1
|
Marzoog BA, Chomakhidze P, Gognieva D, Gagarina NV, Silantyev A, Suvorov A, Fominykha E, Mustafina M, Natalya E, Gadzhiakhmedova A, Kopylov P. Machine Learning Model Discriminate Ischemic Heart Disease Using Breathome Analysis. Biomedicines 2024; 12:2814. [PMID: 39767720 PMCID: PMC11673773 DOI: 10.3390/biomedicines12122814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/11/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Ischemic heart disease (IHD) impacts the quality of life and is the most frequently reported cause of morbidity and mortality globally. Aims: To assess the changes in the exhaled volatile organic compounds (VOCs) in patients with vs. without ischemic heart disease (IHD) confirmed by stress computed tomography myocardial perfusion (CTP) imaging. Objectives: IHD early diagnosis and management remain underestimated due to the poor diagnostic and therapeutic strategies including the primary prevention methods. Materials and Methods: A single center observational study included 80 participants. The participants were aged ≥ 40 years and given an informed written consent to participate in the study and publish any associated figures. Both groups, G1 (n = 31) with and G2 (n = 49) without post stress-induced myocardial perfusion defect, passed cardiologist consultation, anthropometric measurements, blood pressure and pulse rate measurements, echocardiography, real time breathing at rest into PTR-TOF-MS-1000, cardio-ankle vascular index, bicycle ergometry, and immediately after performing bicycle ergometry repeating the breathing analysis into the PTR-TOF-MS-1000, and after three minutes from the end of the second breath, repeat the breath into the PTR-TOF-MS-1000, then performing CTP. LASSO regression with nested cross-validation was used to find the association between the exhaled VOCs and existence of myocardial perfusion defect. Statistical processing performed with R programming language v4.2 and Python v.3.10 [^R], STATISTICA program v.12, and IBM SPSS v.28. Results: The VOCs specificity 77.6% [95% confidence interval (CI); 0.666; 0.889], sensitivity 83.9% [95% CI; 0.692; 0.964], and diagnostic accuracy; area under the curve (AUC) 83.8% [95% CI; 0.73655857; 0.91493173]. Whereas the AUC of the bicycle ergometry 50.7% [95% CI; 0.388; 0.625], specificity 53.1% [95% CI; 0.392; 0.673], and sensitivity 48.4% [95% CI; 0.306; 0.657]. Conclusions: The VOCs analysis appear to discriminate individuals with vs. without IHD using machine learning models. Other: The exhaled breath analysis reflects the myocardiocytes metabolomic signature and related intercellular homeostasis changes and regulation perturbances. Exhaled breath analysis poses a promise result to improve the diagnostic accuracy of the physical stress tests using machine learning models.
Collapse
Affiliation(s)
- Basheer Abdullah Marzoog
- World-Class Research Center «Digital Biodesign and Personalized Healthcare», I.M. Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya Street, 119991 Moscow, Russia
| | - Peter Chomakhidze
- World-Class Research Center «Digital Biodesign and Personalized Healthcare», I.M. Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya Street, 119991 Moscow, Russia
| | - Daria Gognieva
- World-Class Research Center «Digital Biodesign and Personalized Healthcare», I.M. Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya Street, 119991 Moscow, Russia
| | - Nina Vladimirovna Gagarina
- University Clinical Hospital Number 1, Radiology Department, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya Street, 119991 Moscow, Russia
| | - Artemiy Silantyev
- World-Class Research Center «Digital Biodesign and Personalized Healthcare», I.M. Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya Street, 119991 Moscow, Russia
| | - Alexander Suvorov
- World-Class Research Center «Digital Biodesign and Personalized Healthcare», I.M. Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya Street, 119991 Moscow, Russia
| | - Ekaterina Fominykha
- University Clinical Hospital Number 1, Radiology Department, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya Street, 119991 Moscow, Russia
| | - Malika Mustafina
- World-Class Research Center «Digital Biodesign and Personalized Healthcare», I.M. Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya Street, 119991 Moscow, Russia
| | - Ershova Natalya
- World-Class Research Center «Digital Biodesign and Personalized Healthcare», I.M. Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya Street, 119991 Moscow, Russia
| | - Aida Gadzhiakhmedova
- World-Class Research Center «Digital Biodesign and Personalized Healthcare», I.M. Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya Street, 119991 Moscow, Russia
| | - Philipp Kopylov
- World-Class Research Center «Digital Biodesign and Personalized Healthcare», I.M. Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya Street, 119991 Moscow, Russia
| |
Collapse
|
2
|
Lyu TD, Luo MP, Hu HW. Nomogram for predicting 10-year postoperative recurrence of stage I gastric cancer. Transl Cancer Res 2024; 13:5497-5508. [PMID: 39525020 PMCID: PMC11543093 DOI: 10.21037/tcr-24-692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/11/2024] [Indexed: 11/16/2024]
Abstract
Background With the advancement of various auxiliary examination techniques, the detection rate of stage I gastric cancer has gradually increased, and its clinical first-choice treatment is surgery. Although patients with stage I gastric cancer generally have a good postoperative survival rate, there is still a certain probability of recurrence. Given the large number of gastric cancer cases, there is a vast population of patients with stage I disease. We are aiming to identify the risk factors for postoperative recurrence of stage I gastric cancer and to establish a reliable predictive model to assess the risk of recurrence in the population for clinical practice. Methods In this retrospective cohort study, we utilized the Surveillance, Epidemiology, and End Results (SEER) database to investigate predictive factors for recurrence among stage I gastric cancer patients who underwent curative gastrectomy between 2000 and 2018. The cohort was divided into training and validation sets for the development and validation of a nomogram. Prognostic factors were evaluated through univariate and multivariate Cox regression analyses. Significant variables identified by the concordance index (C-index) and calibration plots were used to construct nomograms predicting the probability of 5- and 10-year recurrence. Results Risk factors for recurrence included sex, age, race, histology, tumor size, American Joint Committee on Cancer Tumor (AJCC T) and primary site, which were used to construct the nomogram. The C-index for both the training and validation cohorts indicated that the nomogram possessed good calibration and discrimination abilities in predicting the probability of 5- and 10-year recurrence after curative surgery for stage I gastric cancer. Conclusions This study established a reliable predictive model for recurrence following curative gastrectomy in stage I gastric cancer based on a population cohort. The findings of this study have the potential to significantly impact clinical practice by providing clinicians with tools for personalized risk assessment and for making informed treatment decisions.
Collapse
Affiliation(s)
- Tong-Dan Lyu
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Ming-Peng Luo
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Hao-Wei Hu
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Barbosa JMG, Filho NRA. The human volatilome meets cancer diagnostics: past, present, and future of noninvasive applications. Metabolomics 2024; 20:113. [PMID: 39375265 DOI: 10.1007/s11306-024-02180-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/22/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND Cancer is a significant public health problem, causing dozens of millions of deaths annually. New cancer screening programs are urgently needed for early cancer detection, as this approach can improve treatment outcomes and increase patient survival. The search for affordable, noninvasive, and highly accurate cancer detection methods revealed a valuable source of tumor-derived metabolites in the human metabolome through the exploration of volatile organic compounds (VOCs) in noninvasive biofluids. AIM OF REVIEW This review discusses volatilomics-based approaches for cancer detection using noninvasive biomatrices (breath, saliva, skin secretions, urine, feces, and earwax). We presented the historical background, the latest approaches, and the required stages for clinical validation of volatilomics-based methods, which are still lacking in terms of making noninvasive methods available and widespread to the population. Furthermore, insights into the usefulness and challenges of volatilomics in clinical implementation steps for each biofluid are highlighted. KEY SCIENTIFIC CONCEPTS OF REVIEW We outline the methodologies for using noninvasive biomatrices with up-and-coming clinical applications in cancer diagnostics. Several challenges and advantages associated with the use of each biomatrix are discussed, aiming at encouraging the scientific community to strengthen efforts toward the necessary steps to speed up the clinical translation of volatile-based cancer detection methods, as well as discussing in favor of (i) hybrid applications (i.e., using more than one biomatrix) to describe metabolite modulations that can be "cancer volatile fingerprints" and (ii) in multi-omics approaches integrating genomics, transcriptomics, and proteomics into the volatilomic data, which might be a breakthrough for diagnostic purposes, onco-pathway assessment, and biomarker validations.
Collapse
Affiliation(s)
- João Marcos G Barbosa
- Laboratório de Métodos de Extração E Separação (LAMES), Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Campus II - Samambaia, Goiânia, GO, 74690-900, Brazil.
| | - Nelson R Antoniosi Filho
- Laboratório de Métodos de Extração E Separação (LAMES), Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Campus II - Samambaia, Goiânia, GO, 74690-900, Brazil.
| |
Collapse
|
4
|
Parnas M, McLane-Svoboda AK, Cox E, McLane-Svoboda SB, Sanchez SW, Farnum A, Tundo A, Lefevre N, Miller S, Neeb E, Contag CH, Saha D. Precision detection of select human lung cancer biomarkers and cell lines using honeybee olfactory neural circuitry as a novel gas sensor. Biosens Bioelectron 2024; 261:116466. [PMID: 38850736 DOI: 10.1016/j.bios.2024.116466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 05/24/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Human breath contains biomarkers (odorants) that can be targeted for early disease detection. It is well known that honeybees have a keen sense of smell and can detect a wide variety of odors at low concentrations. Here, we employ honeybee olfactory neuronal circuitry to classify human lung cancer volatile biomarkers at different concentrations and their mixtures at concentration ranges relevant to biomarkers in human breath from parts-per-billion to parts-per-trillion. We also validated this brain-based sensing technology by detecting human non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) cell lines using the 'smell' of the cell cultures. Different lung cancer biomarkers evoked distinct spiking response dynamics in the honeybee antennal lobe neurons indicating that those neurons encoded biomarker-specific information. By investigating lung cancer biomarker-evoked population neuronal responses from the honeybee antennal lobe, we classified individual human lung cancer biomarkers successfully (88% success rate). When we mixed six lung cancer biomarkers at different concentrations to create 'synthetic lung cancer' vs. 'synthetic healthy' human breath, honeybee population neuronal responses were able to classify those complex breath mixtures reliably with exceedingly high accuracy (93-100% success rate with a leave-one-trial-out classification method). Finally, we employed this sensor to detect human NSCLC and SCLC cell lines and we demonstrated that honeybee brain olfactory neurons could distinguish between lung cancer vs. healthy cell lines and could differentiate between different NSCLC and SCLC cell lines successfully (82% classification success rate). These results indicate that the honeybee olfactory system can be used as a sensitive biological gas sensor to detect human lung cancer.
Collapse
Affiliation(s)
- Michael Parnas
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Autumn K McLane-Svoboda
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Elyssa Cox
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Summer B McLane-Svoboda
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Simon W Sanchez
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Alexander Farnum
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Anthony Tundo
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Noël Lefevre
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Sydney Miller
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Emily Neeb
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Christopher H Contag
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, MI, USA
| | - Debajit Saha
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Neuroscience Program, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
5
|
Liu X, Chen Q, Xu S, Wu J, Zhao J, He Z, Pan A, Wu J. A Prototype of Graphene E-Nose for Exhaled Breath Detection and Label-Free Diagnosis of Helicobacter Pylori Infection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401695. [PMID: 38965802 PMCID: PMC11425842 DOI: 10.1002/advs.202401695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/10/2024] [Indexed: 07/06/2024]
Abstract
Helicobacter pylori (HP), a common microanaerobic bacteria that lives in the human mouth and stomach, is reported to infect ≈50% of the global population. The current diagnostic methods for HP are either invasive, time-consuming, or harmful. Therefore, a noninvasive and label-free HP diagnostic method needs to be developed urgently. Herein, reduced graphene oxide (rGO) is composited with different metal-based materials to construct a graphene-based electronic nose (e-nose), which exhibits excellent sensitivity and cross-reactive response to several gases in exhaled breath (EB). Principal component analysis (PCA) shows that four typical types of gases in EB can be well discriminated. Additionally, the potential of the e-nose in label-free detection of HP infection is demonstrated through the measurement and analysis of EB samples. Furthermore, a prototype of an e-nose device is designed and constructed for automatic EB detection and HP diagnosis. The accuracy of the prototype machine integrated with the graphene-based e-nose can reach 92% and 91% in the training and validation sets, respectively. These results demonstrate that the highly sensitive graphene-based e-nose has great potential for the label-free diagnosis of HP and may become a novel tool for non-invasive disease screening and diagnosis.
