1
|
Cui Y, Rolova T, Fagerholm SC. The role of integrins in brain health and neurodegenerative diseases. Eur J Cell Biol 2024; 103:151441. [PMID: 39002282 DOI: 10.1016/j.ejcb.2024.151441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024] Open
Abstract
Integrins are heterodimeric membrane proteins expressed on the surface of most cells. They mediate adhesion and signaling processes relevant for a wealth of physiological processes, including nervous system development and function. Interestingly, integrins are also recognized therapeutic targets for inflammatory diseases, such as multiple sclerosis. Here, we discuss the role of integrins in brain development and function, as well as in neurodegenerative diseases affecting the brain (Alzheimer's disease, multiple sclerosis, stroke). Furthermore, we discuss therapeutic targeting of these adhesion receptors in inflammatory diseases of the brain.
Collapse
Affiliation(s)
- Yunhao Cui
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland
| | - Taisia Rolova
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki 00290, Finland
| | - Susanna C Fagerholm
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland.
| |
Collapse
|
2
|
Kuhn TB, Minamide LS, Tahtamouni LH, Alderfer SA, Walsh KP, Shaw AE, Yanouri O, Haigler HJ, Ruff MR, Bamburg JR. Chemokine Receptor Antagonists Prevent and Reverse Cofilin-Actin Rod Pathology and Protect Synapses in Cultured Rodent and Human iPSC-Derived Neurons. Biomedicines 2024; 12:93. [PMID: 38255199 PMCID: PMC10813319 DOI: 10.3390/biomedicines12010093] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Synapse loss is the principal cause of cognitive decline in Alzheimer's disease (AD) and related disorders (ADRD). Synapse development depends on the intricate dynamics of the neuronal cytoskeleton. Cofilin, the major protein regulating actin dynamics, can be sequestered into cofilactin rods, intra-neurite bundles of cofilin-saturated actin filaments that can disrupt vesicular trafficking and cause synaptic loss. Rods are a brain pathology in human AD and mouse models of AD and ADRD. Eliminating rods is the focus of this paper. One pathway for rod formation is triggered in ~20% of rodent hippocampal neurons by disease-related factors (e.g., soluble oligomers of Amyloid-β (Aβ)) and requires cellular prion protein (PrPC), active NADPH oxidase (NOX), and cytokine/chemokine receptors (CCRs). FDA-approved antagonists of CXCR4 and CCR5 inhibit Aβ-induced rods in both rodent and human neurons with effective concentrations for 50% rod reduction (EC50) of 1-10 nM. Remarkably, two D-amino acid receptor-active peptides (RAP-103 and RAP-310) inhibit Aβ-induced rods with an EC50 of ~1 pM in mouse neurons and ~0.1 pM in human neurons. These peptides are analogs of D-Ala-Peptide T-Amide (DAPTA) and share a pentapeptide sequence (TTNYT) antagonistic to several CCR-dependent responses. RAP-103 does not inhibit neuritogenesis or outgrowth even at 1 µM, >106-fold above its EC50. N-terminal methylation, or D-Thr to D-Ser substitution, decreases the rod-inhibiting potency of RAP-103 by 103-fold, suggesting high target specificity. Neither RAP peptide inhibits neuronal rod formation induced by excitotoxic glutamate, but both inhibit rods induced in human neurons by several PrPC/NOX pathway activators (Aβ, HIV-gp120 protein, and IL-6). Significantly, RAP-103 completely protects against Aβ-induced loss of mature and developing synapses and, at 0.1 nM, reverses rods in both rodent and human neurons (T½ ~ 3 h) even in the continuous presence of Aβ. Thus, this orally available, brain-permeable peptide should be highly effective in reducing rod pathology in multifactorial neurological diseases with mixed proteinopathies acting through PrPC/NOX.
Collapse
Affiliation(s)
- Thomas B. Kuhn
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (T.B.K.); (L.S.M.); (L.H.T.); (K.P.W.); (A.E.S.)
| | - Laurie S. Minamide
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (T.B.K.); (L.S.M.); (L.H.T.); (K.P.W.); (A.E.S.)
| | - Lubna H. Tahtamouni
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (T.B.K.); (L.S.M.); (L.H.T.); (K.P.W.); (A.E.S.)
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa 13133, Jordan
| | - Sydney A. Alderfer
- Department of Chemical and Biological Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA;
| | - Keifer P. Walsh
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (T.B.K.); (L.S.M.); (L.H.T.); (K.P.W.); (A.E.S.)
| | - Alisa E. Shaw
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (T.B.K.); (L.S.M.); (L.H.T.); (K.P.W.); (A.E.S.)
| | - Omar Yanouri
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO 80523, USA;
| | - Henry J. Haigler
- Creative Bio-Peptides, Inc., 10319 Glen Road, Suite 100, Potomac, MD 20854, USA; (H.J.H.); (M.R.R.)
| | - Michael R. Ruff
- Creative Bio-Peptides, Inc., 10319 Glen Road, Suite 100, Potomac, MD 20854, USA; (H.J.H.); (M.R.R.)
| | - James R. Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (T.B.K.); (L.S.M.); (L.H.T.); (K.P.W.); (A.E.S.)
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO 80523, USA;
| |
Collapse
|
3
|
Tahtamouni LH, Alderfer SA, Kuhn TB, Minamide LS, Chanda S, Ruff MR, Bamburg JR. Characterization of a Human Neuronal Culture System for the Study of Cofilin-Actin Rod Pathology. Biomedicines 2023; 11:2942. [PMID: 38001943 PMCID: PMC10669520 DOI: 10.3390/biomedicines11112942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Cofilactin rod pathology, which can initiate synapse loss, has been extensively studied in rodent neurons, hippocampal slices, and in vivo mouse models of human neurodegenerative diseases such as Alzheimer's disease (AD). In these systems, rod formation induced by disease-associated factors, such as soluble oligomers of Amyloid-β (Aβ) in AD, utilizes a pathway requiring cellular prion protein (PrPC), NADPH oxidase (NOX), and cytokine/chemokine receptors (CCR5 and/or CXCR4). However, rod pathways have not been systematically assessed in a human neuronal model. Here, we characterize glutamatergic neurons differentiated from human-induced pluripotent stem cells (iPSCs) for the formation of rods in response to activators of the PrPC-dependent pathway. Optimization of substratum, cell density, and use of glial-conditioned medium yielded a robust system for studying the development of Aβ-induced rods in the absence of glia, suggesting a cell-autonomous pathway. Rod induction in younger neurons requires ectopic expression of PrPC, but this dependency disappears by Day 55. The quantification of proteins within the rod-inducing pathway suggests that increased PrPC and CXCR4 expression may be factors in the doubling of the rod response to Aβ between Days 35 and 55. FDA-approved antagonists to CXCR4 and CCR5 inhibit the rod response. Rods were predominantly observed in dendrites, although severe cytoskeletal disruptions prevented the assignment of over 40% of the rods to either an axon or dendrite. In the absence of glia, a condition in which rods are more readily observed, neurons mature and fire action potentials but do not form functional synapses. However, PSD95-containing dendritic spines associate with axonal regions of pre-synaptic vesicles containing the glutamate transporter, VGLUT1. Thus, our results identified stem cell-derived neurons as a robust model for studying cofilactin rod formation in a human cellular environment and for developing effective therapeutic strategies for the treatment of dementias arising from multiple proteinopathies with different rod initiators.
