1
|
Huang Z, Mandelkow T, Debatin NF, Lurati MCJ, Ebner J, Raedler JB, Bady E, Müller JH, Simon R, Vettorazzi E, Menz A, Möller K, Gorbokon N, Sauter G, Lennartz M, Luebke AM, Höflmayer D, Krech T, Lebok P, Fraune C, Hinsch A, Jacobsen F, Marx AH, Steurer S, Minner S, Dum D, Weidemann S, Bernreuther C, Clauditz TS, Burandt E, Blessin NC. A Tc1- and Th1-T-lymphocyte-rich tumor microenvironment is a hallmark of MSI colorectal cancer. J Pathol 2025; 266:192-203. [PMID: 40181205 PMCID: PMC12056287 DOI: 10.1002/path.6415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/29/2025] [Accepted: 02/11/2025] [Indexed: 04/05/2025]
Abstract
Microsatellite instability is a strong predictor of response to immune checkpoint therapy and patient outcome in colorectal cancer. Although enrichment of distinct T-cell subpopulations has been determined to impact the response to immune checkpoint therapy and patient outcome, little is known about the underlying changes in the composition of the immune tumor microenvironment. To assess the density, composition, degree of functional marker expression, and spatial interplay of T-cell subpopulations, 79 microsatellite instable (MSI) and 1,045 microsatellite stable (MSS) colorectal cancers were analyzed. A tissue microarray and large sections were stained with 19 antibodies directed against T cells, antigen-presenting cells, functional markers, and structural proteins using our BLEACH&STAIN multiplex-fluorescence immunohistochemistry approach. A deep learning-based framework comprising >20 different convolutional neuronal networks was developed for image analysis. The composition of Type 1 (T-bet+), Type 2 (GATA3+), Type 17 (RORγT+), NKT-like (CD56+), regulatory (FOXP3+), follicular (BCL6+), and cytotoxic (CD3+CD8+) or helper (CD3+CD4+) T cells showed marked differences between MSI and MSS patients. For instance, the fraction of Tc1 and Th1 was significantly higher (p < 0.001 each), while the fraction of Tregs, Th2, and Th17 T cells was significantly lower (p < 0.05) in MSI compared to MSS patients. The degree of TIM3, CTLA-4, and PD-1 expression on most T-cell subpopulations was significantly higher in MSI compared to MSS patients (p < 0.05 each). Spatial analysis revealed increased interactions between Th1, Tc1, and dendritic cells in MSI patients, while in MSS patients the strongest interactions were found between Tregs, Th17, Th2, and dendritic cells. The additional analysis of 12 large sections revealed a divergent immune composition at the invasive margin. In summary, this study identified a higher fraction of Tc1 and Th1 T cells accompanied by a paucity of regulatory T-cell, Th17, and Th2 T-cell subpopulations, along with a distinct interaction profile, as a hallmark of MSI compared to MSS colorectal cancers. © 2025 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Zhihao Huang
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Tim Mandelkow
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Nicolaus F Debatin
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Magalie C J Lurati
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Julia Ebner
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Jonas B Raedler
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- College of Arts and SciencesBoston UniversityBostonMAUSA
| | - Elena Bady
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Jan H Müller
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Ronald Simon
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Eik Vettorazzi
- Department of Medical Biometry and EpidemiologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Anne Menz
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Katharina Möller
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Natalia Gorbokon
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Guido Sauter
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Maximilian Lennartz
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Andreas M Luebke
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Doris Höflmayer
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Till Krech
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Institute of PathologyClinical Center OsnabrückOsnabrückGermany
| | - Patrick Lebok
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Institute of PathologyClinical Center OsnabrückOsnabrückGermany
| | - Christoph Fraune
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Institute of PathologyClinical Center OsnabrückOsnabrückGermany
| | - Andrea Hinsch
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Frank Jacobsen
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | | | - Stefan Steurer
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Sarah Minner
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - David Dum
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Sören Weidemann
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | | | - Till S Clauditz
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Eike Burandt
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Niclas C Blessin
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Institute of Pathology, Arnold‐Heller‐Straße 3University Medical Center Schleswig‐HolsteinKielGermany
| |
Collapse
|
2
|
Lin MT, Christenson ES, Pallavajjala A, Eshleman JR. Highly sensitive and specific markers for detection of mismatch repair deficiency by next-generation sequencing. Am J Clin Pathol 2025:aqaf026. [PMID: 40318191 DOI: 10.1093/ajcp/aqaf026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/16/2025] [Indexed: 05/07/2025] Open
Abstract
OBJECTIVE To identify exonic markers that could improve analytic performance characteristics of next-generation sequencing (NGS) in detecting mismatch repair deficiency (dMMR) using colorectal cancer (CRC) as a model. METHODS Coding sequences of a target NGS panel (~1.13 megabase) were compared between dMMR CRC and mismatch repair-proficient (pMMR) CRC in a training cohort (41 dMMR CRCs and 213 pMMR CRCs) and a validation cohort (33 dMMR CRCs and 307 pMMR CRCs) with documented mismatch repair status by immunohistochemical and/or microsatellite instability assays. RESULTS The dMMR CRC cases showed significantly higher insertion/deletion (indel) mutations within exonic homopolymers (homo-indels), occurring predominantly within longer repeats of 5 to 10 nucleotides (92%, P < .0001), rather than shorter repeats of 2 to 4 nucleotides seen in pMMR CRC (62%). Homo-indels in dMMR CRC were not random. Hotspot loci were consistent between the training and validation cohorts. The dMMR defined by indels within homopolymers of 5 or more nucleotides, homopolymers of 7 or more nucleotides, or a panel of hotspots all showed 100% sensitivity and specificity with a range of cutoffs. CONCLUSIONS We propose that this approach allows one to identify highly sensitive and specific markers for detecting dMMR CRC by NGS alone. Further studies are warranted to test whether these markers are applicable to non-CRC neoplasms.
Collapse
Affiliation(s)
- Ming-Tseh Lin
- Department of Pathology, Johns Hopkins University School of Medicine, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Eric S Christenson
- Department of Oncology, Johns Hopkins University School of Medicine, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Aparna Pallavajjala
- Department of Pathology, Johns Hopkins University School of Medicine, Johns Hopkins Hospital, Baltimore, MD, United States
| | - James R Eshleman
- Department of Pathology, Johns Hopkins University School of Medicine, Johns Hopkins Hospital, Baltimore, MD, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Johns Hopkins Hospital, Baltimore, MD, United States
| |
Collapse
|
3
|
Bayó C, Castellano G, Marín F, Castillo-Iturra J, Ocaña T, Kumari H, Pellisé M, Moreira L, Rivero L, Daca-Alvarez M, Ortiz O, Carballal S, Moreira R, Canet-Hermida J, Pineda M, Gabriel C, Flórez-Grau G, Juan M, Benitez-Ribas D, Balaguer F. Discovery and validation of frameshift-derived neopeptides in Lynch syndrome: paving the way for novel cancer prevention strategies. J Immunother Cancer 2025; 13:e011177. [PMID: 40254392 PMCID: PMC12010338 DOI: 10.1136/jitc-2024-011177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/23/2025] [Indexed: 04/22/2025] Open
Abstract
BACKGROUND Lynch syndrome (LS), caused by germline pathogenic variants in the mismatch repair genes, leads to high rates of frameshift-derived neopeptide (FSDN) expression due to microsatellite instability (MSI). While colorectal cancer (CRC) prevention is effective, most LS-related tumors lack such strategies. Cancer vaccines targeting FSDNs offer a promising approach for immune interception in LS. This study aimed to identify and validate LS-related FSDNs to develop vaccines for cancer prevention. METHODS We identified LS-related coding MS mutations and predicted FSDN with high coverage on common Human Leukocyte Antigen (HLA)-I and II alleles. We validated FSDN-associated mutations in colorectal adenomas (CrAD), endometrial cancers (EC), and CRC samples from patients with LS, non-LS tumors, and cell lines. Immunogenicity was assessed through interferon (IFN)-γ enzyme-linked immunospot and flow cytometry analysis of tissue-infiltrating lymphocytes (TILs) from LS carriers. RESULTS We prioritized 53 HLA-I and 45 HLA-II FSDNs in MSI tumors using in silico predictions. Validation revealed 86.7% of FSDN-associated mutations present in LS-CRC samples, with a median of 7.67 (6.5-9) mutations in CrADs and 6.02 (2-10) in CRCs. Sequencing of CrAD and EC samples showed 95% and 77.5% of predicted FSDN-associated mutations, respectively. MSI cancer cell lines transcribed 69.8% of FSDNs. Immunogenicity assays showed that 71% of potential FSDNs elicited IFN-γ responses, with a median of 7.37 (1-10.75) HLA-I and 6 (2-5.75) HLA-II FSDNs per patient. After prioritizing 24 FSDN, in a cohort of 19 LS-derived samples (4 CrAD and 15 normal mucosa), 52% (10/19) demonstrated T-cell reactivity to an HLA-I neoantigen pool. CD8+CD137+ activation markers increased significantly (p=0.037) over time and peptide-specific cells were detected by pentamer staining. CONCLUSIONS Our predicted FSDN set has optimal coverage among LS carriers and can induce IFN-γ inflammatory responses in LS-derived TILs, offering an opportunity for vaccine development.
Collapse
Affiliation(s)
- Cristina Bayó
- Immunology, Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
- Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
| | - Giancarlo Castellano
- Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
| | - Fátima Marín
- Hereditary Cancer Program, Catalan institute of oncology, IDIBELL, Badalona, Catalunya, Spain
- Consortium for Biomedical Research in Cancer, Carlos III Institute of Health, CIBERONC, Madrid, Comunidad de Madrid, Spain
| | - Joaquín Castillo-Iturra
- Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
- Gastroenterology, Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
| | - Teresa Ocaña
- Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
- Gastroenterology, Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
| | - Hardeep Kumari
- Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
- Gastroenterology, Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
| | - Maria Pellisé
- Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
- Gastroenterology, Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
| | - Leticia Moreira
- Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
- Gastroenterology, Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
| | - Liseth Rivero
- Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
- Gastroenterology, Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
| | - Maria Daca-Alvarez
- Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
- Gastroenterology, Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
| | - Oswaldo Ortiz
- Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
- Gastroenterology, Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
| | - Sabela Carballal
- Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
- Gastroenterology, Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
| | - Rebeca Moreira
- Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
- Gastroenterology, Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
| | - Julia Canet-Hermida
- Hereditary Cancer Program, Catalan institute of oncology, IDIBELL, Badalona, Catalunya, Spain
- Consortium for Biomedical Research in Cancer, Carlos III Institute of Health, CIBERONC, Madrid, Comunidad de Madrid, Spain
| | - Marta Pineda
- Hereditary Cancer Program, Catalan institute of oncology, IDIBELL, Badalona, Catalunya, Spain
- Consortium for Biomedical Research in Cancer, Carlos III Institute of Health, CIBERONC, Madrid, Comunidad de Madrid, Spain
| | - Capella Gabriel
- Hereditary Cancer Program, Catalan institute of oncology, IDIBELL, Badalona, Catalunya, Spain
- Consortium for Biomedical Research in Cancer, Carlos III Institute of Health, CIBERONC, Madrid, Comunidad de Madrid, Spain
| | - Georgina Flórez-Grau
- Immunology, Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
- Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
| | - Manel Juan
- Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
- Immunology, Servei d'Immunologia. Hospital Clínic de Barcelona, Barcelona, Barcelona, Spain
| | - Daniel Benitez-Ribas
- Immunology, Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
- Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
| | - Francesc Balaguer
- Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
- Gastroenterology, Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salud, Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
4
|
Yang L, Feng Y, Liu X, Zhang Q, Liu Y, Zhang X, Li P, Chen D. DYNC2H1 mutation as a potential predictive biomarker for immune checkpoint inhibitor efficacy in NSCLC and melanoma. Invest New Drugs 2025; 43:199-213. [PMID: 39934438 DOI: 10.1007/s10637-024-01495-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/19/2024] [Indexed: 02/13/2025]
Abstract
Dynein cytoplasmic 2 heavy chain 1 (DYNC2H1) is reported to play a potential role in cancer immunotherapy. However, the association between DYNC2H1 mutation and the clinical benefit of immunotherapy in non-small cell lung cancer (NSCLC) and melanoma remains to be elucidated. We collected data from three public immune checkpoint inhibitor (ICI)-treated NSCLC cohorts (n = 137 in total) and seven ICI-treated melanoma cohorts (n = 418 in total) to explore the potential of DYNC2H1 mutation as a predictive biomarker. The clinical outcomes, including the objective response rate (ORR) and progression-free survival (PFS), of patients with DYNC2H1 mutations are significantly better than those of patients with wild-type DYNC2H1. Multivariate Cox regression analysis confirmed that DYNC2H1 mutation was an independent predictive factor for ICI efficacy in NSCLC and melanoma. In addition, DYNC2H1 mutation exhibited no prognostic value for NSCLC or melanoma. Tumour mutational burden (TMB) and tumour neoantigen burden (TNB) were significantly higher in patients with DYNC2H1 mutation than in those with wild-type DYNC2H1 in both NSCLC and melanoma cohort. The analysis of immune-related genes and immune cell enrichment revealed an association between DYNC2H1 mutation and increased immune infiltration, revealing a potential mechanism underlying the predictive role of DYNC2H1 mutation in immunotherapy efficacy. In conclusion, DYNC2H1 mutation serves as a predictive biomarker of ICI efficacy in NSCLC and melanoma.
Collapse
Affiliation(s)
- Lu Yang
- Department of Science and Technology, Nanjing Forestry University, Nanjing, 210037, China
| | - Yanlong Feng
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xuewen Liu
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210002, China
| | - Qin Zhang
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210002, China
| | - Yaqin Liu
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210002, China
| | - Xing Zhang
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210002, China
| | - Ping Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Dongsheng Chen
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210002, China.
