1
|
Kumar S, Zhao J, Talluri S, Buon L, Mu S, Potluri LB, Liao C, Shi J, Chakraborty C, Gonzalez GB, Tai YT, Patel J, Pal J, Mashimo H, Samur MK, Munshi NC, Shammas MA. Elevated APE1 Dysregulates Homologous Recombination and Cell Cycle Driving Genomic Evolution, Tumorigenesis, and Chemoresistance in Esophageal Adenocarcinoma. Gastroenterology 2023; 165:357-373. [PMID: 37178737 PMCID: PMC10524563 DOI: 10.1053/j.gastro.2023.04.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND & AIMS The purpose of this study was to identify drivers of genomic evolution in esophageal adenocarcinoma (EAC) and other solid tumors. METHODS An integrated genomics strategy was used to identify deoxyribonucleases correlating with genomic instability (as assessed from total copy number events in each patient) in 6 cancers. Apurinic/apyrimidinic nuclease 1 (APE1), identified as the top gene in functional screens, was either suppressed in cancer cell lines or overexpressed in normal esophageal cells and the impact on genome stability and growth was monitored in vitro and in vivo. The impact on DNA and chromosomal instability was monitored using multiple approaches, including investigation of micronuclei, acquisition of single nucleotide polymorphisms, whole genome sequencing, and/or multicolor fluorescence in situ hybridization. RESULTS Expression of 4 deoxyribonucleases correlated with genomic instability in 6 human cancers. Functional screens of these genes identified APE1 as the top candidate for further evaluation. APE1 suppression in EAC, breast, lung, and prostate cancer cell lines caused cell cycle arrest; impaired growth and increased cytotoxicity of cisplatin in all cell lines and types and in a mouse model of EAC; and inhibition of homologous recombination and spontaneous and chemotherapy-induced genomic instability. APE1 overexpression in normal cells caused a massive chromosomal instability, leading to their oncogenic transformation. Evaluation of these cells by means of whole genome sequencing demonstrated the acquisition of changes throughout the genome and identified homologous recombination as the top mutational process. CONCLUSIONS Elevated APE1 dysregulates homologous recombination and cell cycle, contributing to genomic instability, tumorigenesis, and chemoresistance, and its inhibitors have the potential to target these processes in EAC and possibly other cancers.
Collapse
Affiliation(s)
- Subodh Kumar
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts
| | - Jiangning Zhao
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts
| | - Srikanth Talluri
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts
| | - Leutz Buon
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Shidai Mu
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts
| | - Lakshmi B Potluri
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts
| | - Chengcheng Liao
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts
| | - Jialan Shi
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts; Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | | | - Gabriel B Gonzalez
- Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts; Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Yu-Tzu Tai
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Jaymin Patel
- Department of Medicine, Harvard Medical School, Boston, Massachusetts; Hematology and Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Jagannath Pal
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Pt. Jawahar Lal Nehru Memorial Medical College, Raipur, Chhattisgarh, India
| | - Hiroshi Mashimo
- Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts; Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Mehmet K Samur
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Nikhil C Munshi
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts; Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Masood A Shammas
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts.
| |
Collapse
|
2
|
Malfatti MC, Bellina A, Antoniali G, Tell G. Revisiting Two Decades of Research Focused on Targeting APE1 for Cancer Therapy: The Pros and Cons. Cells 2023; 12:1895. [PMID: 37508559 PMCID: PMC10378182 DOI: 10.3390/cells12141895] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
APE1 is an essential endodeoxyribonuclease of the base excision repair pathway that maintains genome stability. It was identified as a pivotal factor favoring tumor progression and chemoresistance through the control of gene expression by a redox-based mechanism. APE1 is overexpressed and serum-secreted in different cancers, representing a prognostic and predictive factor and a promising non-invasive biomarker. Strategies directly targeting APE1 functions led to the identification of inhibitors showing potential therapeutic value, some of which are currently in clinical trials. Interestingly, evidence indicates novel roles of APE1 in RNA metabolism that are still not fully understood, including its activity in processing damaged RNA in chemoresistant phenotypes, regulating onco-miRNA maturation, and oxidized RNA decay. Recent data point out a control role for APE1 in the expression and sorting of onco-miRNAs within secreted extracellular vesicles. This review is focused on giving a portrait of the pros and cons of the last two decades of research aiming at the identification of inhibitors of the redox or DNA-repair functions of APE1 for the definition of novel targeted therapies for cancer. We will discuss the new perspectives in cancer therapy emerging from the unexpected finding of the APE1 role in miRNA processing for personalized therapy.
Collapse
Affiliation(s)
- Matilde Clarissa Malfatti
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Alessia Bellina
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Giulia Antoniali
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, 33100 Udine, Italy
| |
Collapse
|
3
|
Wu Z, Duan H, Cheng Y, Guo D, Peng L, Hu Y, Hu J, Luo T. A novel ligand swing-mediated active site coordination change of human apurinic/apyrimidinic endonuclease 1: A potential cytotoxic mechanism of nickel ion in the base excision repair. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Changes in the Plasma Apurinic/Apyrimidinic Endonuclease 1/Redox Factor-1(APE1/Ref-1) Level during Cancer Surgery: An Observational Study. Medicina (B Aires) 2021; 57:medicina57111280. [PMID: 34833498 PMCID: PMC8623191 DOI: 10.3390/medicina57111280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
Background and Objectives: Propofol-based total intravenous anesthesia (TIVA) is presumed to have more favorable effects on the prognosis of patients with cancer compared with volatile inhaled anesthesia (VIA). We hypothesized that these anesthetics target plasma apurinic apyrimidinic endonuclease/redox effector factor-1 (APE1/Ref-1) as a possible mechanism of action. Materials and Methods: The plasma APE1/Ref-1 level was evaluated three times during surgery for cancer, i.e., before anesthesia, immediately after cancer resection, and finally, in the recovery room. Blood (3 cc) was drawn from the radial artery catheter, and plasma APE1/Ref-1 levels were compared according to measurement time and between the two groups. Spearman’s Rho correlation analysis was performed to determine relationships among body mass index, American Society of Anesthesiologists classification, age, sex, cancer type, and tumor-node-metastasis (TNM) stage. A total of 166 patients (VIA: 129; TIVA: 37) were enrolled. Results: Plasma APE1/Ref-1 level increased significantly (p = 0.028) after cancer resection compared with before surgery, but no significant difference was observed between anesthetics (p = 0.134). The post-resection plasma APE1/Ref-1 level showed a positive correlation with the NM stages, but not the T stage. Conclusions: The plasma APE1/Ref-1 level increased during surgery with more severe lymph node invasion, but there were no significant differences according to the anesthetics used.
Collapse
|
5
|
Huang R, Zhou PK. DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct Target Ther 2021; 6:254. [PMID: 34238917 PMCID: PMC8266832 DOI: 10.1038/s41392-021-00648-7] [Citation(s) in RCA: 395] [Impact Index Per Article: 98.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/28/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Genomic instability is the hallmark of various cancers with the increasing accumulation of DNA damage. The application of radiotherapy and chemotherapy in cancer treatment is typically based on this property of cancers. However, the adverse effects including normal tissues injury are also accompanied by the radiotherapy and chemotherapy. Targeted cancer therapy has the potential to suppress cancer cells' DNA damage response through tailoring therapy to cancer patients lacking specific DNA damage response functions. Obviously, understanding the broader role of DNA damage repair in cancers has became a basic and attractive strategy for targeted cancer therapy, in particular, raising novel hypothesis or theory in this field on the basis of previous scientists' findings would be important for future promising druggable emerging targets. In this review, we first illustrate the timeline steps for the understanding the roles of DNA damage repair in the promotion of cancer and cancer therapy developed, then we summarize the mechanisms regarding DNA damage repair associated with targeted cancer therapy, highlighting the specific proteins behind targeting DNA damage repair that initiate functioning abnormally duo to extrinsic harm by environmental DNA damage factors, also, the DNA damage baseline drift leads to the harmful intrinsic targeted cancer therapy. In addition, clinical therapeutic drugs for DNA damage and repair including therapeutic effects, as well as the strategy and scheme of relative clinical trials were intensive discussed. Based on this background, we suggest two hypotheses, namely "environmental gear selection" to describe DNA damage repair pathway evolution, and "DNA damage baseline drift", which may play a magnified role in mediating repair during cancer treatment. This two new hypothesis would shed new light on targeted cancer therapy, provide a much better or more comprehensive holistic view and also promote the development of new research direction and new overcoming strategies for patients.
Collapse
Affiliation(s)
- Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, China.
| |
Collapse
|
6
|
Sadoughi F, Mirsafaei L, Dana PM, Hallajzadeh J, Asemi Z, Mansournia MA, Montazer M, Hosseinpour M, Yousefi B. The role of DNA damage response in chemo- and radio-resistance of cancer cells: Can DDR inhibitors sole the problem? DNA Repair (Amst) 2021; 101:103074. [PMID: 33640757 DOI: 10.1016/j.dnarep.2021.103074] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/12/2021] [Indexed: 12/15/2022]
Abstract
Up to now, many improvements have been made in providing more therapeutic strategies for cancer patients. The lack of susceptibility to common therapies like chemo- and radio-therapy is one of the reasons why we need more methods in the field of cancer therapy. DNA damage response (DDR) is a set of mechanisms which identifies DNA lesions and triggers the repair process for restoring DNA after causing an arrest in the cell cycle. The ability of DDR in maintaining the genome stability and integrity can be favorable to cancerous cells which are exposed to radiation therapy or are treated with chemotherapeutic agents. When DDR mechanisms are error-free in cancer cells, they can escape the expected cellular death and display resistance to treatment. In this regard, targeting different components of DDR can help to increase the susceptibility of advanced tumors to chemo- and radio-therapy.
