Jakob Weiszmann
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria; Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | - Martin Brenner
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria; Department of Pharmaceutical Sciences/ Pharmacognosy, Faculty of Life Sciences, University of Vienna, Vienna, Austria; Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | - Roeland Vanhoutte
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Melanie Hofmann
- Institute for Vascular Biology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria; Christian Doppler Laboratory Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Sini Pirnes-Karhu
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Christoph Magnes
- HEALTH-Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, Graz, Austria
| | - Torben Kühnast
- Diagnostic and Research Department of Microbiology, Hygiene and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria; Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Institute of Artificial Intelligence, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Kristaps Klavins
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Markus Hengstschläger
- Center for Pathobiochemsitry & Genetics, Medical University of Vienna, Vienna, Austria
| | - Christine Moissl-Eichinger
- Diagnostic and Research Department of Microbiology, Hygiene and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Gernot Schabbauer
- Institute for Vascular Biology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria; Christian Doppler Laboratory Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Gerda Egger
- Department of Pathology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute Applied Diagnostics (LBI AD), Vienna, Austria
| | - Eija Pirinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Research Unit of Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Steven H L Verhelst
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Thomas Weichhart
- Center for Pathobiochemsitry & Genetics, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
23
|
Kemter AM, Patry RT, Arnold J, Hesser LA, Campbell E, Ionescu E, Mimee M, Wang S, Nagler CR. Commensal bacteria signal through TLR5 and AhR to improve barrier integrity and prevent allergic responses to food. Cell Rep 2023; 42:113153. [PMID: 37742185 PMCID: PMC10697505 DOI: 10.1016/j.celrep.2023.113153] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 08/07/2023] [Accepted: 09/01/2023] [Indexed: 09/26/2023] Open
Abstract
The increasing prevalence of food allergies has been linked to reduced commensal microbial diversity. In this article, we describe two features of allergy-protective Clostridia that contribute to their beneficial effects. Some Clostridial taxa bear flagella (a ligand for TLR5) and produce indole (a ligand for the aryl hydrocarbon receptor [AhR]). Lysates and flagella from a Clostridia consortium induced interleukin-22 (IL-22) secretion from ileal explants. IL-22 production is abrogated in explants from mice in which TLR5 or MyD88 signaling is deficient either globally or conditionally in CD11c+ antigen-presenting cells. AhR signaling in RORγt+ cells is necessary for the induction of IL-22. Mice deficient in AhR in RORγt+ cells exhibit increased intestinal permeability and are more susceptible to an anaphylactic response to food. Our findings implicate TLR5 and AhR signaling in a molecular mechanism by which commensal Clostridia protect against allergic responses to food.
Collapse
Affiliation(s)
- Andrea M Kemter
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Robert T Patry
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Jack Arnold
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Lauren A Hesser
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Evelyn Campbell
- Committee on Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Edward Ionescu
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Mark Mimee
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA; Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA; Committee on Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Shan Wang
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Cathryn R Nagler
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA; Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA; Committee on Immunology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
24
|
Scarno G, Mazej J, Laffranchi M, Di Censo C, Mattiola I, Candelotti AM, Pietropaolo G, Stabile H, Fionda C, Peruzzi G, Brooks SR, Tsai WL, Mikami Y, Bernardini G, Gismondi A, Sozzani S, Di Santo JP, Vosshenrich CAJ, Diefenbach A, Gadina M, Santoni A, Sciumè G. Divergent roles for STAT4 in shaping differentiation of cytotoxic ILC1 and NK cells during gut inflammation. Proc Natl Acad Sci U S A 2023; 120:e2306761120. [PMID: 37756335 PMCID: PMC10556635 DOI: 10.1073/pnas.2306761120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/10/2023] [Indexed: 09/29/2023] Open
Abstract
Natural killer (NK) cells and type 1 innate lymphoid cells (ILC1) require signal transducer and activator of transcription 4 (STAT4) to elicit rapid effector responses and protect against pathogens. By combining genetic and transcriptomic approaches, we uncovered divergent roles for STAT4 in regulating effector differentiation of these functionally related cell types. Stat4 deletion in Ncr1-expressing cells led to impaired NK cell terminal differentiation as well as to an unexpected increased generation of cytotoxic ILC1 during intestinal inflammation. Mechanistically, Stat4-deficient ILC1 exhibited upregulation of gene modules regulated by STAT5 in vivo and an aberrant effector differentiation upon in vitro stimulation with IL-2, used as a prototypical STAT5 activator. Moreover, STAT4 expression in NCR+ innate lymphocytes restrained gut inflammation in the dextran sulfate sodium-induced colitis model limiting pathogenic production of IL-13 from adaptive CD4+ T cells in the large intestine. Collectively, our data shed light on shared and distinctive mechanisms of STAT4-regulated transcriptional control in NK cells and ILC1 required for intestinal inflammatory responses.
Collapse
Affiliation(s)
- Gianluca Scarno
- Department of Molecular Medicine, Sapienza University of Rome, Rome00161, Italy
- Laboratory affiliated to Istituto Pasteur Italia–Fondazione Cenci Bolognetti, Rome00161, Italy
| | - Julija Mazej
- Department of Molecular Medicine, Sapienza University of Rome, Rome00161, Italy
- Laboratory affiliated to Istituto Pasteur Italia–Fondazione Cenci Bolognetti, Rome00161, Italy
| | - Mattia Laffranchi
- Department of Molecular Medicine, Sapienza University of Rome, Rome00161, Italy
- Laboratory affiliated to Istituto Pasteur Italia–Fondazione Cenci Bolognetti, Rome00161, Italy
| | - Chiara Di Censo
- Department of Molecular Medicine, Sapienza University of Rome, Rome00161, Italy
- Laboratory affiliated to Istituto Pasteur Italia–Fondazione Cenci Bolognetti, Rome00161, Italy
| | - Irene Mattiola
- Laboratory of Innate Immunity, Institute of Microbiology, Infectious Diseases and Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt–Universität zu Berlin, Campus Benjamin Franklin, Berlin12203, Germany
- Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Association, Berlin10117, Germany
| | - Arianna M. Candelotti
- Department of Molecular Medicine, Sapienza University of Rome, Rome00161, Italy
- Laboratory affiliated to Istituto Pasteur Italia–Fondazione Cenci Bolognetti, Rome00161, Italy
| | - Giuseppe Pietropaolo
- Department of Molecular Medicine, Sapienza University of Rome, Rome00161, Italy
- Laboratory affiliated to Istituto Pasteur Italia–Fondazione Cenci Bolognetti, Rome00161, Italy
| | - Helena Stabile
- Department of Molecular Medicine, Sapienza University of Rome, Rome00161, Italy
- Laboratory affiliated to Istituto Pasteur Italia–Fondazione Cenci Bolognetti, Rome00161, Italy
| | - Cinzia Fionda
- Department of Molecular Medicine, Sapienza University of Rome, Rome00161, Italy
- Laboratory affiliated to Istituto Pasteur Italia–Fondazione Cenci Bolognetti, Rome00161, Italy
| | - Giovanna Peruzzi
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Rome00161, Italy
| | - Stephen R. Brooks
- Biodata Mining and Discovery Section, Office of Science and Technology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, NIH, Bethesda, MD20892
| | - Wanxia Li Tsai
- Translational Immunology Section, Office of Science and Technology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, NIH, Bethesda, MD20892
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo1608582, Japan
| | - Giovanni Bernardini
- Department of Molecular Medicine, Sapienza University of Rome, Rome00161, Italy
- Laboratory affiliated to Istituto Pasteur Italia–Fondazione Cenci Bolognetti, Rome00161, Italy
| | - Angela Gismondi
- Department of Molecular Medicine, Sapienza University of Rome, Rome00161, Italy
- Laboratory affiliated to Istituto Pasteur Italia–Fondazione Cenci Bolognetti, Rome00161, Italy
| | - Silvano Sozzani
- Department of Molecular Medicine, Sapienza University of Rome, Rome00161, Italy
- Laboratory affiliated to Istituto Pasteur Italia–Fondazione Cenci Bolognetti, Rome00161, Italy
- Istituti di Ricovero e Cura a Carattere Scientifico Neuromed, Isernia86077, Italy
| | - James P. Di Santo
- Innate Immunity Unit, Institut Pasteur, Université Paris Cité, INSERM U1223, Paris75724, France
| | | | - Andreas Diefenbach
- Laboratory of Innate Immunity, Institute of Microbiology, Infectious Diseases and Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt–Universität zu Berlin, Campus Benjamin Franklin, Berlin12203, Germany
- Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Association, Berlin10117, Germany
| | - Massimo Gadina
- Translational Immunology Section, Office of Science and Technology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, NIH, Bethesda, MD20892
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Rome00161, Italy
- Laboratory affiliated to Istituto Pasteur Italia–Fondazione Cenci Bolognetti, Rome00161, Italy
- Istituti di Ricovero e Cura a Carattere Scientifico Neuromed, Isernia86077, Italy
| | - Giuseppe Sciumè
- Department of Molecular Medicine, Sapienza University of Rome, Rome00161, Italy
- Laboratory affiliated to Istituto Pasteur Italia–Fondazione Cenci Bolognetti, Rome00161, Italy
| |
Collapse
|
25
|
Zogorean R, Wirtz S. The yin and yang of B cells in a constant state of battle: intestinal inflammation and inflammatory bowel disease. Front Immunol 2023; 14:1260266. [PMID: 37849749 PMCID: PMC10577428 DOI: 10.3389/fimmu.2023.1260266] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract, defined by a clinical relapse-remitting course. Affecting people worldwide, the origin of IBD is still undefined, arising as a consequence of the interaction between genes, environment, and microbiota. Although the root cause is difficult to identify, data clearly indicate that dysbiosis and pathogenic microbial taxa are connected with the establishment and clinical course of IBD. The composition of the microbiota is shaped by plasma cell IgA secretion and binding, while cytokines such as IL10 or IFN-γ are important fine-tuners of the immune response in the gastrointestinal environment. B cells may also influence the course of inflammation by promoting either an anti-inflammatory or a pro-inflammatory milieu. Here, we discuss IgA-producing B regulatory cells as an anti-inflammatory factor in intestinal inflammation. Moreover, we specify the context of IgA and IgG as players that can potentially participate in mucosal inflammation. Finally, we discuss the role of B cells in mouse infection models where IL10, IgA, or IgG contribute to the outcome of the infection.
