1
|
Vasudevan J, Vijayakumar R, Reales-Calderon JA, Lam MSY, Ow JR, Aw J, Tan D, Tan AT, Bertoletti A, Adriani G, Pavesi A. In vitro integration of a functional vasculature to model endothelial regulation of chemotherapy and T-cell immunotherapy in liver cancer. Biomaterials 2025; 320:123175. [PMID: 40043483 DOI: 10.1016/j.biomaterials.2025.123175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 04/06/2025]
Abstract
The complex tumor microenvironment (TME) presents significant challenges to the development of effective therapies against solid tumors, highlighting the need for advanced in vitro models that better recapitulate TME biology. To address this, we developed a vascularized human liver tumor model using a microfluidic platform, designed to test both drug and cell-based therapies. This model mimics critical tumorigenic features such as hypoxia, extracellular matrix (ECM), and perfusable vascular networks. Intravascular administration of Sorafenib demonstrated its ability to disrupt vascular structures significantly, while eliciting heterogeneous responses in two distinct liver tumor cell lines, HepG2 and Hep3b. Furthermore, treatment with engineered T-cells revealed that the tumor vasculature impeded T-cell infiltration into the tumor core but preserved their cytotoxic capacity, albeit with reduced exhaustion levels. Cytokine analysis and spatial profiling of vascularized tumor samples identified proinflammatory factors that may enhance T-cell-mediated antitumor responses. By capturing key TME characteristics, this microfluidic platform provides a powerful tool enabling detailed investigation of tumor-immune and tumor-vascular interactions. Its versatility could serve as a promising bridge between preclinical studies and clinical testing, offering opportunities for developing and optimizing personalized therapeutic strategies for solid tumors.
Collapse
Affiliation(s)
- Jyothsna Vasudevan
- Mechanobiology Institute, National University of Singapore (NUS), 5A Engineering Drive 1, Singapore, 117411, Republic of Singapore
| | - Ragavi Vijayakumar
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Singapore, 138673, Republic of Singapore
| | - Jose Antonio Reales-Calderon
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Singapore, 138673, Republic of Singapore
| | - Maxine S Y Lam
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Singapore, 138673, Republic of Singapore
| | - Jin Rong Ow
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Singapore, 138673, Republic of Singapore
| | - Joey Aw
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Singapore, 138673, Republic of Singapore
| | - Damien Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Singapore, 138673, Republic of Singapore
| | - Anthony Tanoto Tan
- Duke-NUS Medical School, 8 College Road, Singapore, 169857, Republic of Singapore
| | - Antonio Bertoletti
- Duke-NUS Medical School, 8 College Road, Singapore, 169857, Republic of Singapore
| | - Giulia Adriani
- Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research (A∗STAR), 8A Biomedical Grove, Immunos, Singapore, 138648, Republic of Singapore; Department of Biomedical Engineering, National University of Singapore (NUS), 4 Engineering Drive 3, Singapore, 117583, Republic of Singapore
| | - Andrea Pavesi
- Mechanobiology Institute, National University of Singapore (NUS), 5A Engineering Drive 1, Singapore, 117411, Republic of Singapore; Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Singapore, 138673, Republic of Singapore; Lee Kong Chian School of Medicine (LKCMedicine), Cancer Discovery and Regenerative Medicine Program, Nanyang Technological University, 308232, Republic of Singapore.
| |
Collapse
|
2
|
Mete M, Ojha A, Dhar P, Das D. Deciphering Ferroptosis: From Molecular Pathways to Machine Learning-Guided Therapeutic Innovation. Mol Biotechnol 2025; 67:1290-1309. [PMID: 38613722 DOI: 10.1007/s12033-024-01139-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/11/2024] [Indexed: 04/15/2024]
Abstract
Ferroptosis is a unique form of cell death reliant on iron and lipid peroxidation. It disrupts redox balance, causing cell death by damaging the plasma membrane, with inducers acting through enzymatic pathways or transport systems. In cancer treatment, suppressing ferroptosis or circumventing it holds significant promise. Beyond cancer, ferroptosis affects aging, organs, metabolism, and nervous system. Understanding ferroptosis mechanisms holds promise for uncovering novel therapeutic strategies across a spectrum of diseases. However, detection and regulation of this regulated cell death are still mired with challenges. The dearth of cell, tissue, or organ-specific biomarkers muted the pharmacological use of ferroptosis. This review covers recent studies on ferroptosis, detailing its properties, key genes, metabolic pathways, and regulatory networks, emphasizing the interaction between cellular signaling and ferroptotic cell death. It also summarizes recent findings on ferroptosis inducers, inhibitors, and regulators, highlighting their potential therapeutic applications across diseases. The review addresses challenges in utilizing ferroptosis therapeutically and explores the use of machine learning to uncover complex patterns in ferroptosis-related data, aiding in the discovery of biomarkers, predictive models, and therapeutic targets. Finally, it discusses emerging research areas and the importance of continued investigation to harness the full therapeutic potential of targeting ferroptosis.
Collapse
Affiliation(s)
- Megha Mete
- Department of Bioengineering, National Institute of Technology Agartala, Agartala, Tripura, 799046, India
| | - Amiya Ojha
- Department of Bioengineering, National Institute of Technology Agartala, Agartala, Tripura, 799046, India
| | - Priyanka Dhar
- CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India
| | - Deeplina Das
- Department of Bioengineering, National Institute of Technology Agartala, Agartala, Tripura, 799046, India.
| |
Collapse
|
3
|
Chen M, Zhang S, Huang X, Zhang D, Zhu D, Ouyang C, Li Y. The protective effects and mechanism of myricetin in liver diseases (Review). Mol Med Rep 2025; 31:87. [PMID: 39917997 PMCID: PMC11811602 DOI: 10.3892/mmr.2025.13452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/22/2025] [Indexed: 02/13/2025] Open
Abstract
Liver diseases have become one of the significant threats to global health. However, there is a lack of effective targeted therapeutic drugs in this field and the existing drugs used for liver disease treatment usually have side‑effects. Traditional Chinese medicine (TCM) has the distinctive advantages of multi‑target and low side‑effects. As a flavonoid with various pharmacological activities such as anti‑tumour, anti‑oxidant, anti‑inflammatory and anti‑bacterial, the TCM myricetin has been widely used in liver disease research. The present work focuses on the role and molecular mechanism of myricetin in liver diseases such as acute liver injury, fatty liver, liver fibrosis and hepatocellular carcinoma. It is a promising reference for further research and application of myricetin in the treatment of liver diseases.
Collapse
Affiliation(s)
- Mi Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Shengnan Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
- School of Resources and Environmental Science and Engineering, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Xingqiong Huang
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Dandan Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Dan Zhu
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Changhan Ouyang
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Yankun Li
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| |
Collapse
|
4
|
Alsfouk AA, Al Ward MMS, Al-Qadhi MA, El-Metwally SA, Yousef RG, Elkaeed EB, Husein DZ, Amin FG, Elkady H, Metwaly AM, Eissa IH. Anti-breast cancer potential of thieno-pyrimidine derivatives as VEGFR-2 inhibitors. Future Med Chem 2025:1-16. [PMID: 40094223 DOI: 10.1080/17568919.2025.2479422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/11/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Thieno-pyrimidine derivatives have emerged as promising candidates for VEGFR-2 inhibition. This study aimed to design, synthesize, and evaluate novel thieno-pyrimidine derivatives for their anti-cancer potential. METHODS A series of thieno-pyrimidine compounds were synthesized and screened for in vitro cytotoxicity against MDA-231 and MCF-7 cell lines. The most active compound, 6b, was further analyzed for VEGFR-2 kinase inhibition, wound healing, apoptosis induction, and cell cycle arrest. Molecular docking, 200 ns molecular dynamics simulations, MM-GBSA, ProLIF PCAT, and FEL analyses were conducted to assess binding stability. DFT calculations evaluated electronic properties, while in silico ADMET profiling predicted pharmacokinetics and toxicity. RESULTS Compound 6b exhibited potent cytotoxicity with IC50 values of 5.91 µM (MDA-231) and 7.16 µM (MCF-7). It demonstrated VEGFR-2 inhibition is comparable to sorafenib (IC50: 53.63 ± 3.14 nM). Wound healing assays showed significant inhibition of MDA-231 migration. Flow cytometry confirmed apoptosis induction (57.20% early apoptosis) and G1 phase arrest. Gene expression analysis revealed upregulation of pro-apoptotic markers and downregulation of Bcl-2. Computational studies confirmed stable VEGFR-2 binding, and ADMET predictions indicated a favorable safety profile. CONCLUSION Compound 6b exhibits strong VEGFR-2 inhibition, potent anti-cancer effects, and a favorable toxicity profile, highlighting its potential for further therapeutic development.
Collapse
Affiliation(s)
- Aisha A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | - Mustafa A Al-Qadhi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Sana'a University, Sana'a, Yemen
| | - Souad A El-Metwally
- Department of Basic Science, Higher Technological Institute, 10th of Ramadan City, Egypt
| | - Reda G Yousef
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Merit University, Sohag, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Dalal Z Husein
- Chemistry Department, Faculty of Science, New Valley University, El-Kharja, Egypt
| | - Fatma G Amin
- Physics Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed M Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
5
|
Sun M, Zhang Z, Chen C, Zhong J, Long Z, Shen L, Huang H, Lu J. Exploring the potential mechanisms of sorafenib resistance in hepatocellular carcinoma cell lines based on RNA sequencing. Cancer Cell Int 2025; 25:91. [PMID: 40082884 PMCID: PMC11907981 DOI: 10.1186/s12935-025-03728-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/04/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Exploring the mechanisms underlying sorafenib resistance that arises in hepatocellular carcinoma (HCC) may provide new treatment perspectives. METHODS Drug-resistant and drug-sensitive HCC cell lines were constructed from existing HepG2 and Huh7 cell lines, and gene expression profiles were determined. Genes differentially expressed between the resistant and sensitive lines were identified and organized into modules based on weighted gene co-expression network analysis. Pathways and biological processes involving the module genes were explored and validated using gene set enrichment analysis. By analyzing the expression differences of Long non-coding ribonucleic acid (RNAs), microRNAs (miR), circular RNAs, and messenger RNAs between drug-resistant and sensitive cell lines, a gene regulatory network was constructed to reveal the mechanism of sorafenib resistance. In addition, we also analyzed the correlation between the candidate sorafenib resistance gene and the survival of patients with liver cancer. RESULTS Our analyses suggested that sorafenib resistance could arise when the circular RNA circ_SPECC1 regulated the microRNA hsa-let-7c-5p, which in turn regulated the cell cycle proteins cyclin-dependent kinase 1 and polo-like kinase 1, as well as interleukin 13 receptor, alpha 1 in the Janus kinase-signal transducer (JAK-STAT) and activator of transcription signaling pathway. Patient survival was associated with miR-18a-z and mitogen-activated protein kinase kinase 4 levels. CONCLUSIONS Sorafenib resistance in HCC may involve the circ_SPECC1, hsa-let-7c-5p, cell cycle, and JAK-STAT signaling pathways. These insights may guide future efforts to mitigate or prevent such resistance.
Collapse
Affiliation(s)
- Minghui Sun
- Department of Oncology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Zhi Zhang
- Department of Hepatobiliary Surger, Guangxi Medical University Affliated Wuming Hospital, Nanning, 530199, Guangxi, China
| | - Chunyan Chen
- Department of Pharmacy, Shanghai Public Health Clinical Center, Fudan University, 201508, Shanghai, China
| | - Juan Zhong
- Department of traditional Chinese medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, China
| | - Zhongrong Long
- Department of Hepatobiliary Surger, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, China
| | - Ling Shen
- Department of Oncology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Hai Huang
- Department of Hepatobiliary Surger, Guangxi Medical University Affliated Wuming Hospital, Nanning, 530199, Guangxi, China.
| | - Jianxun Lu
- Department of Oncology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China.
| |
Collapse
|
6
|
Níttolo AG, Chidichimo AM, Benacerraf AL, Cardozo T, Corso MC, Tekiel V, De Gaudenzi JG, Levy GV. TcSR62, an RNA-binding protein, as a new potential target for anti-trypanocidal agents. Front Microbiol 2025; 16:1539778. [PMID: 40143855 PMCID: PMC11936972 DOI: 10.3389/fmicb.2025.1539778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
Trypanosomatids are parasites of health importance that cause neglected diseases in humans and animals. Chagas' disease, caused by Trypanosoma cruzi, affects 6-7 millions of people worldwide, mostly in Latin America, most of whom do not have access to diagnosis or treatment. Currently, there are no available vaccines, and the antiparasitic drugs used for treatment are often toxic and ineffective for the chronic stage of infection. Therefore, exploration of new therapeutic targets is necessary and highlights the importance of identifying new therapeutic options for the treatment of this disease. Trypanosomatid genes are organized and expressed in a species-specific fashion and many of their regulatory factors remain to be explored, so proteins involved in the regulation of gene expression are interesting candidates as drug targets. Previously, we demonstrated that the TbRRM1 protein from T. brucei is an essential nuclear factor involved in Pol-II transcriptional regulation. TcSR62 is a TbRRM1 orthologous protein in T. cruzi, but little is known about its function. In this study, we used molecular modeling of the RNA-binding domains of the TcSR62 protein and computational molecular docking to identify TcSR62-specific drug candidates. We identified sorafenib tosylate (ST) as a compound with trypanocidal activity. Sorafenib tosylate showed promising half-maximal inhibitory concentration (IC50) for all parasite stages in vitro. Furthermore, overexpression of TcSR62 protein led to ST-resistant parasites, suggesting that the trypanocidal effect might be due to the inhibition of TcSR62 function. These results demonstrate that ST could be repurposed as a novel drug to treat Chagas' disease.