Collapse
Affiliation(s)
- Xuemei Liu
- Lab of Nanomedicine and Omic‐based DiagnosticsInstitute of Analytical ChemistryDepartment of ChemistryZhejiang UniversityHangzhou310058China
| | - Qiaofen Chen
- Lab of Nanomedicine and Omic‐based DiagnosticsInstitute of Analytical ChemistryDepartment of ChemistryZhejiang UniversityHangzhou310058China
- Will‐think Sensing Technology Co., LTDHangzhou310030China
| | - Shiyuan Xu
- Lab of Nanomedicine and Omic‐based DiagnosticsInstitute of Analytical ChemistryDepartment of ChemistryZhejiang UniversityHangzhou310058China
| | - Jiaying Wu
- Lab of Nanomedicine and Omic‐based DiagnosticsInstitute of Analytical ChemistryDepartment of ChemistryZhejiang UniversityHangzhou310058China
| | - Jingwen Zhao
- Lab of Nanomedicine and Omic‐based DiagnosticsInstitute of Analytical ChemistryDepartment of ChemistryZhejiang UniversityHangzhou310058China
| | - Zhengfu He
- Department of Thoracic SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
| | - Aiwu Pan
- Department of Internal MedicineThe Second Affiliated Hospital of Zhejiang UniversityHangzhou310003China
| | - Jianmin Wu
- Lab of Nanomedicine and Omic‐based DiagnosticsInstitute of Analytical ChemistryDepartment of ChemistryZhejiang UniversityHangzhou310058China
| |
Collapse
|
6
|
Ma TT, Chang Z, Zhang N, Xu H. Application of electronic nose technology in the diagnosis of gastrointestinal diseases: a review. J Cancer Res Clin Oncol 2024; 150:401. [PMID: 39192027 PMCID: PMC11349790 DOI: 10.1007/s00432-024-05925-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Electronic noses (eNoses) are electronic bionic olfactory systems that use sensor arrays to produce response patterns to different odors, thereby enabling the identification of various scents. Gastrointestinal diseases have a high incidence rate and occur in 9 out of 10 people in China. Gastrointestinal diseases are characterized by a long course of symptoms and are associated with treatment difficulties and recurrence. This review offers a comprehensive overview of volatile organic compounds, with a specific emphasis on those detected via the eNose system. Furthermore, this review describes the application of bionic eNose technology in the diagnosis and screening of gastrointestinal diseases based on recent local and international research progress and advancements. Moreover, the prospects of bionic eNose technology in the field of gastrointestinal disease diagnostics are discussed.
Collapse
Affiliation(s)
- Tan-Tan Ma
- Department of Gastroenterology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Zhiyong Chang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
| | - Nan Zhang
- Department of Gastroenterology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.
| | - Hong Xu
- Department of Gastroenterology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
7
|
Mei H, Peng J, Wang T, Zhou T, Zhao H, Zhang T, Yang Z. Overcoming the Limits of Cross-Sensitivity: Pattern Recognition Methods for Chemiresistive Gas Sensor Array. NANO-MICRO LETTERS 2024; 16:269. [PMID: 39141168 PMCID: PMC11324646 DOI: 10.1007/s40820-024-01489-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/21/2024] [Indexed: 08/15/2024]
Abstract
As information acquisition terminals for artificial olfaction, chemiresistive gas sensors are often troubled by their cross-sensitivity, and reducing their cross-response to ambient gases has always been a difficult and important point in the gas sensing area. Pattern recognition based on sensor array is the most conspicuous way to overcome the cross-sensitivity of gas sensors. It is crucial to choose an appropriate pattern recognition method for enhancing data analysis, reducing errors and improving system reliability, obtaining better classification or gas concentration prediction results. In this review, we analyze the sensing mechanism of cross-sensitivity for chemiresistive gas sensors. We further examine the types, working principles, characteristics, and applicable gas detection range of pattern recognition algorithms utilized in gas-sensing arrays. Additionally, we report, summarize, and evaluate the outstanding and novel advancements in pattern recognition methods for gas identification. At the same time, this work showcases the recent advancements in utilizing these methods for gas identification, particularly within three crucial domains: ensuring food safety, monitoring the environment, and aiding in medical diagnosis. In conclusion, this study anticipates future research prospects by considering the existing landscape and challenges. It is hoped that this work will make a positive contribution towards mitigating cross-sensitivity in gas-sensitive devices and offer valuable insights for algorithm selection in gas recognition applications.
Collapse
Affiliation(s)
- Haixia Mei
- Key Lab Intelligent Rehabil & Barrier Free Disable (Ministry of Education), Changchun University, Changchun, 130022, People's Republic of China
| | - Jingyi Peng
- Key Lab Intelligent Rehabil & Barrier Free Disable (Ministry of Education), Changchun University, Changchun, 130022, People's Republic of China
| | - Tao Wang
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Tingting Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, People's Republic of China
| | - Hongran Zhao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, People's Republic of China
| | - Tong Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, People's Republic of China.
| | - Zhi Yang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
8
|
Lv W, Shi W, Zhang Z, Ru L, Feng W, Tang H, Wang X. Identification of volatile biomarkers for lung cancer from different histological sources: A comprehensive study. Anal Biochem 2024; 690:115527. [PMID: 38565333 DOI: 10.1016/j.ab.2024.115527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
The identification of noninvasive volatile biomarkers for lung cancer is a significant clinical challenge. Through in vitro studies, the recognition of altered metabolism in cell volatile organic compound (VOC) emitting profile, along with the occurrence of oncogenesis, provides insight into the biochemical pathways involved in the production and metabolism of lung cancer volatile biomarkers. In this research, for the first time, a comprehensive comparative analysis of the volatile metabolites in NSCLS cells (A549), SCLC cells (H446), lung normal cells (BEAS-2B), as well as metabolites in both the oxidative stress (OS) group and control group. Specifically, the combination of eleven VOCs, including n-dodecane, acetaldehyde, isopropylbenzene, p-ethyltoluene and cis-1,3-dichloropropene, exhibited potential as volatile biomarkers for lung cancer originating from two different histological sources. Furthermore, the screening process in A549 cell lines resulted in the identification of three exclusive biomarkers, isopropylbenzene, formaldehyde and bromoform. Similarly, the exclusive biomarkers 1,2,4-trimethylbenzene, p-ethyltoluene, and cis-1,3-dichloropropene were present in the H446 cell line. Additionally, significant changes in trans-2-pentene, acetaldehyde, 1,2,4-trimethylbenzene, and bromoform were observed, indicating a strong association with OS. These findings highlight the potential of volatile biomarkers profiling as a means of noninvasive identification for lung cancer diagnosis.
Collapse
Affiliation(s)
- Wei Lv
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Wenmin Shi
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Zhijuan Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou, 510632, China.
| | - Lihua Ru
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Hanxiao Tang
- College of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xiangqi Wang
- The Third Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450046, China
| |
Collapse
|
9
|
Mal S, Chakraborty S, Mahapatra M, Pakeeraiah K, Das S, Paidesetty SK, Roy P. Tackling breast cancer with gold nanoparticles: twinning synthesis and particle engineering with efficacy. NANOSCALE ADVANCES 2024; 6:2766-2812. [PMID: 38817429 PMCID: PMC11134266 DOI: 10.1039/d3na00988b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/10/2024] [Indexed: 06/01/2024]
Abstract
The World Health Organization identifies breast cancer as the most prevalent cancer despite predominantly affecting women. Surgery, hormonal therapy, chemotherapy, and radiation therapy are the current treatment modalities. Site-directed nanotherapeutics, engineered with multidimensional functionality are now the frontrunners in breast cancer diagnosis and treatment. Gold nanoparticles with their unique colloidal, optical, quantum, magnetic, mechanical, and electrical properties have become the most valuable weapon in this arsenal. Their advantages include facile modulation of shape and size, a high degree of reproducibility and stability, biocompatibility, and ease of particle engineering to induce multifunctionality. Additionally, the surface plasmon oscillation and high atomic number of gold provide distinct advantages for tailor-made diagnosis, therapy or theranostic applications in breast cancer such as photothermal therapy, radiotherapy, molecular labeling, imaging, and sensing. Although pre-clinical and clinical data are promising for nano-dimensional gold, their clinical translation is hampered by toxicity signs in major organs like the liver, kidneys and spleen. This has instigated global scientific brainstorming to explore feasible particle synthesis and engineering techniques to simultaneously improve the efficacy and versatility and widen the safety window of gold nanoparticles. The present work marks the first study on gold nanoparticle design and maneuvering techniques, elucidating their impact on the pharmacodynamics character and providing a clear-cut scientific roadmap for their fast-track entry into clinical practice.
Collapse
Affiliation(s)
- Suvadeep Mal
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Campus-2, Ghatikia, Kalinga Nagar Bhubaneswar Odisha 751003 India
| | | | - Monalisa Mahapatra
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Campus-2, Ghatikia, Kalinga Nagar Bhubaneswar Odisha 751003 India
| | - Kakarla Pakeeraiah
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Campus-2, Ghatikia, Kalinga Nagar Bhubaneswar Odisha 751003 India
| | - Suvadra Das
- Basic Science and Humanities Department, University of Engineering and Management Action Area III, B/5, Newtown Kolkata West Bengal 700160 India
| | - Sudhir Kumar Paidesetty
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Campus-2, Ghatikia, Kalinga Nagar Bhubaneswar Odisha 751003 India
| | - Partha Roy
- GITAM School of Pharmacy, GITAM (Deemed to be University) Vishakhapatnam 530045 India
| |
Collapse
|
10
|
Li L, Wen X, Li X, Yan Y, Wang J, Zhao X, Tian Y, Ling R, Duan Y. Identifying potential breath biomarkers for early diagnosis of papillary thyroid cancer based on solid-phase microextraction gas chromatography-high resolution mass spectrometry with metabolomics. Metabolomics 2024; 20:59. [PMID: 38773019 DOI: 10.1007/s11306-024-02119-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/20/2024] [Indexed: 05/23/2024]
Abstract
INTRODUCTION Thyroid cancer incidence rate has increased substantially worldwide in recent years. Fine needle aspiration biopsy (FNAB) is currently the golden standard of thyroid cancer diagnosis, which however, is invasive and costly. In contrast, breath analysis is a non-invasive, safe and simple sampling method combined with a promising metabolomics approach, which is suitable for early cancer diagnosis in high volume population. OBJECTIVES This study aims to achieve a more comprehensive and definitive exhaled breath metabolism profile in papillary thyroid cancer patients (PTCs). METHODS We studied both end-tidal and mixed expiratory breath, solid-phase microextraction gas chromatography coupled with high resolution mass spectrometry (SPME-GC-HRMS) was used to analyze the breath samples. Multivariate combined univariate analysis was applied to identify potential breath biomarkers. RESULTS The biomarkers identified in end-tidal and mixed expiratory breath mainly included alkanes, olefins, enols, enones, esters, aromatic compounds, and fluorine and chlorine containing organic compounds. The area under the curve (AUC) values of combined biomarkers were 0.974 (sensitivity: 96.1%, specificity: 90.2%) and 0.909 (sensitivity: 98.0%, specificity: 74.5%), respectively, for the end-tidal and mixed expiratory breath, indicating of reliability of the sampling and analysis method CONCLUSION: This work not only successfully established a standard metabolomic approach for early diagnosis of PTC, but also revealed the necessity of using both the two breath types for comprehensive analysis of the biomarkers.