Collapse
Affiliation(s)
- Roxana Zogorean
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Wirtz
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Bavaria, Germany
| |
Collapse
|
26
|
Zhang S, Audiger C, Chopin M, Nutt SL. Transcriptional regulation of dendritic cell development and function. Front Immunol 2023; 14:1182553. [PMID: 37520521 PMCID: PMC10382230 DOI: 10.3389/fimmu.2023.1182553] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
Dendritic cells (DCs) are sentinel immune cells that form a critical bridge linking the innate and adaptive immune systems. Extensive research addressing the cellular origin and heterogeneity of the DC network has revealed the essential role played by the spatiotemporal activity of key transcription factors. In response to environmental signals DC mature but it is only following the sensing of environmental signals that DC can induce an antigen specific T cell response. Thus, whilst the coordinate action of transcription factors governs DC differentiation, sensing of environmental signals by DC is instrumental in shaping their functional properties. In this review, we provide an overview that focuses on recent advances in understanding the transcriptional networks that regulate the development of the reported DC subsets, shedding light on the function of different DC subsets. Specifically, we discuss the emerging knowledge on the heterogeneity of cDC2s, the ontogeny of pDCs, and the newly described DC subset, DC3. Additionally, we examine critical transcription factors such as IRF8, PU.1, and E2-2 and their regulatory mechanisms and downstream targets. We highlight the complex interplay between these transcription factors, which shape the DC transcriptome and influence their function in response to environmental stimuli. The information presented in this review provides essential insights into the regulation of DC development and function, which might have implications for developing novel therapeutic strategies for immune-related diseases.
Collapse
Affiliation(s)
- Shengbo Zhang
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Cindy Audiger
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Michaël Chopin
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Stephen L. Nutt
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
27
|
Di Vincenzo A, Granzotto M, Crescenzi M, Costa C, Piaserico S, Vindigni V, Vettor R, Rossato M. Insulin Stimulates IL-23 Expression in Human Adipocytes: A Possible Explanation for the Higher Prevalence of Psoriasis in Obesity. Diabetes Metab Syndr Obes 2023; 16:1885-1893. [PMID: 37384131 PMCID: PMC10295559 DOI: 10.2147/dmso.s405374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/19/2023] [Indexed: 06/30/2023] Open
Abstract
Purpose Psoriasis is a chronic systemic inflammatory disease involving the production of many pro-inflammatory cytokines derived from immune cells and interacting with different tissues leading to the typical skin lesions. Psoriasis shows a higher prevalence and a worse progression in obese than in lean subjects. The IL-23/IL-17 immune axis has a pivotal role in the pathogenesis of psoriasis and anti-IL-23 monoclonal antibodies are highly effective in its treatment. Since obesity in frequently associated with elevated insulin plasma levels, we have investigated the ability of in vitro differentiated human adipocytes to produce IL-23 at basal conditions and after insulin stimulation. Material and Methods In vitro differentiated human adipocytes were incubated in the absence and presence of different insulin concentrations and the expression of IL-23 was analyzed by real-time PCR and Western blotting. Results The results of this study show that in vitro differentiated human adipocytes spontaneously express IL-23 mRNA and protein being stimulated by insulin in a dose-dependent manner. The stimulatory effects of insulin on IL-23 expression were specific since it did not stimulate the expression of other well-known cytokines involved in psoriasis pathogenesis such as Il-22 nor LL-37. Furthermore, lipopolysaccharide did not stimulate IL-23 expression in human adipocytes, thus highlightening the specific effects of insulin in the stimulation of IL-23 expression in human adipocytes. Conclusion Here we show that human adipocytes spontaneously express IL-23 and that insulin stimulates IL-23 production by these cells in a specific manner as other stimuli, known to be involved in psoriasis pathophysiology, are ineffective. These observations could explain the association between psoriasis and obesity, a condition frequently characterized by a state of insulin hypersecretion.
Collapse
Affiliation(s)
- Angelo Di Vincenzo
- Department of Medicine – DIMED, Clinica Medica 3, University - Hospital of Padova, Padova, Italy
| | - Marnie Granzotto
- Department of Medicine – DIMED, Clinica Medica 3, University - Hospital of Padova, Padova, Italy
| | - Marika Crescenzi
- Department of Medicine – DIMED, Clinica Medica 3, University - Hospital of Padova, Padova, Italy
| | - Camilla Costa
- Department of Medicine – DIMED, Clinica Medica 3, University - Hospital of Padova, Padova, Italy
| | - Stefano Piaserico
- Department of Medicine - DIMED, Section of Dermatology, University - Hospital of Padova, Padova, Italy
| | - Vincenzo Vindigni
- Department of Neurosciences, Clinic of Plastic Reconstructive and Aesthetic Surgery, University – Hospital of Padova, Padova, Italy
| | - Roberto Vettor
- Department of Medicine – DIMED, Clinica Medica 3, University - Hospital of Padova, Padova, Italy
| | - Marco Rossato
- Department of Medicine – DIMED, Clinica Medica 3, University - Hospital of Padova, Padova, Italy
| |
Collapse
|
28
|
Chauvin C, Alvarez-Simon D, Radulovic K, Boulard O, Laine W, Delacre M, Waldschmitt N, Segura E, Kluza J, Chamaillard M, Poulin LF. NOD2 in monocytes negatively regulates macrophage development through TNFalpha. Front Immunol 2023; 14:1181823. [PMID: 37415975 PMCID: PMC10320732 DOI: 10.3389/fimmu.2023.1181823] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/23/2023] [Indexed: 07/08/2023] Open
Abstract
Objective It is believed that intestinal recruitment of monocytes from Crohn's Disease (CD) patients who carry NOD2 risk alleles may repeatedly give rise to recruitment of pathogenic macrophages. We investigated an alternative possibility that NOD2 may rather inhibit their differentiation from intravasating monocytes. Design The monocyte fate decision was examined by using germ-free mice, mixed bone marrow chimeras and a culture system yielding macrophages and monocyte-derived dendritic cells (mo-DCs). Results We observed a decrease in the frequency of mo-DCs in the colon of Nod2-deficient mice, despite a similar abundance of monocytes. This decrease was independent of the changes in the gut microbiota and dysbiosis caused by Nod2 deficiency. Similarly, the pool of mo-DCs was poorly reconstituted in a Nod2-deficient mixed bone marrow (BM) chimera. The use of pharmacological inhibitors revealed that activation of NOD2 during monocyte-derived cell development, dominantly inhibits mTOR-mediated macrophage differentiation in a TNFα-dependent manner. These observations were supported by the identification of a TNFα-dependent response to muramyl dipeptide (MDP) that is specifically lost when CD14-expressing blood cells bear a frameshift mutation in NOD2. Conclusion NOD2 negatively regulates a macrophage developmental program through a feed-forward loop that could be exploited for overcoming resistance to anti-TNF therapy in CD.
