1
|
Pimenta EM, Goyal A, Farber ON, Lilley E, Shyn PB, Wang J, Wagner MJ. Epithelioid Hemangioendothelioma: Treatment Landscape and Innovations for an Ultra-Rare Sarcoma. Curr Treat Options Oncol 2025:10.1007/s11864-025-01328-2. [PMID: 40366525 DOI: 10.1007/s11864-025-01328-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2025] [Indexed: 05/15/2025]
Abstract
OPINION STATEMENT Epithelioid hemangioendothelioma (EHE) is an ultra-rare sarcoma with a paucity of data on best practices for management. Pathogenic translocations involving the YAP or TAZ genes lead to constitutive activation of TEAD and TEAD-associated pathways. As our understanding of the molecular drivers of EHE has advanced, investigational treatment strategies have shifted away from cytotoxic chemotherapy toward more targeted approaches. This review focuses on the historical context and evolving landscape of systemic therapies for patients with EHE. For newly diagnosed patients, we recommend consultation at a high-volume sarcoma center whenever possible. If the disease is localized and resectable, surgical excision by a sarcoma-focused surgical oncologist is preferred. When the disease is unresectable, we first assess for disease progression to determine whether active surveillance is appropriate. Some patients may experience indolent, asymptomatic disease for years-or even decades-without requiring intervention. In patients with progressive or symptomatic unresectable disease, systemic therapy is warranted. Setting realistic expectations about the goals of treatment is essential, as no current systemic therapies reliably reduce tumor burden. However, molecular profiling and ongoing correlative studies from clinical trials may soon identify more effective therapeutic targets. For this reason, we encourage referral to centers that routinely perform molecular profiling and offer clinical trials with eligibility criteria for EHE, even to be considered as a first-line approach. Outside of a clinical trial, cytotoxic chemotherapy remains the frontline standard of care for patients who require systemic treatment. Importantly, treatment decisions must incorporate patient preferences and recognition that symptomatic improvement alone can be a meaningful outcome for preserving quality of life.
Collapse
Affiliation(s)
- Erica M Pimenta
- Sarcoma and Bone Cancer Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Anirudh Goyal
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Orly N Farber
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Elizabeth Lilley
- Sarcoma and Bone Cancer Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Paul B Shyn
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jiping Wang
- Sarcoma and Bone Cancer Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael J Wagner
- Sarcoma and Bone Cancer Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
BaiQuan Y, Meng C, Congqing Z, XiaoDong W. The effects and post-exercise energy metabolism characteristics of different high-intensity interval training in obese adults. Sci Rep 2025; 15:13770. [PMID: 40259013 PMCID: PMC12012042 DOI: 10.1038/s41598-025-98590-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 04/14/2025] [Indexed: 04/23/2025] Open
Abstract
This study aimed to compare the effects of two high-intensity interval training modalities on body composition and muscular fitness in obese young adults and examined the characteristics of energy expenditure (EE) after training. Thirty-six obese young adults (eleven female, age: 22.1 ± 2.3 years, BMI: 25.1 ± 1.2 kg/m2) were to Whole-body high-intensity interval training group (WB-HIIT) (n = 12), jump rope high-intensity interval training group (JR-HIIT) (n = 12), or non-training control group (CG) (n = 12). WB-HIIT and JR-HIIT groups performed an 8-week HIIT protocol. WB-HIIT, according to the program of unarmed resistance training, JR-HIIT use rope-holding continuous jump training, each execution of 4 sets of 4 × 30 s training, interval 30 s, inter-set interval 1min, and the control group maintained their regular habits without additional exercise training. Body composition and muscular strength were assessed before and after 8 weeks. Repeated measures analysis of variance and clinical effect analysis using Cohen's effect size were used, with a significance level of p < 0.05. In comparison with the CG group in both experimental groups, Body Mass and BMI significantly reduced (p < 0.05), and Muscular strength significantly improved (p < 0.05).WB-HIIT versus JR-HIIT: Fat Mass (- 1.5 ± 1.6; p = 0.02 vs - 2.3 ± 1.2; p < 0.01) and % Body Fat (- 1.3 ± 1.7; p = 0.05 vs - 1.9 ± 1.9; p < 0.01) the effect is more pronounced in the JR-HIIT group; Muscle Mass (1.5 ± 0.7; p < 0.01 vs - 0.8 ± 1.1; p = 0.07) the effect is more pronounced in the WB-HIIT group. Estimated daily energy intake (122 ± 459 vs 157 ± 313; p > 0.05). Compared to the CG, body composition was significantly improved in both intervention groups. All three groups had no significant changes in visceral adipose tissue (p > 0.05). Significant differences in Lipid and Carbohydrate oxidation and energy output were observed between the two groups, as well as substantial differences in WB-HIIT and JR-HIIT VO2, ventilation, and energy consumption minute during the 0-5 min post-exercise period (p > 0.05). WB-HIIT and JR-HIIT interventions effectively improve the body composition of young adults with obesity, while WB-HIIT additionally improves muscular fitness. After exercise, WB-HIIT produces higher excess post-exercise oxygen consumption and associated lipid and carbohydrate metabolism than JR-HIIT.
Collapse
Affiliation(s)
- Yang BaiQuan
- Sports College of Shenzhen University, 3688 Nan Hai Road, Nan Shan District, Shenzhen, 518061, China
| | - Cao Meng
- Sports College of Shenzhen University, 3688 Nan Hai Road, Nan Shan District, Shenzhen, 518061, China.
| | - Zhu Congqing
- School of Physical Education, Shanghai Normal University, Shanghai, 200234, China
| | - Wang XiaoDong
- Sports College of Shenzhen University, 3688 Nan Hai Road, Nan Shan District, Shenzhen, 518061, China
| |
Collapse
|
3
|
Wang L, Yang S, Li J, Fang Y, Guo M, Du X, Song L, Chen S, Zhang X, Qi Z, Zhang K, Lv B, Xia J. YAP-activated NAT10 promotes hepatoblastoma progression by activating the pentose phosphate pathway. Int J Biol Sci 2025; 21:2864-2879. [PMID: 40303290 PMCID: PMC12035897 DOI: 10.7150/ijbs.109552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 03/30/2025] [Indexed: 05/02/2025] Open
Abstract
Hepatoblastoma (HB) is the most common malignant liver tumor in children, with limited treatment options. The N4-acetylcytidine (ac4C) modification, an important mRNA post-transcriptional modification catalyzed by N-acetyltransferase 10 (NAT10), plays a crucial role in the initiation and progression of tumors. However, its impact on the development and prognosis of HB is largely unknown. This study demonstrates that NAT10 is notably upregulated in HB. NAT10 inhibition suppressed HB proliferation and metastasis in vitro and in vivo. Mechanistically, Yes-associated protein 1 (YAP1) induced NAT10 transcription by binding to its promoter, which stimulates the ac4C modification within the 3' untranslated region (3' UTR) of glucose-6-phosphate dehydrogenase (G6PD) and enhancing its mRNA stability. YAP1/NAT10/G6PD axis resulted in enhanced pentose phosphate pathway (PPP) to promote proliferation and metastasis of HB. Moreover, said NAT10-mediated oncogenic effect could be significantly attenuated by a NAT10 inhibitor (Remodelin) both in vitro experiments and in vivo HB mouse models. Overall, our findings revealed the oncogenic role of NAT10 in regulating HB growth and metastasis, which can be a potential therapeutic target for human HB.
Collapse
Affiliation(s)
- Lingxiao Wang
- Department of General Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Shiguang Yang
- Department of Hepatobiliary and Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai, China
| | - Jie Li
- National Medical Center & National Clinical Research Center for Interventional Medicine, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Fang
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital,Fudan University, Shanghai, China
| | - Mengzhou Guo
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaojing Du
- Endoscopy Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Li Song
- National Medical Center & National Clinical Research Center for Interventional Medicine, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sinuo Chen
- National Medical Center & National Clinical Research Center for Interventional Medicine, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xingxing Zhang
- Department of Gastroenterology, Shanghai Jiaotong University Affiliated Sixth People Hospital South Campus, Shanghai, China
| | - Zhuoran Qi
- National Medical Center & National Clinical Research Center for Interventional Medicine, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kaihui Zhang
- Institute of Pediatric Research, Children's Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Bei Lv
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinglin Xia
- National Medical Center & National Clinical Research Center for Interventional Medicine, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Flewwelling LD, Hannaian SJ, Cao V, Chaillou T, Churchward-Venne TA, Cheng AJ. What are the potential mechanisms of fatigue-induced skeletal muscle hypertrophy with low-load resistance exercise training? Am J Physiol Cell Physiol 2025; 328:C1001-C1014. [PMID: 39726254 DOI: 10.1152/ajpcell.00266.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 12/15/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
High-load resistance exercise (>60% of 1-repetition maximum) is a well-known stimulus to enhance skeletal muscle hypertrophy with chronic training. However, studies have intriguingly shown that low-load resistance exercise training (RET) (≤60% of 1-repetition maximum) can lead to similar increases in skeletal muscle hypertrophy as compared with high-load RET. This has raised questions about the underlying mechanisms for eliciting the hypertrophic response with low-load RET. A key characteristic of low-load RET is performing resistance exercise to, or close to, task failure, thereby inducing muscle fatigue. The primary aim of this evidence-based narrative review is to explore whether muscle fatigue may act as an indirect or direct mechanism contributing to skeletal muscle hypertrophy during low-load RET. It has been proposed that muscle fatigue could indirectly stimulate muscle hypertrophy through increased muscle fiber recruitment, mechanical tension, ultrastructural muscle damage, the secretion of anabolic hormones, and/or alterations in the expression of specific proteins involved in muscle mass regulation (e.g., myostatin). Alternatively, it has been proposed that fatigue could directly stimulate muscle hypertrophy through the accumulation of metabolic by-products (e.g., lactate), and/or inflammation and oxidative stress. This review summarizes the existing literature eluding to the role of muscle fatigue as a stimulus for low-load RET-induced muscle hypertrophy and provides suggested avenues for future research to elucidate how muscle fatigue could mediate skeletal muscle hypertrophy.
Collapse
Affiliation(s)
- Luke D Flewwelling
- Muscle Health Research Centre, School of Kinesiology & Health Science, Faculty of Health, York University, Toronto, Ontario, Canada
| | - Sarkis J Hannaian
- Department of Kinesiology and Physical Education, McGill University, Montreal, Québec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
| | - Victor Cao
- Muscle Health Research Centre, School of Kinesiology & Health Science, Faculty of Health, York University, Toronto, Ontario, Canada
| | - Thomas Chaillou
- Institute of Metabolic and Cardiovascular Diseases, Team MetaDiab, INSERM/Paul Sabatier University, Toulouse, France
- School of Health Sciences, Örebro University, Örebro, Sweden
| | - Tyler A Churchward-Venne
- Department of Kinesiology and Physical Education, McGill University, Montreal, Québec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
- Division of Geriatric Medicine, McGill University, Montreal, Québec, Canada
| | - Arthur J Cheng
- Muscle Health Research Centre, School of Kinesiology & Health Science, Faculty of Health, York University, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Jiang Y, Tao Q, Qiao X, Yang Y, Peng C, Han M, Dong K, Zhang W, Xu M, Wang D, Zhu W, Li X. Targeting amino acid metabolism to inhibit gastric cancer progression and promote anti-tumor immunity: a review. Front Immunol 2025; 16:1508730. [PMID: 40018041 PMCID: PMC11864927 DOI: 10.3389/fimmu.2025.1508730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/24/2025] [Indexed: 03/01/2025] Open
Abstract
The incidence of gastric cancer remains high and poses a serious threat to human health. Recent comprehensive investigations into amino acid metabolism and immune system components within the tumor microenvironment have elucidated the functional interactions between tumor cells, immune cells, and amino acid metabolism. This study reviews the characteristics of amino acid metabolism in gastric cancer, with a particular focus on the metabolism of methionine, cysteine, glutamic acid, serine, taurine, and other amino acids. It discusses the relationship between these metabolic processes, tumor development, and the body's anti-tumor immunity, and analyzes the importance of targeting amino acid metabolism in gastric cancer for chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Yuchun Jiang
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Qing Tao
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xuehan Qiao
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yufei Yang
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chen Peng
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Miao Han
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Kebin Dong
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wei Zhang
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, China
| | - Min Xu
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, China
| | - Deqiang Wang
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, China
| | - Wen Zhu
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaoqin Li
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
6
|
Guo X, Yang L, Wang Y, Yuan M, Zhang W, He X, Wang Q. Wnt2bb signaling promotes pharyngeal chondrogenic precursor proliferation and chondrocyte maturation by activating Yap expression in zebrafish. J Genet Genomics 2025; 52:220-230. [PMID: 39566725 DOI: 10.1016/j.jgg.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
Pharyngeal cartilage morphogenesis is crucial for the formation of craniofacial structures. Cranial neural crest cells are specified at the neural plate border, migrate to pharyngeal arches, and differentiate into pharyngeal chondrocytes, which subsequently flatten, elongate, and stack like coins during maturation. Although the developmental processes prior to chondrocyte maturation have been extensively studied, their subsequent changes in morphology and organization remain largely elusive. Here, we show that wnt2bb is expressed in the pharyngeal ectoderm adjacent to the chondrogenic precursor cells in zebrafish. Inactivation of Wnt2bb leads to a reduction in nuclear β-catenin, which impairs chondrogenic precursor proliferation and disrupts chondrocyte morphogenesis and organization, eventually causing a severe shrinkage of pharyngeal cartilages. Moreover, the decrease of β-catenin in wnt2bb-/- mutants is accompanied by the reduction of Yap expression. Reactivation of Yap can restore the proliferation of chondrocyte progenitors as well as the proper size, shape, and stacking of pharyngeal chondrocytes. Our findings suggest that Wnt/β-catenin signaling promotes Yap expression to regulate pharyngeal cartilage formation in zebrafish.
