1
|
So KWL, Su Z, Cheung JPY, Choi SW. Single-Cell Analysis of Bone-Marrow-Disseminated Tumour Cells. Diagnostics (Basel) 2024; 14:2172. [PMID: 39410576 PMCID: PMC11475990 DOI: 10.3390/diagnostics14192172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
Metastasis frequently targets bones, where cancer cells from the primary tumour migrate to the bone marrow, initiating new tumour growth. Not only is bone the most common site for metastasis, but it also often marks the first site of metastatic recurrence. Despite causing over 90% of cancer-related deaths, effective treatments for bone metastasis are lacking, with current approaches mainly focusing on palliative care. Circulating tumour cells (CTCs) are pivotal in metastasis, originating from primary tumours and circulating in the bloodstream. They facilitate metastasis through molecular interactions with the bone marrow environment, involving direct cell-to-cell contacts and signalling molecules. CTCs infiltrate the bone marrow, transforming into disseminated tumour cells (DTCs). While some DTCs remain dormant, others become activated, leading to metastatic growth. The presence of DTCs in the bone marrow strongly correlates with future bone and visceral metastases. Research on CTCs in peripheral blood has shed light on their release mechanisms, yet investigations into bone marrow DTCs have been limited. Challenges include the invasiveness of bone marrow aspiration and the rarity of DTCs, complicating their isolation. However, advancements in single-cell analysis have facilitated insights into these elusive cells. This review will summarize recent advancements in understanding bone marrow DTCs using single-cell analysis techniques.
Collapse
Affiliation(s)
| | | | | | - Siu-Wai Choi
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (K.W.L.S.); (Z.S.); (J.P.Y.C.)
| |
Collapse
|
2
|
Borczuk AC. Neuroendocrine neoplasms of the lung. PRACTICAL PULMONARY PATHOLOGY 2024:465-496. [DOI: 10.1016/b978-0-323-79547-0.00023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Jin S, Huang D, Jin W, Wang Y, Shao H, Gong L, Luo Z, Yang Z, Luan J, Xie D, Ding C. Detection of DNA copy number alterations by matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis of single nucleotide polymorphisms. Clin Chem Lab Med 2022; 60:1543-1550. [PMID: 35938948 DOI: 10.1515/cclm-2022-0511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/20/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Copy number alterations (CNAs) are frequently found in malignant tissues. Different approaches have been used for CNA detection. However, it is not easy to detect a large panel of CNA targets in heterogenous tumors. METHODS We have developed a CNAs detection approach through quantitatively analyzed allelic imbalance by allelotyping single nucleotide polymorphisms (SNPs) by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Furthermore, the copy number changes were quantified by real-competitive PCR (rcPCR) to distinguish loss of heterozygosity (LOH) and genomic amplification. The approach was used to validate the CNA regions detected by next generation sequencing (NGS) in early-stage lung carcinoma. RESULTS CNAs were detected in heterogeneous DNA samples where tumor DNA is present at only 10% through the SNP based allelotyping. In addition, two different types of CNAs (loss of heterozygosity and chromosome amplification) were able to be distinguished quantitatively by rcPCR. Validation on a total of 41 SNPs from the selected CNA regions showed that copy number changes did occur, and the tissues from early-stage lung carcinoma were distinguished from normal. CONCLUSIONS CNA detection by MALDI-TOF MS can be used for validating potentially interesting genomic regions identified from next generation sequencing, and for detecting CNAs in tumor tissues consisting of a mixture of neoplastic and normal cells.
Collapse
Affiliation(s)
- Shengnan Jin
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Dan Huang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Weijiang Jin
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Yourong Wang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Hengrong Shao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Lisha Gong
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Zhenni Luo
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Zhengquan Yang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Ju Luan
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; and InnoMed Diagnostics Inc., Wenzhou, P.R. China
| | - Deyao Xie
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Chunming Ding
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| |
Collapse
|
4
|
Iliescu FS, Poenar DP, Yu F, Ni M, Chan KH, Cima I, Taylor HK, Cima I, Iliescu C. Recent advances in microfluidic methods in cancer liquid biopsy. BIOMICROFLUIDICS 2019; 13:041503. [PMID: 31431816 PMCID: PMC6697033 DOI: 10.1063/1.5087690] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/24/2019] [Indexed: 05/04/2023]
Abstract
Early cancer detection, its monitoring, and therapeutical prediction are highly valuable, though extremely challenging targets in oncology. Significant progress has been made recently, resulting in a group of devices and techniques that are now capable of successfully detecting, interpreting, and monitoring cancer biomarkers in body fluids. Precise information about malignancies can be obtained from liquid biopsies by isolating and analyzing circulating tumor cells (CTCs) or nucleic acids, tumor-derived vesicles or proteins, and metabolites. The current work provides a general overview of the latest on-chip technological developments for cancer liquid biopsy. Current challenges for their translation and their application in various clinical settings are discussed. Microfluidic solutions for each set of biomarkers are compared, and a global overview of the major trends and ongoing research challenges is given. A detailed analysis of the microfluidic isolation of CTCs with recent efforts that aimed at increasing purity and capture efficiency is provided as well. Although CTCs have been the focus of a vast microfluidic research effort as the key element for obtaining relevant information, important clinical insights can also be achieved from alternative biomarkers, such as classical protein biomarkers, exosomes, or circulating-free nucleic acids. Finally, while most work has been devoted to the analysis of blood-based biomarkers, we highlight the less explored potential of urine as an ideal source of molecular cancer biomarkers for point-of-care lab-on-chip devices.
Collapse
Affiliation(s)
- Florina S. Iliescu
- School of Applied Science, Republic Polytechnic, Singapore 738964, Singapore
| | - Daniel P. Poenar
- VALENS-Centre for Bio Devices and Signal Analysis, School of EEE, Nanyang Technological University, Singapore 639798, Singapore
| | - Fang Yu
- Singapore Institute of Manufacturing Technology, A*STAR, Singapore 138634, Singapore
| | - Ming Ni
- School of Biological Sciences and Engineering, Yachay Technological University, San Miguel de Urcuquí 100105, Ecuador
| | - Kiat Hwa Chan
- Division of Science, Yale-NUS College, Singapore 138527, Singapore
| | | | - Hayden K. Taylor
- Department of Mechanical Engineering, University of California, Berkeley, California 94720, USA
| | - Igor Cima
- DKFZ-Division of Translational Oncology/Neurooncology, German Cancer Consortium (DKTK), Heidelberg and University Hospital Essen, Essen 45147, Germany
| | | |
Collapse
|
5
|
Marrying chemistry with biology by combining on-chip solution-based combinatorial synthesis and cellular screening. Nat Commun 2019; 10:2879. [PMID: 31253767 PMCID: PMC6599004 DOI: 10.1038/s41467-019-10685-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 05/22/2019] [Indexed: 12/13/2022] Open
Abstract
Drug development often relies on high-throughput cell-based screening of large compound libraries. However, the lack of miniaturized and parallelized methodologies in chemistry as well as strict separation and incompatibility of the synthesis of bioactive compounds from their biological screenings makes this process expensive and inefficient. Here, we demonstrate an on-chip platform that combines solution-based synthesis of compound libraries with high-throughput biological screenings (chemBIOS). The chemBIOS platform is compatible with both organic solvents required for the synthesis and aqueous solutions necessary for biological screenings. We use the chemBIOS platform to perform 75 parallel, three-component reactions to synthesize a library of lipidoids, followed by characterization via MALDI-MS, on-chip formation of lipoplexes, and on-chip cell screening. The entire process from the library synthesis to cell screening takes only 3 days and about 1 mL of total solutions, demonstrating the potential of the chemBIOS technology to increase efficiency and accelerate screenings and drug development. High-throughput cell-based screening of compound libraries is utilised in drug development; however, a lack of compatible methods limits direct synthesis and testing. Here, the authors present a diverse chip based synthesis system which can be combined with cell screening and demonstrate the application.