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
| |
Collapse
|
5
|
Khalili S, Mohseninia A, Liu C, Banister CE, Heine P, Khazan M, Morrison SE, Gokare P, Cowley GS, Weir BA, Pocalyko D, Bachman KE, Buckhaults PJ. Comprehensive genomic dependency landscape of a human colon cancer organoid. Commun Biol 2025; 8:436. [PMID: 40082551 PMCID: PMC11906589 DOI: 10.1038/s42003-025-07822-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/26/2025] [Indexed: 03/16/2025] Open
Abstract
Identifying genetic dependencies in human colon cancer could help identify effective treatment strategies. Genome-wide CRISPR-Cas9 dropout screens have the potential to reveal genetic dependencies, some of which could be exploited as therapeutic targets using existing drugs. In this study, we comprehensively characterized genetic dependencies present in a colon cancer organoid avatar, and validated tumor-specific selectivity of select pharmacologic agents. We conducted a genome-wide CRISPR dropout screen to elucidate the genetic dependencies that interacted with select driver somatic mutations. We found distinct genetic dependencies that interacted with WNT, MAPK, PI3K, TP53, and mismatch repair pathways and validated targets that could be exploited as treatments for this specific subtype of colon cancer. These findings demonstrate the utility of functional genomic screening in the context of personalized medicine.
Collapse
Affiliation(s)
| | | | | | | | - Paige Heine
- University of South Carolina, Columbia, SC, US
| | | | | | - Prashanth Gokare
- Janssen Research and Development, LLC Spring House, Spring House, PA, US
| | - Glenn S Cowley
- Janssen Research and Development, LLC Cambridge, Cambridge, MA, US
| | - Barbara A Weir
- Janssen Research and Development, LLC Cambridge, Cambridge, MA, US
| | - David Pocalyko
- Janssen Research and Development, LLC Spring House, Spring House, PA, US
| | - Kurtis E Bachman
- Janssen Research and Development, LLC Spring House, Spring House, PA, US
| | | |
Collapse
|
6
|
Argilés G, Arnold D, Cervantes A. Anti-PD-1 treatment for MSI-H/MMRD tumors. A journey from genomics to transformative patient breakthroughs. Ann Oncol 2025; 36:231-232. [PMID: 39984220 DOI: 10.1016/j.annonc.2025.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/23/2025] Open
Affiliation(s)
- G Argilés
- Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, U.S..
| | - D Arnold
- Asklepios Tumorzentrum Hamburg, AK Altona, Hamburg, Germany
| | - A Cervantes
- Department of Medical Oncology, Biomedical Research Institute INCLIVA, University of Valencia, Spain
| |
Collapse
|
7
|
Warrier VP, Venkatachalam S, Sakthivel R, Gromiha MM, Karunagaran D. Combinatorial Effects of 5-Fluorouracil and Menadione on Wnt/β-Catenin Pathway in Human Colorectal Cancer Cells. Appl Biochem Biotechnol 2025; 197:1280-1300. [PMID: 39404999 DOI: 10.1007/s12010-024-05072-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 02/13/2025]
Abstract
The incidence and mortality rates of colorectal cancer (CRC) are alarmingly high, and the scientific community is consistently engaged in developing newer therapeutic options for cancer cure or prevention. The fluoropyrimidine drug, 5-fluorouracil (5FU), remains the first line of treatment against CRC; nevertheless, relapses frequently occur since the cells gain resistance over time through various mechanisms. Studies have highlighted the significance of combinatorial treatment of a Wnt signaling inhibitor and 5FU as a better treatment strategy to overcome 5FU resistance. Small molecules that specifically target and disrupt β-catenin-TCF interaction, a crucial step of the Wnt signaling, are promising in CRC treatment. In this study, we investigated the synergistic cytotoxic activity of menadione with 5FU as the former has previously been shown to downregulate Wnt signaling in CRC cells. Docking and experimental results suggest that the drug combination interfered with key protein-protein interactions in the β-catenin-TCF complex, exerted synergistic anti-cancerous effects in CRC cells, and downregulated the expression of Wnt signaling proteins. Taken together, our data suggest that the simultaneous binding of 5FU and menadione to β-catenin can block Wnt signaling by disrupting β-catenin-TCF interaction and inhibit the proliferation of CRC cells.
Collapse
Affiliation(s)
- Vidya P Warrier
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamilnadu, India
| | - Sankaran Venkatachalam
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamilnadu, India
| | - Ramasamy Sakthivel
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamilnadu, India
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamilnadu, India.
| | - Devarajan Karunagaran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamilnadu, India.
| |
Collapse
|
8
|
Yurgelun MB, Rhees J, Papadopoulos N, Vogelstein B, Boland CR. Taming Lynch Syndrome: The Remarkable Power of Prevention for One Family. Gastroenterology 2025; 168:195-199. [PMID: 39038760 DOI: 10.1053/j.gastro.2024.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/24/2024]
Affiliation(s)
- Matthew B Yurgelun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jennifer Rhees
- Department of Medicine, UCSD School of Medicine, La Jolla, California
| | | | - Bert Vogelstein
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - C Richard Boland
- Department of Medicine, UCSD School of Medicine, La Jolla, California
| |
Collapse
|
9
|
Chen X, Chen J, Xu L, Lin D, Hong X, Peng J, He X, Hu J. DMMR status and synchronous lesions predicts metachronous lesions after curative resection for rectal cancer. Front Surg 2025; 12:1510400. [PMID: 39906700 PMCID: PMC11790672 DOI: 10.3389/fsurg.2025.1510400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/08/2025] [Indexed: 02/06/2025] Open
Abstract
Background There are no established standard colonoscopy surveillance protocols for patients after curative rectal cancer resection. We investigated the predictive factors for colorectal neoplasms during surveillance colonoscopies to identify patients who are at risk of developing metachronous neoplasms in the residual colorectum. Methods This was a single-center, retrospective study that included patients with diagnosis of rectal carcinoma who had undergone curative resection from October 2012 to June 2018. Clinicopathological variables were analyzed by logistic regression analysis to identify risk factors independently associated with metachronous neoplasms in patients that underwent curative rectal cancer surgery. Results In all, 554 patients were included in the analysis. Deficient mismatch repair (dMMR) status was recorded in 20 (3.6%) patients. At the surveillance colonoscopies, 118 patients (21.3%) had metachronous neoplasms while 169 patients (30.5%) had metachronous polyps. The median time interval between index colonoscopy and the last surveillance colonoscopy was 736.5 (476.75-1,082.25) days. Univariable and multivariable analysis showed dMMR status, synchronous adenomas/polyps, surveillance time > 3, and longer surveillance period patients were significant risk factors for development of metachronous lesions; in subgroup analysis, we also found that among rectal cancer patients with synchronous adenomas, adenomas located in the left colon and rectum, and longer surveillance period were independent risk factors for detecting metachronous adenomas. Conclusions This study underscored the importance of extended follow-up protocols and targeted surveillance for identifying and managing metachronous lesions in dMMR rectal cancer patients, especially with synchronous adenomas. Further prospective, multicenter studies are needed to validate these results.
Collapse
Affiliation(s)
- Xijie Chen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of General Surgery (Gastric Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Junguo Chen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liang Xu
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dezheng Lin
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Endoscopic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoling Hong
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Endoscopic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Junsheng Peng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of General Surgery (Gastric Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaowen He
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiancong Hu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Endoscopic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Yavuz R, Aras O, Çiyiltepe H, Dinçer Oİ, Alparslan AŞ, Çakır T. Effects of Microsatellite Instability on the Clinical and Pathological Characteristics of Colon Cancer and the Diagnostic Accuracy of Preoperative Abdominal CT Scans. Diagnostics (Basel) 2025; 15:190. [PMID: 39857073 PMCID: PMC11765182 DOI: 10.3390/diagnostics15020190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/02/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Microsatellite-stable (MSS) and microsatellite-instable (MSI) colon cancer (CC) cases have different characteristics. These characteristics may impact the accuracy of abdominal computed tomography (CT) scan examinations in MSI CC. Methods: A retrospective analysis was conducted to examine the effects of MSI CC on patients' clinical and tumor characteristics. We determined the accuracy of radiological T and N staging compared to pathological T and N staging in CC patients and evaluated the influence of tumor- and patient-related factors on this accuracy. Results: A total of 131 CC patients who had undergone surgical resection were analyzed. Mismatch repair-deficient (dMMR) CC was predominantly found in the right hemicolon (p = 0.023); it was more likely to exhibit moderate (80.8%) or low-grade differentiation (p = 0.01) and had higher rates of mucinous differentiation (p = 0.001). The median neutrophil and platelet counts and C-reactive protein (CRP) levels at diagnosis were significantly higher in patients with dMMR CC (p = 0.022, p = 0.022, and p = 0.018). The depth of invasion influenced the CRP levels in dMMR CC cases (p = 0.015). The abdominal CT exam was accurate regarding the depth of colonic wall invasion in 58.1% and 38.5% of patients with mismatch repair-proficient (pMMR) and dMMR CC, respectively. The assessment of lymph node invasion was accurate in 44.8% of those with pMMR and 50.0% of those with dMMR CC. There was no significant difference in the accuracy in predicting the T and N statuses between the two groups. The accuracy in the determination of the T and N statuses was not affected by the parameters examined. Conclusions: dMMR CC has specific characteristic features. MSI does not affect the accuracy of preoperative abdominal CT.
Collapse
Affiliation(s)
- Rıdvan Yavuz
- Gastroenterology Surgery Department, Antalya Training and Research Hospital, Varlık, Kazım Karabekir Cd., Muratpaşa 07100, Antalya, Turkey; (O.A.); (H.Ç.); (O.İ.D.); (T.Ç.)
| | - Orhan Aras
- Gastroenterology Surgery Department, Antalya Training and Research Hospital, Varlık, Kazım Karabekir Cd., Muratpaşa 07100, Antalya, Turkey; (O.A.); (H.Ç.); (O.İ.D.); (T.Ç.)
| | - Hüseyin Çiyiltepe
- Gastroenterology Surgery Department, Antalya Training and Research Hospital, Varlık, Kazım Karabekir Cd., Muratpaşa 07100, Antalya, Turkey; (O.A.); (H.Ç.); (O.İ.D.); (T.Ç.)
| | - Onur İlkay Dinçer
- Gastroenterology Surgery Department, Antalya Training and Research Hospital, Varlık, Kazım Karabekir Cd., Muratpaşa 07100, Antalya, Turkey; (O.A.); (H.Ç.); (O.İ.D.); (T.Ç.)
| | - Ahmet Şükrü Alparslan
- Radiology Department, Antalya Training and Research Hospital, Varlık, Kazım Karabekir Cd., Muratpaşa 07100, Antalya, Turkey;
| | - Tebessüm Çakır
- Gastroenterology Surgery Department, Antalya Training and Research Hospital, Varlık, Kazım Karabekir Cd., Muratpaşa 07100, Antalya, Turkey; (O.A.); (H.Ç.); (O.İ.D.); (T.Ç.)
| |
Collapse
|
11
|
Li Y, Wu W, Yao J, Wang S, Wu X, Yan J. Patient-Derived Tumor Organoids: A Platform for Precision Therapy of Colorectal Cancer. Cell Transplant 2025; 34:9636897251314645. [PMID: 39953837 PMCID: PMC11829288 DOI: 10.1177/09636897251314645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/12/2024] [Accepted: 12/29/2024] [Indexed: 02/17/2025] Open
Abstract
Colorectal cancer (CRC) represents a significant cause of cancer-related mortality on a global scale. It is a highly heterogeneous cancer, and the response of patients to homogeneous drug therapy varies considerably. Patient-derived tumor organoids (PDTOs) represent an optimal preclinical model for cancer research. A substantial body of evidence from numerous studies has demonstrated that PDTOs can accurately predict a patient's response to different drug treatments. This article outlines the utilization of PDTOs in the management of CRC across a range of therapeutic contexts, including postoperative adjuvant chemotherapy, palliative chemotherapy, neoadjuvant chemoradiotherapy, targeted therapy, third-line and follow-up treatment, and the treatment of elderly patients. This article delineates the manner in which PDTOs can inform therapeutic decisions at all stages of CRC, thereby assisting clinicians in selecting treatment options and reducing the risk of toxicity and resistance associated with clinical drugs. Moreover, it identifies shortcomings of existing PDTOs, including the absence of consistent criteria for assessing drug sensitivity tests, the lack of vascular and tumor microenvironment models, and the high cost of the technology. In conclusion, despite their inherent limitations, PDTOs offer several advantages, including rapid culture, a high success rate, high consistency, and high throughput, which can be employed as a personalized treatment option for CRC. The use of PDTOs in CRC allows for the prediction of responses to different treatment modalities at various stages of disease progression. This has the potential to reduce adverse drug reactions and the emergence of resistance associated with clinical drugs, facilitate evidence-based clinical decision-making, and guide CRC patients in the selection of personalized medications, thereby advancing the individualized treatment of CRC.
Collapse
Affiliation(s)
- Yiran Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Wei Wu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Jiaxin Yao
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Suidong Wang
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Xiufeng Wu
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, P.R. China
| | - Jun Yan
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| |
Collapse
|
12
|
Albertí-Valls M, Olave S, Olomí A, Macià A, Eritja N. Advances in Immunotherapy for Endometrial Cancer: Insights into MMR Status and Tumor Microenvironment. Cancers (Basel) 2024; 16:3918. [PMID: 39682106 DOI: 10.3390/cancers16233918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Endometrial cancer is one of the most common gynecological malignancies, and while early-stage cases are highly treatable, recurrent or advanced EC remains challenging to manage. Immunotherapy, particularly immune checkpoint inhibitors, has revolutionized treatment approaches in oncology, and its application in EC has shown promising results. Key to immunotherapy efficacy in EC is the tumor's mismatch repair status, with MMR-deficient tumors demonstrating a higher tumor mutational burden and increased PD-L1 expression, making them more susceptible to immune checkpoint inhibitors (ICIs) such as pembrolizumab, durvalumab, and dostarlimab. However, not all mismatch repair-deficient (MMRd) tumors respond to ICIs, particularly those with a "cold" tumor microenvironment (TME) characterized by poor immune infiltration. In contrast, some MMR-proficient tumors with a "hot" TME respond well to ICIs, underscoring the complex interplay between MMR status, tumor mutational burden (TMB), and TME. To overcome resistance in cold tumors, novel therapies, including Chimeric Antigen Receptor (CAR) T cells and tumor-infiltrating lymphocytes are being explored, offering targeted immune-based strategies to enhance treatment efficacy. This review discusses the current understanding of immunotherapy in EC, emphasizing the prognostic and therapeutic implications of MMR status, TME composition, and emerging cell-based therapies.