Collapse
Affiliation(s)
- Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Liaosadat Mirsafaei
- Department of Cardiology, Ramsar Campus, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Majid Montazer
- Department of Thorax Surgery, Tuberculosis and Lung Disease Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Hosseinpour
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Tan A, Ruan P, Sun P. APEX1/miR-24 axis: a promising therapeutic target in endometriosis. Arch Gynecol Obstet 2021; 304:131-141. [PMID: 33502561 DOI: 10.1007/s00404-021-05963-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/17/2020] [Indexed: 11/25/2022]
Abstract
PURPOSE The present work aimed to explore the aberrant expression of APEX1 in endometrial stromal cells (ESC) and the underlying mechanisms. METHODS The levels of APEX1 and miR-24 in endometriosis tissues were tested by qRT-PCR and Western blot. After cell transfection, cells were correspondingly classified into pcDNA3.1-NC, sh-NC, mimic NC, inhibitor NC, pcDNA3.1-APEX1, sh-APEX1, miR-24 mimic, miR-24 inhibitor, sh-NC + inhibitor NC, inhibitor-NC + sh-APEX1, sh-NC + miR-24 inhibitor, pcDNA3.1-NC + mimic NC, mimic NC + pcDNA3.1-APEX1 and pcDNA3.1-NC + miR-24 mimic group. Besides, cell proliferation, apoptosis in addition to apoptosis-related proteins Bax, Bcl-2 and cleaved-casase-3 were analyzed by BrdU assay, flow cytometry (FCM) and Western blot assays, respectively. Additionally, RIP assay was conducted to determine the interaction between pri-miR-24 and miR-24. RESULTS APEX1 and miR-24 were highly expressed in endometriosis tissues. Overexpression of APEX1 and miR-24 potentiates ESC proliferation and inhibits apoptosis, while those effects could be reversed by APEX1 and miR-24 silencing. Meanwhile, APEX1 and miR-24 could elevate ESC apoptosis-related proteins Bax and cleaved-caspase-3 and decrease Bcl-2 expression. Importantly, APEX1 was positively correlated with miR-24 expression. CONCLUSION APEX1 promotes ESC proliferation and inhibits apoptosis by upregulating miR-24 expression.
Collapse
Affiliation(s)
- Aili Tan
- Department of Obstetrics and Gynecology, Wuhan University Renmin Hospital, Wuhan, 430060, Hubei, China
| | - Peng Ruan
- Department of Oncology, Wuhan University Renmin Hospital, No. 99, Zhangzhidong Road, Wuchang District, Wuhan, 430060, Hubei, China.
| | - Pengxing Sun
- Department of Obstetrics and Gynecology, Wuhan University Renmin Hospital, Wuhan, 430060, Hubei, China
| |
Collapse
|
8
|
Rajapakse A, Suraweera A, Boucher D, Naqi A, O'Byrne K, Richard DJ, Croft LV. Redox Regulation in the Base Excision Repair Pathway: Old and New Players as Cancer Therapeutic Targets. Curr Med Chem 2020; 27:1901-1921. [PMID: 31258058 DOI: 10.2174/0929867326666190430092732] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/09/2019] [Accepted: 04/05/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Reactive Oxygen Species (ROS) are by-products of normal cellular metabolic processes, such as mitochondrial oxidative phosphorylation. While low levels of ROS are important signalling molecules, high levels of ROS can damage proteins, lipids and DNA. Indeed, oxidative DNA damage is the most frequent type of damage in the mammalian genome and is linked to human pathologies such as cancer and neurodegenerative disorders. Although oxidative DNA damage is cleared predominantly through the Base Excision Repair (BER) pathway, recent evidence suggests that additional pathways such as Nucleotide Excision Repair (NER) and Mismatch Repair (MMR) can also participate in clearance of these lesions. One of the most common forms of oxidative DNA damage is the base damage 8-oxoguanine (8-oxoG), which if left unrepaired may result in G:C to A:T transversions during replication, a common mutagenic feature that can lead to cellular transformation. OBJECTIVE Repair of oxidative DNA damage, including 8-oxoG base damage, involves the functional interplay between a number of proteins in a series of enzymatic reactions. This review describes the role and the redox regulation of key proteins involved in the initial stages of BER of 8-oxoG damage, namely Apurinic/Apyrimidinic Endonuclease 1 (APE1), human 8-oxoguanine DNA glycosylase-1 (hOGG1) and human single-stranded DNA binding protein 1 (hSSB1). Moreover, the therapeutic potential and modalities of targeting these key proteins in cancer are discussed. CONCLUSION It is becoming increasingly apparent that some DNA repair proteins function in multiple repair pathways. Inhibiting these factors would provide attractive strategies for the development of more effective cancer therapies.
Collapse
Affiliation(s)
- Aleksandra Rajapakse
- Queensland University of Technology, Faculty of Health, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Cancer and Ageing Research Program, Translational Research Institute, Brisbane, QLD, Australia.,School of Natural Sciences, Griffith University, Nathan, QLD, Australia
| | - Amila Suraweera
- Queensland University of Technology, Faculty of Health, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Cancer and Ageing Research Program, Translational Research Institute, Brisbane, QLD, Australia
| | - Didier Boucher
- Queensland University of Technology, Faculty of Health, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Cancer and Ageing Research Program, Translational Research Institute, Brisbane, QLD, Australia
| | - Ali Naqi
- Department of Chemistry, Pennsylvania State University, United States
| | - Kenneth O'Byrne
- Queensland University of Technology, Faculty of Health, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Cancer and Ageing Research Program, Translational Research Institute, Brisbane, QLD, Australia.,Cancer Services, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Derek J Richard
- Queensland University of Technology, Faculty of Health, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Cancer and Ageing Research Program, Translational Research Institute, Brisbane, QLD, Australia
| | - Laura V Croft
- Queensland University of Technology, Faculty of Health, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Cancer and Ageing Research Program, Translational Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
9
|
Stratigopoulou M, van Dam TP, Guikema JEJ. Base Excision Repair in the Immune System: Small DNA Lesions With Big Consequences. Front Immunol 2020; 11:1084. [PMID: 32547565 PMCID: PMC7272602 DOI: 10.3389/fimmu.2020.01084] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
The integrity of the genome is under constant threat of environmental and endogenous agents that cause DNA damage. Endogenous damage is particularly pervasive, occurring at an estimated rate of 10,000–30,000 per cell/per day, and mostly involves chemical DNA base lesions caused by oxidation, depurination, alkylation, and deamination. The base excision repair (BER) pathway is primary responsible for removing and repairing these small base lesions that would otherwise lead to mutations or DNA breaks during replication. Next to preventing DNA mutations and damage, the BER pathway is also involved in mutagenic processes in B cells during immunoglobulin (Ig) class switch recombination (CSR) and somatic hypermutation (SHM), which are instigated by uracil (U) lesions derived from activation-induced cytidine deaminase (AID) activity. BER is required for the processing of AID-induced lesions into DNA double strand breaks (DSB) that are required for CSR, and is of pivotal importance for determining the mutagenic outcome of uracil lesions during SHM. Although uracils are generally efficiently repaired by error-free BER, this process is surprisingly error-prone at the Ig loci in proliferating B cells. Breakdown of this high-fidelity process outside of the Ig loci has been linked to mutations observed in B-cell tumors and DNA breaks and chromosomal translocations in activated B cells. Next to its role in preventing cancer, BER has also been implicated in immune tolerance. Several defects in BER components have been associated with autoimmune diseases, and animal models have shown that BER defects can cause autoimmunity in a B-cell intrinsic and extrinsic fashion. In this review we discuss the contribution of BER to genomic integrity in the context of immune receptor diversification, cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Maria Stratigopoulou
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Tijmen P van Dam
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jeroen E J Guikema
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
10
|
Zhang H, Ba S, Yang Z, Wang T, Lee JY, Li T, Shao F. Graphene Quantum Dot-Based Nanocomposites for Diagnosing Cancer Biomarker APE1 in Living Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13634-13643. [PMID: 32129072 DOI: 10.1021/acsami.9b21385] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
As an essential DNA repair enzyme, apurinic/apyrimidinic endonuclease 1 (APE1) is overexpressed in most human cancers and is identified as a cancer diagnostic and predictive biomarker for cancer risk assessment, diagnosis, prognosis, and prediction of treatment efficacy. Despite its importance in cancer, however, it is still a significant challenge nowadays to sense abundance variation and monitor enzymatic activity of this biomarker in living cells. Here, we report our construction of biocompatible functional nanocomposites, which are a combination of meticulously designed unimolecular DNA and fine-sized graphene quantum dots. Upon utilization of these nanocomposites as diagnostic probes, massive accumulation of fluorescence signal in living cells can be triggered by merely a small amount of cellular APE1 through repeated cycles of enzymatic catalysis. Most critically, our delicate structural designs assure that these graphene quantum dot-based nanocomposites are capable of sensing cancer biomarker APE1 in identical type of cells under different cell conditions and can be applied to multiple cancerous cells in a highly sensitive and specific manners. This work not only brings about new methods for cytology-based cancer screening but also lays down a general principle for fabricating diagnostic probes that target other endogenous biomarkers in living cells.
Collapse
Affiliation(s)
- Hao Zhang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Sai Ba
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhaoqi Yang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tianxiang Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Jasmine Yiqin Lee
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Tianhu Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Fangwei Shao
- ZJU-UIUC Institute, Zhejiang University, Haining, Zhejiang 314400, China
| |
Collapse
|
11
|
Liu Y, Zhang Z, Zhang L, Zhong Z. Cytoplasmic APE1 promotes resistance response in osteosarcoma patients with cisplatin treatment. Cell Biochem Funct 2020; 38:195-203. [PMID: 31930546 DOI: 10.1002/cbf.3461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/02/2019] [Accepted: 10/28/2019] [Indexed: 11/09/2022]
Abstract
Chemotherapy resistance has become a hold back and major clinical challenge in osteosarcoma cancer. The alteration and subcellular distribution of apurinic/apyrimidinic endonuclease 1 (APE1) has been reported to be involved in chemotherapy resistance in many cancers. Here, we report that the cytoplasmic distribution of APE1 plays a key role in the sensitivity of combination platinum chemotherapy in osteosarcoma. Interestingly, the prevalence of cisplatin-induced DNA damage and apoptosis in low cytoplasmic APE1 osteosarcoma cell lines was higher than in high expression of cytoplasmic APE1 cell lines. Overexpression of cytoplasmic APE1 protected the osteosarcoma cells from CDDP-induced apoptosis. In addition, clinical data also show that the level of cytoplasmic APE1 was negatively associated with sensitivity to combination chemotherapy of cisplatin in osteosarcoma patients. Our findings suggest that cytoplasmic APE1 plays a significant role in chemotherapy resistance. This role is a supplement to the extranuclear function of APE1, and cytoplasmic APE1 expression level could be a promising predictor of platinum treatment prognosis for osteosarcoma patients.