Collapse
Affiliation(s)
- Lubna H. Tahtamouni
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa 13133, Jordan;
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (T.B.K.); (L.S.M.); (S.C.)
| | - Sydney A. Alderfer
- Department of Chemical and Biological Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA;
| | - Thomas B. Kuhn
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (T.B.K.); (L.S.M.); (S.C.)
| | - Laurie S. Minamide
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (T.B.K.); (L.S.M.); (S.C.)
| | - Soham Chanda
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (T.B.K.); (L.S.M.); (S.C.)
| | - Michael R. Ruff
- Creative Bio-Peptides, Inc., 10319 Glen Road, Suite 100, Potomac, MD 20854, USA;
| | - James R. Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (T.B.K.); (L.S.M.); (S.C.)
| |
Collapse
|
4
|
Pham AQ, Dore K. Novel approaches to increase synaptic resilience as potential treatments for Alzheimer's disease. Semin Cell Dev Biol 2023; 139:84-92. [PMID: 35370089 DOI: 10.1016/j.semcdb.2022.03.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 12/31/2022]
Abstract
A significant proportion of brains with Alzheimer's disease pathology are obtained from patients that were cognitively normal, suggesting that differences within the brains of these individuals made them resilient to the disease. Here, we describe recent approaches that specifically increase synaptic resilience, as loss of synapses is considered to be the first change in the brains of Alzheimer's patients. We start by discussing studies showing benefit from increased expression of neurotrophic factors and protective genes. Methods that effectively make dendritic spines stronger, specifically by acting through actin network proteins, scaffolding proteins and inhibition of phosphatases are described next. Importantly, the therapeutic strategies presented in this review tackle Alzheimer's disease not by targeting plaques and tangles, but instead by making synapses resilient to the pathology associated with Alzheimer's disease, which has tremendous potential.
Collapse
Affiliation(s)
- Andrew Q Pham
- Department of Neurosciences, Center for Neural Circuits and Behavior, UCSD, La Jolla 92093, United States
| | - Kim Dore
- Department of Neurosciences, Center for Neural Circuits and Behavior, UCSD, La Jolla 92093, United States.
| |
Collapse
|
5
|
Yan Y, Wang X, Chaput D, Shin MK, Koh Y, Gan L, Pieper AA, Woo JAA, Kang DE. X-linked ubiquitin-specific peptidase 11 increases tauopathy vulnerability in women. Cell 2022; 185:3913-3930.e19. [PMID: 36198316 PMCID: PMC9588697 DOI: 10.1016/j.cell.2022.09.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/31/2022] [Accepted: 08/31/2022] [Indexed: 01/26/2023]
Abstract
Although women experience significantly higher tau burden and increased risk for Alzheimer's disease (AD) than men, the underlying mechanism for this vulnerability has not been explained. Here, we demonstrate through in vitro and in vivo models, as well as human AD brain tissue, that X-linked ubiquitin specific peptidase 11 (USP11) augments pathological tau aggregation via tau deubiquitination initiated at lysine-281. Removal of ubiquitin provides access for enzymatic tau acetylation at lysines 281 and 274. USP11 escapes complete X-inactivation, and female mice and people both exhibit higher USP11 levels than males. Genetic elimination of usp11 in a tauopathy mouse model preferentially protects females from acetylated tau accumulation, tau pathology, and cognitive impairment. USP11 levels also strongly associate positively with tau pathology in females but not males. Thus, inhibiting USP11-mediated tau deubiquitination may provide an effective therapeutic opportunity to protect women from increased vulnerability to AD and other tauopathies.
Collapse
Affiliation(s)
- Yan Yan
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA; Department of Molecular Medicine, USF Health College of Medicine, Tampa, FL, USA
| | - Xinming Wang
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Dale Chaput
- Department of Molecular Medicine, USF Health College of Medicine, Tampa, FL, USA
| | - Min-Kyoo Shin
- Department of Psychiatry, Case Western Reserve University, School of Medicine, Cleveland, OH, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Yeojung Koh
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA; Department of Psychiatry, Case Western Reserve University, School of Medicine, Cleveland, OH, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Andrew A Pieper
- Department of Psychiatry, Case Western Reserve University, School of Medicine, Cleveland, OH, USA; Department of Neuroscience, Case Western Reserve University, School of Medicine, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, Case Western Reserve University, School of Medicine, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Cleveland, Louis Stokes Cleveland VA Medical Center, OH, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Jung-A A Woo
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA; Department of Molecular Medicine, USF Health College of Medicine, Tampa, FL, USA.
| | - David E Kang
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA; Louis Strokes Cleveland VA Medical Center, Cleveland, OH, USA; Department of Molecular Medicine, USF Health College of Medicine, Tampa, FL, USA.
| |
Collapse
|
6
|
Cazzaro S, Fang C, Khan H, Witas R, Kee TR, Woo JAA, Kang DE. Slingshot homolog-1 mediates the secretion of small extracellular vesicles containing misfolded proteins by regulating autophagy cargo receptors and actin dynamics. Front Aging Neurosci 2022; 14:933979. [PMID: 36092812 PMCID: PMC9452914 DOI: 10.3389/fnagi.2022.933979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Increasing evidence indicates that the accumulation misfolded proteins in Alzheimer's disease (AD) arises from clearance defects in the autophagy-lysosome pathway. Misfolded proteins such as Aβ and tau are secreted in small extracellular vesicles (i.e., exosomes) and are propagated from cell to cell in part through secreted small extracellular vesicles (sEVs). Recent studies suggest that autophagic activity and exosome secretion are coregulated events, and multiple autophagy-related proteins are found in sEVs, including the cargo receptors Sqstm1/p62 and optineurin. However, whether and how autophagy cargo receptors per se regulate the secretion of sEVs is unknown. Moreover, despite the prominent role of actin dynamics in secretory vesicle release, its role in EV secretion is unknown. In this study, we leveraged the dual axes of Slingshot Homolog-1 (SSH1), which inhibits Sqstm1/p62-mediated autophagy and activates cofilin-mediated actin dynamics, to study the regulation of sEV secretion. Here we show that cargo receptors Sqstm1/p62 and optineurin inhibit sEV secretion, an activity that requires their ability to bind ubiquitinated cargo. Conversely, SSH1 increases sEV secretion by dephosphorylating Sqstm1/p62 at pSer403, the phospho-residue that allows Sqstm1/p62 to bind ubiquitinated cargo. In addition, increasing actin dynamics through the SSH1-cofilin activation pathway also increases sEV secretion, which is mimicked by latrunculin B treatment. Finally, Aβ42 oligomers and mutant tau increase sEV secretion and are physically associated with secreted sEVs. These findings suggest that increasing cargo receptor engagement with autophagic cargo and reducing actin dynamics (i.e., SSH1 inhibition) represents an attractive strategy to promote misfolded protein degradation while reducing sEV-mediated cell to cell spread of pathology.
Collapse
Affiliation(s)
- Sara Cazzaro
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Molecular Medicine, USF Health Morsani College of Medicine, Tampa, FL, United States
| | - Cenxiao Fang
- Department of Molecular Medicine, USF Health Morsani College of Medicine, Tampa, FL, United States
| | - Hirah Khan
- Department of Molecular Medicine, USF Health Morsani College of Medicine, Tampa, FL, United States
| | - Richard Witas
- Department of Molecular Medicine, USF Health Morsani College of Medicine, Tampa, FL, United States
| | - Teresa R. Kee
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Molecular Medicine, USF Health Morsani College of Medicine, Tampa, FL, United States
| | - Jung-A. A. Woo
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - David E. Kang
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
| |
Collapse
|
7
|
Ortiz-Sanz C, Balantzategi U, Quintela-López T, Ruiz A, Luchena C, Zuazo-Ibarra J, Capetillo-Zarate E, Matute C, Zugaza JL, Alberdi E. Amyloid β / PKC-dependent alterations in NMDA receptor composition are detected in early stages of Alzheimer´s disease. Cell Death Dis 2022; 13:253. [PMID: 35306512 PMCID: PMC8934345 DOI: 10.1038/s41419-022-04687-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 02/07/2022] [Accepted: 02/24/2022] [Indexed: 12/15/2022]
Abstract
Amyloid beta (Aβ)-mediated synapse dysfunction is an early event in Alzheimer’s disease (AD) pathogenesis and previous studies suggest that NMDA receptor (NMDAR) dysregulation may contribute to these pathological effects. Although Aβ peptides impair NMDAR expression and activity, the mechanisms mediating these alterations in the early stages of AD are unclear. Here, we observed that NMDAR subunit NR2B and PSD-95 levels were aberrantly upregulated and correlated with Aβ42 load in human postsynaptic fractions of the prefrontal cortex in early stages of AD patients, as well as in the hippocampus of 3xTg-AD mice. Importantly, NR2B and PSD95 dysregulation was revealed by an increased expression of both proteins in Aβ-injected mouse hippocampi. In cultured neurons, Aβ oligomers increased the NR2B-containing NMDAR density in neuronal membranes and the NMDA-induced intracellular Ca2+ increase, in addition to colocalization in dendrites of NR2B subunit and PSD95. Mechanistically, Aβ oligomers required integrin β1 to promote synaptic location and function of NR2B-containing NMDARs and PSD95 by phosphorylation through classic PKCs. These results provide evidence that Aβ oligomers modify the contribution of NR2B to NMDAR composition and function in the early stages of AD through an integrin β1 and PKC-dependent pathway. These data reveal a novel role of Aβ oligomers in synaptic dysfunction that may be relevant to early-stage AD pathogenesis.