Collapse
Affiliation(s)
- Xiaojuan Guo
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Liping Yang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Yujie Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Mengna Yuan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Wenqing Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Xinyu He
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China.
| | - Qiang Wang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China; Innovation Centre of Ministry of Education for Development and Diseases, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
7
|
Wang Y, Qu F, Wu Y, Lan K, Shen Y, Wu Z, Zhong Q, Cao X, Fan Z, Xu C. Peripheral nerves modulate the peri-implant osteogenesis under type 2 diabetes through exosomes derived from schwann cells via miR-15b-5p/Txnip signaling axis. J Nanobiotechnology 2025; 23:51. [PMID: 39875954 PMCID: PMC11773925 DOI: 10.1186/s12951-025-03160-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/22/2025] [Indexed: 01/30/2025] Open
Abstract
Studies have shown that the prognosis of dental implant treatment in patients with diabetes is not as good as that in the non-diabetes population. The nerve plays a crucial role in bone metabolism, but the role and the mechanism of peripheral nerves in regulating peri-implant osteogenesis under Type 2 diabetes mellitus (T2DM) situation remains unclear. In this study, it was shown that high glucose-stimulated Schwann cells (SCs) inhibited peri-implant osteogenesis via their exosomes. SCs-derived exosomes were analyzed for their miRNA cargo, identifying miR-15b-5p as significantly downregulated in high glucose conditions. T2DM rats and patients exhibited decreased miR-15b-5p expression, correlating with impaired bone microarchitecture. Luciferase assays and Western blotting confirmed TXNIP as a direct miR-15b-5p target, implicating its involvement in ROS signaling and inflammation-related osteogenesis suppression. Furthermore, normal SCs exosomes improved bone parameters around dental implants in T2DM rats. These findings underscore the therapeutic potential of miR-15b-5p and normal SCs exosomes in mitigating poor peri-implant bone regeneration of T2DM patients, offering insights into the molecular mechanisms of peripheral nerves governing bone regeneration in diabetic conditions.
Collapse
Affiliation(s)
- Yingying Wang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, No.639 Zhizaoju Road, Shanghai, 200011, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, No.639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, No.639 Zhizaoju Road, Shanghai, 200011, China
| | - Fang Qu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, No.639 Zhizaoju Road, Shanghai, 200011, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, No.639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, No.639 Zhizaoju Road, Shanghai, 200011, China
| | - Yaqin Wu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, No.639 Zhizaoju Road, Shanghai, 200011, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, No.639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, No.639 Zhizaoju Road, Shanghai, 200011, China
| | - Kengliang Lan
- College of Stomatology, Shanghai Jiao Tong University, No.639 Zhizaoju Road, Shanghai, 200011, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, No.639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, No.639 Zhizaoju Road, Shanghai, 200011, China
| | - Yingyi Shen
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, No.639 Zhizaoju Road, Shanghai, 200011, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, No.639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, No.639 Zhizaoju Road, Shanghai, 200011, China
| | - Ziang Wu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, No.639 Zhizaoju Road, Shanghai, 200011, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, No.639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, No.639 Zhizaoju Road, Shanghai, 200011, China
| | - Qi Zhong
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, No.639 Zhizaoju Road, Shanghai, 200011, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, No.639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, No.639 Zhizaoju Road, Shanghai, 200011, China
| | - Ximeng Cao
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, No.639 Zhizaoju Road, Shanghai, 200011, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, No.639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, No.639 Zhizaoju Road, Shanghai, 200011, China
| | - Zhen Fan
- Department of Implantology, School & Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, No.399 Middle Yanchang Road, Shanghai, 200072, China.
| | - Chun Xu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, Shanghai, 200011, China.
- College of Stomatology, Shanghai Jiao Tong University, No.639 Zhizaoju Road, Shanghai, 200011, China.
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, No.639 Zhizaoju Road, Shanghai, 200011, China.
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, No.639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
8
|
Garcia KC, Khan AA, Ghosh K, Sinha S, Scalora N, DeWane G, Fullenkamp C, Merritt N, Drebot Y, Yu S, Leidinger M, Henry MD, Breheny P, Chimenti MS, Tanas MR. PI3K regulates TAZ/YAP and mTORC1 axes that can be synergistically targeted. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634138. [PMID: 39896636 PMCID: PMC11785051 DOI: 10.1101/2025.01.21.634138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Purpose Sarcomas are a heterogeneous group of cancers with few shared therapeutic targets. PI3K signaling is activated in various subsets of sarcomas, representing a shared oncogenic signaling pathway. Oncogenic PI3K signaling has been challenging to target therapeutically. An integrated view of PI3K and Hippo pathway signaling is examined to determine if this could be leveraged therapeutically. Experimental design A tissue microarray containing sarcomas of various histological types was evaluated for PTEN loss and correlated with levels of activated TAZ and YAP. PI3K and Hippo pathways were dissected in sarcoma cell lines. The role of TAZ and YAP were evaluated in a PI3K-driven mouse model. The efficacy of mTORC1 inhibition and TEAD inhibition were evaluated in sarcoma cell lines and in vivo . Results PI3K signaling is frequently activated in sarcomas due to PTEN loss (in 30-60%), representing a common therapeutic target. TAZ and YAP are transcriptional co-activators regulated by PI3K and drive a transcriptome necessary for tumor growth in a PI3K-driven sarcoma mouse model. Combination therapy using IK-930 (TEAD inhibitor) and everolimus (mTORC1 inhibitor) synergistically diminished proliferation and anchorage independent growth of PI3K-activated sarcoma cell lines at low, physiologically achievable doses. Furthermore, this combination therapy showed a synergistic effect in vivo , reducing tumor proliferation and size. Conclusions TAZ and YAP are transcriptional co-activators downstream of PI3K signaling, a pathway that has lacked a well-defined oncogenic transcription factor. This PI3K-TAZ/YAP axis exists in parallel to the known PI3K-Akt-mTORC1 axis allowing for synergistic combination therapy targeting the TAZ/YAP-TEAD interaction and mTORC1 in sarcomas.
Collapse
|
9
|
Jiang D, Li P, Lu Y, Tao J, Hao X, Wang X, Wu W, Xu J, Zhang H, Li X, Chen Y, Jin Y, Zhang L. A feedback loop between Paxillin and Yorkie sustains Drosophila intestinal homeostasis and regeneration. Nat Commun 2025; 16:570. [PMID: 39794306 PMCID: PMC11724037 DOI: 10.1038/s41467-024-55255-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/04/2024] [Indexed: 01/13/2025] Open
Abstract
Balanced self-renewal and differentiation of stem cells are crucial for maintaining tissue homeostasis, but the underlying mechanisms of this process remain poorly understood. Here, from an RNA interference (RNAi) screen in adult Drosophila intestinal stem cells (ISCs), we identify a factor, Pax, which is orthologous to mammalian PXN, coordinates the proliferation and differentiation of ISCs during both normal homeostasis and injury-induced midgut regeneration in Drosophila. Loss of Pax promotes ISC proliferation while suppressing its differentiation into absorptive enterocytes (ECs). Mechanistically, our findings demonstrate that Pax is a conserved target gene of the Hippo signaling pathway in both Drosophila and mammals. Subsequent investigations have revealed Pax interacts with Yki and enhances its cytoplasmic localization, thereby establishing a feedback regulatory mechanism that attenuates Yki activity and ultimately inhibits ISCs proliferation. Additionally, Pax induces the differentiation of ISCs into ECs by activating Notch expression, thus facilitating the differentiation process. Overall, our study highlights Pax as a pivotal component of the Hippo and Notch pathways in regulating midgut homeostasis, shedding light on this growth-related pathway in tissue maintenance and intestinal function.
Collapse
Affiliation(s)
- Dan Jiang
- The Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, China
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghang, Shanghai, 200240, China
| | - Pengyue Li
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yi Lu
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jiaxin Tao
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xue Hao
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaodong Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wei Wu
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jinjin Xu
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghang, Shanghai, 200240, China
| | - Haoen Zhang
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaoyu Li
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yixing Chen
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yunyun Jin
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghang, Shanghai, 200240, China.
| | - Lei Zhang
- The Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, China.
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghang, Shanghai, 200240, China.
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
10
|
He L, Cho S, Blenis J. mTORC1, the maestro of cell metabolism and growth. Genes Dev 2025; 39:109-131. [PMID: 39572234 PMCID: PMC11789495 DOI: 10.1101/gad.352084.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The mechanistic target of rapamycin (mTOR) pathway senses and integrates various environmental and intracellular cues to regulate cell growth and proliferation. As a key conductor of the balance between anabolic and catabolic processes, mTOR complex 1 (mTORC1) orchestrates the symphonic regulation of glycolysis, nucleic acid and lipid metabolism, protein translation and degradation, and gene expression. Dysregulation of the mTOR pathway is linked to numerous human diseases, including cancer, neurodegenerative disorders, obesity, diabetes, and aging. This review provides an in-depth understanding of how nutrients and growth signals are coordinated to influence mTOR signaling and the extensive metabolic rewiring under its command. Additionally, we discuss the use of mTORC1 inhibitors in various aging-associated metabolic diseases and the current and future potential for targeting mTOR in clinical settings. By deciphering the complex landscape of mTORC1 signaling, this review aims to inform novel therapeutic strategies and provide a road map for future research endeavors in this dynamic and rapidly evolving field.
Collapse
Affiliation(s)
- Long He
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA;
- Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021, USA
| | - Sungyun Cho
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021, USA
| | - John Blenis
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA;
- Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021, USA
| |
Collapse
|
11
|
Hong XL, Huang CK, Qian H, Ding CH, Liu F, Hong HY, Liu SQ, Wu SH, Zhang X, Xie WF. Positive feedback between arginine methylation of YAP and methionine transporter SLC43A2 drives anticancer drug resistance. Nat Commun 2025; 16:87. [PMID: 39747898 PMCID: PMC11697449 DOI: 10.1038/s41467-024-55769-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025] Open
Abstract
Yes-associated protein (YAP) activation confers resistance to chemotherapy and targeted therapy. Methionine participates in cellular processes by converting to methyl donor for the methylation of DNA, RNA and protein. However, it remains unclear whether methionine affects drug resistance by influencing YAP activity. In this study, we report that methionine deprivation remarkably suppresses the transcriptional activity of YAP-TEAD in cancer cells. Methionine promotes PRMT1-catalyzed asymmetric dimethylation at R124 of YAP (YAP R124me2a). Mimicking of YAP methylation abolishes the reduction effect of methionine-restricted diet on YAP-induced drug resistance. YAP activates the transcription of SLC43A2, the methionine transporter, to increase methionine uptake in cancer cells. Knockdown of SLC43A2 decreases the level of YAP R124me2a. BCH, the inhibitor of SLC43A2, sensitizes tumors to anticancer drugs. Thus, our results unravel the positive feedback between YAP R124 methylation and SLC43A2 that contributes to anticancer drug resistance. Disrupting this positive feedback could be a potential strategy for cancer therapy.
Collapse
Affiliation(s)
- Xia-Lu Hong
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Chen-Kai Huang
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Hui Qian
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Chen-Hong Ding
- Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fang Liu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Huan-Yu Hong
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Shu-Qing Liu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Si-Han Wu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xin Zhang
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| | - Wei-Fen Xie
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
12
|
Dai C, Zhang Y, Gong Y, Bradley A, Tang Z, Sellick K, Shrestha S, Spears E, Covington BA, Stanley J, Jenkins R, Richardson TM, Brantley RA, Coate K, Saunders DC, Wright JJ, Brissova M, Dean ED, Powers AC, Chen W. Hyperaminoacidemia from interrupted glucagon signaling increases pancreatic acinar cell proliferation and size via mTORC1 and YAP pathways. iScience 2024; 27:111447. [PMID: 39720531 PMCID: PMC11667045 DOI: 10.1016/j.isci.2024.111447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/28/2024] [Accepted: 11/19/2024] [Indexed: 12/26/2024] Open
Abstract
Increased blood amino acid levels (hyperaminoacidemia) stimulate pancreas expansion by unclear mechanisms. Here, by genetic and pharmacological disruption of glucagon receptor (GCGR) in mice and zebrafish, we found that the ensuing hyperaminoacidemia promotes pancreatic acinar cell proliferation and cell hypertrophy, which can be mitigated by a low protein diet in mice. In addition to mammalian target of rapamycin complex 1 (mTORC1) signaling, acinar cell proliferation required slc38a5, the most highly expressed amino acid transporter gene in both species. Transcriptomics data revealed the activation signature of yes-associated protein (YAP) in acinar cells of mice with hyperaminoacidemia, consistent with the observed increase in YAP-expressing acinar cells. Yap1 activation also occurred in acinar cells in gcgr-/- zebrafish, which was reversed by rapamycin. Knocking down yap1 in gcgr-/- zebrafish decreased mTORC1 activity and acinar cell proliferation and hypertrophy. Thus, the study discovered a previously unrecognized role of the YAP/Taz pathway in hyperaminoacidemia-induced acinar cell hypertrophy and hyperplasia.
Collapse
Affiliation(s)
- Chunhua Dai
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yue Zhang
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Yulong Gong
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Amber Bradley
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zihan Tang
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Katelyn Sellick
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shristi Shrestha
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Erick Spears
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Brittney A. Covington
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Jade Stanley
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Regina Jenkins
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tiffany M. Richardson
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Rebekah A. Brantley
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Katie Coate
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Diane C. Saunders
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jordan J. Wright
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- VA Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Marcela Brissova
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - E. Danielle Dean
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Alvin C. Powers
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
- VA Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Wenbiao Chen
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
13
|
Yang W, Zhang M, Zhang TX, Liu JH, Hao MW, Yan X, Gao H, Lei QY, Cui J, Zhou X. YAP/TAZ mediates resistance to KRAS inhibitors through inhibiting proapoptosis and activating the SLC7A5/mTOR axis. JCI Insight 2024; 9:e178535. [PMID: 39704172 DOI: 10.1172/jci.insight.178535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 10/31/2024] [Indexed: 12/21/2024] Open
Abstract
KRAS mutations are frequent in various human cancers. The development of selective inhibitors targeting KRAS mutations has opened a new era for targeted therapy. However, intrinsic and acquired resistance to these inhibitors remains a major challenge. Here, we found that cancer cells resistant to KRAS G12C inhibitors also display cross-resistance to other targeted therapies, such as inhibitors of RTKs or SHP2. Transcriptomic analyses revealed that the Hippo-YAP/TAZ pathway is activated in intrinsically resistant and acquired-resistance cells. Constitutive activation of YAP/TAZ conferred resistance to KRAS G12C inhibitors, while knockdown of YAP/TAZ or TEADs sensitized resistant cells to these inhibitors. This scenario was also observed in KRAS G12D-mutant cancer cells. Mechanistically, YAP/TAZ protects cells from KRAS inhibitor-induced apoptosis by downregulating the expression of proapoptotic genes such as BMF, BCL2L11, and PUMA, and YAP/TAZ reverses KRAS inhibitor-induced proliferation retardation by activating the SLC7A5/mTORC1 axis. We further demonstrated that dasatinib and MYF-03-176 notably enhance the efficacy of KRAS inhibitors by reducing SRC kinase activity and TEAD activity. Overall, targeting the Hippo-YAP/TAZ pathway has the potential to overcome resistance to KRAS inhibitors.