Collapse
|
6
|
Tan Q, Liu X, Gao H, Xiao W, Chen X, Fu X, Li L, Li D, Gao D. Comparison Between Flat and Round Peaches, Genomic Evidences of Heterozygosity Events. FRONTIERS IN PLANT SCIENCE 2019; 10:592. [PMID: 31164893 PMCID: PMC6535965 DOI: 10.3389/fpls.2019.00592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/23/2019] [Indexed: 06/09/2023]
Abstract
Bud sports occur in many plant species, including fruit trees. Although they are correlated with genetic variance in somatic cells, the mechanisms responsible for bud sports are mostly unknown. In this study, a peach bud sport whose fruit shape was transformed to round from flat was identified by next generation sequencing (NGS), and we provide evidence that a long loss of heterozygosity (LOH) event may be responsible for this alteration in fruit shape. Moreover, compared to the reference genome, we identified 237,476 high quality single nucleotide polymorphisms (SNPs) in the wild-type and bud sport genomes. Using this SNP set, a long LOH event was identified at the distal end of scaffold Pp06 of the bud sport genome. Haplotypes from 155 additional peach accessions were phased, suggesting that the homozygous distal end of scaffold Pp06 of the bud sport was likely derived from only one haplotype of the wild-type flat peach. A genome-wide association study (GWAS) of 127 peach accessions was conducted to associate a SNP found at 26,924,482 bp of scaffold Pp06 to differences in fruit shape. All accessions with round-shaped fruit were found to have an A/A genotype, while those with A/T, or T/T genotypes had flat-shaped fruits. Finally, we also found that 236 peach accessions and 141 Prunus species with round-type fruit were found to have an A/A genotype at this SNP, while 22 flat peach accessions had an A/T genotype. Taken together, our results suggest that genes flanking this A/T polymorphism, and haplotyped carrying the T allele may determine flat fruit shape in this population. Furthermore, the LOH event resulting in the loss of the haplotype carrying the T allele may therefore be responsible for fruit shape alteration in wild-type flat peach.
Collapse
Affiliation(s)
- Qiuping Tan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Fruit Innovation of Modern Agricultural Industry Technology System in Shandong Province, Shandong Agricultural University, Tai’an, China
| | - Xiao Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Fruit Innovation of Modern Agricultural Industry Technology System in Shandong Province, Shandong Agricultural University, Tai’an, China
| | - Hongru Gao
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Wei Xiao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Fruit Innovation of Modern Agricultural Industry Technology System in Shandong Province, Shandong Agricultural University, Tai’an, China
| | - Xiude Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Fruit Innovation of Modern Agricultural Industry Technology System in Shandong Province, Shandong Agricultural University, Tai’an, China
| | - Xiling Fu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Fruit Innovation of Modern Agricultural Industry Technology System in Shandong Province, Shandong Agricultural University, Tai’an, China
| | - Ling Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Fruit Innovation of Modern Agricultural Industry Technology System in Shandong Province, Shandong Agricultural University, Tai’an, China
| | - Dongmei Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Fruit Innovation of Modern Agricultural Industry Technology System in Shandong Province, Shandong Agricultural University, Tai’an, China
| | - Dongsheng Gao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Fruit Innovation of Modern Agricultural Industry Technology System in Shandong Province, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
7
|
Chen L, Wang X. Relationship between the genetic expression of WTAP and bladder cancer and patient prognosis. Oncol Lett 2018; 16:6966-6970. [PMID: 30546429 PMCID: PMC6256415 DOI: 10.3892/ol.2018.9554] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 07/09/2018] [Indexed: 01/27/2023] Open
Abstract
The relationship between the gene expression of Wilms tumor 1-associated protein (WTAP) and bladder cancer was investigated to study the effect of its expression on patient prognosis. Sixty-two fresh specimens of bladder transitional cell cancer tissues were collected as the bladder cancer group, while 20 normal bladder mucosa specimens comprised the control group. Hematoxylin and eosin staining was conducted to detect the pathological differences between the groups and the immunohistochemistry was used to test the expression levels of WTAP in the tissues. Reverse transcription-polymerase chain reaction (RT-PCR) was used to detect the mRNA expression levels of WTAP. Moreover, western blot analysis was used to examine the WTAP expression levels. At the same time, Cox regression multi-factor survival analysis was conducted for the related factors to the prognoses of bladder cancer patients. The structures of cells in the bladder cancer group were destroyed as was evident by the shrunken cell nuclei, while the tissues in the control group were intact. WTAP expression in the bladder cancer group was significantly increased compared with that in the control group. A small number of mRNAs and proteins were higher in the bladder cancer group than that in the control group. The differences in WTAP expression between the bladder cancer and control groups were statistically significant (P<0.05). There were obvious differences in the postoperative recurrence risk between the patients with a negative WTAP protein expression and those with a positive one (P<0.05). In conclusion, WTAP may play an important role in the occurrence and development of bladder cancer and can be considered as a potential target for bladder cancer treatment, providing a new basis for clinical diagnoses.
Collapse
Affiliation(s)
- Lezhong Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China.,Department of Urology, Baoan Central Hospital of Shenzhen, Shenzhen, Guangdong 518102, P.R. China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
8
|
Shi Z, Zhou H, Pan B, Lu L, Kang Y, Liu L, Wei Z, Feng S. Exploring the key genes and pathways in enchondromas using a gene expression microarray. Oncotarget 2018; 8:43967-43977. [PMID: 28410203 PMCID: PMC5546454 DOI: 10.18632/oncotarget.16700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/06/2017] [Indexed: 02/03/2023] Open
Abstract
Enchondromas are the most common primary benign osseous neoplasms that occur in the medullary bone; they can undergo malignant transformation into chondrosarcoma. However, enchondromas are always undetected in patients, and the molecular mechanism is unclear. To identify key genes and pathways associated with the occurrence and development of enchondromas, we downloaded the gene expression dataset GSE22855 and obtained the differentially expressed genes (DEGs) by analyzing high-throughput gene expression in enchondromas. In total, 635 genes were identified as DEGs. Of these, 225 genes (35.43%) were up-regulated, and the remaining 410 genes (64.57%) were down-regulated. We identified the predominant gene ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways that were significantly over-represented in the enchondromas samples compared with the control samples. Subsequently the top 10 core genes were identified from the protein-protein interaction (PPI) network. The enrichment analyses of the genes mainly involved in two significant modules showed that the DEGs were principally related to ribosomes, protein digestion and absorption, ECM-receptor interaction, focal adhesion, amoebiasis and the PI3K-Akt signaling pathway.Together, these data elucidate the molecular mechanisms underlying the occurrence and development of enchondromas and provide promising candidates for therapeutic intervention and prognostic evaluation. However, further experimental studies are needed to confirm these results.
Collapse
Affiliation(s)
- Zhongju Shi
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Hengxing Zhou
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Bin Pan
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Lu Lu
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Yi Kang
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Lu Liu
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Zhijian Wei
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Shiqing Feng
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| |
Collapse
|
9
|
Borczuk AC. Neuroendocrine Neoplasms of the Lung. PRACTICAL PULMONARY PATHOLOGY: A DIAGNOSTIC APPROACH 2018:439-466.e5. [DOI: 10.1016/b978-0-323-44284-8.00014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
Development of zebrafish medulloblastoma-like PNET model by TALEN-mediated somatic gene inactivation. Oncotarget 2017; 8:55280-55297. [PMID: 28903419 PMCID: PMC5589658 DOI: 10.18632/oncotarget.19424] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 07/11/2017] [Indexed: 01/09/2023] Open
Abstract
Genetically engineered animal tumor models have traditionally been generated by the gain of single or multiple oncogenes or the loss of tumor suppressor genes; however, the development of live animal models has been difficult given that cancer phenotypes are generally induced by somatic mutation rather than by germline genetic inactivation. In this study, we developed somatically mutated tumor models using TALEN-mediated somatic gene inactivation of cdkn2a/b or rb1 tumor suppressor genes in zebrafish. One-cell stage injection of cdkn2a/b-TALEN mRNA resulted in malignant peripheral nerve sheath tumors with high frequency (about 39%) and early onset (about 35 weeks of age) in F0 tp53e7/e7 mutant zebrafish. Injection of rb1-TALEN mRNA also led to the formation of brain tumors at high frequency (58%, 31 weeks of age) in F0 tp53e7/e7 mutant zebrafish. Analysis of each tumor induced by somatic inactivation showed that the targeted genes had bi-allelic mutations. Tumors induced by rb1 somatic inactivation were characterized as medulloblastoma-like primitive neuroectodermal tumors based on incidence location, histopathological features, and immunohistochemical tests. In addition, 3' mRNA Quanti-Seq analysis showed differential activation of genes involved in cell cycle, DNA replication, and protein synthesis; especially, genes involved in neuronal development were up-regulated.