Collapse
Affiliation(s)
- Yufeng Liu
- Cancer Center, The Third Affiliated Hospital and Research Institute of Surgery of Army Medical University (Third Military Medical University), Chongqing, PR China
| | - Zhimin Zhang
- Cancer Center, The Third Affiliated Hospital and Research Institute of Surgery of Army Medical University (Third Military Medical University), Chongqing, PR China
| | - Liang Zhang
- Cancer Center, The Third Affiliated Hospital and Research Institute of Surgery of Army Medical University (Third Military Medical University), Chongqing, PR China
| | - Zhaoyang Zhong
- Cancer Center, The Third Affiliated Hospital and Research Institute of Surgery of Army Medical University (Third Military Medical University), Chongqing, PR China
| |
Collapse
|
12
|
Ferreira S, Dutreix M. DNA repair inhibitors to enhance radiotherapy: Progresses and limitations. Cancer Radiother 2019; 23:883-890. [PMID: 31615730 DOI: 10.1016/j.canrad.2019.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 08/29/2019] [Accepted: 08/31/2019] [Indexed: 02/08/2023]
Abstract
Radiotherapy is one of the most common form of treatment in oncology care. Indeed, radiotherapy proved to be very effective in treating a wide range of malignancies. Nevertheless, certain tumours are intrinsically radioresistant or may evolve to become radioresistant. Resistance to radiotherapy is often associated with dysregulated DNA damage response and repair. Recently, a number of strategies have been developed to improve radiotherapy efficacy by targeting the DNA damage response and repair pathways. Ongoing clinical trials showed the potential of some of these approaches in enhancing radiotherapy, but also highlighted the possible limitations. Here, we will describe (i) the main mechanisms involved in double-strand break repair; (ii) available strategies that target these DNA repair processes to improve radiotherapy and (iii) the clinical outcomes and challenges that have emerged so far.
Collapse
Affiliation(s)
- S Ferreira
- Centre universitaire, institut Curie, UMR « Etic », bâtiment 110, 91405 Orsay cedex, France; Université PSL, 91405 Orsay, France; CNRS, UMR 3347, 91405 Orsay, France; Inserm, UMR 3347, 91405 Orsay, France; Université Paris-Sud université Paris-Saclay, 91405 Orsay, France
| | - M Dutreix
- Centre universitaire, institut Curie, UMR « Etic », bâtiment 110, 91405 Orsay cedex, France; Université PSL, 91405 Orsay, France; CNRS, UMR 3347, 91405 Orsay, France; Inserm, UMR 3347, 91405 Orsay, France; Université Paris-Sud université Paris-Saclay, 91405 Orsay, France.
| |
Collapse
|
13
|
Role of apurinic/apyrimidinic nucleases in the regulation of homologous recombination in myeloma: mechanisms and translational significance. Blood Cancer J 2018; 8:92. [PMID: 30301882 PMCID: PMC6177467 DOI: 10.1038/s41408-018-0129-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 08/21/2018] [Indexed: 12/17/2022] Open
Abstract
We have previously reported that homologous recombination (HR) is dysregulated in multiple myeloma (MM) and contributes to genomic instability and development of drug resistance. We now demonstrate that base excision repair (BER) associated apurinic/apyrimidinic (AP) nucleases (APEX1 and APEX2) contribute to regulation of HR in MM cells. Transgenic as well as chemical inhibition of APEX1 and/or APEX2 inhibits HR activity in MM cells, whereas the overexpression of either nuclease in normal human cells, increases HR activity. Regulation of HR by AP nucleases could be attributed, at least in part, to their ability to regulate recombinase (RAD51) expression. We also show that both nucleases interact with major HR regulators and that APEX1 is involved in P73-mediated regulation of RAD51 expression in MM cells. Consistent with the role in HR, we also show that AP-knockdown or treatment with inhibitor of AP nuclease activity increases sensitivity of MM cells to melphalan and PARP inhibitor. Importantly, although inhibition of AP nuclease activity increases cytotoxicity, it reduces genomic instability caused by melphalan. In summary, we show that APEX1 and APEX2, major BER proteins, also contribute to regulation of HR in MM. These data provide basis for potential use of AP nuclease inhibitors in combination with chemotherapeutics such as melphalan for synergistic cytotoxicity in MM.
Collapse
|
14
|
Li Q, Wei X, Zhou ZW, Wang SN, Jin H, Chen KJ, Luo J, Westover KD, Wang JM, Wang D, Xu CX, Shan JL. GADD45α sensitizes cervical cancer cells to radiotherapy via increasing cytoplasmic APE1 level. Cell Death Dis 2018; 9:524. [PMID: 29743554 PMCID: PMC5943293 DOI: 10.1038/s41419-018-0452-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 12/21/2022]
Abstract
Radioresistance remains a major clinical challenge in cervical cancer therapy. However, the mechanism for the development of radioresistance in cervical cancer is unclear. Herein, we determined that growth arrest and DNA-damage-inducible protein 45α (GADD45α) is decreased in radioresistant cervical cancer compared to radiosensitive cancer both in vitro and in vivo. In addition, silencing GADD45α prevents cervical cancer cells from undergoing radiation-induced DNA damage, cell cycle arrest, and apoptosis. More importantly, our data show that the overexpression of GADD45α significantly enhances the radiosensitivity of radioresistant cervical cancer cells. These data show that GADD45α decreases the cytoplasmic distribution of APE1, thereby enhancing the radiosensitivity of cervical cancer cells. Furthermore, we show that GADD45α inhibits the production of nitric oxide (NO), a nuclear APE1 export stimulator, by suppressing both endothelial NO synthase (eNOS) and inducible NO synthase (iNOS) in cervical cancer cells. In conclusion, our findings suggest that decreased GADD45α expression significantly contributes to the development of radioresistance and that ectopic expression of GADD45α sensitizes cervical cancer cells to radiotherapy. GADD45α inhibits the NO-regulated cytoplasmic localization of APE1 through inhibiting eNOS and iNOS, thereby enhancing the radiosensitivity of cervical cancer cells.
Collapse
Affiliation(s)
- Qing Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, 400042, China
| | - Xi Wei
- Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Zhi-Wei Zhou
- Department of Radiation Oncology and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shu-Nan Wang
- Department of Radiology, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, 400042, China
| | - Hua Jin
- Department of Thoracic surgery, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, 400042, China
| | - Kui-Jun Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, 400042, China
| | - Jia Luo
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, 400042, China
| | - Kenneth D Westover
- Department of Radiation Oncology and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jian-Min Wang
- State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, 400042, China
| | - Dong Wang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, 400042, China
| | - Cheng-Xiong Xu
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, 400042, China.
| | - Jin-Lu Shan
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, 400042, China.
| |
Collapse
|
15
|
Jiang Y, Liu Y, Hu H. Studies on DNA Damage Repair and Precision Radiotherapy for Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1026:105-123. [PMID: 29282681 DOI: 10.1007/978-981-10-6020-5_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Radiotherapy acts as an important component of breast cancer management, which significantly decreases local recurrence in patients treated with conservative surgery or with radical mastectomy. On the foundation of technological innovation of radiotherapy setting, precision radiotherapy of cancer has been widely applied in recent years. DNA damage and its repair mechanism are the vital factors which lead to the formation of tumor. Moreover, the status of DNA damage repair in cancer cells has been shown to influence patient response to the therapy, including radiotherapy. Some genes can affect the radiosensitivity of tumor cell by regulating the DNA damage repair pathway. This chapter will describe the potential application of DNA damage repair in precision radiotherapy of breast cancer.
Collapse
Affiliation(s)
- Yanhui Jiang
- Department of Radiotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yimin Liu
- Department of Radiotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Hai Hu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| |
Collapse
|
16
|
Abstract
Reduction-oxidation factor 1-apurinic/apyrimidinic endonuclease (Ref-1/APE1) is a critical node in tumor cells, both as a redox regulator of transcription factor activation and as part of the DNA damage response. As a redox signaling protein, Ref-1/APE1 enhances the transcriptional activity of STAT3, HIF-1α, nuclear factor kappa B, and other transcription factors to promote growth, migration, and survival in tumor cells as well as inflammation and angiogenesis in the tumor microenvironment. Ref-1/APE1 is activated in a variety of cancers, including prostate, colon, pancreatic, ovarian, lung and leukemias, leading to increased aggressiveness. Transcription factors downstream of Ref-1/APE1 are key contributors to many cancers, and Ref-1/APE1 redox signaling inhibition slows growth and progression in a number of tumor types. Ref-1/APE1 inhibition is also highly effective when paired with other drugs, including standard-of-care therapies and therapies targeting pathways affected by Ref-1/APE1 redox signaling. Additionally, Ref-1/APE1 plays a role in a variety of other indications, such as retinopathy, inflammation, and neuropathy. In this review, we discuss the functional consequences of activation of the Ref-1/APE1 node in cancer and other diseases, as well as potential therapies targeting Ref-1/APE1 and related pathways in relevant diseases. APX3330, a novel oral anticancer agent and the first drug to target Ref-1/APE1 for cancer is entering clinical trials and will be explored in various cancers and other diseases bringing bench discoveries to the clinic.
Collapse
|
17
|
Huang Y, Ma Y, Li Y, Xiong M, Li X, Zhang L, Zhao S. Sensitive and label-free fluorescence detection of apurinic/apyrimidinic endonuclease 1 activity based on isothermal amplified-generation of G-quadruplex. NEW J CHEM 2017. [DOI: 10.1039/c6nj03477b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A label-free and sensitive assay for apurinic/apyrimidinic endonuclease 1 was achieved based on isothermal amplification and G-quadruplex/ligand recognition.