Collapse
Affiliation(s)
- Camille Chauvin
- U1019, Institut Pasteur de Lille, Univ. Lille, Centre National de la Recherche Scientifique, Inserm, Centre Hospitalo- Universitaire Lille, Lille, France
- INSERM U1138, Centre de Recherche des Cordeliers, Paris, France
| | - Daniel Alvarez-Simon
- U1019, Institut Pasteur de Lille, Univ. Lille, Centre National de la Recherche Scientifique, Inserm, Centre Hospitalo- Universitaire Lille, Lille, France
| | - Katarina Radulovic
- Unité de Recherche Clinique, Centre Hospitalier de Valenciennes, Valenciennes CEDEX, France
| | | | - William Laine
- UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, University Lille, Lille, France
| | - Myriam Delacre
- U1019, Institut Pasteur de Lille, Univ. Lille, Centre National de la Recherche Scientifique, Inserm, Centre Hospitalo- Universitaire Lille, Lille, France
| | - Nadine Waldschmitt
- Chair of Nutrition and Immunology, School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| | - Elodie Segura
- INSERM U932, Institut Curie, Paris Sciences et Lettres Research University, Paris, France
| | - Jérome Kluza
- UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, University Lille, Lille, France
| | | | | |
Collapse
|
29
|
Wang L, Oliveira C, Li Q, Ferreira AS, Nunes C, Coimbra MA, Reis RL, Martins A, Wang C, Silva TH, Feng Y. Fucoidan from Fucus vesiculosus Inhibits Inflammatory Response, Both In Vitro and In Vivo. Mar Drugs 2023; 21:302. [PMID: 37233496 PMCID: PMC10221219 DOI: 10.3390/md21050302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
Fucoidan has been reported to present diverse bioactivities, but each extract has specific features from which a particular biological activity, such as immunomodulation, must be confirmed. In this study a commercially available pharmaceutical-grade fucoidan extracted from Fucus vesiculosus, FE, was characterized and its anti-inflammatory potential was investigated. Fucose was the main monosaccharide (90 mol%) present in the studied FE, followed by uronic acids, galactose, and xylose that were present at similar values (3.8-2.4 mol%). FE showed a molecular weight of 70 kDa and a sulfate content of around 10%. The expression of cytokines by mouse bone-marrow-derived macrophages (BMDMs) revealed that the addition of FE upregulated the expression of CD206 and IL-10 by about 28 and 22 fold, respectively, in respect to control. This was corroborated in a stimulated pro-inflammatory situation, with the higher expression (60 fold) of iNOS being almost completely reversed by the addition of FE. FE was also capable of reverse LPS-caused inflammation in an in vivo mouse model, including by reducing macrophage activation by LPS from 41% of positive CD11C to 9% upon fucoidan injection. Taken together, the potential of FE as an anti-inflammatory agent was validated, both in vitro and in vivo.
Collapse
Affiliation(s)
- Lingzhi Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529000, China
| | - Catarina Oliveira
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Qiu Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Andreia S. Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Cláudia Nunes
- CICECO, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Manuel A. Coimbra
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Albino Martins
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Tiago H. Silva
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Yanxian Feng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529000, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
30
|
Cabana-Puig X, Lu R, Geng S, Michaelis JS, Oakes V, Armstrong C, Testerman JC, Liao X, Alajoleen R, Appiah M, Zhang Y, Reilly CM, Li L, Luo XM. CX 3CR1 modulates SLE-associated glomerulonephritis and cardiovascular disease in MRL/lpr mice. Inflamm Res 2023; 72:1083-1097. [PMID: 37060359 PMCID: PMC10748465 DOI: 10.1007/s00011-023-01731-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/16/2023] Open
Abstract
OBJECTIVE Patients with systemic lupus erythematosus (SLE) often develop multi-organ damages including heart and kidney complications. We sought to better define the underlying mechanisms with a focus on the chemokine receptor CX3CR1. METHODS We generated Cx3cr1-deficient MRL/lpr lupus-prone mice through backcrossing. We then employed heterozygous intercross to generate MRL/lpr littermates that were either sufficient or deficient of CX3CR1. The mice were also treated with either Lactobacillus spp. or a high-fat diet (HFD) followed by assessments of the kidney and heart, respectively. RESULTS Cx3cr1-/- MRL/lpr mice exhibited a distinct phenotype of exacerbated glomerulonephritis compared to Cx3cr1+/+ littermates, which was associated with a decrease of spleen tolerogenic marginal zone macrophages and an increase of double-negative T cells. Interestingly, upon correction of the gut microbiota with Lactobacillus administration, the phenotype of exacerbated glomerulonephritis was reversed, suggesting that CX3CR1 controls glomerulonephritis in MRL/lpr mice through a gut microbiota-dependent mechanism. Upon treatment with HFD, Cx3cr1-/- MRL/lpr mice developed significantly more atherosclerotic plaques that were promoted by Ly6C+ monocytes. Activated monocytes expressed ICOS-L that interacted with ICOS-expressing follicular T-helper cells, which in turn facilitated a germinal center reaction to produce more autoantibodies. Through a positive feedback mechanism, the increased circulatory autoantibodies further promoted the activation of Ly6C+ monocytes and their display of ICOS-L. CONCLUSIONS We uncovered novel, Cx3cr1 deficiency-mediated pathogenic mechanisms contributing to SLE-associated glomerulonephritis and cardiovascular disease.
Collapse
Affiliation(s)
- Xavier Cabana-Puig
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
| | - Ran Lu
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Shuo Geng
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Jacquelyn S Michaelis
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, USA
| | - Vanessa Oakes
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
| | - Caitlin Armstrong
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - James C Testerman
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
| | - Xiaofeng Liao
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
| | - Razan Alajoleen
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
| | - Michael Appiah
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
| | - Yao Zhang
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | | | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| | - Xin M Luo
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
31
|
Hegarty LM, Jones GR, Bain CC. Macrophages in intestinal homeostasis and inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 2023:10.1038/s41575-023-00769-0. [PMID: 37069320 DOI: 10.1038/s41575-023-00769-0] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 04/19/2023]
Abstract
Macrophages are essential for the maintenance of intestinal homeostasis, yet appear to be drivers of inflammation in the context of inflammatory bowel disease (IBD). How these peacekeepers become powerful aggressors in IBD is still unclear, but technological advances have revolutionized our understanding of many facets of their biology. In this Review, we discuss the progress made in understanding the heterogeneity of intestinal macrophages, the functions they perform in gut health and how the environment and origin can control the differentiation and longevity of these cells. We describe how these processes might change in the context of chronic inflammation and how aberrant macrophage behaviour contributes to IBD pathology, and discuss how therapeutic approaches might target dysregulated macrophages to dampen inflammation and promote mucosal healing. Finally, we set out key areas in the field of intestinal macrophage biology for which further investigation is warranted.
Collapse
Affiliation(s)
- Lizi M Hegarty
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, Queen's Medical Research Institute, Edinburgh, UK
| | - Gareth-Rhys Jones
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, Queen's Medical Research Institute, Edinburgh, UK
| | - Calum C Bain
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, Queen's Medical Research Institute, Edinburgh, UK.
| |
Collapse
|
32
|
Gomez-Bris R, Saez A, Herrero-Fernandez B, Rius C, Sanchez-Martinez H, Gonzalez-Granado JM. CD4 T-Cell Subsets and the Pathophysiology of Inflammatory Bowel Disease. Int J Mol Sci 2023; 24:2696. [PMID: 36769019 PMCID: PMC9916759 DOI: 10.3390/ijms24032696] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Inflammatory bowel disease (IBD) is an umbrella term for the chronic immune-mediated idiopathic inflammation of the gastrointestinal tract, manifesting as Crohn's disease (CD) or ulcerative colitis (UC). IBD is characterized by exacerbated innate and adaptive immunity in the gut in association with microbiota dysbiosis and the disruption of the intestinal barrier, resulting in increased bacterial exposure. In response to signals from microorganisms and damaged tissue, innate immune cells produce inflammatory cytokines and factors that stimulate T and B cells of the adaptive immune system, and a prominent characteristic of IBD patients is the accumulation of inflammatory T-cells and their proinflammatory-associated cytokines in intestinal tissue. Upon antigen recognition and activation, CD4 T-cells differentiate towards a range of distinct phenotypes: T helper(h)1, Th2, Th9, Th17, Th22, T follicular helper (Tfh), and several types of T-regulatory cells (Treg). T-cells are generated according to and adapt to microenvironmental conditions and participate in a complex network of interactions among other immune cells that modulate the further progression of IBD. This review examines the role of the CD4 T-cells most relevant to IBD, highlighting how these cells adapt to the environment and interact with other cell populations to promote or inhibit the development of IBD.