Collapse
|
11
|
Mahas A, Potluri K, Kent MN, Naik S, Markey M. Copy number variation in archival melanoma biopsies versus benign melanocytic lesions. Cancer Biomark 2017; 16:575-97. [PMID: 27002761 DOI: 10.3233/cbm-160600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Skin melanocytes can give rise to benign and malignant neoplasms. Discrimination of an early melanoma from an unusual/atypical benign nevus can represent a significant challenge. However, previous studies have shown that in contrast to benign nevi, melanoma demonstrates pervasive chromosomal aberrations. OBJECTIVE This substantial difference between melanoma and benign nevi can be exploited to discriminate between melanoma and benign nevi. METHODS Array-comparative genomic hybridization (aCGH) is an approach that can be used on DNA extracted from formalin-fixed paraffin-embedded (FFPE) tissues to assess the entire genome for the presence of changes in DNA copy number. In this study, high resolution, genome-wide single-nucleotide polymorphism (SNP) arrays were utilized to perform comprehensive and detailed analyses of recurrent copy number aberrations in 41 melanoma samples in comparison with 21 benign nevi. RESULTS We found statistically significant copy number gains and losses within melanoma samples. Some of the identified aberrations are previously implicated in melanoma. Moreover, novel regions of copy number alterations were identified, revealing new candidate genes potentially involved in melanoma pathogenesis. CONCLUSIONS Taken together, these findings can help improve melanoma diagnosis and introduce novel melanoma therapeutic targets.
Collapse
Affiliation(s)
- Ahmed Mahas
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Keerti Potluri
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Michael N Kent
- Department of Dermatology, Wright State University Boonshoft School of Medicine, Dayton, OH, USA.,Dermatopathology Laboratory of Central States, Dayton, OH, USA
| | - Sameep Naik
- Dermatopathology Laboratory of Central States, Dayton, OH, USA
| | - Michael Markey
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| |
Collapse
|
12
|
El-Mokadem I, Lim A, Kidd T, Garret K, Pratt N, Batty D, Fleming S, Nabi G. Microsatellite alteration and immunohistochemical expression profile of chromosome 9p21 in patients with sporadic renal cell carcinoma following surgical resection. BMC Cancer 2016; 16:546. [PMID: 27465101 PMCID: PMC4963937 DOI: 10.1186/s12885-016-2514-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 06/27/2016] [Indexed: 11/20/2022] Open
Abstract
Background Long-term prognostic significance of loss of heterozygosity on chromosome 9p21 for localized renal cell carcinoma following surgery remains unreported. The study assessed the frequency of deletions of different loci of chromosome 9p along with immunohistochemical profile of proteins in surgically resected renal cancer tissue and correlated this with long-term outcomes. Methods DNA was extracted from renal tumours and corresponding normal kidney tissues in prospectively collected samples of 108 patients who underwent surgical resection for clinically localized disease between January 2001 and December 2005, providing a minimum of 9 years follow-up for each participant. After checking quality of DNA, amplified by PCR, loss of heterozygosity (LOH) on chromosome 9p was assessed using 6 microsatellite markers in 77 clear cell carcinoma. Only 5 of the markers showed LOH (D9S1814, D9S916, D9S974, D9S942, and D9S171). Protein expression of p15(INK4b), p16(INK4a), p14(ARF), CAIX, and adipose related protein (ADFP) were demonstrated by immunostaining in normal and cancer tissues. Loss of heterozygosity for microsatellite analysis was correlated with tumour characteristics, recurrence free, cancer specific, and overall survival, including significance of immunohistochemical profile of protein expressions. Results The main deletion was found at loci telomeric to CDKN2A region at D9S916. There was a significant correlation between frequency of LOH stage (p = 0.005) and metastases (p = 0.006) suggesting a higher LOH for advanced and aggressive renal cell carcinoma. Most commonly observed LOH in the 3 markers: D9S916, D9S974, and D9S942 were associated with poor survival, and were statistically significant on multivariate analysis. Immunohistochemical expression of p14, p15, and p16 proteins were either low or absent in cancer tissue compared to normal. Conclusions Loss of heterozygosity of p921 chromosome is associated with aggressive tumours, and predicts cancer specific or recurrence free survival on long-term follow-up. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2514-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ismail El-Mokadem
- Academic Section of Urology, Division of Cancer Research, Ninewells Hospital, University of Dundee, Dundee, DD1 9SY, UK
| | - Alison Lim
- Academic Section of Urology, Division of Cancer Research, Ninewells Hospital, University of Dundee, Dundee, DD1 9SY, UK
| | - Thomas Kidd
- Department of Pathology, Ninewells Hospital, University of Dundee, Dundee, DD1 9SY, UK
| | - Katherine Garret
- Department of Pathology, Ninewells Hospital, University of Dundee, Dundee, DD1 9SY, UK
| | - Norman Pratt
- Department of Cytogenetic, Ninewells Hospital, University of Dundee, Dundee, DD1 9SY, UK
| | - David Batty
- Department of Cytogenetic, Ninewells Hospital, University of Dundee, Dundee, DD1 9SY, UK
| | - Stewart Fleming
- Department of Pathology, Ninewells Hospital, University of Dundee, Dundee, DD1 9SY, UK
| | - Ghulam Nabi
- Academic Section of Urology, Division of Cancer Research, Ninewells Hospital, University of Dundee, Dundee, DD1 9SY, UK.
| |
Collapse
|
13
|
Kambouris ME. Population Screening for Hemoglobinopathy Profiling: Is the Development of a Microarray Worthwhile? Hemoglobin 2016; 40:240-6. [DOI: 10.1080/03630269.2016.1186686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Song J, Shao H. SNP Array in Hematopoietic Neoplasms: A Review. MICROARRAYS 2015; 5:microarrays5010001. [PMID: 27600067 PMCID: PMC5003446 DOI: 10.3390/microarrays5010001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/13/2015] [Accepted: 12/14/2015] [Indexed: 12/03/2022]
Abstract
Cytogenetic analysis is essential for the diagnosis and prognosis of hematopoietic neoplasms in current clinical practice. Many hematopoietic malignancies are characterized by structural chromosomal abnormalities such as specific translocations, inversions, deletions and/or numerical abnormalities that can be identified by karyotype analysis or fluorescence in situ hybridization (FISH) studies. Single nucleotide polymorphism (SNP) arrays offer high-resolution identification of copy number variants (CNVs) and acquired copy-neutral loss of heterozygosity (LOH)/uniparental disomy (UPD) that are usually not identifiable by conventional cytogenetic analysis and FISH studies. As a result, SNP arrays have been increasingly applied to hematopoietic neoplasms to search for clinically-significant genetic abnormalities. A large numbers of CNVs and UPDs have been identified in a variety of hematopoietic neoplasms. CNVs detected by SNP array in some hematopoietic neoplasms are of prognostic significance. A few specific genes in the affected regions have been implicated in the pathogenesis and may be the targets for specific therapeutic agents in the future. In this review, we summarize the current findings of application of SNP arrays in a variety of hematopoietic malignancies with an emphasis on the clinically significant genetic variants.
