1
|
Huang S, Pan L, Li M, Pang S, Tian Y, Shi W, Zong Y, Zhang D, Tian D. CD8 + T Cell-Derived Perforin Exacerbates Dysbiosis and Inflammatory Bowel Disease via β-Hydroxybutyrate Suppression in Mouse Colonic Epithelium. J Inflamm Res 2025; 18:5895-5910. [PMID: 40331160 PMCID: PMC12051980 DOI: 10.2147/jir.s509875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/19/2025] [Indexed: 05/08/2025] Open
Abstract
Background The etiology and pathogenesis of inflammatory bowel disease (IBD) are generally thought to be related to immune dysfunction and intestinal microbiota dysbiosis. However, the exact mechanisms remain unclear. Methods We applied a DSS-induced colitis model in wild-type and perforin-deficient (Prf1-/- ) mice. Adoptive transfer experiments and metabolic profiling were conducted, and 16S rRNA gene sequencing analyzed gut microbiota. The impact of a 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) inhibitor on inflammation and dysbiosis was also assessed. Results In this study, we demonstrated that perforin production in CD8+ T cells was significantly increased in both patients with IBD and mice with colitis. Moreover, compared with wild-type mice, perforin deficiency (Prf1-/- ) mice exhibited mitigated inflammation in a DSS-induced colitis model. The CD8+ T cell adoptive transfer model indicated that perforin produced by CD8+ T cells directly induced colitis. Prf1-/- mice with colitis exhibited activation of the fatty acid metabolic process, highlighted by increased expression of Hmgcs2 and pyruvate dehydrogenase kinase isoform 4 (Pdk4) in the colon and accumulation of the related metabolite β-hydroxybutyrate. The absence of perforin partly reversed the imbalance in the gut microbiota composition caused by DSS, including increases in Alloprevotella and Parabacteroides. However, the HMGCS2 inhibitor exacerbated intestinal inflammation and dysbiosis in Prf1-/- mice. Conclusion CD8+ T cell-derived perforin promoted colitis by disrupting gut microbiota composition through the suppression of β-hydroxybutyrate production. This study provides novel targets for therapeutic strategies of IBD.
Collapse
Affiliation(s)
- Shiyang Huang
- Immunology Research Center for Oral and Systemic Health, Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Lehan Pan
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
- National Clinical Research Center for Digestive Diseases, Beijing, People’s Republic of China
- State Key Laboratory of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Mingyang Li
- Immunology Research Center for Oral and Systemic Health, Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Shu Pang
- National Clinical Research Center for Digestive Diseases, Beijing, People’s Republic of China
- State Key Laboratory of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
- Department of General Practice, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yue Tian
- Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Wen Shi
- Immunology Research Center for Oral and Systemic Health, Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Ye Zong
- National Clinical Research Center for Digestive Diseases, Beijing, People’s Republic of China
- State Key Laboratory of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Dong Zhang
- Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People’s Republic of China
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, People’s Republic of China
- Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing, People’s Republic of China
| | - Dan Tian
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
- National Clinical Research Center for Digestive Diseases, Beijing, People’s Republic of China
- State Key Laboratory of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Sun J, Luo J, Jiang F, Zhao J, Zhou S, Wang L, Zhang D, Ding Y, Li X. Exploring the cross-cancer effect of circulating proteins and discovering potential intervention targets for 13 site-specific cancers. J Natl Cancer Inst 2024; 116:565-573. [PMID: 38039160 DOI: 10.1093/jnci/djad247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/23/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND The proteome is an important reservoir of potential therapeutic targets for cancer. This study aimed to examine the causal associations between plasma proteins and cancer risk and to identify proteins with cross-cancer effects. METHODS Genetic instruments for 3991 plasma proteins were extracted from a large-scale proteomic study. Summary-level data of 13 site-specific cancers were derived from publicly available datasets. Proteome-wide Mendelian randomization and colocalization analyses were used to investigate the causal effect of circulating proteins on cancers. Protein-protein interactions and druggability assessment were conducted to prioritize potential therapeutic