Collapse
Affiliation(s)
- Lan Li
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Xinxin Wen
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Xian Li
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Yaqi Yan
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Jiayu Wang
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Xuyang Zhao
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Yonghui Tian
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Rui Ling
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, Shaanxi, China.
| |
Collapse
|
11
|
Zhou M, Wang Q, Lu X, Zhang P, Yang R, Chen Y, Xia J, Chen D. Exhaled breath and urinary volatile organic compounds (VOCs) for cancer diagnoses, and microbial-related VOC metabolic pathway analysis: a systematic review and meta-analysis. Int J Surg 2024; 110:1755-1769. [PMID: 38484261 PMCID: PMC10942174 DOI: 10.1097/js9.0000000000000999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/04/2023] [Indexed: 03/17/2024]
Abstract
BACKGROUND The gradual evolution of the detection and quantification of volatile organic compounds (VOCs) has been instrumental in cancer diagnosis. The primary objective of this study was to assess the diagnostic potential of exhaled breath and urinary VOCs in cancer detection. As VOCs are indicative of tumor and human metabolism, our work also sought to investigate the metabolic pathways linked to the development of cancerous tumors. MATERIALS AND METHODS An electronic search was performed in the PubMed database. Original studies on VOCs within exhaled breath and urine for cancer detection with a control group were included. A meta-analysis was conducted using a bivariate model to assess the sensitivity and specificity of the VOCs for cancer detection. Fagan's nomogram was designed to leverage the findings from our diagnostic analysis for the purpose of estimating the likelihood of cancer in patients. Ultimately, MetOrigin was employed to conduct an analysis of the metabolic pathways associated with VOCs in relation to both human and/or microbiota. RESULTS The pooled sensitivity, specificity and the area under the curve for cancer screening utilizing exhaled breath and urinary VOCs were determined to be 0.89, 0.88, and 0.95, respectively. A pretest probability of 51% can be considered as the threshold for diagnosing cancers with VOCs. As the estimated pretest probability of cancer exceeds 51%, it becomes more appropriate to emphasize the 'ruling in' approach. Conversely, when the estimated pretest probability of cancer falls below 51%, it is more suitable to emphasize the 'ruling out' approach. A total of 14, 14, 6, and 7 microbiota-related VOCs were identified in relation to lung, colorectal, breast, and liver cancers, respectively. The enrichment analysis of volatile metabolites revealed a significant enrichment of butanoate metabolism in the aforementioned tumor types. CONCLUSIONS The analysis of exhaled breath and urinary VOCs showed promise for cancer screening. In addition, the enrichment analysis of volatile metabolites revealed a significant enrichment of butanoate metabolism in four tumor types, namely lung, colorectum, breast and liver. These findings hold significant implications for the prospective clinical application of multiomics correlation in disease management and the exploration of potential therapeutic targets.
Collapse
Affiliation(s)
- Min Zhou
- Department of Breast Surgery, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi Maternity and Child Health Care Hospital
| | - Qinghua Wang
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University
| | - Xinyi Lu
- Department of Breast Surgery, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi Maternity and Child Health Care Hospital
| | - Ping Zhang
- Department of Breast Surgery, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi Maternity and Child Health Care Hospital
| | - Rui Yang
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University
| | - Yu Chen
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University
| | - Jiazeng Xia
- Department of General Surgery and Translational Medicine Center, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Jiangnan University Medical Center, Wuxi, People’s Republic of China
| | - Daozhen Chen
- Department of Breast Surgery, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi Maternity and Child Health Care Hospital
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University
| |
Collapse
|
12
|
Carapito Â, Roque ACA, Carvalho F, Pinto J, Guedes de Pinho P. Exploiting volatile fingerprints for bladder cancer diagnosis: A scoping review of metabolomics and sensor-based approaches. Talanta 2024; 268:125296. [PMID: 37839328 DOI: 10.1016/j.talanta.2023.125296] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/26/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
Bladder cancer (BC) represents a significant global health concern, for which early detection is essential to improve patient outcomes. This review evaluates the potential of the urinary volatile organic compounds (VOCs) as biomarkers for detecting and staging BC. The methods used include gas chromatography-mass spectrometry (GC-MS)-based metabolomics and electronic-nose (e-nose) sensors. The GC-MS studies that have been published reveal diverse results in terms of diagnostic performance. The sensitivities range from 27 % to an impressive 97 %, while specificities vary between 43 % and 94 %. Furthermore, the accuracies reported in these studies range from 80 to 89 %. In the urine of BC patients, a total of 80 VOCs were discovered to be significantly altered when compared to controls. These VOCs encompassed a variety of chemical classes such as alcohols, aldehydes, alkanes, aromatic compounds, fatty acids, ketones, and terpenoids, among others. Conversely, e-nose-based studies displayed sensitivities from 60 to 100 %, specificities from 53 to 96 %, and accuracies from 65 to 97 %. Interestingly, conductive polymer-based sensors performed better, followed by metal oxide semiconductor and optical sensors. GC-MS studies have shown improved performance in detecting early stages and low-grade tumors, providing valuable insights into staging. Based on these findings, VOC-based diagnostic tools hold great promise for early BC detection and staging. Further studies are needed to validate biomarkers and their classification performance. In the future, advancements in VOC profiling technologies may significantly contribute to improving the overall survival and quality of life for BC patients.
Collapse
Affiliation(s)
- Ângela Carapito
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University of Porto, 4050-313, Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Lab. of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| | - Ana Cecília A Roque
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University of Porto, 4050-313, Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Lab. of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Joana Pinto
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University of Porto, 4050-313, Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Lab. of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Paula Guedes de Pinho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University of Porto, 4050-313, Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Lab. of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
13
|
Kopeliovich MV, Petrushan MV, Matukhno AE, Lysenko LV. Towards detection of cancer biomarkers in human exhaled air by transfer-learning-powered analysis of odor-evoked calcium activity in rat olfactory bulb. Heliyon 2024; 10:e20173. [PMID: 38173493 PMCID: PMC10761347 DOI: 10.1016/j.heliyon.2023.e20173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 09/04/2023] [Accepted: 09/13/2023] [Indexed: 01/05/2024] Open
Abstract
Detection of volatile organic compounds in exhaled air is a promising approach to non-invasive and scalable gastric cancer screening. This work proposes a new approach for the detection of volatile organic compounds by analyzing odor-evoked calcium responses in the rat olfactory bulb. We estimate the feasibility of gastric cancer biomarker detection added to the exhaled air of healthy participants. Our detector consists of a convolutional encoder and a similarity-based classifier over encoder outputs. To minimize overfitting on a small available training set, we involve a pre-training where the encoder is trained on synthetic data representing spatiotemporal patterns similar to real calcium responses in the olfactory bulb. We estimate the classification accuracy of exhaled air samples by matching their encodings with encodings of calibration samples of two classes: 1) exhaled air and 2) a mixture of exhaled air with the cancer biomarker. On our data, the accuracy increased from 0.68 on real data up to 0.74 if pre-training on synthetic data is involved. Our work is focused on proving the feasibility of proposed new approach rather than on comparing its efficiency with existing methods. Such detection is often performed with an electronic nose, but its output becomes unstable over time due to a sensor drift. In contrast to the electronic nose, rats can robustly detect low concentrations of biomarkers over lifetime. The feasibility of gastric cancer biomarker detection in exhaled air by bio-hybrid system is shown. Pre-training of neural models for images analysis increases the accuracy of detection.
Collapse
Affiliation(s)
| | - Mikhail V. Petrushan
- WiznTech LLC, Rostov-on-Don, 344082, Russia
- Research Center for Neurotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia
| | - Aleksey E. Matukhno
- Research Center for Neurotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia
| | - Larisa V. Lysenko
- Research Center for Neurotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia
- Department of Physics, Southern Federal University, Rostov-on-Don, 344090, Russia
| |
Collapse
|
14
|
Bajo-Fernández M, Souza-Silva ÉA, Barbas C, Rey-Stolle MF, García A. GC-MS-based metabolomics of volatile organic compounds in exhaled breath: applications in health and disease. A review. Front Mol Biosci 2024; 10:1295955. [PMID: 38298553 PMCID: PMC10828970 DOI: 10.3389/fmolb.2023.1295955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/05/2023] [Indexed: 02/02/2024] Open
Abstract
Exhaled breath analysis, with particular emphasis on volatile organic compounds, represents a growing area of clinical research due to its obvious advantages over other diagnostic tests. Numerous pathologies have been extensively investigated for the identification of specific biomarkers in exhalates through metabolomics. However, the transference of breath tests to clinics remains limited, mainly due to deficiency in methodological standardization. Critical steps include the selection of breath sample types, collection devices, and enrichment techniques. GC-MS is the reference analytical technique for the analysis of volatile organic compounds in exhalates, especially during the biomarker discovery phase in metabolomics. This review comprehensively examines and compares metabolomic studies focusing on cancer, lung diseases, and infectious diseases. In addition to delving into the experimental designs reported, it also provides a critical discussion of the methodological aspects, ranging from the experimental design and sample collection to the identification of potential pathology-specific biomarkers.
Collapse
Affiliation(s)
- María Bajo-Fernández
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Érica A. Souza-Silva
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Departmento de Química, Universidade Federal de São Paulo (UNIFESP), Diadema, Brazil
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Ma Fernanda Rey-Stolle
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Antonia García
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| |
Collapse
|
15
|
Marzoog B. Breathomics Detect the Cardiovascular Disease: Delusion or Dilution of the Metabolomic Signature. Curr Cardiol Rev 2024; 20:e020224226647. [PMID: 38318837 PMCID: PMC11327829 DOI: 10.2174/011573403x283768240124065853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
Volatile organic compounds (VOCs) can be subdivided into exogenous and endogenous categories based on their origin. Analyzing the endogenous VOCs can provide insights into maintaining the internal organs' homeostasis. Despite the ongoing development and the current understanding, studies have suggested a link between cardiovascular metabolic alterations in patients with ischemic heart disease and elevated levels of ethane and isoprene detectable through exhaled breath analysis. Conversely, patients with chronic heart failure exhibit elevated acetone and pentane in their exhaled air. These substances originate from disturbances in the heart tissue, including cellular and subcellular modulations. Hypothetically, ethane levels in the exhaled breath analysis can demonstrate the severity of ischemic heart disease and, consequently, the risk of death in the next 10 years due to cardiovascular disease (CVD). Real-time direct mass spectrometry is the preferred method for assessing VOCs in exhaled breath analysis. The accuracy of this analysis depends on several factors, including the selection of the relevant breath fraction, the type of breath collection container (if used), and the pre-concentration technique.
Collapse
Affiliation(s)
- Basheer Marzoog
- World-Class Research Center, Digital Biodesign and Personalized Healthcare, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
16
|
Marzoog BA. Volatilome is Inflammasome- and Lipidome-dependent in Ischemic Heart Disease. Curr Cardiol Rev 2024; 20:e190724232038. [PMID: 39039680 PMCID: PMC11440324 DOI: 10.2174/011573403x302934240715113647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/07/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024] Open
Abstract
Ischemic heart disease (IHD) is a pathology of global interest because it is widespread and has high morbidity and mortality. IHD pathophysiology involves local and systemic changes, including lipidomic, proteomic, and inflammasome changes in serum plasma. The modulation in these metabolites is viable in the pre-IHD, during the IHD period, and after management of IHD in all forms, including lifestyle changes and pharmacological and surgical interventions. Therefore, these biochemical markers (metabolite changes; lipidome, inflammasome, proteome) can be used for early prevention, treatment strategy, assessment of the patient's response to the treatment, diagnosis, and determination of prognosis. Lipidomic changes are associated with the severity of inflammation and disorder in the lipidome component, and correlation is related to disturbance of inflammasome components. Main inflammasome biomarkers that are associated with coronary artery disease progression include IL-1β, Nucleotide-binding oligomerization domain- like receptor family pyrin domain containing 3 (NLRP3), and caspase-1. Meanwhile, the main lipidome biomarkers related to coronary artery disease development involve plasmalogen lipids, lysophosphatidylethanolamine (LPE), and phosphatidylethanolamine (PE). The hypothesis of this paper is that the changes in the volatile organic compounds associated with inflammasome and lipidome changes in patients with coronary artery disease are various and depend on the severity and risk factor for death from cardiovascular disease in the time span of 10 years. In this paper, we explore the potential origin and pathway in which the lipidome and or inflammasome molecules could be excreted in the exhaled air in the form of volatile organic compounds (VOCs).
Collapse
Affiliation(s)
- Basheer Abdullah Marzoog
- World-Class Research Center «Digital Biodesign and Personalized Healthcare», I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
17
|
Le T, Priefer R. Detection technologies of volatile organic compounds in the breath for cancer diagnoses. Talanta 2023; 265:124767. [PMID: 37327663 DOI: 10.1016/j.talanta.2023.124767] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/18/2023]
Abstract
Although there are new approaches in both cancer treatment and diagnosis, overall mortality is a major concern. New technologies have attempted to look at breath volatile organic compounds (VOCs) detection to diagnose cancer. Gas Chromatography and Mass Spectrometry (GC - MS) have remained the gold standard of VOC analysis for decades, but it has limitations in differentiating VOCs between cancer subtypes. To increase efficacy and accuracy, new methods to analyze these breath VOCs have been introduced, such as Solid Phase Microextraction/Gas Chromatography-Mass Spectrometry (SPME/GC-MS), Selected Ion Flow Tube - Mass Spectrometry (SIFT-MS), Proton Transfer Reaction - Mass Spectrometry (PRT-MS), Ion Mobility Spectrometry (IMS), and Colorimetric Sensors. This article highlights new technologies that have been studied and applied in the detection and quantification of breath VOCs for possible cancer diagnoses.