Collapse
Affiliation(s)
- Wang Yang
- Cancer Center, and
- Cancer Research Institute of Jilin University, The First Hospital of Jilin University, Changchun, China
- International Center of Future Science, and
| | - Ming Zhang
- Cancer Research Institute of Jilin University, The First Hospital of Jilin University, Changchun, China
- International Center of Future Science, and
| | - Tian-Xing Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Jia-Hui Liu
- Cancer Research Institute of Jilin University, The First Hospital of Jilin University, Changchun, China
- International Center of Future Science, and
| | - Man-Wei Hao
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Xu Yan
- Pathological Diagnostic Center, The First Hospital of Jilin University, Changchun, China
| | - Haicheng Gao
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Qun-Ying Lei
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, School of Basic Medical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | | | - Xin Zhou
- Cancer Center, and
- Cancer Research Institute of Jilin University, The First Hospital of Jilin University, Changchun, China
- International Center of Future Science, and
| |
Collapse
|
14
|
Chiu CF, Guerrero JJG, Regalado RRH, Zhou J, Notarte KI, Lu YW, Encarnacion PC, Carles CDD, Octavo EM, Limbaroc DCI, Saengboonmee C, Huang SY. Insights into Metabolic Reprogramming in Tumor Evolution and Therapy. Cancers (Basel) 2024; 16:3513. [PMID: 39456607 PMCID: PMC11506062 DOI: 10.3390/cancers16203513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Cancer remains a global health challenge, characterized not just by uncontrolled cell proliferation but also by the complex metabolic reprogramming that underlies its development and progression. Objectives: This review delves into the intricate relationship between cancer and its metabolic alterations, drawing an innovative comparison with the cosmological concepts of dark matter and dark energy to highlight the pivotal yet often overlooked role of metabolic reprogramming in tumor evolution. Methods: It scrutinizes the Warburg effect and other metabolic adaptations, such as shifts in lipid synthesis, amino acid turnover, and mitochondrial function, driven by mutations in key regulatory genes. Results: This review emphasizes the significance of targeting these metabolic pathways for therapeutic intervention, outlining the potential to disrupt cancer's energy supply and signaling mechanisms. It calls for an interdisciplinary research approach to fully understand and exploit the intricacies of cancer metabolism, pointing toward metabolic reprogramming as a promising frontier for developing more effective cancer treatments. Conclusion: By equating cancer's metabolic complexity with the enigmatic nature of dark matter and energy, this review underscores the critical need for innovative strategies in oncology, highlighting the importance of unveiling and targeting the "dark energy" within cancer cells to revolutionize future therapy and research.
Collapse
Affiliation(s)
- Ching-Feng Chiu
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110301, Taiwan; (J.J.G.G.); (Y.-W.L.); (P.C.E.)
- Taipei Medical University Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Jonathan Jaime G. Guerrero
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110301, Taiwan; (J.J.G.G.); (Y.-W.L.); (P.C.E.)
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines; (C.D.D.C.); (E.M.O.); (D.C.I.L.)
- College of Public Health, University of the Philippines Manila, Manila 1000, Philippines
| | - Ric Ryan H. Regalado
- National Institute of Molecular Biology and Biotechnology, College of Science, University of the Philippines Diliman, Quezon City 1101, Philippines;
| | - Jiayan Zhou
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Kin Israel Notarte
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| | - Yu-Wei Lu
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110301, Taiwan; (J.J.G.G.); (Y.-W.L.); (P.C.E.)
| | - Paolo C. Encarnacion
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110301, Taiwan; (J.J.G.G.); (Y.-W.L.); (P.C.E.)
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines; (C.D.D.C.); (E.M.O.); (D.C.I.L.)
- College of Public Health, University of the Philippines Manila, Manila 1000, Philippines
- Department of Industrial Engineering and Management, Yuan Ze University, 135 Yuan-Tung Road, Chung-Li 32003, Taiwan
| | - Cidne Danielle D. Carles
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines; (C.D.D.C.); (E.M.O.); (D.C.I.L.)
- College of Public Health, University of the Philippines Manila, Manila 1000, Philippines
| | - Edrian M. Octavo
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines; (C.D.D.C.); (E.M.O.); (D.C.I.L.)
| | - Dan Christopher I. Limbaroc
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines; (C.D.D.C.); (E.M.O.); (D.C.I.L.)
- College of Public Health, University of the Philippines Manila, Manila 1000, Philippines
| | - Charupong Saengboonmee
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Shih-Yi Huang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110301, Taiwan
| |
Collapse
|
15
|
Yanagida S, Yuki R, Saito Y, Nakayama Y. LAT1 supports mitotic progression through Golgi unlinking in an amino acid transport activity-independent manner. J Biol Chem 2024; 300:107761. [PMID: 39270820 PMCID: PMC11490712 DOI: 10.1016/j.jbc.2024.107761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024] Open
Abstract
Amino acid transporters play a vital role in cellular homeostasis by maintaining protein synthesis. L-type amino acid transporter 1 (LAT1/SLC7A5/CD98lc) is a major transporter of large neutral amino acids in cancer cells because of its predominant expression. Although amino acid restriction with various amino acid analog treatments is known to induce mitotic defects, the involvement of amino acid transporters in cell division remains unclear. In this study, we identified that LAT1 is responsible for mitotic progression in a transport activity-independent manner. LAT1 knockdown activates the spindle assembly checkpoint, leading to a delay in metaphase. LAT1 maintains proper spindle orientation with confinement of the lateral cortex localization of the NuMA protein, which mediates the pulling force against the mitotic spindle toward the lateral cortex. Unexpectedly, JPH203, an inhibitor of LAT1 amino acid transport activity, does not affect mitotic progression. Moreover, the transport activity-deficient LAT1 mutant maintains the proper spindle orientation and mitotic progression. LAT1 forms a heterodimer with CD98 (SLC3A2/CD98hc) both in interphase and mitosis. Although CD98 knockdown decreases the plasma membrane localization of LAT1, it does not affect mitotic progression. LAT1 is localized to the Golgi and ER not only at the plasma membrane in interphase, and promotes Golgi unlinking during the mitotic entry, leading to centrosome maturation. These results suggest that LAT1 supports mitotic progression in an amino acid transport activity-independent manner and that Golgi-localized LAT1 is important for mitotic progression through the acceleration of Golgi unlinking and centrosome maturation. These findings reveal a novel LAT1 function in mitosis.
Collapse
Affiliation(s)
- Sakura Yanagida
- Laboratory of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Ryuzaburo Yuki
- Laboratory of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan.
| | - Youhei Saito
- Laboratory of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yuji Nakayama
- Laboratory of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan.
| |
Collapse
|
16
|
Cai X, Chen F, Tang H, Chao D, Kang R, Tang D, Liu J. ITCH inhibits alkaliptosis in human pancreatic cancer cells through YAP1-dependent SLC16A1 activation. Int J Biochem Cell Biol 2024; 175:106646. [PMID: 39179170 DOI: 10.1016/j.biocel.2024.106646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Alkaliptosis is a type of pH-dependent cell death and plays an emerging role in tumor suppression. However, the key modulation mechanism of alkaliptosis remains largely unknown. In particular, the nucleus, as the centre of genetic and metabolic regulation, is crucial for the regulation of cellular life. It is not known whether nuclear proteins are involved in the regulation of alkaliptosis. Here, we isolated nuclear proteins to perform a proteomics that identified itchy E3 ubiquitin protein ligase (ITCH) as a natural inhibitor of alkaliptosis in human pancreatic ductal adenocarcinoma (PDAC) cells. The downregulation of ITCH protein is associated with the induction of alkaliptosis in three human PDAC cell lines (SW1990, MiaPaCa2, and PANC1). Functionally, increasing ITCH expression reduces JTC801-induced growth inhibition and cell death. In contrast, knocking down ITCH using specific shRNA increases JTC801-induced cell growth inhibition in the short or long term, resulting in increased cell death. Mechanistically, JTC801-induced ITCH inhibition blocks large tumor suppressor kinase 1 (LATS1) ubiquitination, which in turn suppresses Yes1 associated transcriptional regulator (YAP1)-dependent the transcriptional activation of solute carrier family 16 member 1 (SLC16A1), a proton-linked monocarboxylate transporter that inhibits JTC801-induced alkaliptosis. Additionally, decreased expression of ITCH is associated with longer survival times in patients with PDAC. Collectively, our results establish an ITCH-dependent pathway that regulates alkaliptotic sensitivity in PDAC cells and deepen the understanding of alkaliptosis in targeted therapy.
Collapse
Affiliation(s)
- Xiutao Cai
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Fangquan Chen
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Hu Tang
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Dandan Chao
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA..
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou, Guangdong 510150, China.
| |
Collapse
|
17
|
Hwang D, Baek S, Chang J, Seol T, Ku B, Ha H, Lee H, Cho S, Roh TY, Kim YK, Lim DS. YAP promotes global mRNA translation to fuel oncogenic growth despite starvation. Exp Mol Med 2024; 56:2202-2215. [PMID: 39349825 PMCID: PMC11542038 DOI: 10.1038/s12276-024-01316-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/19/2024] [Accepted: 07/07/2024] [Indexed: 11/08/2024] Open
Abstract
Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) play fundamental roles in stem/progenitor cell expansion during homeostasis, and their dysregulation often leads to tissue overgrowth. Here, we show that YAP activation is sufficient to overcome the restriction of global protein synthesis induced by serum starvation, enabling cells to sustain proliferation and survival despite an unfavorable environment. Mechanistically, YAP/TAZ selectively promoted the mTORC1-dependent translation of mRNAs containing 5' terminal oligopyrimidine (5'TOP) motifs, ultimately increasing the cellular polysome content. Interestingly, DNA damage-inducible transcript 4 (DDIT4), a negative regulator of mTORC1, was upregulated by serum starvation but repressed by YAP/TAZ. DDIT4 was sufficient to suppress the translation and transformative potential of uveal melanoma cells, which are often serum unresponsive due to G protein mutations. Our findings reveal a vital role for protein synthesis as a key modality of YAP/TAZ-induced oncogenic transformation and indicate the potential for targeting mTORC1 or translation to treat YAP/TAZ-driven malignancies.
Collapse
Affiliation(s)
- Daehee Hwang
- National Creative Research Initiatives Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seonguk Baek
- National Creative Research Initiatives Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jeeyoon Chang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Taejun Seol
- National Creative Research Initiatives Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Bomin Ku
- National Creative Research Initiatives Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hongseok Ha
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Hyeonji Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Suhyeon Cho
- National Creative Research Initiatives Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Tae-Young Roh
- Department of Life Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Yoon Ki Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Dae-Sik Lim
- National Creative Research Initiatives Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
18
|
Thomas ACQ, Stead CA, Burniston JG, Phillips SM. Exercise-specific adaptations in human skeletal muscle: Molecular mechanisms of making muscles fit and mighty. Free Radic Biol Med 2024; 223:341-356. [PMID: 39147070 DOI: 10.1016/j.freeradbiomed.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
The mechanisms leading to a predominantly hypertrophied phenotype versus a predominantly oxidative phenotype, the hallmarks of resistance training (RT) or aerobic training (AT), respectively, are being unraveled. In humans, exposure of naïve persons to either AT or RT results in their skeletal muscle exhibiting generic 'exercise stress-related' signaling, transcription, and translation responses. However, with increasing engagement in AT or RT, the responses become refined, and the phenotype typically associated with each form of exercise emerges. Here, we review some of the mechanisms underpinning the adaptations of how muscles become, through AT, 'fit' and RT, 'mighty.' Much of our understanding of molecular exercise physiology has arisen from targeted analysis of post-translational modifications and measures of protein synthesis. Phosphorylation of specific residue sites has been a dominant focus, with canonical signaling pathways (AMPK and mTOR) studied extensively in the context of AT and RT, respectively. These alone, along with protein synthesis, have only begun to elucidate key differences in AT and RT signaling. Still, key yet uncharacterized differences exist in signaling and regulation of protein synthesis that drive unique adaptation to AT and RT. Omic studies are required to better understand the divergent relationship between exercise and phenotypic outcomes of training.
Collapse
Affiliation(s)
- Aaron C Q Thomas
- Protein Metabolism Research Lab, Department of Kinesiology, McMaster University, Hamilton, ON, Canada; Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Connor A Stead
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Jatin G Burniston
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Stuart M Phillips
- Protein Metabolism Research Lab, Department of Kinesiology, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
19
|
Sasaki N, Asano Y, Sorayama Y, Kamimura C, Kitano S, Irie S, Katayama R, Shimoda H, Matsusaki M. Promoting biological similarity by collagen microfibers in 3D colorectal cancer-stromal tissue: Replicating mechanical properties and cancer stem cell markers. Acta Biomater 2024; 185:161-172. [PMID: 38972624 DOI: 10.1016/j.actbio.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
The extracellular matrix (ECM) of cancer tissues is rich in dense collagen, contributing to the stiffening of these tissues. Increased stiffness has been reported to promote cancer cell proliferation, invasion, metastasis, and prevent drug delivery. Replicating the structure and mechanical properties of cancer tissue in vitro is essential for developing cancer treatment drugs that target these properties. In this study, we recreated specific characteristics of cancer tissue, such as collagen density and high elastic modulus, using a colorectal cancer cell line as a model. Using our original material, collagen microfibers (CMFs), and a constructed three-dimensional (3D) cancer-stromal tissue model, we successfully reproduced an ECM highly similar to in vivo conditions. Furthermore, our research demonstrated that cancer stem cell markers expressed in the 3D cancer-stromal tissue model more closely mimic in vivo conditions than traditional two-dimensional cell cultures. We also found that CMFs might affect an impact on how cancer cells express these markers. Our 3D CMF-based model holds promise for enhancing our understanding of colorectal cancer and advancing therapeutic approaches. STATEMENT OF SIGNIFICANCE: Reproducing the collagen content and stiffness of cancer tissue is crucial in comprehending the properties of cancer and advancing anticancer drug development. Nonetheless, the use of collagen as a scaffold material has posed challenges due to its poor solubility, hindering the replication of a cancer microenvironment. In this study, we have successfully recreated cancer tissue-specific characteristics such as collagen density, stiffness, and the expression of cancer stem cell markers in three-dimensional (3D) colorectal cancer stromal tissue, utilizing a proprietary material known as collagen microfiber (CMF). CMF proves to be an ideal scaffold material for replicating cancer stromal tissue, and these 3D tissues constructed with CMFs hold promise in contributing to our understanding of cancer and the development of therapeutic drugs.