targets. Finally, systematical Mendelian randomization analysis between healthy lifestyle factors and cancer-related proteins was conducted to identify which proteins could act as interventional targets by lifestyle changes. RESULTS Genetically determined circulating levels of 58 proteins were statistically significantly associated with 7 site-specific cancers. A total of 39 proteins were prioritized by colocalization, of them, 11 proteins (ADPGK, CD86, CLSTN3, CSF2RA, CXCL10, GZMM, IL6R, NCR3, SIGLEC5, SIGLEC14, and TAPBP) were observed to have cross-cancer effects. Notably, 5 of these identified proteins (CD86, CSF2RA, CXCL10, IL6R, and TAPBP) have been targeted for drug development in cancer therapy; 8 proteins (ADPGK, CD86, CXCL10, GZMM, IL6R, SIGLEC5, SIGLEC14, TAPBP) could be modulated by healthy lifestyles. CONCLUSION Our study identified 39 circulating protein biomarkers with convincing causal evidence for 7 site-specific cancers, with 11 proteins demonstrating cross-cancer effects, and prioritized the proteins as potential intervention targets by either drugs or lifestyle changes, which provided new insights into the etiology, prevention, and treatment of cancers.
Collapse
Affiliation(s)
- Jing Sun
- Department of Big Data in Health Science School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jia Luo
- Department of Epidemiology and Health Statistics, the School of Public Health of Qingdao University, Qingdao, Shandong Province, China
| | - Fangyuan Jiang
- Department of Big Data in Health Science School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianhui Zhao
- Department of Big Data in Health Science School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Siyun Zhou
- Department of Big Data in Health Science School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lijuan Wang
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, the School of Public Health of Qingdao University, Qingdao, Shandong Province, China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xue Li
- Department of Big Data in Health Science School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Song Q, Wang J, Bar-Joseph Z. scSTEM: clustering pseudotime ordered single-cell data. Genome Biol 2022; 23:150. [PMID: 35799304 PMCID: PMC9264648 DOI: 10.1186/s13059-022-02716-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 06/21/2022] [Indexed: 11/25/2022] Open
Abstract
We develop scSTEM, single-cell STEM, a method for clustering dynamic profiles of genes in trajectories inferred from pseudotime ordering of single-cell RNA-seq (scRNA-seq) data. scSTEM uses one of several metrics to summarize the expression of genes and assigns a p-value to clusters enabling the identification of significant profiles and comparison of profiles across different paths. Application of scSTEM to several scRNA-seq datasets demonstrates its usefulness and ability to improve downstream analysis of biological processes. scSTEM is available at https://github.com/alexQiSong/scSTEM.
Collapse
Affiliation(s)
- Qi Song
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Jingtao Wang
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Ziv Bar-Joseph
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 15213, USA. .,Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
4
|
Pączek S, Łukaszewicz-Zając M, Mroczko B. Granzymes-Their Role in Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23095277. [PMID: 35563668 PMCID: PMC9104098 DOI: 10.3390/ijms23095277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is among the most common malignancies worldwide. CRC is considered a heterogeneous disease due to various clinical symptoms, biological behaviours, and a variety of mutations. A number of studies demonstrate that as many as 50% of CRC patients have distant metastases at the time of diagnosis. However, despite the fact that social and medical awareness of CRC has increased in recent years and screening programmes have expanded, there is still an urgent need to find new diagnostic tools for early detection of CRC. The effectiveness of the currently used classical tumour markers in CRC diagnostics is very limited. Therefore, new proteins that play an important role in the formation and progression of CRC are being sought. A number of recent studies show the potential significance of granzymes (GZMs) in carcinogenesis. These proteins are released by cytotoxic lymphocytes, which protect the body against viral infection as well specific signalling pathways that ultimately lead to cell death. Some studies suggest a link between GZMs, particularly the expression of Granzyme A, and inflammation. This paper summarises the role of GZMs in CRC pathogenesis through their involvement in the inflammatory process. Therefore, it seems that GZMs could become the focus of research into new CRC biomarkers.