Collapse
Affiliation(s)
- Analía G. Níttolo
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), La Plata, Argentina
- Departamento de Ciencias de la Salud, Universidad Nacional de La Matanza, San Justo, Argentina
| | - Agustina M. Chidichimo
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martin, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martin, Argentina
| | - Ana L. Benacerraf
- NYU Langone Health, New York University School of Medicine, New York, NY, United States
| | - Timothy Cardozo
- NYU Langone Health, New York University School of Medicine, New York, NY, United States
| | - M. Clara Corso
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martin, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martin, Argentina
| | - Valeria Tekiel
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martin, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martin, Argentina
| | - Javier G. De Gaudenzi
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martin, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martin, Argentina
| | - Gabriela Vanesa Levy
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martin, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martin, Argentina
| |
Collapse
|
7
|
Kumar A, Rajput DS, Gupta MK, Kumar V, Singh H, Mishra AK, Chopra S, Chopra H. A novel phosphodiesterase target as a therapeutic approach: inhibiting DEN-induced hepatocellular carcinoma progression. EXCLI JOURNAL 2025; 24:407-429. [PMID: 40166422 PMCID: PMC11956523 DOI: 10.17179/excli2024-7941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 03/03/2025] [Indexed: 04/02/2025]
Abstract
Hepatocellular Carcinoma (HCC) is one of the most common and fatal types of liver cancer worldwide; in this sense, Diethylnitrosamine (DEN) has been established as a potent carcinogen affecting the development and progression of this disease. The present work focused on determining whether phosphodiesterase (PDE) enzymes, especially PDE5, may serve as targets in the therapeutic treatment of DEN-induced HCC. PDE5 inhibitors, widely used as therapeutic drugs for cardiovascular diseases and erectile dysfunction, have recently been found to be promising in preclinical cancer models through the modulation of key signaling pathways implicated in the progression of tumors, such as the cGMP-PKG, JNK, and MAPK pathways. These pathways are very important for cell proliferation, apoptosis and metastasis, and their dysregulation contributes to the aggressive nature of HCC. This study assessed the potential of PDE5 inhibitors to suppress proliferation, induce apoptosis, and alter the tumor microenvironment, thus potentially improving standard chemotherapy and immunotherapy interventions. By inhibiting certain PDE isoforms with these drugs, an anticancer response might occur as part of a complex mechanism that acts on both cancer cells and the microenvironment favorable for tumor growth. A preliminary review indicated that PDE inhibitors may be a promising therapeutic approach for overcoming some of the shortcomings of current treatments, particularly the development of resistance and the toxic effects of these treatments. Additional clinical investigations are necessary to determine the safety profile, appropriate amount of Osage, and long-term efficacy of these agents in the treatment of HCC, particularly in DEN-induced animal models. This study contributes to the expanding body of evidence supporting the use of PDE inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Anil Kumar
- Faculty of Medical and Paramedical Sciences, Madhyanchal Professional University, Bhopal-462044, Madhya Pradesh, India
| | - Dharmendra Singh Rajput
- Faculty of Medical and Paramedical Sciences, Madhyanchal Professional University, Bhopal-462044, Madhya Pradesh, India
| | - Mandeep Kumar Gupta
- Moradabad Educational Trust Group of Institutions Faculty of Pharmacy, Moradabad-244001, Uttar Pradesh, India
| | - Vivek Kumar
- Moradabad Educational Trust Group of Institutions Faculty of Pharmacy, Moradabad-244001, Uttar Pradesh, India
| | - Harpreet Singh
- School of Pharmaceutical Sciences (Faculty of Pharmacy), IFTM University, Moradabad, Uttar Pradesh-244102, India
| | - Arun Kumar Mishra
- SOS School of Pharmacy (Faculty of Pharmacy), IFTM University, Moradabad, Uttar Pradesh-244102, India
| | - Shivani Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai - 602105, Tamil Nadu, India
| | - Hitesh Chopra
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| |
Collapse
|
8
|
Tsilimigras DI, Stecko H, Moris D, Pawlik TM. Next-generation sequencing demonstrates racial and sex differences in genomic profiling of hepatocellular carcinoma patients: an AACR GENIE project analysis. HPB (Oxford) 2025; 27:371-376. [PMID: 39755479 DOI: 10.1016/j.hpb.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 12/09/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND Genomic variations related to racial and sex differences among patients with hepatocellular carcinoma (HCC) have not been investigated. We sought to characterize the mutational landscape of patients with HCC relative to race and sex. METHODS The American Association for Cancer Research GENIE project (v16.0) was used to assess data on genomic variations among adult patients (>18 years) with HCC who underwent next-generation sequencing. Variations in 787 genes were identified and characterized relative to race and sex. RESULTS Among 832 patients, 60.8 % of individuals were White, 7.7 % Black, and 12.4 % Asian (other/unknown:19.1 %). Most patients had genetic data from the primary tumor (71.2 %), whereas 17.2 % had metastatic disease sequenced (unknown:11.6 %). TERT mutations occurred more frequently in White (48.0 %) and Black (46.7 %) versus Asian (23.4 %) patients (q = 0.003), while TP53 mutations were more common in Asian (48.6 %) versus Black (45.5 %) or White (33.1 %) individuals (q = 0.03). TERT (46.1 % vs. 28.6 %) and CTNNB1 mutations (47.7 % vs. 29.3 %) were more likely to occur in males than females (both q < 0.05). Marked variations in prevalence of other common genetic HCC mutations were noted across different races and sexes. CONCLUSIONS Differences in mutational profiles of HCC patients highlight the importance of accruing diverse populations of patients to clinical trials.
Collapse
Affiliation(s)
- Diamantis I Tsilimigras
- Department of Surgery, Division of Surgical Oncology, The Ohio State University, Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA.
| | - Hunter Stecko
- Department of Surgery, Division of Surgical Oncology, The Ohio State University, Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| | - Dimitrios Moris
- Department of Surgery, Duke University Hospital, Duke University, Durham, NC, USA
| | - Timothy M Pawlik
- Department of Surgery, Division of Surgical Oncology, The Ohio State University, Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| |
Collapse
|
9
|
Isinelli G, Failla S, Plebani R, Prete A. Exploring oncology treatment strategies with tyrosine kinase inhibitors through advanced 3D models (Review). MEDICINE INTERNATIONAL 2025; 5:13. [PMID: 39790707 PMCID: PMC11707505 DOI: 10.3892/mi.2024.212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/05/2024] [Indexed: 01/12/2025]
Abstract
The limitations of two-dimensional (2D) models in cancer research have hindered progress in fully understanding the complexities of drug resistance and therapeutic failures. However, three-dimensional (3D) models provide a more accurate representation of in vivo environments, capturing critical cellular interactions and dynamics that are essential in evaluating the efficacy and toxicity of tyrosine kinase inhibitors (TKIs). These advanced models enable researchers to explore drug resistance mechanisms with greater precision, optimizing treatment strategies and improving the predictive accuracy of clinical outcomes. By leveraging 3D models, it will be possible to deepen the current understanding of TKIs and drive forward innovations in cancer treatment. The present review discusses the limitations of 2D models and the transformative impact of 3D models on oncology research, highlighting their roles in addressing the challenges of 2D systems and advancing TKI studies.
Collapse
Affiliation(s)
- Giorgia Isinelli
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02115, USA
- Department of Chemistry, Biology and Biotechnology, University of Perugia, I-06123 Perugia, Italy
| | - Sharon Failla
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | - Roberto Plebani
- Department of Medical, Oral and Biotechnological Sciences, ‘G. D'Annunzio’ University, I-66100 Chieti-Pescara, Italy
| | - Alessandro Prete
- Department of Clinical and Experimental Medicine, Endocrine Unit 2, University of Pisa, I-56122 Pisa, Italy
| |
Collapse
|
10
|
Hu X, Wu Y, Yao M, Chen Z, Li Q. The other side of the coin: protein deubiquitination by Ubiquitin-Specific Protease 1 in cancer progression and therapy. Future Med Chem 2025; 17:329-345. [PMID: 39819213 PMCID: PMC11792837 DOI: 10.1080/17568919.2025.2453414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025] Open
Abstract
Reversible protein ubiquitination is a crucial factor in cellular homeostasis, with Ubiquitin-Specific Protease 1 (USP1) serving as a key deubiquitinase involved in DNA damage response (DDR) and repair mechanisms in cancer. While ubiquitin ligases have been extensively studied, research on the reverse process of ubiquitination, particularly the mechanisms involving USP1, remains relatively limited. USP1 is overexpressed in various cancers, influencing tumor initiation and progression by regulating multiple associated proteins. Inhibiting USP1 effectively suppresses tumor proliferation and migration and may help overcome resistance to cisplatin and PARP inhibitors. As a potential synthetic lethal target, USP1 demonstrates significant research potential. This review highlights the biological mechanisms of USP1 in cancer progression, the signaling pathways it regulates, and the latest advancements in USP1 inhibitors, while also analyzing the opportunities and challenges of targeting USP1. By adopting the perspective of "the other side of the coin," this review aims to underscore the crucial yet often overlooked role of the deubiquitinase USP1, contrasting it with the extensively studied ubiquitin ligases, and emphasizing its therapeutic potential in cancer treatment.
Collapse
Affiliation(s)
- Xinlan Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Hunan, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, Hunan, China
| | - Yan Wu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Hunan, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, Hunan, China
| | - Mengmeng Yao
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Hunan, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, Hunan, China
| | - Zhuo Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Hunan, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, Hunan, China
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Hunan, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, Hunan, China
| |
Collapse
|
11
|
Hsieh C, Wu Y, Chen Y, Wang C, Li C, Liu I, Chou C, Lin Y, Huang P, Huang T, Chen C. SERPING1 Reduces Cell Migration via ERK-MMP2-MMP-9 Cascade in Sorafenib- Resistant Hepatocellular Carcinoma. ENVIRONMENTAL TOXICOLOGY 2025; 40:318-327. [PMID: 39474998 PMCID: PMC11726270 DOI: 10.1002/tox.24434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/20/2024] [Accepted: 10/17/2024] [Indexed: 01/04/2025]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary hepatic malignant tumor, and it ranks 2nd in terms of mortality rate among all malignancies in Taiwan. Sorafenib is a multiple tyrosine kinase inhibitor that suppresses tumor cell proliferation and angiogenesis around tumors via different pathways. However, the survival outcome of advanced HCC patients treated with sorafenib is still unsatisfactory. Unfortunately, there are no clinically applicable biomarkers to predict sorafenib therapeutic efficiency in HCC thus far. We found that serpin peptidase inhibitor, clade G, member 1 (SERPING1) is highly associated with overall and recurrence-free survival rates in HCC patients and is also highly correlated with several clinical parameters. SERPING1 expression was increased with sorafenib in both the HCC cell extract and conditioned medium, which was also observed in sorafenib-resistant HepG2 and Huh7 cells. Sorafenib decreased cell viability and migration, which was similar to the effect of SERPING1 in HCC progression. Moreover, sorafenib inhibited both MMP-2 and MMP-9 activity and enhanced the expression of p-ERK in HCC cells. In summary, sorafenib reduces HCC cancer progression might through the p-ERK-MMP-2-MMP-9 cascade via upregulation of SERPING1. In the present study, the roles and molecular mechanisms of SERPING1 and its value as a marker for predicting sorafenib resistance and progression in HCC patients were examined. The results of the present study provide a deep understanding of the roles of SERPING1 in HCC sorafenib resistance, which can be applied to develop early diagnosis and prognosis evaluation methods and establish novel therapeutic targets for specifically treating HCC.
Collapse
Affiliation(s)
- Ching‐Chuan Hsieh
- Division of General Surgery, Chang Gung Memorial HospitalChiayiTaiwan
| | - Yuh‐Harn Wu
- Department of Cell Biology and Anatomy, College of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Yi‐Li Chen
- Department of Cell Biology and Anatomy, College of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Chun‐I Wang
- Department of Biochemistry, School of MedicineChina Medical UniversityTaichungTaiwan
| | - Chao‐Jen Li
- Department of General & Gastroenterological Surgery, An Nan HospitalChina Medical UniversityTainanTaiwan
| | - I‐Hsiu Liu
- Department of Cell Biology and Anatomy, College of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Chen‐Wei Chou
- Department of Cell Biology and Anatomy, College of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Yang‐Hsiang Lin
- Liver Research Center, Chang Gung Memorial HospitalTaoyuanTaiwan
| | - Po‐Shuan Huang
- Department of Biochemistry, College of MedicineChang Gung UniversityTaoyuanTaiwan
- Graduate Institute of Biochemical and Biomedical EngineeringChang Gung UniversityTaoyuanTaiwan
| | - Te‐Chia Huang
- Department of General & Gastroenterological Surgery, An Nan HospitalChina Medical UniversityTainanTaiwan
| | - Cheng‐Yi Chen
- Department of Cell Biology and Anatomy, College of MedicineNational Cheng Kung UniversityTainanTaiwan
| |
Collapse
|
12
|
López-Cánovas JL, Naranjo-Martínez B, Diaz-Ruiz A. Fasting in combination with the cocktail Sorafenib:Metformin blunts cellular plasticity and promotes liver cancer cell death via poly-metabolic exhaustion. Cell Oncol (Dordr) 2025; 48:161-182. [PMID: 38990489 PMCID: PMC11850423 DOI: 10.1007/s13402-024-00966-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2024] [Indexed: 07/12/2024] Open
Abstract
PURPOSE Dual-Interventions targeting glucose and oxidative metabolism are receiving increasing attention in cancer therapy. Sorafenib (S) and Metformin (M), two gold-standards in liver cancer, are known for their mitochondrial inhibitory capacity. Fasting, a glucose-limiting strategy, is also emerging as chemotherapy adjuvant. Herein, we explore the anti-carcinogenic response of nutrient restriction in combination with sorafenib:metformin (NR-S:M). RESULTS Our data demonstrates that, independently of liver cancer aggressiveness, fasting synergistically boosts the anti-proliferative effects of S:M co-treatment. Metabolic and Cellular plasticity was determined by the examination of mitochondrial and glycolytic activity, cell cycle modulation, activation of cellular apoptosis, and regulation of key signaling and metabolic enzymes. Under NR-S:M conditions, early apoptotic events and the pro-apoptotic Bcl-xS/Bcl-xL ratio were found increased. NR-S:M induced the highest retention in cellular SubG1 phase, consistent with the presence of DNA fragments from cellular apoptosis. Mitochondrial functionality, Mitochondrial ATP-linked respiration, Maximal respiration and Spare respiratory capacity, were all found blunted under NR-S:M conditions. Basal Glycolysis, Glycolytic reserve, and glycolytic capacity, together with the expression of glycogenic (PKM), gluconeogenic (PCK1 and G6PC3), and glycogenolytic enzymes (PYGL, PGM1, and G6PC3), were also negatively impacted by NR-S:M. Lastly, a TMT-proteomic approach corroborated the synchronization of liver cancer metabolic reprogramming with the activation of molecular pathways to drive a quiescent-like status of energetic-collapse and cellular death. CONCLUSION Altogether, we show that the energy-based polytherapy NR-S:M blunts cellular, metabolic and molecular plasticity of liver cancer. Notwithstanding the in vitro design of this study, it holds a promising therapeutic tool worthy of exploration for this tumor pathology.