Collapse
Affiliation(s)
- Naoko Sasaki
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshiya Asano
- Department of Neuroanatomy, Cell Biology and Histology, Graduate School of Medicine, Hirosaki University, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Yukiko Sorayama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Chihiro Kamimura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shiro Kitano
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; TOPPAN HOLDINGS INC. TOPPAN Technical Research Institute, 4-2-3, Takanodaiminami, Sugito-cho, Kitakatsushika-gun, Saitama 345-8508, Japan
| | - Shinji Irie
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; TOPPAN HOLDINGS INC. TOPPAN Technical Research Institute, 4-2-3, Takanodaiminami, Sugito-cho, Kitakatsushika-gun, Saitama 345-8508, Japan
| | - Ryohei Katayama
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Hiroshi Shimoda
- Department of Neuroanatomy, Cell Biology and Histology, Graduate School of Medicine, Hirosaki University, 5 Zaifu-cho, Hirosaki, 036-8562, Japan; Department of Anatomical Science, Graduate School of Medicine, Hirosaki University, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Michiya Matsusaki
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
20
|
Graham K, Lienau P, Bader B, Prechtl S, Naujoks J, Lesche R, Weiske J, Kuehnlenz J, Brzezinka K, Potze L, Zanconato F, Nicke B, Montebaur A, Bone W, Golfier S, Kaulfuss S, Kopitz C, Pilari S, Steuber H, Hayat S, Kamburov A, Steffen A, Schlicker A, Buchgraber P, Braeuer N, Font NA, Heinrich T, Kuhnke L, Nowak-Reppel K, Stresemann C, Steigemann P, Walter AO, Blotta S, Ocker M, Lakner A, von Nussbaum F, Mumberg D, Eis K, Piccolo S, Lange M. Discovery of YAP1/TAZ pathway inhibitors through phenotypic screening with potent anti-tumor activity via blockade of Rho-GTPase signaling. Cell Chem Biol 2024; 31:1247-1263.e16. [PMID: 38537632 DOI: 10.1016/j.chembiol.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/08/2024] [Accepted: 02/27/2024] [Indexed: 07/21/2024]
Abstract
This study describes the identification and target deconvolution of small molecule inhibitors of oncogenic Yes-associated protein (YAP1)/TAZ activity with potent anti-tumor activity in vivo. A high-throughput screen (HTS) of 3.8 million compounds was conducted using a cellular YAP1/TAZ reporter assay. Target deconvolution studies identified the geranylgeranyltransferase-I (GGTase-I) complex as the direct target of YAP1/TAZ pathway inhibitors. The small molecule inhibitors block the activation of Rho-GTPases, leading to subsequent inactivation of YAP1/TAZ and inhibition of cancer cell proliferation in vitro. Multi-parameter optimization resulted in BAY-593, an in vivo probe with favorable PK properties, which demonstrated anti-tumor activity and blockade of YAP1/TAZ signaling in vivo.
Collapse
Affiliation(s)
- Keith Graham
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Philip Lienau
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Benjamin Bader
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Stefan Prechtl
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Jan Naujoks
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Ralf Lesche
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Joerg Weiske
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Julia Kuehnlenz
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Krzysztof Brzezinka
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Lisette Potze
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Francesca Zanconato
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, 35121 Padua, Italy
| | - Barbara Nicke
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Anna Montebaur
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Wilhelm Bone
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Sven Golfier
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Stefan Kaulfuss
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Charlotte Kopitz
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Sabine Pilari
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Holger Steuber
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Sikander Hayat
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Atanas Kamburov
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Andreas Steffen
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Andreas Schlicker
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Philipp Buchgraber
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Nico Braeuer
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Nuria Aiguabella Font
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Tobias Heinrich
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Lara Kuhnke
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Katrin Nowak-Reppel
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Carlo Stresemann
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Patrick Steigemann
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Annette O Walter
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Simona Blotta
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Matthias Ocker
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Ashley Lakner
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Franz von Nussbaum
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Dominik Mumberg
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Knut Eis
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Stefano Piccolo
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, 35121 Padua, Italy; IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Martin Lange
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany.
| |
Collapse
|
21
|
Parambil ST, Antony GR, Littleflower AB, Subhadradevi L. The molecular crosstalk of the hippo cascade in breast cancer: A potential central susceptibility. Biochimie 2024; 222:132-150. [PMID: 38494109 DOI: 10.1016/j.biochi.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
The incidence of breast cancer is perpetually growing globally, and it remains a major public health problem and the leading cause of mortality in women. Though the aberrant activities of the Hippo pathway have been reported to be associated with cancer, constructive knowledge of the pathway connecting the various elements of breast cancer remains to be elucidated. The Hippo transducers, yes-associated protein (YAP) and transcriptional co-activator with PDZ binding motif (TAZ), are reported to be either tumor suppressors, oncogenes, or independent prognostic markers in breast cancer. Thus, there is further need for an explicative evaluation of the dilemma with this molecular contribution of Hippo transducers in modulating breast malignancy. In this review, we summarize the intricate crosstalk of the Hippo pathway in different aspects of breast malignancy, including stem-likeness, cellular signaling, metabolic adaptations, tumor microenvironment, and immune responses. The collective data shows that Hippo transducers play an indispensable role in mammary tumor formation, progression, and dissemination. However, the cellular functions of YAP/TAZ in tumorigenesis might be largely dependent on the mechanical and biophysical cues they interact with, as well as on the cell phenotype. This review provides a glimpse into the plausible biological contributions of the cascade to the inward progression of breast carcinoma and suggests potential therapeutic prospects.
Collapse
Affiliation(s)
- Sulfath Thottungal Parambil
- Laboratory of Molecular Medicine, Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, 695011, Kerala, India
| | - Gisha Rose Antony
- Laboratory of Molecular Medicine, Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, 695011, Kerala, India
| | - Ajeesh Babu Littleflower
- Laboratory of Molecular Medicine, Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, 695011, Kerala, India
| | - Lakshmi Subhadradevi
- Laboratory of Molecular Medicine, Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, 695011, Kerala, India.
| |
Collapse
|
22
|
Fu J, Liu W, Liu S, Zhao R, Hayashi T, Zhao H, Xiang Y, Mizuno K, Hattori S, Fujisaki H, Ikejima T. Inhibition of YAP/TAZ pathway contributes to the cytotoxicity of silibinin in MCF-7 and MDA-MB-231 human breast cancer cells. Cell Signal 2024; 119:111186. [PMID: 38643945 DOI: 10.1016/j.cellsig.2024.111186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/14/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Breast cancer is one of the most common cancers threatening women's health. Our previous study found that silibinin induced the death of MCF-7 and MDA-MB-231 human breast cancer cells. We noticed that silibinin-induced cell damage was accompanied by morphological changes, including the increased cell aspect ratio (cell length/width) and decreased cell area. Besides, the cytoskeleton is also destroyed in cells treated with silibinin. YAP/TAZ, a mechanical signal sensor interacted with extracellular pressure, cell adhesion area and cytoskeleton, is also closely associated with cell survival, proliferation and migration. Thus, the involvement of YAP/TAZ in the cytotoxicity of silibinin in breast cancer cells has attracted our interests. Excitingly, we find that silibinin inhibits the nuclear translocation of YAP/TAZ in MCF-7 and MDA-MB-231 cells, and reduces the mRNA expressions of YAP/TAZ target genes, ACVR1, MnSOD and ANKRD. More importantly, expression of YAP1 gene is negatively correlated with the survival of the patients with breast cancers. Molecular docking analysis reveals high probabilities for binding of silibinin to the proteins in the YAP pathways. DARTS and CETSA results confirm the binding abilities of silibinin to YAP and LATS. Inhibiting YAP pathway either by addition of verteporfin, an inhibitor of YAP/TAZ-TEAD, or by transfection of si-RNAs targeting YAP or TAZ further enhances silibinin-induced cell damage. While enhancing YAP activity by silencing LATS1/2 or overexpressing YAPS127/397A, an active form of YAP, attenuates silibinin-induced cell damage. These findings demonstrate that inhibition of the YAP/TAZ pathway contributes to cytotoxicity of silibinin in breast cancers, shedding lights on YAP/TAZ-targeted cancer therapies.
Collapse
Affiliation(s)
- Jianing Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Weiwei Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Siyu Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Ruxiao Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Toshihiko Hayashi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China; Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Haina Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yinlanqi Xiang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Hitomi Fujisaki
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Takashi Ikejima
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China; Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning, China.
| |
Collapse
|
23
|
Roy M, Hussain F. Mitigation of Breast Cancer Cells' Invasiveness via Down Regulation of ETV7, Hippo, and PI3K/mTOR Pathways by Vitamin D3 Gold-Nanoparticles. Int J Mol Sci 2024; 25:5348. [PMID: 38791386 PMCID: PMC11120902 DOI: 10.3390/ijms25105348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Metastasis in breast cancer is the major cause of death in females (about 30%). Based on our earlier observation that Vitamin D3 downregulates mTOR, we hypothesized that Vitamin D3 conjugated to gold nanoparticles (VD3-GNPs) reduces breast cancer aggressiveness by downregulating the key cancer controller PI3K/AKT/mTOR. Western blots, migration/invasion assays, and other cell-based, biophysical, and bioinformatics studies are used to study breast cancer cell aggressiveness and nanoparticle characterization. Our VD3-GNP treatment of breast cancer cells (MCF-7 and MDA-MB-231) significantly reduces the aggressiveness (cancer cell migration and invasion rates > 45%) via the simultaneous downregulation of ETV7 and the Hippo pathway. Consistent with our hypothesis, we, indeed, found a downregulation of the PI3K/AKT/mTOR pathway. It is surprising that the extremely low dose of VD3 in the nano formulation (three orders of magnitude lower than in earlier studies) is quite effective in the alteration of cancer invasiveness and cell signaling pathways. Clearly, VD3-GNPs are a viable candidate for non-toxic, low-cost treatment for reducing breast cancer aggressiveness.
Collapse
Affiliation(s)
- Moumita Roy
- Mechanical Engineering Department, Texas Tech University, Lubbock, TX 79409, USA
| | - Fazle Hussain
- Mechanical Engineering Department, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
24
|
Ogawa M, Tanaka A, Maekawa M, Namba K, Otani Y, Shia J, Wang JY, Roehrl MH. Protein expression of the amino acid transporter SLC7A5 in tumor tissue is prognostic in early-stage colorectal cancer. PLoS One 2024; 19:e0298362. [PMID: 38722983 PMCID: PMC11081336 DOI: 10.1371/journal.pone.0298362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 01/24/2024] [Indexed: 05/13/2024] Open
Abstract
Proteins overexpressed in early-stage cancers may serve as early diagnosis and prognosis markers as well as targets for cancer therapies. In this study, we examined the expression of an essential amino acid carrier SLC7A5 (LAT1, CD98, or 4F2 light chain) in cancer tissue from two well-annotated cohorts of 575 cases of early-stage and 106 cases of late-stage colorectal cancer patients. Immunohistochemistry showed SLC7A5 overexpression in 72.0% of early-stage and 56.6% of late-stage cases. SLC7A5 expression was not influenced by patient gender, age, location, or mismatch repair status, although it appeared to be slightly less prevalent in tumors of mucinous differentiation or with lymphovascular invasion. Statistical analyses revealed a positive correlation between SLC7A5 overexpression and both overall survival and disease-free survival in early-stage but not late-stage cancers. Co-expression analyses of the TCGA and CPTAC colorectal cancer cohorts identified a network of gene transcripts positively related to SLC7A5, with its heterodimer partner SLC3A2 having the highest co-expression score. Network analysis uncovered the SLC7A network to be significantly associated with ncRNA such as tRNA processing and the mitotic cell cycle. Since SLC7A5 is also a marker of activated lymphocytes such as NK, T, and B lymphocytes, SLC7A5 overexpression in early colorectal cancers might trigger a strong anti-tumor immune response which could results in better clinical outcome. Overall, our study provides clear evidence of differential SLC7A5 expression and its prognostic value for early-stage colorectal cancer, although the understanding of its functions in colorectal tumorigenesis and cancer immunity is currently rather limited and awaits further characterization.
Collapse
Affiliation(s)
- Makiko Ogawa
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Atsushi Tanaka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Masaki Maekawa
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Kei Namba
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Yusuke Otani
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Jinru Shia
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | | | - Michael H. Roehrl
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
25
|
Leng G, Gong H, Liu G, Kong Y, Guo L, Zhang Y. Alpha-fetoprotein upregulates hepatocellular carcinoma cell-intrinsic PD-1 expression through the LATS2/YAP/TEAD1 pathway. Biochim Biophys Acta Gen Subj 2024; 1868:130592. [PMID: 38395204 DOI: 10.1016/j.bbagen.2024.130592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/11/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) cell-intrinsic programmed death 1 (PD-1) promotes tumor progression. However, the mechanisms that regulate its expression are unclear. This study investigated the impact of alpha-fetoprotein (AFP) on HCC cell-intrinsic PD-1 expression. METHODS The expression of PD-1 and AFP at the gene and protein levels was detected using real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) and western blotting (WB). Proteins interacting with AFP were examined by co-immunoprecipitation (CO-IP). Chromatin immunoprecipitation (ChIP) and dual luciferase reporter assays were used to identify transcription-enhanced association domain 1 (TEAD1) binding to the promoter of PD-1. RESULTS The expression of HCC cell-intrinsic PD-1 was positively correlated with AFP. Mechanistically, AFP inhibited the phosphorylation of large tumor suppressor 2 (LATS2) and yes-associated protein (YAP). As a result, YAP is transferred to the nucleus and forms a transcriptional complex with TEAD1, promoting PD-1 transcription by binding to its promoter. CONCLUSION AFP is an upstream regulator of the HCC cell-intrinsic PD-1 and increases PD-1 expression via the LATS2/YAP/TEAD1 axis. GENERAL Our findings provide insight into the mechanisms of HCC development and offer new ideas for further in-depth studies of HCC.