Collapse
Affiliation(s)
- Sara Pączek
- Department of Biochemical Diagnostics, Medical University in Bialystok, 15-269 Bialystok, Poland; (M.Ł.-Z.); (B.M.)
- Correspondence: ; Tel.: +48-85-831-8587
| | - Marta Łukaszewicz-Zając
- Department of Biochemical Diagnostics, Medical University in Bialystok, 15-269 Bialystok, Poland; (M.Ł.-Z.); (B.M.)
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University in Bialystok, 15-269 Bialystok, Poland; (M.Ł.-Z.); (B.M.)
- Department of Neurodegeneration Diagnostics, Medical University in Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
5
|
Lu J, Wang Z, Maimaiti M, Hui W, Abudourexiti A, Gao F. Identification of diagnostic signatures in ulcerative colitis patients via bioinformatic analysis integrated with machine learning. Hum Cell 2022; 35:179-188. [PMID: 34731452 DOI: 10.1007/s13577-021-00641-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023]
Abstract
Ulcerative colitis (UC) is an immune-related disorder with enhanced prevalence globally. Early diagnosis is critical for the effective treatment of UC. However, it still lacks specific diagnostic signatures. The aim of our study was to explore efficient signatures and construct the diagnostic model for UC. Microarray data of GSE87473 and GSE48634, which were obtained from tissue biopsy samples, were downloaded from the Gene Expression Omnibus (GEO), and differently expressed genes (DEGs), GO, and KEGG analyses were performed. We constructed the PPI network via STRING database. The immune infiltration of the samples was evaluated using CIBERSORT methods combined with the LM22 feature matrix. The logistic regression model was constructed, with the expression of selected genes as the predictor variable, and the UC occurrence as the responsive variable. As a result, a total of 126 DEGs between the UC patients and normal counterparts were identified. The GO and KEGG analysis revealed that multiple biological processes, such as antimicrobial humoral immune response mediated by antimicrobial peptide and IL-17 signaling pathway, were enriched. The infiltration of eight immune cell types (B cells naive, Dendritic.cells.activated, Macrophages.M0, Macrophages.M2, Mast.cells.resting, Neutrophils, Plasma.cells, and T.cells.follicular.helper) was significantly different between patients with UC and normal counterparts. The top 50 most significant DEGs were selected for the construction of the PPI network. The average AUC of the logistic regression model in the fivefold cross-validation was 0.8497 in the training set, GSE87473. The AUC of another independent verification set of GSE48634 from the GEO database was 0.7208. In conclusion, we identified potential hub genes, including REG3A, REG1A, DEFA6, REG1B, and DEFA5, which might be significantly associated with UC progression. The logistic regression model based on the five genes could reliably diagnose UC patients.
Collapse
Affiliation(s)
- Jiajie Lu
- Xinjiang Medical University, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China
| | - Zhiyuan Wang
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91, Tianchi Road, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China
| | - Munila Maimaiti
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91, Tianchi Road, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China
| | - Wenjia Hui
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91, Tianchi Road, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China
| | - Adilai Abudourexiti
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91, Tianchi Road, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China
| | - Feng Gao
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91, Tianchi Road, Urumqi, 830001, Xinjiang Uygur Autonomous Region, China.