Collapse
Affiliation(s)
- Tien Le
- Massachusetts College of Pharmacy and Health Sciences University, Boston, Ma, United States
| | - Ronny Priefer
- Massachusetts College of Pharmacy and Health Sciences University, Boston, Ma, United States.
| |
Collapse
|
18
|
Moura PC, Ribeiro PA, Raposo M, Vassilenko V. The State of the Art on Graphene-Based Sensors for Human Health Monitoring through Breath Biomarkers. SENSORS (BASEL, SWITZERLAND) 2023; 23:9271. [PMID: 38005657 PMCID: PMC10674474 DOI: 10.3390/s23229271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
The field of organic-borne biomarkers has been gaining relevance due to its suitability for diagnosing pathologies and health conditions in a rapid, accurate, non-invasive, painless and low-cost way. Due to the lack of analytical techniques with features capable of analysing such a complex matrix as the human breath, the academic community has focused on developing electronic noses based on arrays of gas sensors. These sensors are assembled considering the excitability, sensitivity and sensing capacities of a specific nanocomposite, graphene. In this way, graphene-based sensors can be employed for a vast range of applications that vary from environmental to medical applications. This review work aims to gather the most relevant published papers under the scope of "Graphene sensors" and "Biomarkers" in order to assess the state of the art in the field of graphene sensors for the purposes of biomarker identification. During the bibliographic search, a total of six pathologies were identified as the focus of the work. They were lung cancer, gastric cancer, chronic kidney diseases, respiratory diseases that involve inflammatory processes of the airways, like asthma and chronic obstructive pulmonary disease, sleep apnoea and diabetes. The achieved results, current development of the sensing sensors, and main limitations or challenges of the field of graphene sensors are discussed throughout the paper, as well as the features of the experiments addressed.
Collapse
Affiliation(s)
| | | | | | - Valentina Vassilenko
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-NOVA), Department of Physics, NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-NOVA, 2829-516 Caparica, Portugal; (P.C.M.); (P.A.R.); (M.R.)
| |
Collapse
|
19
|
Vassilenko V, Moura PC, Raposo M. Diagnosis of Carcinogenic Pathologies through Breath Biomarkers: Present and Future Trends. Biomedicines 2023; 11:3029. [PMID: 38002028 PMCID: PMC10669878 DOI: 10.3390/biomedicines11113029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The assessment of volatile breath biomarkers has been targeted with a lot of interest by the scientific and medical communities during the past decades due to their suitability for an accurate, painless, non-invasive, and rapid diagnosis of health states and pathological conditions. This paper reviews the most relevant bibliographic sources aiming to gather the most pertinent volatile organic compounds (VOCs) already identified as putative cancer biomarkers. Here, a total of 265 VOCs and the respective bibliographic sources are addressed regarding their scientifically proven suitability to diagnose a total of six carcinogenic diseases, namely lung, breast, gastric, colorectal, prostate, and squamous cell (oesophageal and laryngeal) cancers. In addition, future trends in the identification of five other forms of cancer, such as bladder, liver, ovarian, pancreatic, and thyroid cancer, through perspective volatile breath biomarkers are equally presented and discussed. All the results already achieved in the detection, identification, and quantification of endogenous metabolites produced by all kinds of normal and abnormal processes in the human body denote a promising and auspicious future for this alternative diagnostic tool, whose future passes by the development and employment of newer and more accurate collection and analysis techniques, and the certification for utilisation in real clinical scenarios.
Collapse
Affiliation(s)
- Valentina Vassilenko
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-UNL, 2829-516 Caparica, Portugal;
| | - Pedro Catalão Moura
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-UNL, 2829-516 Caparica, Portugal;
| | | |
Collapse
|
20
|
Mezmale L, Leja M, Lescinska AM, Pčolkins A, Kononova E, Bogdanova I, Polaka I, Stonans I, Kirsners A, Ager C, Mochalski P. Identification of Volatile Markers of Colorectal Cancer from Tumor Tissues Using Volatilomic Approach. Molecules 2023; 28:5990. [PMID: 37630241 PMCID: PMC10459111 DOI: 10.3390/molecules28165990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
The human body releases numerous volatile organic compounds (VOCs) through tissues and various body fluids, including breath. These compounds form a specific chemical profile that may be used to detect the colorectal cancer CRC-related changes in human metabolism and thereby diagnose this type of cancer. The main goal of this study was to investigate the volatile signatures formed by VOCs released from the CRC tissue. For this purpose, headspace solid-phase microextraction gas chromatography-mass spectrometry was applied. In total, 163 compounds were detected. Both cancerous and non-cancerous tissues emitted 138 common VOCs. Ten volatiles (2-butanone; dodecane; benzaldehyde; pyridine; octane; 2-pentanone; toluene; p-xylene; n-pentane; 2-methyl-2-propanol) occurred in at least 90% of both types of samples; 1-propanol in cancer tissue (86% in normal one), acetone in normal tissue (82% in cancer one). Four compounds (1-propanol, pyridine, isoprene, methyl thiolacetate) were found to have increased emissions from cancer tissue, whereas eleven showed reduced release from this type of tissue (2-butanone; 2-pentanone; 2-methyl-2-propanol; ethyl acetate; 3-methyl-1-butanol; d-limonene; tetradecane; dodecanal; tridecane; 2-ethyl-1-hexanol; cyclohexanone). The outcomes of this study provide evidence that the VOCs signature of the CRC tissue is altered by the CRC. The volatile constituents of this distinct signature can be emitted through exhalation and serve as potential biomarkers for identifying the presence of CRC. Reliable identification of the VOCs associated with CRC is essential to guide and tune the development of advanced sensor technologies that can effectively and sensitively detect and quantify these markers.
Collapse
Affiliation(s)
- Linda Mezmale
- Institute of Clinical and Preventive Medicine, Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia; (M.L.); (A.M.L.); (A.P.); (E.K.); (I.B.); (I.P.); (I.S.); (P.M.)
- Riga East University Hospital, LV-1038 Riga, Latvia
- Faculty of Residency, Riga Stradins University, LV-1007 Riga, Latvia
| | - Marcis Leja
- Institute of Clinical and Preventive Medicine, Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia; (M.L.); (A.M.L.); (A.P.); (E.K.); (I.B.); (I.P.); (I.S.); (P.M.)
- Riga East University Hospital, LV-1038 Riga, Latvia
- Digestive Diseases Centre GASTRO, LV-1079 Riga, Latvia
| | - Anna Marija Lescinska
- Institute of Clinical and Preventive Medicine, Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia; (M.L.); (A.M.L.); (A.P.); (E.K.); (I.B.); (I.P.); (I.S.); (P.M.)
- Riga East University Hospital, LV-1038 Riga, Latvia
| | - Andrejs Pčolkins
- Institute of Clinical and Preventive Medicine, Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia; (M.L.); (A.M.L.); (A.P.); (E.K.); (I.B.); (I.P.); (I.S.); (P.M.)
- Riga East University Hospital, LV-1038 Riga, Latvia
| | - Elina Kononova
- Institute of Clinical and Preventive Medicine, Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia; (M.L.); (A.M.L.); (A.P.); (E.K.); (I.B.); (I.P.); (I.S.); (P.M.)
- Faculty of Residency, Riga Stradins University, LV-1007 Riga, Latvia
| | - Inga Bogdanova
- Institute of Clinical and Preventive Medicine, Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia; (M.L.); (A.M.L.); (A.P.); (E.K.); (I.B.); (I.P.); (I.S.); (P.M.)
- Riga East University Hospital, LV-1038 Riga, Latvia
| | - Inese Polaka
- Institute of Clinical and Preventive Medicine, Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia; (M.L.); (A.M.L.); (A.P.); (E.K.); (I.B.); (I.P.); (I.S.); (P.M.)
| | - Ilmars Stonans
- Institute of Clinical and Preventive Medicine, Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia; (M.L.); (A.M.L.); (A.P.); (E.K.); (I.B.); (I.P.); (I.S.); (P.M.)
| | - Arnis Kirsners
- Institute of Clinical and Preventive Medicine, Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia; (M.L.); (A.M.L.); (A.P.); (E.K.); (I.B.); (I.P.); (I.S.); (P.M.)
| | - Clemens Ager
- Institute for Breath Research, University of Innsbruck, 6020 Dornbirn, Austria;
| | - Pawel Mochalski
- Institute of Clinical and Preventive Medicine, Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia; (M.L.); (A.M.L.); (A.P.); (E.K.); (I.B.); (I.P.); (I.S.); (P.M.)
- Institute for Breath Research, University of Innsbruck, 6020 Dornbirn, Austria;
- Institute of Chemistry, Jan Kochanowski University of Kielce, 25-369 Kielce, Poland
| |
Collapse
|
21
|
Ling LX, Ouyang Y, Hu Y. Research trends on nanomaterials in gastric cancer: a bibliometric analysis from 2004 to 2023. J Nanobiotechnology 2023; 21:248. [PMID: 37533041 PMCID: PMC10394877 DOI: 10.1186/s12951-023-02033-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Gastric cancer is one of the leading causes of cancer-related deaths worldwide. In recent years, an increasing number of studies aimed at designing and developing nanomaterials for use in diagnosing and treating gastric cancer have been conducted. In this study, we aimed to comprehensively assess the current status and trends of the research on the application of nanomaterials in gastric cancer through a bibliometric analysis. METHODS Studies focusing on nanomaterials and gastric cancer were retrieved from the Web of Science Core Collection database and relevant articles were selected for inclusion in the study according to the inclusion criteria. Bibliometric and visual analysis of the included publications was performed using VOSviewer and CiteSpace. RESULTS A total of 793 studies were included. An increase in annual publications was observed from 2004 to 2023. China, Iran and the USA were the dominant countries in this field, accounting for 66.1%, 11.5% and 7.2% of publications, respectively. Shanghai Jiao Tong University and Cui DX were the most influential institution and author, respectively. The International Journal of Nanomedicine was the most prolific journal; Biomaterials was the most cited and most cocited journal. Nanomaterial-related drug delivery and anticancer mechanisms were found to be the most widely researched aspects, and green synthesis and anticancer mechanisms are recent research hotspots. CONCLUSION In this study, we summarized the characteristics of publications and identified the most influential countries, institutions, authors, journals, hot topics and trends regarding the application of nanomaterials in gastric cancer.
Collapse
Affiliation(s)
- Li-Xiang Ling
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, 17 Yong Waizheng Street, Donghu District, Nanchang, 330006, Jiangxi Province, China
| | - Yaobin Ouyang
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, 17 Yong Waizheng Street, Donghu District, Nanchang, 330006, Jiangxi Province, China
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Yi Hu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, 17 Yong Waizheng Street, Donghu District, Nanchang, 330006, Jiangxi Province, China.
- Department of Surgery at the Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Shatin NT, Hong Kong, China.
| |
Collapse
|
22
|
Zhao H, Zhao H, Wang J, Ren J, Yao J, Li Y, Zhang R. Bovine Omasum-Inspired Interfacial Carbon-Based Nanocomposite for Saliva Metabolic Screening of Gastric Cancer. Anal Chem 2023; 95:11296-11305. [PMID: 37458487 DOI: 10.1021/acs.analchem.3c01358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Gastric cancer is one of the most common malignant digestive cancers, and its diagnostic has still faced challenges based on metabolic analysis due to complex sample pretreatment and low metabolite abundance. In this study, inspired by the structure of bovine omasum, we in situ synthesized a novel interfacial carbon-based nanocomposite of graphene supported nickel nanoparticles-encapsulated in the nitrogen-doped carbon nanotube (Ni/N-CNT/rGO), which was served as a novel matrix with enhanced ionization efficiency for the matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) saliva metabolic analysis of gastric cancer. Benefiting from its high sp2 graphitic degree, large surface area, strong UV absorption, and rich active sites, Ni/N-CNT/rGO matrix exhibited excellent performances of reproducibility, coverage, salt-tolerance, sensitivity, and adsorption ability in MALDI-TOF MS. The differential scanning calorimetry (DSC) and thermal conversion behaviors explained the highly efficient LDI mechanism. Based on saliva metabolic fingerprints, Ni/N-CNT/rGO assisted LDI MS with cross-validation analysis could successfully distinguish gastric cancer patients from healthy controls through the screening of four potential biomarkers with an accuracy of 92.50%, specificity of 88.03%, and sensitivity of 97.12%. This work provided a fast and sensitive MS sensing platform for the metabolomics characterization of gastric cancer and might have potential value for precision medicine in the future.