Collapse
Affiliation(s)
- Manel Albertí-Valls
- Oncologic Pathology Group, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida (UdL), Av. Rovira Roure 80, 25198 Lleida, Spain
| | - Sara Olave
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Anna Olomí
- Developmental and Oncogenic Signaling, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida (UdL), Av. Rovira Roure 80, 25198 Lleida, Spain
| | - Anna Macià
- Oncologic Pathology Group, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida (UdL), Av. Rovira Roure 80, 25198 Lleida, Spain
| | - Núria Eritja
- Oncologic Pathology Group, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida (UdL), Av. Rovira Roure 80, 25198 Lleida, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
13
|
Kumawat M, Une H. Effect of Lactobacillus acidophilus, Calcium, and Moringa oleifera leaves extract co-administration can prevent chemical-induced carcinogenesis. Arab J Gastroenterol 2024; 25:421-436. [PMID: 39462726 DOI: 10.1016/j.ajg.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/05/2024] [Accepted: 07/26/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Colon cancer is the fourth leading cause of cancer deaths worldwide. The present study evaluated the chemopreventive effect of the combined treatment of Lactobacillus acidophilus, calcium citrate, and Moringa oleifera leaves extract against DMH (1,1-dimethylhydrazine hydrochloride) induced colon cancer. MATERIAL AND METHODS Sprague Dawley rats were grouped into 10 different groups and treated with DMH 30 mg/kg s.c. for 8 weeks, Successful induction of colon cancer was confirmed with the help of symptoms, Individual and combined treatments of Lactobacillus acidophilus (109 cfu p.o.), calcium citrate (2 mg/kg p.o.) and Moringa oleifera (100 & 200 mg/kg p.o.) leaves extracts were used for 4 weeks. RESULT After 4 weeks of treatment, it was observed that a significant reduction in aberrant crypt foci (ACFs) count, whereas liver and kidney function, AST (aspartate transaminase), ALT (alanine transaminase), urea and creatinine biomarkers were retained in its normal range. Upon DMH treatment, liver tissue loses histoarchitecture with mononuclear cell infiltration, nuclear enlargement, and hyperchromasia, this reverts due to the combined treatment of Lactobacillus acidophilus (LA), calcium citrate (CC) and hydroalcoholic extract of Moringa oleifera leaves (ME). From the results, it was revealed that individual and combined treatment of Lactobacillus acidophilus, calcium citrate, and hydroalcoholic extract of Moringa oleifera leaves shows beneficial effects against the carcinogen. CONCLUSION Combined treatment of Lactobacillus acidophilus, calcium citrate, and hydroalcoholic extract of Moringa oleifera leaves showed positive effects against carcinogenesis and lowered aberrant crypt foci count and shows histoarchitectural improvements in liver histology with no nuclear enlargement and hyperchromasia in liver tissue.
Collapse
Affiliation(s)
- Mrudula Kumawat
- Department of Pharmacology, Y. B. Chavan College of Pharmacy, Ch.Sambhajinagar, Maharashtra, India.
| | - Hemant Une
- Department of Pharmacology, Y. B. Chavan College of Pharmacy, Ch.Sambhajinagar, Maharashtra, India.
| |
Collapse
|
14
|
Atallah S, Kimura B, Larach S. Endoluminal surgery: The final frontier. Curr Probl Surg 2024; 61:101560. [PMID: 39266125 DOI: 10.1016/j.cpsurg.2024.101560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Affiliation(s)
- Sam Atallah
- Department of Colorectal Surgery, AdventHealth, Orlando, Florida.
| | - Brianne Kimura
- Department of Health Sciences, NOVA Southeastern University, Orlando, Florida
| | - Sergio Larach
- Department of Coloretal Surgery, University of Central Florida College of Medicine, HCA Healthcare Oviedo Medical Center, Orlando, Florida
| |
Collapse
|
15
|
Laplane L, Maley CC. The evolutionary theory of cancer: challenges and potential solutions. Nat Rev Cancer 2024; 24:718-733. [PMID: 39256635 PMCID: PMC11627115 DOI: 10.1038/s41568-024-00734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 09/12/2024]
Abstract
The clonal evolution model of cancer was developed in the 1950s-1970s and became central to cancer biology in the twenty-first century, largely through studies of cancer genetics. Although it has proven its worth, its structure has been challenged by observations of phenotypic plasticity, non-genetic forms of inheritance, non-genetic determinants of clone fitness and non-tree-like transmission of genes. There is even confusion about the definition of a clone, which we aim to resolve. The performance and value of the clonal evolution model depends on the empirical extent to which evolutionary processes are involved in cancer, and on its theoretical ability to account for those evolutionary processes. Here, we identify limits in the theoretical performance of the clonal evolution model and provide solutions to overcome those limits. Although we do not claim that clonal evolution can explain everything about cancer, we show how many of the complexities that have been identified in the dynamics of cancer can be integrated into the model to improve our current understanding of cancer.
Collapse
Affiliation(s)
- Lucie Laplane
- UMR 8590 Institut d'Histoire et Philosophie des Sciences et des Techniques, CNRS, University Paris I Pantheon-Sorbonne, Paris, France
- UMR 1287 Hematopoietic Tissue Aging, Gustave Roussy Cancer Campus, Villejuif, France
| | - Carlo C Maley
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA.
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, USA.
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
16
|
Holder AM, Dedeilia A, Sierra-Davidson K, Cohen S, Liu D, Parikh A, Boland GM. Defining clinically useful biomarkers of immune checkpoint inhibitors in solid tumours. Nat Rev Cancer 2024; 24:498-512. [PMID: 38867074 DOI: 10.1038/s41568-024-00705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/14/2024]
Abstract
Although more than a decade has passed since the approval of immune checkpoint inhibitors (ICIs) for the treatment of melanoma and non-small-cell lung, breast and gastrointestinal cancers, many patients still show limited response. US Food and Drug Administration (FDA)-approved biomarkers include programmed cell death 1 ligand 1 (PDL1) expression, microsatellite status (that is, microsatellite instability-high (MSI-H)) and tumour mutational burden (TMB), but these have limited utility and/or lack standardized testing approaches for pan-cancer applications. Tissue-based analytes (such as tumour gene signatures, tumour antigen presentation or tumour microenvironment profiles) show a correlation with immune response, but equally, these demonstrate limited efficacy, as they represent a single time point and a single spatial assessment. Patient heterogeneity as well as inter- and intra-tumoural differences across different tissue sites and time points represent substantial challenges for static biomarkers. However, dynamic biomarkers such as longitudinal biopsies or novel, less-invasive markers such as blood-based biomarkers, radiomics and the gut microbiome show increasing potential for the dynamic identification of ICI response, and patient-tailored predictors identified through neoadjuvant trials or novel ex vivo tumour models can help to personalize treatment. In this Perspective, we critically assess the multiple new static, dynamic and patient-specific biomarkers, highlight the newest consortia and trial efforts, and provide recommendations for future clinical trials to make meaningful steps forwards in the field.
Collapse
Affiliation(s)
- Ashley M Holder
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Sonia Cohen
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - David Liu
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Aparna Parikh
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Genevieve M Boland
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA.
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
17
|
Kim S, Han DJ, Lee SY, Moon Y, Kang SJ, Kim TM. A Subset of Microsatellite Unstable Cancer Genomes Prone to Short Insertions over Deletions Is Associated with Elevated Anticancer Immunity. Genes (Basel) 2024; 15:770. [PMID: 38927706 PMCID: PMC11202581 DOI: 10.3390/genes15060770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Deficiencies in DNA mismatch repair (MMRd) leave characteristic footprints of microsatellite instability (MSI) in cancer genomes. We used data from the Cancer Genome Atlas and International Cancer Genome Consortium to conduct a comprehensive analysis of MSI-associated cancers, focusing on indel mutational signatures. We classified MSI-high genomes into two subtypes based on their indel profiles: deletion-dominant (MMRd-del) and insertion-dominant (MMRd-ins). Compared with MMRd-del genomes, MMRd-ins genomes exhibit distinct mutational and transcriptomic features, including a higher prevalence of T>C substitutions and related mutation signatures. Short insertions and deletions in MMRd-ins and MMRd-del genomes target different sets of genes, resulting in distinct indel profiles between the two subtypes. In addition, indels in the MMRd-ins genomes are enriched with subclonal alterations that provide clues about a distinct evolutionary relationship between the MMRd-ins and MMRd-del genomes. Notably, the transcriptome analysis indicated that MMRd-ins cancers upregulate immune-related genes, show a high level of immune cell infiltration, and display an elevated neoantigen burden. The genomic and transcriptomic distinctions between the two types of MMRd genomes highlight the heterogeneity of genetic mechanisms and resulting genomic footprints and transcriptomic changes in cancers, which has potential clinical implications.
Collapse
Affiliation(s)
- Sunmin Kim
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (S.K.)
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Dong-Jin Han
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (S.K.)
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Seo-Young Lee
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (S.K.)
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Youngbeen Moon
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (S.K.)
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Su Jung Kang
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (S.K.)
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Tae-Min Kim
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (S.K.)
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea
- CMC Institute for Basic Medical Science, The Catholic Medical Center, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
18
|
Wilbur HC, Le DT, Agarwal P. Immunotherapy of MSI Cancer: Facts and Hopes. Clin Cancer Res 2024; 30:1438-1447. [PMID: 38015720 DOI: 10.1158/1078-0432.ccr-21-1935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/14/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023]
Abstract
Microsatellite instability (MSI) is a tumor molecular phenotype that evolves from loss of function in the mismatch repair (MMR) proteins through deleterious germline mutations, epigenetic inactivation, or somatic biallelic mutations. This phenotype is characterized by genomic hyper-mutability, increased neoantigen expression, and a favorable, immune-rich tumor microenvironment. These features confer a greater likelihood of response to treatment with the class of agents known as immune checkpoint inhibitors (ICI) and, potentially, other immune-based therapeutics. MSI as a predictive biomarker for response to treatment with ICIs ultimately led to the first tissue-agnostic approval of pembrolizumab for advanced, previously treated MSI or deficient MMR (dMMR) tumors. Nevertheless, response to ICIs in dMMR/MSI tumors is not universal. Identifying predictors of response and elucidating mechanisms of immune escape will be crucial to continued successful treatment of this subset. In this review, we aim to describe the pathogenesis and key immunologic features of dMMR/MSI tumors, provide a brief overview of the currently approved treatments, and discuss promising novel immune-based therapeutics currently under investigation.
Collapse
Affiliation(s)
- H Catherine Wilbur
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Dung T Le
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Parul Agarwal
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
19
|
Wang J, Botvinov J, Bhatt AJ, Beyer K, Kreis ME, Adam M, Alseidi A, Margonis GA. Somatic Mutations in Surgically Treated Colorectal Liver Metastases: An Overview. Cells 2024; 13:679. [PMID: 38667294 PMCID: PMC11049420 DOI: 10.3390/cells13080679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Colorectal cancer is the second most common cause of cancer death in the United States, and up to half of patients develop colorectal liver metastases (CRLMs). Notably, somatic genetic mutations, such as mutations in RAS, BRAF, mismatch repair (MMR) genes, TP53, and SMAD4, have been shown to play a prognostic role in patients with CRLM. This review summarizes and appraises the current literature regarding the most relevant somatic mutations in surgically treated CRLM by not only reviewing representative studies, but also providing recommendations for areas of future research. In addition, advancements in genetic testing and an increasing emphasis on precision medicine have led to a more nuanced understanding of these mutations; thus, more granular data for each mutation are reviewed when available. Importantly, such knowledge can pave the way for precision medicine with the ultimate goal of improving patient outcomes.
Collapse
Affiliation(s)
- Jane Wang
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA; (M.A.); (A.A.)
| | - Julia Botvinov
- Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA;
| | - Aarshvi Jahnvi Bhatt
- University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA;
| | - Katharina Beyer
- Department of General and Visceral Surgery, Charité Campus Benjamin Franklin, 12203 Berlin, Germany; (K.B.); (M.E.K.)
| | - Martin E. Kreis
- Department of General and Visceral Surgery, Charité Campus Benjamin Franklin, 12203 Berlin, Germany; (K.B.); (M.E.K.)
| | - Mohamed Adam
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA; (M.A.); (A.A.)
| | - Adnan Alseidi
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA; (M.A.); (A.A.)
| | | |
Collapse
|
20
|
Lynch A, Bradford S, Burkard ME. The reckoning of chromosomal instability: past, present, future. Chromosome Res 2024; 32:2. [PMID: 38367036 DOI: 10.1007/s10577-024-09746-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/11/2024] [Accepted: 01/27/2024] [Indexed: 02/19/2024]
Abstract
Quantitative measures of CIN are crucial to our understanding of its role in cancer. Technological advances have changed the way CIN is quantified, offering increased accuracy and insight. Here, we review measures of CIN through its rise as a field, discuss considerations for its measurement, and look forward to future quantification of CIN.
Collapse
Affiliation(s)
- Andrew Lynch
- UW Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, USA
- Division of Hematology/Oncology, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Shermineh Bradford
- UW Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, USA
- Division of Hematology/Oncology, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Mark E Burkard
- UW Carbone Cancer Center, University of Wisconsin, Madison, WI, USA.
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, USA.
- Division of Hematology/Oncology, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
21
|
Verbiest MA, Lundström O, Xia F, Baudis M, Bilgin Sonay T, Anisimova M. Short tandem repeat mutations regulate gene expression in colorectal cancer. Sci Rep 2024; 14:3331. [PMID: 38336885 PMCID: PMC10858039 DOI: 10.1038/s41598-024-53739-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/04/2024] [Indexed: 02/12/2024] Open
Abstract
Short tandem repeat (STR) mutations are prevalent in colorectal cancer (CRC), especially in tumours with the microsatellite instability (MSI) phenotype. While STR length variations are known to regulate gene expression under physiological conditions, the functional impact of STR mutations in CRC remains unclear. Here, we integrate STR mutation data with clinical information and gene expression data to study the gene regulatory effects of STR mutations in CRC. We confirm that STR mutability in CRC highly depends on the MSI status, repeat unit size, and repeat length. Furthermore, we present a set of 1244 putative expression STRs (eSTRs) for which the STR length is associated with gene expression levels in CRC tumours. The length of 73 eSTRs is associated with expression levels of cancer-related genes, nine of which are CRC-specific genes. We show that linear models describing eSTR-gene expression relationships allow for predictions of gene expression changes in response to eSTR mutations. Moreover, we found an increased mutability of eSTRs in MSI tumours. Our evidence of gene regulatory roles for eSTRs in CRC highlights a mostly overlooked way through which tumours may modulate their phenotypes. Future extensions of these findings could uncover new STR-based targets in the treatment of cancer.