Collapse
Affiliation(s)
- Juan L López-Cánovas
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging Program, Institute IMDEA Food (CEI UAM+CSIC), Crta. de Canto Blanco nº 8, Madrid, E-28049, Spain
| | - Beatriz Naranjo-Martínez
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging Program, Institute IMDEA Food (CEI UAM+CSIC), Crta. de Canto Blanco nº 8, Madrid, E-28049, Spain
| | - Alberto Diaz-Ruiz
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging Program, Institute IMDEA Food (CEI UAM+CSIC), Crta. de Canto Blanco nº 8, Madrid, E-28049, Spain.
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, Spain.
| |
Collapse
|
13
|
Shang S, Yang H, Qu L, Fan D, Deng J. Ginsenoside, a potential natural product against liver diseases: a comprehensive review from molecular mechanisms to application. Crit Rev Food Sci Nutr 2025:1-25. [PMID: 39810734 DOI: 10.1080/10408398.2025.2451761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Liver disease constitutes a significant cause of global mortality, with its pathogenesis being multifaceted. Identifying effective pharmacological and preventive strategies is imperative for liver protection. Ginsenosides, the major bioactive compounds found in ginseng, exhibit multiple pharmacological activities including protection against liver-related diseases by mitigating liver fat accumulation and inflammation, preventing hepatic fibrosis, and exerting anti-hepatocarcinogenic effects. However, a comprehensive overview elucidating the regulatory pathways associated with ginsenosides in liver disease remains elusive. This review aims to consolidate the molecular mechanisms through which different ginsenosides ameliorate distinct liver diseases, alongside the pathogenic factors underlying liver ailments. Notably, ginsenosides Rb1 and Rg1 demonstrate significantly effective in treating fatty liver, hepatitis, and liver fibrosis, and ginsenosides CK and Rh2 exhibit potent anti-hepatocellular carcinogenic effects. Their molecular mechanisms underlying these effects primarily involve the modulation of AMPK, NF-κB, TGF-β, NFR2, JNK, and other pathways, thereby attenuating hepatic fat accumulation, inflammation, inhibition of hepatic stellate cell activation, and promoting apoptosis in hepatocellular carcinoma cells. Furthermore, it provides insights into the safety profile and current applications of ginsenosides, thereby facilitating their clinical development. Consequently, ginsenosides present promising prospects for liver disease management, underscoring their potential as valuable therapeutic agents in this context.
Collapse
Affiliation(s)
- Shiyan Shang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Linlin Qu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
14
|
Liu X, Lei X, Huang S, Yang X. Current Perspectives of Immunotherapy for Hepatocellular Carcinoma. Comb Chem High Throughput Screen 2025; 28:185-201. [PMID: 38031784 DOI: 10.2174/0113862073255266231025111125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/10/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023]
Abstract
Hepatocellular carcinoma is the sixth most common tumor and the third leading cause of cancer death worldwide. It ranks fourth in the spectrum of malignant tumor incidence and second in the order of death from major malignant tumors in China. Hepatocellular carcinoma is a complex ecosystem containing non-tumor cells (mainly immune-related cells), and its immunotherapy can stimulate the recognition of specific tumor antigens, inhibit the proliferation of cancer cells, and produce over-memory lymphocytes, which can prevent recurrence. So, immunotherapy of hepatocellular carcinoma is increasingly becoming a research hotspot in liver cancer treatment. With the intensive research in recent years, great progress has been made in immunotherapy for hepatocellular carcinoma, including immune checkpoint inhibitors, pericyte therapy, vaccination, and antiviral therapy. In addition, the study found that the therapeutic effect of combination therapy was enhanced compared to monotherapy. This review summarizes the most prominent immunotherapies currently available for the clinical treatment of patients with HCC and the main opportunities and challenges facing HCC research.
Collapse
Affiliation(s)
- Xiaoyi Liu
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
| | - Sheng Huang
- Jiuzhitang Co., Ltd, Changsha, Hunan 410007, People's Republic of China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
| |
Collapse
|
15
|
Kaviyaprabha R, Miji TV, Suseela R, Muthusami S, Thangaleela S, Almoallim HS, Sivakumar P, Bharathi M. Screening miRNAs to Hinder the Tumorigenesis of Renal Clear Cell Carcinoma Associated with KDR Expression. Curr Cancer Drug Targets 2025; 25:183-203. [PMID: 39289946 DOI: 10.2174/0115680096321287240826065718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024]
Abstract
INTRODUCTION This study delved to understand the role of Kinase Insert Domain Receptor (KDR) and its associated miRNAs in renal cell carcinoma through an extensive computational analysis. The potential of our findings to guide future research in this area is significant. METHODS Our methods, which included the use of UALCAN and GEPIA2 databases, as well as miRDB, MirDIP, miRNet v2.0, miRTargetLink, MiEAA v2.1, TarBase v8.0, INTERNET, and miRTarBase, were instrumental in identifying the regulation of miRNA associated with KDR expression. The predicted miRNA was validated with the TCGA-KIRC patients' samples by implementing CancerMIRNome. The TargetScanHuman v8.0 was implemented to identify the associations between human miRNAs and KDR. A Patch Dock server analyzed the interactions between hsa-miR-200c-3p and KDR. RESULTS The KDR expression rate was investigated in the Kidney Renal Cell Carcinoma (KIRC) samples, and adjacent normal tissues revealed that the expression rate was significantly higher than the normal samples, which was evident from the strong statistical significance (P = 1.63e-12). Likely, the KDR expression rate was estimated as high at tumor grade 1 and gradually decreased till the metastasis grade, reducing the survival rate of the KIRC patients. To identify these signals early, we predicted a miRNA that could alter the expression of KDR. Furthermore, we uncovered the potential associations between miR-200c-3p expressions by regulating KDR towards the progression of KIRC. DISCUSSION Upon examining the outcome, it became evident that miR-200c-3p was significantly downregulated in KIRC compared to the normal samples. Moreover, the negative correlation was obtained for hsa-miR-200c-3p (R = - 0.276) along with the KDR expression describing that the increased rate of hsamiR- 200c-3p might reduce the KDR expression rate, which may suppress the KIRC initiation or progression. CONCLUSION The in-silico analysis indicated that the significant increase in KDR expression during the initiation of KIRC could serve as an early diagnostic marker. Moreover, KDR could be utilized to identify advancements in KIRC stages. Additionally, hsa-miR-200c-3p was identified as a potential regulator capable of downregulating and upregulating KDR expression among the 24 miRNAs screened. This finding holds promise for future research endeavors. Concurrent administration of the FDA-approved 5- fluorouracil with KIRC drugs, such as sorafenib, zidovudine, and everolimus, may have the potential to enhance the therapeutic efficacy in downregulating hsa-miR-200c-3p. However, further in vitro studies are imperative to validate these findings and gain a comprehensive understanding of the intricate regulatory interplay involving hsa-miR-200c-3p, KDR, 5-fluorouracil, and other FDA-approved drugs for the treatment of KIRC. This will facilitate the identification of KIRC stage progression and its underlying preventative mechanisms.
Collapse
Affiliation(s)
- Rangaraj Kaviyaprabha
- Centre for Bioinformatics, Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Thandaserry Vasudevan Miji
- Centre for Bioinformatics, Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Rangaraj Suseela
- Centre for Cancer Research, Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Sridhar Muthusami
- Centre for Cancer Research, Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Subramanian Thangaleela
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Hesham S Almoallim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, PO Box-60169, Riyadh -11545, Saudi Arabia
| | - Priyadarshini Sivakumar
- Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Muruganantham Bharathi
- Centre for Bioinformatics, Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| |
Collapse
|
16
|
Cai Y, Wang W, Jiao Q, Hu T, Ren Y, Su X, Li Z, Feng M, Liu X, Wang Y. Nanotechnology for the Diagnosis and Treatment of Liver Cancer. Int J Nanomedicine 2024; 19:13805-13821. [PMID: 39735328 PMCID: PMC11681781 DOI: 10.2147/ijn.s490661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/04/2024] [Indexed: 12/31/2024] Open
Abstract
Liver cancer has become a major global health challenge due to its high incidence, high rate of late diagnosis and limited treatment options. Although there are many clinical treatments available for liver cancer, the cure rate is still very low, and now researchers have begun to explore new aspects of liver cancer treatment, and nanotechnology has shown great potential for improving diagnostic accuracy and therapeutic efficacy and is therefore a promising treatment option. In diagnosis, nanomaterials such as gold nanoparticles, magnetic nanoparticles, and silver nanoparticles can realize highly sensitive and specific detection of liver cancer biomarkers, supporting diagnosis and real-time monitoring of the disease process. In terms of treatment, nanocarriers can realize precise targeted delivery of drugs, improve the bioavailability of liver cancer therapeutic drugs and reduce systemic toxic side effects. In addition, advanced technologies such as nanoparticle-based photothermal therapy and photodynamic therapy provide innovative solutions to overcome drug resistance and local tumor ablation. Therefore, in this paper, we will introduce nanotechnology for hepatocellular carcinoma in terms of tumor marker detection, targeted drug delivery, and synergistic PDT/CDT therapy.
Collapse
Affiliation(s)
- Yuxuan Cai
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Weiwei Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Qinlian Jiao
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Tangbin Hu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Yidan Ren
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Xin Su
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, People’s Republic of China
| | - Zigan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, People’s Republic of China
| | - Maoxiao Feng
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Xiaoyan Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| |
Collapse
|
17
|
Ma M, Hu R, Huang Q, Li J, Lv M, Sun J, Zhong X, Yi J, Peng L, Feng W, Ma W, Han Z, Zhang W, Sun X, Zhan B, Liu X, Zhou X. Digoxigenin activates autophagy in hepatocellular carcinoma cells by regulating the PI3K/AKT/mTOR pathway. Cancer Cell Int 2024; 24:405. [PMID: 39696358 DOI: 10.1186/s12935-024-03602-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is recognized as a highly malignant tumor. Targeted combination immunotherapy, the initially approved regimen, is compromised by adverse side effects and low response rates during clinical treatment. Traditional Chinese medicine and its derived natural compounds, known for their anticancer effects, offer advantages of low toxicity and cost. In this study, we performed high-throughput phenotypic screening in vitro to identify promising anti-HCC drugs. Among 1,444 bioactive compounds, digoxigenin (DIG) was found to significantly impede HCC cell progression. We validated DIG's therapeutic effects through assays such as cell counting by CCK8, lactate dehydrogenase, and colony formation. Analyses including transmission electron microscopy, western blotting, and immunofluorescence demonstrated that DIG inhibits HCC cell proliferation via autophagy. Network pharmacology and molecular docking studies suggest that DIG targets the PI3K/AKT/mTOR signaling pathway. Comparative treatments of Hep3B and Huh7 cells with DIG or mTOR inhibitors revealed similar inhibitory impacts, indicating that DIG induces autophagy by inhibiting the PI3K/AKT/mTOR pathway. In vivo studies confirmed that DIG halts the growth of subcutaneous xenograft tumors. In conclusion, DIG represents a potential HCC treatment by modulating the PI3K/AKT/mTOR pathway to induce autophagy. This research, via phenotypic screening, accelerates drug discovery and the development of novel therapies targeting the underlying mechanisms of liver cancer.
Collapse
Affiliation(s)
- Mengqing Ma
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 518033, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, 999078, China
| | - Rui Hu
- Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 518033, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, 999078, China
| | - Qi Huang
- Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 518033, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, 999078, China
| | - Jing Li
- Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 518033, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, 999078, China
| | - Minling Lv
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 518033, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, 999078, China
| | - Jialing Sun
- Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 518033, China
| | - Xin Zhong
- Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 518033, China
| | - Jinyu Yi
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, 999078, China
| | - Lanfen Peng
- Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 518033, China
| | - Wenxing Feng
- Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 518033, China
| | - Wenfeng Ma
- Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 518033, China
| | - Zhiyi Han
- Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 518033, China
| | - Wei Zhang
- Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 518033, China
| | - Xinfeng Sun
- Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 518033, China
| | - Bolin Zhan
- Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 518033, China
| | - Xingning Liu
- Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 518033, China
| | - Xiaozhou Zhou
- Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China.
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 518033, China.
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, 999078, China.
| |
Collapse
|
18
|
Anis A, Mostafa AM, Kerema MS, Hamdy NM, Sultan AS. In silico and cheminformatics prediction with experimental validation of an adipogenesis cocktail, sorafenib with rosiglitazone for HCC dedifferentiation. J Genet Eng Biotechnol 2024; 22:100429. [PMID: 39674644 PMCID: PMC11600669 DOI: 10.1016/j.jgeb.2024.100429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 12/16/2024]
Abstract
PURPOSE Hepatocellular carcinoma (HCC) resistance to sorafenib treatment and other treatment strategies causes a higher mortality rate in patients diagnosed with HCC. RESEARCH QUESTION HCC often develops resistance to sorafenib treatment and other therapies, leading to increased mortality rates in diagnosed patients. Herein, we propose a combined therapeutic approach using rosiglitazone, a key factor in cellular differentiation, along with adipogenesis inducers such as dexamethasone, IBMX, and insulin. Additionally, we included sorafenib, a primary drug for liver cancer treatment, in this combination cocktail and carried out the differentiation process in the presence of sorafenib. RESULTS Our study demonstrates that this combination induces the formation of adipocytes from HCC cells over several days under specific conditions and steps. CONCLUSION findings suggest that supplementing sorafenib with rosiglitazone and adipogenesis inducers may potentially transform HCC cells into adipocyte-like cells. Fat could be "the good" in the story of liver cancer alleviation, demonstrating the role of rosiglitazone.