Collapse
Affiliation(s)
- Yufeng Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Yefei Ma
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Yina Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Mei Xiong
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Xuejun Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Liangliang Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| |
Collapse
|
18
|
Aonuma T, Takehara N, Maruyama K, Kabara M, Matsuki M, Yamauchi A, Kawabe JI, Hasebe N. Apoptosis-Resistant Cardiac Progenitor Cells Modified With Apurinic/Apyrimidinic Endonuclease/Redox Factor 1 Gene Overexpression Regulate Cardiac Repair After Myocardial Infarction. Stem Cells Transl Med 2016; 5:1067-78. [PMID: 27334489 DOI: 10.5966/sctm.2015-0281] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 03/14/2016] [Indexed: 01/16/2023] Open
Abstract
UNLABELLED : Overcoming the insufficient survival of cell grafts is an essential objective in cell-based therapy. Apurinic/apyrimidinic endonuclease/redox factor 1 (APE1) promotes cell survival and may enhance the therapeutic effect of engrafted cells. The aim of this study is to determine whether APE1 overexpression in cardiac progenitor cells (CPCs) could ameliorate the efficiency of cell-based therapy. CPCs isolated from 8- to 10-week-old C57BL/6 mouse hearts were infected with retrovirus harboring APE1-DsRed (APE1-CPC) or a DsRed control (control-CPC). Oxidative stress-induced apoptosis was then assessed in APE1-CPCs, control-CPCs, and neonatal rat ventricular myocytes (NRVMs) cocultured with these CPCs. This analysis revealed that APE1 overexpression inhibited CPC apoptosis with activation of transforming growth factor β-activated kinase 1 (TAK1) and nuclear factor (NF)-κB. In the coculture model, NRVM apoptosis was inhibited to a greater extent in the presence of APE1-CPCs compared with control-CPCs. Moreover, the number of surviving DsRed-positive CPC grafts was significantly higher 7 days after the transplant of APE1-CPCs into a mouse myocardial infarction model, and the left ventricular ejection fraction showed greater improvement with attenuation of fibrosis 28 days after the transplant of APE1-CPCs compared with control-CPCs. Additionally, fewer inflammatory macrophages and a higher percentage of cardiac α-sarcomeric actinin-positive CPC-grafts were observed in mice injected with APE1-CPCs compared with control-CPCs after 7 days. In conclusion, antiapoptotic APE1-CPC graft, which increased TAK1-NF-κB pathway activation, survived effectively in the ischemic heart, restored cardiac function, and reduced cardiac inflammation and fibrosis. APE1 overexpression in CPCs may serve as a novel strategy to improve cardiac cell therapy. SIGNIFICANCE Improving the survival of cell grafts is essential to maximize the efficacy of cell therapy. The authors investigated the role of APE1 in CPCs under ischemic conditions and evaluated the therapeutic efficacy of transplanted APE1-overexpressing CPCs in a mouse model of myocardial infarction. APE1 hindered apoptosis in CPC grafts subjected to oxidative stress caused in part by increased TAK1-NF-κB pathway activation. Furthermore, APE1-CPC grafts that effectively survived in the ischemic heart restored cardiac function and attenuated fibrosis through pleiotropic mechanisms that remain to be characterized. These findings suggest that APE1 overexpression in CPCs may be a novel strategy to reinforce cardiac cell therapy.
Collapse
Affiliation(s)
- Tatsuya Aonuma
- Department of Internal Medicine, Division of Cardiology, Nephrology, Pulmonology, and Neurology, Asahikawa Medical University, Asahikawa, Japan
| | - Naofumi Takehara
- Department of Internal Medicine, Division of Cardiology, Nephrology, Pulmonology, and Neurology, Asahikawa Medical University, Asahikawa, Japan Department of Cardiovascular Regeneration and Innovation, Asahikawa Medical University, Asahikawa, Japan
| | - Keisuke Maruyama
- Department of Internal Medicine, Division of Cardiology, Nephrology, Pulmonology, and Neurology, Asahikawa Medical University, Asahikawa, Japan
| | - Maki Kabara
- Department of Internal Medicine, Division of Cardiology, Nephrology, Pulmonology, and Neurology, Asahikawa Medical University, Asahikawa, Japan Department of Cardiovascular Regeneration and Innovation, Asahikawa Medical University, Asahikawa, Japan
| | - Motoki Matsuki
- Department of Internal Medicine, Division of Cardiology, Nephrology, Pulmonology, and Neurology, Asahikawa Medical University, Asahikawa, Japan
| | - Atsushi Yamauchi
- Department of Internal Medicine, Division of Cardiology, Nephrology, Pulmonology, and Neurology, Asahikawa Medical University, Asahikawa, Japan
| | - Jun-Ichi Kawabe
- Department of Internal Medicine, Division of Cardiology, Nephrology, Pulmonology, and Neurology, Asahikawa Medical University, Asahikawa, Japan Department of Cardiovascular Regeneration and Innovation, Asahikawa Medical University, Asahikawa, Japan
| | - Naoyuki Hasebe
- Department of Internal Medicine, Division of Cardiology, Nephrology, Pulmonology, and Neurology, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
19
|
Wei X, Duan W, Li Y, Zhang S, Xin X, Sun L, Gao M, Li Q, Wang D. AT101 exerts a synergetic efficacy in gastric cancer patients with 5-FU based treatment through promoting apoptosis and autophagy. Oncotarget 2016; 7:34430-41. [PMID: 27144437 PMCID: PMC5085166 DOI: 10.18632/oncotarget.9119] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 04/11/2016] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer remains a disease with a high mortality rate despite of multiple therapeutic strategies. So far, it is very important to develop new treatment approaches to improve current therapeutic efficacy in gastric cancer. Apurinic/apyrimidinic endonuclease (APE1) involves in DNA base excision repair (BER) during DNA damage pathway. APE1 was found to be associated with poor overall survival with gastric cancer patients. In the in vitro experiment, we tested APE1 inhibitor-AT101 could potently inhibit gastric cancer cell growth and further induce cancer cell apoptosis and autophagy through p53-dependent pathway. Downregulation of APE1 by AT101 has ability to suppress gastric cancer cell migration and renewal through inhibition of CD133, Nanog and LC3expression. Based on findings that Her-2 positive expression cases has poor prognosis from our dataset and TCGA database, we investigated the role of AT101 in synergetic efficacy with 5-FU treatment in Her-2 overexpression gastric cancer in vivo, indicating that AT101 is able to enhance 5-FU in the shrinkage of xenograft mice tumor and induction of cell apoptosis. In summary, the data obtained from our study showed APE1 is guided as a potential therapeutic target for gastric cancer. AT101 could be regarded as a potent inhibitor to promote chemotherapeutic sensitivity in patients with gastric cancer.
Collapse
Affiliation(s)
- Xi Wei
- Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Wei Duan
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Ying Li
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Sheng Zhang
- Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xiaojie Xin
- Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Lei Sun
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ming Gao
- Department of Thyroid and Cervical Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Qing Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Dong Wang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| |
Collapse
|
20
|
Poletto M, Legrand AJ, Fletcher SC, Dianov GL. p53 coordinates base excision repair to prevent genomic instability. Nucleic Acids Res 2016; 44:3165-75. [PMID: 26773055 PMCID: PMC4838360 DOI: 10.1093/nar/gkw015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/06/2016] [Indexed: 12/03/2022] Open
Abstract
DNA constantly undergoes chemical modification due to endogenous and exogenous mutagens. The DNA base excision repair (BER) pathway is the frontline mechanism handling the majority of these lesions, and primarily involves a DNA incision and subsequent resealing step. It is imperative that these processes are extremely well-coordinated as unrepaired DNA single strand breaks (SSBs) can be converted to DNA double strand breaks during replication thus triggering genomic instability. However, the mechanism(s) governing the BER process are poorly understood. Here we show that accumulation of unrepaired SSBs triggers a p53/Sp1-dependent downregulation of APE1, the endonuclease responsible for the DNA incision during BER. Importantly, we demonstrate that impaired p53 function, a characteristic of many cancers, leads to a failure of the BER coordination mechanism, overexpression of APE1, accumulation of DNA strand breaks and results in genomic instability. Our data provide evidence for a previously unrecognized mechanism for coordination of BER by p53, and its dysfunction in p53-inactivated cells.
Collapse
Affiliation(s)
- Mattia Poletto
- CRUK & MRC Oxford Institute for Radiation Oncology, University of Oxford, Department of Oncology, Old Road Campus Research Building, OX37DQ Oxford, UK
| | - Arnaud J Legrand
- CRUK & MRC Oxford Institute for Radiation Oncology, University of Oxford, Department of Oncology, Old Road Campus Research Building, OX37DQ Oxford, UK
| | - Sally C Fletcher
- CRUK & MRC Oxford Institute for Radiation Oncology, University of Oxford, Department of Oncology, Old Road Campus Research Building, OX37DQ Oxford, UK
| | - Grigory L Dianov
- CRUK & MRC Oxford Institute for Radiation Oncology, University of Oxford, Department of Oncology, Old Road Campus Research Building, OX37DQ Oxford, UK Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrenteva 10, 630090 Novosibirsk, Russia
| |
Collapse
|
21
|
ZHENG ZHIHUA, DU WEI, LI YANJU, GAO MEIQIN, HUANG AIMIN, LIU JINGFENG. Lentiviral-mediated short hairpin RNA silencing of APE1 suppresses hepatocellular carcinoma proliferation and migration: A potential therapeutic target for hepatoma treatment. Oncol Rep 2015; 34:95-102. [DOI: 10.3892/or.2015.3976] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/20/2015] [Indexed: 11/06/2022] Open
|
22
|
Feng Z, Kochanek S, Close D, Wang L, Srinivasan A, Almehizia AA, Iyer P, Xie XQ, Johnston PA, Gold B. Design and activity of AP endonuclease-1 inhibitors. J Chem Biol 2015; 8:79-93. [PMID: 26101550 DOI: 10.1007/s12154-015-0131-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/25/2015] [Indexed: 12/12/2022] Open
Abstract
Apurinic/apyrimidinic endonuclease-1/redox effector factor-1 (APE-1) is a critical component of base excision repair that excises abasic lesions created enzymatically by the action of DNA glycosylases on modified bases and non-enzymatically by hydrolytic depurination/depyrimidination of nucleobases. Many anticancer drugs generate DNA adducts that are processed by base excision repair, and tumor resistance is frequently associated with enhanced APE-1 expression. Accordingly, APE-1 is a potential therapeutic target to treat cancer. Using computational approaches and the high resolution structure of APE-1, we developed a 5-point pharmacophore model for APE-1 small molecule inhibitors. One of the nM APE-1 inhibitors (AJAY-4) that was identified based on this model exhibited an overall median growth inhibition (GI50) of 4.19 μM in the NCI-60 cell line panel. The mechanism of action is shown to be related to the buildup of abasic sites that cause PARP activation and PARP cleavage, and the activation of caspase-3 and caspase-7, which is consistent with cell death by apoptosis. In a drug combination growth inhibition screen conducted in 10 randomly selected NCI-60 cell lines and with 20 clinically used non-genotoxic anticancer drugs, a synergy was flagged in the SK-MEL-5 melanoma cell line exposed to combinations of vemurafenib, which targets melanoma cells with V600E mutated BRAF, and AJAY-4, our most potent APE-1 inhibitor. The synergy between AJAY-4 and vemurafenib was not observed in cell lines expressing wild-type B-Raf protein. This synergistic combination may provide a solution to the resistance that develops in tumors treated with B-Raf-targeting drugs.