Collapse
Affiliation(s)
- Guangxian Leng
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, Gansu Province, China
| | - Hongxia Gong
- Provincial-Level Key Laboratory of Molecular Medicine of Major Diseases and Study on Prevention and Treatment of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Guiyuan Liu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, Gansu Province, China; People's Hospital affiliated with Chongqing Three Gorges Medical Higher Specialized School, Chongqing 404100, China
| | - Yin Kong
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, Gansu Province, China; Department of Hepatology, Lanzhou University Second Hospital, Lanzhou 730030, Gansu Province, China
| | - Liuqing Guo
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, Gansu Province, China
| | - Youcheng Zhang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, Gansu Province, China.
| |
Collapse
|
26
|
Gao Y, Gong Y, Lu J, Hao H, Shi X. Targeting YAP1 to improve the efficacy of immune checkpoint inhibitors in liver cancer: mechanism and strategy. Front Immunol 2024; 15:1377722. [PMID: 38550587 PMCID: PMC10972981 DOI: 10.3389/fimmu.2024.1377722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/04/2024] [Indexed: 04/02/2024] Open
Abstract
Liver cancer is the third leading of tumor death, including hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). Immune checkpoint inhibitors (ICIs) are yielding much for sufferers to hope for patients, but only some patients with advanced liver tumor respond. Recent research showed that tumor microenvironment (TME) is critical for the effectiveness of ICIs in advanced liver tumor. Meanwhile, metabolic reprogramming of liver tumor leads to immunosuppression in TME. These suggest that regulating the abnormal metabolism of liver tumor cells and firing up TME to turn "cold tumor" into "hot tumor" are potential strategies to improve the therapeutic effect of ICIs in liver tumor. Previous studies have found that YAP1 is a potential target to improve the efficacy of anti-PD-1 in HCC. Here, we review that YAP1 promotes immunosuppression of TME, mainly due to the overstimulation of cytokines in TME by YAP1. Subsequently, we studied the effects of YAP1 on metabolic reprogramming in liver tumor cells, including glycolysis, gluconeogenesis, lipid metabolism, arachidonic acid metabolism, and amino acid metabolism. Lastly, we summarized the existing drugs targeting YAP1 in the treatment of liver tumor, including some medicines from natural sources, which have the potential to improve the efficacy of ICIs in the treatment of liver tumor. This review contributed to the application of targeted YAP1 for combined therapy with ICIs in liver tumor patients.
Collapse
Affiliation(s)
- Yuting Gao
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Yi Gong
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Junlan Lu
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Huiqin Hao
- Chinese Medicine Gene Expression Regulation Laboratory, State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, China
- Basic Laboratory of Integrated Traditional Chinese and Western, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Xinli Shi
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, China
| |
Collapse
|
27
|
Zhang L, Yang Y, Xie L, Zhou Y, Zhong Z, Ding J, Wang Z, Wang Y, Liu X, Yu F, Wu J. JCAD deficiency delayed liver regenerative repair through the Hippo-YAP signalling pathway. Clin Transl Med 2024; 14:e1630. [PMID: 38509842 PMCID: PMC10955226 DOI: 10.1002/ctm2.1630] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/25/2024] [Accepted: 02/29/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND AND AIMS Liver regeneration retardation post partial hepatectomy (PH) is a common clinical problem after liver transplantation. Identification of key regulators in liver regeneration post PH may be beneficial for clinically improving the prognosis of patients after liver transplantation. This study aimed to clarify the function of junctional protein-associated with coronary artery disease (JCAD) in liver regeneration post PH and to reveal the underlying mechanisms. METHODS JCAD knockout (JCAD-KO), liver-specific JCAD-KO (Jcad△Hep) mice and their control group were subjected to 70% PH. RNA sequencing was conducted to unravel the related signalling pathways. Primary hepatocytes from KO mice were treated with epidermal growth factor (EGF) to evaluate DNA replication. Fluorescent ubiquitination-based cell cycle indicator (FUCCI) live-imaging system was used to visualise the phases of cell cycle. RESULTS Both global and liver-specific JCAD deficiency postponed liver regeneration after PH as indicated by reduced gene expression of cell cycle transition and DNA replication. Prolonged retention in G1 phase and failure to transition over the cell cycle checkpoint in JCAD-KO cell line was indicated by a FUCCI live-imaging system as well as pharmacologic blockage. JCAD replenishment by adenovirus reversed the impaired DNA synthesis in JCAD-KO primary hepatocyte in exposure to EGF, which was abrogated by a Yes-associated protein (YAP) inhibitor, verteporfin. Mechanistically, JCAD competed with large tumour suppressor 2 (LATS2) for WWC1 interaction, leading to LATS2 inhibition and thereafter YAP activation, and enhanced expression of cell cycle-associated genes. CONCLUSION JCAD deficiency led to delayed regeneration after PH as a result of blockage in cell cycle progression through the Hippo-YAP signalling pathway. These findings uncovered novel functions of JCAD and suggested a potential strategy for improving graft growth and function post liver transplantation. KEY POINTS JCAD deficiency leads to an impaired liver growth after PH due to cell division blockage. JCAD competes with LATS2 for WWC1 interaction, resulting in LATS2 inhibition, YAP activation and enhanced expression of cell cycle-associated genes. Delineation of JCADHippoYAP signalling pathway would facilitate to improve prognosis of acute liver failure and graft growth in living-donor liver transplantation.
Collapse
Affiliation(s)
- Li Zhang
- Department of Medical Microbiology & ParasitologyMOE/NHC/CAMS Key Laboratory of Medical Molecular VirologySchool of Basic Medical SciencesFudan University Shanghai Medical CollegeShanghaiChina
| | - Yong‐Yu Yang
- Department of Medical Microbiology & ParasitologyMOE/NHC/CAMS Key Laboratory of Medical Molecular VirologySchool of Basic Medical SciencesFudan University Shanghai Medical CollegeShanghaiChina
| | - Li Xie
- Department of Medical Microbiology & ParasitologyMOE/NHC/CAMS Key Laboratory of Medical Molecular VirologySchool of Basic Medical SciencesFudan University Shanghai Medical CollegeShanghaiChina
| | - Yuan Zhou
- Department of Medical Microbiology & ParasitologyMOE/NHC/CAMS Key Laboratory of Medical Molecular VirologySchool of Basic Medical SciencesFudan University Shanghai Medical CollegeShanghaiChina
| | - Zhenxing Zhong
- Institute of PediatricsChildren's Hospital of Fudan UniversityShanghai Key Laboratory of Medical EpigeneticsInternational Co‐Laboratory of Medical Epigenetics and MetabolismInstitutes of Biomedical SciencesFudan University Shanghai Medical CollegeShanghaiChina
| | - Jia Ding
- Jing'an Central District HospitalShanghaiChina
| | - Zhong‐Hua Wang
- Department of Medical Microbiology & ParasitologyMOE/NHC/CAMS Key Laboratory of Medical Molecular VirologySchool of Basic Medical SciencesFudan University Shanghai Medical CollegeShanghaiChina
| | - Yu‐Li Wang
- Department of Medical Microbiology & ParasitologyMOE/NHC/CAMS Key Laboratory of Medical Molecular VirologySchool of Basic Medical SciencesFudan University Shanghai Medical CollegeShanghaiChina
| | - Xiu‐Ping Liu
- Department of Pathology and Laboratory MedicineSchool of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Fa‐Xing Yu
- Institute of PediatricsChildren's Hospital of Fudan UniversityShanghai Key Laboratory of Medical EpigeneticsInternational Co‐Laboratory of Medical Epigenetics and MetabolismInstitutes of Biomedical SciencesFudan University Shanghai Medical CollegeShanghaiChina
| | - Jian Wu
- Department of Medical Microbiology & ParasitologyMOE/NHC/CAMS Key Laboratory of Medical Molecular VirologySchool of Basic Medical SciencesFudan University Shanghai Medical CollegeShanghaiChina
- Department of Gastroenterology & HepatologyZhongshan Hospital of Fudan UniversityShanghaiChina
- Shanghai Institute of Liver DiseasesFudan University Shanghai Medical CollegeShanghaiChina
| |
Collapse
|
28
|
Sun Y, Sha M, Qin Y, Xiao J, Li W, Li S, Chen S. Bisphenol A induces placental ferroptosis and fetal growth restriction via the YAP/TAZ-ferritinophagy axis. Free Radic Biol Med 2024; 213:524-540. [PMID: 38326183 DOI: 10.1016/j.freeradbiomed.2024.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Exposure to bisphenol A (BPA) during gestation leads to fetal growth restriction (FGR), whereby the underlying mechanisms remain unknown. Here, we found that FGR patients showed higher levels of BPA in the urine, serum, and placenta; meanwhile, trophoblast ferroptosis was observed in FGR placentas, as indicated by accumulated intracellular iron, impaired antioxidant molecules, and increased lipid peroxidation products. To investigate the role of ferroptosis in placental and fetal growth, BPA stimulation was performed both in vivo and in vitro. BPA exposure during gestation was associated with FGR in mice; also, it induces ferroptosis in mouse placentas and human placental trophoblast. Pretreatment with ferroptosis inhibitor ferritin-1 (Fer-1) alleviated BPA-induced oxidative damage and cell death. Notably, BPA reduced the trophoblastic expression of Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), which regulated tissue growth and organ size. YAP or TAZ siRNA enhanced BPA-induced ferroptosis, suggesting that trophoblast ferroptosis is dependent on YAP/TAZ downregulation after BPA stimulation. Consistently, the protein levels of YAP/TAZ were also reduced in FGR placentas. Further results revealed that silencing YAP/TAZ promoted BPA-induced ferroptosis through autophagy. Pretreatment with autophagy inhibitor chloroquine (CQ) attenuated BPA-induced trophoblast ferroptosis. Ferritinophagy, an autophagic degradation of ferritin (FTH1), was observed in FGR placentas. Similarly, BPA reduced the protein level of FTH1 in placental trophoblast. Pretreatment with iron chelator desferrioxamine (DFO) and NCOA4 (an autophagy cargo receptor) siRNA weakened the ferroptosis of trophoblast after exposure to BPA, indicating that autophagy mediates ferroptosis in BPA-stimulated trophoblast by degrading ferritin. In summary, ferroptosis was featured in BPA-associated FGR and trophoblast injury; the regulation of ferroptosis involved the YAP/TAZ-autophagy-ferritin axis.
Collapse
Affiliation(s)
- Yanan Sun
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Menghan Sha
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yu Qin
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Juan Xiao
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Wei Li
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Shufang Li
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Suhua Chen
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
29
|
Sun Y, Sha M, Qin Y, Xiao J, Li W, Li S, Chen S. Bisphenol A induces placental ferroptosis and fetal growth restriction via the YAP/TAZ-ferritinophagy axis. Free Radic Biol Med 2024; 211:127-144. [PMID: 38103660 DOI: 10.1016/j.freeradbiomed.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/15/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Exposure to bisphenol A (BPA) during gestation leads to fetal growth restriction (FGR), whereby the underlying mechanisms remain unknown. Here, we found that FGR patients showed higher levels of BPA in the urine, serum, and placenta; meanwhile, trophoblast ferroptosis was observed in FGR placentas, as indicated by accumulated intracellular iron, impaired antioxidant molecules, and increased lipid peroxidation products. To investigate the role of ferroptosis in placental and fetal growth, BPA stimulation was performed both in vivo and in vitro. BPA exposure during gestation was associated with FGR in mice; also, it induces ferroptosis in mouse placentas and human placental trophoblast. Pretreatment with ferroptosis inhibitor ferritin-1 (Fer-1) alleviated BPA-induced oxidative damage and cell death. Notably, BPA reduced the trophoblastic expression of Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), which regulated tissue growth and organ size. YAP or TAZ siRNA enhanced BPA-induced ferroptosis, suggesting that trophoblast ferroptosis is dependent on YAP/TAZ downregulation after BPA stimulation. Consistently, the protein levels of YAP/TAZ were also reduced in FGR placentas. Further results revealed that silencing YAP/TAZ promoted BPA-induced ferroptosis through autophagy. Pretreatment with autophagy inhibitor chloroquine (CQ) attenuated BPA-induced trophoblast ferroptosis. Ferritinophagy, an autophagic degradation of ferritin (FTH1), was observed in FGR placentas. Similarly, BPA reduced the protein level of FTH1 in placental trophoblast. Pretreatment with iron chelator desferrioxamine (DFO) and NCOA4 (an autophagy cargo receptor) siRNA weakened the ferroptosis of trophoblast after exposure to BPA, indicating that autophagy mediates ferroptosis in BPA-stimulated trophoblast by degrading ferritin. In summary, ferroptosis was featured in BPA-associated FGR and trophoblast injury; the regulation of ferroptosis involved the YAP/TAZ-autophagy-ferritin axis.
Collapse
Affiliation(s)
- Yanan Sun
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Menghan Sha
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yu Qin
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Juan Xiao
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Wei Li
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Shufang Li
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Suhua Chen
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
30
|
Cao Y, Li J, Zhang G, Fang H, Du Y, Liang Y. KLF15 transcriptionally activates LINC00689 to inhibit colorectal cancer development. Commun Biol 2024; 7:130. [PMID: 38273088 PMCID: PMC10810960 DOI: 10.1038/s42003-023-05757-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024] Open
Abstract
Colorectal cancer is a grievous health concern, we have proved long non-coding RNA LINC00689 is considered as a potential diagnosis biomarker for colorectal cancer, and it is necessary to further investigate its upstream and downstream mechanisms. Here, we show that KLF15, a transcription factor, exhibits the reduced expression in colorectal cancer. KLF15 suppresses the proliferative and metastatic capacities of colorectal cancer cells both in vitro and in vivo by transcriptionally activating LINC00689. Subsequently, LINC00689 recruits PTBP1 protein to enhance the stability of LATS2 mRNA in the cytoplasm. This stabilization causes the suppression of the YAP1/β-catenin pathway and its target downstream genes. Our findings highlight a regulatory network involving KLF15, LINC00689, PTBP1, LATS2, and the YAP1/β-catenin pathway in colorectal cancer, shedding light on potential therapeutic targets for colorectal cancer therapy.