Collapse
Affiliation(s)
- Huifang Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Huayu Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Jie Wang
- CAS Key Laboratory of Carbon Materials, Analytical Instrumentation Center & State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Jianying Ren
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Jia Yao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Yanqiu Li
- CAS Key Laboratory of Carbon Materials, Analytical Instrumentation Center & State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Ruiping Zhang
- The Radiology Department of First Hospital of Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
23
|
Shinozuka T, Kanda M, Kodera Y. Site-specific protein biomarkers in gastric cancer: a comprehensive review of novel biomarkers and clinical applications. Expert Rev Mol Diagn 2023; 23:701-712. [PMID: 37395000 DOI: 10.1080/14737159.2023.2232298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
INTRODUCTION Gastric cancer (GC) is the fifth most common cancer and the fourth leading cause of cancer-related death worldwide, thus representing a significant global health burden. Early detection and monitoring of GC are essential to improve patient outcomes. While traditional cancer biomarkers such as carcinoembryonic antigen, carbohydrate antigen (CA) 19-9, and CA 72-4 are widely used, their limited sensitivity and specificity necessitate the exploration of alternative biomarkers. AREAS COVERED This review comprehensively analyzes the landscape of GC protein biomarkers identified from 2019 to 2022, with a focus on tissue, blood, urine, saliva, gastric juice, ascites, and exhaled breath as sample sources. We address the potential clinical applications of these biomarkers in early diagnosis, monitoring recurrence, and predicting survival and therapeutic response of GC patients. EXPERT OPINION The discovery of novel protein biomarkers holds great promise for improving the clinical management of GC. However, further validation in large, diverse cohorts is needed to establish the clinical utility of these biomarkers. Integrating these biomarkers with existing diagnostic and monitoring approaches will likely lead to improved personalized treatment plans and patient outcomes.
Collapse
Affiliation(s)
- Takahiro Shinozuka
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
24
|
Maity A, Bhattacharya S, Mahato AC, Chaudhuri S, Pradhan M. A pattern-recognition-based clustering method for non-invasive diagnosis and classification of various gastric conditions. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2023:14690667231174350. [PMID: 37192662 DOI: 10.1177/14690667231174350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Conventional endoscopic biopsy tests are not suitable for early detection of the acute onset and progression of peptic ulcer as well as various gastric complications. This also limits its suitability for widespread population-based screening and consequently, many people with complex gastric phenotypes remain undiagnosed. Here, we demonstrate a new non-invasive methodology for accurate diagnosis and classification of various gastric disorders exploiting a pattern-recognition-based cluster analysis of a breathomics dataset generated from a simple residual gas analyzer-mass spectrometry. The clustering approach recognizes unique breathograms and "breathprints" signatures that clearly reflect the specific gastric condition of an individual person. The method can selectively distinguish the breath of peptic ulcer and other gastric dysfunctions like dyspepsia, gastritis, and gastroesophageal reflux disease patients from the exhaled breath of healthy individuals with high diagnostic sensitivity and specificity. Moreover, the clustering method exhibited a reasonable power to selectively classify the early-stage and high-risk gastric conditions with/without ulceration, thus opening a new non-invasive analytical avenue for early detection, follow-up, and fast population-based robust screening strategy of gastric complications in the real-world clinical domain.
Collapse
Affiliation(s)
- Abhijit Maity
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences, Kolkata, West Bengal, India
| | - Sayoni Bhattacharya
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences, Kolkata, West Bengal, India
| | - Anil C Mahato
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences, Kolkata, West Bengal, India
- Department of Mechanical Engineering, Birla Institute of Technology, Ranchi, Jharkhand, India
| | - Sujit Chaudhuri
- Department of Gastroenterology, AMRI Hospital, Kolkata, West Bengal, India
| | - Manik Pradhan
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences, Kolkata, West Bengal, India
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, India
| |
Collapse
|
25
|
Škapars R, Gašenko E, Broza YY, Sīviņš A, Poļaka I, Bogdanova I, Pčolkins A, Veliks V, Folkmanis V, Lesčinska A, Liepniece-Karele I, Haick H, Rumba-Rozenfelde I, Leja M. Breath Volatile Organic Compounds in Surveillance of Gastric Cancer Patients following Radical Surgical Management. Diagnostics (Basel) 2023; 13:diagnostics13101670. [PMID: 37238155 DOI: 10.3390/diagnostics13101670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/20/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
As of today, there is a lack of a perfect non-invasive test for the surveillance of patients for potential relapse following curative treatment. Breath volatile organic compounds (VOCs) have been demonstrated to be an accurate diagnostic tool for gastric cancer (GC) detection; here, we aimed to prove the yield of the markers in surveillance, i.e., following curative surgical management. Patients were sampled in regular intervals before and within 3 years following curative surgery for GC; gas chromatography-mass spectrometry (GC-MS) and nanosensor technologies were used for the VOC assessment. GC-MS measurements revealed a single VOC (14b-Pregnane) that significantly decreased at 12 months, and three VOCs (Isochiapin B, Dotriacontane, Threitol, 2-O-octyl-) that decreased at 18 months following surgery. The nanomaterial-based sensors S9 and S14 revealed changes in the breath VOC content 9 months after surgery. Our study results confirm the cancer origin of the particular VOCs, as well as suggest the value of breath VOC testing for cancer patient surveillance, either during the treatment phase or thereafter, for potential relapse.
Collapse
Affiliation(s)
- Roberts Škapars
- Institute of Clinical and Preventive Medicine, Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia
- Department of Abdominal and Soft Tissue Surgery, Oncology Center of Latvia, Riga East University Hospital, LV-1038 Riga, Latvia
| | - Evita Gašenko
- Institute of Clinical and Preventive Medicine, Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia
- Department of Abdominal and Soft Tissue Surgery, Oncology Center of Latvia, Riga East University Hospital, LV-1038 Riga, Latvia
| | - Yoav Y Broza
- Department of Chemical Engineering and Russel Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Armands Sīviņš
- Institute of Clinical and Preventive Medicine, Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia
- Department of Abdominal and Soft Tissue Surgery, Oncology Center of Latvia, Riga East University Hospital, LV-1038 Riga, Latvia
| | - Inese Poļaka
- Institute of Clinical and Preventive Medicine, Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia
| | - Inga Bogdanova
- Institute of Clinical and Preventive Medicine, Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia
- Department of Abdominal and Soft Tissue Surgery, Oncology Center of Latvia, Riga East University Hospital, LV-1038 Riga, Latvia
| | - Andrejs Pčolkins
- Institute of Clinical and Preventive Medicine, Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia
- Department of Abdominal and Soft Tissue Surgery, Oncology Center of Latvia, Riga East University Hospital, LV-1038 Riga, Latvia
| | - Viktors Veliks
- Institute of Clinical and Preventive Medicine, Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia
| | - Valdis Folkmanis
- Institute of Clinical and Preventive Medicine, Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia
| | - Anna Lesčinska
- Institute of Clinical and Preventive Medicine, Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia
- Department of Abdominal and Soft Tissue Surgery, Oncology Center of Latvia, Riga East University Hospital, LV-1038 Riga, Latvia
| | - Inta Liepniece-Karele
- Institute of Clinical and Preventive Medicine, Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia
- Department of Abdominal and Soft Tissue Surgery, Oncology Center of Latvia, Riga East University Hospital, LV-1038 Riga, Latvia
| | - Hossam Haick
- Department of Chemical Engineering and Russel Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Ingrīda Rumba-Rozenfelde
- Institute of Clinical and Preventive Medicine, Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia
| | - Mārcis Leja
- Institute of Clinical and Preventive Medicine, Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia
- Department of Abdominal and Soft Tissue Surgery, Oncology Center of Latvia, Riga East University Hospital, LV-1038 Riga, Latvia
| |
Collapse
|
26
|
Sharma A, Kumar R, Varadwaj P. Smelling the Disease: Diagnostic Potential of Breath Analysis. Mol Diagn Ther 2023; 27:321-347. [PMID: 36729362 PMCID: PMC9893210 DOI: 10.1007/s40291-023-00640-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 02/03/2023]
Abstract
Breath analysis is a relatively recent field of research with much promise in scientific and clinical studies. Breath contains endogenously produced volatile organic components (VOCs) resulting from metabolites of ingested precursors, gut and air-passage bacteria, environmental contacts, etc. Numerous recent studies have suggested changes in breath composition during the course of many diseases, and breath analysis may lead to the diagnosis of such diseases. Therefore, it is important to identify the disease-specific variations in the concentration of breath to diagnose the diseases. In this review, we explore methods that are used to detect VOCs in laboratory settings, VOC constituents in exhaled air and other body fluids (e.g., sweat, saliva, skin, urine, blood, fecal matter, vaginal secretions, etc.), VOC identification in various diseases, and recently developed electronic (E)-nose-based sensors to detect VOCs. Identifying such VOCs and applying them as disease-specific biomarkers to obtain accurate, reproducible, and fast disease diagnosis could serve as an alternative to traditional invasive diagnosis methods. However, the success of VOC-based identification of diseases is limited to laboratory settings. Large-scale clinical data are warranted for establishing the robustness of disease diagnosis. Also, to identify specific VOCs associated with illness states, extensive clinical trials must be performed using both analytical instruments and electronic noses equipped with stable and precise sensors.
Collapse
Affiliation(s)
- Anju Sharma
- Systems Biology Lab, Indian Institute of Information Technology, Allahabad, Uttar Pradesh, India
| | - Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Pritish Varadwaj
- Systems Biology Lab, Indian Institute of Information Technology, Allahabad, Uttar Pradesh, India.
| |
Collapse
|
27
|
P H, Rangarajan M, Pandya HJ. Breath VOC analysis and machine learning approaches for disease screening: a review. J Breath Res 2023; 17. [PMID: 36634360 DOI: 10.1088/1752-7163/acb283] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/12/2023] [Indexed: 01/14/2023]
Abstract
Early disease detection is often correlated with a reduction in mortality rate and improved prognosis. Currently, techniques like biopsy and imaging that are used to screen chronic diseases are invasive, costly or inaccessible to a large population. Thus, a non-invasive disease screening technology is the need of the hour. Existing non-invasive methods like gas chromatography-mass spectrometry, selected-ion flow-tube mass spectrometry, and proton transfer reaction-mass-spectrometry are expensive. These techniques necessitate experienced operators, making them unsuitable for a large population. Various non-invasive sources are available for disease detection, of which exhaled breath is preferred as it contains different volatile organic compounds (VOCs) that reflect the biochemical reactions in the human body. Disease screening by exhaled breath VOC analysis can revolutionize the healthcare industry. This review focuses on exhaled breath VOC biomarkers for screening various diseases with a particular emphasis on liver diseases and head and neck cancer as examples of diseases related to metabolic disorders and diseases unrelated to metabolic disorders, respectively. Single sensor and sensor array-based (Electronic Nose) approaches for exhaled breath VOC detection are briefly described, along with the machine learning techniques used for pattern recognition.
Collapse
Affiliation(s)
- Haripriya P
- Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Madhavan Rangarajan
- Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Hardik J Pandya
- Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore 560012, India.,Centre for Product Design and Manufacturing, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
28
|
Haick H. The diagnostic breathprint of cancer; the past and the future. Br J Cancer 2023; 128:448-450. [PMID: 36261582 PMCID: PMC9938276 DOI: 10.1038/s41416-022-01987-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/26/2022] [Accepted: 09/07/2022] [Indexed: 11/08/2022] Open
Abstract
The main milestones in the exploration and validation of cancer breathprint for the advancement of personalised diagnosis and medicine are summarised here, with a special attention to the appraisal and translation of the accumulating knowledge from the laboratory to the Point-of-Care phase. An outlook into the opportunities of the use of breathprints and their wider availability for healthcare is offered.