Collapse
Affiliation(s)
- Zhiwei Feng
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - Stanton Kochanek
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - David Close
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - LiRong Wang
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - Ajay Srinivasan
- Malaria Vaccine Development Program, New Delhi, 110067 India
| | | | - Prema Iyer
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - Paul A Johnston
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - Barry Gold
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261 USA
| |
Collapse
|
23
|
Goldstein M, Kastan MB. The DNA Damage Response: Implications for Tumor Responses to Radiation and Chemotherapy. Annu Rev Med 2015; 66:129-43. [DOI: 10.1146/annurev-med-081313-121208] [Citation(s) in RCA: 303] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Michael Goldstein
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710; ,
| | - Michael B. Kastan
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710; ,
| |
Collapse
|
24
|
Human AP endonuclease 1: a potential marker for the prediction of environmental carcinogenesis risk. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:730301. [PMID: 25243052 PMCID: PMC4158471 DOI: 10.1155/2014/730301] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/30/2014] [Indexed: 12/15/2022]
Abstract
Human apurinic/apyrimidinic endonuclease 1 (APE1) functions mainly in DNA repair as an enzyme removing AP sites and in redox signaling as a coactivator of various transcription factors. Based on these multifunctions of APE1 within cells, numerous studies have reported that the alteration of APE1 could be a crucial factor in development of human diseases such as cancer and neurodegeneration. In fact, the study on the combination of an individual's genetic make-up with environmental factors (gene-environment interaction) is of great importance to understand the development of diseases, especially lethal diseases including cancer. Recent reports have suggested that the human carcinogenic risk following exposure to environmental toxicants is affected by APE1 alterations in terms of gene-environment interactions. In this review, we initially outline the critical APE1 functions in the various intracellular mechanisms including DNA repair and redox regulation and its roles in human diseases. Several findings demonstrate that the change in expression and activity as well as genetic variability of APE1 caused by environmental chemical (e.g., heavy metals and cigarette smoke) and physical carcinogens (ultraviolet and ionizing radiation) is likely associated with various cancers. These enable us to ultimately suggest APE1 as a vital marker for the prediction of environmental carcinogenesis risk.
Collapse
|
25
|
Thakur S, Sarkar B, Cholia RP, Gautam N, Dhiman M, Mantha AK. APE1/Ref-1 as an emerging therapeutic target for various human diseases: phytochemical modulation of its functions. Exp Mol Med 2014; 46:e106. [PMID: 25033834 PMCID: PMC4119211 DOI: 10.1038/emm.2014.42] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/27/2014] [Accepted: 03/05/2014] [Indexed: 12/12/2022] Open
Abstract
Apurinic/apyrimidinic endonuclease 1 (APE1) is a multifunctional enzyme involved in the base excision repair (BER) pathway, which repairs oxidative base damage caused by endogenous and exogenous agents. APE1 acts as a reductive activator of many transcription factors (TFs) and has also been named redox effector factor 1, Ref-1. For example, APE1 activates activator protein-1, nuclear factor kappa B, hypoxia-inducible factor 1α, paired box gene 8, signal transducer activator of transcription 3 and p53, which are involved in apoptosis, inflammation, angiogenesis and survival pathways. APE1/Ref-1 maintains cellular homeostasis (redox) via the activation of TFs that regulate various physiological processes and that crosstalk with redox balancing agents (for example, thioredoxin, catalase and superoxide dismutase) by controlling levels of reactive oxygen and nitrogen species. The efficiency of APE1/Ref-1's function(s) depends on pairwise interaction with participant protein(s), the functions regulated by APE1/Ref-1 include the BER pathway, TFs, energy metabolism, cytoskeletal elements and stress-dependent responses. Thus, APE1/Ref-1 acts as a ‘hub-protein' that controls pathways that are important for cell survival. In this review, we will discuss APE1/Ref-1's versatile nature in various human etiologies, including neurodegeneration, cancer, cardiovascular and other diseases that have been linked with alterations in the expression, subcellular localization and activities of APE/Ref-1. APE1/Ref-1 can be targeted for therapeutic intervention using natural plant products that modulate the expression and functions of APE1/Ref-1. In addition, studies focusing on translational applications based on APE1/Ref-1-mediated therapeutic interventions are discussed.
Collapse
Affiliation(s)
- Shweta Thakur
- Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Punjab, India
| | - Bibekananda Sarkar
- Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Punjab, India
| | - Ravi P Cholia
- Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Punjab, India
| | - Nandini Gautam
- Center for Environmental Science and Technology, School of Environment and Earth Sciences, Central University of Punjab, Punjab, India
| | - Monisha Dhiman
- Center for Genetic Diseases and Molecular Medicine, School of Emerging Life Science Technologies, Central University of Punjab, Punjab, India
| | - Anil K Mantha
- 1] Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Punjab, India [2] Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
26
|
Abstract
SIGNIFICANCE Human apurinic/apyrimidinic endonuclease 1 (APE1, also known as REF-1) was isolated based on its ability to cleave at AP sites in DNA or activate the DNA binding activity of certain transcription factors. We review herein topics related to this multi-functional DNA repair and stress-response protein. RECENT ADVANCES APE1 displays homology to Escherichia coli exonuclease III and is a member of the divalent metal-dependent α/β fold-containing phosphoesterase superfamily of enzymes. APE1 has acquired distinct active site and loop elements that dictate substrate selectivity, and a unique N-terminus which at minimum imparts nuclear targeting and interaction specificity. Additional activities ascribed to APE1 include 3'-5' exonuclease, 3'-repair diesterase, nucleotide incision repair, damaged or site-specific RNA cleavage, and multiple transcription regulatory roles. CRITICAL ISSUES APE1 is essential for mouse embryogenesis and contributes to cell viability in a genetic background-dependent manner. Haploinsufficient APE1(+/-) mice exhibit reduced survival, increased cancer formation, and cellular/tissue hyper-sensitivity to oxidative stress, supporting the notion that impaired APE1 function associates with disease susceptibility. Although abnormal APE1 expression/localization has been seen in cancer and neuropathologies, and impaired-function variants have been described, a causal link between an APE1 defect and human disease remains elusive. FUTURE DIRECTIONS Ongoing efforts aim at delineating the biological role(s) of the different APE1 activities, as well as the regulatory mechanisms for its intra-cellular distribution and participation in diverse molecular pathways. The determination of whether APE1 defects contribute to human disease, particularly pathologies that involve oxidative stress, and whether APE1 small-molecule regulators have clinical utility, is central to future investigations.
Collapse
Affiliation(s)
- Mengxia Li
- Intramural Research Program, Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health , Baltimore, Maryland
| | | |
Collapse
|
27
|
Cun Y, Zhang Q, Xiong C, Li M, Dai N, Zhang S, Wang D. Combined use of adenoviral vector Ad5/F35-mediated APE1 siRNA enhances the therapeutic efficacy of adenoviral-mediated p53 gene transfer in hepatoma cells in vitro and in vivo. Oncol Rep 2013; 29:2197-204. [PMID: 23563597 DOI: 10.3892/or.2013.2384] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 02/14/2013] [Indexed: 01/10/2023] Open
Abstract
Gene therapy has emerged as a novel therapeutic approach for the treatment of cancer. In order to establish a more effective therapeutic strategy against unresectable hepatocellular carcinoma (HCC), we evaluated, in the present study, the effects of combined treatment with adenoviral vector Ad5/F35-mediated APE1 siRNA (Ad5/F35-siAPE1) and adenoviral-mediated p53 gene transfer (Ad-p53) in hepatoma cells in vitro and in vivo. Infection of SMMC-7721 cells with Ad5/F35-siAPE1 resulted in a time- and dose-dependent decrease of APE1 protein, while Ad-p53 treatment led to a time- and dose-dependent increase of p53 protein expression. Ad5/F35-siAPE1 significantly enhanced the cytotoxic effect of SMMC-7721 cells to Ad-p53 in cell survival assays, associated with increased cell apoptosis. Moreover, administration of Ad5/F35-siAPE1 and Ad-p53 into nude mice resulted in tumor growth inhibition and apoptosis induction in SMMC-7721 xenografts compared to administration of either agent alone. These results suggest that combination of Ad5/F35-siAPE1 and Ad-p53 could be a promising gene therapeutic approach against human HCC.
Collapse
Affiliation(s)
- Yanping Cun
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, PR China
| | | | | | | | | | | | | |
Collapse
|
28
|
Cun Y, Dai N, Xiong C, Li M, Sui J, Qian C, Li Z, Wang D. Silencing of APE1 enhances sensitivity of human hepatocellular carcinoma cells to radiotherapy in vitro and in a xenograft model. PLoS One 2013; 8:e55313. [PMID: 23418439 PMCID: PMC3572126 DOI: 10.1371/journal.pone.0055313] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 12/21/2012] [Indexed: 01/08/2023] Open
Abstract
Resistance to radiotherapy is a key limitation for the treatment of human hepatocellular carcinoma (HCC). To overcome this problem, we investigated the correlation between radioresistance and the human apurinic/apyrimidinic endonuclease (APE1), a bifunctional protein, which plays an important role in DNA repair and redox regulation activity of transcription factors. In the present study, we examined the radiosensitivity profiles of three human HCC cell lines, HepG2, Hep3B, and MHCC97L, using the adenoviral vector Ad5/F35-mediated APE1 siRNA (Ad5/F35-siAPE1). The p53 mutant cell lines MHCC97L showed radioresistance, compared with HepG2 and Hep3B cells. APE1 was strongly expressed in MHCC97L cells and was induced by irradiation in a dose-dependent manner, and Ad5/F35-siAPE1 effectively inhibited irradiation-induced APE1 and p53 expression. Moreover, silencing of APE1 significantly potentiated the growth inhibition and apoptosis induction by irradiation in all tested human HCC cell lines. In addition, Ad5/F35-siAPE1 significantly enhanced inhibition of tumor growth and potentiated cell apoptosis by irradiation both in HepG2 and MHCC97L xenografts. In conclusion, down regulation of APE1 could enhance sensitivity of human HCC cells to radiotherapy in vitro and in vivo.