Collapse
Affiliation(s)
- Yan Cao
- Department of Nuclear Medicine, Xiangya Third Hospital, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Jian Li
- Department of Nuclear Medicine, Xiangya Third Hospital, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Gang Zhang
- Department 2 of Gastrointestinal Surgery, Haikou Hospital Affiliated to Xiangya Medical College of Central South University, Haikou People's Hospital, Haikou, 570208, Hainan Province, PR China
| | - Hao Fang
- Department of Nuclear Medicine, Xiangya Third Hospital, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Yongliang Du
- Department of Nuclear Medicine, Xiangya Third Hospital, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Yan Liang
- Department of Nuclear Medicine, Xiangya Third Hospital, Central South University, Changsha, 410013, Hunan Province, PR China.
| |
Collapse
|
31
|
Kim CL, Lim SB, Choi SH, Kim DH, Sim YE, Jo EH, Kim K, Lee K, Park HS, Lim SB, Kang LJ, Jeong HS, Lee Y, Hansen CG, Mo JS. The LKB1-TSSK1B axis controls YAP phosphorylation to regulate the Hippo-YAP pathway. Cell Death Dis 2024; 15:76. [PMID: 38245531 PMCID: PMC10799855 DOI: 10.1038/s41419-024-06465-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/22/2024]
Abstract
The Hippo pathway's main effector, Yes-associated protein (YAP), plays a crucial role in tumorigenesis as a transcriptional coactivator. YAP's phosphorylation by core upstream components of the Hippo pathway, such as mammalian Ste20 kinase 1/2 (MST1/2), mitogen-activated protein kinase kinase kinase kinases (MAP4Ks), and their substrate, large tumor suppressor 1/2 (LATS1/2), influences YAP's subcellular localization, stability, and transcriptional activity. However, recent research suggests the existence of alternative pathways that phosphorylate YAP, independent of these core upstream Hippo pathway components, raising questions about additional means to inactivate YAP. In this study, we present evidence demonstrating that TSSK1B, a calcium/calmodulin-dependent protein kinase (CAMK) superfamily member, is a negative regulator of YAP, suppressing cellular proliferation and oncogenic transformation. Mechanistically, TSSK1B inhibits YAP through two distinct pathways. Firstly, the LKB1-TSSK1B axis directly phosphorylates YAP at Ser94, inhibiting the YAP-TEAD complex's formation and suppressing its target genes' expression. Secondly, the TSSK1B-LATS1/2 axis inhibits YAP via phosphorylation at Ser127. Our findings reveal the involvement of TSSK1B-mediated molecular mechanisms in the Hippo-YAP pathway, emphasizing the importance of multilevel regulation in critical cellular decision-making processes.
Collapse
Affiliation(s)
- Cho-Long Kim
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Su-Bin Lim
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Sue-Hee Choi
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Dong Hyun Kim
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Ye Eun Sim
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Eun-Hye Jo
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, South Korea
| | - Keeeun Kim
- Institute of Medical Science, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Keesook Lee
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, South Korea
| | - Hee-Sae Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, South Korea
| | - Su Bin Lim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Li-Jung Kang
- Three-Dimensional Immune System Imaging Core Facility, Ajou University, Suwon, 16499, South Korea
| | - Han-Sol Jeong
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan, 50612, South Korea
| | - Youngsoo Lee
- Institute of Medical Science, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Carsten G Hansen
- The University of Edinburgh, Institute for Regeneration and Repair, Centre for Inflammation Research, Edinburgh BioQuarter, Edinburgh, UK
| | - Jung-Soon Mo
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon, 16499, South Korea.
- Institute of Medical Science, Ajou University School of Medicine, Suwon, 16499, South Korea.
| |
Collapse
|
32
|
Norrsell R, Bauden M, Andersson R, Ansari D. L-type Amino Acid Transporter 1 as a Therapeutic Target in Pancreatic Cancer. Cancer Control 2024; 31:10732748241251583. [PMID: 38683590 PMCID: PMC11060026 DOI: 10.1177/10732748241251583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/22/2024] [Accepted: 04/12/2024] [Indexed: 05/01/2024] Open
Abstract
Metabolic rewiring is a key feature of cancer cells to support the demands of growth and proliferation. The metabolism of amino acids is altered in many cancers, including pancreatic cancer. The cellular uptake of amino acids is regulated by amino acid transporters, such as L-type amino acid transporter 1 (LAT1). Accumulating evidence suggests that LAT1 is overexpressed in pancreatic cancer and confers a poor prognosis. Here we discuss the prospects of utilizing LAT1 as a novel target for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Ragnar Norrsell
- Department of Surgery, Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Monika Bauden
- Department of Surgery, Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Roland Andersson
- Department of Surgery, Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Daniel Ansari
- Department of Surgery, Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
33
|
Deng H, Jia Q, Ming X, Sun Y, Lu Y, Liu L, Zhou J. Hippo pathway in intestinal diseases: focusing on ferroptosis. Front Cell Dev Biol 2023; 11:1291686. [PMID: 38130953 PMCID: PMC10734691 DOI: 10.3389/fcell.2023.1291686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The incidence of intestinal diseases, such as inflammatory bowel disease, gastric cancer, and colorectal cancer, has steadily increased over the past decades. The Hippo pathway is involved in cell proliferation, tissue and organ damage, energy metabolism, tumor formation, and other physiologic processes. Ferroptosis is a form of programmed cell death characterized by the accumulation of iron and lipid peroxides. The Hippo pathway and ferroptosis are associated with various intestinal diseases; however, the crosstalk between them is unclear. This review elaborates on the current research on the Hippo pathway and ferroptosis in the context of intestinal diseases. We summarized the connection between the Hippo pathway and ferroptosis to elucidate the underlying mechanism by which these pathways influence intestinal diseases. We speculate that a mutual regulatory mechanism exists between the Hippo pathway and ferroptosis and these two pathways interact in several ways to regulate intestinal diseases.
Collapse
Affiliation(s)
- Hongwei Deng
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
| | - Qiuting Jia
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
| | - Xin Ming
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yuxin Sun
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
- School of Basic Medicine, Southwest Medical University, Luzhou, China
| | - Yuxuan Lu
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
| | - Li Liu
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Jun Zhou
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
34
|
Kobayashi S, Cox AG, Harvey KF, Hogan BM. Vasculature is getting Hip(po): Hippo signaling in vascular development and disease. Dev Cell 2023; 58:2627-2640. [PMID: 38052179 DOI: 10.1016/j.devcel.2023.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/29/2023] [Accepted: 11/01/2023] [Indexed: 12/07/2023]
Abstract
The Hippo signaling pathway regulates developmental organ growth, regeneration, and cell fate decisions. Although the role of the Hippo pathway, and its transcriptional effectors YAP and TAZ, has been well documented in many cell types and species, only recently have the roles for this pathway come to light in vascular development and disease. Experiments in mice, zebrafish, and in vitro have uncovered roles for the Hippo pathway, YAP, and TAZ in vasculogenesis, angiogenesis, and lymphangiogenesis. In addition, the Hippo pathway has been implicated in vascular cancers and cardiovascular diseases, thus identifying it as a potential therapeutic target for the treatment of these conditions. However, despite recent advances, Hippo's role in the vasculature is still underappreciated compared with its role in epithelial tissues. In this review, we appraise our current understanding of the Hippo pathway in blood and lymphatic vessel development and highlight the current knowledge gaps and opportunities for further research.
Collapse
Affiliation(s)
- Sakurako Kobayashi
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Andrew G Cox
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kieran F Harvey
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Benjamin M Hogan
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
35
|
Nutsch K, Song L, Chen E, Hull M, Chatterjee AK, Chen JJ, Bollong MJ. A covalent inhibitor of the YAP-TEAD transcriptional complex identified by high-throughput screening. RSC Chem Biol 2023; 4:894-905. [PMID: 37920398 PMCID: PMC10619132 DOI: 10.1039/d3cb00044c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/19/2023] [Indexed: 11/04/2023] Open
Abstract
Yes-associated protein (YAP), the master transcriptional effector downstream of the Hippo pathway, regulates essential cell growth and regenerative processes in animals. However, the activation of YAP observed in cancers drives cellular proliferation, metastasis, chemoresistance, and immune suppression, making it of key interest in developing precision therapeutics for oncology. As such, pharmacological inhibition of YAP by targeting its essential co-regulators, TEA domain transcription factors (TEADs) would likely promote tumor clearance in sensitive tumor types. From a fluorescence polarization-based high throughput screen of over 800 000 diverse small molecules, here we report the identification of a pyrazolopyrimidine-based scaffold that inhibits association of YAP and TEADs. Medicinal chemistry-based optimization identified mCMY020, a potent, covalent inhibitor of TEAD transcriptional activity that occupies a conserved, central palmitoylation site on TEADs.
Collapse
Affiliation(s)
- Kayla Nutsch
- Department of Chemistry, The Scripps Research Institute La Jolla CA 92037 USA
| | - Lirui Song
- Calibr, A Division of Scripps Research La Jolla CA 92037 USA
| | - Emily Chen
- Calibr, A Division of Scripps Research La Jolla CA 92037 USA
| | - Mitchell Hull
- Calibr, A Division of Scripps Research La Jolla CA 92037 USA
| | | | | | - Michael J Bollong
- Department of Chemistry, The Scripps Research Institute La Jolla CA 92037 USA
| |
Collapse
|
36
|
Kahlhofer J, Teis D. The human LAT1-4F2hc (SLC7A5-SLC3A2) transporter complex: Physiological and pathophysiological implications. Basic Clin Pharmacol Toxicol 2023; 133:459-472. [PMID: 36460306 PMCID: PMC11497297 DOI: 10.1111/bcpt.13821] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022]
Abstract
LAT1 and 4F2hc form a heterodimeric membrane protein complex, which functions as one of the best characterized amino acid transporters. Since LAT1-4F2hc is required for the efficient uptake of essential amino acids and hormones, it promotes cellular growth, in part, by stimulating mTORC1 (mechanistic target of rapamycin complex 1) signalling and by repressing the integrated stress response (ISR). Gain or loss of LAT1-4F2hc function is associated with cancer, diabetes, and immunological and neurological diseases. Hence, LAT1-4F2hc represents an attractive drug target for disease treatment. Specific targeting of LAT1-4F2hc will be facilitated by the increasingly detailed understanding of its molecular architecture, which provides important concepts for its function and regulation. Here, we summarize (i) structural insights that help to explain how LAT1 and 4F2hc assemble to transport amino acids across membranes, (ii) the role of LAT1-4F2hc in key metabolic signalling pathways, and (iii) how derailing these processes could contribute to diseases.
Collapse
Affiliation(s)
- Jennifer Kahlhofer
- Institute for Cell Biology, BiocenterMedical University InnsbruckInnsbruckAustria
| | - David Teis
- Institute for Cell Biology, BiocenterMedical University InnsbruckInnsbruckAustria
| |
Collapse
|
37
|
Foltman M, Sanchez-Diaz A. TOR Complex 1: Orchestrating Nutrient Signaling and Cell Cycle Progression. Int J Mol Sci 2023; 24:15745. [PMID: 37958727 PMCID: PMC10647266 DOI: 10.3390/ijms242115745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
The highly conserved TOR signaling pathway is crucial for coordinating cellular growth with the cell cycle machinery in eukaryotes. One of the two TOR complexes in budding yeast, TORC1, integrates environmental cues and promotes cell growth. While cells grow, they need to copy their chromosomes, segregate them in mitosis, divide all their components during cytokinesis, and finally physically separate mother and daughter cells to start a new cell cycle apart from each other. To maintain cell size homeostasis and chromosome stability, it is crucial that mechanisms that control growth are connected and coordinated with the cell cycle. Successive periods of high and low TORC1 activity would participate in the adequate cell cycle progression. Here, we review the known molecular mechanisms through which TORC1 regulates the cell cycle in the budding yeast Saccharomyces cerevisiae that have been extensively used as a model organism to understand the role of its mammalian ortholog, mTORC1.
Collapse
Affiliation(s)
- Magdalena Foltman
- Mechanisms and Regulation of Cell Division Research Unit, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, 39011 Santander, Spain
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, 39011 Santander, Spain
| | - Alberto Sanchez-Diaz
- Mechanisms and Regulation of Cell Division Research Unit, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, 39011 Santander, Spain
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, 39011 Santander, Spain
| |
Collapse
|
38
|
Wang L, Liu T, Zheng Y, Zhou J, Hua H, Kong L, Huang W, Peng X, Wen T. P4HA2-induced prolyl hydroxylation of YAP1 restricts vascular smooth muscle cell proliferation and neointima formation. Life Sci 2023; 330:122002. [PMID: 37549826 DOI: 10.1016/j.lfs.2023.122002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
Vascular smooth muscle cell (VSMC) proliferation and neointima formation play significant roles in atherosclerosis development and restenosis following percutaneous coronary intervention. Our team previously discovered that TEA domain transcription factor 1 (TEAD1) promotes vascular smooth muscle differentiation, which is necessary for vascular development. Conversely, aberrant YAP1 activation upregulates the platelet-derived growth factor receptor beta to encourage VSMC proliferation and neointima formation. In this study, we aimed to investigate the molecular mechanisms of YAP1/TEAD signaling during neointima formation. Our research focused on the prolyl 4-hydroxylase alpha 2 (P4HA2) and its downstream target, Yes-associated protein 1 (YAP1), in regulating VSMC differentiation and neointima formation. Our results indicated that P4HA2 reduction leads to VSMC dedifferentiation and promotes neointima formation after injury. Furthermore, we found that P4HA2-induced prolyl hydroxylation of YAP1 restricts its transcriptional activity, which is essential to maintaining VSMC differentiation. These findings suggest that targeting P4HA2-mediated prolyl hydroxylation of YAP1 may be a promising therapeutic approach to prevent injury-induced neointima formation in cardiovascular disease.