Collapse
Affiliation(s)
- Jinming Song
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA.
| | - Haipeng Shao
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA.
| |
Collapse
|
15
|
Woehrer A, Hainfellner JA. Molecular diagnostics: techniques and recommendations for 1p/19q assessment. CNS Oncol 2015; 4:295-306. [PMID: 26545171 DOI: 10.2217/cns.15.28] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Several morphology- and polymerase chain reaction (PCR)-based methods for chromosome 1p 19q deletion status assessment are available. Important prerequisites for all molecular techniques concern tissue quality and selection of regions of interest. The most common methods for diagnostic 1p 19q assessment are fluorescence in situ hybridization and PCR-based microsatellite analysis. While the latter requires the use of autologous blood samples, more advanced techniques such as array comparative genomic hybridization, multiplex ligation-dependent probe amplification or real-time PCR are independent from autologous DNA samples. However, due to high technical demand and experience required their applicability as diagnostic tests remains to be shown. On the other hand, chromogenic in situ hybridization evolves as attractive alternative to FISH. Herein, the available test methods are reviewed and outlined, their advantages and drawbacks being discussed in detail.
Collapse
Affiliation(s)
- Adelheid Woehrer
- Institute of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Johannes A Hainfellner
- Institute of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| |
Collapse
|
16
|
Genomic-Wide Analysis with Microarrays in Human Oncology. MICROARRAYS 2015; 4:454-73. [PMID: 27600234 PMCID: PMC4996403 DOI: 10.3390/microarrays4040454] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/08/2015] [Accepted: 10/13/2015] [Indexed: 12/19/2022]
Abstract
DNA microarray technologies have advanced rapidly and had a profound impact on examining gene expression on a genomic scale in research. This review discusses the history and development of microarray and DNA chip devices, and specific microarrays are described along with their methods and applications. In particular, microarrays have detected many novel cancer-related genes by comparing cancer tissues and non-cancerous tissues in oncological research. Recently, new methods have been in development, such as the double-combination array and triple-combination array, which allow more effective analysis of gene expression and epigenetic changes. Analysis of gene expression alterations in precancerous regions compared with normal regions and array analysis in drug-resistance cancer tissues are also successfully performed. Compared with next-generation sequencing, a similar method of genome analysis, several important differences distinguish these techniques and their applications. Development of novel microarray technologies is expected to contribute to further cancer research.
Collapse
|
17
|
Meerzaman D, Dunn BK, Lee M, Chen Q, Yan C, Ross S. The promise of omics-based approaches to cancer prevention. Semin Oncol 2015; 43:36-48. [PMID: 26970123 DOI: 10.1053/j.seminoncol.2015.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer is a complex category of diseases caused in large part by genetic or genomic, transcriptomic, and epigenetic or epigenomic alterations in affected cells and the surrounding microenvironment. Carcinogenesis reflects the clonal expansion of cells that progressively acquire these genetic and epigenetic alterations-changes that, in turn, lead to modifications at the RNA level. Gradually advancing technology and most recently, the advent of next-generation sequencing (NGS), combined with bioinformatics analytic tools, have revolutionized our ability to interrogate cancer cells. The ultimate goal is to apply these high-throughput technologies to the various aspects of clinical cancer care: cancer-risk assessment, diagnosis, as well as target identification for treatment and prevention. In this article, we emphasize how the knowledge gained through large-scale omics-oriented approaches, with a focus on variations at the level of nucleic acids, can inform the field of chemoprevention.
Collapse
Affiliation(s)
- Daoud Meerzaman
- Center for Biomedical Informatics & Information Technology, Computational Genomics and Bioinformatics Group, National Cancer Institute, National Institutes of Health, Rockville, MD 20852, USA.
| | - Barbara K Dunn
- Chemoprevention Agent Development Research Group, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maxwell Lee
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qingrong Chen
- Center for Biomedical Informatics & Information Technology, Computational Genomics and Bioinformatics Group, National Cancer Institute, National Institutes of Health, Rockville, MD 20852, USA
| | - Chunhua Yan
- Center for Biomedical Informatics & Information Technology, Computational Genomics and Bioinformatics Group, National Cancer Institute, National Institutes of Health, Rockville, MD 20852, USA
| | - Sharon Ross
- Chemoprevention Agent Development Research Group, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
18
|
Pfisterer K, Fusi A, Klinghammer K, Knödler M, Nonnenmacher A, Keilholz U. PI3K/PTEN/AKT/mTOR polymorphisms: association with clinical outcome in patients with head and neck squamous cell carcinoma receiving cetuximab-docetaxel. Head Neck 2015; 37:471-8. [PMID: 24421178 DOI: 10.1002/hed.23604] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 11/09/2013] [Accepted: 01/08/2014] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND The purpose of this study was to determine whether single nucleotide polymorphisms (SNPs) in AKT1, AKT2, FRAP1, PIK3CA, and PTEN were associated with treatment response and clinical outcome in patients with head and neck squamous cell carcinoma (HNSCC). METHODS Genomic DNA was extracted from formalin-fixed tissue of 45 patients with recurrent or initially metastatic HNSCC, and SNPs were genotyped by means of real-time polymerase chain reaction (PCR) system or direct sequencing. RESULTS The AKT2:rs8100018 and the PTEN:rs12569998 homozygous variants resulted as associated with an increased risk of progression (hazard ratio [HR], 4.83; 95% confidence interval [CI], 1.11-21.03; and HR, 2.36; 95% CI, 1.24-4.50, respectively). An additive effect on risk of progression was observed. The AKT2:rs8100018 homozygous variant was significantly associated with a higher risk of death (HR, 3.57; 95% CI, 1.06-12.00), whereas the presence of at least one variant allele of AKT1:rs3803304 was associated with a lower risk of death (HR, 0.51; 95% CI, 0.27-0.97). CONCLUSION We identified combined genotypes associated with outcome of HNSCC, which might have an impact for identification of a target population for cetuximab-docetaxel treatment. Results should be considered as an initial finding and warrant validation in larger clinical trials.
Collapse
Affiliation(s)
- Katharina Pfisterer
- Department of Hematology and Medical Oncology, Charité-Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Yang HC, Chang LC, Huggins RM, Chen CH, Mullighan CG. LOHAS: loss-of-heterozygosity analysis suite. Genet Epidemiol 2015; 35:247-60. [PMID: 21312262 DOI: 10.1002/gepi.20573] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 11/10/2010] [Accepted: 01/10/2011] [Indexed: 12/13/2022]
Abstract
Detection of loss of heterozygosity (LOH) plays an important role in genetic, genomic and cancer research. We develop computational methods to estimate the proportion of homozygous SNP calls, identify samples with structural alterations and/or unusual genotypic patterns, cluster samples with close LOH structures and map the genomic segments bearing LOH by analyzing data of genome-wide SNP arrays or customized SNP arrays. In addition to cancer genetics/genomics, we also apply the methods to study long contiguous stretches of homozygosity (LCSH) in general populations. The LCSH analysis aids in the identification of samples with complex LCSH patterns indicative of nonrandom mating and/or meiotic recombination cold spots, separation of samples with different genetic backgrounds and sex, and mapping of regions of LCSH. Affymetrix Human Mapping 500K Set SNP data from an acute lymphoblastic leukemia study containing 304 cancer patients and 50 normal controls and from the HapMap Project containing 30 African trios, 30 Caucasian trios and 90 independent Asian samples were analyzed. We identified common gene regions of LOH, e.g., ETV6 and CDKN1B, and identified frequent regions of LCSH, e.g., the region that encompasses the centromeric gene desert region of chromosome 16. Unsupervised analysis separated cancer subtypes and ethnic subpopulations by patterns of LOH/LCSH. Simulation studies considering LOH width, effect size and heterozygous interference fraction were performed, and the results show that the proposed LOH association test has good test power and controls type 1 error well. The developed algorithms are packaged into LOHAS written in R and R GUI.