Collapse
Affiliation(s)
- Yanping Cun
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Nan Dai
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Chengjie Xiong
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Mengxia Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Jiangdong Sui
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Chengyuan Qian
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Zheng Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Dong Wang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
29
|
Chen S, Xiong G, Wu S, Mo J. Downregulation of apurinic/apyrimidinic endonuclease 1/redox factor-1 enhances the sensitivity of human pancreatic cancer cells to radiotherapy in vitro. Cancer Biother Radiopharm 2012; 28:169-76. [PMID: 23268706 DOI: 10.1089/cbr.2012.1266] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Abstract Background: Radiotherapy is an important treatment for the patients with advanced pancreatic cancer. Emerging studies determined apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) might associate with the resistance of human pancreatic cancer cells to radiotherapy. AIMS To investigate whether downregulation of APE1/Ref-1 expression by ribonucleic acid interference would increase the sensitivity of chromic-P32 phosphate to pancreatic cancer cells. METHODS The plasmids containing APE-specific and unspecific short hairpin were transfected into Patu-8898 cells. Stable cell clones were selected by G418. The mRNA expression of APE1/Ref-1 was detected by semiquantitative reverse transcription-polymerase chain reaction and the protein expression of APE1/Ref-1 was detected by Western blot analysis; cell proliferation was studied by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and colony formation assay; apoptosis was detected by flow cytometry. RESULTS After 24 hours irradiation, APE1/Ref-1 mRNA and protein expression were upregulated, in a concentration-dependent manner. Suppression of APE1/Ref-1 by siRNA increased the pancreatic cancer cells hypersensitive to (32)P-CP. In the combination of (32)P-CP and siRNA group, MTT assay showed that the cell inhibition increased to (74.33%±9.02%), the surviving fraction in the colony formation assay was only 25.00%, and the apoptosis rate was up to (16.77%±0.98%). CONCLUSIONS Knockdown APE1/Ref-1 gene expression may significantly sensitize the Patu-8988 cells to radiotherapy, which may be a useful target for modifying radiation resistance of pancreatic cancer cells to irradiation.
Collapse
Affiliation(s)
- Sumei Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Shanghai Jiao-Tong University School of Medicine Renji Hospital, Shanghai, China
| | | | | | | |
Collapse
|
30
|
Ruiz FM, Francis SM, Tintoré M, Ferreira R, Gil-Redondo R, Morreale A, Ortiz ÁR, Eritja R, Fàbrega C. Receptor-based virtual screening and biological characterization of human apurinic/apyrimidinic endonuclease (Ape1) inhibitors. ChemMedChem 2012; 7:2168-78. [PMID: 23109358 DOI: 10.1002/cmdc.201200372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 09/26/2012] [Indexed: 12/25/2022]
Abstract
The endonucleolytic activity of human apurinic/apyrimidinic endonuclease (AP endo, Ape1) is a major factor in maintaining the integrity of the genome. Conversely, as an undesired effect, Ape1 overexpression has been linked to resistance to radio- and chemotherapeutic treatments in several human tumors. Inhibition of Ape1 using siRNA or the expression of a dominant negative form of the protein has been shown to sensitize cells to DNA-damaging agents, including various chemotherapeutic agents. Therefore, inhibition of the enzymatic activity of Ape1 might result in a potent antitumor therapy. A number of small molecules have been described as Ape1 inhibitors; however, those compounds are in the early stages of development. Herein we report the identification of new compounds as potential Ape1 inhibitors through a docking-based virtual screening technique. Some of the compounds identified have in vitro activities in the low-to-medium micromolar range. Interaction of these compounds with the Ape1 protein was observed by mass spectrometry. These molecules also potentiate the cytotoxicity of the chemotherapeutic agent methyl methanesulfonate in fibrosarcoma cells. This study demonstrates the power of docking and virtual screening techniques as initial steps in the design of new drugs, and opens the door to the development of a new generation of Ape1 inhibitors.
Collapse
|
31
|
Prognostic Significance of Human Apurinic/Apyrimidinic Endonuclease (APE/Ref-1) Expression in Rectal Cancer Treated With Preoperative Radiochemotherapy. Int J Radiat Oncol Biol Phys 2012; 82:130-7. [DOI: 10.1016/j.ijrobp.2010.09.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 08/06/2010] [Accepted: 09/10/2010] [Indexed: 11/24/2022]
|
32
|
Mohammed MZ, Vyjayanti VN, Laughton CA, Dekker LV, Fischer PM, Wilson DM, Abbotts R, Shah S, Patel PM, Hickson ID, Madhusudan S. Development and evaluation of human AP endonuclease inhibitors in melanoma and glioma cell lines. Br J Cancer 2011; 104:653-63. [PMID: 21266972 PMCID: PMC3049581 DOI: 10.1038/sj.bjc.6606058] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aims: Modulation of DNA base excision repair (BER) has the potential to enhance response to chemotherapy and improve outcomes in tumours such as melanoma and glioma. APE1, a critical protein in BER that processes potentially cytotoxic abasic sites (AP sites), is a promising new target in cancer. In the current study, we aimed to develop small molecule inhibitors of APE1 for cancer therapy. Methods: An industry-standard high throughput virtual screening strategy was adopted. The Sybyl8.0 (Tripos, St Louis, MO, USA) molecular modelling software suite was used to build inhibitor templates. Similarity searching strategies were then applied using ROCS 2.3 (Open Eye Scientific, Santa Fe, NM, USA) to extract pharmacophorically related subsets of compounds from a chemically diverse database of 2.6 million compounds. The compounds in these subsets were subjected to docking against the active site of the APE1 model, using the genetic algorithm-based programme GOLD2.7 (CCDC, Cambridge, UK). Predicted ligand poses were ranked on the basis of several scoring functions. The top virtual hits with promising pharmaceutical properties underwent detailed in vitro analyses using fluorescence-based APE1 cleavage assays and counter screened using endonuclease IV cleavage assays, fluorescence quenching assays and radiolabelled oligonucleotide assays. Biochemical APE1 inhibitors were then subjected to detailed cytotoxicity analyses. Results: Several specific APE1 inhibitors were isolated by this approach. The IC50 for APE1 inhibition ranged between 30 nM and 50 μM. We demonstrated that APE1 inhibitors lead to accumulation of AP sites in genomic DNA and potentiated the cytotoxicity of alkylating agents in melanoma and glioma cell lines. Conclusions: Our study provides evidence that APE1 is an emerging drug target and could have therapeutic application in patients with melanoma and glioma.
Collapse
Affiliation(s)
- M Z Mohammed
- Translational DNA Repair Group, Laboratory of Molecular Oncology, Academic Unit of Oncology, School of Molecular Medical Sciences, Nottingham University Hospitals, University of Nottingham, Nottingham, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zheltukhin AO, Chumakov PM. Constitutive and induced functions of the p53 gene. BIOCHEMISTRY (MOSCOW) 2011; 75:1692-721. [DOI: 10.1134/s0006297910130110] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
34
|
Vens C, Begg AC. Targeting Base Excision Repair as a Sensitization Strategy in Radiotherapy. Semin Radiat Oncol 2010; 20:241-9. [DOI: 10.1016/j.semradonc.2010.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
35
|
Luo M, He H, Kelley MR, Georgiadis MM. Redox regulation of DNA repair: implications for human health and cancer therapeutic development. Antioxid Redox Signal 2010; 12:1247-69. [PMID: 19764832 PMCID: PMC2864659 DOI: 10.1089/ars.2009.2698] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Redox reactions are known to regulate many important cellular processes. In this review, we focus on the role of redox regulation in DNA repair both in direct regulation of specific DNA repair proteins as well as indirect transcriptional regulation. A key player in the redox regulation of DNA repair is the base excision repair enzyme apurinic/apyrimidinic endonuclease 1 (APE1) in its role as a redox factor. APE1 is reduced by the general redox factor thioredoxin, and in turn reduces several important transcription factors that regulate expression of DNA repair proteins. Finally, we consider the potential for chemotherapeutic development through the modulation of APE1's redox activity and its impact on DNA repair.
Collapse
Affiliation(s)
- Meihua Luo
- Department of Pediatrics (Section of Hematology/Oncology), Herman B. Wells Center for Pediatric Research, Indiana University, Indiana
| | - Hongzhen He
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indiana
| | - Mark R. Kelley
- Department of Pediatrics (Section of Hematology/Oncology), Herman B. Wells Center for Pediatric Research, Indiana University, Indiana
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indiana
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indiana
| | - Millie M. Georgiadis
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indiana
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana
| |
Collapse
|
36
|
Abbotts R, Madhusudan S. Human AP endonuclease 1 (APE1): from mechanistic insights to druggable target in cancer. Cancer Treat Rev 2010; 36:425-35. [PMID: 20056333 DOI: 10.1016/j.ctrv.2009.12.006] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/02/2009] [Accepted: 12/07/2009] [Indexed: 01/16/2023]
Abstract
DNA base excision repair (BER) is critically involved in the processing of DNA base damage induced by alkylating agents. Pharmacological inhibition of BER (using PARP inhibitors), either alone or in combination with chemotherapy has recently shown promise in clinical trials. Human apurinic/apyrimidinic endonuclease 1(APE1) is an essential BER protein that is involved in the processing of potentially cytotoxic abasic sites that are obligatory intermediates in BER. Here we provide a summary of the basic mechanistic role of APE1 in DNA repair and redox regulation and highlight preclinical and clinical data that confirm APE1 as a valid anticancer drug target. Development of small molecule inhibitors of APE1 is an area of intense research and current evidence using APE1 inhibitors has demonstrated potentiation of cytotoxicity of alkylating agents in preclinical models implying translational applications in cancer patients.