Collapse
Affiliation(s)
- Raquel Gomez-Bris
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Angela Saez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), 28223 Pozuelo de Alarcón, Spain
| | - Beatriz Herrero-Fernandez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Cristina Rius
- Department of History of Science and Information Science, School of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- UISYS Research Unit, University of Valencia, 46010 Valencia, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Hector Sanchez-Martinez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Jose M. Gonzalez-Granado
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| |
Collapse
|
33
|
Chan YT, Cheok YY, Cheong HC, Tan GMY, Seow SR, Tang TF, Sulaiman S, Looi CY, Gupta R, Arulanandam B, Wong WF. Influx of podoplanin-expressing inflammatory macrophages into the genital tract following Chlamydia infection. Immunol Cell Biol 2023; 101:305-320. [PMID: 36658328 DOI: 10.1111/imcb.12621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 12/25/2022] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
Genital Chlamydia trachomatis infection remains a major health issue as it causes severe complications including pelvic inflammatory disease, ectopic pregnancy and infertility in females as a result of infection-associated chronic inflammation. Podoplanin, a transmembrane receptor, has been previously reported on inflammatory macrophages. Thus, strategies that specifically target podoplanin might be able to reduce local inflammation. This study investigated the expression level and function of podoplanin in a C. trachomatis infection model. C57BL/6 mice infected with the mouse pathogen Chlamydia muridarum were examined intermittently from days 1 to 60 using flow cytometry analysis. Percentages of conventional macrophages (CD11b+ CD11c- F4/80+ ) versus inflammatory macrophages (CD11b+ CD11c+ F4/80+ ), and the expression of podoplanin in these cells were investigated. Subsequently, a podoplanin-knockout RAW264.7 cell was used to evaluate the function of podoplanin in C. trachomatis infection. Our findings demonstrated an increased CD11b+ cell volume in the spleen at day 9 after the infection, with augmented podoplanin expression, especially among the inflammatory macrophages. A large number of podoplanin-expressing macrophages were detected in the genital tract of C. muridarum-infected mice. Furthermore, analysis of the C. trachomatis-infected patients demonstrated a higher percentage of podoplanin-expressing monocytes than that in the noninfected controls. Using an in vitro infection in a transwell migration assay, we identified that macrophages deficient in podoplanin displayed defective migratory function toward C. trachomatis-infected HeLa 229 cells. Lastly, using immunoprecipitation-mass spectrometry method, we identified two potential podoplanin interacting proteins, namely, Cofilin 1 and Talin 1 actin-binding proteins. The present study reports a role of podoplanin in directing macrophage migration to the chlamydial infection site. Our results suggest a potential for reducing inflammation in individuals with chronic chlamydial infections by targeting podoplanin.
Collapse
Affiliation(s)
- Yee Teng Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yi Ying Cheok
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Heng Choon Cheong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Grace Min Yi Tan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Shi Rui Seow
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ting Fang Tang
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sofiah Sulaiman
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chung Yeng Looi
- School of Bioscience, Faculty of Health & Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Rishein Gupta
- Center of Excellence in Infection Genomics, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, USA
| | - Bernard Arulanandam
- Center of Excellence in Infection Genomics, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, USA.,Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
34
|
Villar J, Cros A, De Juan A, Alaoui L, Bonte PE, Lau CM, Tiniakou I, Reizis B, Segura E. ETV3 and ETV6 enable monocyte differentiation into dendritic cells by repressing macrophage fate commitment. Nat Immunol 2023; 24:84-95. [PMID: 36543959 PMCID: PMC9810530 DOI: 10.1038/s41590-022-01374-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 10/31/2022] [Indexed: 12/24/2022]
Abstract
In inflamed tissues, monocytes differentiate into macrophages (mo-Macs) or dendritic cells (mo-DCs). In chronic nonresolving inflammation, mo-DCs are major drivers of pathogenic events. Manipulating monocyte differentiation would therefore be an attractive therapeutic strategy. However, how the balance of mo-DC versus mo-Mac fate commitment is regulated is not clear. In the present study, we show that the transcriptional repressors ETV3 and ETV6 control human monocyte differentiation into mo-DCs. ETV3 and ETV6 inhibit interferon (IFN)-stimulated genes; however, their action on monocyte differentiation is independent of IFN signaling. Instead, we find that ETV3 and ETV6 directly repress mo-Mac development by controlling MAFB expression. Mice deficient for Etv6 in monocytes have spontaneous expression of IFN-stimulated genes, confirming that Etv6 regulates IFN responses in vivo. Furthermore, these mice have impaired mo-DC differentiation during inflammation and reduced pathology in an experimental autoimmune encephalomyelitis model. These findings provide information about the molecular control of monocyte fate decision and identify ETV6 as a therapeutic target to redirect monocyte differentiation in inflammatory disorders.
Collapse
Affiliation(s)
- Javiera Villar
- Institut Curie, PSL Research University, INSERM, U932,, Paris, France
| | - Adeline Cros
- Institut Curie, PSL Research University, INSERM, U932,, Paris, France
| | - Alba De Juan
- Institut Curie, PSL Research University, INSERM, U932,, Paris, France
| | - Lamine Alaoui
- Institut Curie, PSL Research University, INSERM, U932,, Paris, France
| | | | - Colleen M Lau
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ioanna Tiniakou
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Elodie Segura
- Institut Curie, PSL Research University, INSERM, U932,, Paris, France.
| |
Collapse
|
35
|
Liu J, Zheng ML, Chen M, Li K, Zhu X, Gao Y. Effect of ApoE ε4 gene polymorphism on the correlation between serum uric acid and left ventricular hypertrophy remodeling in patients with coronary heart disease. Front Cardiovasc Med 2022; 9:1055790. [PMID: 36620636 PMCID: PMC9811169 DOI: 10.3389/fcvm.2022.1055790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Background Hyperuricemia and dyslipidemia are associated with left ventricular hypertrophy (LVH), while the effect of ApoE gene polymorphism on the correlation between serum uric acid (UA) level and severity of LVH in patients with coronary heart disease (CHD) has not been clarified. Methods This was a retrospective observational study of patients with CHD. Patients were divided into groups of ε4 carriers and non-ε4 carriers based on sanger sequencing. The association of ApoE ε4 gene polymorphism, serum UA level, and LVH, determined by cardiac color Doppler ultrasound, was evaluated by multivariate analysis. Results A total of 989 CHD patients who underwent ApoE genotyping were enrolled and analyzed. Among them, the frequency of the ApoE ε4 genotype was 17.9% (15.7% for E3/4, 1.1% for E4/4, and 1.1% for E2/4). There were 159 patients with LVH, 262 with end-diastolic LV internal diameter (LVEDD) enlargement, 160 with left ventricular ejection fraction (LVEF) reduction, and 154 with heart failure. Multivariate analysis showed that for every increase of 10 μmol/L in serum UA level, the risk of LVH decreased in ε4 carriers (odds ratio (OR) = 0.94, 95% confidence interval (CI): 0.890-0.992, P = 0.025) and increased in non-ε4 carriers (OR = 1.03, 95% CI: 1.005-1.049, P = 0.016). The risk of LVEDD enlargement tended to decrease in ε4 carriers (OR = 0.98, 95% CI: 0.943-1.023, P = 0.391) and increased in non-ε4 carriers (OR = 1.03, 95% CI: 1.009-1.048, P = 0.003). The risk of LVEF reduction was reduced in ε4 carriers (OR = 0.996, 95% CI: 0.949-1.046, P = 0.872) and increased in non-ε4 carriers (OR = 1.02, 95% CI: 0.994-1.037, P = 0.17). The risk of LVEDD enlargement decreased in ε4 carriers (OR = 0.98, 95% CI: 0.931-1.036, P = 0.508) and increased in non-ε4 carriers (OR = 1.02, 95% CI: 0.998-1.042, P = 0.07). Conclusion High serum UA levels decreased the risk of LVH in ApoE ε4 carriers with CHD, while increased the risk of LVH in non-ε4 carriers.