Collapse
Affiliation(s)
- Max A Verbiest
- Institute of Computational Life Sciences, Zurich University of Applied Sciences, Wädenswil, Switzerland.
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Oxana Lundström
- Institute of Computational Life Sciences, Zurich University of Applied Sciences, Wädenswil, Switzerland
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Feifei Xia
- Institute of Computational Life Sciences, Zurich University of Applied Sciences, Wädenswil, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Michael Baudis
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Tugce Bilgin Sonay
- Institute of Computational Life Sciences, Zurich University of Applied Sciences, Wädenswil, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Institute of Ecology, Evolution and Environmental Biology, Columbia University, New York, USA
| | - Maria Anisimova
- Institute of Computational Life Sciences, Zurich University of Applied Sciences, Wädenswil, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
22
|
Geissler F, Nesic K, Kondrashova O, Dobrovic A, Swisher EM, Scott CL, J. Wakefield M. The role of aberrant DNA methylation in cancer initiation and clinical impacts. Ther Adv Med Oncol 2024; 16:17588359231220511. [PMID: 38293277 PMCID: PMC10826407 DOI: 10.1177/17588359231220511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/21/2023] [Indexed: 02/01/2024] Open
Abstract
Epigenetic alterations, including aberrant DNA methylation, are now recognized as bone fide hallmarks of cancer, which can contribute to cancer initiation, progression, therapy responses and therapy resistance. Methylation of gene promoters can have a range of impacts on cancer risk, clinical stratification and therapeutic outcomes. We provide several important examples of genes, which can be silenced or activated by promoter methylation and highlight their clinical implications. These include the mismatch DNA repair genes MLH1 and MSH2, homologous recombination DNA repair genes BRCA1 and RAD51C, the TERT oncogene and genes within the P15/P16/RB1/E2F tumour suppressor axis. We also discuss how these methylation changes might occur in the first place - whether in the context of the CpG island methylator phenotype or constitutional DNA methylation. The choice of assay used to measure methylation can have a significant impact on interpretation of methylation states, and some examples where this can influence clinical decision-making are presented. Aberrant DNA methylation patterns in circulating tumour DNA (ctDNA) are also showing great promise in the context of non-invasive cancer detection and monitoring using liquid biopsies; however, caution must be taken in interpreting these results in cases where constitutional methylation may be present. Thus, this review aims to provide researchers and clinicians with a comprehensive summary of this broad, but important subject, illustrating the potentials and pitfalls of assessing aberrant DNA methylation in cancer.
Collapse
Affiliation(s)
- Franziska Geissler
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Ksenija Nesic
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Olga Kondrashova
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Alexander Dobrovic
- University of Melbourne Department of Surgery, Austin Health, Heidelberg, VIC, Australia
| | | | - Clare L. Scott
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Royal Women’s Hospital, Parkville, VIC, Australia
- Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Matthew J. Wakefield
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
23
|
Zhu M, Rovella V, Scimeca M, Mauriello A, Shi Y, Bischof J, Woodsmith J, Anselmo A, Melino G, Tisone G, Agostini M. Genomic and transcriptomic profiling of hepatocellular carcinoma reveals a rare molecular subtype. Discov Oncol 2024; 15:10. [PMID: 38228856 DOI: 10.1007/s12672-023-00850-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/10/2023] [Indexed: 01/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide, occurring predominantly in patients with underlying chronic liver disease and cirrhosis. Here, we describe a case of a 62-year-old man that was admitted to our hospital and diagnosed with HCC where the cancer has already metastasized to the retroperitoneum and peritoneum. In order to better characterize the HCC, both the cancerous liver tissue and the adjacent normal liver tissue of the patient were collected and subjected to a genomic, transcriptomic and proteomic analysis. Our patient carries a highly mutated HCC, which is characterized by both somatic mutation in the following genes ALK, CDK6, TP53, PGR. In addition, we observe several molecular alterations that are associated with potential therapy resistance, for example the expression of the organic-anion-transporting polypeptide (OATP) family members B1 and B3, that mediate the transport of the anticancer drugs, has been found decreased. Overall, our molecular profiling potentially classify the patient with poor prognosis and possibly displaying resistance to pharmacological therapy.
Collapse
Affiliation(s)
- Mengting Zhu
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Valentina Rovella
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Julia Bischof
- Indivumed GmbH, Falkenried, 88 Building D, 20251, Hamburg, Germany
| | | | - Alessandro Anselmo
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Giuseppe Tisone
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| |
Collapse
|
24
|
Trembath HE, Yeh JJ, Lopez NE. Gastrointestinal Malignancy: Genetic Implications to Clinical Applications. Cancer Treat Res 2024; 192:305-418. [PMID: 39212927 DOI: 10.1007/978-3-031-61238-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Advances in molecular genetics have revolutionized our understanding of the pathogenesis, progression, and therapeutic options for treating gastrointestinal (GI) cancers. This chapter provides a comprehensive overview of the molecular landscape of GI cancers, focusing on key genetic alterations implicated in tumorigenesis across various anatomical sites including GIST, colon and rectum, and pancreas. Emphasis is placed on critical oncogenic pathways, such as mutations in tumor suppressor genes, oncogenes, chromosomal instability, microsatellite instability, and epigenetic modifications. The role of molecular biomarkers in predicting prognosis, guiding treatment decisions, and monitoring therapeutic response is discussed, highlighting the integration of genomic profiling into clinical practice. Finally, we address the evolving landscape of precision oncology in GI cancers, considering targeted therapies and immunotherapies.
Collapse
Affiliation(s)
- Hannah E Trembath
- Division of Colon and Rectal Surgery, Department of Surgery, University of California San Diego, 4303 La Jolla Village Drive Suite 2110, San Diego, CA, 92122, USA
- Division of Surgical Oncology, Department of Surgery, University of North Carolina, 170 Manning Drive, CB#7213, 1150 Physician's Office Building, Chapel Hill, NC, 27599-7213, USA
| | - Jen Jen Yeh
- Division of Colon and Rectal Surgery, Department of Surgery, University of California San Diego, 4303 La Jolla Village Drive Suite 2110, San Diego, CA, 92122, USA
- Division of Surgical Oncology, Department of Surgery, University of North Carolina, 170 Manning Drive, CB#7213, 1150 Physician's Office Building, Chapel Hill, NC, 27599-7213, USA
| | - Nicole E Lopez
- Division of Colon and Rectal Surgery, Department of Surgery, University of California San Diego, 4303 La Jolla Village Drive Suite 2110, San Diego, CA, 92122, USA.
- Division of Surgical Oncology, Department of Surgery, University of North Carolina, 170 Manning Drive, CB#7213, 1150 Physician's Office Building, Chapel Hill, NC, 27599-7213, USA.
| |
Collapse
|
25
|
Ferrer-Mayorga G, Muñoz A, González-Sancho JM. Vitamin D and colorectal cancer. FELDMAN AND PIKE'S VITAMIN D 2024:859-899. [DOI: 10.1016/b978-0-323-91338-6.00039-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
26
|
Vasudevan S, Mehta A, Karki D, Kumar D. Ring Finger 43 Hot-spot Frameshift Mutation G659V in Colorectal Cancer Patients: Report from a Tertiary Cancer Care Hospital in North India. Int J Appl Basic Med Res 2024; 14:17-22. [PMID: 38504846 PMCID: PMC10947763 DOI: 10.4103/ijabmr.ijabmr_403_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/08/2023] [Accepted: 12/15/2023] [Indexed: 03/21/2024] Open
Abstract
Background The Ring Finger 43 (RNF43) is a tumor suppressor gene that negatively regulates the Wnt/β-catenin signaling. The p.G659fs is a recurrent RNF43 C-terminal truncating variant frequent in colorectal cancer (CRC) patients. We aimed to identify this hotspot variant in CRC patients and assessed the relationship between the mutation, clinical characteristics, and tumor β-catenin localization. Materials and Methods Formalin-fixed, paraffin-embedded tissue samples of upfront, surgically resected, sporadic colorectal adenocarcinoma cases were selected. The p.G659fs mutation was determined by capillary sequencing with sequence-specific primers. Tissue microarray and immunohistochemistry were employed to analyze nuclear β-catenin expression and the expression of mismatch repair (MMR) proteins, respectively. In addition, clinical details were retrieved from the hospital medical records and data were analyzed. Results The RNF43 p.G659fs mutation was observed in 8% of CRC patients. In total, 25% of tumors showed a loss of immunostaining for one or more MMR proteins and 14.6% of tumors showed positive nuclear β-catenin staining. The p.G659fs variant was significantly enriched in MMR-deficient tumors (P = 0.04). Importantly, no correlation was observed between the variant and nuclear β-catenin localization (P = 0.48), indicating a Wnt-independent role of this variant in CRC tumors. Conclusions To the best of our knowledge, this is the first study from North India to show the involvement of RNF43 p.G659fs variant in CRC patients. The mutation correlated with MMR protein deficiency and seems to be conferring tumorigenicity independent of the Wnt pathway.
Collapse
Affiliation(s)
- Smreti Vasudevan
- Department of Research, Rajiv Gandhi Cancer Institute and Research Centre, Delhi, India
| | - Anurag Mehta
- Department of Laboratory and Transfusion Services and Department of Research, Rajiv Gandhi Cancer Institute and Research Centre, Delhi, India
| | - Diksha Karki
- Department of Laboratory and Transfusion Services, Rajiv Gandhi Cancer Institute and Research Centre, Delhi, India
| | - Dushyant Kumar
- Department of Laboratory and Transfusion Services, Rajiv Gandhi Cancer Institute and Research Centre, Delhi, India
| |
Collapse
|
27
|
Reynolds T, Riddick G, Meyers G, Gordon M, Flores Monar GV, Moon D, Moon C. Results Obtained from a Pivotal Validation Trial of a Microsatellite Analysis (MSA) Assay for Bladder Cancer Detection through a Statistical Approach Using a Four-Stage Pipeline of Modern Machine Learning Techniques. Int J Mol Sci 2023; 25:472. [PMID: 38203643 PMCID: PMC10778918 DOI: 10.3390/ijms25010472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/10/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Several studies have shown that microsatellite changes can be profiled in urine for the detection of bladder cancer. The use of microsatellite analysis (MSA) for bladder cancer detection requires a comprehensive analysis of as many as 15 to 20 markers, based on the amplification and interpretations of many individual MSA markers, and it can be technically challenging. Here, to develop fast, more efficient, standardized, and less costly MSA for the detection of bladder cancer, we developed three multiplex-polymerase-chain-reaction-(PCR)-based MSA assays, all of which were analyzed via a genetic analyzer. First, we selected 16 MSA markers based on 9 selected publications. Based on samples from Johns Hopkins University (the JHU sample, the first set sample), we developed an MSA based on triplet, three-tube-based multiplex PCR (a Triplet MSA assay). The discovery, validation, and translation of biomarkers for the early detection of cancer are the primary focuses of the Early Detection Research Network (EDRN), an initiative of the National Cancer Institute (NCI). A prospective study sponsored by the EDRN was undertaken to determine the efficacy of a novel set of MSA markers for the early detection of bladder cancer. This work and data analysis were performed through a collaboration between academics and industry partners. In the current study, we undertook a re-analysis of the primary data from the Compass study to enhance the predictive power of the dataset in bladder cancer diagnosis. Using a four-stage pipeline of modern machine learning techniques, including outlier removal with a nonlinear model, correcting for majority/minority class imbalance, feature engineering, and the use of a model-derived variable importance measure to select predictors, we were able to increase the utility of the original dataset to predict the occurrence of bladder cancer. The results of this analysis showed an increase in accuracy (85%), sensitivity (82%), and specificity (83%) compared to the original analysis. The re-analysis of the EDRN study results using machine learning statistical analysis proved to achieve an appropriate level of accuracy, sensitivity, and specificity to support the use of the MSA for bladder cancer detection and monitoring. This assay can be a significant addition to the tools urologists use to both detect primary bladder cancers and monitor recurrent bladder cancer.
Collapse
Affiliation(s)
- Thomas Reynolds
- NEXT Bio-Research Services, LLC, 11601 Ironbridge Road, Suite 101, Chester, VA 23831, USA; (T.R.); (G.M.)
| | - Gregory Riddick
- NEXT Bio-Research Services, LLC, 11601 Ironbridge Road, Suite 101, Chester, VA 23831, USA; (T.R.); (G.M.)
| | - Gregory Meyers
- NEXT Bio-Research Services, LLC, 11601 Ironbridge Road, Suite 101, Chester, VA 23831, USA; (T.R.); (G.M.)
| | - Maxie Gordon
- HJM Cancer Research Foundation Corporation, 10606 Candlewick Road, Lutherville, MD 21093, USA; (M.G.)
- BCD Innovations USA, 10606 Candlewick Road, Lutherville, MD 21093, USA
| | | | - David Moon
- HJM Cancer Research Foundation Corporation, 10606 Candlewick Road, Lutherville, MD 21093, USA; (M.G.)
| | - Chulso Moon
- HJM Cancer Research Foundation Corporation, 10606 Candlewick Road, Lutherville, MD 21093, USA; (M.G.)
- BCD Innovations USA, 10606 Candlewick Road, Lutherville, MD 21093, USA
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institution, Cancer Research Building II, 5M3, 1550 Orleans Street, Baltimore, MD 21205, USA
| |
Collapse
|
28
|
Reynolds T, Bertsche K, Moon D, Moon C. Qualification of the Microsatellite Instability Analysis (MSA) for Bladder Cancer Detection: The Technical Challenges of Concordance Analysis. Int J Mol Sci 2023; 25:209. [PMID: 38203379 PMCID: PMC10779061 DOI: 10.3390/ijms25010209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024] Open
Abstract
Bladder cancer (here we refer to transitional carcinoma of bladder) is a major cause of morbidity and mortality in the Western world, and recent understanding of its etiology, the molecular characteristics associated with its progression, renders bladder cancer an ideal candidate for screening. Cystoscopy is invasive and sometimes carries unwanted complications, but it is the gold standard for the detection of bladder cancer. Urine cytology, while the most commonly used test as an initial screening tool, is of limited value due to its low sensitivity, particularly for low-grade tumors. Several new "molecular assays" for the diagnosis of urothelial cancer have been developed over the last two decades. Here, we have established our new bladder cancer test based on an assay established for the Early Detection Research Network (EDRN) study. As a part of the study, a quality control CLIA/College of American Pathology (CAP) accredited laboratory, (QA Lab), University of Maryland Baltimore Biomarker Reference Laboratory (UMB-BRL), performed quality assurance analysis. Quality assurance measures included a concordance study between the testing laboratory (AIBioTech), also CLIA/CAP accredited, and the QA lab to ensure that the assay was performed and the results were analyzed in a consistent manner. Therefore, following the technical transfer and training of the microsatellite analysis assay to the UMB-BRL and prior to the initiation of analysis of the clinical samples by the testing lab, a series of qualification studies were performed. This report details the steps taken to ensure qualification of the assay and illustrates the technical challenges facing biomarker validation of this kind.