Collapse
Affiliation(s)
- Hsin-Chou Yang
- Institute of Statistical Science, Academia Sinica, Nankang, Taipei, Taiwan.
| | | | | | | | | |
Collapse
|
20
|
|
21
|
Li Y, Xie X. Deconvolving tumor purity and ploidy by integrating copy number alterations and loss of heterozygosity. ACTA ACUST UNITED AC 2014; 30:2121-9. [PMID: 24695406 DOI: 10.1093/bioinformatics/btu174] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
MOTIVATION Next-generation sequencing (NGS) has revolutionized the study of cancer genomes. However, the reads obtained from NGS of tumor samples often consist of a mixture of normal and tumor cells, which themselves can be of multiple clonal types. A prominent problem in the analysis of cancer genome sequencing data is deconvolving the mixture to identify the reads associated with tumor cells or a particular subclone of tumor cells. Solving the problem is, however, challenging because of the so-called 'identifiability problem', where different combinations of tumor purity and ploidy often explain the sequencing data equally well. RESULTS We propose a new model to resolve the identifiability problem by integrating two types of sequencing information-somatic copy number alterations and loss of heterozygosity-within a unified probabilistic framework. We derive algorithms to solve our model, and implement them in a software package called PyLOH. We benchmark the performance of PyLOH using both simulated data and 12 breast cancer sequencing datasets and show that PyLOH outperforms existing methods in disambiguating the identifiability problem and estimating tumor purity. AVAILABILITY AND IMPLEMENTATION The PyLOH package is written in Python and is publicly available at https://github.com/uci-cbcl/PyLOH. CONTACT xhx@ics.uci.edu SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yi Li
- Department of Computer Science, Institute for Genomics and Bioinformatics and Center for Machine Learning and Intelligent Systems, University of California, Irvine, CA 92697, USA
| | - Xiaohui Xie
- Department of Computer Science, Institute for Genomics and Bioinformatics and Center for Machine Learning and Intelligent Systems, University of California, Irvine, CA 92697, USADepartment of Computer Science, Institute for Genomics and Bioinformatics and Center for Machine Learning and Intelligent Systems, University of California, Irvine, CA 92697, USADepartment of Computer Science, Institute for Genomics and Bioinformatics and Center for Machine Learning and Intelligent Systems, University of California, Irvine, CA 92697, USA
| |
Collapse
|
22
|
General assessment of copy number variation in normal and tumor tissues of the domestic dog (Canis lupus familiaris). J Appl Genet 2014; 55:353-63. [PMID: 24573641 DOI: 10.1007/s13353-014-0201-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/10/2014] [Accepted: 02/04/2014] [Indexed: 12/22/2022]
Abstract
In recent years, characterization of a copy number variation (CNV) of the genomic DNA has provided evidence for the relationship of this type of genetic variation with the occurrence of a broad spectrum of diseases, including cancer lesions. Copy number variants (CNVs) also occur in the genomes of healthy individuals as a result of abnormal recombination processes in germ cells and have a hereditary character contributing to the natural genetic diversity. Recent image analysis methods and advanced computational techniques allow for identification of CNVs using SNPs genotyping microarrays based on the analysis of signal intensity observed for markers located in the specific genomic regions. In this study we used CanineHD BeadChip assay (Illumina) to identify both natural and cancer-induced CNVs in the genomes of different dog breeds and in different cancer types occurring in this species. The obtained results showed that structural aberrations are a common phenomenon arising during a tumor progression and are more complex and widespread in tumors of mesenchymal tissue origin than in epithelial tissue originating tumors. The tumor derived CNVs, in comparison to healthy samples, were characterized by larger sizes of regions, higher number of amplifications, and in some cases encompassed genes with potential effect on tumor progression.
Collapse
|
23
|
Mayrhofer M, DiLorenzo S, Isaksson A. Patchwork: allele-specific copy number analysis of whole-genome sequenced tumor tissue. Genome Biol 2013; 14:R24. [PMID: 23531354 PMCID: PMC4053982 DOI: 10.1186/gb-2013-14-3-r24] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 02/27/2013] [Accepted: 03/25/2013] [Indexed: 12/28/2022] Open
Abstract
Whole-genome sequencing of tumor tissue has the potential to provide comprehensive characterization of genomic alterations in tumor samples. We present Patchwork, a new bioinformatic tool for allele-specific copy number analysis using whole-genome sequencing data. Patchwork can be used to determine the copy number of homologous sequences throughout the genome, even in aneuploid samples with moderate sequence coverage and tumor cell content. No prior knowledge of average ploidy or tumor cell content is required. Patchwork is freely available as an R package, installable via R-Forge (http://patchwork.r-forge.r-project.org/).
Collapse
Affiliation(s)
- Markus Mayrhofer
- Science for Life Laboratory, Department of Medical Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Sebastian DiLorenzo
- Science for Life Laboratory, Department of Medical Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Anders Isaksson
- Science for Life Laboratory, Department of Medical Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| |
Collapse
|
24
|
Banerjee D. Array comparative genomic hybridization: an overview of protocols, applications, and technology trends. Methods Mol Biol 2013; 973:1-13. [PMID: 23412780 DOI: 10.1007/978-1-62703-281-0_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
From the earliest observations of human chromosomes in the late 1800s to modern day next generation sequencing technologies, much has been learned about human cancers by the vigorous application of the techniques of the day. In general, resolution has improved tremendously, and correspondingly the size of the datasets generated has grown exponentially such that computational methods required to handle massive datasets have had to be devised. This chapter provides a brief synopsis of the evolution of such techniques as an introduction to the subsequent chapters that provide methods and applications, relevant to research, and clinical diagnostics.
Collapse
Affiliation(s)
- Diponkar Banerjee
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital, Ottawa, BC, Canada.
| |
Collapse
|
25
|
Govindarajan R, Duraiyan J, Kaliyappan K, Palanisamy M. Microarray and its applications. J Pharm Bioallied Sci 2012; 4:S310-2. [PMID: 23066278 PMCID: PMC3467903 DOI: 10.4103/0975-7406.100283] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 01/02/2012] [Accepted: 01/26/2012] [Indexed: 11/15/2022] Open
Abstract
Microarray is one of the most recent advances being used for cancer research; it provides assistance in pharmacological approach to treat various diseases including oral lesions. Microarray helps in analyzing large amount of samples which have either been recorded previously or new samples; it even helps to test the incidence of a particular marker in tumors. Till recently, microarray's usage in dentistry has been very limited, but in future, as the technology becomes affordable, there may be increase in its usage. Here, we discuss the various techniques and applications of microarray or DNA chip.
Collapse
Affiliation(s)
- Rajeshwar Govindarajan
- Department of Oral and Maxillofacial Pathology, JKK Nataraja Dental College and Hospital, Komarapalayam, Namakkal, Tamil Nadu, India
| | | | | | | |
Collapse
|
26
|
Insertion/deletion polymorphisms are convenient and reliable markers to assess chromosomal instability in human tumors. Int J Biol Markers 2012; 27:e232-40. [PMID: 22653745 DOI: 10.5301/jbm.2012.9308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2012] [Indexed: 11/20/2022]
Abstract
Chromosomal instability (CIN) is frequently associated with a poor outcome in human carcinomas. The genomes of the main human malignancies are well defined as hundreds of tumors have been characterized by arrays. Targeting the appropriate chromosomes with set of markers appears as a realistic approach for CIN assessment. We decided to test the reliability of different insertion/deletion (InDel) polymorphisms to detect allelic loss in a subset of previously characterized hepatocellular carcinomas (HCC). To this aim 3 kinds of markers, L1 insertion (n=1), Alu insertions (n=4) and Marshfield InDel (MID, n=8) markers, were tested on a series of 68 paired HCC/non-tumor liver samples that were previously characterized for loss of heterozygosity (LOH). All markers were analyzed on agarose gels and some were tested with the high resolution melting (HRM) technique. Heterozygosity of the tested markers was high with a mean of 0.489 and a range of 0.265-0.525. Using 6 markers for chromosome 8p, the sensitivity of the method was high. LOH was detected in all samples known to be affected (n=34) whereas retention was found in 29/30 samples (specificity of 96.6%). Finally, the HRM analysis applied to 2 MID markers provided consistent profiles enabling closed-tube determination of chromosomes 17p and 18q status. Overall, our work suggests that different types of InDel markers are suitable for CIN detection in human tumors and may provide convenient and useful information for basic or translational research as well as for future applications in clinical practice.