Collapse
Affiliation(s)
- Carolina Ortiz-Sanz
- Department of Neuroscience, University of Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Uxue Balantzategi
- Department of Neuroscience, University of Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Tania Quintela-López
- Department of Neuroscience, University of Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain.,Department of Neuroscience, Physiology, & Pharmacology, University College London, London, UK
| | - Asier Ruiz
- Department of Neuroscience, University of Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Celia Luchena
- Department of Neuroscience, University of Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Jone Zuazo-Ibarra
- Department of Neuroscience, University of Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Estibaliz Capetillo-Zarate
- Department of Neuroscience, University of Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain.,IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| | - Carlos Matute
- Department of Neuroscience, University of Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - José L Zugaza
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,IKERBASQUE Basque Foundation for Science, Bilbao, Spain.,Department of Genetics, Physical Anthropology and Animal Physiology, UPV/EHU, Leioa, Spain
| | - Elena Alberdi
- Department of Neuroscience, University of Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain. .,Achucarro Basque Center for Neuroscience, Leioa, Spain.
| |
Collapse
|
8
|
Bamburg JR, Minamide LS, Wiggan O, Tahtamouni LH, Kuhn TB. Cofilin and Actin Dynamics: Multiple Modes of Regulation and Their Impacts in Neuronal Development and Degeneration. Cells 2021; 10:cells10102726. [PMID: 34685706 PMCID: PMC8534876 DOI: 10.3390/cells10102726] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 02/06/2023] Open
Abstract
Proteins of the actin depolymerizing factor (ADF)/cofilin family are ubiquitous among eukaryotes and are essential regulators of actin dynamics and function. Mammalian neurons express cofilin-1 as the major isoform, but ADF and cofilin-2 are also expressed. All isoforms bind preferentially and cooperatively along ADP-subunits in F-actin, affecting the filament helical rotation, and when either alone or when enhanced by other proteins, promotes filament severing and subunit turnover. Although self-regulating cofilin-mediated actin dynamics can drive motility without post-translational regulation, cells utilize many mechanisms to locally control cofilin, including cooperation/competition with other proteins. Newly identified post-translational modifications function with or are independent from the well-established phosphorylation of serine 3 and provide unexplored avenues for isoform specific regulation. Cofilin modulates actin transport and function in the nucleus as well as actin organization associated with mitochondrial fission and mitophagy. Under neuronal stress conditions, cofilin-saturated F-actin fragments can undergo oxidative cross-linking and bundle together to form cofilin-actin rods. Rods form in abundance within neurons around brain ischemic lesions and can be rapidly induced in neurites of most hippocampal and cortical neurons through energy depletion or glutamate-induced excitotoxicity. In ~20% of rodent hippocampal neurons, rods form more slowly in a receptor-mediated process triggered by factors intimately connected to disease-related dementias, e.g., amyloid-β in Alzheimer’s disease. This rod-inducing pathway requires a cellular prion protein, NADPH oxidase, and G-protein coupled receptors, e.g., CXCR4 and CCR5. Here, we will review many aspects of cofilin regulation and its contribution to synaptic loss and pathology of neurodegenerative diseases.
Collapse
Affiliation(s)
- James R. Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (L.S.M.); (O.W.); (L.H.T.); (T.B.K.)
- Correspondence: ; Tel.: +1-970-988-9120; Fax: +1-970-491-0494
| | - Laurie S. Minamide
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (L.S.M.); (O.W.); (L.H.T.); (T.B.K.)
| | - O’Neil Wiggan
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (L.S.M.); (O.W.); (L.H.T.); (T.B.K.)
| | - Lubna H. Tahtamouni
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (L.S.M.); (O.W.); (L.H.T.); (T.B.K.)
- Department of Biology and Biotechnology, The Hashemite University, Zarqa 13115, Jordan
| | - Thomas B. Kuhn
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (L.S.M.); (O.W.); (L.H.T.); (T.B.K.)
- Department of Chemistry and Biochemistry, University of Alaska, Fairbanks, AK 99775, USA
| |
Collapse
|
9
|
Chan JW, Chan NCY, Sadun AA. Glaucoma as Neurodegeneration in the Brain. Eye Brain 2021; 13:21-28. [PMID: 33500674 PMCID: PMC7822087 DOI: 10.2147/eb.s293765] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/07/2021] [Indexed: 12/31/2022] Open
Abstract
Glaucoma, a group of diseases characterized by progressive optic nerve degeneration that results in irreversible blindness, can be considered a neurodegenerative disorder of both the eye and the brain. Increasing evidence from human and animal studies have shown that glaucoma shares some common neurodegenerative pathways with Alzheimer’s disease (AD) and other tauopathies, such as chronic traumatic encephalopathy (CTE) and frontotemporal dementia. This hypothesis is based on the focal adhesion pathway hypothesis and the spreading hypothesis of tau. Not only has the Apolipoprotein E (APOE) gene been shown to be associated with AD, but also with primary open angle glaucoma (POAG). This review will highlight the relevant literature in the past 20 years from PubMed that show the pathogenic overlap between POAG and AD. Neurodegenerative pathways that contribute to transsynaptic neurodegeneration in AD and other tauopathies might also be similar to those in glaucomatous neurodegeneration.
Collapse
Affiliation(s)
- Jane W Chan
- Department of Ophthalmology, Doheny Eye Institute, Pasadena, CA, USA
| | - Noel C Y Chan
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., Hong Kong, People's Republic of China
| | - Alfredo A Sadun
- Department of Ophthalmology, Doheny Eye Institute, Pasadena, CA, USA.,Department of Ophthalmology, University of California, Los Angeles, CA, USA
| |
Collapse
|
10
|
Kang DE, Woo JA. Cofilin, a Master Node Regulating Cytoskeletal Pathogenesis in Alzheimer's Disease. J Alzheimers Dis 2020; 72:S131-S144. [PMID: 31594228 PMCID: PMC6971827 DOI: 10.3233/jad-190585] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The defining pathological hallmarks of Alzheimer’s disease (AD) are proteinopathies marked by the amyloid-β (Aβ) peptide and hyperphosphorylated tau. In addition, Hirano bodies and cofilin-actin rods are extensively found in AD brains, both of which are associated with the actin cytoskeleton. The actin-binding protein cofilin known for its actin filament severing, depolymerizing, nucleating, and bundling activities has emerged as a significant player in AD pathogenesis. In this review, we discuss the regulation of cofilin by multiple signaling events impinging on LIM kinase-1 (LIMK1) and/or Slingshot homolog-1 (SSH1) downstream of Aβ. Such pathophysiological signaling pathways impact actin dynamics to regulate synaptic integrity, mitochondrial translocation of cofilin to promote neurotoxicity, and formation of cofilin-actin pathology. Other intracellular signaling proteins, such as β-arrestin, RanBP9, Chronophin, PLD1, and 14-3-3 also impinge on the regulation of cofilin downstream of Aβ. Finally, we discuss the role of activated cofilin as a bridge between actin and microtubule dynamics by displacing tau from microtubules, thereby destabilizing tau-induced microtubule assembly, missorting tau, and promoting tauopathy.