Collapse
Affiliation(s)
- Thomas Reynolds
- NEXT Bio-Research Services, LLC, 11601 Ironbridge Road, Suite 101, Chester, VI 23831, USA
| | - Katie Bertsche
- NEXT Bio-Research Services, LLC, 11601 Ironbridge Road, Suite 101, Chester, VI 23831, USA
| | - David Moon
- HJM Cancer Research Foundation Corporation, 10606 Candlewick Road, Lutherville, MD 21093, USA
| | - Chulso Moon
- HJM Cancer Research Foundation Corporation, 10606 Candlewick Road, Lutherville, MD 21093, USA
- BCD Innovations USA, 10606 Candlewick Road, Lutherville, MD 21093, USA
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institution, Cancer Research Building II, 5M3, 1550 Orleans Street, Baltimore, MD 21205, USA
| |
Collapse
|
29
|
Chung Y, Nam SK, Chang HE, Lee C, Kang GH, Lee HS, Park KU. Evaluation of an eight marker-panel including long mononucleotide repeat markers to detect microsatellite instability in colorectal, gastric, and endometrial cancers. BMC Cancer 2023; 23:1100. [PMID: 37953261 PMCID: PMC10641958 DOI: 10.1186/s12885-023-11607-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Accurate determination of microsatellite instability (MSI) status is critical for optimal treatment in cancer patients. Conventional MSI markers can sometimes display subtle shifts that are difficult to interpret, especially in non-colorectal cases. We evaluated an experimental eight marker-panel including long mononucleotide repeat (LMR) markers for detection of MSI. METHODS The eight marker-panel was comprised of five conventional markers (BAT-25, BAT-26, NR-21, NR-24, and NR-27) and three LMR markers (BAT-52, BAT-59 and BAT-62). MSI testing was performed against 300 specimens of colorectal, gastric, and endometrial cancers through PCR followed by capillary electrophoresis length analysis. RESULTS The MSI testing with eight marker-panel showed 99.3% (295/297) concordance with IHC analysis excluding 3 MMR-focal deficient cases. The sensitivity of BAT-59 and BAT-62 was higher than or comparable to that of conventional markers in gastric and endometrial cancer. The mean shift size was larger in LMR markers compared to conventional markers for gastric and endometrial cancers. CONCLUSIONS The MSI testing with eight maker-panel showed comparable performance with IHC analysis. The LMR markers, especially BAT-59 and BAT-62, showed high sensitivity and large shifts which can contribute to increased confidence in MSI classification, especially in gastric and endometrial cancers. Further study is needed with large number of samples for the validation of these LMR markers.
Collapse
Affiliation(s)
- Yousun Chung
- Department of Laboratory Medicine, Kangdong Sacred Heart Hospital, Seoul, Republic of Korea
| | - Soo Kyung Nam
- Department of Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ho Eun Chang
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Cheol Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Pathology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Pathology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Pathology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Kyoung Un Park
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro 173, Bundang-gu, Seongnam, 13620, Republic of Korea.
| |
Collapse
|
30
|
Gao Y, Wu A. Organ Preservation in MSS Rectal Cancer. Clin Colon Rectal Surg 2023; 36:430-440. [PMID: 37795468 PMCID: PMC10547535 DOI: 10.1055/s-0043-1767710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Rectal cancer is a heterogeneous disease with complex genetic and molecular subtypes. Emerging progress of neoadjuvant therapy has led to increased pathological and clinical complete response (cCR) rates for microsatellite stable (MSS) rectal cancer, which responds poorly to immune checkpoint inhibitor alone. As a result, organ preservation of MSS rectal cancer as an alternative to radical surgery has gradually become a feasible option. For patients with cCR or near-cCR after neoadjuvant treatment, organ preservation can be implemented safely with less morbidity. Patient selection can be done either before the neoadjuvant treatment for higher probability or after with careful assessment for a favorable outcome. Those patients who achieved a good clinical response are managed with nonoperative management, organ preservation surgery, or radiation therapy alone followed by strict surveillance. The oncological outcomes of patients with careful selection and organ preservation seem to be noninferior compared with those of radical surgery, with lower postoperative morbidity. However, more studies should be done to seek better regression of tumor and maximize the possibility of organ preservation in MSS rectal cancer.
Collapse
Affiliation(s)
- Yuye Gao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Unit III, Gastrointestinal Cancer Center, Peking University Cancer Hospital and Institute, Beijing, China
| | - Aiwen Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Unit III, Gastrointestinal Cancer Center, Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
31
|
Bacher JW, Udho EB, Strauss EE, Vyazunova I, Gallinger S, Buchanan DD, Pai RK, Templeton AS, Storts DR, Eshleman JR, Halberg RB. A Highly Sensitive Pan-Cancer Test for Microsatellite Instability. J Mol Diagn 2023; 25:806-826. [PMID: 37544360 PMCID: PMC10629437 DOI: 10.1016/j.jmoldx.2023.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 08/08/2023] Open
Abstract
Microsatellite instability (MSI) is an evolving biomarker for cancer detection and treatment. MSI was first used to identify patients with Lynch syndrome, a hereditary form of colorectal cancer (CRC), but has recently become indispensable in predicting patient response to immunotherapy. To address the need for pan-cancer MSI detection, a new multiplex assay was developed that uses novel long mononucleotide repeat (LMR) markers to improve sensitivity. A total of 469 tumor samples from 20 different cancer types, including 319 from patients with Lynch syndrome, were tested for MSI using the new LMR MSI Analysis System. Results were validated by using deficient mismatch repair (dMMR) status according to immunohistochemistry as the reference standard and compared versus the Promega pentaplex MSI panel. The sensitivity of the LMR panel for detection of dMMR status by immunohistochemistry was 99% for CRC and 96% for non-CRC. The overall percent agreement between the LMR and Promega pentaplex panels was 99% for CRC and 89% for non-CRC tumors. An increased number of unstable markers and the larger size shifts observed in dMMR tumors using the LMR panel increased confidence in MSI determinations. The LMR MSI Analysis System expands the spectrum of cancer types in which MSI can be accurately detected.
Collapse
Affiliation(s)
- Jeffery W Bacher
- R&D Clinical Diagnostics, Promega Corporation, Madison, Wisconsin; Department of Medicine, University of Wisconsin, Madison, Wisconsin.
| | - Eshwar B Udho
- R&D Clinical Diagnostics, Promega Corporation, Madison, Wisconsin
| | | | - Irina Vyazunova
- R&D Clinical Diagnostics, Promega Corporation, Madison, Wisconsin
| | - Steven Gallinger
- Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia; Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Rish K Pai
- Health Science Research, Mayo Clinic, Scottsdale, Arizona
| | | | - Douglas R Storts
- R&D Clinical Diagnostics, Promega Corporation, Madison, Wisconsin
| | - James R Eshleman
- School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Richard B Halberg
- Department of Medicine, University of Wisconsin, Madison, Wisconsin; Department of Oncology, McArdle Laboratory of Cancer Research, University of Wisconsin, Madison, Wisconsin; University of Wisconsin Carbone Cancer Center, Madison, Wisconsin.
| |
Collapse
|
32
|
Reynolds T, Gordon M, Monar GVF, Moon D, Moon C. Development of Multiplex Polymerase Chain Reaction (PCR)-Based MSA Assay for Bladder Cancer Detection. Int J Mol Sci 2023; 24:13651. [PMID: 37686456 PMCID: PMC10488090 DOI: 10.3390/ijms241713651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Several studies have shown that microsatellite changes can be profiled in the urine to detect bladder cancer. Microsatellite analysis (MSA) of bladder cancer detection requires a comprehensive analysis of up to 15-20 markers based on amplifying and interpreting many individual MSA markers, which can be technically challenging. To develop fast, efficient, standardized, and less costly MSA to detect bladder cancer, we developed three multiplex polymerase chain reaction (PCR) based MSA assays, all of which were analyzed by a genetic analyzer. First, we selected 16 MSA markers based on nine publications. We developed MSA assays based on triplet or three-tube-based multiplex PCR (Triplet MSA assay) using samples from Johns Hopkins University (JHU Sample, first set of samples). In the second set of samples (samples from six cancer patients and fourteen healthy individuals), our Triplet Assay with 15 MSA markers correctly predicted all 6/6 cancer samples to be cancerous and 14/14 healthy samples to be healthy. Although we could improve our report with more clinical information from patient samples and an increased number of cancer patients, our overall results suggest that our Triplet MSA Assay combined with a genetic analyzer is a potentially time- and cost-effective genetic assay for bladder cancer detection and has potential use as a dependable assay in patient care.
Collapse
Affiliation(s)
- Thomas Reynolds
- NEXT Bio-Research Services, LLC, 11601 Ironbridge Road, Suite 101, Chester, VA 23831, USA
| | - Maxie Gordon
- HJM Cancer Research Foundation Corporation, 10606 Candlewick Road, Lutherville, MD 21093, USA
- BCD Innovations USA, 10606 Candlewick Road, Lutherville, MD 21093, USA
| | | | - David Moon
- HJM Cancer Research Foundation Corporation, 10606 Candlewick Road, Lutherville, MD 21093, USA
| | - Chulso Moon
- HJM Cancer Research Foundation Corporation, 10606 Candlewick Road, Lutherville, MD 21093, USA
- BCD Innovations USA, 10606 Candlewick Road, Lutherville, MD 21093, USA
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institution, Cancer Research Building II, 5M3, 1550 Orleans Street, Baltimore, MD 21205, USA
| |
Collapse
|
33
|
Guan J, Li GM. DNA mismatch repair in cancer immunotherapy. NAR Cancer 2023; 5:zcad031. [PMID: 37325548 PMCID: PMC10262306 DOI: 10.1093/narcan/zcad031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/08/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023] Open
Abstract
Tumors defective in DNA mismatch repair (dMMR) exhibit microsatellite instability (MSI). Currently, patients with dMMR tumors are benefitted from anti-PD-1/PDL1-based immune checkpoint inhibitor (ICI) therapy. Over the past several years, great progress has been made in understanding the mechanisms by which dMMR tumors respond to ICI, including the identification of mutator phenotype-generated neoantigens, cytosolic DNA-mediated activation of the cGAS-STING pathway, type-I interferon signaling and high tumor-infiltration of lymphocytes in dMMR tumors. Although ICI therapy shows great clinical benefits, ∼50% of dMMR tumors are eventually not responsive. Here we review the discovery, development and molecular basis of dMMR-mediated immunotherapy, as well as tumor resistant problems and potential therapeutic interventions to overcome the resistance.
Collapse
Affiliation(s)
- Junhong Guan
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Guo-Min Li
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
34
|
Boland CR, Koi M, Hawn MT, Carethers JM, Yurgelun MB. Serendipity Strikes: How Pursuing Novel Hypotheses Shifted the Paradigm Regarding the Genetic Basis of Colorectal Cancer and Changed Cancer Therapy. Dig Dis Sci 2023; 68:3504-3513. [PMID: 37402979 PMCID: PMC11262588 DOI: 10.1007/s10620-023-08006-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2023] [Indexed: 07/06/2023]
Abstract
In this installment of the "Paradigm Shifts in Perspective" series, the authors, all scientists who have been involved in colorectal cancer (CRC) research for most or all of their careers, have watched the field develop from early pathological descriptions of tumor formation to the current understanding of tumor pathogenesis that informs personalized therapies. We outline how our understanding of the pathogenetic basis of CRC began with seemingly isolated discoveries-initially with the mutations in RAS and the APC gene, the latter of which was initially found in the context of intestinal polyposis, to the more complex process of multistep carcinogenesis, to the chase for tumor suppressor genes, which led to the unexpected discovery of microsatellite instability (MSI). These discoveries enabled the authors to better understand how the DNA mismatch repair (MMR) system not only recognizes DNA damage but also responds to damage by DNA repair or by triggering apoptosis in the injured cell. This work served, in part, to link the earlier findings on the pathogenesis of CRC to the development of immune checkpoint inhibitors, which has been transformative-and curative-for certain types of CRCs and other cancers as well. These discoveries also highlight the circuitous routes that scientific progress takes, which can include thoughtful hypothesis testing and at other times recognizing the importance of seemingly serendipitous observations that substantially change the flow and direction of the discovery process. What has happened over the past 37 years was not predictable when this journey began, but it does speak to the power of careful scientific experimentation, following the facts, perseverance in the face of opposition, and the willingness to think outside of established paradigms.
Collapse
Affiliation(s)
| | | | - Mary T Hawn
- Department of Surgery, Stanford University School of Medicine, CJ Huang Bldg, Palo Alto, CA, 94306, USA
| | | | - Matthew B Yurgelun
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
35
|
Mumphrey MB, Hosseini N, Parolia A, Geng J, Zou W, Raghavan M, Chinnaiyan A, Cieslik M. Distinct mutational processes shape selection of MHC class I and class II mutations across primary and metastatic tumors. Cell Rep 2023; 42:112965. [PMID: 37597185 PMCID: PMC11847572 DOI: 10.1016/j.celrep.2023.112965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/15/2023] [Accepted: 07/26/2023] [Indexed: 08/21/2023] Open
Abstract
Disruption of antigen presentation via loss of major histocompatibility complex (MHC) expression is a strategy whereby cancer cells escape immune surveillance and develop resistance to immunotherapy. Here, we develop the personalized genomics algorithm Hapster and accurately call somatic mutations within the MHC genes of 10,001 primary and 2,199 metastatic tumors, creating a catalog of 1,663 non-synonymous mutations that provide key insights into MHC mutagenesis. We find that MHC class I genes are among the most frequently mutated genes in both primary and metastatic tumors, while MHC class II mutations are more restricted. Recurrent deleterious mutations are found within haplotype- and cancer-type-specific hotspots associated with distinct mutational processes. Functional classification of MHC residues reveals significant positive selection for mutations disruptive to the B2M, peptide, and T cell binding interfaces, as well as to MHC chaperones.