| |
Collapse
|
6
|
Inflammaging, an Imbalanced Immune Response That Needs to Be Restored for Cancer Prevention and Treatment in the Elderly. Cells 2021; 10:cells10102562. [PMID: 34685542 PMCID: PMC8533838 DOI: 10.3390/cells10102562] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/03/2021] [Accepted: 09/24/2021] [Indexed: 12/21/2022] Open
Abstract
Nowadays, new advances in society and health have brought an increased life expectancy. However, at the same time, aging comes with complications that impact the development of autoimmunity, neurodegenerative diseases and cancer. These complications affect the quality of life and impact the public health system. Specifically, with aging, a low-grade chronic sterile systemic inflammation with self-reactivity in the absence of acute infection occurs termed inflammaging. Inflammaging is related to an imbalanced immune response that can be either naturally acquired with aging or accelerated due to external triggers. Different molecules, metabolites and inflammatory forms of cell death are highly involved in these processes. Importantly, adoptive cellular immunotherapy is a modality of treatment for cancer patients that administers ex vivo expanded immune cells in the patient. The manipulation of these cells confers them enhanced proinflammatory properties. A general consequence of proinflammatory events is the development of autoimmune diseases and cancer. Herein, we review subsets of immune cells with a pertinent role in inflammaging, relevant proteins involved in these inflammatory events and external triggers that enhance and accelerate these processes. Moreover, we mention relevant preclinical studies that demonstrate associations of chronic inflammation with cancer development.
Collapse
|
7
|
Buitrago G, Pickering D, Ruscher R, Cobos Caceres C, Jones L, Cooper M, Van Waardenberg A, Ryan S, Miles K, Field M, Dredge K, Daly NL, Giacomin PR, Loukas A. A netrin domain-containing protein secreted by the human hookworm Necator americanus protects against CD4 T cell transfer colitis. Transl Res 2021; 232:88-102. [PMID: 33676036 DOI: 10.1016/j.trsl.2021.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
The symbiotic relationships shared between humans and their gastrointestinal parasites present opportunities to discover novel therapies for inflammatory diseases. A prime example of this phenomenon is the interaction of humans and roundworms such as the hookworm, Necator americanus. Epidemiological observations, animal studies and clinical trials using experimental human hookworm infection show that hookworms can suppress inflammation in a safe and well-tolerated way, and that the key to their immunomodulatory properties lies within their secreted proteome. Herein we describe the identification of 2 netrin domain-containing proteins from the N. americanus secretome, and explore their potential in treating intestinal inflammation in mouse models of ulcerative colitis. One of these proteins, subsequently named Na-AIP-1, was effective at suppressing disease when administered prophylactically in the acute TNBS-induced model of colitis. This protective effect was validated in the more robust CD4 T cell transfer model of chronic colitis, where prophylactic Na-AIP-1 reduced T-cell-dependent type-1 cytokine responses in the intestine and the associated intestinal pathology. Mechanistic studies revealed that depletion of CD11c+ cells abrogated the protective anticolitic effect of Na-AIP-1. Next generation sequencing of colon tissue in the T-cell transfer model of colitis revealed that Na-AIP-1 induced a transcriptomic profile associated with the downregulation of metabolic and signaling pathways involved in type-1 inflammation, notably TNF. Finally, co-culture of Na-AIP-1 with a human monocyte-derived M1 macrophage cell line resulted in significantly reduced secretion of TNF. Na-AIP-1 is now a candidate for clinical development as a novel therapeutic for the treatment of human inflammatory bowel diseases.
Collapse
Affiliation(s)
- Geraldine Buitrago
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia; Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Darren Pickering
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Roland Ruscher
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Claudia Cobos Caceres
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Linda Jones
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Martha Cooper
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia; Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Ashley Van Waardenberg
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia; Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Stephanie Ryan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Kim Miles
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Matthew Field
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia; Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Keith Dredge
- Zucero Therapeutics Ltd, Brisbane, Queensland, Australia
| | - Norelle L Daly
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Paul R Giacomin
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia.