Collapse
Affiliation(s)
- David E Kang
- Byrd Institute and Alzheimer's Center, USF Health Morsani College of Medicine, Tampa, FL, USA.,Department of Molecular Medicine, USF Health Morsani College of Medicine, Tampa, FL, USA.,Division of Research, James A. Haley VA Hospital, Tampa, FL, USA
| | - Jung A Woo
- Byrd Institute and Alzheimer's Center, USF Health Morsani College of Medicine, Tampa, FL, USA.,Department of Molecular Pharmacology and Physiology, USF Health Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
11
|
Woo JAA, Liu T, Fang CC, Castaño MA, Kee T, Yrigoin K, Yan Y, Cazzaro S, Matlack J, Wang X, Zhao X, Kang DE, Liggett SB. β-Arrestin2 oligomers impair the clearance of pathological tau and increase tau aggregates. Proc Natl Acad Sci U S A 2020; 117:5006-5015. [PMID: 32071246 PMCID: PMC7060747 DOI: 10.1073/pnas.1917194117] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multiple G protein-coupled receptors (GPCRs) are targets in the treatment of dementia, and the arrestins are common to their signaling. β-Arrestin2 was significantly increased in brains of patients with frontotemporal lobar degeneration (FTLD-tau), a disease second to Alzheimer's as a cause of dementia. Genetic loss and overexpression experiments using genetically encoded reporters and defined mutant constructs in vitro, and in cell lines, primary neurons, and tau P301S mice crossed with β-arrestin2-/- mice, show that β-arrestin2 stabilizes pathogenic tau and promotes tau aggregation. Cell and mouse models of FTLD showed this to be maladaptive, fueling a positive feedback cycle of enhanced neuronal tau via non-GPCR mechanisms. Genetic ablation of β-arrestin2 markedly ablates tau pathology and rescues synaptic plasticity defects in tau P301S transgenic mice. Atomic force microscopy and cellular studies revealed that oligomerized, but not monomeric, β-arrestin2 increases tau by inhibiting self-interaction of the autophagy cargo receptor p62/SQSTM1, impeding p62 autophagy flux. Hence, reduction of oligomerized β-arrestin2 with virus encoding β-arrestin2 mutants acting as dominant-negatives markedly reduces tau-laden neurofibrillary tangles in FTLD mice in vivo. Reducing β-arrestin2 oligomeric status represents a new strategy to alleviate tau pathology in FTLD and related tauopathies.
Collapse
Affiliation(s)
- Jung-A A Woo
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613;
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
| | - Tian Liu
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
| | - Cenxiao C Fang
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
| | - Maria A Castaño
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
| | - Teresa Kee
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
| | - Ksenia Yrigoin
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
| | - Yan Yan
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
| | - Sara Cazzaro
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
| | - Jenet Matlack
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
| | - Xinming Wang
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
| | - Xingyu Zhao
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
| | - David E Kang
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613;
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
- Research Division, James A. Haley Veteran's Administration Hospital, Tampa, FL 33612
| | - Stephen B Liggett
- University of South Florida Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613;
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33613
- Department of Medical Engineering, University of South Florida, Tampa, FL 33613
| |
Collapse
|
12
|
Ortiz-Sanz C, Gaminde-Blasco A, Valero J, Bakota L, Brandt R, Zugaza JL, Matute C, Alberdi E. Early Effects of Aβ Oligomers on Dendritic Spine Dynamics and Arborization in Hippocampal Neurons. Front Synaptic Neurosci 2020; 12:2. [PMID: 32116638 PMCID: PMC7029715 DOI: 10.3389/fnsyn.2020.00002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/13/2020] [Indexed: 01/22/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder that leads to impaired memory and cognitive deficits. Spine loss as well as changes in spine morphology correlates with cognitive impairment in this neurological disorder. Many studies in animal models and ex vivo cultures indicate that amyloid β-peptide (Aβ) oligomers induce synaptic damage early during the progression of the disease. Here, in order to determine the events that initiate synaptic alterations, we acutely applied oligomeric Aβ to primary hippocampal neurons and an ex vivo model of organotypic hippocampal cultures from a mouse after targeted expression of EGFP to allow high-resolution imaging and algorithm-based evaluation of spine changes. Dendritic spines were classified as thin, stubby or mushroom, based on morphology. In vivo, time-lapse imaging showed that the three spine types were relatively stable, although their stability significantly decreased after treatment with Aβ oligomers. Unexpectedly, we observed that the density of total dendritic spines increased in organotypic hippocampal slices treated with Aβ compared to control cultures. Specifically, the fraction of stubby spines significantly increased, while mushroom and thin spines remained unaltered. Pharmacological tools revealed that acute Aβ oligomers induced spine changes through mechanisms involving CaMKII and integrin β1 activities. Additionally, analysis of dendritic complexity based on a 3D reconstruction of the whole neuron morphology showed an increase in the apical dendrite length and branching points in CA1 organotypic hippocampal slices treated with Aβ. In contrast to spines, the morphological changes were affected by integrin β1 but not by CaMKII inhibition. Altogether, these data indicate that the Aβ oligomers exhibit early dual effects by acutely enhancing dendritic complexity and spine density.
Collapse
Affiliation(s)
- Carolina Ortiz-Sanz
- Department of Neuroscience, University of Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Adhara Gaminde-Blasco
- Department of Neuroscience, University of Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Jorge Valero
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| | - Lidia Bakota
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| | - Roland Brandt
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany.,Center for Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany.,Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
| | - José L Zugaza
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,IKERBASQUE Basque Foundation for Science, Bilbao, Spain.,Department of Genetics, Physical Anthropology and Animal Physiology, UPV/EHU, Leioa, Spain
| | - Carlos Matute
- Department of Neuroscience, University of Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Elena Alberdi
- Department of Neuroscience, University of Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| |
Collapse
|
13
|
Liu T, Woo JAA, Yan Y, LePochat P, Bukhari MZ, Kang DE. Dual role of cofilin in APP trafficking and amyloid-β clearance. FASEB J 2019; 33:14234-14247. [PMID: 31646885 DOI: 10.1096/fj.201901268r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The accumulation of amyloid-β (Aβ) plays a pivotal early event in the pathogenesis of Alzheimer's disease (AD). In the brain, neurons produce Aβ by the proteolytic processing of amyloid precursor protein (APP) through the endocytic pathway, whereas microglia mediate Aβ clearance also via endocytic mechanisms. Previous studies have shown the critical importance of cofilin, a filamentous actin-severing protein, in actin dynamics and pathogen-triggered endocytic processes. Moreover, the binding of Aβ42 oligomers to β1-integrin triggers the cofilin activation, and in turn, cofilin promotes the internalization of surface β1-integrin. However, a role for cofilin in APP processing and Aβ metabolism has not been investigated. In this study, we found that knockdown of cofilin in Chinese hamster ovary 7WD10 cells and primary neurons significantly reduces Aβ production by increasing surface APP (sAPP) levels. Expression of active (S3A) but not inactive (S3E) cofilin reduces sAPP levels by enhancing APP endocytosis. Accordingly, Aβ deposition in APP and presenilin 1 (PS1) transgenic mice is significantly reduced by genetic reduction of cofilin (APP/PS1;cofilin+/-). However, the reduction of Aβ load in APP/PS1;cofilin+/- mice is paradoxically associated with significantly increased ionized calcium-binding adaptor molecule 1-positive microglial activation surrounding Aβ deposits. Primary microglia isolated from cofilin+/- mice demonstrate significantly enhanced state of activation and greater ability to uptake and clear Aβ42, which is reversed with the active (S3A) but not inactive (S3E) form of cofilin. These results taken together indicate a significant role for cofilin in Aβ accumulation via dual and opposing endocytic mechanisms of promoting Aβ production in neurons and inhibiting Aβ clearance in microglia.-Liu, T., Woo, J.-A. A., Yan, Y., LePochat, P., Bukhari, M. Z., Kang, D. E. Dual role of cofilin in APP trafficking and amyloid-β clearance.