Collapse
Affiliation(s)
- Aya Anis
- Postgraduate Pharmacist at DataClin CRO, Giza, Egypt
| | - Ahmed M Mostafa
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia 11566, Cairo, Egypt
| | - Mariam S Kerema
- Postgraduate Pharmacist at Pharco Pharmaceuticals, Alexandria, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia 11566, Cairo, Egypt.
| | - Ahmed S Sultan
- Biochemistry Department, Faculty of Science, Alexandria University, El-Shatbi, 21568, Alexandria, Egypt; Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
19
|
Li XQ, Cao ZR, Deng M, Qing Y, Sun L, Wu ZJ. E2F8-TPX2 axis regulates glycolysis and angiogenesis to promote progression and reduce chemosensitivity of liver cancer. Cytotechnology 2024; 76:817-832. [PMID: 39435417 PMCID: PMC11490592 DOI: 10.1007/s10616-024-00655-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/11/2024] [Indexed: 10/23/2024] Open
Abstract
Liver cancer (LC) is a global health concern, marked by its high prevalence and mortality rates and known for its resistance to chemotherapy. The treatment of LC patients is facing great challenges. Targeting protein for Xenopus kinesin-like protein 2 (TPX2) is a LC marker that has been discovered in recent years, and there are sporadic data suggesting that it has an impact on the level of chemoresistance, but the exact mechanism remains to be deciphered. Our investigation, grounded in bioinformatics strategies including the TCGA database, GEO database, K-M plot database, GSEA, Pearson correlation analysis, and detection of clinical samples, led to the identification of TPX2 and its upstream transcription factor E2F8 as differentially expressed elements in LC tissues. We also probed the role of the axis in glycolysis, angiogenesis, tumor progression, and chemoresistance in LC cells. This was achieved by a battery of molecular and cellular experiments, such as qRT-PCR, CCK-8, Transwell, flow cytometry, and angiogenesis assays. Both TPX2 and E2F8 were upregulated in LC tissues and cells with E2F8 being responsible for the upregulation of TPX2. Through bioinformatics analysis, we observed a significant enrichment of TPX2 in the glycolysis and angiogenesis pathways. Cell-based experiments corroborated these findings, demonstrating that TPX2 knockdown led to significant inhibition of glycolysis and angiogenesis, along with a suppression of the malignant progression of LC cells. This was mirrored by a reduction in the IC50 values for cisplatin and apatinib to 0.8257 µM and 10.79 µM, respectively. In contrast, E2F8 overexpression reversed these effects in LC cells, increasing the IC50 values to 3.375 and 16.06 µM, respectively. The E2F8-TPX2 axis promotes glycolysis and angiogenesis in LC cells, which in turn accelerates cancer progression and reduces chemosensitivity. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-024-00655-w.
Collapse
Affiliation(s)
- Xiao-Qing Li
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
- Department of Oncology, Bishan Hospital of Chongqing Medical University, Chongqing, 402760 China
| | - Zhen-Rui Cao
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Min Deng
- Department of Oncology, Bishan Hospital of Chongqing Medical University, Chongqing, 402760 China
| | - Yun Qing
- Department of Oncology, Bishan Hospital of Chongqing Medical University, Chongqing, 402760 China
| | - Lan Sun
- Department of Oncology, Bishan Hospital of Chongqing Medical University, Chongqing, 402760 China
| | - Zhong-Jun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| |
Collapse
|
20
|
Patresan J, Patel H, Chandrasekaran K, Reynolds G. Current Treatment Paradigm and Approach to Advanced Hepatocellular Carcinoma. Cureus 2024; 16:e75471. [PMID: 39791050 PMCID: PMC11717138 DOI: 10.7759/cureus.75471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2024] [Indexed: 01/12/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common forms of primary liver cancer worldwide. Herein, we present a review article that provides a broad overview of the current landscape of HCC, including the etiology, potential risk factors, and molecular pathways that can serve as potential therapeutic targets. The risk factors tend to vary depending on the geographic distribution; hepatitis B-induced cirrhosis and HCC occur more frequently in Asia and Sub-Saharan Africa, whereas metabolic disorders are the culprits in Western Europe and the Americas. The exact molecular alterations that drive hepatocarcinogenesis have yet to be elucidated; however, a complex interplay exists between oxidative stress and chronic inflammation. Diagnostic modalities such as tri-phasic MRI or CT also have distinct patterns for HCC, which aid significantly in diagnosis. Furthermore, the review aims to highlight treatment strategies, including transplantation, locoregional radiation therapies, and interventional radiological techniques such as chemotherapy or radioembolization. Finally, systemic therapies will be discussed, taking advantage of molecular pathways that influence cellular proliferation and survival as well as immunotherapy.
Collapse
Affiliation(s)
- John Patresan
- Hematology and Oncology, Roger Williams Medical Center, Boston University School of Medicine, Providence, USA
| | - Harsh Patel
- Gastroenterology and Hepatology, New York-Presbyterian Brooklyn Methodist Hospital, Weill Cornell Medicine, Brooklyn, USA
| | - Karthik Chandrasekaran
- Internal Medicine and Gastroenterology, New York-Presbyterian Brooklyn Methodist Hospital, Weill Cornell Medicine, Brooklyn, USA
| | - Griffin Reynolds
- Hematology and Oncology, Roger Williams Medical Center, Boston University School of Medicine, Providence, USA
| |
Collapse
|
21
|
Liao ZQ, Lv YF, Kang MD, Ji YL, Liu Y, Wang LR, Tang JL, Deng ZQ, Yi Y, Tang Q. Inhibition of XPR1-dependent phosphate efflux induces mitochondrial dysfunction: A potential molecular target therapy for hepatocellular carcinoma? Mol Carcinog 2024; 63:2332-2345. [PMID: 39136583 DOI: 10.1002/mc.23812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 11/16/2024]
Abstract
Xenotropic and polytropic retrovirus receptor 1 (XPR1) is the only known transporter associated with Pi efflux in mammals, and its impact on tumor progression is gradually being revealed. However, the role of XPR1 in hepatocellular carcinoma (HCC) is unknown. A bioinformatics screen for the phosphate exporter XPR1 was performed in HCC patients. The expression of XPR1 in clinical specimens was analyzed using quantitative real-time PCR, Western blot analysis, and immunohistochemical assays. Knockdown of the phosphate exporter XPR1 was performed by shRNA transfection to investigate the cellular phenotype and phosphate-related cytotoxicity of the Huh7 and HLF cell lines. In vivo tests were conducted to investigate the tumorigenicity of HCC cells xenografted into immunocompromised mice after silencing XPR1. Compared with that in paracancerous tissue, XPR1 expression in HCC tissues was markedly upregulated. High XPR1 expression significantly correlated with poor patient survival. Silencing of XPR1 leads to decreased proliferation, migration, invasion, and colony formation in HCC cells. Mechanistically, knockdown of XPR1 causes an increase in intracellular phosphate levels; mitochondrial dysfunction characterized by reduced mitochondrial membrane potential and adenosine triphosphate levels; increased reactive oxygen species levels; abnormal mitochondrial morphology; and downregulation of key mitochondrial fusion, fission, and inner membrane genes. This ultimately results in mitochondria-dependent apoptosis. These findings reveal the prognostic value of XPR1 in HCC progression and, more importantly, suggest that XPR1 might be a potential therapeutic target.
Collapse
Affiliation(s)
- Zi-Qiang Liao
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, College of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute for Advanced Study, Nanchang University, Nanchang, China
| | - Yang-Feng Lv
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, College of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute for Advanced Study, Nanchang University, Nanchang, China
| | - Mei-Diao Kang
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yu-Long Ji
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yue Liu
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Le-Ran Wang
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | | | - Zhi-Qiang Deng
- Department of Oncology, The First People's Hospital of Fuzhou, Fuzhou, China
| | - Yun Yi
- Biobank Center, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qun Tang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, College of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute for Advanced Study, Nanchang University, Nanchang, China
| |
Collapse
|
22
|
Nabil A, Abdel-Motaal M, Hassan A, Elshemy MM, Asem M, Elwan M, Ebara M, Abdelmageed M, Shiha G, Azzazy HME. Anti-hepatocellular carcinoma activities of novel hydrazone derivatives via downregulation of interleukin-6. RSC Adv 2024; 14:37960-37974. [PMID: 39610815 PMCID: PMC11603412 DOI: 10.1039/d4ra05854b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/17/2024] [Indexed: 11/30/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related morbidity worldwide. Sorafenib is a first-line drug for the treatment of HCC, however, it is reported to cause serious adverse effects and may lead to resistance in many patients. In this study, 20 hydrazone derivatives incorporating triazoles, pyrazolone, pyrrole, pyrrolidine, imidazoline, quinazoline, and oxadiazine moieties were designed, synthesized, and characterized. In addition to molecular docking and in silico ADME study, the cytotoxic activity of the synthesized compounds was evaluated against the human hepatocellular cancer cell line (HepG2) and liver mesenchymal stem cells as a normal cell line. The antitumor activities of the derivatives against sorafenib were compared. Of the 20 synthesized compounds, compound 16 demonstrated potential as a potent anti-HCC drug candidate through downregulation of interleukin 6 which reduces inflammation and tumorigenesis with a strong binding interaction and bioavailability.
Collapse
Affiliation(s)
- Ahmed Nabil
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS) Tsukuba 305-0044 Japan +201000618349
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University Beni-Suef Egypt
- Egyptian Liver Research Institute and Hospital (ELRIAH) Sherbin El Mansoura Egypt
| | - Marwa Abdel-Motaal
- Department of Chemistry, College of Science, Qassim University Qassim Buraydah 51452 Saudi Arabia +966569909737
| | - Ayman Hassan
- Egyptian Liver Research Institute and Hospital (ELRIAH) Sherbin El Mansoura Egypt
| | | | - Medhat Asem
- Department of Civil Engineering, College of Engineering and Information Technology, Onaizah Colleges Qassim Saudi Arabia
| | - Mariam Elwan
- Egyptian Ministry of Health El Mansoura Dakahlia Egypt
| | - Mitsuhiro Ebara
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS) Tsukuba 305-0044 Japan +201000618349
- Graduate School of Pure and Applied Sciences, University of Tsukuba 1-1-1 Tennodai, Tsukuba Ibaraki 305-8577 Japan
- Graduate School of Industrial Science and Technology, Tokyo University of Science 6-3-1 Niijuku Katsushika-ku Tokyo 125-8585 Japan
| | - Mohammed Abdelmageed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Buraydah Colleges Qassim Saudi Arabia
- Hot Laboratory Center, Atomic Energy Authority Cairo Egypt
| | - Gamal Shiha
- Egyptian Liver Research Institute and Hospital (ELRIAH) Sherbin El Mansoura Egypt
- Hepatology and Gastroenterology Unit, Internal Medicine Department, Faculty of Medicine, Mansoura University Egypt
| | - Hassan M E Azzazy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo New Cairo 11835 Egypt +201000565727
| |
Collapse
|
23
|
Vij P, Hussain MS, Satapathy SK, Cobos E, Tripathi MK. The Emerging Role of Long Noncoding RNAs in Sorafenib Resistance Within Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:3904. [PMID: 39682093 DOI: 10.3390/cancers16233904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/01/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC), a liver cancer originating from hepatocytes, is a major health concern and among the most common malignancies worldwide. Sorafenib, approved by the U.S. F.D.A., is the primary first-line treatment for patients with advanced HCC. While the preferred first-line systemic regimen for HCC is immunotherapy with Atezolizumab plus bevacizumab or Tremelimumab-actl + durvalumab, Sorafenib is still an alternative recommended regimen. While some patients with advanced HCC may benefit from Sorafenib treatment, most eventually develop resistance, leading to poor prognosis. Long noncoding RNAs (lncRNAs) have been found to play a critical role in tumorigenesis and the development of HCC, as well as other cancers. They are also key players in tumor drug resistance, though the mechanisms of lncRNAs in Sorafenib resistance in HCC remain poorly understood. This review summarizes the molecular mechanisms contributing to Sorafenib resistance in HCC with their potential correlation with lncRNAs, including the roles of transporters, receptors, cell death regulation, and other influencing factors.
Collapse
Affiliation(s)
- Puneet Vij
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY 11439, USA
| | - Mohammad Shabir Hussain
- Medicine and Oncology ISU, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Sanjaya K Satapathy
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra, Northwell Health Center for Liver Diseases & Transplantation, Northshore University Hospital, Manhasset, NY 11030, USA
| | - Everardo Cobos
- Medicine and Oncology ISU, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Manish K Tripathi
- Medicine and Oncology ISU, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| |
Collapse
|
24
|
Chen L, He Y, Lan J, Li Z, Gu D, Nie W, Zhang T, Ding Y. Advancements in nano drug delivery system for liver cancer therapy based on mitochondria-targeting. Biomed Pharmacother 2024; 180:117520. [PMID: 39395257 DOI: 10.1016/j.biopha.2024.117520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024] Open
Abstract
Based on poor efficacy and non-specific toxic side effects of conventional drug therapy for liver cancer, nano-based drug delivery system (NDDS) offers the advantage of drug targeting delivery. Subcellular targeting of nanomedicines on this basis enables more precise and effective termination of tumor cells. Mitochondria, as the crucial cell powerhouse, possesses distinctive physical and chemical properties in hepatoma cells different from that in hepatic cells, and controls apoptosis, tumor metastasis, and cellular drug resistance in hepatoma cells through metabolism and dynamics, which serves as a good choice for drug targeting delivery. Thus, mitochondria-targeting NDDS have become a recent research focus, showcasing the design of cationic nanoparticles, metal nanoparticles, mitochondrial peptide modification and so on. Although many studies have shown good results regarding anti-tumor efficacy, it is a long way to go before the successful translation of clinical application. Based on these, we summarized the specificity and importance of mitochondria in hepatoma cells, and reviewed the current mitochondria-targeting NDDS for liver cancer therapy, aiming to provide a better understanding for current development process, strengths and weaknesses of mitochondria-targeting NDDS as well as informing subsequent improvements and developments.