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia.
| |
Collapse
|
8
|
Santiago L, Castro M, Sanz-Pamplona R, Garzón M, Ramirez-Labrada A, Tapia E, Moreno V, Layunta E, Gil-Gómez G, Garrido M, Peña R, Lanuza PM, Comas L, Jaime-Sanchez P, Uranga-Murillo I, Del Campo R, Pelegrín P, Camerer E, Martínez-Lostao L, Muñoz G, Uranga JA, Alcalde A, Galvez EM, Ferrandez A, Bird PI, Metkar S, Arias MA, Pardo J. Extracellular Granzyme A Promotes Colorectal Cancer Development by Enhancing Gut Inflammation. Cell Rep 2021; 32:107847. [PMID: 32640217 DOI: 10.1016/j.celrep.2020.107847] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/11/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023] Open
Abstract
If not properly regulated, the inflammatory immune response can promote carcinogenesis, as evident in colorectal cancer (CRC). Aiming to gain mechanistic insight into the link between inflammation and CRC, we perform transcriptomics analysis of human CRC, identifying a strong correlation between expression of the serine protease granzyme A (GzmA) and inflammation. In a dextran sodium sulfate and azoxymethane (DSS/AOM) mouse model, deficiency and pharmacological inhibition of extracellular GzmA both attenuate gut inflammation and prevent CRC development, including the initial steps of cell transformation and epithelial-to-mesenchymal transition. Mechanistically, extracellular GzmA induces NF-κB-dependent IL-6 production in macrophages, which in turn promotes STAT3 activation in cultured CRC cells. Accordingly, colon tissues from DSS/AOM-treated, GzmA-deficient animals present reduced levels of pSTAT3. By identifying GzmA as a proinflammatory protease that promotes CRC development, these findings provide information on mechanisms that link immune cell infiltration to cancer progression and present GzmA as a therapeutic target for CRC.
Collapse
Affiliation(s)
- Llipsy Santiago
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain
| | - Marta Castro
- Department of Pharmacology and Physiology, Faculty of Health and Sports Sciences, University of Zaragoza, 22002 Huesca, Spain
| | - Rebeca Sanz-Pamplona
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL) and CIBERESP, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Marcela Garzón
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain
| | - Ariel Ramirez-Labrada
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain
| | - Elena Tapia
- Animal Unit, University of Zaragoza, 50009 Zaragoza, Spain
| | - Víctor Moreno
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL) and CIBERESP, L'Hospitalet de Llobregat, Barcelona, Spain; Department of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Elena Layunta
- Department of Pharmacology and Physiology, Faculty of Veterinary, University of Zaragoza, 50013 Zaragoza, Spain
| | - Gabriel Gil-Gómez
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), 08003 Barcelona
| | - Marta Garrido
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), 08003 Barcelona
| | - Raúl Peña
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), 08003 Barcelona
| | - Pilar M Lanuza
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain
| | - Laura Comas
- Instituto de Carboquímica ICB-CSIC, 50018 Zaragoza, Spain
| | - Paula Jaime-Sanchez
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain
| | - Iratxe Uranga-Murillo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain
| | - Rosa Del Campo
- Department of Microbiology, University Hospital Ramón y Cajal & Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Pablo Pelegrín
- Unidad de Inflamación Molecular y Cirugía Experimental, Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Eric Camerer
- Université de Paris, Paris Cardiovascular Research Center, INSERM U970, 75015 Paris, France
| | - Luis Martínez-Lostao
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain; Department of Immunology, University Clinic Hospital Lozano Blesa, 50009, Zaragoza, Spain and Department of Pathology, University Clinic Hospital Lozano Blesa, University of Zaragoza, IIS Aragón, CIBEREHD, 50009 Zaragoza, Spain; Nanoscience Institute of Aragon (INA), University of Zaragoza, 50018 Zaragoza, Spain; Department Biochemistry and Molecular and Cell Biology and Department Microbiology, Preventive Medicine and Public Health, University of Zaragoza, 50009 Zaragoza, Spain
| | - Guillermo Muñoz
- Department of Immunology, University Clinic Hospital Lozano Blesa, 50009, Zaragoza, Spain and Department of Pathology, University Clinic Hospital Lozano Blesa, University of Zaragoza, IIS Aragón, CIBEREHD, 50009 Zaragoza, Spain
| | - José A Uranga
- Department of Basis Health Sciences, Faculty of Health Sciences, Rey Juan Carlos University, 28922 Madrid, Spain
| | - Anabel Alcalde
- Department of Pharmacology and Physiology, Faculty of Veterinary, University of Zaragoza, 50013 Zaragoza, Spain
| | - Eva M Galvez
- Instituto de Carboquímica ICB-CSIC, 50018 Zaragoza, Spain
| | - Angel Ferrandez
- Service of Digestive Diseases, University Clinic Hospital Lozano Blesa, University of Zaragoza, IIS Aragón, CIBEREHD, Zaragoza, Spain
| | - Phillip I Bird
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University 3800 Melbourne, Australia
| | | | - Maykel A Arias
- Instituto de Carboquímica ICB-CSIC, 50018 Zaragoza, Spain.