Collapse
Affiliation(s)
- Hossam Haick
- Department of Chemical Engineering and Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
29
|
Potential Role of Oxidative Stress in the Production of Volatile Organic Compounds in Obesity. Antioxidants (Basel) 2023; 12:antiox12010129. [PMID: 36670991 PMCID: PMC9854577 DOI: 10.3390/antiox12010129] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Obesity is associated with numerous health issues such as sleep disorders, asthma, hepatic dysfunction, cancer, renal dysfunction, diabetes, cardiovascular complications, and infertility. Previous research has shown that the distribution of excess body fat, rather than excess body weight, determines obesity-related risk factors. It is widely accepted that abdominal fat is a serious risk factor for illnesses associated with obesity and the accumulation of visceral fat promotes the release of pro-oxidants, pro-inflammatory, and reactive oxygen species (ROS). The metabolic process in the human body produces several volatile organic compounds (VOCs) via urine, saliva, breath, blood, skin secretions, milk, and feces. Several studies have shown that VOCs are released by the interaction of ROS with underlying cellular components leading to increased protein oxidation, lipid peroxidation, or DNA damage. These VOCs released via oxidative stress in obese individuals may serves as a biomarker for obesity-related metabolic alterations and disease. In this review, we focus on the relationship between oxidative stress and VOCs in obesity.
Collapse
|
30
|
Fernandes DA. Review on Metal-Based Theranostic Nanoparticles for Cancer Therapy and Imaging. Technol Cancer Res Treat 2023; 22:15330338231191493. [PMID: 37642945 PMCID: PMC10467409 DOI: 10.1177/15330338231191493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 08/31/2023] Open
Abstract
Theranostic agents are promising due to their ability to diagnose, treat and monitor different types of cancer using a variety of imaging modalities. The advantage specifically of nanoparticles is that they can accumulate easily at the tumor site due to the large gaps in blood vessels near tumors. Such high concentration of theranostic agents at the target site can lead to enhancement in both imaging and therapy. This article provides an overview of nanoparticles that have been used for cancer theranostics, and the different imaging, treatment options and signaling pathways that are important when using nanoparticles for cancer theranostics. In particular, nanoparticles made of metal elements are emphasized due to their wide applications in cancer theranostics. One important aspect discussed is the ability to combine different types of metals in one nanoplatform for use as multimodal imaging and therapeutic agents for cancer.
Collapse
|
31
|
Yasin D, Sami N, Afzal B, Husain S, Naaz H, Ahmad N, Zaki A, Rizvi MA, Fatma T. Prospects in the use of gold nanoparticles as cancer theranostics and targeted drug delivery agents. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02701-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Shuba A, Kuchmenko T, Umarkhanov R. Piezoelectric Gas Sensors with Polycomposite Coatings in Biomedical Application. SENSORS (BASEL, SWITZERLAND) 2022; 22:8529. [PMID: 36366226 PMCID: PMC9654775 DOI: 10.3390/s22218529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/20/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
When developing methods for diagnosing pathologies and diseases in humans and animals using electronic noses, one of the important trends is the miniaturization of devices, while maintaining significant information for diagnostic purposes. A combination of several sorbents that have unique sorption features of volatile organic compounds (VOCs) on one transducer is a possible option for the miniaturization of sensors for gas analysis. This paper considers the principles of creating polycomposite coatings on the electrodes of piezoelectric quartz resonators, including the choice of sorbents for the formation of sensitive layers, determining the mass and geometry of the formation of sensitive layers in a polycomposite coating, as well as an algorithm for processing the output data of sensors to obtain maximum information about the qualitative and quantitative composition of the gas phase. A comparative analysis of the efficiency and kinetics of VOC vapor sorption by sensors with polycomposite coatings and a set of sensors with relevant single coatings has been carried out. Regression equations have been obtained to predict the molar-specific sensitivity of the microbalance of VOC vapors by a sensor with a polycomposite coating of three sorbents with an error of 5-15% based on the results of the microbalance of VOC vapors on single coatings. A method for creating "visual prints" of sensor signals with polycomposite coatings is shown, with results comparable to those from an array of sensors. The parameters Aij∑ are proposed for obtaining information on the qualitative composition of the gas phase when processing the output data of sensors with polycomposite coatings. A biochemical study of exhaled breath condensate (EBC) samples, a microbiological investigation of calf tracheal washes, and a clinical examination were conducted to assess the presence of bovine respiratory disease (BRD). An analysis of the gas phase over EBC samples with an array of sensors with polycomposite coatings was also carried out. The "visual prints" of the responses of sensors with polycomposite coatings and the results of the identification of VOCs in the gas phase over EBC samples were compared to the results of bacteriological studies of tracheal washes of the studied calves. A connection was found between the parameters Aij∑ of a group of sensors with polycomposite coatings and the biochemical parameters of biosamples. The adequacy of replacing an array of piezoelectric sensors with single coatings by the sensors with polycomposite coatings is shown.
Collapse
Affiliation(s)
- Anastasiia Shuba
- Department of Physical and Analytical Chemistry, Voronezh State University of Engineering Technologies, 394000 Voronezh, Russia
| | - Tatiana Kuchmenko
- Department of Physical and Analytical Chemistry, Voronezh State University of Engineering Technologies, 394000 Voronezh, Russia
- Laboratory of Sensors and Determination of Gas-Forming Impurities, Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences, 119334 Moscow, Russia
| | - Ruslan Umarkhanov
- Department of Physical and Analytical Chemistry, Voronezh State University of Engineering Technologies, 394000 Voronezh, Russia
| |
Collapse
|
33
|
Freddi S, Sangaletti L. Trends in the Development of Electronic Noses Based on Carbon Nanotubes Chemiresistors for Breathomics. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12172992. [PMID: 36080029 PMCID: PMC9458156 DOI: 10.3390/nano12172992] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 06/12/2023]
Abstract
The remarkable potential of breath analysis in medical care and diagnosis, and the consequent development of electronic noses, is currently attracting the interest of the research community. This is mainly due to the possibility of applying the technique for early diagnosis, screening campaigns, or tracking the effectiveness of treatment. Carbon nanotubes (CNTs) are known to be good candidates for gas sensing, and they have been recently considered for the development of electronic noses. The present work has the aim of reviewing the available literature on the development of CNTs-based electronic noses for breath analysis applications, detailing the functionalization procedure used to prepare the sensors, the breath sampling techniques, the statistical analysis methods, the diseases under investigation, and the population studied. The review is divided in two main sections: one focusing on the e-noses completely based on CNTs and one reporting on the e-noses that feature sensors based on CNTs, along with sensors based on other materials. Finally, a classification is presented among studies that report on the e-nose capability to discriminate biomarkers, simulated breath, and animal or human breath.
Collapse
|
34
|
Kim C, Lee KK, Kang MS, Shin DM, Oh JW, Lee CS, Han DW. Artificial olfactory sensor technology that mimics the olfactory mechanism: a comprehensive review. Biomater Res 2022; 26:40. [PMID: 35986395 PMCID: PMC9392354 DOI: 10.1186/s40824-022-00287-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/13/2022] [Indexed: 11/19/2022] Open
Abstract
Artificial olfactory sensors that recognize patterns transmitted by olfactory receptors are emerging as a technology for monitoring volatile organic compounds. Advances in statistical processing methods and data processing technology have made it possible to classify patterns in sensor arrays. Moreover, biomimetic olfactory recognition sensors in the form of pattern recognition have been developed. Deep learning and artificial intelligence technologies have enabled the classification of pattern data from more sensor arrays, and improved artificial olfactory sensor technology is being developed with the introduction of artificial neural networks. An example of an artificial olfactory sensor is the electronic nose. It is an array of various types of sensors, such as metal oxides, electrochemical sensors, surface acoustic waves, quartz crystal microbalances, organic dyes, colorimetric sensors, conductive polymers, and mass spectrometers. It can be tailored depending on the operating environment and the performance requirements of the artificial olfactory sensor. This review compiles artificial olfactory sensor technology based on olfactory mechanisms. We introduce the mechanisms of artificial olfactory sensors and examples used in food quality and stability assessment, environmental monitoring, and diagnostics. Although current artificial olfactory sensor technology has several limitations and there is limited commercialization owing to reliability and standardization issues, there is considerable potential for developing this technology. Artificial olfactory sensors are expected to be widely used in advanced pattern recognition and learning technologies, along with advanced sensor technology in the future.
Collapse
|
35
|
Thapa S, Singh KRB, Verma R, Singh J, Singh RP. State-of-the-Art Smart and Intelligent Nanobiosensors for SARS-CoV-2 Diagnosis. BIOSENSORS 2022; 12:637. [PMID: 36005033 PMCID: PMC9405813 DOI: 10.3390/bios12080637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/16/2022]
Abstract
The novel coronavirus appeared to be a milder infection initially, but the unexpected outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), commonly called COVID-19, was transmitted all over the world in late 2019 and caused a pandemic. Human health has been disastrously affected by SARS-CoV-2, which is still evolving and causing more serious concerns, leading to the innumerable loss of lives. Thus, this review provides an outline of SARS-CoV-2, of the traditional tools to diagnose SARS-CoV-2, and of the role of emerging nanomaterials with unique properties for fabricating biosensor devices to diagnose SARS-CoV-2. Smart and intelligent nanomaterial-enabled biosensors (nanobiosensors) have already proven their utility for the diagnosis of several viral infections, as various detection strategies based on nanobiosensor devices are already present, and several other methods are also being investigated by researchers for the determination of SARS-CoV-2 disease; however, considerably more is undetermined and yet to be explored. Hence, this review highlights the utility of various nanobiosensor devices for SARS-CoV-2 determination. Further, it also emphasizes the future outlook of nanobiosensing technologies for SARS-CoV-2 diagnosis.
Collapse
Affiliation(s)
- Sushma Thapa
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Kshitij RB Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Ranjana Verma
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Ravindra Pratap Singh
- Department of Biotechnology, Faculty of Science, Indira Gandhi National Tribal University, Amarkantak 484887, Madhya Pradesh, India
| |
Collapse
|
36
|
Yang H, Mou Y, Hu B. Diagnostic Ability of Volatile Organic Compounds in Digestive Cancer: A Systematic Review With Meta-Analysis. Clin Med Insights Oncol 2022; 16:11795549221105027. [PMID: 35754925 PMCID: PMC9218909 DOI: 10.1177/11795549221105027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/16/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Volatile organic compounds (VOCs) have been involved in cancer diagnosis via breath, urine, and feces. We aimed to assess the diagnostic ability of VOCs on digestive cancers. Methods: We systematically reviewed prospective clinical trials evaluating VOCs’ diagnostic ability on esophageal, gastric, colorectal, hepatic, and pancreatic cancer (PC). Databases including PubMed and Ovid-Medline were searched. Results: A total of 35 trials with 5314 patient-times qualified for inclusion. The pooled sensitivity of VOCs diagnosing gastroesophageal cancer from healthy controls is 0.89 (95% confidence interval [CI]: 0.82-0.94), the pooled specificity is 0.890 (95% CI: 0.84-0.93), and area under the curve (AUC) of the summary receiver operating characteristic curve is 0.95 (95% CI: 0.93-0.95). The pooled sensitivity of VOCs diagnosing colorectal cancer from heathy controls is 0.92 (95% CI: 0.85-0.96), the pooled specificity is 0.88 (95% CI: 0.77-0.94), and the AUC is 0.96 (95% CI: 0.94-0.97). The pooled sensitivity of VOCs distinguishing gastrointestinal (GI) cancer from precancerous lesions is 0.84 (95% CI: 0.67-0.92), the pooled specificity is 0.74 (95% CI: 0.43-0.91), and the AUC is 0.87 (95% CI: 0.84-0.89). The pooled sensitivity of VOCs diagnosing hepatocellular carcinoma is 0.68 (95% CI: 0.52-0.81), the pooled specificity is 0.81 (95% CI: 0.47-0.96), and the AUC is 0.78 (95% CI: 0.74-0.81). The pooled sensitivity of VOCs diagnosing PC is 0.88 (95% CI: 0.80-0.93), the pooled specificity is 0.82 (95% CI: 0.62-0.93), and the AUC is 0.92 (95% CI: 0.89-0.94). Conclusions: Volatile organic compounds have potential role in diagnosing GI cancer with comparatively high sensitivity, specificity, and AUC (PROSPERO registration number: CRD42021260039).