Collapse
Affiliation(s)
- Lixia Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yitian He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jinshuai Lan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhe Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Donghao Gu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenlong Nie
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
25
|
Su Q, Sun H, Mei L, Yan Y, Ji H, Chang L, Wang L. Ribosomal proteins in hepatocellular carcinoma: mysterious but promising. Cell Biosci 2024; 14:133. [PMID: 39487553 PMCID: PMC11529329 DOI: 10.1186/s13578-024-01316-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024] Open
Abstract
Ribosomal proteins (RPs) are essential components of ribosomes, playing a role not only in ribosome biosynthesis, but also in various extra-ribosomal functions, some of which are implicated in the development of different types of tumors. As universally acknowledged, hepatocellular carcinoma (HCC) has been garnering global attention due to its complex pathogenesis and challenging treatments. In this review, we analyze the biological characteristics of RPs and emphasize their essential roles in HCC. In addition to regulating related signaling pathways such as the p53 pathway, RPs also act in proliferation and metastasis by influencing cell cycle, apoptosis, angiogenesis, and epithelial-to-mesenchymal transition in HCC. RPs are expected to unfold new possibilities for precise diagnosis and individualized treatment of HCC.
Collapse
Affiliation(s)
- Qian Su
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
- National Center for Clinical Laboratories, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Huizhen Sun
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Ling Mei
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
- National Center for Clinical Laboratories, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Ying Yan
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Huimin Ji
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Le Chang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China.
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China.
- National Center for Clinical Laboratories, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China.
| | - Lunan Wang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China.
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China.
- National Center for Clinical Laboratories, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China.
| |
Collapse
|
26
|
Zhang H, Pei S, Li J, Zhu J, Li H, Wu G, Weng R, Chen R, Fang Z, Sun J, Chen K. Insights about exosomal circular RNAs as novel biomarkers and therapeutic targets for hepatocellular carcinoma. Front Pharmacol 2024; 15:1466424. [PMID: 39444611 PMCID: PMC11496148 DOI: 10.3389/fphar.2024.1466424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
One of the most prevalent pathological types of Primary Liver Cancer (PLC) is the Hepatocellular Carcinoma (HCC) poses a global health issue. The high recurrence and metastasis rate of HCC, coupled with a low 5-year survival rate, result in a bleak prognosis. Exosomes, small extracellular vesicles released by various cells, contain diverse non-coding RNA molecules, including circular RNAs (circRNAs), which play a significant role in intercellular communication and can impact HCC progression. Studies have revealed the potential clinical applications of exosomal circRNAs as biomarkers and therapeutic targets for HCC. These circRNAs can be transferred via exosomes to nearby non-cancerous cells, thereby regulating HCC progression and influencing malignant phenotypes, such as cell proliferation, invasion, metastasis, and drug resistance. This review provides a comprehensive overview of the identified exosomal circRNAs, highlighting their potential as non-invasive biomarkers for HCC, and suggesting new perspectives for HCC diagnosis and treatment. The circRNA from exosomal organelles promotes metastasis and immune scape because of their unique chirality which is different from the Biomolecular Homochirality.
Collapse
Affiliation(s)
- Haiyan Zhang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Zhejiang Chinese Medical University, Shuren College, Hangzhou, China
| | - Shanshan Pei
- School of Pharmacy, Beihua University, Jilin, China
| | - Jiaxuan Li
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jiajie Zhu
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Hongyu Li
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Guangshang Wu
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Ruiqi Weng
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Ruyi Chen
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Zhongbiao Fang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jingbo Sun
- School of Pharmacy, Beihua University, Jilin, China
| | - Keda Chen
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
27
|
Xu Q, Ren L, Ren N, Yang Y, Pan J, Zheng Y, Wang G. Ferroptosis: a new promising target for hepatocellular carcinoma therapy. Mol Cell Biochem 2024; 479:2615-2636. [PMID: 38051404 DOI: 10.1007/s11010-023-04893-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/01/2023] [Indexed: 12/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the sixed most common malignant tumor in the world. The study for HCC is mired in the predicament confronted with the difficulty of early diagnosis and high drug resistance, the survival rate of patients with HCC being low. Ferroptosis, an iron-dependent cell death, has been discovered in recent years as a cell death means with tremendous potential to fight against cancer. The in-depth researches for iron metabolism, lipid peroxidation and dysregulation of antioxidant defense have brought about tangible progress in the firmament of ferroptosis with more and more results showing close connections between ferroptosis and HCC. The potential role of ferroptosis has been widely used in chemotherapy, immunotherapy, radiotherapy, and nanotherapy, with the development of various new drugs significantly improving the prognosis of patients. Based on the characteristics and mechanisms of ferroptosis, this article further focuses on the main signaling pathways and promising treatments of HCC, envisioning that existing problems in regard with ferroptosis and HCC could be grappled with in the foreseeable future.
Collapse
Affiliation(s)
- Qiaoping Xu
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Westlake University School of Medical, Hangzhou, 310006, China
| | - Lanqi Ren
- Fourth Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310051, China
| | - Ning Ren
- Fourth Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310051, China
| | - Yibei Yang
- Fourth Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310051, China
| | - Junjie Pan
- Fourth Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310051, China
| | - Yu Zheng
- Second Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310051, China
| | - Gang Wang
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Westlake University School of Medical, Hangzhou, 310006, China.
| |
Collapse
|
28
|
Mehner LM, Munoz-Sagredo L, Sonnentag SJ, Treffert SM, Orian-Rousseau V. Targeting CD44 and other pleiotropic co-receptors as a means for broad inhibition of tumor growth and metastasis. Clin Exp Metastasis 2024; 41:599-611. [PMID: 38761292 PMCID: PMC11499327 DOI: 10.1007/s10585-024-10292-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/02/2024] [Indexed: 05/20/2024]
Abstract
Although progress has been made in the treatment of cancer, particularly for the four major types of cancers affecting the lungs, colon, breast and prostate, resistance to cancer treatment often emerges upon inhibition of major signaling pathways, which leads to the activation of additional pathways as a last-resort survival mechanism by the cancer cells. This signaling plasticity provides cancer cells with a level of operational freedom, reducing treatment efficacy. Plasticity is a characteristic of cancer cells that are not only able to switch signaling pathways but also from one cellular state (differentiated cells to stem cells or vice versa) to another. It seems implausible that the inhibition of one or a few signaling pathways of heterogeneous and plastic tumors can sustain a durable effect. We propose that inhibiting molecules with pleiotropic functions such as cell surface co-receptors can be a key to preventing therapy escape instead of targeting bona fide receptors. Therefore, we ask the question whether co-receptors often considered as "accessory molecules" are an overlooked key to control cancer cell behavior.
Collapse
Affiliation(s)
- Lisa-Marie Mehner
- Institute of Biological and Chemical Systems - Functional Molecular Systems, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Leonel Munoz-Sagredo
- Institute of Biological and Chemical Systems - Functional Molecular Systems, Karlsruhe Institute of Technology, Karlsruhe, Germany
- School of Medicine, Universidad de Valparaiso, Valparaiso, Chile
| | - Steffen Joachim Sonnentag
- Institute of Biological and Chemical Systems - Functional Molecular Systems, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Sven Máté Treffert
- Institute of Biological and Chemical Systems - Functional Molecular Systems, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Véronique Orian-Rousseau
- Institute of Biological and Chemical Systems - Functional Molecular Systems, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| |
Collapse
|
29
|
Xing L, Chen Y, Zheng T. Research progress of nanoparticles in diagnosis and treatment of hepatocellular carcinoma. Open Life Sci 2024; 19:20220932. [PMID: 39220591 PMCID: PMC11365471 DOI: 10.1515/biol-2022-0932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 09/04/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is among the most common malignant liver tumors. Despite progress in anticancer drugs and surgical approaches, early detection of HCC remains challenging, often leading to late-stage diagnosis where rapid disease progression precludes surgical intervention, leaving chemotherapy as the only option. However, the systemic toxicity, low bioavailability, and significant adverse effects of chemotherapy drugs often lead to resistance, rendering treatments ineffective for many patients. This article outlines how nanoparticles, following functional modification, offer high sensitivity, reduced drug toxicity, and extended duration of action, enabling precise targeting of drugs to HCC tissues. Combined with other therapeutic modalities and imaging techniques, this significantly enhances the diagnosis, treatment, and long-term prognosis of HCC. The advent of nanomedicine provides new methodologies and strategies for the precise diagnosis and integrated treatment of HCC.
Collapse
Affiliation(s)
- Lijun Xing
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Hubei University of Medicine, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, P. R. China
| | - Yun Chen
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, P. R. China
| | - Tingting Zheng
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, P. R. China
| |
Collapse
|
30
|
de Melo Silva AJ, de Melo Gama JE, de Oliveira SA. The Role of Bcl-2 Family Proteins and Sorafenib Resistance in Hepatocellular Carcinoma. Int J Cell Biol 2024; 2024:4972523. [PMID: 39188653 PMCID: PMC11347034 DOI: 10.1155/2024/4972523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/10/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024] Open
Abstract
Liver cancer has been reported to be one of the most malignant diseases in the world. It is late diagnosis consequently leads to a difficult treatment, as the cancer reached an advanced stage. Hepatocellular carcinoma (HCC) is the primary type of cancer diagnosed in the liver, with deadly characteristics and a poor prognosis. The first-in-line treatment for advanced HCC is sorafenib. Sorafenib acts by inhibiting cell proliferation and by inducing apoptosis as well as blocks receptors associated with these mechanisms. Due to its constant use, sorafenib resistance has been described, especially to proteins of the Bcl-2 family, and their overexpression of Bcl-XL and Mcl-1. This review focuses on the role of the Bcl-2 proteins in relation to sorafenib resistance as a consequence of first-in-line treatment in HCC.
Collapse
|
31
|
Elleithi Y, El-Gayar A, Amin MN. Autophagy modulation attenuates sorafenib resistance in HCC induced in rats. Cell Death Dis 2024; 15:595. [PMID: 39152108 PMCID: PMC11329791 DOI: 10.1038/s41419-024-06955-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 08/19/2024]
Abstract
Hepatocellular carcinoma (HCC) has risen as the villain of cancer-related death globally, with a usual cruel forecasting. Sorafenib was officially approved by the FDA as first-line treatment for advanced HCC. Despite the brilliant promise revealed in research, actual clinical results are limited due to the widespread appearance of drug resistance. The tumor microenvironment (TME) has been correlated to pharmacological resistance, implying that existing cellular level strategies may be insufficient to improve therapy success. The role of autophagy in cancer is a two-edged sword. On one hand, autophagy permits malignant cells to overcome stress, such as hypoxic TME and therapy-induced starvation. Autophagy, on the other hand, plays an important role in damage suppression, which can reduce carcinogenesis. As a result, controlling autophagy is certainly a viable technique in cancer therapy. The goal of this study was to investigate at the impact of autophagy manipulation with sorafenib therapy by analyzing autophagy induction and inhibition to sorafenib monotherapy in rats with HCC. Western blot, ELISA, immunohistochemistry, flow cytometry, and quantitative-PCR were used to investigate autophagy, apoptosis, and the cell cycle. Routine biochemical and pathological testing was performed. Ultracellular features and autophagic entities were observed using a transmission electron microscope (TEM). Both regimens demonstrated significant reductions in chemotherapeutic resistance and hepatoprotective effects. According to the findings, both autophagic inhibitors and inducers are attractive candidates for combating sorafenib-induced resistance in HCC.
Collapse
Affiliation(s)
- Yomna Elleithi
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
- Biochemistry Department, Faculty of Pharmacy, Mansoura National University, Gamasa, 7731168, Egypt.
| | - Amal El-Gayar
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed N Amin
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
32
|
Hasan AM, Cavalu S, Saber S, Doghish AS, Hamad RS, Abdel-Reheim MA, Alghamdi M, Alamri MMS, Alfaifi J, Adam MIE, Alqarni AA, Rezigalla AA, Negm S, El-Kott AF, Alshehri AS, BinAfeef SF, Abdel-Ghany S, Attia MA, Mohammed OA. Hedgehog signaling mastery: R51211's promise in augmenting the therapeutic efficacy of sorafenib. Life Sci 2024; 351:122791. [PMID: 38848936 DOI: 10.1016/j.lfs.2024.122791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/07/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Sorafenib is a multikinase inhibitor employed for managing hepatocellular carcinoma (HCC). The emergence of sorafenib resistance presents an obstacle to its therapeutic efficacy. One notable approach to overcoming sorafenib resistance is the exploration of combination therapies. The role of hedgehog signaling in sorafenib resistance has been also examined in HCC. R51211, known as itraconazole, has been safely employed in clinical practice. Through in vitro and in vivo investigations, we assessed the potential of R51211 to enhance the therapeutic efficacy of sorafenib by inhibiting the hedgehog signaling. The zero-interaction potency synergy model demonstrated a synergistic interaction between R51211 and sorafenib, a phenomenon reversed by the action of a smoothened receptor agonist. This dual therapy exhibited an increased capacity to induce apoptosis, as evidenced by alterations in the Bax/BCL-2 ratio and caspase-3, along with a propensity to promote autophagy, as indicated by changes in BECN1, p62, and the LC3I/LC3II ratio. Furthermore, the combination therapy resulted in significant reductions in biomarkers associated with liver preneoplastic alterations, improved liver microstructure, and mitigated changes in liver function enzymes. The substantial decrease in hedgehog components (Shh, SMO, GLI1, and GLI2) following R51211 treatment appears to be a key factor contributing to the increased efficacy of sorafenib. In conclusion, our study highlights the potential of R51211 as an adjunct to sorafenib, introducing a new dimension to this combination therapy through the modulation of the hedgehog signaling pathway. Further investigations are essential to validate the therapeutic efficacy of this combined approach in inhibiting the development of liver cancer.
Collapse
Affiliation(s)
- Alexandru Madalin Hasan
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania.
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania.
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo 11231, Egypt.
| | - Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia; Central Laboratory, Theodor Bilharz Research Institute, Giza 12411, Egypt.
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Aldawadmi 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Mushabab Alghamdi
- Department of Internal Medicine, Division of Rheumatology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Mohannad Mohammad S Alamri
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Masoud I E Adam
- Department of Medical Education and Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Abdullah Ali Alqarni
- Department of Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Assad Ali Rezigalla
- Department of Anatomy, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Sally Negm
- Department of Life Sciences, College of Science and Art Mahyel Aseer, King Khalid University, Abha 62529, Saudi Arabia.