| | - Julian Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain; Aragon I+D Foundation (ARAID), Zaragoza, Spain; Nanoscience Institute of Aragon (INA), University of Zaragoza, 50018 Zaragoza, Spain; Department Biochemistry and Molecular and Cell Biology and Department Microbiology, Preventive Medicine and Public Health, University of Zaragoza, 50009 Zaragoza, Spain; CIBER-BBN, Madrid, Spain.
| |
Collapse
|
9
|
Shimizu K, Yamasaki S, Sakurai M, Yumoto N, Ikeda M, Mishima-Tsumagari C, Kukimoto-Niino M, Watanabe T, Kawamura M, Shirouzu M, Fujii SI. Granzyme A Stimulates pDCs to Promote Adaptive Immunity via Induction of Type I IFN. Front Immunol 2019; 10:1450. [PMID: 31293597 PMCID: PMC6606709 DOI: 10.3389/fimmu.2019.01450] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 06/10/2019] [Indexed: 01/01/2023] Open
Abstract
Granzyme A (GzmA), together with perforin, are well-known for their cytotoxic activity against tumor or virus-infected cells. In addition to this cytotoxic function, GzmA stimulates several immune cell types and induces inflammation in the absence of perforin, however, its effect on the dendritic cell (DC) is unknown. In the current study, we showed that recombinant GzmA induced the phenotypic maturation of plasmacytoid DCs (pDCs) and conventional DCs (cDCs), but not their apoptosis. Particularly, GzmA made pDCs more functional, thus leading to production of type I interferon (IFN) via the TLR9-MyD88 pathway. We also demonstrated that GzmA binds TLR9 and co-localizes with it in endosomes. When co-administered with antigen, GzmA acted as a powerful adjuvant for eliciting antigen-specific cytotoxic CD8+ T lymphocytes (CTLs) that protected mice from tumor challenge. The induction of CTL was completely abolished in XCR1+ DC-depleted mice, whereas it was reduced to less than half in pDC-depleted or IFN-α/β receptor knockout mice. Thus, CTL cross-priming was dependent on XCR1+cDC and also type I IFN, which was produced by GzmA-activated pDCs. These results indicate that GzmA -stimulated pDCs enhance the cross-priming activity of cDCs in situ. We also showed that the adjuvant effect of GzmA is superior to CpG-ODN and LPS. Our findings highlight the ability of GzmA to bridge innate and adaptive immune responses via pDC help and suggest that GzmA may be useful as a vaccine adjuvant.