Collapse
Affiliation(s)
- Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Mou
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
37
|
Volatilomic Signatures of AGS and SNU-1 Gastric Cancer Cell Lines. Molecules 2022; 27:molecules27134012. [PMID: 35807254 PMCID: PMC9268292 DOI: 10.3390/molecules27134012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/18/2022] [Accepted: 06/18/2022] [Indexed: 02/06/2023] Open
Abstract
In vitro studies can help reveal the biochemical pathways underlying the origin of volatile indicators of numerous diseases. The key objective of this study is to identify the potential biomarkers of gastric cancer. For this purpose, the volatilomic signatures of two human gastric cancer cell lines, AGS (human gastric adenocarcinoma) and SNU-1 (human gastric carcinoma), and one normal gastric mucosa cell line (GES-1) were investigated. More specifically, gas chromatography mass spectrometry has been applied to pinpoint changes in cell metabolism triggered by cancer. In total, ten volatiles were found to be metabolized, and thirty-five were produced by cells under study. The volatiles consumed were mainly six aldehydes and two heterocyclics, whereas the volatiles released embraced twelve ketones, eight alcohols, six hydrocarbons, three esters, three ethers, and three aromatic compounds. The SNU-1 cell line was found to have significantly altered metabolism in comparison to normal GES-1 cells. This was manifested by the decreased production of alcohols and ketones and the upregulated emission of esters. The AGS cells exhibited the increased production of methyl ketones containing an odd number of carbons, namely 2-tridecanone, 2-pentadecanone, and 2-heptadecanone. This study provides evidence that the cancer state modifies the volatilome of human cells.
Collapse
|
38
|
Scheepers MHMC, Al-Difaie Z, Brandts L, Peeters A, van Grinsven B, Bouvy ND. Diagnostic Performance of Electronic Noses in Cancer Diagnoses Using Exhaled Breath: A Systematic Review and Meta-analysis. JAMA Netw Open 2022; 5:e2219372. [PMID: 35767259 PMCID: PMC9244610 DOI: 10.1001/jamanetworkopen.2022.19372] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
IMPORTANCE There has been a growing interest in the use of electronic noses (e-noses) in detecting volatile organic compounds in exhaled breath for the diagnosis of cancer. However, no systematic evaluation has been performed of the overall diagnostic accuracy and methodologic challenges of using e-noses for cancer detection in exhaled breath. OBJECTIVE To provide an overview of the diagnostic accuracy and methodologic challenges of using e-noses for the detection of cancer. DATA SOURCES An electronic search was performed in the PubMed and Embase databases (January 1, 2000, to July 1, 2021). STUDY SELECTION Inclusion criteria were the following: (1) use of e-nose technology, (2) detection of cancer, and (3) analysis of exhaled breath. Exclusion criteria were (1) studies published before 2000; (2) studies not performed in humans; (3) studies not performed in adults; (4) studies that only analyzed biofluids; and (5) studies that exclusively used gas chromatography-mass spectrometry to analyze exhaled breath samples. DATA EXTRACTION AND SYNTHESIS PRISMA guidelines were used for the identification, screening, eligibility, and selection process. Quality assessment was performed using Quality Assessment of Diagnostic Accuracy Studies 2. Generalized mixed-effects bivariate meta-analysis was performed. MAIN OUTCOMES AND MEASURES Main outcomes were sensitivity, specificity, and mean area under the receiver operating characteristic curve. RESULTS This review identified 52 articles with a total of 3677 patients with cancer. All studies were feasibility studies. The sensitivity of e-noses ranged from 48.3% to 95.8% and the specificity from 10.0% to 100.0%. Pooled analysis resulted in a mean (SE) area under the receiver operating characteristic curve of 94% (95% CI, 92%-96%), a sensitivity of 90% (95% CI, 88%-92%), and a specificity of 87% (95% CI, 81%-92%). Considerable heterogeneity existed among the studies because of differences in the selection of patients, endogenous and exogenous factors, and collection of exhaled breath. CONCLUSIONS AND RELEVANCE Results of this review indicate that e-noses have a high diagnostic accuracy for the detection of cancer in exhaled breath. However, most studies were feasibility studies with small sample sizes, a lack of standardization, and a high risk of bias. The lack of standardization and reproducibility of e-nose research should be addressed in future research.
Collapse
Affiliation(s)
- Max H. M. C. Scheepers
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Zaid Al-Difaie
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Lloyd Brandts
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Centre, the Netherlands
| | - Andrea Peeters
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Centre, the Netherlands
| | - Bart van Grinsven
- Sensor Engineering, Faculty of Science and Engineering, Maastricht University, Maastricht, the Netherlands
| | - Nicole D. Bouvy
- Department of Surgery, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
39
|
Abstract
This paper provides an overview of recent developments in the field of volatile organic compound (VOC) sensors, which are finding uses in healthcare, safety, environmental monitoring, food and agriculture, oil industry, and other fields. It starts by briefly explaining the basics of VOC sensing and reviewing the currently available and quickly progressing VOC sensing approaches. It then discusses the main trends in materials' design with special attention to nanostructuring and nanohybridization. Emerging sensing materials and strategies are highlighted and their involvement in the different types of sensing technologies is discussed, including optical, electrical, and gravimetric sensors. The review also provides detailed discussions about the main limitations of the field and offers potential solutions. The status of the field and suggestions of promising directions for future development are summarized.
Collapse
Affiliation(s)
- Muhammad Khatib
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
40
|
Yang Y, Zheng X, Chen L, Gong X, Yang H, Duan X, Zhu Y. Multifunctional Gold Nanoparticles in Cancer Diagnosis and Treatment. Int J Nanomedicine 2022; 17:2041-2067. [PMID: 35571258 PMCID: PMC9094645 DOI: 10.2147/ijn.s355142] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/20/2022] [Indexed: 12/18/2022] Open
Abstract
Cancer is the second leading cause of death in the world, behind only cardiovascular diseases, and is one of the most serious diseases threatening human health nowadays. Cancer patients’ lives are being extended by the use of contemporary medical technologies, such as surgery, radiotherapy, and chemotherapy. However, these treatments are not always effective in extending cancer patients’ lives. Simultaneously, these approaches are often accompanied with a series of negative consequences, such as the occurrence of adverse effects and an increased risk of relapse. As a result, the development of a novel cancer-eradication strategy is still required. The emergence of nanomedicine as a promising technology brings a new avenue for the circumvention of limitations of conventional cancer therapies. Gold nanoparticles (AuNPs), in particular, have garnered extensive attention due to their many specific advantages, including customizable size and shape, multiple and useful physicochemical properties, and ease of functionalization. Based on these characteristics, many therapeutic and diagnostic applications of AuNPs have been exploited, particularly for malignant tumors, such as drug and nucleic acid delivery, photodynamic therapy, photothermal therapy, and X-ray-based computed tomography imaging. To leverage the potential of AuNPs, these applications demand a comprehensive and in-depth overview. As a result, we discussed current achievements in AuNPs in anticancer applications in a more methodical manner in this review. Also addressed in depth are the present status of clinical trials, as well as the difficulties that may be encountered when translating some basic findings into the clinic, in order to serve as a reference for future studies.
Collapse
Affiliation(s)
- Yan Yang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Xi Zheng
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Lu Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Xuefeng Gong
- POWERCHINA Chengdu Engineering Corporation Limited, Chengdu, 611130, People’s Republic of China
| | - Hao Yang
- POWERCHINA Chengdu Engineering Corporation Limited, Chengdu, 611130, People’s Republic of China
| | - Xingmei Duan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Yuxuan Zhu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
- Correspondence: Yuxuan Zhu, Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China, Email
| |
Collapse
|
41
|
Broza YY, Haick H. Biodiagnostics in an era of global pandemics-From biosensing materials to data management. VIEW 2022; 3:20200164. [PMID: 34766159 PMCID: PMC8441813 DOI: 10.1002/viw.20200164] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/10/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
The novel corona virus SARS-CoV-2 (COVID-19) has exposed the world to challenges never before seen in fast diagnostics, monitoring, and prevention of the outbreak. As a result, different approaches for fast diagnostic and screening are made and yet to find the ideal way. The current mini-review provides and examines evidence-based innovative and rapid chemical sensing and related biodiagnostic solutions to deal with infectious disease and related pandemic emergencies, which could offer the best possible care for the general population and improve the approachability of the pandemic information, insights, and surrounding contexts. The review discusses how integration of sensing devices with big data analysis, artificial Intelligence or machine learning, and clinical decision support system, could improve the accuracy of the recorded patterns of the disease conditions within an ocean of information. At the end, the mini-review provides a prospective on the requirements to improve our coping of the pandemic-related biodiagnostics as well as future opportunities.
Collapse
Affiliation(s)
- Yoav Y. Broza
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion‐Israel Institute of TechnologyHaifaIsrael
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion‐Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
42
|
Modular Point-of-Care Breath Analyzer and Shape Taxonomy-Based Machine Learning for Gastric Cancer Detection. Diagnostics (Basel) 2022; 12:diagnostics12020491. [PMID: 35204584 PMCID: PMC8871298 DOI: 10.3390/diagnostics12020491] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/01/2022] [Accepted: 02/11/2022] [Indexed: 01/17/2023] Open
Abstract
Background: Gastric cancer is one of the deadliest malignant diseases, and the non-invasive screening and diagnostics options for it are limited. In this article, we present a multi-modular device for breath analysis coupled with a machine learning approach for the detection of cancer-specific breath from the shapes of sensor response curves (taxonomies of clusters). Methods: We analyzed the breaths of 54 gastric cancer patients and 85 control group participants. The analysis was carried out using a breath analyzer with gold nanoparticle and metal oxide sensors. The response of the sensors was analyzed on the basis of the curve shapes and other features commonly used for comparison. These features were then used to train machine learning models using Naïve Bayes classifiers, Support Vector Machines and Random Forests. Results: The accuracy of the trained models reached 77.8% (sensitivity: up to 66.54%; specificity: up to 92.39%). The use of the proposed shape-based features improved the accuracy in most cases, especially the overall accuracy and sensitivity. Conclusions: The results show that this point-of-care breath analyzer and data analysis approach constitute a promising combination for the detection of gastric cancer-specific breath. The cluster taxonomy-based sensor reaction curve representation improved the results, and could be used in other similar applications.
Collapse
|
43
|
Kaloumenou M, Skotadis E, Lagopati N, Efstathopoulos E, Tsoukalas D. Breath Analysis: A Promising Tool for Disease Diagnosis-The Role of Sensors. SENSORS (BASEL, SWITZERLAND) 2022; 22:1238. [PMID: 35161984 PMCID: PMC8840008 DOI: 10.3390/s22031238] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 05/07/2023]
Abstract
Early-stage disease diagnosis is of particular importance for effective patient identification as well as their treatment. Lack of patient compliance for the existing diagnostic methods, however, limits prompt diagnosis, rendering the development of non-invasive diagnostic tools mandatory. One of the most promising non-invasive diagnostic methods that has also attracted great research interest during the last years is breath analysis; the method detects gas-analytes such as exhaled volatile organic compounds (VOCs) and inorganic gases that are considered to be important biomarkers for various disease-types. The diagnostic ability of gas-pattern detection using analytical techniques and especially sensors has been widely discussed in the literature; however, the incorporation of novel nanomaterials in sensor-development has also proved to enhance sensor performance, for both selective and cross-reactive applications. The aim of the first part of this review is to provide an up-to-date overview of the main categories of sensors studied for disease diagnosis applications via the detection of exhaled gas-analytes and to highlight the role of nanomaterials. The second and most novel part of this review concentrates on the remarkable applicability of breath analysis in differential diagnosis, phenotyping, and the staging of several disease-types, which are currently amongst the most pressing challenges in the field.
Collapse
Affiliation(s)
- Maria Kaloumenou
- Department of Applied Physics, National Technical University of Athens, 15780 Athens, Greece; (M.K.); (D.T.)
| | - Evangelos Skotadis
- Department of Applied Physics, National Technical University of Athens, 15780 Athens, Greece; (M.K.); (D.T.)
| | - Nefeli Lagopati
- Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias Str., Goudi, 11527 Athens, Greece; (N.L.); (E.E.)
| | - Efstathios Efstathopoulos
- Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias Str., Goudi, 11527 Athens, Greece; (N.L.); (E.E.)
| | - Dimitris Tsoukalas
- Department of Applied Physics, National Technical University of Athens, 15780 Athens, Greece; (M.K.); (D.T.)
| |
Collapse
|
44
|
Hu W, Wu W, Jian Y, Haick H, Zhang G, Qian Y, Yuan M, Yao M. Volatolomics in healthcare and its advanced detection technology. NANO RESEARCH 2022; 15:8185-8213. [PMID: 35789633 PMCID: PMC9243817 DOI: 10.1007/s12274-022-4459-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 05/21/2023]
Abstract
Various diseases increasingly challenge the health status and life quality of human beings. Volatolome emitted from patients has been considered as a potential family of markers, volatolomics, for diagnosis/screening. There are two fundamental issues of volatolomics in healthcare. On one hand, the solid relationship between the volatolome and specific diseases needs to be clarified and verified. On the other hand, effective methods should be explored for the precise detection of volatolome. Several comprehensive review articles had been published in this field. However, a timely and systematical summary and elaboration is still desired. In this review article, the research methodology of volatolomics in healthcare is critically considered and given out, at first. Then, the sets of volatolome according to specific diseases through different body sources and the analytical instruments for their identifications are systematically summarized. Thirdly, the advanced electronic nose and photonic nose technologies for volatile organic compounds (VOCs) detection are well introduced. The existed obstacles and future perspectives are deeply thought and discussed. This article could give a good guidance to researchers in this interdisciplinary field, not only understanding the cutting-edge detection technologies for doctors (medicinal background), but also making reference to clarify the choice of aimed VOCs during the sensor research for chemists, materials scientists, electronics engineers, etc.