Collapse
|
27
|
Anasagasti A, Irigoyen C, Barandika O, López de Munain A, Ruiz-Ederra J. Current mutation discovery approaches in Retinitis Pigmentosa. Vision Res 2012; 75:117-29. [PMID: 23022136 DOI: 10.1016/j.visres.2012.09.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 09/08/2012] [Accepted: 09/13/2012] [Indexed: 12/22/2022]
Abstract
With a worldwide prevalence of about 1 in 3500-5000 individuals, Retinitis Pigmentosa (RP) is the most common form of hereditary retinal degeneration. It is an extremely heterogeneous group of genetically determined retinal diseases leading to progressive loss of vision due to impairment of rod and cone photoreceptors. RP can be inherited as an autosomal-recessive, autosomal-dominant, or X-linked trait. Non-Mendelian inheritance patterns such as digenic, maternal (mitochondrial) or compound heterozygosity have also been reported. To date, more than 65 genes have been implicated in syndromic and non-syndromic forms of RP, which account for only about 60% of all RP cases. Due to this high heterogeneity and diversity of inheritance patterns, the molecular diagnosis of syndromic and non-syndromic RP is very challenging, and the heritability of 40% of total RP cases worldwide remains unknown. However new sequencing methodologies, boosted by the human genome project, have contributed to exponential plummeting in sequencing costs, thereby making it feasible to include molecular testing for RP patients in routine clinical practice within the coming years. Here, we summarize the most widely used state-of-the-art technologies currently applied for the molecular diagnosis of RP, and address their strengths and weaknesses for the molecular diagnosis of such a complex genetic disease.
Collapse
Affiliation(s)
- Ander Anasagasti
- Division of Neurosciences, Instituto Biodonostia, San Sebastián, Gipuzkoa, Spain
| | | | | | | | | |
Collapse
|
28
|
Abstract
Massively parallel approaches to nucleic acid sequencing have matured from proof-of-concept to commercial products during the past 5 years. These technologies are now widely accessible, increasingly affordable, and have already exerted a transformative influence on the study of human cancer. Here, we review new features of cancer genomes that are being revealed by large-scale applications of these technologies. We focus on those insights most likely to affect future clinical practice. Foremost among these lessons, we summarize the formidable genetic heterogeneity within given cancer types that is appreciable with higher resolution profiling and larger sample sets. We discuss the inherent challenges of defining driving genomic events in a given cancer genome amidst thousands of other somatic events. Finally, we explore the organizational, regulatory and societal challenges impeding precision cancer medicine based on genomic profiling from assuming its place as standard-of-care.
Collapse
|
29
|
Ghosh D, Gochhait S, Banerjee D, Chatterjee A, Sinha S, Nandagopal K. SNaPshot Assay in Quantitative Detection of Allelic Nondisjunction in Down Syndrome. Genet Test Mol Biomarkers 2012; 16:1226-35. [PMID: 22931243 DOI: 10.1089/gtmb.2012.0083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
AIM We wished to identify markers associated with allelic nondisjunction in nuclear families with Down syndrome (DS) offspring. Since the GRIK1 and GARS-AIRS-GART genes, mapping to chromosome 21q22.1, may be informative in this regard, we genotyped four single-nucleotide polymorphisms [30952599(A/G) rs363484; 30924733(A/G) rs363506; 34901423(A/G) rs2834235; 34877070(A/G) rs7283354] present in these genes using the SNaPshot(™) assay protocol. RESULTS We have reported 30952599(A/G)-rs363484 to be monomorphic in our sample population. Genotyping revealed 35/65 families to be informative for 34877070(A/G)-rs7283354 (GARS-AIRS-GART), whereas only 25/65 and 11/65 are informative for 34901423(A/G)-rs2834235 (GARS-AIRS-GART) and 30924733(A/G)-rs363506 (GRIK1) polymorphisms, respectively. The parent- and stage-of-origin of nondisjunction could be traced in 48/65 families using at least one polymorphic marker. A single trio provided internal validation for assignment of the parent- and stage-of-origin of nondisjunction whereby the nondisjoining alleles were independently identified as G-rs363506, G-rs2834235, and G-rs7283354, respectively. An enhanced ratio of meiosis-I to meiosis-II errors during maternal or paternal meioses accounts for allelic nondisjunction. CONCLUSIONS The SNaPshot assay is quantitative and permits multiplexing for detection of allelic nondisjunction. Inclusion of additional informative chromosome 21-specific markers may aid rapid aneuploidy detection, screening, and prenatal counseling of parents at risk of having babies with DS.
Collapse
Affiliation(s)
- Debarati Ghosh
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra Rehabilitation and Research Institute for the Handicapped, Kolkata, India
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
The finding of somatically acquired uniparental disomy, where both copies of a chromosome pair or parts of chromosomes have originated from one parent, has led to the discovery of several novel mutated genes in myeloproliferative neoplasms and related disorders. This article examines how the development of single nucleotide polymorphism array technology has facilitated the identification of regions of acquired uniparental disomy and has led to a much greater understanding of the molecular pathology of these heterogeneous diseases.
Collapse
Affiliation(s)
- Joannah Score
- Faculty of Medicine, University of Southampton, Southampton, UK
| | | |
Collapse
|
31
|
Absolute quantification of somatic DNA alterations in human cancer. Nat Biotechnol 2012. [DOI: 10.1038/nbt.2203 and 1880=1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
32
|
Absolute quantification of somatic DNA alterations in human cancer. Nat Biotechnol 2012. [DOI: 10.1038/nbt.2203 order by 1-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
33
|
Carter SL, Cibulskis K, Helman E, McKenna A, Shen H, Zack T, Laird PW, Onofrio RC, Winckler W, Weir BA, Beroukhim R, Pellman D, Levine DA, Lander ES, Meyerson M, Getz G. Absolute quantification of somatic DNA alterations in human cancer. Nat Biotechnol 2012. [DOI: 10.1038/nbt.2203 order by 1-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
34
|
Carter SL, Cibulskis K, Helman E, McKenna A, Shen H, Zack T, Laird PW, Onofrio RC, Winckler W, Weir BA, Beroukhim R, Pellman D, Levine DA, Lander ES, Meyerson M, Getz G. Absolute quantification of somatic DNA alterations in human cancer. Nat Biotechnol 2012; 30:413-21. [PMID: 22544022 PMCID: PMC4383288 DOI: 10.1038/nbt.2203] [Citation(s) in RCA: 1519] [Impact Index Per Article: 116.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 04/04/2012] [Indexed: 02/07/2023]
Abstract
We describe a computational method that infers tumor purity and malignant cell ploidy directly from analysis of somatic DNA alterations. The method, named ABSOLUTE, can detect subclonal heterogeneity and somatic homozygosity, and it can calculate statistical sensitivity for detection of specific aberrations. We used ABSOLUTE to analyze exome sequencing data from 214 ovarian carcinoma tumor-normal pairs. This analysis identified both pervasive subclonal somatic point-mutations and a small subset of predominantly clonal and homozygous mutations, which were overrepresented in the tumor suppressor genes TP53 and NF1 and in a candidate tumor suppressor gene CDK12. We also used ABSOLUTE to infer absolute allelic copy-number profiles from 3,155 diverse cancer specimens, revealing that genome-doubling events are common in human cancer, likely occur in cells that are already aneuploid, and influence pathways of tumor progression (for example, with recessive inactivation of NF1 being less common after genome doubling). ABSOLUTE will facilitate the design of clinical sequencing studies and studies of cancer genome evolution and intra-tumor heterogeneity.