Collapse
Affiliation(s)
- Tian Liu
- Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida (USF) Health, Tampa, Florida, USA.,Department of Molecular of Medicine, Morsani College of Medicine, University of South Florida (USF) Health, Tampa, Florida, USA
| | - Jung-A A Woo
- Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida (USF) Health, Tampa, Florida, USA.,Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida (USF) Health, Tampa, Florida, USA
| | - Yan Yan
- Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida (USF) Health, Tampa, Florida, USA.,Department of Molecular of Medicine, Morsani College of Medicine, University of South Florida (USF) Health, Tampa, Florida, USA
| | - Patrick LePochat
- Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida (USF) Health, Tampa, Florida, USA.,Department of Molecular of Medicine, Morsani College of Medicine, University of South Florida (USF) Health, Tampa, Florida, USA
| | - Mohammed Zaheen Bukhari
- Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida (USF) Health, Tampa, Florida, USA.,Department of Molecular of Medicine, Morsani College of Medicine, University of South Florida (USF) Health, Tampa, Florida, USA
| | - David E Kang
- Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida (USF) Health, Tampa, Florida, USA.,Department of Molecular of Medicine, Morsani College of Medicine, University of South Florida (USF) Health, Tampa, Florida, USA.,James A. Haley Veterans Administration Hospital, Tampa, Florida, USA
| |
Collapse
|
14
|
Sun Y, Liang L, Dong M, Li C, Liu Z, Gao H. Cofilin 2 in Serum as a Novel Biomarker for Alzheimer's Disease in Han Chinese. Front Aging Neurosci 2019; 11:214. [PMID: 31447667 PMCID: PMC6696795 DOI: 10.3389/fnagi.2019.00214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/30/2019] [Indexed: 12/20/2022] Open
Abstract
The identification of biomarkers of Alzheimer’s disease (AD) is an important and urgent area of study, not only to aid in the early diagnosis of AD, but also to evaluate potentially new anti-AD drugs. The aim of this study was to explore cofilin 2 in serum as a novel biomarker for AD. The upregulation was observed in AD patients and different AD animal models compared to the controls, as well as in AD cell models. Memantine and donepezil can attenuate the upregulation of cofilin 2 expression in APP/PS1 mice. The serum levels of cofilin 2 in AD or mild cognitive impairment (MCI) patients were significantly higher compared to controls (AD: 167.9 ± 35.3 pg/mL; MCI: 115.9 ± 15.4 pg/mL; Control: 90.5 ± 27.1 pg/mL; p < 0.01). A significant correlation between cofilin 2 levels and cognitive decline was observed (r = –0.792; p < 0.001). The receiver operating characteristic curve (ROC) analysis showed the area under the curve (AUC) of cofilin 2 was 0.957, and the diagnostic accuracy was 80%, with 93% sensitivity and 87% specificity. The optimal cut-off value was 130.4 pg/ml. Our results indicate the possibility of serum cofilin 2 as a novel and non-invasive biomarker for AD. In addition, the expression of cofilin 2 was found to be significantly increased in AD compared to vascular dementia (VaD), and only an increased trend but not significant was detected in VaD compared to the controls. ROC analysis between AD and VaD showed that the AUC was 0.824, which could indicate a role of cofilin 2 as a biomarker in the differential diagnosis between AD and VaD.
Collapse
Affiliation(s)
- Yingni Sun
- School of Life Sciences, Ludong University, Yantai, China
| | - Lisheng Liang
- Department of Pain, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Meili Dong
- Central Sterile Supply Department, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Cong Li
- Chemical and Materials Engineering, University of Kentucky, Lexington, KY, United States
| | - Zhenzhen Liu
- Chemical Engineering and Materials Science, College of Chemistry, Shandong Normal University, Jinan, China
| | - Hongwei Gao
- School of Life Sciences, Ludong University, Yantai, China
| |
Collapse
|
15
|
Giusti L, Molinaro A, Alessandrì MG, Boldrini C, Ciregia F, Lacerenza S, Ronci M, Urbani A, Cioni G, Mazzoni MR, Pizzorusso T, Lucacchini A, Baroncelli L. Brain mitochondrial proteome alteration driven by creatine deficiency suggests novel therapeutic venues for creatine deficiency syndromes. Neuroscience 2019; 409:276-289. [PMID: 31029731 DOI: 10.1016/j.neuroscience.2019.03.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/09/2019] [Accepted: 03/12/2019] [Indexed: 01/15/2023]
Abstract
Creatine (Cr) is a small metabolite with a central role in energy metabolism and mitochondrial function. Creatine deficiency syndromes are inborn errors of Cr metabolism causing Cr depletion in all body tissues and particularly in the nervous system. Patient symptoms involve intellectual disability, language and behavioral disturbances, seizures and movement disorders suggesting that brain cells are particularly sensitive to Cr depletion. Cr deficiency was found to affect metabolic activity and structural abnormalities of mitochondrial organelles; however a detailed analysis of molecular mechanisms linking Cr deficit, energy metabolism alterations and brain dysfunction is still missing. Using a proteomic approach we evaluated the proteome changes of the brain mitochondrial fraction induced by the deletion of the Cr transporter (CrT) in developing mutant mice. We found a marked alteration of the mitochondrial proteomic landscape in the brain of CrT deficient mice, with the overexpression of many proteins involved in energy metabolism and response to oxidative stress. Moreover, our data suggest possible abnormalities of dendritic spines, synaptic function and plasticity, network excitability and neuroinflammatory response. Intriguingly, the alterations occurred in coincidence with the developmental onset of neurological symptoms. Thus, cerebral mitochondrial alterations could represent an early response to Cr deficiency that could be targeted for therapeutic intervention.
Collapse
Affiliation(s)
- Laura Giusti
- Department of Clinical and Experimental Medicine, University of Pisa, I-56126, Pisa, Italy; School of Pharmacy, University of Camerino, I-62032 Camerino, Italy
| | - Angelo Molinaro
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, I-50135, Florence, Italy; Institute of Neuroscience, National Research Council (CNR), I-56124, Pisa, Italy
| | - Maria Grazia Alessandrì
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, I-56128 Pisa, Italy
| | - Claudia Boldrini
- Department of Pharmacy, University of Pisa, I-56126, Pisa, Italy
| | - Federica Ciregia
- Department of Pharmacy, University of Pisa, I-56126, Pisa, Italy; Department of Rheumatology, GIGA Research, Centre Hospitalier Universitaire (CHU) de Liège, B-4000, Liège, Belgium
| | - Serena Lacerenza
- Department of Pharmacy, University of Pisa, I-56126, Pisa, Italy
| | - Maurizio Ronci
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, I-66100, Chieti, Italy
| | - Andrea Urbani
- Institute of Biochemistry and Clinical Chemistry, Catholic university of the sacred heart, I-00168, Rome, Italy
| | - Giovanni Cioni
- Department of Clinical and Experimental Medicine, University of Pisa, I-56126, Pisa, Italy; Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, I-56128 Pisa, Italy
| | | | - Tommaso Pizzorusso
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, I-50135, Florence, Italy; Institute of Neuroscience, National Research Council (CNR), I-56124, Pisa, Italy
| | - Antonio Lucacchini
- Department of Clinical and Experimental Medicine, University of Pisa, I-56126, Pisa, Italy
| | - Laura Baroncelli
- Institute of Neuroscience, National Research Council (CNR), I-56124, Pisa, Italy; Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, I-56128 Pisa, Italy.
| |
Collapse
|
16
|
Woo JAA, Liu T, Fang CC, Cazzaro S, Kee T, LePochat P, Yrigoin K, Penn C, Zhao X, Wang X, Liggett SB, Kang DE. Activated cofilin exacerbates tau pathology by impairing tau-mediated microtubule dynamics. Commun Biol 2019; 2:112. [PMID: 30911686 PMCID: PMC6430779 DOI: 10.1038/s42003-019-0359-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 02/15/2019] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common form of dementia. While the accumulation of Aβ is pivotal to the etiology of AD, both the microtubule-associated protein tau (MAPT) and the F-actin severing protein cofilin are necessary for the deleterious effects of Aβ. However, the molecular link between tau and cofilin remains unclear. In this study, we found that cofilin competes with tau for direct microtubule binding in vitro, in cells, and in vivo, which inhibits tau-induced microtubule assembly. Genetic reduction of cofilin mitigates tauopathy and synaptic defects in Tau-P301S mice and movement deficits in tau transgenic C. elegans. The pathogenic effects of cofilin are selectively mediated by activated cofilin, as active but not inactive cofilin selectively interacts with tubulin, destabilizes microtubules, and promotes tauopathy. These results therefore indicate that activated cofilin plays an essential intermediary role in neurotoxic signaling that promotes tauopathy.