Collapse
Affiliation(s)
- Kanako Shimizu
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Satoru Yamasaki
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Maki Sakurai
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Noriko Yumoto
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Mariko Ikeda
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Chiemi Mishima-Tsumagari
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Mutsuko Kukimoto-Niino
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Takashi Watanabe
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Masami Kawamura
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Shin-Ichiro Fujii
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
10
|
Zhang J, Wang N, Xu A. Screening of genes associated with inflammatory responses in the endolymphatic sac reveals underlying mechanisms for autoimmune inner ear diseases. Exp Ther Med 2018; 16:2460-2470. [PMID: 30210597 PMCID: PMC6122540 DOI: 10.3892/etm.2018.6479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 06/01/2018] [Indexed: 12/12/2022] Open
Abstract
The current study analyzed gene expression profiles of the endolymphatic sac (ES) in rats and identified expressed genes, present in the human and rat ES, to reveal key hubs for inflammatory responses. Microarray data (accession no. E-MEXP-3022) were obtained from the European Bioinformatics Institute database, including three biological replicates of ES plus dura tissues and three replicates of pure dura tissues form rats. Differentially expressed genes (DEGs) were screened using the Linear Model for Microarray data method and a protein-protein interaction (PPI) network was constructed using data from the Search Tool for the Retrieval of Interacting Genes/Proteins database followed by a module analysis via Clustering with Overlapping Neighborhood Expansion. Function enrichment analysis was performed using the Database for Annotation, Visualization and Integrated Discovery online tool. A total of 612 DEGs were identified, including 396 upregulated and 216 downregulated genes. Gene ontology term enrichment analysis indicated DEGs were associated with cell adhesion, including α5-integrin (Itga1) and secreted phosphoprotein 1 (Spp1); T cell co-stimulation, including C-C chemokine ligand (Ccl)21 and Ccl19; and the toll-like receptor signaling pathway, including toll-like receptor (Tlr)2, Tlr7 and Tlr8. These conclusions were supported by Kyoto Encyclopedia of Genes and Genomes pathway analyses revealing extracellular matrix-receptor interaction, including Itga1 and Spp1; leukocyte transendothelial migration, includingclaudin-4 (Cldn4); and malaria, including Tlr2. The hub roles of Itga1, Cd24 and Spp1 were revealed by calculating three topological properties of the PPI network. Ccl21, Ccl19 and Cldn4 were demonstrated to be crucial following significant module analysis according to the corresponding threshold, which revealed they were enriched in inflammation pathways. Tlr7, Tlr2, granzyme m and Tlr8 were common genes associated with inflammatory responses in rat and human ES. In conclusion, abnormal expression of the aforementioned inflammation-associated genes may be associated with the development of autoimmune inner ear diseases.
Collapse
Affiliation(s)
- Juhong Zhang
- Department of Otolaryngology, Head and Neck Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Department of Otolaryngology, Shanghai Jiao Tong University, Affiliated to Sixth People's Hospital South Campus, Shanghai 201411, P.R. China
| | - Na Wang
- Department of Otolaryngology, Head and Neck Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Anting Xu
- Department of Otolaryngology, Head and Neck Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Department of Otolaryngology, Affiliated Tenth People's Hospital of Tongji University, Shanghai 200072, P.R. China
| |
Collapse
|
11
|
Arias M, Martínez-Lostao L, Santiago L, Ferrandez A, Granville DJ, Pardo J. The Untold Story of Granzymes in Oncoimmunology: Novel Opportunities with Old Acquaintances. Trends Cancer 2017; 3:407-422. [PMID: 28718416 DOI: 10.1016/j.trecan.2017.04.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/31/2017] [Accepted: 04/03/2017] [Indexed: 12/16/2022]
Abstract
For more than 20 years perforin and granzymes (GZMs) have been recognized as key cell death executors of cytotoxic T (Tc) and natural killer (NK) cells during cancer immunosurveillance. In immune surveillance, perforin and GZMB, the most potent cytotoxic molecules, act mainly as antitumoral and anti-infectious factors. However, when expressed by immune regulatory cells they may contribute to immune evasion of specific cancer types. By contrast, the other major granzyme, GZMA, seems not to play a major role in Tc/NK cell-mediated cytotoxicity, but acts as a proinflammatory cytokine that might contribute to cancer development. Members of the GZM family also regulate other biological processes unrelated to cell death, such as angiogenesis, vascular integrity, extracellular matrix remodeling, and barrier function, all of which contribute to cancer initiation and progression. Thus, a new paradigm is emerging in the field of oncoimmunology. Can GZMs act as protumoral factors under some circumstances? We review the diverse roles of GZMs in cancer progression, and new therapeutic opportunities emerging from targeting these protumoral roles.