Collapse
Affiliation(s)
- Scott L Carter
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Carter SL, Cibulskis K, Helman E, McKenna A, Shen H, Zack T, Laird PW, Onofrio RC, Winckler W, Weir BA, Beroukhim R, Pellman D, Levine DA, Lander ES, Meyerson M, Getz G. Absolute quantification of somatic DNA alterations in human cancer. Nat Biotechnol 2012. [DOI: 10.1038/nbt.2203 order by 8029-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
36
|
Carter SL, Cibulskis K, Helman E, McKenna A, Shen H, Zack T, Laird PW, Onofrio RC, Winckler W, Weir BA, Beroukhim R, Pellman D, Levine DA, Lander ES, Meyerson M, Getz G. Absolute quantification of somatic DNA alterations in human cancer. Nat Biotechnol 2012. [DOI: 10.1038/nbt.2203 order by 1-- gadu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
37
|
Absolute quantification of somatic DNA alterations in human cancer. Nat Biotechnol 2012. [DOI: 10.1038/nbt.2203 order by 8029-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
38
|
Absolute quantification of somatic DNA alterations in human cancer. Nat Biotechnol 2012. [DOI: 10.1038/nbt.2203 order by 8029-- awyx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
39
|
Varanasi L, Do PM, Goluszko E, Martinez LA. Rad18 is a transcriptional target of E2F3. Cell Cycle 2012; 11:1131-41. [PMID: 22391204 DOI: 10.4161/cc.11.6.19558] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The E2F family of transcription factors responds to a variety of intracellular and extracellular signals and, as such, are key regulators of cell growth, differentiation and cell death. The cellular response to DNA damage is a multistep process generally involving the initial detection of DNA damage, propagation of signals via posttranslational modifications (e.g., phosphorylation and ubiquitination) and, finally, the implementation of a response. We have previously reported that E2F3 can be induced by DNA damage, and that it plays an important role in DNA damage-induced apoptosis. Here, we demonstrate that E2F3 knockdown compromises two canonical DNA damage modification events, the ubiquitination of H2AX and PCNA. We find that the defect in these posttranscriptional modifications after E2F3 knockdown is due to reduced expression of important DNA damage responsive ubiquitin ligases. We characterized the regulation of one of these ligases, Rad18, and we demonstrated that E2F3 associates with the Rad18 promoter and directly controls its activity. Furthermore, we find that ectopic expression of Rad18 is sufficient to rescue the PCNA ubiquitination defect resulting from E2F3 knockdown. Our study reveals a novel facet of E2F3's control of the DNA damage response.
Collapse
Affiliation(s)
- Lakshman Varanasi
- Department of Biochemistry and University of Mississippi Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | | | | | | |
Collapse
|
40
|
High-resolution genome-wide analysis of irradiated (UV and γ-rays) diploid yeast cells reveals a high frequency of genomic loss of heterozygosity (LOH) events. Genetics 2012; 190:1267-84. [PMID: 22267500 PMCID: PMC3316642 DOI: 10.1534/genetics.111.137927] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
In diploid eukaryotes, repair of double-stranded DNA breaks by homologous recombination often leads to loss of heterozygosity (LOH). Most previous studies of mitotic recombination in Saccharomyces cerevisiae have focused on a single chromosome or a single region of one chromosome at which LOH events can be selected. In this study, we used two techniques (single-nucleotide polymorphism microarrays and high-throughput DNA sequencing) to examine genome-wide LOH in a diploid yeast strain at a resolution averaging 1 kb. We examined both selected LOH events on chromosome V and unselected events throughout the genome in untreated cells and in cells treated with either γ-radiation or ultraviolet (UV) radiation. Our analysis shows the following: (1) spontaneous and damage-induced mitotic gene conversion tracts are more than three times larger than meiotic conversion tracts, and conversion tracts associated with crossovers are usually longer and more complex than those unassociated with crossovers; (2) most of the crossovers and conversions reflect the repair of two sister chromatids broken at the same position; and (3) both UV and γ-radiation efficiently induce LOH at doses of radiation that cause no significant loss of viability. Using high-throughput DNA sequencing, we also detected new mutations induced by γ-rays and UV. To our knowledge, our study represents the first high-resolution genome-wide analysis of DNA damage-induced LOH events performed in any eukaryote.
Collapse
|
41
|
Knight SJL, Yau C, Clifford R, Timbs AT, Sadighi Akha E, Dréau HM, Burns A, Ciria C, Oscier DG, Pettitt AR, Dutton S, Holmes CC, Taylor J, Cazier JB, Schuh A. Quantification of subclonal distributions of recurrent genomic aberrations in paired pre-treatment and relapse samples from patients with B-cell chronic lymphocytic leukemia. Leukemia 2012; 26:1564-75. [PMID: 22258401 PMCID: PMC3505832 DOI: 10.1038/leu.2012.13] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Genome-wide array approaches and sequencing analyses are powerful tools for identifying genetic aberrations in cancers, including leukemias and lymphomas. However, the clinical and biological significance of such aberrations and their subclonal distribution are poorly understood. Here, we present the first genome-wide array based study of pre-treatment and relapse samples from patients with B-cell chronic lymphocytic leukemia (B-CLL) that uses the computational statistical tool OncoSNP. We show that quantification of the proportion of copy number alterations (CNAs) and copy neutral loss of heterozygosity regions (cnLOHs) in each sample is feasible. Furthermore, we (i) reveal complex changes in the subclonal architecture of paired samples at relapse compared with pre-treatment, (ii) provide evidence supporting an association between increased genomic complexity and poor clinical outcome (iii) report previously undefined, recurrent CNA/cnLOH regions that expand or newly occur at relapse and therefore might harbor candidate driver genes of relapse and/or chemotherapy resistance. Our findings are likely to impact on future therapeutic strategies aimed towards selecting effective and individually tailored targeted therapies.
Collapse
|
42
|
Lindgren D, Höglund M, Vallon-Christersson J. Genotyping techniques to address diversity in tumors. Adv Cancer Res 2012; 112:151-82. [PMID: 21925304 DOI: 10.1016/b978-0-12-387688-1.00006-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Array-based genotyping platforms have during recent years been established as a valuable tool for the characterization of genomic alterations in cancer. The analysis of tumor samples, however, presents challenges for data analysis and interpretation. For example, tumor samples are often admixed with nonaberrant cells that define the tumor microenvironment, such as infiltrating lymphocytes and fibroblasts, or vasculature. Furthermore, tumors often comprise subclones harboring divergent aberrations that are acquired subsequent to the tumor-initiating event. The combined analysis of both genotype and copy number status obtained by array-based genotyping platforms provide opportunities to address these challenges. In this chapter, we present the basic principles for current array-based genotyping platforms and how they can be used to infer genotype and copy number for acquired genomic alterations. We describe how these techniques can be used to resolve tumor ploidy, normal cell admixture, and subclonality. We also exemplify how genotyping techniques can be applied in tumor studies to elucidate the hierarchy among tumor clones, and thus, provide means to study clonal expansion and tumor evolution.
Collapse
Affiliation(s)
- David Lindgren
- Center for Molecular Pathology, Department of Laboratory Medicine, Lund University, SUS Malmö, Malmö, Sweden
| | | | | |
Collapse
|
43
|
Trachtenberg AJ, Robert JH, Abdalla AE, Fraser A, He SY, Lacy JN, Rivas-Morello C, Truong A, Hardiman G, Ohno-Machado L, Liu F, Hovig E, Kuo WP. A primer on the current state of microarray technologies. Methods Mol Biol 2012; 802:3-17. [PMID: 22130870 DOI: 10.1007/978-1-61779-400-1_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
DNA microarray technology has been used for genome-wide gene expression studies that incorporate molecular genetics and computer science analyses on massive levels. The availability of microarrays permit the simultaneous analysis of tens of thousands of genes for the purposes of gene discovery, disease diagnosis, improved drug development, and therapeutics tailored to specific disease processes. In this chapter, we provide an overview on the current state of common microarray technologies and platforms. Since many genes contribute to normal functioning, research efforts are moving from the search for a disease-specific gene to the understanding of the biochemical and molecular functioning of a variety of genes whose disrupted interaction in complicated networks can lead to a disease state. The field of microarrays has evolved over the past decade and is now standardized with a high level of quality control, while providing a relatively inexpensive and reliable alternative to studying various aspects of gene expression.