Collapse
Affiliation(s)
- Michael B Mumphrey
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Noshad Hosseini
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Abhijit Parolia
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jie Geng
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Weiping Zou
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48109, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI 48109, USA; University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109, USA
| | - Malini Raghavan
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Arul Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA; Howard Hughes Medical Institute, Ann Arbor, MI 48109, USA; University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109, USA
| | - Marcin Cieslik
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109, USA.
| |
Collapse
|
36
|
Wang C, Kuang W, Zeng J, Ren Y, Liu Q, Sun H, Feng M, Liang D. A retrospective study of consistency between immunohistochemistry and polymerase chain reaction of microsatellite instability in endometrial cancer. PeerJ 2023; 11:e15920. [PMID: 37663290 PMCID: PMC10470453 DOI: 10.7717/peerj.15920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/28/2023] [Indexed: 09/05/2023] Open
Abstract
Objectives Identification of endometrial cancers (EC) with mismatch repair deficiency (dMMR) or microsatellite instability-high (MSI-H) is essential for Lynch syndrome screening and treatment stratification. We aimed to assess the utility of immunohistochemistry (IHC) staining for MMR protein expression and polymerase chain reaction (PCR)-based MSI assays in EC and the correlation between MMR/MSI status and various clinicopathological parameters. Methods We reviewed the clinical and pathological information of 333 patients with EC. MMR protein expression was assessed as retained or lost to determine MMR status by IHC staining, and MSI status was identified by PCR capillary electrophoresis (PCR-CE) testing with a National Cancer Institute (NCI) panel. The correlation of MMR/MSI status with clinicopathological features was determined by statistical analysis. Discrepant results were further analyzed using an alternative PCR-CE MSI (Promega panel) method, MLH1 promoter methylation assays, and next-generation sequencing (NGS). Results Among the EC patients, the overall percentage of dMMR was 25.2%, and the overall percentage of MSI-H was 24%. Among the dMMR patients, 50 (59.5%) showed loss of MLH1 and PMS2 expression, 19 (22.6%) loss of MSH2 and MSH6 expression, and seven (8.3%) and eight (9.5%) loss of PMS2 and MSH6 expression, respectively. The dMMR subgroup was significantly younger than the pMMR subgroup, especially for <60-years-old patients (p = 0.038). In addition, we identified a strong correlation between MMR/MSI status and high-grade endometrioid or nonendometrioid components (p = 0.004 or p = 0.003). IHC staining and PCR-CE assay results showed a high level of overall concordance (98.8%, Cohen's κ = 0.98). Four patients were found to have dMRR/MSS in both examinations. We reanalyzed them with additional methods. One case showed MLH1 promotor methylation, and the other three cases harbored MSH6 germline pathogenic variations. One of the cases with MSH6 deficiency was reanalyzed as MSI-H by alternative PCR-CE assay or NGS testing. Conclusions This study indicates that the combined use of MMR-IHC and PCR-CE MSI analyses may effectively avoid misdiagnoses of EC patients with dMMR/MSI-H. However, use of PCR-CE alone to evaluate MMR/MSI status may lead to missed diagnosis, especially for EC patients with MSH6 deficiency and presenting MSS.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Pathology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu, Sichuan, China
| | - Wei Kuang
- Department of Pathology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu, Sichuan, China
| | - Jing Zeng
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yang Ren
- West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qianqi Liu
- Department of Pathology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu, Sichuan, China
| | - Huanxin Sun
- Department of Pathology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu, Sichuan, China
| | - Min Feng
- Department of Pathology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu, Sichuan, China
| | - Dongni Liang
- Department of Pathology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu, Sichuan, China
| |
Collapse
|
37
|
Desai H, Ofori S, Boatner L, Yu F, Villanueva M, Ung N, Nesvizhskii AI, Backus K. Multi-omic stratification of the missense variant cysteinome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.12.553095. [PMID: 37645963 PMCID: PMC10461992 DOI: 10.1101/2023.08.12.553095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Cancer genomes are rife with genetic variants; one key outcome of this variation is gain-ofcysteine, which is the most frequently acquired amino acid due to missense variants in COSMIC. Acquired cysteines are both driver mutations and sites targeted by precision therapies. However, despite their ubiquity, nearly all acquired cysteines remain uncharacterized. Here, we pair cysteine chemoproteomics-a technique that enables proteome-wide pinpointing of functional, redox sensitive, and potentially druggable residues-with genomics to reveal the hidden landscape of cysteine acquisition. For both cancer and healthy genomes, we find that cysteine acquisition is a ubiquitous consequence of genetic variation that is further elevated in the context of decreased DNA repair. Our chemoproteogenomics platform integrates chemoproteomic, whole exome, and RNA-seq data, with a customized 2-stage false discovery rate (FDR) error controlled proteomic search, further enhanced with a user-friendly FragPipe interface. Integration of CADD predictions of deleteriousness revealed marked enrichment for likely damaging variants that result in acquisition of cysteine. By deploying chemoproteogenomics across eleven cell lines, we identify 116 gain-of-cysteines, of which 10 were liganded by electrophilic druglike molecules. Reference cysteines proximal to missense variants were also found to be pervasive, 791 in total, supporting heretofore untapped opportunities for proteoform-specific chemical probe development campaigns. As chemoproteogenomics is further distinguished by sample-matched combinatorial variant databases and compatible with redox proteomics and small molecule screening, we expect widespread utility in guiding proteoform-specific biology and therapeutic discovery.
Collapse
Affiliation(s)
- Heta Desai
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Samuel Ofori
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Lisa Boatner
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
| | - Fengchao Yu
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Miranda Villanueva
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Nicholas Ung
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, 90095, USA
| | - Alexey I Nesvizhskii
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Keriann Backus
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, 90095, USA
| |
Collapse
|
38
|
Ratovomanana T, Nicolle R, Cohen R, Diehl A, Siret A, Letourneur Q, Buhard O, Perrier A, Guillerm E, Coulet F, Cervera P, Benusiglio P, Labrèche K, Colle R, Collura A, Despras E, Le Rouzic P, Renaud F, Cros J, Alentorn A, Touat M, Ayadi M, Bourgoin P, Prunier C, Tournigand C, Fouchardière CDL, Tougeron D, Jonchère V, Bennouna J, de Reynies A, Fléjou JF, Svrcek M, André T, Duval A. Prediction of response to immune checkpoint blockade in patients with metastatic colorectal cancer with microsatellite instability. Ann Oncol 2023; 34:703-713. [PMID: 37269904 DOI: 10.1016/j.annonc.2023.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND Mismatch repair-deficient (dMMR) tumors displaying microsatellite instability (MSI) represent a paradigm for the success of immune checkpoint inhibitor (ICI)-based immunotherapy, particularly in patients with metastatic colorectal cancer (mCRC). However, a proportion of patients with dMMR/MSI mCRC exhibit resistance to ICI. Identification of tools predicting MSI mCRC patient response to ICI is required for the design of future strategies further improving this therapy. PATIENTS AND METHODS We combined high-throughput DNA and RNA sequencing of tumors from 116 patients with MSI mCRC treated with anti-programmed cell death protein 1 ± anti-cytotoxic T-lymphocyte-associated protein 4 of the NIPICOL phase II trial (C1, NCT03350126, discovery set) and the ImmunoMSI prospective cohort (C2, validation set). The DNA/RNA predictors whose status was significantly associated with ICI status of response in C1 were subsequently validated in C2. Primary endpoint was progression-free survival by immune RECIST (iRECIST) (iPFS). RESULTS Analyses showed no impact of previously suggested DNA/RNA indicators of resistance to ICI, e.g. MSIsensor score, tumor mutational burden, or specific cellular and molecular tumoral contingents. By contrast, iPFS under ICI was shown in C1 and C2 to depend both on a multiplex MSI signature involving the mutations of 19 microsatellites hazard ratio cohort C2 (HRC2) = 3.63; 95% confidence interval (CI) 1.65-7.99; P = 1.4 × 10-3] and the expression of a set of 182 RNA markers with a non-epithelial transforming growth factor beta (TGFB)-related desmoplastic orientation (HRC2 = 1.75; 95% CI 1.03-2.98; P = 0.035). Both DNA and RNA signatures were independently predictive of iPFS. CONCLUSIONS iPFS in patients with MSI mCRC can be predicted by simply analyzing the mutational status of DNA microsatellite-containing genes in epithelial tumor cells together with non-epithelial TGFB-related desmoplastic RNA markers.
Collapse
Affiliation(s)
- T Ratovomanana
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris
| | - R Nicolle
- Université Paris Cité, Centre de Recherche sur l'Inflammation (CRI), INSERM, U1149, CNRS, ERL 8252, Paris; GERCOR, Groupe Coopérateur Multidisciplinaire en Oncologie, Paris
| | - R Cohen
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris; GERCOR, Groupe Coopérateur Multidisciplinaire en Oncologie, Paris; Departments of Medical Oncology
| | - A Diehl
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris
| | - A Siret
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris
| | - Q Letourneur
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris
| | - O Buhard
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris
| | - A Perrier
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris; Molecular Biology and Medical Genetics, Sorbonne Université, AP-HP, Hospital Pitié-Salpêtrière, Paris
| | - E Guillerm
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris; Molecular Biology and Medical Genetics, Sorbonne Université, AP-HP, Hospital Pitié-Salpêtrière, Paris
| | - F Coulet
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris; Molecular Biology and Medical Genetics, Sorbonne Université, AP-HP, Hospital Pitié-Salpêtrière, Paris
| | - P Cervera
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris
| | - P Benusiglio
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris; Molecular Biology and Medical Genetics, Sorbonne Université, AP-HP, Hospital Pitié-Salpêtrière, Paris
| | - K Labrèche
- CinBioS, MS 37 PASS Production de données en Sciences de la vie et de la Santé, INSERM, Sorbonne Université et SIRIC CURAMUS, Paris
| | - R Colle
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris; GERCOR, Groupe Coopérateur Multidisciplinaire en Oncologie, Paris; Departments of Medical Oncology
| | - A Collura
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris
| | - E Despras
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris
| | - P Le Rouzic
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris
| | - F Renaud
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris
| | - J Cros
- Department of Pathology, Beaujon Hospital, AP-HP, Clichy
| | - A Alentorn
- Service de Neurologie 2-Mazarin, Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, 47-83 boulevard de l'Hôpital, Paris
| | - M Touat
- Service de Neurologie 2-Mazarin, Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, 47-83 boulevard de l'Hôpital, Paris
| | - M Ayadi
- Programme "Cartes d'Identité des Tumeurs", Ligue Nationale Contre le Cancer, Paris
| | - P Bourgoin
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris; Department of Pathology, Sorbonne Université, AP-HP, Hôpital Saint-Antoine, Paris
| | - C Prunier
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Signalisation TGFB, plasticité cellulaire et Cancer, Paris
| | - C Tournigand
- Department of Medical Oncology, Hôpital Henri-Mondor, APHP, Université Paris Est Creteil, INSERM U955, Créteil
| | | | - D Tougeron
- ProDicET, UR 24144, University of Poitiers and Hepato-Gastroenterology Department, Poitiers University Hospital, Poitiers
| | - V Jonchère
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris
| | - J Bennouna
- Centre De Recherche En Cancérologie Et Immunologie Nantes-Angers (CRCINA), INSERM, Université d'Angers, Université De Nantes, Nantes
| | - A de Reynies
- Cartes d'Identité des Tumeurs Program, Ligue Nationale Contre Cancer, Paris, France
| | - J-F Fléjou
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris; Department of Pathology, Sorbonne Université, AP-HP, Hôpital Saint-Antoine, Paris
| | - M Svrcek
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris; Department of Pathology, Sorbonne Université, AP-HP, Hôpital Saint-Antoine, Paris
| | - T André
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris; GERCOR, Groupe Coopérateur Multidisciplinaire en Oncologie, Paris; Departments of Medical Oncology
| | - A Duval
- Sorbonne Université, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris; Molecular Biology and Medical Genetics, Sorbonne Université, AP-HP, Hospital Pitié-Salpêtrière, Paris.
| |
Collapse
|
39
|
Thibaudin M, Fumet JD, Chibaudel B, Bennouna J, Borg C, Martin-Babau J, Cohen R, Fonck M, Taieb J, Limagne E, Blanc J, Ballot E, Hampe L, Bon M, Daumoine S, Peroz M, Mananet H, Derangère V, Boidot R, Michaud HA, Laheurte C, Adotevi O, Bertaut A, Truntzer C, Ghiringhelli F. First-line durvalumab and tremelimumab with chemotherapy in RAS-mutated metastatic colorectal cancer: a phase 1b/2 trial. Nat Med 2023; 29:2087-2098. [PMID: 37563240 PMCID: PMC10427431 DOI: 10.1038/s41591-023-02497-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/11/2023] [Indexed: 08/12/2023]
Abstract
Although patients with microsatellite instable metastatic colorectal cancer (CRC) benefit from immune checkpoint blockade, chemotherapy with targeted therapies remains the only therapeutic option for microsatellite stable (MSS) tumors. The single-arm, phase 1b/2 MEDITREME trial evaluated the safety and efficacy of durvalumab plus tremelimumab combined with mFOLFOX6 chemotherapy in first line, in 57 patients with RAS-mutant unresectable metastatic CRC. Safety was the primary objective of phase Ib; no safety issue was observed. The phase 2 primary objective of efficacy in terms of 3-month progression-free survival (PFS) in patients with MSS tumors was met, with 3-month PFS of 90.7% (95% confidence interval (CI): 79.2-96%). For secondary objectives, response rate was 64.5%; median PFS was 8.2 months (95% CI: 5.9-8.6); and overall survival was not reached in patients with MSS tumors. We observed higher tumor mutational burden and lower genomic instability in responders. Integrated transcriptomic analysis underlined that high immune signature and low epithelial-mesenchymal transition were associated with better outcome. Immunomonitoring showed induction of neoantigen and NY-ESO1 and TERT blood tumor-specific T cell response associated with better PFS. The combination of durvalumab-tremelimumab with mFOLFOX6 was tolerable with promising clinical activity in MSS mCRC. Clinicaltrials.gov identifier: NCT03202758 .
Collapse
Affiliation(s)
- Marion Thibaudin
- Université Bourgogne Franche-Comté, Dijon, France.