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, 61421 Abha, Saudi Arabia; Department of Zoology, Faculty of Science, Damanhour University, Damanhour 22511, Egypt.
| | - Ali S Alshehri
- Department of Biology, College of Science, King Khalid University, 61421 Abha, Saudi Arabia.
| | - Shahad Fuad BinAfeef
- Department of Obstetrics and Gynecology, College of Medicine, Umm Al-Qura University, Makkah 21421, Saudi Arabia.
| | - Sameh Abdel-Ghany
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; Department of Basic Medical Sciences, Ibn Sina University for Medical Sciences, Amman 16197, Jordan.
| | - Mohammed A Attia
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Diriyiah, Riyadh 13713, Saudi Arabia.
| | - Osama A Mohammed
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt; Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| |
Collapse
|
33
|
Li Z, Kim W, Utturkar S, Yan B, Lanman NA, Elzey BD, Kazemian M, Yeo Y, Andrisani O. DDX5 deficiency drives non-canonical NF-κB activation and NRF2 expression, influencing sorafenib response and hepatocellular carcinoma progression. Cell Death Dis 2024; 15:583. [PMID: 39122708 PMCID: PMC11315975 DOI: 10.1038/s41419-024-06977-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
In advanced hepatocellular carcinoma (HCC), RNA helicase DDX5 regulates the Wnt/β-catenin-ferroptosis axis, influencing the efficacy of the multi-tyrosine kinase inhibitor (mTKI) sorafenib. DDX5 inhibits Wnt/β-catenin signaling, preventing sorafenib-induced ferroptosis escape. Sorafenib/mTKIs reduce DDX5 expression, correlating with poor patient survival post-sorafenib treatment. Notably, DDX5-knockout in HCC cells activates Wnt/β-catenin signaling persistently. Herein, we investigate the mechanistic impact of Wnt/β-catenin activation resulting from DDX5 downregulation in the progression and treatment of HCC. RNAseq analyses identified shared genes repressed by DDX5 and upregulated by sorafenib, including Wnt signaling genes, NF-κB-inducing kinase (NIK) essential for non-canonical NF-κB (p52/RelB) activation, and cytoprotective transcription factor NRF2. We demonstrate, Wnt/β-catenin activation induced NIK transcription, leading to non-canonical NF-κB activation, which subsequently mediated NRF2 transcription. Additionally, DDX5 deficiency extended NRF2 protein half-life by inactivating KEAP1 through p62/SQSTM1 stabilization. In a preclinical HCC mouse model, NRF2 knockdown or DDX5 overexpression restricted tumor growth upon sorafenib treatment, via induction of ferroptosis. Importantly, DDX5-knockout HCC cells exhibited elevated expression of Wnt signaling genes, NIK, p52/RelB, and NRF2-regulated genes, regardless of sorafenib treatment. Transcriptomic analyses of HCCs from TCGA and the Stelic Animal Model (STAM) of non-alcoholic steatohepatitis revealed elevated expression of these interconnected pathways in the context of DDX5 downregulation. In conclusion, DDX5 deficiency triggers Wnt/β-catenin signaling, promoting p52/RelB and NRF2 activation, thereby enabling ferroptosis evasion upon sorafenib treatment. Similarly, independent of sorafenib, DDX5 deficiency in liver tumors enhances activation and gene expression of these interconnected pathways, underscoring the clinical relevance of DDX5 deficiency in HCC progression and therapeutic response.
Collapse
Affiliation(s)
- Zhili Li
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Cancer Research, West Lafayette, IN, USA
| | - Woojun Kim
- Purdue Institute for Cancer Research, West Lafayette, IN, USA
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Sagar Utturkar
- Purdue Institute for Cancer Research, West Lafayette, IN, USA
| | - Bingyu Yan
- Purdue Institute for Cancer Research, West Lafayette, IN, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Nadia Atallah Lanman
- Purdue Institute for Cancer Research, West Lafayette, IN, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Bennett D Elzey
- Purdue Institute for Cancer Research, West Lafayette, IN, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Majid Kazemian
- Purdue Institute for Cancer Research, West Lafayette, IN, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | - Yoon Yeo
- Purdue Institute for Cancer Research, West Lafayette, IN, USA
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Ourania Andrisani
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, USA.
- Purdue Institute for Cancer Research, West Lafayette, IN, USA.
| |
Collapse
|
34
|
Guo J, Jiang X, Lian J, Li H, Zhang F, Xie J, Deng J, Hou X, Du Z, Hao E. Evaluation of the effect of GSK-3β on liver cancer based on the PI3K/AKT pathway. Front Cell Dev Biol 2024; 12:1431423. [PMID: 39156976 PMCID: PMC11327086 DOI: 10.3389/fcell.2024.1431423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
The PI3K/AKT/GSK-3β signaling pathway plays a pivotal role in numerous physiological and pathological processes, including cell proliferation, apoptosis, differentiation, and metabolic regulation. Aberrant activation of the PI3K/AKT pathway is intricately linked to development of tumor. GSK-3β, belonging to the serine/threonine protein kinase family, is crucial in the pathogenesis of liver cancer. As a key rate-limiting enzyme in the glucose metabolism pathway, GSK-3β significantly impacts the growth, proliferation, metastasis, and apoptosis of liver cancer cells. It is also implicated in chemotherapy resistance. Elevated expression of GSK-3β diminishes the sensitivity of liver cancer cells to chemotherapeutic agents, thereby playing a substantial role in the development of drug resistance. Consequently, targeting of GSK-3β, particularly within the PI3K/AKT signaling pathway, is regarded as a promising therapeutic strategy for liver cancer. The precise identification and subsequent modulation of this pathway represent a substantial potential for innovative clinical interventions in the management of liver cancer.
Collapse
Affiliation(s)
- Jiageng Guo
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Xinya Jiang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Jing Lian
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Huaying Li
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Fan Zhang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Jinling Xie
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Jiagang Deng
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiaotao Hou
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Zhengcai Du
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
35
|
Chen JH, Lin TH, Chien YC, Chen CY, Lin CT, Kuo WW, Chang WC. Aqueous Extracts of Ocimum gratissimum Sensitize Hepatocellular Carcinoma Cells to Cisplatin through BRCA1 Inhibition. Int J Mol Sci 2024; 25:8424. [PMID: 39125994 PMCID: PMC11313253 DOI: 10.3390/ijms25158424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Ocimum gratissimum (O. gratissimum), a medicinal herb with antifungal and antiviral activities, has been found to prevent liver injury and liver fibrosis and induce apoptosis in hepatocellular carcinoma (HCC) cells. In this study, we evaluated the effect of aqueous extracts of O. gratissimum (OGE) on improving the efficacy of chemotherapeutic drugs in HCC cells. Proteomic identification and functional assays were used to uncover the critical molecules responsible for OGE-induced sensitization mechanisms. The antitumor activity of OGE in combination with a chemotherapeutic drug was evaluated in a mouse orthotopic tumor model, and serum biochemical tests were further utilized to validate liver function. OGE sensitized HCC cells to the chemotherapeutic drug cisplatin. Proteomic analysis and Western blotting validation revealed the sensitization effect of OGE, likely achieved through the inhibition of breast cancer type 1 susceptibility protein (BRCA1). Mechanically, OGE treatment resulted in BRCA1 protein instability and increased proteasomal degradation, thereby synergistically increasing cisplatin-induced DNA damage. Moreover, OGE effectively inhibited cell migration and invasion, modulated epithelial-to-mesenchymal transition (EMT), and impaired stemness properties in HCC cells. The combinatorial use of OGE enhanced the efficacy of cisplatin and potentially restored liver function in a mouse orthotopic tumor model. Our findings may provide an alternate approach to improving chemotherapy efficacy in HCC.
Collapse
Affiliation(s)
- Jing-Huei Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan; (J.-H.C.); (Y.-C.C.)
| | - Tsai-Hui Lin
- Department of Chinese Medicine, China Medical University Hospital, Taichung 404327, Taiwan;
| | - Yu-Chuan Chien
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan; (J.-H.C.); (Y.-C.C.)
| | - Chung-Yu Chen
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan; (C.-Y.C.); (C.-T.L.)
| | - Chih-Tung Lin
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan; (C.-Y.C.); (C.-T.L.)
| | - Wei-Wen Kuo
- Program for Biotechnology Industry, China Medical University, Taichung 406040, Taiwan
| | - Wei-Chao Chang
- Center for Molecular Medicine, China Medical University Hospital, Taichung 406040, Taiwan
| |
Collapse
|
36
|
Zhang QY, Ding W, Mo JS, Ou-Yang SM, Lin ZY, Peng KR, Liu GP, Lu JJ, Yue PB, Lei JP, Wang YD, Zhang XL. Novel STAT3 oligonucleotide compounds suppress tumor growth and overcome the acquired resistance to sorafenib in hepatocellular carcinoma. Acta Pharmacol Sin 2024; 45:1701-1714. [PMID: 38609562 PMCID: PMC11272795 DOI: 10.1038/s41401-024-01261-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/03/2024] [Indexed: 04/14/2024]
Abstract
Signal transducer and activator of transcription 3 (STAT3) plays an important role in the occurrence and progression of tumors, leading to resistance and poor prognosis. Activation of STAT3 signaling is frequently detected in hepatocellular carcinoma (HCC), but potent and less toxic STAT3 inhibitors have not been discovered. Here, based on antisense technology, we designed a series of stabilized modified antisense oligonucleotides targeting STAT3 mRNA (STAT3 ASOs). Treatment with STAT3 ASOs decreased the STAT3 mRNA and protein levels in HCC cells. STAT3 ASOs significantly inhibited the proliferation, survival, migration, and invasion of cancer cells by specifically perturbing STAT3 signaling. Treatment with STAT3 ASOs decreased the tumor burden in an HCC xenograft model. Moreover, aberrant STAT3 signaling activation is one of multiple signaling pathways involved in sorafenib resistance in HCC. STAT3 ASOs effectively sensitized resistant HCC cell lines to sorafenib in vitro and improved the inhibitory potency of sorafenib in a resistant HCC xenograft model. The developed STAT3 ASOs enrich the tools capable of targeting STAT3 and modulating STAT3 activity, serve as a promising strategy for treating HCC and other STAT3-addicted tumors, and alleviate the acquired resistance to sorafenib in HCC patients. A series of novel STAT3 antisense oligonucleotide were designed and showed potent anti-cancer efficacy in hepatocellular carcinoma in vitro and in vivo by targeting STAT3 signaling. Moreover, the selected STAT3 ASOs enhance sorafenib sensitivity in resistant cell model and xenograft model.
Collapse
Affiliation(s)
- Qi-Yi Zhang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Wen Ding
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jian-Shan Mo
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shu-Min Ou-Yang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zi-You Lin
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ke-Ren Peng
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Guo-Pin Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Pei-Bin Yue
- Department of Medicine, Division of Hematology-Oncology, and Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Jin-Ping Lei
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yan-Dong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| | - Xiao-Lei Zhang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
37
|
Li W, Zhao B, Wang Q, Lu J, Wu X, Chen X. M2 macrophage exosomes promote resistance to sorafenib in hepatocellular carcinoma cells via miR-200c-3p. Int Immunopharmacol 2024; 139:112807. [PMID: 39068757 DOI: 10.1016/j.intimp.2024.112807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVE Sorafenib is a chemotherapeutic agent used to treat hepatocellular carcinoma (HCC). However, its clinical response rates are often low. Tumour-associated macrophages (TAMs) have been implicated in tumour resistance. The relationship between TAMs-derived exosomes and primary resistance to sorafenib in hepatocellular carcinoma is unclear. METHODS The study analysed RNA-SEQ data from TCGA-LIHC to explore the relationship between TAMs and sorafenib IC50. THP-1-induced M2 macrophages were used as a model to investigate the relationship between M2 macrophage exosomes and primary resistance to sorafenib in hepatocellular carcinoma cells using apoptosis, colony generation, cell viability and dual luciferase. RESULTS M2 macrophage score and sorafenib IC50 were positively correlated in hepatocellular carcinoma patients, M2 macrophage exosomes promoted sorafenib resistance in hepatocellular carcinoma cells, and M2-exo-miR-200c-3p facilitated the development of sorafenib resistance in hepatocellular carcinoma cells by mediating the activation of PI3K/AKT. CONCLUSION We propose and demonstrate for the first time that M2 macrophage exosomes promote sorafenib resistance in hepatocellular carcinoma, providing a new perspective for the clinical treatment of hepatocellular carcinoma patients.
Collapse
Affiliation(s)
- Wenhua Li
- Shihezi University School of Medicine, Shihezi 832000, China; Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi 832000, China
| | - Bin Zhao
- Shihezi University School of Medicine, Shihezi 832000, China; Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi 832000, China
| | - Qianwen Wang
- Shihezi University School of Medicine, Shihezi 832000, China; Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi 832000, China
| | - Junxia Lu
- Shihezi University School of Medicine, Shihezi 832000, China; Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi 832000, China
| | - Xiangwei Wu
- Shihezi University School of Medicine, Shihezi 832000, China; The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi 832000, China; Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi 832000, China.
| | - Xueling Chen
- Shihezi University School of Medicine, Shihezi 832000, China; Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi 832000, China.
| |
Collapse
|
38
|
Lv X, Lan G, Zhu L, Guo Q. Breaking the Barriers of Therapy Resistance: Harnessing Ferroptosis for Effective Hepatocellular Carcinoma Therapy. J Hepatocell Carcinoma 2024; 11:1265-1278. [PMID: 38974015 PMCID: PMC11227329 DOI: 10.2147/jhc.s469449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
Ferroptosis is a type of cell death that relies on iron and is distinguished by the occurrence of lipid peroxidation and the buildup of reactive oxygen species. Ferroptosis has been demonstrated to have a significant impact on the advancement and resistance to treatment of hepatocellular carcinoma (HCC), thereby highlighting its potential as a viable therapeutic target. Ferroptosis was observed in HCC tissues in contrast to normal liver tissue. The inhibition of ferroptosis has been found to increase the viability of HCC cells and decrease their susceptibility to various anticancer therapies, including chemotherapy, radiotherapy, and immune checkpoint blockade. The administration of drugs that directly modulate ferroptosis regulators or induce excessive production of lipid-reactive oxygen species has demonstrated the potential to enhance the responsiveness of drug-resistant HCC cells to treatment. However, the precise mechanism underlying this phenomenon remains ambiguous. This review presents a comprehensive overview of the crucial role played by ferroptosis in enhancing the efficacy of treatment for hepatocellular carcinoma (HCC). The main aim of this study is to examine the feasibility of utilizing ferroptosis as a therapeutic approach to improve the efficacy of HCC treatment and overcome drug resistance.