Collapse
Affiliation(s)
- Alexander J Trachtenberg
- Harvard Catalyst - Laboratory for Innovative Translational Technologies, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Clinical utilization of high-resolution single nucleotide polymorphism based oligonucleotide arrays in diagnostic studies of pediatric patients with solid tumors. Cancer Genet 2012; 205:42-54. [DOI: 10.1016/j.cancergen.2012.01.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 01/29/2012] [Accepted: 01/30/2012] [Indexed: 12/15/2022]
|
45
|
Wilkins K, LaFramboise T. Losing balance: Hardy-Weinberg disequilibrium as a marker for recurrent loss-of-heterozygosity in cancer. Hum Mol Genet 2011; 20:4831-9. [PMID: 21920941 PMCID: PMC3221535 DOI: 10.1093/hmg/ddr422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/02/2011] [Accepted: 09/12/2011] [Indexed: 11/14/2022] Open
Abstract
Identifying regions of loss-of-heterozygosity (LOH) in a tumor sample is a challenging problem. State-of-the-art computational approaches can infer LOH from single-nucleotide polymorphism (SNP) array data, but calling precise boundaries is complicated by normal-cell contamination and markers that are homozygous in the germline and therefore non-informative. More recently, the focus has shifted to pinpointing the loci recurrently affected by LOH events across multiple tumors. Recurrent LOH regions often harbor genes important for tumor suppression. Here, we propose a method that infers LOH rates across an entire sample set on an SNP-by-SNP basis. Our method achieves this by leveraging the straightforward principle that, by definition, LOH depletes heterozygotes, thereby disrupting Hardy-Weinberg equilibrium. We apply a statistical test for such LOH-influenced disruptions, and derive a maximum-likelihood estimator for the LOH rate based on the observed number of heterozygotes. This accounts for LOH in both its hemizygous deletion and copy-neutral forms, and does not make use of matched normal genotypes. Power simulations show high levels of sensitivity for the statistical test, and application to a control normal-tissue data set demonstrates a low false-discovery rate. We apply the method to three large publicly available tumor SNP array data sets, where it is able to localize tumor-suppressor gene targets of the LOH events. Inferred LOH rates are quite concordant across platforms/laboratories and between cell lines and tumors, but in a tumor type-dependent fashion. Finally, we produce rate estimates that are generally higher than previously published, and provide evidence that the latter are likely underestimates.
Collapse
Affiliation(s)
- Katherine Wilkins
- Department of Genetics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, Ohio 44106, USA and
| | - Thomas LaFramboise
- Department of Genetics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, Ohio 44106, USA and
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44106, USA
| |
Collapse
|
46
|
Abstract
The focus of this review is software for the genotyping of microarray single nucleotide polymorphisms, in particular software for Affymetrix and Illumina arrays. Different statistical principles and ideas have been applied to the construction of genotyping algorithms -- for example, likelihood versus Bayesian modelling, and whether to genotype one or all arrays at a time. The release of new arrays is generally followed by new, or updated, algorithms.
Collapse
|
47
|
Meadows KL, Andrews DMK, Xu Z, Carswell GK, Laughlin SK, Baird DD, Taylor JA. Genome-wide analysis of loss of heterozygosity and copy number amplification in uterine leiomyomas using the 100K single nucleotide polymorphism array. Exp Mol Pathol 2011; 91:434-9. [PMID: 21497600 PMCID: PMC3665159 DOI: 10.1016/j.yexmp.2011.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 03/29/2011] [Indexed: 10/18/2022]
Abstract
PURPOSE Uterine leiomyomas (fibroids) are benign smooth muscle tumors commonly found among reproductive-aged women. Though benign, these tumors are the leading indication for hysterectomies in the United States and cause significant morbidity. Despite the importance of this tumor in women's health, relatively little is known about the molecular etiology. METHODS In this study, we used the Affymetrix 100K single nucleotide polymorphism (SNP) chip to assess whether the pattern and frequency of genome-wide loss of heterozygosity (LOH) and copy number amplifications is associated with clinical heterogeneity. RESULTS Thirty-seven tumors with varying sizes and histology from eleven patients were analyzed. LOH was observed in 4/37 tumors (10.8%) and significantly associated with large-sized tumors (p<0.0014). Two tumors revealed hemizygosity on chromosome 7q, a region that has been consistently reported to have LOH. Additionally, we detected one novel region of LOH, 16p13.11 in one tumor (2.7%). Copy number amplifications were observed on all chromosomes; however, most were low-level amplifications and only detected in a single tumor. One region of amplification at 3p26.3 was detected in four tumors. CONCLUSIONS Despite the use of a high-density SNP platform, our results suggest that genome-wide LOH and copy number amplifications are infrequent events and generally do not determine clinical and histologic characteristics of this disease.
Collapse
Affiliation(s)
- Kellen L. Meadows
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park North Carolina, 27709, USA
| | - Danica M. K. Andrews
- Microarray Group, National Institute of Environmental Health Sciences, Research Triangle Park North Carolina, 27709, USA
| | - Zongli Xu
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park North Carolina, 27709, USA
| | - Gleta K. Carswell
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park North Carolina, 27709, USA
| | - Shannon K. Laughlin
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park North Carolina, 27709, USA
| | - Donna D. Baird
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park North Carolina, 27709, USA
| | - Jack A. Taylor
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park North Carolina, 27709, USA
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park North Carolina, 27709, USA
| |
Collapse
|
48
|
Mao X, Young BD, Lu YJ. The application of single nucleotide polymorphism microarrays in cancer research. Curr Genomics 2011; 8:219-28. [PMID: 18645599 DOI: 10.2174/138920207781386924] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 01/22/2007] [Accepted: 03/02/2007] [Indexed: 01/21/2023] Open
Abstract
The development of microarray technology has had a significant impact on the genetic analysis of human disease. The recently developed single nucleotide polymorphism (SNP) array can be used to measure both DNA polymorphism and dosage changes. Our laboratory has applied SNP microarray analysis to uncover frequent uniparental disomies and sub-microscopic genomic copy number gains and losses in different cancers. This review will focus on the wide range of applications of SNP microarray analysis to cancer research. SNP array genotyping can determine loss of heterozygosity, genomic copy number changes and DNA methylation alterations of cancer cells. The same technology can also be used to investigate allelic association in cancers. Therefore, it can be applied to the identification of cancer predisposition genes, oncogenes and tumor suppressor genes in specific types of tumors. As a consequence, they have potential in cancer risk assessment, diagnosis, prognosis and treatment selection.
Collapse
Affiliation(s)
- Xueying Mao
- Medical Oncology Centre, Cancer Institute, Barts and London School of Medicine and Dentistry, Queen Mary, University of London, Charterhouse Square, London, UK
| | | | | |
Collapse
|
49
|
Rothenberg SM, Settleman J. Discovering tumor suppressor genes through genome-wide copy number analysis. Curr Genomics 2011; 11:297-310. [PMID: 21286308 PMCID: PMC2944996 DOI: 10.2174/138920210791616734] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 04/07/2010] [Accepted: 04/07/2010] [Indexed: 12/31/2022] Open
Abstract
Classical tumor suppressor gene discovery has largely involved linkage analysis and loss-of-heterozygosity (LOH) screens, followed by detailed mapping of relatively large chromosomal regions. Subsequent efforts made use of genome-wide PCR-based methods to detect rare homozygous deletions. More recently, high-resolution genomic arrays have been applied to cancer gene discovery. However, accurate characterization of regions of genomic loss is particularly challenging due to sample heterogeneity, the small size of deleted regions and the high frequency of germline copy number polymorphisms. Here, we review the application of genome-wide copy number analysis to the specific problem of identifying tumor suppressor genes.
Collapse
Affiliation(s)
- S Michael Rothenberg
- Massachusetts General Hospital Cancer Center and Harvard Medical School, 149, 13th Street, Charlestown, MA 02129, USA
| | | |
Collapse
|
50
|
Abstract
High-throughput tools for nucleic acid characterization now provide the means to conduct comprehensive analyses of all somatic alterations in the cancer genomes. Both large-scale and focused efforts have identified new targets of translational potential. The deluge of information that emerges from these genome-scale investigations has stimulated a parallel development of new analytical frameworks and tools. The complexity of somatic genomic alterations in cancer genomes also requires the development of robust methods for the interrogation of the function of genes identified by these genomics efforts. Here we provide an overview of the current state of cancer genomics, appraise the current portals and tools for accessing and analyzing cancer genomic data, and discuss emerging approaches to exploring the functions of somatically altered genes in cancer.
Collapse
Affiliation(s)
- Lynda Chin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.
| | | | | | | |
Collapse
|