Collapse
Affiliation(s)
- Liang Wang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Hypertension Research Institute of Jiangxi Province, Nanchang, Jiangxi, 330006, China
| | - Ting Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yaofu Zheng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Hypertension Research Institute of Jiangxi Province, Nanchang, Jiangxi, 330006, China
| | - Jiamin Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Hypertension Research Institute of Jiangxi Province, Nanchang, Jiangxi, 330006, China
| | - Hexiang Hua
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Hypertension Research Institute of Jiangxi Province, Nanchang, Jiangxi, 330006, China
| | - Liming Kong
- Department of Outpatient clinic, The First Affiliated Hospital of Nanchang, University, Nanchang, Jiangxi 330006, China
| | - Weilin Huang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Hypertension Research Institute of Jiangxi Province, Nanchang, Jiangxi, 330006, China
| | - Xiaoping Peng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Hypertension Research Institute of Jiangxi Province, Nanchang, Jiangxi, 330006, China
| | - Tong Wen
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Hypertension Research Institute of Jiangxi Province, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
39
|
Lv L, Zhou X. Targeting Hippo signaling in cancer: novel perspectives and therapeutic potential. MedComm (Beijing) 2023; 4:e375. [PMID: 37799806 PMCID: PMC10547939 DOI: 10.1002/mco2.375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 10/07/2023] Open
Abstract
As highly conserved among diverse species, Hippo signaling pathway regulates various biological processes, including development, cell proliferation, stem cell function, tissue regeneration, homeostasis, and organ size. Studies in the last two decades have provided a good framework for how these fundamental functions of Hippo signaling are tightly regulated by a network with numerous intracellular and extracellular factors. The Hippo signaling pathway, when dysregulated, may lead to a wide variety of diseases, especially cancer. There is growing evidence demonstrating that dysregulated Hippo signaling is closely associated with tumorigenesis, cancer cell invasion, and migration, as well as drug resistance. Therefore, the Hippo pathway is considered an appealing therapeutic target for the treatment of cancer. Promising novel agents targeting the Hippo signaling pathway for cancers have recently emerged. These novel agents have shown antitumor activity in multiple cancer models and demonstrated therapeutic potential for cancer treatment. However, the detailed molecular basis of the Hippo signaling-driven tumor biology remains undefined. Our review summarizes current advances in understanding the mechanisms by which Hippo signaling drives tumorigenesis and confers drug resistance. We also propose strategies for future preclinical and clinical development to target this pathway.
Collapse
Affiliation(s)
- Liemei Lv
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongChina
| | - Xiangxiang Zhou
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongChina
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Branch of National Clinical Research Center for Hematologic DiseasesJinanShandongChina
- National Clinical Research Center for Hematologic Diseasesthe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
40
|
Salem O, Jia S, Qian BZ, Hansen CG. AR activates YAP/TAZ differentially in prostate cancer. Life Sci Alliance 2023; 6:e202201620. [PMID: 37385752 PMCID: PMC10310930 DOI: 10.26508/lsa.202201620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
The Hippo signalling pathway is a master regulator of cell growth, proliferation, and cancer. The transcriptional coregulators of the Hippo pathway, YAP and TAZ, are central in various cancers. However, how YAP and TAZ get activated in most types of cancers is not well understood. Here, we show that androgens activate YAP/TAZ via the androgen receptor (AR) in prostate cancer (PCa), and that this activation is differential. AR regulates YAP translation while inducing transcription of the TAZ encoding gene, WWTR1 Furthermore, we show that AR-mediated YAP/TAZ activation is regulated by the RhoA GTPases transcriptional mediator, serum response factor (SRF). Importantly, in prostate cancer patients, SRF expression positively correlates with TAZ and the YAP/TAZ target genes CYR61 and CTGF We demonstrate that YAP/TAZ are not essential for sustaining AR activity, however, targeting YAP/TAZ or SRF sensitize PCa cells to AR inhibition in anchorage-independent growth conditions. Our findings dissect the cellular roles of YAP, TAZ, and SRF in prostate cancer cells. Our data emphasize the interplay between these transcriptional regulators and their roles in prostate tumorigenesis and highlight how these insights might be exploited therapeutically.
Collapse
Affiliation(s)
- Omar Salem
- The University of Edinburgh, Centre for Inflammation Research, Edinburgh BioQuarter, Edinburgh, UK
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Siyang Jia
- The University of Edinburgh, Centre for Inflammation Research, Edinburgh BioQuarter, Edinburgh, UK
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Bin-Zhi Qian
- Medical Research Council Centre for Reproductive Health, College of Medicine and Veterinary Medicine, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Carsten Gram Hansen
- The University of Edinburgh, Centre for Inflammation Research, Edinburgh BioQuarter, Edinburgh, UK
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| |
Collapse
|
41
|
Honda D, Okumura M, Chihara T. Crosstalk between the mTOR and Hippo pathways. Dev Growth Differ 2023; 65:337-347. [PMID: 37209252 DOI: 10.1111/dgd.12867] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/27/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023]
Abstract
Cell behavior changes in response to multiple stimuli, such as growth factors, nutrients, and cell density. The mechanistic target of the rapamycin (mTOR) pathway is activated by growth factors and nutrient stimuli to regulate cell growth and autophagy, whereas the Hippo pathway has negative effects on cell proliferation and tissue growth in response to cell density, DNA damage, and hormonal signals. These two signaling pathways must be precisely regulated and integrated for proper cell behavior. This integrative mechanism is not completely understood; nevertheless, recent studies have suggested that components of the mTOR and Hippo pathways interact with each other. Herein, as per contemporary knowledge, we review the molecular mechanisms of the interaction between the mTOR and Hippo pathways in mammals and Drosophila. Moreover, we discuss the advantage of this interaction in terms of tissue growth and nutrient consumption.
Collapse
Affiliation(s)
- Daichi Honda
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Misako Okumura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Takahiro Chihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
42
|
Foltman M, Mendez I, Bech-Serra JJ, de la Torre C, Brace JL, Weiss EL, Lucas M, Queralt E, Sanchez-Diaz A. TOR complex 1 negatively regulates NDR kinase Cbk1 to control cell separation in budding yeast. PLoS Biol 2023; 21:e3002263. [PMID: 37647291 PMCID: PMC10468069 DOI: 10.1371/journal.pbio.3002263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/19/2023] [Indexed: 09/01/2023] Open
Abstract
The target of rapamycin (TOR) signalling pathway plays a key role in the coordination between cellular growth and the cell cycle machinery in eukaryotes. The underlying molecular mechanisms by which TOR might regulate events after anaphase remain unknown. We show for the first time that one of the 2 TOR complexes in budding yeast, TORC1, blocks the separation of cells following cytokinesis by phosphorylation of a member of the NDR (nuclear Dbf2-related) protein-kinase family, the protein Cbk1. We observe that TORC1 alters the phosphorylation pattern of Cbk1 and we identify a residue within Cbk1 activation loop, T574, for which a phosphomimetic substitution makes Cbk1 catalytically inactive and, indeed, reproduces TORC1 control over cell separation. In addition, we identify the exocyst component Sec3 as a key substrate of Cbk1, since Sec3 activates the SNARE complex to promote membrane fusion. TORC1 activity ultimately compromises the interaction between Sec3 and a t-SNARE component. Our data indicate that TORC1 negatively regulates cell separation in budding yeast by participating in Cbk1 phosphorylation, which in turn controls the fusion of secretory vesicles transporting hydrolase at the site of division.
Collapse
Affiliation(s)
- Magdalena Foltman
- Mechanisms and Regulation of Cell Division Research Unit, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Iván Mendez
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
- Structural Biology of Macromolecular Complexes Research Unit, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
| | - Joan J. Bech-Serra
- Josep Carreras Leukaemia Research Institute, IJC Building, Campus ICO-Germans Trias i Pujol, Barcelona, Spain
| | - Carolina de la Torre
- Josep Carreras Leukaemia Research Institute, IJC Building, Campus ICO-Germans Trias i Pujol, Barcelona, Spain
| | - Jennifer L. Brace
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois, United States of America
| | - Eric L. Weiss
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois, United States of America
| | - María Lucas
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
- Structural Biology of Macromolecular Complexes Research Unit, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
| | - Ethel Queralt
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
| | - Alberto Sanchez-Diaz
- Mechanisms and Regulation of Cell Division Research Unit, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| |
Collapse
|
43
|
Hu Q, Li Y, Li D, Yuan Y, Wang K, Yao L, Cheng Z, Han T. Amino acid metabolism regulated by lncRNAs: the propellant behind cancer metabolic reprogramming. Cell Commun Signal 2023; 21:87. [PMID: 37127605 PMCID: PMC10152737 DOI: 10.1186/s12964-023-01116-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/25/2023] [Indexed: 05/03/2023] Open
Abstract
Metabolic reprogramming is one of the main characteristics of cancer cells and plays pivotal role in the proliferation and survival of cancer cells. Amino acid is one of the key nutrients for cancer cells and many studies have focused on the regulation of amino acid metabolism, including the genetic alteration, epigenetic modification, transcription, translation and post-translational modification of key enzymes in amino acid metabolism. Long non-coding RNAs (lncRNAs) are composed of a heterogeneous group of RNAs with transcripts of more than 200 nucleotides in length. LncRNAs can bind to biological molecules such as DNA, RNA and protein, regulating the transcription, translation and post-translational modification of target genes. Now, the functions of lncRNAs in cancer metabolism have aroused great research interest and significant progress has been made. This review focuses on how lncRNAs participate in the reprogramming of amino acid metabolism in cancer cells, especially glutamine, serine, arginine, aspartate, cysteine metabolism. This will help us to better understand the regulatory mechanism of cancer metabolic reprogramming and provide new ideas for the development of anti-cancer drugs. Video Abstract.
Collapse
Affiliation(s)
- Qifan Hu
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang City, 330006, Jiangxi, China
- Jiangxi Clinical Research Center for Respiratory Diseases, Nanchang City, 330006, Jiangxi, China
- China-Japan Friendship Jiangxi Hospital, National Regional Center for Respiratory Medicine, Nanchang City, 330200, Jiangxi, China
- School of Basic Medical Sciences, Nanchang University, Nanchang City, 330031, Jiangxi, China
| | - Yutong Li
- Nanchang Vocational University, Nanchang City, 330500, Jiangxi, China
| | - Dan Li
- Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang City, 330006, Jiangxi, China
| | - Yi Yuan
- School of Huankui Academy, Nanchang University, Nanchang City, 330031, Jiangxi, China
| | - Keru Wang
- School of Huankui Academy, Nanchang University, Nanchang City, 330031, Jiangxi, China
| | - Lu Yao
- School of Huankui Academy, Nanchang University, Nanchang City, 330031, Jiangxi, China
| | - Zhujun Cheng
- Department of Burn, The First Affiliated Hospital of Nanchang University, Nanchang City, 330006, Jiangxi, China.
| | - Tianyu Han
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang City, 330006, Jiangxi, China.
- Jiangxi Clinical Research Center for Respiratory Diseases, Nanchang City, 330006, Jiangxi, China.
- China-Japan Friendship Jiangxi Hospital, National Regional Center for Respiratory Medicine, Nanchang City, 330200, Jiangxi, China.
| |
Collapse
|
44
|
Xing N, Du Q, Guo S, Xiang G, Zhang Y, Meng X, Xiang L, Wang S. Ferroptosis in lung cancer: a novel pathway regulating cell death and a promising target for drug therapy. Cell Death Discov 2023; 9:110. [PMID: 37005430 PMCID: PMC10067943 DOI: 10.1038/s41420-023-01407-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/04/2023] Open
Abstract
Lung cancer is a common malignant tumor that occurs in the human body and poses a serious threat to human health and quality of life. The existing treatment methods mainly include surgical treatment, chemotherapy, and radiotherapy. However, due to the strong metastatic characteristics of lung cancer and the emergence of related drug resistance and radiation resistance, the overall survival rate of lung cancer patients is not ideal. There is an urgent need to develop new treatment strategies or new effective drugs to treat lung cancer. Ferroptosis, a novel type of programmed cell death, is different from the traditional cell death pathways such as apoptosis, necrosis, pyroptosis and so on. It is caused by the increase of iron-dependent reactive oxygen species due to intracellular iron overload, which leads to the accumulation of lipid peroxides, thus inducing cell membrane oxidative damage, affecting the normal life process of cells, and finally promoting the process of ferroptosis. The regulation of ferroptosis is closely related to the normal physiological process of cells, and it involves iron metabolism, lipid metabolism, and the balance between oxygen-free radical reaction and lipid peroxidation. A large number of studies have confirmed that ferroptosis is a result of the combined action of the cellular oxidation/antioxidant system and cell membrane damage/repair, which has great potential application in tumor therapy. Therefore, this review aims to explore potential therapeutic targets for ferroptosis in lung cancer by clarifying the regulatory pathway of ferroptosis. Based on the study of ferroptosis, the regulation mechanism of ferroptosis in lung cancer was understood and the existing chemical drugs and natural compounds targeting ferroptosis in lung cancer were summarized, with the aim of providing new ideas for the treatment of lung cancer. In addition, it also provides the basis for the discovery and clinical application of chemical drugs and natural compounds targeting ferroptosis to effectively treat lung cancer.