Collapse
|
36
|
Bilbao‐Asensio M, Ruiz‐de‐Angulo A, Arguinzoniz AG, Cronin J, Llop J, Zabaleta A, Michue‐Seijas S, Sosnowska D, Arnold JN, Mareque‐Rivas JC. Redox‐Triggered Nanomedicine via Lymphatic Delivery: Inhibition of Melanoma Growth by Ferroptosis Enhancement and a Pt(IV)‐Prodrug Chemoimmunotherapy Approach. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Marc Bilbao‐Asensio
- Department of Chemistry Swansea University Singleton Park Swansea SA2 8PP UK
| | | | | | - James Cronin
- Swansea University Medical School Singleton Park Swansea SA2 8PP UK
| | - Jordi Llop
- Radiochemistry and Nuclear Imaging Laboratory CIC biomaGUNE Paseo Miramón 182 San Sebastián 20014 Spain
| | - Aintzane Zabaleta
- Clinica Universidad de Navarra Centro de Investigación Médica Aplicada (CIMA) IdiSNA Instituto de Investigación Sanitaria de Navarra Pamplona 31009 Spain
| | - Saul Michue‐Seijas
- Department of Chemistry Swansea University Singleton Park Swansea SA2 8PP UK
| | - Dominika Sosnowska
- School of Cancer and Pharmaceutical Sciences King's College London London SE1 1UL UK
| | - James N. Arnold
- School of Cancer and Pharmaceutical Sciences King's College London London SE1 1UL UK
| | | |
Collapse
|
37
|
Ma X, Yang J, Wang X, Wang X, Chai S. The Clinical Value of Systemic Inflammatory Response Index and Inflammatory Prognosis Index in Predicting 3-Month Outcome in Acute Ischemic Stroke Patients with Intravenous Thrombolysis. Int J Gen Med 2022; 15:7907-7918. [PMID: 36314038 PMCID: PMC9601565 DOI: 10.2147/ijgm.s384706] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose Systemic inflammatory response index (SIRI) was an independent predictor of the prognosis of many diseases. Inflammatory prognostic index (IPI) was a new inflammatory prognostic marker with certain clinical significance. We aimed to explore the association between SIRI, IPI and early stage severity of stroke as well as 3-month outcome of AIS patients. Patients and Methods A total of 63 AIS patients who treated with alteplase were selected. The patients were divided into mild group and moderate to severe group according to the National Institutes of Health Stroke Scale (NIHSS) scores. According to the modified Rankin scale (mRS) score, patients were divided into the good prognosis group and the poor prognosis group. Spearman correlation statistically analyzed the correlation between SIRI, IPI and NIHSS score. Univariate and multivariate logistic regression analyzed the risk factors of 3-month prognosis. ROC curve was adopted to predict the effect of SIRI and IPI levels on poor prognosis in AIS patients. Results Spearman analysis showed that there was positively correlated with NIHSS score and IPI in mild AIS group (r=0.541, P<0.05). Compared with the mild group, SIRI and IPI in the moderate to severe group was significantly higher (P<0.05). The SIRI and IPI in the poor prognosis group were significantly higher than those in the good prognosis group (P<0.05). Univariate and multivariate logistic regression analysis showed that SIRI and IPI were independent prognostic factors for the 3-month prognosis of AIS patients (P< 0.05). The ROC curve showed that the areas under the 3-month prognosis curve predicted by SIRI and IPI were 0.685, 0.774 respectively. Conclusion IPI is correlated with stroke severity at admission. SIRI and IPI are independent predictors of short-term prognosis in AIS patients. SIRI and IPI can be a novel the good short-term prognostic biomarker for AIS patients treated with intravenous thrombolysis.
Collapse
Affiliation(s)
- Xin Ma
- Department of Clinical Laboratory, Urumqi Friendship Hospital, Urumqi, Xinjiang Uygur Autonomous Region, People’s Republic of China
| | - Jie Yang
- Department of Clinical Laboratory, Urumqi Friendship Hospital, Urumqi, Xinjiang Uygur Autonomous Region, People’s Republic of China
| | - Xiaolu Wang
- Department of Clinical Laboratory, Urumqi Friendship Hospital, Urumqi, Xinjiang Uygur Autonomous Region, People’s Republic of China
| | - Xiang Wang
- Department of Clinical Laboratory, Urumqi Friendship Hospital, Urumqi, Xinjiang Uygur Autonomous Region, People’s Republic of China
| | - Shuhong Chai
- Department of Clinical Laboratory, Urumqi Friendship Hospital, Urumqi, Xinjiang Uygur Autonomous Region, People’s Republic of China,Correspondence: Shuhong Chai, Department of Clinical Laboratory, Urumqi Friendship Hospital, No. 558 Shengli Road, Tianshan District, Urumqi, Xinjiang Uygur Autonomous Region, 830049, People’s Republic of China, Tel +86-18997994493, Email
| |
Collapse
|
38
|
Microbiome-phage interactions in inflammatory bowel disease. Clin Microbiol Infect 2022:S1198-743X(22)00506-7. [PMID: 36191844 DOI: 10.1016/j.cmi.2022.08.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Inflammatory bowel diseases (IBD) constitute a group of auto-inflammatory disorders impacting the gastrointestinal tract and other systemic organs. The gut microbiome contributes to IBD pathology through multiple mechanisms. Bacteriophages (hence termed phages) are viruses that are able to specifically infect bacteria. Considered as part of the gut microbiome, phages may impact bacterial community structure in various clinical contexts. Additionally, exogenous phage administration may represent a means of suppressing IBD-associated pathobionts, yet utilization of phage therapy remains at an early developmental phase. OBJECTIVES Herein, we summarize the latest advances in understanding endogenous phage impacts on the gut microbiome in health and in IBD. We highlight the prospect of phage utilization as a targeted mode of pathobiont eradication, in preventing and treating IBD manifestations and complications. SOURCES Selected peer-reviewed publications regarding the role of phages in health and in IBD, published between 2013 and 2022. CONTENT The human gut microbiome is increasingly suggested to play a significant role in the onset and progression of multiple non-communicable diseases such as IBD. Several studies suggest that this effect may be mediated by discrete disease-contributing commensals. However, eradication of such pathogenic bacteria remains a daunting unmet task. Altered community structure in IBD may be influenced by blooms of phages within the gut bacterial ecosystem. Moreover, combinations of phages specifically targeting disease-contributing pathobiont strain clades may be harnessed as potential eradication treatment preventing and treating IBD, while bearing minimal adverse impacts on the surrounding bacterial microbiome. IMPLICATIONS Understanding endogenous phage-gut commensal interactions in health and in IBD may enable phage utilization in precision gut microbiome editing, towards treating IBD and other non-communicable microbiome-associated diseases. Nevertheless, developing phage combination-mediated IBD pathobiont eradication treatment modalities will likely necessitate better strain-level bacterial target identification and resolution of treatment-related challenges, such as phage delivery, off-target effects, and bacterial resistance.
Collapse
|
39
|
Millet N, Solis NV, Aguilar D, Lionakis MS, Wheeler RT, Jendzjowsky N, Swidergall M. IL-23 signaling prevents ferroptosis-driven renal immunopathology during candidiasis. Nat Commun 2022; 13:5545. [PMID: 36138043 PMCID: PMC9500047 DOI: 10.1038/s41467-022-33327-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 09/13/2022] [Indexed: 01/04/2023] Open
Abstract
During infection the host relies on pattern-recognition receptors to sense invading fungal pathogens to launch immune defense mechanisms. While fungal recognition and immune effector responses are organ and cell type specific, during disseminated candidiasis myeloid cells exacerbate collateral tissue damage. The β-glucan receptor ephrin type-A 2 receptor (EphA2) is required to initiate mucosal inflammatory responses during oral Candida infection. Here we report that EphA2 promotes renal immunopathology during disseminated candidiasis. EphA2 deficiency leads to reduced renal inflammation and injury. Comprehensive analyses reveal that EphA2 restrains IL-23 secretion from and migration of dendritic cells. IL-23 signaling prevents ferroptotic host cell death during infection to limit inflammation and immunopathology. Further, host cell ferroptosis limits antifungal effector functions via releasing the lipid peroxidation product 4-hydroxynonenal to induce various forms of cell death. Thus, we identify ferroptotic cell death as a critical pathway of Candida-mediated renal immunopathology that opens a new avenue to tackle Candida infection and inflammation.