Collapse
Affiliation(s)
- Xianmei Lv
- Department of Radiotherapy, Jinhua People’s Hospital, Jinhua, Zhejiang, 321000, People’s Republic of China
- Department of Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, People’s Republic of China
| | - Gaochen Lan
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, People’s Republic of China
| | - Lujian Zhu
- Department of Medical Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, People’s Republic of China
| | - Qiusheng Guo
- Department of Radiotherapy, Jinhua People’s Hospital, Jinhua, Zhejiang, 321000, People’s Republic of China
| |
Collapse
|
39
|
Lee J, Kim J, Lee R, Lee E, An H, Kwon Y, Jin H, Pack C, Kim I, Yoon Y, Park G, Jwa E, Kwon JH, Namgoong J, Song G, Hwang S, Tak E, Lee S. SOD1 inhibition enhances sorafenib efficacy in HBV-related hepatocellular carcinoma by modulating PI3K/Akt/mTOR pathway and ROS-mediated cell death. J Cell Mol Med 2024; 28:e18533. [PMID: 39034442 PMCID: PMC11260765 DOI: 10.1111/jcmm.18533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/21/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024] Open
Abstract
Hepatitis B Virus (HBV) infection significantly elevates the risk of hepatocellular carcinoma (HCC), with the HBV X protein (HBx) playing a crucial role in cancer progression. Sorafenib, the primary therapy for advanced HCC, shows limited effectiveness in HBV-infected patients due to HBx-related resistance. Numerous studies have explored combination therapies to overcome this resistance. Sodium diethyldithiocarbamate (DDC), known for its anticancer effects and its inhibition of superoxide dismutase 1 (SOD1), is hypothesized to counteract sorafenib (SF) resistance in HBV-positive HCCs. Our research demonstrates that combining DDC with SF significantly reduces HBx and SOD1 expressions in HBV-positive HCC cells and human tissues. This combination therapy disrupts the PI3K/Akt/mTOR signalling pathway and promotes apoptosis by increasing reactive oxygen species (ROS) levels. These cellular changes lead to reduced tumour viability and enhanced sensitivity to SF, as evidenced by the synergistic suppression of tumour growth in xenograft models. Additionally, DDC-mediated suppression of SOD1 further enhances SF sensitivity in HBV-positive HCC cells and xenografted animals, thereby inhibiting cancer progression more effectively. These findings suggest that the DDC-SF combination could serve as a promising strategy for overcoming SF resistance in HBV-related HCC, potentially optimizing therapy outcomes.
Collapse
Affiliation(s)
- Jooyoung Lee
- Asan Institute for Life Sciences, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
- Department of Biochemistry and Molecular Biology, AMIST, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Jiye Kim
- Asan Institute for Life Sciences, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
- Department of Biochemistry and Molecular Biology, AMIST, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Ryunjin Lee
- Asan Institute for Life Sciences, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
- Department of Biochemistry and Molecular Biology, AMIST, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Eunkyeong Lee
- Asan Institute for Life Sciences, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
- Department of Biochemistry and Molecular Biology, AMIST, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Hye‐In An
- Asan Institute for Life Sciences, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
- Department of Biochemistry and Molecular Biology, AMIST, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Yong‐Jae Kwon
- Department of Surgery, Gangneung Asan HospitalUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Hana Jin
- Division of Vascular Surgery, Department of Surgery, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Chan‐Gi Pack
- Convergence Medicine Research Center (CREDIT)Asan Institute for Life Sciences, ASAN Medical CenterSeoulRepublic of Korea
| | - Inki Kim
- Convergence Medicine Research Center (CREDIT)Asan Institute for Life Sciences, ASAN Medical CenterSeoulRepublic of Korea
| | - Young‐In Yoon
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Gil‐Chun Park
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Eun‐Kyoung Jwa
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Jae Hyun Kwon
- Department of Surgery, Hallym University Sacred Heart HospitalHallym University College of MedicineAnyangSouth Korea
| | - Jung‐Man Namgoong
- Division of Pediatric Surgery, Department of Surgery, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Gi‐Won Song
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Shin Hwang
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Eunyoung Tak
- Asan Institute for Life Sciences, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
- Department of Biochemistry and Molecular Biology, AMIST, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Sung‐Gyu Lee
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| |
Collapse
|
40
|
Li H, Ye Z, Wang X, Yuan J, Guo J, Liu C, Yan B, Fan H, Lyu Y, Liu X. Intracellular magnetic hyperthermia reverses sorafenib resistance in hepatocellular carcinoma through its action on signaling pathways. iScience 2024; 27:110029. [PMID: 38883844 PMCID: PMC11176631 DOI: 10.1016/j.isci.2024.110029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/25/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024] Open
Abstract
Sorafenib, a first-line drug for advanced hepatocellular carcinoma (HCC), unfortunately encounters resistance in most patients, leading to disease progression. Traditional approaches to counteract this resistance, particularly those targeting the RAF-MEK-ERK pathway, often face clinical feasibility limitations. Magnetic hyperthermia (MH), unlike conventional thermal therapies, emerges as a promising alternative. It uniquely combines magnetothermal effects with an increase in reactive oxygen species (ROS). This study found the potential of intracellular MH enhanced the efficacy of sorafenib, increased cellular sensitivity to sorafenib, and reversed sorafenib resistance by inhibiting the RAF-MEK-ERK pathway in an ROS-dependent manner in a sorafenib-resistant HCC cell. Further, in a sorafenib-resistant HCC mouse model, MH significantly sensitized tumors to sorafenib therapy, resulting in inhibited tumor growth and improved survival rates. This presents a promising strategy to overcome sorafenib resistance in HCC, potentially enhancing therapeutic outcomes for patients with this challenging condition.
Collapse
Affiliation(s)
- Hugang Li
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine; Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research; Shaanxi Provincial Key Laboratory of Magnetic Medicine; First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- School of Future Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Zirui Ye
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine; Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research; Shaanxi Provincial Key Laboratory of Magnetic Medicine; First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xun Wang
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jianlan Yuan
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jingyi Guo
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi 710069, China
| | - Chen Liu
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi 710069, China
| | - Bin Yan
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine; Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research; Shaanxi Provincial Key Laboratory of Magnetic Medicine; First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Haiming Fan
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi 710069, China
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Yi Lyu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine; Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research; Shaanxi Provincial Key Laboratory of Magnetic Medicine; First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- School of Future Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiaoli Liu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine; Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research; Shaanxi Provincial Key Laboratory of Magnetic Medicine; First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- School of Future Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi 710069, China
| |
Collapse
|
41
|
Das S, Ravi H, Devi Rajeswari V, Venkatraman G, Ramasamy M, Dhanasekaran S, Ramanathan G. Therapeutic insight into the role of nuclear protein HNF4α in liver carcinogenesis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 143:1-37. [PMID: 39843133 DOI: 10.1016/bs.apcsb.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Hepatocyte nuclear factor 4-alpha (HNF4α), a well-preserved member of the nuclear receptor superfamily of transcription factors, is found in the liver. It is recognized as a central controller of gene expression specific to the liver and plays a key role in preserving the liver's homeostasis. Irregular expression of HNF4α is increasingly recognized as a crucial factor in the proliferation, cell death, invasiveness, loss of specialized functions, and metastasis of cancer cells. An increasing number of studies are pointing to abnormal HNF4α expression as a key component of cancer cell invasion, apoptosis, proliferation, dedifferentiation, and metastasis. Understanding HNF4α's intricate involvement in liver carcinogenesis provides a promising avenue for therapeutic intervention. This chapter attempts to shed light on the diverse aspects of HNF4's role in liver carcinogenesis and demonstrate how this knowledge can be harnessed for approaches to prevent and treat liver cancer. This comprehensive chapter will offer an elaborate perspective on HNF4's function in liver cancer, delineating its molecular mechanisms that aid in the emergence of liver cancer. Furthermore, it will highlight the potential to help create more effective and precisely targeted therapeutic strategies, rekindling fresh optimism in the fight against this formidable condition.
Collapse
Affiliation(s)
- Soumik Das
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Harini Ravi
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - V Devi Rajeswari
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Ganesh Venkatraman
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Magesh Ramasamy
- Department of Biotechnology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Sivaraman Dhanasekaran
- School of Energy Technology, Pandit Deendayal Energy University, Knowledge Corridor, Gandhinagar, Gujarat, India
| | - Gnanasambandan Ramanathan
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.
| |
Collapse
|
42
|
Wang K, Liu J, Hai P, Zhang W, Shan Y, Zhang J. Novel angiogenesis inhibitors with superoxide anion radical amplification effect: Surmounting the Achilles' heels of angiogenesis inhibitors and photosensitizers. Eur J Med Chem 2024; 272:116495. [PMID: 38744089 DOI: 10.1016/j.ejmech.2024.116495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
Angiogenesis inhibitors and photosensitizers are pivotal in tumor clinical treatment, yet their utilization is constrained. Herein, eleven novel angiogenesis inhibitors were developed through hybridization strategy to overcome their clinical limitations. These title compounds boast excitation wavelengths within the "therapeutic window", enabling deep tissue penetration. Notably, they could generate superoxide anion radicals via the Type I mechanism, with compound 36 showed the strongest superoxide anion radical generating capacity. Biological evaluation demonstrated remarkable cellular activity of all the title compounds, even under hypoxic conditions. Among them, compound 36 stood out for its superior anti-proliferative activity in both normoxic and hypoxic environments, surpassing individual angiogenesis inhibitors and photosensitizers. Compound 36 induced cell apoptosis via superoxide anion radical generation, devoid of dark toxicity. Molecular docking revealed that the target-recognizing portion of compound 36 was able to insert into the ATP binding pocket of the target protein similar to sorafenib. Collectively, our results suggested that hybridization of angiogenesis inhibitors and photosensitizers was a potential strategy to address the limitations of their clinical use.
Collapse
Affiliation(s)
- Kai Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China; School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Junhua Liu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ping Hai
- NMPA Key Laboratory for Quality Control of Traditional Chinese and Tibetan Medicine, Qinghai Provincial Drug Inspection and Testing Institute, Xining, 810016, China
| | - Wei Zhang
- NMPA Key Laboratory for Quality Control of Traditional Chinese and Tibetan Medicine, Qinghai Provincial Drug Inspection and Testing Institute, Xining, 810016, China
| | - Yuanyuan Shan
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Jie Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
43
|
Rossari F, Foti S, Camera S, Persano M, Casadei-Gardini A, Rimini M. Treatment options for advanced hepatocellular carcinoma: the potential of biologics. Expert Opin Biol Ther 2024; 24:455-470. [PMID: 38913107 DOI: 10.1080/14712598.2024.2363234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024]
Abstract
INTRODUCTION Advanced hepatocellular carcinoma (HCC) represents a significant global health burden, whose treatment has been recently revolutionized by the advent of biologic treatments. Despite that, innovative therapeutic regimens and approaches, especially immune-based, remain to be explored aiming at extending the therapeutic benefits to a wider population of patients. AREAS COVERED This review comprehensively discusses the evolving landscape of biological treatment modalities for advanced HCC, including immune checkpoint inhibitors, antiangiogenic monoclonal antibodies, tumor-targeting monoclonal antibodies either naked or drug-conjugated, therapeutic vaccines, oncolytic viruses, adoptive cell therapies, and cytokine-based therapies. Key clinical trials and preclinical studies are examined, highlighting the actual or potential impact of these interventions in reshaping treatment paradigms for HCC. EXPERT OPINION Tailored and rational combination strategies, leveraging the synergistic effects of different modalities, represent a promising approach to maximize treatment efficacy in advanced HCC, which should aim at conversion endpoints to increase the fraction of patients eligible for curative approaches. The identification of predictive biomarkers holds the key to optimizing patient selection and improving therapeutic outcomes.
Collapse
Affiliation(s)
- Federico Rossari
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Silvia Foti
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Silvia Camera
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Mara Persano
- Medical Oncology, University and University Hospital of Cagliari, Cagliari, Italy
| | - Andrea Casadei-Gardini
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Margherita Rimini
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| |
Collapse
|
44
|
Huo Y, Ding WJ, Liu YR, Li ZT, Dai KY, Liu C, Ji HY, Liu AJ. Selenochemical modification of low molecular weight polysaccharides from Grifola frondosa and the mechanism of their inhibitory effects on gastric cancer cells. Int J Biol Macromol 2024; 269:131812. [PMID: 38670197 DOI: 10.1016/j.ijbiomac.2024.131812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/21/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024]
Abstract
An important micronutrient involved in immune response and antitumor is selenium. LMW-GFP, a polysaccharide extracted from Grifola frondosa seed bodies, has a relatively weak antitumor effect on BGC-823 and MFC cells in vitro, whereas selenium binding to LMW-GFP can significantly increase the in vitro antitumor activity of LMW-GFP. In this study, Se-LMW-GFP was prepared by the HNO3-Na2SeO3 method, and the structures of LMW-GFP and Se-LMW-GFP were characterized by UV-visible spectroscopy of absorption, FTIR spectroscopy, and electron scanning microscopy, and these structural analyses showed that selenium was successfully complexed to LMW-GFP. The selenium content of Se-LMW-GFP was measured to be 2.08 % ± 0.08 % by ICP-MS. The anti-tumor activity of LMW-GFP before and after selenium modification was compared by cellular experiments, and the findings indicated that the anti-tumor activity of Se-LMW-GFP was considerably improved over that of LMW-GFP, and inhibited the proliferation of BGC-823 cells and MFC cells through a combination of the Fas/FasL-mediated exogenous death receptor pathway as well as the endogenous mitochondrial pathway. Our results suggest that Se-LMW-GFP not only has great potential for natural health food and anti-gastric cancer drug development but is also a good selenium supplement.