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France.
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France.
| | - Jean-David Fumet
- Université Bourgogne Franche-Comté, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France
- Genetic and Immunology Medical Institute, Dijon, France
| | - Benoist Chibaudel
- Department of Medical Oncology, Hôpital Franco-Britannique - Fondation Cognacq-Jay, Levallois-Perret, France
| | | | | | | | - Romain Cohen
- Department of Medical Oncology, Saint Antoine, Hospital, Paris, France
| | - Marianne Fonck
- Department of Medical Oncology, Institut Bergonie, Bordeaux, France
| | - Julien Taieb
- Department of Gastroenterology, Pompidou Hospital, Paris, France
| | - Emeric Limagne
- Université Bourgogne Franche-Comté, Dijon, France
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
| | - Julie Blanc
- Department of Statistics, Centre Georges-François Leclerc, Dijon, France
| | - Elise Ballot
- Université Bourgogne Franche-Comté, Dijon, France
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
| | - Léa Hampe
- Université Bourgogne Franche-Comté, Dijon, France
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
| | - Marjorie Bon
- Université Bourgogne Franche-Comté, Dijon, France
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
| | - Susy Daumoine
- Université Bourgogne Franche-Comté, Dijon, France
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
| | - Morgane Peroz
- Université Bourgogne Franche-Comté, Dijon, France
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
| | - Hugo Mananet
- Université Bourgogne Franche-Comté, Dijon, France
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
| | - Valentin Derangère
- Université Bourgogne Franche-Comté, Dijon, France
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
| | - Romain Boidot
- Unit of Molecular Biology, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
| | - Henri-Alexandre Michaud
- Plateforme de Cytométrie et d'Imagerie de Masse, IRCM, University of Montpellier, ICM, Inserm Montpellier, Montpellier, France
| | - Caroline Laheurte
- INSERM EFS UMR1098 RIGHT Interactions Hôte-Greffon-Tumeur - Ingénierie Cellulaire et Génique, Université Bourgogne Franche-Comté, Besançon, France
| | - Olivier Adotevi
- Department of Medical Oncology, CHU, Besançon, France
- INSERM EFS UMR1098 RIGHT Interactions Hôte-Greffon-Tumeur - Ingénierie Cellulaire et Génique, Université Bourgogne Franche-Comté, Besançon, France
| | - Aurélie Bertaut
- Department of Statistics, Centre Georges-François Leclerc, Dijon, France
| | - Caroline Truntzer
- Université Bourgogne Franche-Comté, Dijon, France
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Genetic and Immunology Medical Institute, Dijon, France
| | - François Ghiringhelli
- Université Bourgogne Franche-Comté, Dijon, France.
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France.
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France.
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France.
- Genetic and Immunology Medical Institute, Dijon, France.
| |
Collapse
|
40
|
Kalyanasundaram S, Lefol Y, Gundersen S, Rognes T, Alsøe L, Nilsen HL, Hovig E, Sandve GK, Domanska D. hGSuite HyperBrowser: A web-based toolkit for hierarchical metadata-informed analysis of genomic tracks. PLoS One 2023; 18:e0286330. [PMID: 37467208 DOI: 10.1371/journal.pone.0286330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/15/2023] [Indexed: 07/21/2023] Open
Abstract
Many high-throughput sequencing datasets can be represented as objects with coordinates along a reference genome. Currently, biological investigations often involve a large number of such datasets, for example representing different cell types or epigenetic factors. Drawing overall conclusions from a large collection of results for individual datasets may be challenging and time-consuming. Meaningful interpretation often requires the results to be aggregated according to metadata that represents biological characteristics of interest. In this light, we here propose the hierarchical Genomic Suite HyperBrowser (hGSuite), an open-source extension to the GSuite HyperBrowser platform, which aims to provide a means for extracting key results from an aggregated collection of high-throughput DNA sequencing data. The hGSuite utilizes a metadata-informed data cube to calculate various statistics across the multiple dimensions of the datasets. With this work, we show that the hGSuite and its associated data cube methodology offers a quick and accessible way for exploratory analysis of large genomic datasets. The web-based toolkit named hGsuite Hyperbrowser is available at https://hyperbrowser.uio.no/hgsuite under a GPLv3 license.
Collapse
Affiliation(s)
- Sumana Kalyanasundaram
- Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Biomedical Informatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Yohan Lefol
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Microbiology, University Hospital, Oslo, Norway
| | - Sveinung Gundersen
- Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
- Biomedical Informatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Torbjørn Rognes
- Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
- Department of Microbiology, University Hospital, Oslo, Norway
- Biomedical Informatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Lene Alsøe
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Microbiology, University Hospital, Oslo, Norway
| | - Hilde Loge Nilsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Microbiology, University Hospital, Oslo, Norway
| | - Eivind Hovig
- Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Biomedical Informatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Geir Kjetil Sandve
- Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
- Biomedical Informatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Diana Domanska
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Pathology, University Hospital, Oslo, Norway
| |
Collapse
|
41
|
Vuković Đerfi K, Salar A, Cacev T, Kapitanović S. EMAST Type of Microsatellite Instability-A Distinct Entity or Blurred Overlap between Stable and MSI Tumors. Genes (Basel) 2023; 14:1474. [PMID: 37510378 PMCID: PMC10380056 DOI: 10.3390/genes14071474] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Microsatellite instability (MSI) represents an accumulation of frameshifts in short tandem repeats, microsatellites, across the genome due to defective DNA mismatch repair (dMMR). MSI has been associated with distinct clinical, histological, and molecular features of tumors and has proven its prognostic and therapeutic value in different types of cancer. Recently, another type of microsatellite instability named elevated microsatellite alterations at selected tetranucleotide repeats (EMAST) has been reported across many different tumors. EMAST tumors have been associated with chronic inflammation, higher tumor stage, and poor prognosis. Nevertheless, the clinical significance of EMAST and its relation to MSI remains unclear. It has been proposed that EMAST arises as a result of isolated MSH3 dysfunction or as a secondary event in MSI tumors. Even though previous studies have associated EMAST with MSI-low phenotype in tumors, recent studies show a certain degree of overlap between EMAST and MSI-high tumors. However, even in stable tumors, (MSS) frameshifts in microsatellites can be detected as a purely stochastic event, raising the question of whether EMAST truly represents a distinct type of microsatellite instability. Moreover, a significant fraction of patients with MSI tumors do not respond to immunotherapy and it can be speculated that in these tumors, EMAST might act as a modifying factor.
Collapse
Affiliation(s)
- Kristina Vuković Đerfi
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Anamarija Salar
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Tamara Cacev
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Sanja Kapitanović
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
42
|
Rantanen P, Keränen A, Barot S, Ghazi S, Liljegren A, Nordenvall C, Lindblom A, Lindforss U. The prognostic significance of microsatellite instability in colorectal cancer: a Swedish multi-center study. Int J Colorectal Dis 2023; 38:197. [PMID: 37458848 PMCID: PMC10352163 DOI: 10.1007/s00384-023-04480-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/27/2023] [Indexed: 07/20/2023]
Abstract
PURPOSE About 10 to 15% of patients with sporadic colorectal cancer display mutations in DNA mismatch repair (MMR) genes shown as microsatellite instability (MSI). Previous reports of colorectal cancer (CRC) indicate a better prognosis for patients with MSI tumors compared to patients with microsatellite stable (MSS) tumors. In this study, our aim was to investigate whether MSI is an independent prognostic factor in CRC. PATIENTS AND METHODS Patients with stage I-III colorectal cancer and subject to curative surgery during 2002-2006 in the Swedish low-risk colorectal cancer study group cohort were eligible for inclusion. Deficient MMR (dMMR) status was analyzed by immunohistochemistry (IHC) and/or by MSI testing with polymerase chain reaction (PCR). Prognostic follow-up and treatment data were retrieved from patient records. Statistical analyses to assess MSI-status and prognosis were done using logistic regression and survival analyses using the Kaplan-Meier method and Cox regression hazards models adjusted for age, sex, stage, comorbidity, and tumor location. RESULTS In total, 463 patients were included, MSI high tumors were present in 66 patients (14%), and the remaining 397 were MSS/MSI low. Within 6 years, distant recurrences were present in 9.1% and 20.2% (P = 0.049), and death occurred in 25.8% and 31.5% in MSI and MSS patients, respectively. There was no statistically significant difference in overall mortality (HR 0.80, 95% CI 0.46-1.38), relapse-free survival (HR 0.82, 95% CI 0.50-1.36), or cancer-specific mortality (HR 1.60, 95% CI 0.73-3.51). CONCLUSION Despite distant metastases being less common in patients with MSI, there was no association between MSI and overall, relapse-free, or cancer-specific survival.
Collapse
Affiliation(s)
- Petri Rantanen
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| | - Anne Keränen
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Shabane Barot
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet Stockholm, Sweden
| | - Sam Ghazi
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Annelie Liljegren
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Caroline Nordenvall
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska Institutet, Stockholm, Sweden
| | - Ulrik Lindforss
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
43
|
Mestrallet G, Brown M, Bozkus CC, Bhardwaj N. Immune escape and resistance to immunotherapy in mismatch repair deficient tumors. Front Immunol 2023; 14:1210164. [PMID: 37492581 PMCID: PMC10363668 DOI: 10.3389/fimmu.2023.1210164] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/21/2023] [Indexed: 07/27/2023] Open
Abstract
Up to 30% of colorectal, endometrial and gastric cancers have a deficiency in mismatch repair (MMR) protein expression due to either germline or epigenetic inactivation. Patients with Lynch Syndrome who inherit an inactive MMR allele have an up to 80% risk for developing a mismatch repair deficient (MMRd) cancer. Due to an inability to repair DNA, MMRd tumors present with genomic instability in microsatellite regions (MS). Tumors with high MS instability (MSI-H) are characterized by an increased frequency of insertion/deletions (indels) that can encode novel neoantigens if they occur in coding regions. The high tumor antigen burden for MMRd cancers is accompanied by an inflamed tumor microenvironment (TME) that contributes to the clinical effectiveness of anti-PD-1 therapy in this patient population. However, between 40 and 70% of MMRd cancer patients do not respond to treatment with PD-1 blockade, suggesting that tumor-intrinsic and -extrinsic resistance mechanisms may affect the success of checkpoint blockade. Immune evasion mechanisms that occur during early tumorigenesis and persist through cancer development may provide a window into resistance pathways that limit the effectiveness of anti-PD-1 therapy. Here, we review the mechanisms of immune escape in MMRd tumors during development and checkpoint blockade treatment, including T cell dysregulation and myeloid cell-mediated immunosuppression in the TME. Finally, we discuss the development of new therapeutic approaches to tackle resistance in MMRd tumors, including cancer vaccines, therapies targeting immunosuppressive myeloid programs, and immune checkpoint combination strategies.
Collapse
Affiliation(s)
- Guillaume Mestrallet
- Division of Hematology and Oncology, Hess Center for Science & Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Matthew Brown
- Division of Hematology and Oncology, Hess Center for Science & Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Cansu Cimen Bozkus
- Division of Hematology and Oncology, Hess Center for Science & Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nina Bhardwaj
- Division of Hematology and Oncology, Hess Center for Science & Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Extramural member, Parker Institute for Cancer Immunotherapy, San Francisco, CA, United States
| |
Collapse
|
44
|
Wolf K, Kosinski J, Gibson TJ, Wesch N, Dötsch V, Genuardi M, Cordisco EL, Zeuzem S, Brieger A, Plotz G. A conserved motif in the disordered linker of human MLH1 is vital for DNA mismatch repair and its function is diminished by a cancer family mutation. Nucleic Acids Res 2023; 51:6307-6320. [PMID: 37224528 PMCID: PMC10325900 DOI: 10.1093/nar/gkad418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/26/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023] Open
Abstract
DNA mismatch repair (MMR) is essential for correction of DNA replication errors. Germline mutations of the human MMR gene MLH1 are the major cause of Lynch syndrome, a heritable cancer predisposition. In the MLH1 protein, a non-conserved, intrinsically disordered region connects two conserved, catalytically active structured domains of MLH1. This region has as yet been regarded as a flexible spacer, and missense alterations in this region have been considered non-pathogenic. However, we have identified and investigated a small motif (ConMot) in this linker which is conserved in eukaryotes. Deletion of the ConMot or scrambling of the motif abolished mismatch repair activity. A mutation from a cancer family within the motif (p.Arg385Pro) also inactivated MMR, suggesting that ConMot alterations can be causative for Lynch syndrome. Intriguingly, the mismatch repair defect of the ConMot variants could be restored by addition of a ConMot peptide containing the deleted sequence. This is the first instance of a DNA mismatch repair defect conferred by a mutation that can be overcome by addition of a small molecule. Based on the experimental data and AlphaFold2 predictions, we suggest that the ConMot may bind close to the C-terminal MLH1-PMS2 endonuclease and modulate its activation during the MMR process.
Collapse
Affiliation(s)
- Karla Wolf
- Department of Internal Medicine 1, University Hospital, Goethe University, Frankfurt am Main, 60590, Germany
| | - Jan Kosinski
- European Molecular Biology Laboratory (EMBL), Centre for Structural Systems Biology (CSSB), Hamburg, 22607, Germany
| | - Toby J Gibson
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, 69117, Germany
| | - Nicole Wesch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt am Main, 60438, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt am Main, 60438, Germany
| | - Maurizio Genuardi
- UOC Genetica Medica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome00168, Italy
| | - Emanuela Lucci Cordisco
- Dipartimento di Scienze della Vita e di Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome00168, Italy
| | - Stefan Zeuzem
- Department of Internal Medicine 1, University Hospital, Goethe University, Frankfurt am Main, 60590, Germany
| | - Angela Brieger
- Department of Internal Medicine 1, University Hospital, Goethe University, Frankfurt am Main, 60590, Germany
| | - Guido Plotz
- Department of Internal Medicine 1, University Hospital, Goethe University, Frankfurt am Main, 60590, Germany
| |
Collapse
|
45
|
Zhou W, He MM, Wang F, Xu RH, Wang F, Zhao Q. Latent class analysis-derived classification improves the cancer-specific death stratification of molecular subtyping in colorectal cancer. NPJ Precis Oncol 2023; 7:60. [PMID: 37353681 DOI: 10.1038/s41698-023-00412-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/05/2023] [Indexed: 06/25/2023] Open
Abstract
The molecular subtypes of colorectal cancer (CRC) represent a comprehensive dissection of CRC heterogeneity. However, molecular feature-based classification systems have limitations in accurately prognosticating stratification due to the inability to distinguish cancer-specific deaths. This study aims to establish a classification system that bridges clinical characteristics, cause-specific deaths, and molecular features. We adopted latent class analysis (LCA) on 491,107 first primary CRC patients from the Surveillance, Epidemiology, and End Results (SEER) database to reveal hidden profiles of CRC. The LCA-derived classification scheme was further applied to The Cancer Genome Atlas (TCGA) to assess its effectiveness in improving the accurate stratification of molecular-based subtypes of CRC. Four classes were identified based on latent class analysis integrating demographic and clinicopathological information of CRC patients. The LCA-derived Class 1 (LCAC1) and the LCAC2 showed a high risk of dying from non-CRC, while patients in LCAC3 had a risk of dying from CRC 1.41 times that of LCAC1 (95% confidence interval [CI] = 1.39-1.43). LCAC4 had the lowest probability to die from non-CRC (hazard ratio [HR] = 0.22, 95% CI = 0.21-0.24) compared with LCAC1. Since the LCA-derived classification can identify patients susceptible to CRC-specific death, adjusting for this classification allows molecular-based subtypes to achieve more accurate survival stratification. We provided a classification system capable of distinguish CRC-specific death, which will improve the accuracy of consensus molecular subtypes for CRC patients' survival stratification. Further studies are warranted to confirm the molecular features of LCA-derived classification to inform potential therapeutic strategies and treatment recommendations.