Collapse
Affiliation(s)
- Rachel Abbotts
- Translational DNA Repair Group, Laboratory of Molecular Oncology, Academic Unit of Oncology, School of Molecular Medical Sciences, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
37
|
Naidu MD, Mason JM, Pica RV, Fung H, Peña LA. Radiation resistance in glioma cells determined by DNA damage repair activity of Ape1/Ref-1. JOURNAL OF RADIATION RESEARCH 2010; 51:393-404. [PMID: 20679741 DOI: 10.1269/jrr.09077] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Since radiation therapy remains a primary treatment modality for gliomas, the radioresistance of glioma cells and targets to modify their radiation tolerance are of significant interest. Human apurinic endonuclease 1 (Ape1, Ref-1, APEX, HAP1, AP endo) is a multifunctional protein involved in base excision repair of DNA and a redox-dependent transcriptional co-activator. This study investigated whether there is a direct relationship between Ape1 and radioresistance in glioma cells, employing the human U87 and U251 cell lines. U87 is intrinsically more radioresistant than U251, which is partly attributable to more cycling U251 cells found in G2/M, the most radiosensitive cell stage, while more U87 cells are found in S and G1, the more radioresistant cell stages. But observed radioresistance is also related to Ape1 activity. U87 has higher levels of Ape1 than does U251, as assessed by Western blot and enzyme activity assays (approximately 1.5-2 fold higher in cycling cells, and approximately 10 fold higher at G2/M). A direct relationship was seen in cells transfected with CMV-Ape1 constructs; there was a dose-dependent relationship between increasing Ape1 overexpression and increasing radioresistance. Conversely, knock down by siRNA or by pharmacological down regulation of Ape1 resulted in decreased radioresistance. The inhibitors lucanthone and CRT004876 were employed, the former a thioxanthene previously under clinical evaluation as a radiosensitizer for brain tumors and the latter a more specific Ape1 inhibitor. These data suggest that Ape1 may be a useful target for modifying radiation tolerance.
Collapse
Affiliation(s)
- Mamta D Naidu
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
| | | | | | | | | |
Collapse
|
38
|
Vascotto C, Cesaratto L, Zeef LAH, Deganuto M, D'Ambrosio C, Scaloni A, Romanello M, Damante G, Taglialatela G, Delneri D, Kelley MR, Mitra S, Quadrifoglio F, Tell G. Genome-wide analysis and proteomic studies reveal APE1/Ref-1 multifunctional role in mammalian cells. Proteomics 2009; 9:1058-74. [PMID: 19180539 DOI: 10.1002/pmic.200800638] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Apurinic apyrimidinic endonuclease/redox effector factor 1 (APE1/Ref-1) protects cells from oxidative stress by acting as a central enzyme in base excision repair pathways of DNA lesions and through its independent activity as a redox transcriptional co-activator. Dysregulation of this protein has been associated with cancer development. At present, contrasting data have been published regarding the biological relevance of the two functions as well as the molecular mechanisms involved. Here, we combined both mRNA expression profiling and proteomic analysis to determine the molecular changes associated with APE1 loss-of-expression induced by siRNA technology. This approach identified a role of APE1 in cell growth, apoptosis, intracellular redox state, mitochondrial function, and cytoskeletal structure. Overall, our data show that APE1 acts as a hub in coordinating different and vital functions in mammalian cells, highlighting the molecular determinants of the multifunctional nature of APE1 protein.
Collapse
Affiliation(s)
- Carlo Vascotto
- Department of Biomedical Sciences and Technologies, University of Udine, Udine, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Schurman SH, Hedayati M, Wang Z, Singh DK, Speina E, Zhang Y, Becker K, Macris M, Sung P, Wilson DM, Croteau DL, Bohr VA. Direct and indirect roles of RECQL4 in modulating base excision repair capacity. Hum Mol Genet 2009; 18:3470-83. [PMID: 19567405 DOI: 10.1093/hmg/ddp291] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
RECQL4 is a human RecQ helicase which is mutated in approximately two-thirds of individuals with Rothmund-Thomson syndrome (RTS), a disease characterized at the cellular level by chromosomal instability. BLM and WRN are also human RecQ helicases, which are mutated in Bloom and Werner's syndrome, respectively, and associated with chromosomal instability as well as premature aging. Here we show that primary RTS and RECQL4 siRNA knockdown human fibroblasts accumulate more H(2)O(2)-induced DNA strand breaks than control cells, suggesting that RECQL4 may stimulate repair of H(2)O(2)-induced DNA damage. RTS primary fibroblasts also accumulate more XRCC1 foci than control cells in response to endogenous or induced oxidative stress and have a high basal level of endogenous formamidopyrimidines. In cells treated with H(2)O(2), RECQL4 co-localizes with APE1, and FEN1, key participants in base excision repair. Biochemical experiments indicate that RECQL4 specifically stimulates the apurinic endonuclease activity of APE1, the DNA strand displacement activity of DNA polymerase beta, and incision of a 1- or 10-nucleotide flap DNA substrate by Flap Endonuclease I. Additionally, RTS cells display an upregulation of BER pathway genes and fail to respond like normal cells to oxidative stress. The data herein support a model in which RECQL4 regulates both directly and indirectly base excision repair capacity.
Collapse
Affiliation(s)
- Shepherd H Schurman
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Batuello CN, Kelley MR, Dynlacht JR. Role of Ape1 and base excision repair in the radioresponse and heat-radiosensitization of HeLa Cells. Anticancer Res 2009; 29:1319-1325. [PMID: 19414382 PMCID: PMC3079572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
BACKGROUND The mechanism by which heat sensitizes mammalian cells to ionizing radiation remains to be elucidated. We determined whether base excision repair (BER) is involved in heat-radiosensitization and report novel findings that provide insight regarding the role of BER in the radiation response of HeLa cells. MATERIALS AND METHODS An siRNA approach was utilized to suppress expression of AP endonuclease (Ape1), a critical enzyme of BER. Clonogenic survival curves were obtained for HeLa cells expressing normal or reduced Ape1 content and which had been irradiated, and these were compared to survival curves from cells that were irradiated prior to hyperthermia treatment. RESULTS The amount of heat-radiosensitization observed in Ape1-suppressed cells was similar to or slightly greater than that observed in cells expressing near-normal levels of Ape1. Interestingly, we also found that for unheated HeLa cells, suppressed expression of Ape1 resulted in enhanced resistance to X-rays. CONCLUSION The data suggest that Ape1, and therefore BER, is not involved in heat-radiosensitization. However, the observation that suppressed expression of Ape1 results in enhanced radioresistance supports the notion that BER may be detrimental to the survival of irradiated cells.
Collapse
Affiliation(s)
- Christopher N. Batuello
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Mark R. Kelley
- Department of Pediatrics, Section of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Joseph R. Dynlacht
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| |
Collapse
|
41
|
Tell G, Quadrifoglio F, Tiribelli C, Kelley MR. The many functions of APE1/Ref-1: not only a DNA repair enzyme. Antioxid Redox Signal 2009; 11:601-20. [PMID: 18976116 PMCID: PMC2811080 DOI: 10.1089/ars.2008.2194] [Citation(s) in RCA: 376] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
APE1/Ref-1 (APE1), the mammalian ortholog of Escherichia coli Xth, and a multifunctional protein possessing both DNA repair and transcriptional regulatory activities, has a pleiotropic role in controlling cellular response to oxidative stress. APE1 is the main apurinic/apyrimidinic endonuclease in eukaryotic cells, playing a central role in the DNA base excision repair pathway of all DNA lesions (uracil, alkylated and oxidized, and abasic sites), including single-strand breaks, and has also cotranscriptional activity by modulating genes expression directly regulated by either ubiquitous (i.e., AP-1, Egr-1, NFkappa-B, p53, and HIF) and tissue specific (i.e., PEBP-2, Pax-5 and -8, and TTF-1) transcription factors. In addition, it controls the intracellular redox state by inhibiting the reactive oxygen species (ROS) production. At present, information is still inadequate regarding the molecular mechanisms responsible for the coordinated control of its several activities. Both expression and/or subcellular localization are altered in several metabolic and proliferative disorders such as in tumors and aging. Here, we have attempted to coalesce the most relevant information concerning APE1's different functions in order to shed new light and to focus current and future studies to fully understand this unique molecule that is acquiring more and more interest and translational relevance in the field of molecular medicine.
Collapse
Affiliation(s)
- Gianluca Tell
- Department of Biomedical Sciences and Technologies, University of Udine, Udine, Italy.
| | | | | | | |
Collapse
|
42
|
Ape1/Ref-1 induces glial cell-derived neurotropic factor (GDNF) responsiveness by upregulating GDNF receptor alpha1 expression. Mol Cell Biol 2009; 29:2264-77. [PMID: 19188437 DOI: 10.1128/mcb.01484-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Apurinic/apyrimidinic endonuclease 1 (Ape1/Ref-1) dysregulation has been identified in several human tumors and in patients with a variety of neurodegenerative diseases. However, the function of Ape1/Ref-1 is unclear. We show here that Ape1/Ref-1 increases the expression of glial cell-derived neurotropic factor (GDNF) receptor alpha1 (GFRalpha1), a key receptor for GDNF. Expression of Ape1/Ref-1 led to an increase in the GDNF responsiveness in human fibroblast. Ape1/Ref-1 induced GFRalpha1 transcription through enhanced binding of NF-kappaB complexes to the GFRalpha1 promoter. GFRalpha1 levels correlate proportionally with Ape1/Ref-1 in cancer cells. The knockdown of endogenous Ape1/Ref-1 in pancreatic cancer cells markedly suppressed GFRalpha1 expression and invasion in response to GNDF, while overexpression of GFRalpha1 restored invasion. In neuronal cells, the Ape1/Ref-1-mediated increase in GDNF responsiveness not only stimulated neurite outgrowth but also protected the cells from beta-amyloid peptide and oxidative stress. Our results show that Ape1/Ref-1 is a novel physiological regulator of GDNF responsiveness, and they also suggest that Ape1/Ref-1-induced GFRalpha1 expression may play important roles in pancreatic cancer progression and neuronal cell survival.