Collapse
Affiliation(s)
- Jung-A. A. Woo
- USF Health Byrd Alzheimer’s Institute, University of South Florida, Morsani College of Medicine, Tampa, FL 33613 USA
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, FL 33613 USA
| | - Tian Liu
- USF Health Byrd Alzheimer’s Institute, University of South Florida, Morsani College of Medicine, Tampa, FL 33613 USA
- Department of Molecular Medicine, University of South Florida, Morsani College of Medicine, Tampa, FL 33613 USA
| | - Cenxiao C. Fang
- USF Health Byrd Alzheimer’s Institute, University of South Florida, Morsani College of Medicine, Tampa, FL 33613 USA
- Department of Molecular Medicine, University of South Florida, Morsani College of Medicine, Tampa, FL 33613 USA
| | - Sara Cazzaro
- USF Health Byrd Alzheimer’s Institute, University of South Florida, Morsani College of Medicine, Tampa, FL 33613 USA
- Department of Molecular Medicine, University of South Florida, Morsani College of Medicine, Tampa, FL 33613 USA
| | - Teresa Kee
- USF Health Byrd Alzheimer’s Institute, University of South Florida, Morsani College of Medicine, Tampa, FL 33613 USA
| | - Patrick LePochat
- USF Health Byrd Alzheimer’s Institute, University of South Florida, Morsani College of Medicine, Tampa, FL 33613 USA
- Department of Molecular Medicine, University of South Florida, Morsani College of Medicine, Tampa, FL 33613 USA
| | - Ksenia Yrigoin
- USF Health Byrd Alzheimer’s Institute, University of South Florida, Morsani College of Medicine, Tampa, FL 33613 USA
| | - Courtney Penn
- USF Health Byrd Alzheimer’s Institute, University of South Florida, Morsani College of Medicine, Tampa, FL 33613 USA
- Department of Molecular Medicine, University of South Florida, Morsani College of Medicine, Tampa, FL 33613 USA
| | - Xingyu Zhao
- USF Health Byrd Alzheimer’s Institute, University of South Florida, Morsani College of Medicine, Tampa, FL 33613 USA
- Department of Molecular Medicine, University of South Florida, Morsani College of Medicine, Tampa, FL 33613 USA
| | - Xinming Wang
- USF Health Byrd Alzheimer’s Institute, University of South Florida, Morsani College of Medicine, Tampa, FL 33613 USA
| | - Stephen B. Liggett
- USF Health Byrd Alzheimer’s Institute, University of South Florida, Morsani College of Medicine, Tampa, FL 33613 USA
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, FL 33613 USA
| | - David E. Kang
- USF Health Byrd Alzheimer’s Institute, University of South Florida, Morsani College of Medicine, Tampa, FL 33613 USA
- Department of Molecular Medicine, University of South Florida, Morsani College of Medicine, Tampa, FL 33613 USA
- James A. Haley Veteran’s Administration Hospital, Tampa, FL 33612 USA
| |
Collapse
|
17
|
Yang D, Xiao P, Li Q, Fu X, Pan C, Lu D, Wen S, Xia W, He D, Li H, Fang H, Shen Y, Xu Z, Lin A, Wang C, Yu X, Wu J, Sun J. Allosteric modulation of the catalytic VYD loop in Slingshot by its N-terminal domain underlies both Slingshot auto-inhibition and activation. J Biol Chem 2018; 293:16226-16241. [PMID: 30154244 DOI: 10.1074/jbc.ra118.004175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/21/2018] [Indexed: 12/22/2022] Open
Abstract
Slingshots are phosphatases that modulate cytoskeleton dynamics, and their activities are tightly regulated in different physiological contexts. Recently, abnormally elevated Slingshot activity has been implicated in many human diseases, such as cancer, Alzheimer's disease, and vascular diseases. Therefore, Slingshot-specific inhibitors have therapeutic potential. However, an enzymological understanding of the catalytic mechanism of Slingshots and of their activation by actin is lacking. Here, we report that the N-terminal region of human Slingshot2 auto-inhibits its phosphatase activity in a noncompetitive manner. pH-dependent phosphatase assays and leaving-group dependence studies suggested that the N-terminal domain of Slingshot2 regulates the stability of the leaving group of the product during catalysis by modulating the general acid Asp361 in the catalytic VYD loop. F-actin binding relieved this auto-inhibition and restored the function of the general acid. Limited tryptic digestion and biophysical studies identified large conformational changes in Slingshot2 after the F-actin binding. The dissociation of N-terminal structural elements, including Leu63, and the exposure of the loop between α-helix-2 and β-sheet-3 of the phosphatase domain served as the structural basis for Slingshot activation via F-actin binding in vitro and via neuregulin stimulation in cells. Moreover, we designed a FlAsH-BRET-based Slingshot2 biosensor whose readout was highly correlated with the in vivo phosphatase activities of Slingshot2. Our results reveal the auto-inhibitory mechanism and allosteric activation mechanisms of a human Slingshot phosphatase. They also contribute to the design of new strategies to study Slingshot regulation in various cellular contexts and to screen for new activators/inhibitors of Slingshot activity.
Collapse
Affiliation(s)
- Duxiao Yang
- From the Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, and
| | - Peng Xiao
- From the Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, and.,the School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Qing Li
- the Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Xiaolei Fu
- From the Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, and
| | - Chang Pan
- From the Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, and
| | - Di Lu
- From the Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, and
| | - Shishuai Wen
- the School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Wanying Xia
- From the Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, and
| | - Dongfang He
- From the Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, and
| | - Hui Li
- the Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Hao Fang
- the School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Yuemao Shen
- the School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Zhigang Xu
- the School of Life Science, Shandong University, Jinan, Shandong 250003, China
| | - Amy Lin
- the School of Medicine, Duke University, Durham, North Carolina 27705
| | - Chuan Wang
- the Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiao Yu
- the Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Jiawei Wu
- the MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jinpeng Sun
- From the Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, and .,the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China, and.,the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing 100191, China
| |
Collapse
|
18
|
Zhang L, Trushin S, Christensen TA, Tripathi U, Hong C, Geroux RE, Howell KG, Poduslo JF, Trushina E. Differential effect of amyloid beta peptides on mitochondrial axonal trafficking depends on their state of aggregation and binding to the plasma membrane. Neurobiol Dis 2018; 114:1-16. [PMID: 29477640 PMCID: PMC5926207 DOI: 10.1016/j.nbd.2018.02.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 01/03/2018] [Accepted: 02/07/2018] [Indexed: 12/20/2022] Open
Abstract
Inhibition of mitochondrial axonal trafficking by amyloid beta (Aβ) peptides has been implicated in early pathophysiology of Alzheimer's Disease (AD). Yet, it remains unclear whether the loss of motility inevitably induces the loss of mitochondrial function, and whether restoration of axonal trafficking represents a valid therapeutic target. Moreover, while some investigations identify Aβ oligomers as the culprit of trafficking inhibition, others propose that fibrils play the detrimental role. We have examined the effect of a panel of Aβ peptides with different mutations found in familial AD on mitochondrial motility in primary cortical mouse neurons. Peptides with higher propensity to aggregate inhibit mitochondrial trafficking to a greater extent with fibrils inducing the strongest inhibition. Binding of Aβ peptides to the plasma membrane was sufficient to induce trafficking inhibition where peptides with reduced plasma membrane binding and internalization had lesser effect on mitochondrial motility. We also found that Aβ peptide with Icelandic mutation A673T affects axonal trafficking of mitochondria but has very low rates of plasma membrane binding and internalization in neurons, which could explain its relatively low toxicity. Inhibition of mitochondrial dynamics caused by Aβ peptides or fibrils did not instantly affect mitochondrial bioenergetic and function. Our results support a mechanism where inhibition of axonal trafficking is initiated at the plasma membrane by soluble low molecular weight Aβ species and is exacerbated by fibrils. Since trafficking inhibition does not coincide with the loss of mitochondrial function, restoration of axonal transport could be beneficial at early stages of AD progression. However, strategies designed to block Aβ aggregation or fibril formation alone without ensuring the efficient clearance of soluble Aβ may not be sufficient to alleviate the trafficking phenotype.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA.