Collapse
Affiliation(s)
- Nan Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qinyun Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Sa Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Gelin Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Li Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- State Key Laboratory of Southwestern Chinese Medicine Resources, Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, China.
| |
Collapse
|
45
|
Liao X, Li X, Liu R. Extracellular-matrix mechanics regulate cellular metabolism: A ninja warrior behind mechano-chemo signaling crosstalk. Rev Endocr Metab Disord 2023; 24:207-220. [PMID: 36385696 DOI: 10.1007/s11154-022-09768-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/18/2022]
Abstract
Mechanical forces are the indispensable constituent of environmental cues, such as gravity, barometric pressure, vibration, and contact with bodies, which are involved in pattern and organogenesis, providing mechanical input to tissues and determining the ultimate fate of cells. Extracellular matrix (ECM) stiffness, the slow elastic force, carries the external physical force load onto the cell or outputs the internal force exerted by the cell and its neighbors into the environment. Accumulating evidence illustrates the pivotal role of ECM stiffness in the regulation of organogenesis, maintenance of tissue homeostasis, and the development of multiple diseases, which is largely fulfilled through its systematical impact on cellular metabolism. This review summarizes the establishment and regulation of ECM stiffness, the mechanisms underlying how ECM stiffness is sensed by cells and signals to modulate diverse cell metabolic pathways, and the physiological and pathological significance of the ECM stiffness-cell metabolism axis.
Collapse
Affiliation(s)
- Xiaoyu Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, 14, Section 3, Renminnan Road, Chengdu, 610041, Sichuan, China
| | - Xin Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, 14, Section 3, Renminnan Road, Chengdu, 610041, Sichuan, China
| | - Rui Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, 14, Section 3, Renminnan Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
46
|
Zhu N, Yang R, Wang X, Yuan L, Li X, Wei F, Zhang L. The Hippo signaling pathway: from multiple signals to the hallmarks of cancers. Acta Biochim Biophys Sin (Shanghai) 2023. [PMID: 36942989 DOI: 10.3724/abbs.2023035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Evolutionarily conserved, the Hippo signaling pathway is critical in regulating organ size and tissue homeostasis. The activity of this pathway is tightly regulated under normal circumstances, since its physical function is precisely maintained to control the rate of cell proliferation. Failure of maintenance leads to a variety of tumors. Our understanding of the mechanism of Hippo dysregulation and tumorigenesis is becoming increasingly precise, relying on the emergence of upstream inhibitor or activator and the connection linking Hippo target genes, mutations, and related signaling pathways with phenotypes. In this review, we summarize recent reports on the signaling network of the Hippo pathway in tumorigenesis and progression by exploring its critical mechanisms in cancer biology and potential targeting in cancer therapy.
Collapse
Affiliation(s)
- Ning Zhu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruizeng Yang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaodong Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Liang Yuan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiaoyu Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Fang Wei
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
47
|
Barker BE, Hanlon MM, Marzaioli V, Smith CM, Cunningham CC, Fletcher JM, Veale DJ, Fearon U, Canavan M. The mammalian target of rapamycin contributes to synovial fibroblast pathogenicity in rheumatoid arthritis. Front Med (Lausanne) 2023; 10:1029021. [PMID: 36817783 PMCID: PMC9936094 DOI: 10.3389/fmed.2023.1029021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
Objectives The mammalian target of Rapamycin (mTOR) is a metabolic master regulator of both innate and adaptive immunity; however, its exact role in stromal cell biology is unknown. In this study we explored the role of the mTOR pathway on Rheumatoid Arthritis synovial fibroblast (RASF) metabolism and activation and determined if crosstalk with the Hippo-YAP pathway mediates their effects. Methods Primary RA synovial fibroblasts (RASF) were cultured with TNFα alone or in combination with the mTOR inhibitor Rapamycin or YAP inhibitor Verteporfin. Chemokine production, matrix metalloproteinase (MMP) production, and adhesion marker expression were quantified by real-time PCR, ELISA, and/or Flow Cytometry. Invasion assays were performed using Transwell invasion chambers, while wound repair assays were used to assess RASF migration. Cellular bioenergetics was assessed using the Seahorse XFe96 Analyzer. Key metabolic genes (GLUT-1, HK2, G6PD) were measured using real-time PCR. Reanalysis of RNA-Seq analysis was performed on RA (n = 151) and healthy control (HC) (n = 28) synovial tissue biopsies to detect differential gene and pathway expression. The expression of YAP was measured by Western Blot. Results Transcriptomic analysis of healthy donor and RA synovial tissue revealed dysregulated expression of several key components of the mTOR pathway in RA. Moreover, the expression of phospho-ribosomal protein S6 (pS6), the major downstream target of mTOR is specifically increased in RA synovial fibroblasts compared to healthy tissue. In the presence of TNFα, RASF display heightened phosphorylation of S6 and are responsive to mTOR inhibition via Rapamycin. Rapamycin effectively alters RASF cellular bioenergetics by inhibiting glycolysis and the expression of rate limiting glycolytic enzymes. Furthermore, we demonstrate a key role for mTOR signaling in uniquely mediating RASF migratory and invasive mechanisms, which are significantly abrogated in the presence of Rapamycin. Finally, we report a significant upregulation in several genes involved in the Hippo-YAP pathway in RA synovial tissue, which are predicted to converge with the mTOR pathway. We demonstrate crosstalk between the mTOR and YAP pathways in mediating RASF invasive mechanism whereby Rapamycin significantly abrogates YAP expression and YAP inhibition significantly inhibits RASF invasiveness. Conclusion mTOR drives pathogenic mechanisms in RASF an effect which is in part mediated via crosstalk with the Hippo-YAP pathway.
Collapse
Affiliation(s)
- Brianne E. Barker
- Molecular Rheumatology, School of Medicine, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland,Translational Immunopathology, School of Biochemistry & Immunology and School of Medicine, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Megan M. Hanlon
- Molecular Rheumatology, School of Medicine, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland,EULAR Centre of Excellence, Centre for Arthritis and Rheumatic Diseases, St. Vincent’s University Hospital, Dublin, Ireland
| | - Viviana Marzaioli
- Molecular Rheumatology, School of Medicine, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland,EULAR Centre of Excellence, Centre for Arthritis and Rheumatic Diseases, St. Vincent’s University Hospital, Dublin, Ireland
| | - Conor M. Smith
- School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Clare C. Cunningham
- Molecular Rheumatology, School of Medicine, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland,EULAR Centre of Excellence, Centre for Arthritis and Rheumatic Diseases, St. Vincent’s University Hospital, Dublin, Ireland
| | - Jean M. Fletcher
- School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland,School of Medicine, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Douglas J. Veale
- EULAR Centre of Excellence, Centre for Arthritis and Rheumatic Diseases, St. Vincent’s University Hospital, Dublin, Ireland
| | - Ursula Fearon
- Molecular Rheumatology, School of Medicine, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland,EULAR Centre of Excellence, Centre for Arthritis and Rheumatic Diseases, St. Vincent’s University Hospital, Dublin, Ireland
| | - Mary Canavan
- Translational Immunopathology, School of Biochemistry & Immunology and School of Medicine, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland,*Correspondence: Mary Canavan,
| |
Collapse
|
48
|
Cunningham R, Jia S, Purohit K, Salem O, Hui NS, Lin Y, Carragher NO, Hansen CG. YAP/TAZ activation predicts clinical outcomes in mesothelioma and is conserved in in vitro model of driver mutations. Clin Transl Med 2023; 13:e1190. [PMID: 36740402 PMCID: PMC9899629 DOI: 10.1002/ctm2.1190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 02/07/2023] Open
Abstract
The Hippo signalling pathway is dysregulated across a wide range of cancer types and, although driver mutations that directly affect the core Hippo components are rare, a handful is found within pleural mesothelioma (PM). PM is a deadly disease of the lining of the lung caused by asbestos exposure. By pooling the largest-scale clinical datasets publicly available, we here interrogate associations between the most prevalent driver mutations within PM and Hippo pathway disruption in patients, while assessing correlations with a variety of clinical markers. This analysis reveals a consistent worse outcome in patients exhibiting transcriptional markers of YAP/TAZ activation, pointing to the potential of leveraging Hippo pathway transcriptional activation status as a metric by which patients may be meaningfully stratified. Preclinical models recapitulating disease are transformative in order to develop new therapeutic strategies. We here establish an isogenic cell-line model of PM, which represents the most frequently mutated genes and which faithfully recapitulates the molecular features of clinical PM. This preclinical model is developed to probe the molecular basis by which the Hippo pathway and key driver mutations affect cancer initiation and progression. Implementing this approach, we reveal the role of NF2 as a mechanosensory component of the Hippo pathway in mesothelial cells. Cellular NF2 loss upon physiological stiffnesses analogous to the tumour niche drive YAP/TAZ-dependent anchorage-independent growth. Consequently, the development and characterisation of this cellular model provide a unique resource to obtain molecular insights into the disease and progress new drug discovery programs together with future stratification of PM patients.
Collapse
Affiliation(s)
- Richard Cunningham
- Centre for Inflammation ResearchInstitute for Regeneration and RepairEdinburgh BioQuarterUniversity of EdinburghEdinburghUK
| | - Siyang Jia
- Centre for Inflammation ResearchInstitute for Regeneration and RepairEdinburgh BioQuarterUniversity of EdinburghEdinburghUK
| | - Krishna Purohit
- Centre for Inflammation ResearchInstitute for Regeneration and RepairEdinburgh BioQuarterUniversity of EdinburghEdinburghUK
| | - Omar Salem
- Centre for Inflammation ResearchInstitute for Regeneration and RepairEdinburgh BioQuarterUniversity of EdinburghEdinburghUK
| | - Ning Sze Hui
- Centre for Inflammation ResearchInstitute for Regeneration and RepairEdinburgh BioQuarterUniversity of EdinburghEdinburghUK
| | - Yue Lin
- Centre for Inflammation ResearchInstitute for Regeneration and RepairEdinburgh BioQuarterUniversity of EdinburghEdinburghUK
| | - Neil O. Carragher
- Cancer Research UK Scotland CentreInstitute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Carsten Gram Hansen
- Centre for Inflammation ResearchInstitute for Regeneration and RepairEdinburgh BioQuarterUniversity of EdinburghEdinburghUK
| |
Collapse
|
49
|
Schoenfeld BJ, Wackerhage H, De Souza E. Inter-set stretch: A potential time-efficient strategy for enhancing skeletal muscle adaptations. Front Sports Act Living 2022; 4:1035190. [PMID: 36457663 PMCID: PMC9706104 DOI: 10.3389/fspor.2022.1035190] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/02/2022] [Indexed: 08/10/2023] Open
Abstract
Time is considered a primary barrier to exercise adherence. Therefore, developing time-efficient resistance training (RT) strategies that optimize muscular adaptations is of primary interest to practitioners. A novel approach to the problem involves combining intensive stretch protocols with RT. Conceivably, integrating stretch into the inter-set period may provide an added stimulus for muscle growth without increasing session duration. Mechanistically, stretch can regulate anabolic signaling via both active and passive force sensors. Emerging evidence indicates that both lengthening contractions against a high load as well as passive stretch can acutely activate anabolic intracellular signaling pathways involved in muscle hypertrophy. Although longitudinal research investigating the effects of stretching between RT sets is limited, some evidence suggests it may in fact enhance hypertrophic adaptations. Accordingly, the purpose of this paper is threefold: (1) to review how the active force of a muscle contraction and the force of a passive stretched are sensed; (2) to present evidence for the effectiveness of RT with inter-set stretch for muscle hypertrophy (3) to provide practical recommendations for application of inter-set stretch in program design as well as directions for future research.
Collapse
Affiliation(s)
- Brad J. Schoenfeld
- Department of Exercise Science and Recreation, Lehman College, Bronx, NY, United States
| | - Henning Wackerhage
- Department of Sport and Exercise Sciences, Technical University of Munich, Munich, Germany
| | - Eduardo De Souza
- Department of Health Sciences and Human Performance, The University of Tampa, Tampa, FL, United States
| |
Collapse
|
50
|
Han DJ, Aslam R, Misra PS, Chiu F, Ojha T, Chowdhury A, Chan CK, Sung HK, Yuen DA, Luk CT. Disruption of adipocyte YAP improves glucose homeostasis in mice and decreases adipose tissue fibrosis. Mol Metab 2022; 66:101594. [PMID: 36165813 PMCID: PMC9551211 DOI: 10.1016/j.molmet.2022.101594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/30/2022] [Accepted: 09/03/2022] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE Adipose tissue is a very dynamic metabolic organ that plays an essential role in regulating whole-body glucose homeostasis. Dysfunctional adipose tissue hypertrophy with obesity is associated with fibrosis and type 2 diabetes. Yes-associated protein 1 (YAP) is a transcription cofactor important in the Hippo signaling pathway. However, the role of YAP in adipose tissue and glucose homeostasis is unknown. METHODS To study the role of YAP with metabolic stress, we assessed how increased weight and insulin resistance impact YAP in humans and mouse models. To further investigate the in vivo role of YAP specifically in adipose tissue and glucose homeostasis, we developed adipose tissue-specific YAP knockout mice and placed them on either chow or high fat diet (HFD) for 12-14 weeks. To further study the direct role of YAP in adipocytes we used 3T3-L1 cells. RESULTS We found that YAP protein levels increase in adipose tissue from humans with type 2 diabetes and mouse models of diet-induced obesity and insulin resistance. This suggests that YAP signaling may contribute to adipocyte dysfunction and insulin resistance under metabolic stress conditions. On an HFD, adipose tissue YAP knockout mice had improved glucose tolerance compared to littermate controls. Perigonadal fat pad weight was also decreased in knockout animals, with smaller adipocyte size. Adipose tissue fibrosis and gene expression associated with fibrosis was decreased in vivo and in vitro in 3T3-L1 cells treated with a YAP inhibitor or siRNA. CONCLUSIONS We show that YAP is increased in adipose tissue with weight gain and insulin resistance. Disruption of YAP in adipocytes prevents glucose intolerance and adipose tissue fibrosis, suggesting that YAP plays an important role in regulating adipose tissue and glucose homeostasis with metabolic stress.
Collapse
Affiliation(s)
- Daniel J. Han
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada,Keenan Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Rukhsana Aslam
- Keenan Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Paraish S. Misra
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada,Keenan Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Felix Chiu
- Keenan Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Tanvi Ojha
- Keenan Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Apu Chowdhury
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin, Sichuan 644000, China
| | - Carmen K. Chan
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada,Keenan Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Hoon-Ki Sung
- The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Darren A. Yuen
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada,Keenan Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Cynthia T. Luk
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada,Keenan Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada,Division of Endocrinology and Metabolism, Department of Medicine, St. Michael’s Hospital, Unity Health Toronto, ON, Canada,Corresponding author. Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, 5th Floor, Toronto Ontario M5B 1T8, Canada.
| |
Collapse
|