Collapse
Affiliation(s)
- Wenwen Hu
- School of Aerospace Science and Technology, Xidian University, Xi’an, 730107 China
| | - Weiwei Wu
- Interdisciplinary Research Center of Smart Sensors, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an, 730107 China
| | - Yingying Jian
- Interdisciplinary Research Center of Smart Sensors, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an, 730107 China
| | - Hossam Haick
- Faculty of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 3200002 Israel
| | - Guangjian Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 China
| | - Yun Qian
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006 China
| | - Miaomiao Yuan
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033 China
| | - Mingshui Yao
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 310006 China
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Kyoto, 606-8501 Japan
| |
Collapse
|
45
|
Volatile organic compounds as a potential screening tool for neoplasm of the digestive system: a meta-analysis. Sci Rep 2021; 11:23716. [PMID: 34887450 PMCID: PMC8660806 DOI: 10.1038/s41598-021-02906-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 11/24/2021] [Indexed: 02/02/2023] Open
Abstract
This meta-analysis was aimed to estimate the diagnostic performance of volatile organic compounds (VOCs) as a potential novel tool to screen for the neoplasm of the digestive system. An integrated literature search was performed by two independent investigators to identify all relevant studies investigating VOCs in diagnosing neoplasm of the digestive system from inception to 7th December 2020. STATA and Revman software were used for data analysis. The methodological quality of each study was assessed using the Quality Assessment of Diagnostic Accuracy Studies tool. A bivariate mixed model was used and meta-regression and subgroup analysis were performed to identify possible sources of heterogeneity. A total of 36 studies comprised of 1712 cases of neoplasm and 3215 controls were included in our meta-analysis. Bivariate analysis showed a pooled sensitivity of 0.87 (95% confidence interval (CI) 0.83–0.90), specificity of 0.86 (95% CI 0.82–0.89), a positive likelihood ratio of 6.18 (95% CI 4.68–8.17), and a negative likelihood ratio of 0.15 (95% CI 0.12–0.20). The diagnostic odds ratio and the area under the summary ROC curve for diagnosing neoplasm of the digestive system were 40.61 (95% CI 24.77–66.57) and 0.93 (95% CI 0.90–0.95), respectively. Our analyses revealed that VOCs analysis could be considered as a potential novel tool to screen for malignant diseases of the digestive system.
Collapse
|
46
|
Dima AC, Balaban DV, Dima A. Diagnostic Application of Volatile Organic Compounds as Potential Biomarkers for Detecting Digestive Neoplasia: A Systematic Review. Diagnostics (Basel) 2021; 11:diagnostics11122317. [PMID: 34943554 PMCID: PMC8700395 DOI: 10.3390/diagnostics11122317] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 02/07/2023] Open
Abstract
Volatile organic compounds (VOCs) are part of the exhaled breath that were proposed as non-invasive breath biomarkers via different human discharge products like saliva, breath, urine, blood, or tissues. Particularly, due to the non-invasive approach, VOCs were considered as potential biomarkers for non-invasive early cancer detection. We herein aimed to review the data over VOCs utility in digestive neoplasia as early diagnosis or monitoring biomarkers. A systematic literature search was done using MEDLINE via PubMed, Cochrane Library, and Thomson Reuters' Web of Science Core Collection. We identified sixteen articles that were included in the final analysis. Based on the current knowledge, we cannot identify a single VOC as a specific non-invasive biomarker for digestive neoplasia. Several combinations of up to twelve VOCs seem promising for accurately detecting some neoplasia types. A combination of different VOCs breath expression are promising tools for digestive neoplasia screening.
Collapse
Affiliation(s)
- Augustin Catalin Dima
- Department of General Surgery and Department of Gastroenterology, Dr. Carol Davila Central Military Emergency University Hospital, 010825 Bucharest, Romania;
- Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Daniel Vasile Balaban
- Department of General Surgery and Department of Gastroenterology, Dr. Carol Davila Central Military Emergency University Hospital, 010825 Bucharest, Romania;
- Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Correspondence:
| | - Alina Dima
- Department of Rheumatology, Colentina Clinical Hospital, 020125 Bucharest, Romania;
| |
Collapse
|
47
|
Yang HY, Chen WC, Tsai RC. Accuracy of the Electronic Nose Breath Tests in Clinical Application: A Systematic Review and Meta-Analysis. BIOSENSORS 2021; 11:bios11110469. [PMID: 34821685 PMCID: PMC8615633 DOI: 10.3390/bios11110469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/20/2021] [Accepted: 11/20/2021] [Indexed: 05/25/2023]
Abstract
(1) Background: An electronic nose applies a sensor array to detect volatile biomarkers in exhaled breath to diagnose diseases. The overall diagnostic accuracy remains unknown. The objective of this review was to provide an estimate of the diagnostic accuracy of sensor-based breath tests for the diagnosis of diseases. (2) Methods: We searched the PubMed and Web of Science databases for studies published between 1 January 2010 and 14 October 2021. The search was limited to human studies published in the English language. Clinical trials were not included in this review. (3) Results: Of the 2418 records identified, 44 publications were eligible, and 5728 patients were included in the final analyses. The pooled sensitivity was 90.0% (95% CI, 86.3-92.8%, I2 = 47.7%), the specificity was 88.4% (95% CI, 87.1-89.5%, I2 = 81.4%), and the pooled area under the curve was 0.93 (95% CI 0.91-0.95). (4) Conclusion: The findings of our review suggest that a standardized report of diagnostic accuracy and a report of the accuracy in a test set are needed. Sensor array systems of electronic noses have the potential for noninvasiveness at the point-of-care in hospitals. Nevertheless, the procedure for reporting the accuracy of a diagnostic test must be standardized.
Collapse
Affiliation(s)
- Hsiao-Yu Yang
- Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taipei 10055, Taiwan; (W.-C.C.); (R.-C.T.)
- Department of Public Health, National Taiwan University College of Public Health, Taipei 10055, Taiwan
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Wan-Chin Chen
- Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taipei 10055, Taiwan; (W.-C.C.); (R.-C.T.)
- Department of Family Medicine, Changhua Christian Hospital, Changhua 50006, Taiwan
| | - Rodger-Chen Tsai
- Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taipei 10055, Taiwan; (W.-C.C.); (R.-C.T.)
| |
Collapse
|
48
|
Gouzerh F, Bessière JM, Ujvari B, Thomas F, Dujon AM, Dormont L. Odors and cancer: Current status and future directions. Biochim Biophys Acta Rev Cancer 2021; 1877:188644. [PMID: 34737023 DOI: 10.1016/j.bbcan.2021.188644] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 02/07/2023]
Abstract
Cancer is the second leading cause of death in the world. Because tumors detected at early stages are easier to treat, the search for biomarkers-especially non-invasive ones-that allow early detection of malignancies remains a central goal to reduce cancer mortality. Cancer, like other pathologies, often alters body odors, and much has been done by scientists over the last few decades to assess the value of volatile organic compounds (VOCs) as signatures of cancers. We present here a quantitative review of 208 studies carried out between 1984 and 2020 that explore VOCs as potential biomarkers of cancers. We analyzed the main findings of these studies, listing and classifying VOCs related to different cancer types while considering both sampling methods and analysis techniques. Considering this synthesis, we discuss several of the challenges and the most promising prospects of this research direction in the war against cancer.
Collapse
Affiliation(s)
- Flora Gouzerh
- CREEC/CANECEV (CREES), Montpellier, France; MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France; CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France.
| | - Jean-Marie Bessière
- Ecole Nationale de Chimie de Montpellier, Laboratoire de Chimie Appliquée, Montpellier, France
| | - Beata Ujvari
- Deakin University, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia
| | - Frédéric Thomas
- CREEC/CANECEV (CREES), Montpellier, France; MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Antoine M Dujon
- CREEC/CANECEV (CREES), Montpellier, France; MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France; Deakin University, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia
| | - Laurent Dormont
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| |
Collapse
|
49
|
Zhang J, Tian Y, Luo Z, Qian C, Li W, Duan Y. Breath volatile organic compound analysis: an emerging method for gastric cancer detection. J Breath Res 2021; 15. [PMID: 34610588 DOI: 10.1088/1752-7163/ac2cde] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022]
Abstract
Gastric cancer is a common malignancy, being the fifth most frequently diagnosed cancer and the fourth leading cause of cancer-related deaths worldwide. Diagnosis of gastric cancer at the early stage is critical to effectively improve the survival rate. However, a substantial proportion of patients with gastric cancer in the early stages lack specific symptoms or are asymptomatic. Moreover, the imaging techniques currently used for gastric cancer screening, such as computed tomography and barium examination, are usually radioactive and have low sensitivity and specificity. Even though endoscopy has high accuracy for gastric cancer screening, its application is limited by the invasiveness of the technique. Breath analysis is an economic, effective, easy to perform, non-invasive detection method, and has no undesirable side effects on subjects. Extensive worldwide research has been conducted on breath volatile organic compounds (VOCs), which reveals its prospect as a potential method for gastric cancer detection. Many interesting results have been obtained and innovative methods have been introduced in this subject; hence, an extensive review would be beneficial. By providing a comprehensive list of breath VOCs identified by gastric cancer would promote further research in this field. This review summarizes the commonly used technologies for exhaled breath analysis, focusing on the application of analytical instruments in the detection of breath VOCs in gastric cancers, and the alterations in the profile of breath biomarkers in gastric cancer patients are discussed as well.
Collapse
Affiliation(s)
- Jing Zhang
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China
| | - Yonghui Tian
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China
| | - Zewei Luo
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China
| | - Cheng Qian
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, People's Republic of China
| | - Wenwen Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China
| |
Collapse
|
50
|
A prediction model using 2-propanol and 2-butanone in urine distinguishes breast cancer. Sci Rep 2021; 11:19801. [PMID: 34611278 PMCID: PMC8492640 DOI: 10.1038/s41598-021-99396-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/20/2021] [Indexed: 01/05/2023] Open
Abstract
Safe and noninvasive methods for breast cancer screening with improved accuracy are urgently needed. Volatile organic compounds (VOCs) in biological samples such as breath and blood have been investigated as noninvasive novel markers of cancer. We investigated volatile organic compounds in urine to assess their potential for the detection of breast cancer. One hundred and ten women with biopsy-proven breast cancer and 177 healthy volunteers were enrolled. The subjects were divided into two groups: a training set and an external validation set. Urine samples were collected and analyzed by gas chromatography and mass spectrometry. A predictive model was constructed by multivariate analysis, and the sensitivity and specificity of the model were confirmed using both a training set and an external set with reproducibility tests. The training set included 60 breast cancer patients (age 34–88 years, mean 60.3) and 60 healthy controls (age 34–81 years, mean 58.7). The external validation set included 50 breast cancer patients (age 35–85 years, mean 58.8) and 117 healthy controls (age 18–84 years, mean 51.2). One hundred and ninety-one compounds detected in at least 80% of the samples from the training set were used for further analysis. The predictive model that best-detected breast cancer at various clinical stages was constructed using a combination of two of the compounds, 2-propanol and 2-butanone. The sensitivity and specificity in the training set were 93.3% and 83.3%, respectively. Triplicated reproducibility tests were performed by randomly choosing ten samples from each group, and the results showed a matching rate of 100% for the breast cancer patient group and 90% for the healthy control group. Our prediction model using two VOCs is a useful complement to the current diagnostic tools. Further studies inclusive of benign tumors and non-breast malignancies are warranted.
Collapse
|