| | - Sergey Trushin
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA.
| | - Trace A Christensen
- Microscopy and Cell Analysis Core Facility, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
| | - Utkarsh Tripathi
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA.
| | - Courtney Hong
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Rachel E Geroux
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA.
| | - Kyle G Howell
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA; Microscopy and Cell Analysis Core Facility, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
| | - Joseph F Poduslo
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA.
| | - Eugenia Trushina
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA.
| |
Collapse
|
19
|
Woo JA, Liu T, Zhao X, Trotter C, Yrigoin K, Cazzaro S, Narvaez ED, Khan H, Witas R, Bukhari A, Makati K, Wang X, Dickey C, Kang DE. Enhanced tau pathology via RanBP9 and Hsp90/Hsc70 chaperone complexes. Hum Mol Genet 2017; 26:3973-3988. [PMID: 29016855 PMCID: PMC6075219 DOI: 10.1093/hmg/ddx284] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/04/2017] [Accepted: 07/14/2017] [Indexed: 12/26/2022] Open
Abstract
Accumulation of amyloid β (Aβ) and tau represent the two major pathological hallmarks of Alzheimer's disease (AD). Despite the critical importance of Aβ accumulation as an early event in AD pathogenesis, multiple lines of evidence indicate that tau is required to mediate Aβ-induced neurotoxic signals in neurons. We have previously shown that the scaffolding protein Ran-binding protein 9 (RanBP9), which is highly elevated in brains of AD and AD mouse models, both enhances Aβ production and mediates Aβ-induced neurotoxicity. However, it is unknown whether and how RanBP9 transmits Aβ-induced neurotoxic signals to tau. Here we show for the first time that overexpression or knockdown of RanBP9 directly enhances and reduces tau levels, respectively, in vitro and in vivo. Such changes in tau levels are associated with the ability of RanBP9 to physically interact with tau and heat shock protein 90/heat shock cognate 70 (Hsp90/Hsc70) complexes. Meanwhile, both RanBP9 and tau levels are simultaneously reduced by Hsp90 or Hsc70 inhibitors, whereas overexpression or knockdown of RanBP9 significantly diminishes the anti-tau potency of Hsp90/Hsc70 inhibitors as well as Hsc70 variants (WT & E175S). Further, RanBP9 increases the capacity for Hsp90 and Hsc70 complexes to bind ATP and enhances their ATPase activities in vitro. These observations in vitro and cell lines are recapitulated in primary neurons and in vivo, as genetic reduction in RanBP9 not only ameliorates tauopathy in Tau-P301S mice but also rescues the deficits in synaptic integrity and plasticity.
Collapse
Affiliation(s)
- Jung A Woo
- USF Health Byrd Alzheimer’s Institute
- Department of Molecular Medicine
| | - Tian Liu
- USF Health Byrd Alzheimer’s Institute
- Department of Molecular Medicine
| | - Xingyu Zhao
- USF Health Byrd Alzheimer’s Institute
- Department of Molecular Medicine
| | - Courtney Trotter
- USF Health Byrd Alzheimer’s Institute
- Department of Molecular Medicine
| | | | | | | | | | | | | | | | - Xinming Wang
- USF Health Byrd Alzheimer’s Institute
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, FL 33613, USA
| | - Chad Dickey
- USF Health Byrd Alzheimer’s Institute
- Department of Molecular Medicine
- James A. Haley Veteran’s Administration Hospital, Research Division, Tampa, FL 33612, USA
| | - David E Kang
- USF Health Byrd Alzheimer’s Institute
- Department of Molecular Medicine
- James A. Haley Veteran’s Administration Hospital, Research Division, Tampa, FL 33612, USA
| |
Collapse
|
20
|
Liu T, Wang F, LePochat P, Woo JAA, Bukhari MZ, Hong KW, Trotter C, Kang DE. Cofilin-mediated Neuronal Apoptosis via p53 Translocation and PLD1 Regulation. Sci Rep 2017; 7:11532. [PMID: 28912445 PMCID: PMC5599510 DOI: 10.1038/s41598-017-09996-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/01/2017] [Indexed: 01/15/2023] Open
Abstract
Amyloid β (Aβ) accumulation is an early event in the pathogenesis of Alzheimer’s disease (AD), leading to mitochondrial and synaptic dysfunction, tau accumulation, and eventual neuronal death. While the p53 apoptotic pathway has clearly been associated with Aβ deposits and neuronal apoptosis, the critical upstream factors contributing to p53 activation in AD are not well understood. We have previously shown that cofilin activation plays a pivotal role in Aβ-induced mitochondrial and synaptic dysfunction. In this study, we show that activated cofilin (S3A) preferentially forms a complex with p53 and promotes its mitochondrial and nuclear localization, resulting in transcription of p53-responsive genes and promotion of apoptosis. Conversely, reduction of endogenous cofilin by knockdown or genetic deficiency inhibits mitochondrial and nuclear translocation of p53 in cultured cells and in APP/PS1 mice. This cofilin-p53 pro-apoptotic pathway is subject to negative regulation by PLD1 thorough cofilin inactivation and inhibition of cofilin/p53 complex formation. Finally, activated cofilin is unable to induce apoptosis in cells genetically lacking p53. These findings taken together indicate that cofilin coopts and requires the nuclear and mitochondrial pro-apoptotic p53 program to induce and execute apoptosis, while PLD1 functions in a regulatory multi-brake capacity in this pathway.
Collapse
Affiliation(s)
- Tian Liu
- USF Health Byrd Alzheimer's Institute, Department of Molecular of Medicine, University of South Florida, Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Fang Wang
- USF Health Byrd Alzheimer's Institute, Department of Molecular of Medicine, University of South Florida, Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Patrick LePochat
- USF Health Byrd Alzheimer's Institute, Department of Molecular of Medicine, University of South Florida, Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Jung-A A Woo
- USF Health Byrd Alzheimer's Institute, Department of Molecular of Medicine, University of South Florida, Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Mohammed Zaheen Bukhari
- USF Health Byrd Alzheimer's Institute, Department of Molecular of Medicine, University of South Florida, Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Kyung Woo Hong
- USF Health Byrd Alzheimer's Institute, Department of Molecular of Medicine, University of South Florida, Morsani College of Medicine, Tampa, FL, 33613, USA
| | - Courtney Trotter
- USF Health Byrd Alzheimer's Institute, Department of Molecular of Medicine, University of South Florida, Morsani College of Medicine, Tampa, FL, 33613, USA
| | - David E Kang
- USF Health Byrd Alzheimer's Institute, Department of Molecular of Medicine, University of South Florida, Morsani College of Medicine, Tampa, FL, 33613, USA. .,James A. Haley Veteran's Administration Hospital, Tampa, FL, 33612, USA.