Collapse
Affiliation(s)
- Yao Huo
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wen-Jie Ding
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yan-Ru Liu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhen-Tong Li
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ke-Yao Dai
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chao Liu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hai-Yu Ji
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China.
| | - An-Jun Liu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
45
|
Huang Q, Liang Z, Huang Q, Li X, Xia J, Huang L, Huang LB, Ou C. Involvement of lncRNAs in the regulation of aerobic glycolysis in hepatocellular carcinoma: Main functions, regulatory mechanisms and potential therapeutic implications (Review). Oncol Rep 2024; 51:84. [PMID: 38666534 PMCID: PMC11082637 DOI: 10.3892/or.2024.8743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/11/2024] [Indexed: 05/04/2024] Open
Abstract
Even under aerobic conditions, tumor cells can reprogram their metabolism to preferentially metabolize glucose into lactic acid. This abnormal metabolic pattern, known as the 'Warburg' effect or aerobic glycolysis, promotes cancer progression. Long non‑coding RNAs (lncRNAs) are RNAs that are >200 nucleotides in length and do not have protein‑coding capabilities. However, these RNAs play a key role in tumor development. There is increasing evidence to indicate that lncRNAs regulate glucose metabolism in tumor cells by affecting metabolic enzymes and some signaling pathways, thereby regulating the occurrence and progression of hepatocellular carcinoma (HCC). Therefore, it is crucial to understand which lncRNAs play a regulatory role in HCC glycolysis and to determine the related molecular mechanisms. The present review summarized and discussed the functions of lncRNAs, focusing on the regulatory mechanisms of lncRNAs in the process of glycolysis in HCC. In addition, the present review suggests the importance of lncRNAs as future therapeutic targets for antitumor cell metabolism.
Collapse
Affiliation(s)
- Qiongqing Huang
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, P.R. China
| | - Zhengui Liang
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, P.R. China
| | - Qiqi Huang
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, P.R. China
| | - Xueyu Li
- Experimental Research Department, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, P.R. China
| | - Jingjing Xia
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, P.R. China
| | - Lining Huang
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, P.R. China
| | - Lin Bing Huang
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, P.R. China
| | - Chao Ou
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
46
|
Zhang Z, Yu G, Eresen A, Hou Q, Yaghmai V, Zhang Z. MRI monitoring of combined therapy with transcatheter arterial delivery of NK cells and systemic administration of sorafenib for the treatment of HCC. Am J Cancer Res 2024; 14:2216-2227. [PMID: 38859849 PMCID: PMC11162671 DOI: 10.62347/iaro1564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/27/2024] [Indexed: 06/12/2024] Open
Abstract
This preclinical study explored the synergistic potential of sorafenib and NK cell chemoimmunotherapy to combat hepatocellular carcinoma (HCC) in a rat model. We aimed to enhance NK cell cytotoxicity through IL-12/18 cytokines supplementation and elucidate the underlying molecular mechanisms driving this collaborative antitumor action. Twenty-four Sprague-Dawley rats were divided into distinct treatment groups, receiving sorafenib via gavage and NK cells via catheterization of the proper hepatic artery. Tumor growth and treatment response were monitored through weekly MRI scans, including T1w, T2w, DCE, and DWI sequences. Histological examinations assessed tumor cell viability, apoptosis fraction, and microvessel density. The combined therapy demonstrated significant inhibition of tumor growth, angiogenesis, and induction of durable antitumor immunity compared to either modality alone. DCE-MRI and DWI revealed distinct alterations in tumor microvasculature, highlighting the effectiveness of the combination. Our findings highlight the promise of sorafenib-augmented NK cell chemoimmunotherapy as a potential therapeutic strategy for HCC management. The targeted delivery of IL-12/18 cytokines supplemented NK cells effectively enhanced cytotoxicity within the tumor microenvironment, leading to improved antitumor responses. Further investigation in clinical trials is warranted to validate these findings in human patients and explore the translational potential of this approach.
Collapse
Affiliation(s)
- Zigeng Zhang
- Department of Radiological Sciences, University of California IrvineIrvine, CA, USA
| | - Guangbo Yu
- Department of Biomedical Engineering, University of California IrvineIrvine, CA, USA
| | - Aydin Eresen
- Department of Radiological Sciences, University of California IrvineIrvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California IrvineIrvine, CA, USA
| | - Qiaoming Hou
- Department of Radiological Sciences, University of California IrvineIrvine, CA, USA
| | - Vahid Yaghmai
- Department of Radiological Sciences, University of California IrvineIrvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California IrvineIrvine, CA, USA
| | - Zhuoli Zhang
- Department of Radiological Sciences, University of California IrvineIrvine, CA, USA
- Department of Biomedical Engineering, University of California IrvineIrvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California IrvineIrvine, CA, USA
- Department of Pathology and Laboratory Medicine, University of California IrvineIrvine, CA, USA
| |
Collapse
|
47
|
Zhao H, Ling Y, He J, Dong J, Mo Q, Wang Y, Zhang Y, Yu H, Tang C. Potential targets and therapeutics for cancer stem cell-based therapy against drug resistance in hepatocellular carcinoma. Drug Resist Updat 2024; 74:101084. [PMID: 38640592 DOI: 10.1016/j.drup.2024.101084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/22/2024] [Accepted: 04/06/2024] [Indexed: 04/21/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most common digestive malignancyin the world, which is frequently diagnosed at late stage with a poor prognosis. For most patients with advanced HCC, the therapeutic options arelimiteddue to cancer occurrence of drug resistance. Hepatic cancer stem cells (CSCs) account for a small subset of tumor cells with the ability of self-renewal and differentiationin HCC. It is widely recognized that the presence of CSCs contributes to primary and acquired drug resistance. Therefore, hepatic CSCs-targeted therapy is considered as a promising strategy to overcome drug resistance and improve therapeutic outcome in HCC. In this article, we review drug resistance in HCC and provide a summary of potential targets for CSCs-based therapy. In addition, the development of CSCs-targeted therapeuticsagainst drug resistance in HCC is summarized in both preclinical and clinical trials. The in-depth understanding of CSCs-related drug resistance in HCC will favor optimization of the current therapeutic strategies and gain encouraging therapeutic outcomes.
Collapse
Affiliation(s)
- Hongxing Zhao
- Department of Radiology, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China
| | - Yuhang Ling
- Central Laboratory, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China; Huzhou Key Laboratory of Translational Medicine, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China
| | - Jie He
- Department of Hepatology, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China
| | - Jinling Dong
- Department of Hepatology, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China
| | - Qinliang Mo
- Department of Hepatopancreatobiliary Surgery, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China
| | - Yao Wang
- Department of Hepatopancreatobiliary Surgery, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China
| | - Ying Zhang
- Central Laboratory, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China; Department of Hepatology, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China
| | - Hongbin Yu
- Department of General Surgery, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China
| | - Chengwu Tang
- Huzhou Key Laboratory of Translational Medicine, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China; Department of Hepatopancreatobiliary Surgery, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China.
| |
Collapse
|
48
|
Singh D, Khan MA, Mishra D, Goel A, Ansari MA, Akhtar K, Siddique HR. Apigenin enhances sorafenib anti-tumour efficacy in hepatocellular carcinoma. Transl Oncol 2024; 43:101920. [PMID: 38394865 PMCID: PMC10899070 DOI: 10.1016/j.tranon.2024.101920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/10/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND The "one drug-one target" paradigm has various limitations affecting drug efficacy, such as resistance profiles and adverse effects. Combinational therapies help reduce unexpected off-target effects and accelerate therapeutic efficacy. Sorafenib- an FDA-approved drug for liver cancer, has multiple limitations. Therefore, it is recommended to identify an agent that increases its effectiveness and reduces toxicity. In this regard, Apigenin, a plant flavone, would be an excellent option to explore. METHODS We used in silico, in vitro, and animal models to explore our hypothesis. For the in vitro study, HepG2 and Huh7 cells were exposed to Apigenin (12-96 μM) and Sorafenib (1-10 μM). For the in vivo study, Diethylnitrosamine (DEN) (25 mg/kg) induced tumor-bearing animals were given Apigenin (50 mg/kg) or Sorafenib (10 mg/kg) alone and combined. Apigenin's bioavailability was checked by UPLC. Tumor nodules were studied macroscopically and by Scanning Electron Microscopy (SEM). Biochemical analysis, histopathology, immunohistochemistry, and qRT-PCR were done. RESULTS The results revealed Apigenin's good bioavailability. In silico study showed binding affinity of both chemicals with p53, NANOG, ß-Catenin, c-MYC, and TLR4. We consistently observed a better therapeutic efficacy in combination than alone treatment. Combination treatment showed i) better cytotoxicity, apoptosis induction, and cell cycle arrest of tumor cells, ii) tumor growth reduction, iii) increased expression of p53 and decreased Cd10, Nanog, ß-Catenin, c-Myc, Afp, and Tlr4. CONCLUSIONS In conclusion, Apigenin could enhance the therapeutic efficacy of Sorafenib against liver cancer and may be a promising therapeutic approach for treating HCC. However, further research is imperative to gain more in-depth mechanistic insights.
Collapse
Affiliation(s)
- Deepti Singh
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Afsar Khan
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Dhruv Mishra
- Department of Zoology, DAV College (PG), Maa Shakumbhari University, Muzaffarnagar-251001, India
| | - Aditya Goel
- Department of Biotechnology, SCLS, Jamia Hamdard University, New Delhi 110062, India
| | - Mairaj Ahmed Ansari
- Department of Biotechnology, SCLS, Jamia Hamdard University, New Delhi 110062, India
| | - Kafil Akhtar
- Department of Pathology, JN Medical College, Aligarh Muslim University, Aligarh 202002, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
49
|
Zhang Y, Yao B, Guo Y, Huang S, Liu J, Zhang Y, Liang C, Huang J, Tang Y, Wang X. Sorafenib reduces the production of epoxyeicosatrienoic acids and leads to cardiac injury by inhibiting CYP2J in rats. Biochem Pharmacol 2024; 223:116169. [PMID: 38548244 DOI: 10.1016/j.bcp.2024.116169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/22/2024]
Abstract
Sorafenib, an important cancer drug in clinical practice, has caused heart problems such as hypertension, myocardial infarction, and thrombosis. Although some mechanisms of sorafenib-induced cardiotoxicity have been proposed, there is still more research needed to reach a well-established definition of the causes of cardiotoxicity of sorafenib. In this report, we demonstrate that sorafenib is a potent inhibitor of the CYP2J enzyme. Sorafenib significantly inhibited the production of epoxyeicosatrienoic acids (EETs) in rat cardiac microsomes. The in vivo experimental results also showed that after the administration of sorafenib, the levels of 11,12-EET and 14,15-EET in rat plasma were significantly reduced, which was similar to the results of CYP2J gene knockout. Sorafenib decreased the levels of EETs, leading to abnormal expression of mitochondrial fusion and fission factors in heart tissue. In addition, the expression of mitochondrial energy metabolism factors (Pgc-1α, Pgc-1β, Ampk, and Sirt1) and cardiac mechanism factors (Scn5a and Prkag2) was significantly reduced, increasing the risk of arrhythmia and heart failure. Meanwhile, the increase in injury markers Anp, CK, and CK-MB further confirmed the cardiotoxicity of sorafenib. This study is of great significance for understanding the cardiotoxicity of sorafenib, and is also a model for studying the cardiotoxicity of other drugs that inhibit CYP2J activity.
Collapse
Affiliation(s)
- Yanfang Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Bingyi Yao
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yuanqing Guo
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Shengbo Huang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Jie Liu
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yuanjin Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Chenmeizi Liang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Junze Huang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yu Tang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Xin Wang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China.
| |
Collapse
|
50
|
Shan Y, Xie T, Sun Y, Lu Z, Topatana W, Juengpanich S, Chen T, Han Y, Cao J, Hu J, Li S, Cai X, Chen M. Lipid metabolism in tumor-infiltrating regulatory T cells: perspective to precision immunotherapy. Biomark Res 2024; 12:41. [PMID: 38644503 PMCID: PMC11034130 DOI: 10.1186/s40364-024-00588-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/04/2024] [Indexed: 04/23/2024] Open
Abstract
Regulatory T cells (Tregs) are essential to the negative regulation of the immune system, as they avoid excessive inflammation and mediate tumor development. The abundance of Tregs in tumor tissues suggests that Tregs may be eliminated or functionally inhibited to stimulate antitumor immunity. However, immunotherapy targeting Tregs has been severely hampered by autoimmune diseases due to the systemic elimination of Tregs. Recently, emerging studies have shown that metabolic regulation can specifically target tumor-infiltrating immune cells, and lipid accumulation in TME is associated with immunosuppression. Nevertheless, how Tregs actively regulate metabolic reprogramming to outcompete effector T cells (Teffs), and how lipid metabolic reprogramming contributes to the immunomodulatory capacity of Tregs have not been fully discussed. This review will discuss the physiological processes by which lipid accumulation confers a metabolic advantage to tumor-infiltrating Tregs (TI-Tregs) and amplifies their immunosuppressive functions. Furthermore, we will provide a summary of the driving effects of various metabolic regulators on the metabolic reprogramming of Tregs. Finally, we propose that targeting the lipid metabolism of TI-Tregs could be efficacious either alone or in conjunction with immune checkpoint therapy.
Collapse
Affiliation(s)
- Yukai Shan
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No.3 East Qingchun Road, 310016, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China
| | - Tianao Xie
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No.3 East Qingchun Road, 310016, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China
| | - Yuchao Sun
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No.3 East Qingchun Road, 310016, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China
| | - Ziyi Lu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No.3 East Qingchun Road, 310016, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China
| | - Win Topatana
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No.3 East Qingchun Road, 310016, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China
- School of Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Sarun Juengpanich
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China
| | - Tianen Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No.3 East Qingchun Road, 310016, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China
| | - Yina Han
- Department of Pathology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
| | - Jiasheng Cao
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No.3 East Qingchun Road, 310016, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China
| | - Jiahao Hu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No.3 East Qingchun Road, 310016, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China
| | - Shijie Li
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No.3 East Qingchun Road, 310016, Hangzhou, China.
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China.
| | - Xiujun Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No.3 East Qingchun Road, 310016, Hangzhou, China.
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China.
- School of Medicine, Zhejiang University, 310058, Hangzhou, China.
| | - Mingyu Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No.3 East Qingchun Road, 310016, Hangzhou, China.
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China.
- School of Medicine, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|