Collapse
Affiliation(s)
- Maykel Arias
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain; These authors contributed equally to this work
| | - Luis Martínez-Lostao
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain; Department of Biochemistry and Molecular and Cell Biology, and Department of Microbiology, Preventive Medicine, and Public Health, University of Zaragoza, 50009 Zaragoza, Spain; Servicio de Inmunología Hospital Clínico Universitario Lorenzo Blesa, Zaragoza, Spain; Nanoscience Institute of Aragon (INA), University of Zaragoza, 50018 Zaragoza, Spain; These authors contributed equally to this work
| | - Llipsy Santiago
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain
| | - Angel Ferrandez
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain; Servicio de Aparato Digestivo, Hospital Clínico Universitario Lorenzo Blesa, Zaragoza, Spain
| | - David J Granville
- International Collaboration on Repair Discoveries (ICORD), Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Julián Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), 50009 Zaragoza, Spain; Department of Biochemistry and Molecular and Cell Biology, and Department of Microbiology, Preventive Medicine, and Public Health, University of Zaragoza, 50009 Zaragoza, Spain; Nanoscience Institute of Aragon (INA), University of Zaragoza, 50018 Zaragoza, Spain; Aragon I+D Foundation (ARAID), Zaragoza, Spain.
| |
Collapse
|
12
|
Van Spaendonk H, Ceuleers H, Witters L, Patteet E, Joossens J, Augustyns K, Lambeir AM, De Meester I, De Man JG, De Winter BY. Regulation of intestinal permeability: The role of proteases. World J Gastroenterol 2017; 23:2106-2123. [PMID: 28405139 PMCID: PMC5374123 DOI: 10.3748/wjg.v23.i12.2106] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/20/2017] [Accepted: 03/02/2017] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal barrier is - with approximately 400 m2 - the human body's largest surface separating the external environment from the internal milieu. This barrier serves a dual function: permitting the absorption of nutrients, water and electrolytes on the one hand, while limiting host contact with noxious luminal antigens on the other hand. To maintain this selective barrier, junction protein complexes seal the intercellular space between adjacent epithelial cells and regulate the paracellular transport. Increased intestinal permeability is associated with and suggested as a player in the pathophysiology of various gastrointestinal and extra-intestinal diseases such as inflammatory bowel disease, celiac disease and type 1 diabetes. The gastrointestinal tract is exposed to high levels of endogenous and exogenous proteases, both in the lumen and in the mucosa. There is increasing evidence to suggest that a dysregulation of the protease/antiprotease balance in the gut contributes to epithelial damage and increased permeability. Excessive proteolysis leads to direct cleavage of intercellular junction proteins, or to opening of the junction proteins via activation of protease activated receptors. In addition, proteases regulate the activity and availability of cytokines and growth factors, which are also known modulators of intestinal permeability. This review aims at outlining the mechanisms by which proteases alter the intestinal permeability. More knowledge on the role of proteases in mucosal homeostasis and gastrointestinal barrier function will definitely contribute to the identification of new therapeutic targets for permeability-related diseases.
Collapse
|
13
|
van Eck JA, Shan L, Meeldijk J, Hack CE, Bovenschen N. A novel proinflammatory role for granzyme A. Cell Death Dis 2017; 8:e2630. [PMID: 28230859 PMCID: PMC5386495 DOI: 10.1038/cddis.2017.56] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Jacqueline A van Eck
- Department of Pathology, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - Liling Shan
- Department of Pathology, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - Jan Meeldijk
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - C Erik Hack
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - Niels Bovenschen
- Department of Pathology, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands.,Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| |
Collapse
|