| |
Collapse
|
21
|
Wyssenbach A, Quintela T, Llavero F, Zugaza JL, Matute C, Alberdi E. Amyloid β-induced astrogliosis is mediated by β1-integrin via NADPH oxidase 2 in Alzheimer's disease. Aging Cell 2016; 15:1140-1152. [PMID: 27709751 PMCID: PMC6398528 DOI: 10.1111/acel.12521] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2016] [Indexed: 12/19/2022] Open
Abstract
Astrogliosis is a hallmark of Alzheimer's disease (AD) and may constitute a primary pathogenic component of that disorder. Elucidation of signaling cascades inducing astrogliosis should help characterizing the function of astrocytes and identifying novel molecular targets to modulate AD progression. Here, we describe a novel mechanism by which soluble amyloid-β modulates β1-integrin activity and triggers NADPH oxidase (NOX)-dependent astrogliosis in vitro and in vivo. Amyloid-β oligomers activate a PI3K/classical PKC/Rac1/NOX pathway which is initiated by β1-integrin in cultured astrocytes. This mechanism promotes β1-integrin maturation, upregulation of NOX2 and of the glial fibrillary acidic protein (GFAP) in astrocytes in vitro and in hippocampal astrocytes in vivo. Notably, immunochemical analysis of the hippocampi of a triple-transgenic AD mouse model shows increased levels of GFAP, NOX2, and β1-integrin in reactive astrocytes which correlates with the amyloid β-oligomer load. Finally, analysis of these proteins in postmortem frontal cortex from different stages of AD (II to V/VI) and matched controls confirmed elevated expression of NOX2 and β1-integrin in that cortical region and specifically in reactive astrocytes, which was most prominent at advanced AD stages. Importantly, protein levels of NOX2 and β1-integrin were significantly associated with increased amyloid-β load in human samples. These data strongly suggest that astrogliosis in AD is caused by direct interaction of amyloid β oligomers with β1-integrin which in turn leads to enhancing β1-integrin and NOX2 activity via NOX-dependent mechanisms. These observations may be relevant to AD pathophysiology.
Collapse
Affiliation(s)
- Ane Wyssenbach
- Departamento de Neurociencias Universidad del País Vasco (UPV/EHU) 48940 Leioa Spain
- Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED) Leioa Spain
- Achucarro Basque Center for Neuroscience 48940 Leioa Spain
| | - Tania Quintela
- Departamento de Neurociencias Universidad del País Vasco (UPV/EHU) 48940 Leioa Spain
- Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED) Leioa Spain
- Achucarro Basque Center for Neuroscience 48940 Leioa Spain
| | - Francisco Llavero
- Achucarro Basque Center for Neuroscience 48940 Leioa Spain
- Departamento de Genética Antropología Física y Fisiología Animal Universidad del País Vasco (UPV/EHU) 48940 Leioa Spain
| | - Jose L. Zugaza
- Achucarro Basque Center for Neuroscience 48940 Leioa Spain
- Departamento de Genética Antropología Física y Fisiología Animal Universidad del País Vasco (UPV/EHU) 48940 Leioa Spain
- IKERBASQUE Basque Foundation for Science María Díaz de Haro 3 48013 Bilbao Spain
| | - Carlos Matute
- Departamento de Neurociencias Universidad del País Vasco (UPV/EHU) 48940 Leioa Spain
- Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED) Leioa Spain
- Achucarro Basque Center for Neuroscience 48940 Leioa Spain
| | - Elena Alberdi
- Departamento de Neurociencias Universidad del País Vasco (UPV/EHU) 48940 Leioa Spain
- Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED) Leioa Spain
- Achucarro Basque Center for Neuroscience 48940 Leioa Spain
| |
Collapse
|
22
|
An early dysregulation of FAK and MEK/ERK signaling pathways precedes the β-amyloid deposition in the olfactory bulb of APP/PS1 mouse model of Alzheimer's disease. J Proteomics 2016; 148:149-58. [PMID: 27498392 DOI: 10.1016/j.jprot.2016.07.032] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/28/2016] [Accepted: 07/31/2016] [Indexed: 01/25/2023]
Abstract
UNLABELLED Olfactory dysfunction is an early event of Alzheimer's disease (AD). However, the mechanisms associated to AD neurodegeneration in olfactory areas are unknown. Here we used double-transgenic amyloid precursor protein/presenilin 1 (APPswe/PS1dE9) mice and label-free quantitative proteomics to analyze early pathological effects on the olfactory bulb (OB) during AD progression. Prior to β-amyloid plaque formation, 9 modulated proteins were detected on 3-month-old APP/PS1 mice while 16 differential expressed proteins were detected at 6months, when β-amyloid plaques appear, indicating a moderate imbalance in cytoskeletal rearrangement, and synaptic plasticity in APP/PS1 OBs. Moreover, β-amyloid induced an inactivation of focal adhesion kinase (FAK) together with a transient activation of MEK1/2, leading to inactivation of ERK1/2 in 6-months APP/PS1 OBs. In contrast, the analysis of human OBs revealed a late activation of FAK in advanced AD stages, whereas ERK1/2 activation was enhanced across AD staging respect to controls. This survival potential was accompanied by the inhibition of the proapototic factor BAD in the OB across AD phenotypes. Our data contribute to a better understanding of the early molecular mechanisms that are modulated in AD neurodegeneration, highlighting significant differences in the regulation of survival pathways between APP/PS1 mice and sporadic human AD. SIGNIFICANCE Loss of smell is involved in early stages of Alzheimer's disease (AD), usually preceding classic disease symptoms. However, the mechanisms governing this dysfunction are still poorly understood, losing its potential as a useful tool for clinical diagnosis. Our study characterizes potential AD-associated molecular changes in APP/PS1 mice olfactory bulb (OB) using MS-quantitative proteomics, revealing early cytoskeletal disruption and synaptic plasticity impairment. Moreover, an opposite pattern was found when comparing the activation status of specific survival pathways between APP/PS1 OBs and OBs derived from sAD subjects with different neuropathological grading. Our data reflect, in part, the progressive effect of APP overproduction and Aβ accumulation on the OB proteome during AD progression.
Collapse
|
23
|
Shen H, Ma JL, Zhang Y, Deng GL, Qu YL, Wu XL, He JX, Zhang S, Zeng S. Integrin-linked kinase overexpression promotes epithelial-mesenchymal transition via nuclear factor-κB signaling in colorectal cancer cells. World J Gastroenterol 2016; 22:3969-3977. [PMID: 27099440 PMCID: PMC4823247 DOI: 10.3748/wjg.v22.i15.3969] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 12/06/2015] [Accepted: 12/30/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of integrin-linked kinase (ILK) on proliferation, metastasis, and invasion of the colorectal cancer cell line SW480.
METHODS: In this study, the colorectal cancer cell line SW480 was stably transfected with ILK plasmids, and small interfering RNA (siRNA) was used to knockdown expression of nuclear factor (NF)-κB/p65. Methylthiazole tetrazolium (MTT) assay was performed to measure proliferation, and the wound healing migration assay and matrigel invasion assay were used to test the metastasis and invasion ability of SW480 cells. To explore the epithelial-mesenchymal transition (EMT) process, embryonic development, and the invasion and metastasis of tumors, the protein level of E-cadherin, vimentin, snail, and slug was detected by western blot. Immunofluorescence was also used to detect E-cadherin expression. Western blot was used to determine the level of phosphorylated-inhibitor of kappa B (IκB)a, inhibitor of gamma B (IγB)a, and nuclear factor kappa B (NF-κB) expressions and to explore the ILK signaling pathway.
RESULTS: Western blot results revealed that ILK expression significantly increased when ILK was overexpressed in SW480 cells (P < 0.05). Proliferation, metastasis, and invasion ability were improved in the vector-ILK group compared to the vector group (P < 0.05). Immunofluorescence results revealed that E-cadherin fluorescence intensity decreased after ILK was overexpressed (P < 0.05). Western blot results revealed that the protein expression of E-cadherin was reduced, while vimentin, snail, and slug were upregulated when ILK was overexpressed in SW480 cells (P < 0.05). In order to determine the role of the NF-κB signaling pathway in ILK overexpression promoted EMT occurrence, we overexpressed ILK in SW480 cells and found that levels of NF-κB/p65 and cytoplasmic phosphorylated-IκBa were increased and that cytoplasmic IкBa levels were decreased compared to the control group (P < 0.05). Furthermore, NF-κB/p65 knockout revealed that E-cadherin was increased in the overexpressed ILK group.
CONCLUSION: ILK overexpression improved the proliferation, metastasis, and invasion ability of SW480 cells, and this effect may be mediated by the NF-κB signaling pathway.
Collapse
|