Collapse
|
43
|
Zawahir Z, Dayam R, Deng J, Pereira C, Neamati N. Pharmacophore Guided Discovery of Small-Molecule Human Apurinic/Apyrimidinic Endonuclease 1 Inhibitors. J Med Chem 2008; 52:20-32. [DOI: 10.1021/jm800739m] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zahrah Zawahir
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, California 90033
| | - Raveendra Dayam
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, California 90033
| | - Jinxia Deng
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, California 90033
| | - Cherelene Pereira
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, California 90033
| | - Nouri Neamati
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, California 90033
| |
Collapse
|
44
|
Skvortsova I, Skvortsov S, Stasyk T, Raju U, Popper BA, Schiestl B, von Guggenberg E, Neher A, Bonn GK, Huber LA, Lukas P. Intracellular signaling pathways regulating radioresistance of human prostate carcinoma cells. Proteomics 2008; 8:4521-33. [PMID: 18821526 DOI: 10.1002/pmic.200800113] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Radiation therapy plays an important role in the management of prostate carcinoma. However, the problem of radioresistance and molecular mechanisms by which prostate carcinoma cells overcome cytotoxic effects of radiation therapy remains to be elucidated. In order to investigate possible intracellular mechanisms underlying the prostate carcinoma recurrences after radiotherapy, we have established three radiation-resistant prostate cancer cell lines, LNCaP-IRR, PC3-IRR, and Du145-IRR derived from the parental LNCaP, PC3, and Du145 prostate cancer cells by repetitive exposure to ionizing radiation. LNCaP-IRR, PC3-IRR, and Du145-IRR cells (prostate carcinoma cells recurred after radiation exposure (IRR cells)) showed higher radioresistance and cell motility than parental cell lines. IRR cells exhibited higher levels of androgen and epidermal growth factor (EGF) receptors and activation of their downstream pathways, such as Ras-mitogen-activated protein kinase (MAPK) and phosphatidyl inositol 3-kinase (PI3K)-Akt and Jak-STAT. In order to define additional mechanisms involved in the radioresistance development, we determined differences in the proteome profile of parental and IRR cells using 2-D DIGE followed by computational image analysis and MS. Twenty-seven proteins were found to be modulated in all three radioresistant cell lines compared to parental cells. Identified proteins revealed capacity to interact with EGF and androgen receptors related signal transduction pathways and were involved in the regulation of intracellular routs providing cell survival, increased motility, mutagenesis, and DNA repair. Our data suggest that radioresistance development is accompanied by multiple mechanisms, including activation of cell receptors and related downstream signal transduction pathways. Identified proteins regulated in the radioresistant prostate carcinoma cells can significantly intensify activation of intracellular signaling that govern cell survival, growth, proliferation, invasion, motility, and DNA repair. In addition, such analyses may be utilized in predicting cellular response to radiotherapy.
Collapse
Affiliation(s)
- Ira Skvortsova
- Department of Therapeutic Radiology and Oncology, Innsbruck Medical University, Innsbruck, Austria.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Luo M, Delaplane S, Jiang A, Reed A, He Y, Fishel M, Nyland RL, Borch RF, Qiao X, Georgiadis MM, Kelley MR. Role of the multifunctional DNA repair and redox signaling protein Ape1/Ref-1 in cancer and endothelial cells: small-molecule inhibition of the redox function of Ape1. Antioxid Redox Signal 2008; 10:1853-67. [PMID: 18627350 PMCID: PMC2587278 DOI: 10.1089/ars.2008.2120] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The DNA base excision-repair pathway is responsible for the repair of DNA damage caused by oxidation/alkylation and protects cells against the effects of endogenous and exogenous agents. Removal of the damaged base creates a baseless (AP) site. AP endonuclease1 (Ape1) acts on this site to continue the BER-pathway repair. Failure to repair baseless sites leads to DNA strand breaks and cytotoxicity. In addition to the repair role of Ape1, it also functions as a major redox-signaling factor to reduce and activate transcription factors such as AP1, p53, HIF-1alpha, and others that control the expression of genes important for cell survival and cancer promotion and progression. Thus, the Ape1 protein interacts with proteins involved in DNA repair, growth-signaling pathways, and pathways involved in tumor promotion and progression. Although knockdown studies with siRNA have been informative in studying the role of Ape1 in both normal and cancer cells, knocking down Ape1 does not reveal the individual role of the redox or repair functions of Ape1. The identification of small-molecule inhibitors of specific Ape1 functions is critical for mechanistic studies and translational applications. Here we discuss small-molecule inhibition of Ape1 redox and its effect on both cancer and endothelial cells.
Collapse
Affiliation(s)
- Meihua Luo
- Department of Pediatrics (Section of Hematology/Oncology), Herman B Wells Center for Pediatric Research, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Salim EI, Morimura K, Menesi A, El-Lity M, Fukushima S, Wanibuchi H. Elevated oxidative stress and DNA damage and repair levels in urinary bladder carcinomas associated with schistosomiasis. Int J Cancer 2008; 123:601-8. [PMID: 18478569 DOI: 10.1002/ijc.23547] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To cast light on mechanisms underlying development of urothelial carcinomas (UCs) of the urinary bladder associated with Schistosomiasis, we immunohistochemically analyzed the relationship between oxidative stress markers, DNA single strand breaks (ssDNA) which could also measure the levels of base damage and apoptosis in DNA, and expression of DNA repair genes with levels of nitric oxide synthases in bladder carcinomas of Egyptian patients with or without Schistosoma hematobium infection. Marked elevation of 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels was found in squamous cell carcinomas and UCs associated with Schistosomiasis when compared with non-Schistosomal carcinomas. This was accompanied by strong over expression of the DNA-repair genes, 8-oxoguanine-DNA-glycosylase and apurinic/apyrimidinic endonuclease, as well as increased formation levels of ssDNA. Expression levels of inducible nitric oxide synthase (iNOS) which is known to be indirectly related to oxidative stress was higher in Schistosomal than in the non-Schistosomal carcinomas. However, expression of endothelial nitric oxide synthase was slightly stronger in non-Schistosomal than in the Schistosomal carcinomas. In conclusion, these findings suggest a strong correlation between Schistosoma haematobium infection and increased levels of oxidative stress accompanied by a continuous DNA damage and repair in UCs, all directly correlating with elevated iNOS.
Collapse
Affiliation(s)
- Elsayed I Salim
- Department of Pathology, Osaka City University Medical School, Abeno-Ku, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Chimeric adenoviral vector Ad5/F35-mediated APE1 siRNA enhances sensitivity of human colorectal cancer cells to radiotherapy in vitro and in vivo. Cancer Gene Ther 2008; 15:625-35. [DOI: 10.1038/cgt.2008.30] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
48
|
Seiple LA, Cardellina JH, Akee R, Stivers JT. Potent inhibition of human apurinic/apyrimidinic endonuclease 1 by arylstibonic acids. Mol Pharmacol 2008; 73:669-77. [PMID: 18042731 PMCID: PMC2720577 DOI: 10.1124/mol.107.042622] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Human apurinic/apyrimidinic endonuclease (Ape1) plays an important role by processing the >10,000 highly toxic abasic sites generated in the genome of each cell every day. Ape1 has recently emerged as a target for inhibition, in that its overexpression in tumors has been linked with poor response to both radiation and chemotherapy and lower overall patient survival. Inhibition of Ape1 using siRNA or the expression of a dominant-negative form of the protein has been shown to sensitize cells to DNA-damaging agents, including various chemotherapeutic agents. However, potent small-molecule inhibitors of Ape1 remain to be found. To this end, we screened Ape1 against the NCI Diversity Set of small molecules and discovered aromatic nitroso, carboxylate, sulfonamide, and arylstibonic acid compounds with micromolar affinities for the protein. A further screen of a 37-compound arylstibonic acid sublibrary identified ligands with IC(50) values in the range of 4 to 300 nM. The negatively charged stibonic acids act by a partial-mixed mode and probably serve as DNA phosphate mimics. These compounds provide a useful scaffold for development of chemotherapeutic agents against Ape1.
Collapse
Affiliation(s)
- Lauren A Seiple
- The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore MD 21205-2185, USA
| | | | | | | |
Collapse
|
49
|
Zaky A, Busso C, Izumi T, Chattopadhyay R, Bassiouny A, Mitra S, Bhakat KK. Regulation of the human AP-endonuclease (APE1/Ref-1) expression by the tumor suppressor p53 in response to DNA damage. Nucleic Acids Res 2008; 36:1555-66. [PMID: 18208837 PMCID: PMC2275136 DOI: 10.1093/nar/gkm1173] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The human AP-endonuclease (APE1/Ref-1), an essential multifunctional protein, plays a central role in the repair of oxidative base damage via the DNA base excision repair (BER) pathway. The mammalian AP-endonuclease (APE1) overexpression is often observed in tumor cells, and confers resistance to various anticancer drugs; its downregulation sensitizes tumor cells to those agents via induction of apoptosis. Here we show that wild type (WT) but not mutant p53 negatively regulates APE1 expression. Time-dependent decrease was observed in APE1 mRNA and protein levels in the human colorectal cancer line HCT116 p53(+/+), but not in the isogenic p53 null mutant after treatment with camptothecin, a DNA topoisomerase I inhibitor. Furthermore, ectopic expression of WTp53 in the p53 null cells significantly reduced both endogenous APE1 and APE1 promoter-dependent luciferase expression in a dose-dependent fashion. Chromatin immunoprecipitation assays revealed that endogenous p53 is bound to the APE1 promoter region that includes a Sp1 site. We show here that WTp53 interferes with Sp1 binding to the APE1 promoter, which provides a mechanism for the downregulation of APE1. Taken together, our results demonstrate that WTp53 is a negative regulator of APE1 expression, so that repression of APE1 by p53 could provide an additional pathway for p53-dependent induction of apoptosis in response to DNA damage.
Collapse
Affiliation(s)
- Amira Zaky
- Department of Biochemistry and Molecular Biology, Sealy Center for Molecular Medicine, University of Texas Medical Branch, TX-77555, Galveston, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The p53 tumor suppressor plays a pivotal role in multicellular organism by enforcing benefits of the organism over those of an individual cell. The task of p53 is to control the integrity and correctness of all processes in each individual cell and in the organism as a whole. Information about the state of ongoing events in the cell is gathered through multiple signaling pathways that convey signals modifying activities of p53. Changes in the activities depend on the character of damages or deviations from optimum in processes, and the activity of p53 changes depending on the degree of the aberration, which results in either stimulation of repair processes and protective mechanisms, or the cessation of further cell divisions and the induction of programmed cell death. The strategy of p53 ensures genetic identity of cells and prevents the selection of abnormal cells. By accomplishing these strategic tasks, p53 may use a wide spectrum of activities, such as its ability to function as a transcription factor, by inducing or repressing different genes, or as an enzyme, by acting as an exonuclease during DNA reparation, or as an adaptor or a regulatory protein, intervening into functions of numerous signaling pathways. Loss of function of the p53 gene occurs in virtually every case of cancer, and deficiency in p53 is an unavoidable prerequisite to the development of malignancies. The functions of p53 play substantial roles in many other pathologies as well as in the aging process. This review is focused on strategies of the p53 gene, demonstrating individual mechanisms underlying its functions.
Collapse
Affiliation(s)
- P M Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| |
Collapse
|