Collapse
Affiliation(s)
- Nicolas Millet
- grid.239844.00000 0001 0157 6501Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA USA ,grid.513199.6The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA USA
| | - Norma V. Solis
- grid.239844.00000 0001 0157 6501Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA USA ,grid.513199.6The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA USA
| | - Diane Aguilar
- grid.513199.6The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA USA
| | - Michail S. Lionakis
- grid.419681.30000 0001 2164 9667Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD USA
| | - Robert T. Wheeler
- grid.21106.340000000121820794Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME USA
| | - Nicholas Jendzjowsky
- grid.513199.6The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA USA ,grid.19006.3e0000 0000 9632 6718David Geffen School of Medicine at UCLA, Los Angeles, CA USA
| | - Marc Swidergall
- grid.239844.00000 0001 0157 6501Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA USA ,grid.513199.6The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA USA ,grid.19006.3e0000 0000 9632 6718David Geffen School of Medicine at UCLA, Los Angeles, CA USA
| |
Collapse
|
40
|
Huang D, Li H, Lin Y, Lin J, Li C, Kuang Y, Zhou W, Huang B, Wang P. Antibiotic-induced depletion of Clostridium species increases the risk of secondary fungal infections in preterm infants. Front Cell Infect Microbiol 2022; 12:981823. [PMID: 36118040 PMCID: PMC9473543 DOI: 10.3389/fcimb.2022.981823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/12/2022] [Indexed: 11/28/2022] Open
Abstract
Preterm infants or those with low birth weight are highly susceptible to invasive fungal disease (IFD) and other microbial or viral infection due to immaturity of their immune system. Antibiotics are routinely administered in these vulnerable infants in treatment of sepsis and other infectious diseases, which might cause perturbation of gut microbiome and hence development of IFD. In this study, we compared clinical characteristics of fungal infection after antibiotic treatment in preterm infants. As determined by 16S rRNA sequencing, compared with non-IFD patients with or without antibiotics treatment, Clostridium species in the intestinal tracts of patients with IFD were almost completely eliminated, and Enterococcus were increased. We established a rat model of IFD by intraperitoneal inoculation of C. albicans in rats pretreated with meropenem and vancomycin. After pretreatment with antibiotics, the intestinal microbiomes of rats infected with C. albicans were disordered, as characterized by an increase of proinflammatory conditional pathogens and a sharp decrease of Clostridium species and Bacteroides. Immunofluorescence analysis showed that C. albicans-infected rats pretreated with antibiotics were deficient in IgA and IL10, while the number of Pro-inflammatory CD11c+ macrophages was increased. In conclusion, excessive use of antibiotics promoted the imbalance of intestinal microbiome, especially sharp decreases of short-chain fatty acids (SCFA)-producing Clostridium species, which exacerbated the symptoms of IFD, potentially through decreased mucosal immunomodulatory molecules. Our results suggest that inappropriate use of broad-spectrum antibiotics may promote the colonization of invasive fungi. The results of this study provide new insights into the prevention of IFD in preterm infants.
Collapse
Affiliation(s)
- Dabin Huang
- Department of Neonatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huixian Li
- Department of Data Center, Guangdong Provincial People’s Hospital, Guangzhou, China
| | - Yuying Lin
- Department of Neonatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jinting Lin
- Department of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Chengxi Li
- Department of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Yashu Kuang
- Division of Birth Cohort Study, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wei Zhou
- Department of Neonatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Wei Zhou, ; Bing Huang, ; Ping Wang,
| | - Bing Huang
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Wei Zhou, ; Bing Huang, ; Ping Wang,
| | - Ping Wang
- Department of Neonatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Wei Zhou, ; Bing Huang, ; Ping Wang,
| |
Collapse
|
41
|
Hand TW, Overacre-Delgoffe AE. The complex immunological role of Helicobacter in modulating cancer. Trends Immunol 2022; 43:826-832. [PMID: 36041951 DOI: 10.1016/j.it.2022.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 10/15/2022]
Abstract
The gut microbiota has recently emerged as a unique mechanism of immunotherapeutic resistance or response within certain cancer patients. Certain adherent bacterial species that reside along the epithelial barrier within the gastrointestinal tract have been shown to be the most immunogenic and include several species within the Helicobacteraceae family. The role of these microbes in cancer remains controversial and varies according to species, immune status, and cancer type. Here, we hypothesize that the functional characteristics rather than the bacterial species of Helicobacteraceae dictate the type of immune response with either a benefit or a detriment to overall cancer progression.
Collapse
Affiliation(s)
- T W Hand
- University of Pittsburgh, Department of Immunology, Pittsburgh, PA, USA; Children's Hospital of Pittsburgh, RK Mellon Institute, Department of Pediatrics, Pittsburgh, PA, USA
| | - A E Overacre-Delgoffe
- University of Pittsburgh, Department of Immunology, Pittsburgh, PA, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
42
|
Jimenez IA, Stilin AP, Morohaku K, Hussein MH, Koganti PP, Selvaraj V. Mitochondrial translocator protein deficiency exacerbates pathology in acute experimental ulcerative colitis. Front Physiol 2022; 13:896951. [PMID: 36060674 PMCID: PMC9437295 DOI: 10.3389/fphys.2022.896951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
In human patients and animal models of ulcerative colitis (UC), upregulation of the mitochondrial translocator protein (TSPO) in the colon is consistent with inflammation. Although the molecular function for TSPO remains unclear, it has been investigated as a therapeutic target for ameliorating UC pathology. In this study, we examined the susceptibility of Tspo gene-deleted (Tspo -/- ) mice to insults as provided by the dextran sodium sulfate (DSS)-induced acute UC model. Our results show that UC clinical signs and pathology were severely exacerbated in Tspo -/- mice compared to control Tspo fl/fl cohorts. Histopathology showed extensive inflammation and epithelial loss in Tspo -/- mice that caused an aggravated disease. Colonic gene expression in UC uncovered an etiology linked to precipitous loss of epithelial integrity and disproportionate mast cell activation assessed by tryptase levels in Tspo -/- colons. Evaluation of baseline homeostatic shifts in Tspo -/- colons revealed gene expression changes noted in elevated epithelial Cdx2, mast cell Cd36 and Mcp6, with general indicators of lower proliferation capacity and elevated mitochondrial fatty acid oxidation. These findings demonstrate that intact physiological TSPO function serves to limit inflammation in acute UC, and provide a systemic basis for investigating TSPO-targeting mechanistic therapeutics.
Collapse
Affiliation(s)
- Isabel A. Jimenez
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States,Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Allison P. Stilin
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| | - Kanako Morohaku
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States,School of Science and Technology, Institute of Agriculture, Shinshu University, Nagano, Japan
| | - Mahmoud H. Hussein
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| | - Prasanthi P. Koganti
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| | - Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States,*Correspondence: Vimal Selvaraj,
| |
Collapse
|
43
|
Feriotti C, Sá-Pessoa J, Calderón-González R, Gu L, Morris B, Sugisawa R, Insua JL, Carty M, Dumigan A, Ingram RJ, Kissenpfening A, Bowie AG, Bengoechea JA. Klebsiella pneumoniae hijacks the Toll-IL-1R protein SARM1 in a type I IFN-dependent manner to antagonize host immunity. Cell Rep 2022; 40:111167. [PMID: 35947948 PMCID: PMC9638020 DOI: 10.1016/j.celrep.2022.111167] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/18/2022] [Accepted: 07/14/2022] [Indexed: 02/06/2023] Open
Abstract
Many bacterial pathogens antagonize host defense responses by translocating effector proteins into cells. It remains an open question how those pathogens not encoding effectors counteract anti-bacterial immunity. Here, we show that Klebsiella pneumoniae exploits the evolutionary conserved innate protein SARM1 to regulate negatively MyD88- and TRIF-governed inflammation, and the activation of the MAP kinases ERK and JNK. SARM1 is required for Klebsiella induction of interleukin-10 (IL-10) by fine-tuning the p38-type I interferon (IFN) axis. SARM1 inhibits the activation of Klebsiella-induced absent in melanoma 2 inflammasome to limit IL-1β production, suppressing further inflammation. Klebsiella exploits type I IFNs to induce SARM1 in a capsule and lipopolysaccharide O-polysaccharide-dependent manner via the TLR4-TRAM-TRIF-IRF3-IFNAR1 pathway. Absence of SARM1 reduces the intracellular survival of K. pneumoniae in macrophages, whereas sarm1-deficient mice control the infection. Altogether, our results illustrate an anti-immunology strategy deployed by a human pathogen. SARM1 inhibition will show a beneficial effect to treat Klebsiella infections.
Collapse
Affiliation(s)
- Claudia Feriotti
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, UK
| | - Joana Sá-Pessoa
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, UK
| | - Ricardo Calderón-González
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, UK
| | - Lili Gu
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Brenda Morris
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, UK
| | - Ryoichi Sugisawa
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Jose L Insua
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, UK
| | - Michael Carty
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Amy Dumigan
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, UK
| | - Rebecca J Ingram
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, UK
| | - Adrien Kissenpfening
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, UK
| | - Andrew G Bowie
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - José A Bengoechea
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, UK.
| |
Collapse
|
44
|
Abraham C, Abreu MT, Turner JR. Pattern Recognition Receptor Signaling and Cytokine Networks in Microbial Defenses and Regulation of Intestinal Barriers: Implications for Inflammatory Bowel Disease. Gastroenterology 2022; 162:1602-1616.e6. [PMID: 35149024 PMCID: PMC9112237 DOI: 10.1053/j.gastro.2021.12.288] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/30/2021] [Accepted: 12/10/2021] [Indexed: 12/23/2022]
Abstract
Inflammatory bowel disease is characterized by defects in epithelial function and dysregulated inflammatory signaling by lamina propria mononuclear cells including macrophages and dendritic cells in response to microbiota. In this review, we focus on the role of pattern recognition receptors in the inflammatory response as well as epithelial barrier regulation. We explore cytokine networks that increase inflammation, regulate paracellular permeability, cause epithelial damage, up-regulate epithelial proliferation, and trigger restitutive processes. We focus on studies using patient samples as well as speculate on pathways that can be targeted to more holistically treat patients with inflammatory bowel disease.
Collapse
Affiliation(s)
- Clara Abraham
- Department of Internal Medicine, Yale University, New Haven, Connecticut.
| | - Maria T. Abreu
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Miami Leonard Miller School of Medicine, Miami, FL
| | - Jerrold R. Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
45
|
Forster SC, Clare S, Beresford-Jones BS, Harcourt K, Notley G, Stares MD, Kumar N, Soderholm AT, Adoum A, Wong H, Morón B, Brandt C, Dougan G, Adams DJ, Maloy KJ, Pedicord VA, Lawley TD. Identification of gut microbial species linked with disease variability in a widely used mouse model of colitis. Nat Microbiol 2022; 7:590-599. [PMID: 35365791 PMCID: PMC8975739 DOI: 10.1038/s41564-022-01094-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 02/24/2022] [Indexed: 12/12/2022]
Abstract
Experimental mouse models are central to basic biomedical research; however, variability exists across genetically identical mice and mouse facilities making comparisons difficult. Whether specific indigenous gut bacteria drive immunophenotypic variability in mouse models of human disease remains poorly understood. We performed a large-scale experiment using 579 genetically identical laboratory mice from a single animal facility, designed to identify the causes of disease variability in the widely used dextran sulphate sodium mouse model of inflammatory bowel disease. Commonly used treatment endpoint measures-weight loss and intestinal pathology-showed limited correlation and varied across mouse lineages. Analysis of the gut microbiome, coupled with machine learning and targeted anaerobic culturing, identified and isolated two previously undescribed species, Duncaniella muricolitica and Alistipes okayasuensis, and demonstrated that they exert dominant effects in the dextran sulphate sodium model leading to variable treatment endpoint measures. We show that the identified gut microbial species are common, but not ubiquitous, in mouse facilities around the world, and suggest that researchers monitor for these species to provide experimental design opportunities for improved mouse models of human intestinal diseases.
Collapse
Affiliation(s)
- Samuel C Forster
- Experimental Cancer Genetics Lab, Wellcome Sanger Institute, Hinxton, UK
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - Simon Clare
- Experimental Cancer Genetics Lab, Wellcome Sanger Institute, Hinxton, UK
| | - Benjamin S Beresford-Jones
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Katherine Harcourt
- Experimental Cancer Genetics Lab, Wellcome Sanger Institute, Hinxton, UK
| | - George Notley
- Experimental Cancer Genetics Lab, Wellcome Sanger Institute, Hinxton, UK
| | - Mark D Stares
- Experimental Cancer Genetics Lab, Wellcome Sanger Institute, Hinxton, UK
| | - Nitin Kumar
- Experimental Cancer Genetics Lab, Wellcome Sanger Institute, Hinxton, UK
| | - Amelia T Soderholm
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Anne Adoum
- Experimental Cancer Genetics Lab, Wellcome Sanger Institute, Hinxton, UK
| | | | - Bélen Morón
- Experimental Medicine Division, University of Oxford, Oxford, UK
| | - Cordelia Brandt
- Experimental Cancer Genetics Lab, Wellcome Sanger Institute, Hinxton, UK
| | - Gordon Dougan
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - David J Adams
- Experimental Cancer Genetics Lab, Wellcome Sanger Institute, Hinxton, UK
| | - Kevin J Maloy
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Virginia A Pedicord
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Trevor D Lawley
- Experimental Cancer Genetics Lab, Wellcome Sanger Institute, Hinxton, UK.
| |
Collapse
|
46
|
Jiménez C, Bordagaray MJ, Villarroel JL, Flores T, Benadof D, Fernández A, Valenzuela F. Biomarkers in Oral Fluids as Diagnostic Tool for Psoriasis. Life (Basel) 2022; 12:life12040501. [PMID: 35454992 PMCID: PMC9027180 DOI: 10.3390/life12040501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/11/2022] [Accepted: 03/27/2022] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a prevalent worldwide chronic immuno-inflammatory skin disease with various variants and atypical cases. The use of biomarkers for the diagnosis of psoriasis can favor timely treatment and thus improve the quality of life of those affected. In general, the search for biomarkers in oral fluids is recommended as it is a non-invasive and fast technique. This narrative review aimed to identify biomarkers in gingival crevicular fluid (GCF) and saliva to diagnose psoriasis. To achieve this goal, we selected the available literature using the following MESH terms: “psoriasis”, “saliva” and “gingival crevicular fluid”. The studies analyzed for this review cover original research articles available in English. We found three full articles available for psoriasis biomarkers in GCF and ten articles available for psoriasis biomarkers in saliva. Studies showed that in the saliva of healthy individuals and those with psoriasis, there were differences in the levels of inflammatory cytokines, immunoglobulin A, and antioxidant biomarkers. In GCF, individuals with psoriasis showed higher levels of S100A8, IL-18 and sE-selectin in comparison to healthy individuals, independent of periodontal status. Despite these findings, more studies are required to determine an adequate panel of biomarkers to use in saliva or GCF for psoriasis.
Collapse
Affiliation(s)
- Constanza Jiménez
- Faculty of Dentistry, Universidad Andres Bello, Santiago 8370133, Chile; (C.J.); (D.B.)
| | - María José Bordagaray
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago 8380544, Chile;
| | - José Luis Villarroel
- Department of Dermatology, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
| | - Tania Flores
- Research Centre in Dental Science (CICO), Faculty of Dentistry, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Dafna Benadof
- Faculty of Dentistry, Universidad Andres Bello, Santiago 8370133, Chile; (C.J.); (D.B.)
| | - Alejandra Fernández
- Faculty of Dentistry, Universidad Andres Bello, Santiago 8370133, Chile; (C.J.); (D.B.)
- Correspondence: (A.F.); (F.V.); Tel.: +56-2-2661-5834 (A.F.); +56-2-2978-8173 (F.V.)
| | - Fernando Valenzuela
- Department of Dermatology, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
- Correspondence: (A.F.); (F.V.); Tel.: +56-2-2661-5834 (A.F.); +56-2-2978-8173 (F.V.)
| |
Collapse
|
47
|
Autophagy impairment in liver CD11c + cells promotes non-alcoholic fatty liver disease through production of IL-23. Nat Commun 2022; 13:1440. [PMID: 35301333 PMCID: PMC8931085 DOI: 10.1038/s41467-022-29174-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/23/2022] [Indexed: 12/24/2022] Open
Abstract
There has been a global increase in rates of obesity with a parallel epidemic of non-alcoholic fatty liver disease (NAFLD). Autophagy is an essential mechanism involved in the degradation of cellular material and has an important function in the maintenance of liver homeostasis. Here, we explore the effect of Autophagy-related 5 (Atg5) deficiency in liver CD11c+ cells in mice fed HFD. When compared to control mice, Atg5-deficient CD11c+ mice exhibit increased glucose intolerance and decreased insulin sensitivity when fed HFD. This phenotype is associated with the development of NAFLD. We observe that IL-23 secretion is induced in hepatic CD11c+ myeloid cells following HFD feeding. We demonstrate that both therapeutic and preventative IL-23 blockade alleviates glucose intolerance, insulin resistance and protects against NAFLD development. This study provides insights into the function of autophagy and IL-23 production by hepatic CD11c+ cells in NAFLD pathogenesis and suggests potential therapeutic targets. The function of autophagy and how this affects non-alcoholic fatty liver disease is not fully known. Here the authors show that in mice with a targeted disruption of the autophagy pathway in CD11c+ cells, development of NAFLD is accelerated involving IL-23 and blocking of IL-23 reduces disease.
Collapse
|
48
|
Gueddouri D, Caüzac M, Fauveau V, Benhamed F, Charifi W, Beaudoin L, Rouland M, Sicherre F, Lehuen A, Postic C, Boudry G, Burnol AF, Guilmeau S. Insulin resistance per se drives early and reversible dysbiosis-mediated gut barrier impairment and bactericidal dysfunction. Mol Metab 2022; 57:101438. [PMID: 35007789 PMCID: PMC8814824 DOI: 10.1016/j.molmet.2022.101438] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/24/2021] [Accepted: 01/05/2022] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE A common feature of metabolic diseases is their association with chronic low-grade inflammation. While enhanced gut permeability and systemic bacterial endotoxin translocation have been suggested as key players of this metaflammation, the mechanistic bases underlying these features upon the diabesity cascade remain partly understood. METHODS Here, we show in mice that, independently of obesity, the induction of acute and global insulin resistance and associated hyperglycemia, upon treatment with an insulin receptor (IR) antagonist (S961), elicits gut hyperpermeability without triggering systemic inflammatory response. RESULTS Of note, S961-treated diabetic mice display major defects of gut barrier epithelial functions, such as increased epithelial paracellular permeability and impaired cell-cell junction integrity. We also observed in these mice the early onset of a severe gut dysbiosis, as characterized by the bloom of pro-inflammatory Proteobacteria, and the later collapse of Paneth cells antimicrobial defense. Interestingly, S961 treatment discontinuation is sufficient to promptly restore both the gut microbial balance and the intestinal barrier integrity. Moreover, fecal transplant approaches further confirm that S961-mediated dybiosis contributes at least partly to the disruption of the gut selective epithelial permeability upon diabetic states. CONCLUSIONS Together, our results highlight that insulin signaling is an indispensable gatekeeper of intestinal barrier integrity, acting as a safeguard against microbial imbalance and acute infections by enteropathogens.
Collapse
Affiliation(s)
- Dalale Gueddouri
- Université de Paris, Institut Cochin, CNRS, INSERM, F75014 Paris, France
| | - Michèle Caüzac
- Université de Paris, Institut Cochin, CNRS, INSERM, F75014 Paris, France
| | - Véronique Fauveau
- Université de Paris, Institut Cochin, CNRS, INSERM, F75014 Paris, France
| | - Fadila Benhamed
- Université de Paris, Institut Cochin, CNRS, INSERM, F75014 Paris, France
| | - Wafa Charifi
- Université de Paris, Institut Cochin, CNRS, INSERM, F75014 Paris, France
| | - Lucie Beaudoin
- Université de Paris, Institut Cochin, CNRS, INSERM, F75014 Paris, France
| | - Matthieu Rouland
- Université de Paris, Institut Cochin, CNRS, INSERM, F75014 Paris, France
| | - Florian Sicherre
- Université de Paris, Institut Cochin, CNRS, INSERM, F75014 Paris, France
| | - Agnès Lehuen
- Université de Paris, Institut Cochin, CNRS, INSERM, F75014 Paris, France
| | - Catherine Postic
- Université de Paris, Institut Cochin, CNRS, INSERM, F75014 Paris, France
| | - Gaëlle Boudry
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, F35000 Rennes, France
| | | | - Sandra Guilmeau
- Université de Paris, Institut Cochin, CNRS, INSERM, F75014 Paris, France.
| |
Collapse
|
49
|
Orts B, Gutierrez A, Madero L, Sempere L, Frances R, Zapater P. Clinical and Immunological Factors Associated with Recommended Trough Levels of Adalimumab and Infliximab in Patients with Crohn's Disease. Front Pharmacol 2022; 12:795272. [PMID: 35046819 PMCID: PMC8762261 DOI: 10.3389/fphar.2021.795272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Up to 40% of patients with Crohn's disease do not respond to treatment with anti-TNF or lose response after the initial benefit. Low drug concentrations have been proposed as the main predictor of treatment failure. Our aim was to study the immunological profile and clinical evolution of patients with Crohn's disease according to the anti-TNF dose and serum trough levels. Methods: Crohn's disease patients in remission treated with infliximab or adalimumab at stable doses for at least for 3 months were included. Serum levels of anti-TNF, TNF-α, interferon-γ, and interleukin IL-12, IL-10, and IL-26 were determined in blood samples taken just before drug administration. Patients were classified according to anti-TNF levels below, within, or above the target level range and the use of intensified doses. Clinical evolution at 6 months was analyzed. Results: A total of 62 patients treated with infliximab (8 on intensified schedule) and 49 treated with adalimumab (7 on intensified schedule) were included. All infliximab-treated patients showed levels within the recommended range, but half of adalimumab-treated patients were below the recommended range. A significant negative relationship between body weight and adalimumab levels was observed, especially in patients treated with intensified doses. Patients with infliximab levels over 8 µg/ml presented higher median IL-10 than patients with in-range levels (84.0 pg/ml, interquartile range [IQR] 77.0-84.8 vs. 26.2 pg/mL, IQR 22.6-38.0; p < 0.001), along with lower values of interferon-γ (312.9 pg/ml, IQR 282.7-350.4 vs. 405.6 pg/ml, IQR 352.2-526.6; p = 0.005). Patients receiving intensified versus non-intensified doses of infliximab showed significantly higher IL-26 levels (91.8 pg/ml, IQR 75.6-109.5 vs. 20.5 pg/ml, IQR 16.2-32.2; p = 0.012), irrespective of serum drug levels. Patients with in-range levels of adalimumab showed higher values of IL-10 than patients with below-range levels (43.3 pg/ml, IQR 35.3-54.0 vs. 26.3 pg/ml, IQR 21.6-33.2; p = 0.001). Patients treated with intensified vs regular doses of adalimumab had increased levels of IL-12 (612.3 pg/ml, IQR 570.2-1353.7 vs. 516.4 pg/mL, IQR 474.5-591.2; p = 0.023). Four patients with low adalimumab levels (19%) and four treated with intensified doses were admitted to a hospital during a follow-up compared to none of the patients with levels within the range. Conclusion: Patients with Crohn's disease treated with infliximab and adalimumab exhibit differences in serum levels of cytokines depending on the drug, dose intensification, and steady state trough serum levels.
Collapse
Affiliation(s)
- Beatriz Orts
- Unidad de Farmacología Clínica, Hospital General Universitario de Alicante, Alicante, Spain.,Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Ana Gutierrez
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.,Servicio de Medicina Digestiva, Hospital General Universitario de Alicante, Alicante, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Lucía Madero
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.,Servicio de Medicina Digestiva, Hospital General Universitario de Alicante, Alicante, Spain
| | - Laura Sempere
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.,Servicio de Medicina Digestiva, Hospital General Universitario de Alicante, Alicante, Spain
| | - Ruben Frances
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Clinical Medicine Department, Universidad Miguel Hernández, Elche, Spain
| | - Pedro Zapater
- Unidad de Farmacología Clínica, Hospital General Universitario de Alicante, Alicante, Spain.,Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación, Desarrollo e Innovación en Biotecnologia Sanitaria de Elche, IDiBE, Universidad Miguel Hernández, Elche, Spain
| |
Collapse
|
50
|
McKendrick JG, Emmerson E. The role of salivary gland macrophages in infection, disease and repair. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 368:1-34. [PMID: 35636925 DOI: 10.1016/bs.ircmb.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Macrophages are mononuclear innate immune cells which have become of increasing interest in the fields of disease and regeneration, as their non-classical functions have been elucidated in addition to their classical inflammatory functions. Macrophages can regulate tissue remodeling, by both mounting and reducing inflammatory responses; and exhibit direct communication with other cells to drive tissue turnover and cell replacement. Furthermore, macrophages have recently become an attractive therapeutic target to drive tissue regeneration. The major salivary glands are glandular tissues that are exposed to pathogens through their close connection with the oral cavity. Moreover, there are a number of diseases that preferentially destroy the salivary glands, causing irreversible injury, highlighting the need for a regenerative strategy. However, characterization of macrophages in the mouse and human salivary glands is sparse and has been mostly determined from studies in infection or autoimmune pathologies. In this review, we describe the current literature around salivary gland macrophages, and speculate about the niches they inhabit and how their role in development, regeneration and cancer may inform future therapeutic advances.
Collapse
Affiliation(s)
- John G McKendrick
- The Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| | - Elaine Emmerson
- The Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|