Collapse
Affiliation(s)
- Wen Zhou
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, 510060, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, 510060, Guangzhou, P. R. China
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Sun Yat-sen University, 510060, Guangzhou, P. R. China
| | - Ming-Ming He
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, 510060, Guangzhou, P. R. China
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Sun Yat-sen University, 510060, Guangzhou, P. R. China
| | - Feng Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, 510060, Guangzhou, P. R. China
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Sun Yat-sen University, 510060, Guangzhou, P. R. China
| | - Rui-Hua Xu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, 510060, Guangzhou, P. R. China
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Sun Yat-sen University, 510060, Guangzhou, P. R. China
| | - Fang Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, 510060, Guangzhou, P. R. China.
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, 510060, Guangzhou, P. R. China.
| | - Qi Zhao
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, 510060, Guangzhou, P. R. China.
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Sun Yat-sen University, 510060, Guangzhou, P. R. China.
| |
Collapse
|
46
|
Cann CG, LaPelusa MB, Cimino SK, Eng C. Molecular and genetic targets within metastatic colorectal cancer and associated novel treatment advancements. Front Oncol 2023; 13:1176950. [PMID: 37409250 PMCID: PMC10319053 DOI: 10.3389/fonc.2023.1176950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/30/2023] [Indexed: 07/07/2023] Open
Abstract
Colorectal cancer results in the deaths of hundreds of thousands of patients worldwide each year, with incidence expected to rise over the next two decades. In the metastatic setting, cytotoxic therapy options remain limited, which is reflected in the meager improvement of patient survival rates. Therefore, focus has turned to the identification of the mutational composition inherent to colorectal cancers and development of therapeutic targeted agents. Herein, we review the most up to date systemic treatment strategies for metastatic colorectal cancer based on the actionable molecular alterations and genetic profiles of colorectal malignancies.
Collapse
Affiliation(s)
- Christopher G. Cann
- Department of Medicine: Hematology/Oncology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Michael B. LaPelusa
- Department of Medicine: Hematology/Oncology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sarah K. Cimino
- Department of Pharmacy, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Cathy Eng
- Department of Medicine: Hematology/Oncology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
47
|
Sousa Marques D, Gullo I, Mascarenhas-Lemos L, Silva JR, Neto do Nascimento C, Pontes P, Pinho L, Cirnes L, Wen X, Cravo M, Carneiro F. Performance of Immunohistochemical and Molecular Methods in Detecting Microsatellite Instability in Gastric Cancer: A Multicenter Study. Pathobiology 2023; 90:389-399. [PMID: 37271124 DOI: 10.1159/000530997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
INTRODUCTION Microsatellite instability (MSI) is an important prognostic molecular biomarker for gastric cancer (GC). MSI status may be detected by immunohistochemistry (IHC) for mismatch repair (MMR) proteins and polymerase chain reaction (PCR). Idylla™ MSI assay has not been validated for GC but may prove to be a valid alternative. METHODS In a series of 140 GC cases, MSI status was evaluated by IHC for MLH1, PMS2, MSH2, and MSH6; gold-standard pentaplex PCR panel (PPP) (BAT-25, BAT-26, NR-21, NR-24, and NR-27); and Idylla. Statistical analysis was performed using SPSS 27.0. RESULTS PPP identified 102 microsatellite stable (MSS) cases and 38 MSI-high cases. Only 3 cases showed discordant results. Compared with PPP, the sensitivity was 100% for IHC and 94.7% for Idylla. Specificity was 99% for IHC and 100% for Idylla. MLH1 IHC alone showed sensitivity and specificity of 97.4% and 98.0%, respectively. IHC identified three indeterminate cases; all were MSS according to PPP and Idylla. CONCLUSION IHC for MMR proteins represents an optimal screening tool for MSI status in GC. If resources are limited, isolated MLH1 evaluation may constitute a valuable option for preliminary screening. Idylla may help detect rare MSS cases with MMR-loss and define MSI status in indeterminate cases.
Collapse
Affiliation(s)
| | - Irene Gullo
- Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
- Department of Pathology, Centro Hospitalar Universitário de São João (CHUSJ), Porto, Portugal
- I3S - Instituto de Investigação e Inovação Em Saúde and Institute of Molecular Pathology and Immunology, University of Porto (Ipatimup), Porto, Portugal
| | - Luís Mascarenhas-Lemos
- Faculty of Medicine of Catholic University of Portugal, Rio de Mouro, Portugal
- Department of Pathology, Hospital da Luz de Lisboa, Lisboa, Portugal
- NOVA Medical School, Universidade NOVA de Lisboa, Lisboa, Portugal
| | | | | | - Patrícia Pontes
- Department of Pathology, Centro Hospitalar Universitário de São João (CHUSJ), Porto, Portugal
| | - Lídia Pinho
- I3S - Instituto de Investigação e Inovação Em Saúde and Institute of Molecular Pathology and Immunology, University of Porto (Ipatimup), Porto, Portugal
| | - Luis Cirnes
- I3S - Instituto de Investigação e Inovação Em Saúde and Institute of Molecular Pathology and Immunology, University of Porto (Ipatimup), Porto, Portugal
| | - Xiaogang Wen
- I3S - Instituto de Investigação e Inovação Em Saúde and Institute of Molecular Pathology and Immunology, University of Porto (Ipatimup), Porto, Portugal
- Department of Pathology, Centro Hospitalar Do Porto, Porto, Portugal
| | - Marília Cravo
- Department of Gastroenterology, Hospital da Luz de Lisboa, Lisboa, Portugal
- Faculty of Medicine of the University of Lisbon, Lisboa, Portugal
| | - Fátima Carneiro
- Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
- Department of Pathology, Centro Hospitalar Universitário de São João (CHUSJ), Porto, Portugal
- I3S - Instituto de Investigação e Inovação Em Saúde and Institute of Molecular Pathology and Immunology, University of Porto (Ipatimup), Porto, Portugal
| |
Collapse
|
48
|
Heinrich K, Fischer LE, De Toni EN, Markwardt D, Roessler D, Beyer G, Günther M, Ormanns S, Klauschen F, Kunz WG, Fröhling S, Brummer T, Heinemann V, Westphalen CB. Case of a Patient With Pancreatic Cancer With Sporadic Microsatellite Instability Associated With a BRAF Fusion Achieving Excellent Response to Immunotherapy. JCO Precis Oncol 2023; 7:e2200650. [PMID: 37364232 PMCID: PMC10309529 DOI: 10.1200/po.22.00650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/04/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
In this case report, we discuss a case of pancreatic cancer bearing a BRAF fusion, leading to MAPK activation, MLHph, and finally MSI.
Collapse
Affiliation(s)
- Kathrin Heinrich
- Department of Medicine III and Comprehensive Cancer Centre (CCC), LMU University Hospital Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Laura E. Fischer
- Department of Medicine III and Comprehensive Cancer Centre (CCC), LMU University Hospital Munich, Munich, Germany
| | - Enrico N. De Toni
- Department of Medicine II and Comprehensive Cancer Centre (CCC), LMU University Hospital Munich, Munich, Germany
| | - Daniel Markwardt
- Department of Medicine II and Comprehensive Cancer Centre (CCC), LMU University Hospital Munich, Munich, Germany
| | - Daniel Roessler
- Department of Medicine II and Comprehensive Cancer Centre (CCC), LMU University Hospital Munich, Munich, Germany
| | - Georg Beyer
- Department of Medicine II and Comprehensive Cancer Centre (CCC), LMU University Hospital Munich, Munich, Germany
| | - Michael Günther
- Institute of Pathology, Ludwig Maximilians University (LMU), Munich, Germany
| | - Steffen Ormanns
- Institute of Pathology, Ludwig Maximilians University (LMU), Munich, Germany
| | - Frederick Klauschen
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Institute of Pathology, Ludwig Maximilians University (LMU), Munich, Germany
| | - Wolfgang G. Kunz
- Department of Radiology and Comprehensive Cancer Center (CCC Munich LMU), University Hospital, LMU Munich, Munich, Germany
| | - Stefan Fröhling
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKTZ), Heidelberg, Germany
- DKTK, Heidelberg, Germany
| | - Tilman Brummer
- Institute of Molecular Medicine, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Comprehensive Cancer Center Freiburg (CCCF), Medical Center, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Volker Heinemann
- Department of Medicine III and Comprehensive Cancer Centre (CCC), LMU University Hospital Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - C. Benedikt Westphalen
- Department of Medicine III and Comprehensive Cancer Centre (CCC), LMU University Hospital Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| |
Collapse
|
49
|
Greco L, Rubbino F, Dal Buono A, Laghi L. Microsatellite Instability and Immune Response: From Microenvironment Features to Therapeutic Actionability-Lessons from Colorectal Cancer. Genes (Basel) 2023; 14:1169. [PMID: 37372349 DOI: 10.3390/genes14061169] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Microsatellite instability (MSI) can be found in 15-20% of all colorectal cancers (CRC) and is the key feature of a defective DNA mismatch repair (MMR) system. Currently, MSI has been established as a unique and pivotal biomarker in the diagnosis, prognosis, and treatment of CRC. MSI tumors display a strong lymphocytic activation and a shift toward a tumoral microenvironment restraining metastatic potential and ensuing in a high responsiveness to immunotherapy of MSI CRC. Indeed, neoplastic cells with an MMR defect overexpress several immune checkpoint proteins, such as programmed death-1 (PD-1) and programmed death-ligand 1(PD-L1), that can be pharmacologically targeted, allowing for the revival the cytotoxic immune response toward the tumor. This review aims to illustrate the role of MSI in the tumor biology of colorectal cancer, focusing on the immune interactions with the microenvironment and their therapeutic implications.
Collapse
Affiliation(s)
- Luana Greco
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Federica Rubbino
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Arianna Dal Buono
- Division of Gastroenterology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Luigi Laghi
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| |
Collapse
|
50
|
Ho V, Chung L, Wilkinson K, Lea V, Lim SH, Abubakar A, Ng W, Lee M, Roberts TL, Chua W, Lee CS. Prognostic Significance of MRE11 Overexpression in Colorectal Cancer Patients. Cancers (Basel) 2023; 15:cancers15092438. [PMID: 37173905 PMCID: PMC10177562 DOI: 10.3390/cancers15092438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Meiotic recombination 11 (MRE11) plays a critical role in the DNA damage response and maintenance of genome stability and is associated with the prognosis for numerous malignancies. Here, we explored the clinicopathological significance and prognostic value of MRE11 expression in colorectal cancer (CRC), a leading cause of cancer-related deaths worldwide. Samples from 408 patients who underwent surgery for colon and rectal cancer between 2006 and 2011, including a sub-cohort of 127 (31%) patients treated with adjuvant therapy, were analyzed. In Kaplan-Meier survival analyses, we found that high MRE11 expression in the tumor center (TC) was significantly associated with poor disease-free survival (DFS; p = 0.045) and overall survival (OS; p = 0.039). Intriguingly, high MRE11 expression in the TC was also significantly correlated with reduced DFS (p = 0.005) and OS (p = 0.010) in the subgroup with right-sided primary CRC. In multivariate analyses, high MRE11 expression (hazard ratio [HR] = 1.697, 95% confidence interval [CI]: 1.034-2.785; p = 0.036) and lymphovascular/perineural invasion (LVI/PNI; HR = 1.922, 95% CI 1.122-3.293; p = 0.017) showed significant association with worse OS in patients with right-sided tumors but not those with left-sided tumors. Moreover, in patients with right-sided tumors, high MRE11 was associated with worse OS for those with lymph node involvement (p = 0.006) and LVI/PNI (p = 0.049). Collectively, our results suggest that MRE11 may serve as an independent prognostic marker in those with right-sided severe CRC, with clinical value in the management of these patients.
Collapse
Affiliation(s)
- Vincent Ho
- School of Medicine, Western Sydney University, Sydney, NSW 2560, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
| | - Liping Chung
- School of Medicine, Western Sydney University, Sydney, NSW 2560, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
| | - Kate Wilkinson
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
- Department of Medical Oncology, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Vivienne Lea
- School of Medicine, Western Sydney University, Sydney, NSW 2560, Australia
- Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Stephanie H Lim
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
- Macarthur Cancer Therapy Centre, Campbelltown Hospital, Sydney, NSW 2560, Australia
| | - Askar Abubakar
- School of Medicine, Western Sydney University, Sydney, NSW 2560, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
| | - Weng Ng
- Department of Medical Oncology, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Mark Lee
- Department of Radiation Oncology, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Tara L Roberts
- School of Medicine, Western Sydney University, Sydney, NSW 2560, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
- South Western Sydney Clinical School, University of New South Wales, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Wei Chua
- School of Medicine, Western Sydney University, Sydney, NSW 2560, Australia
- Department of Medical Oncology, Liverpool Hospital, Liverpool, NSW 2170, Australia
- Discipline of Medical Oncology, School of Medicine, Western Sydney University, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Cheok Soon Lee
- School of Medicine, Western Sydney University, Sydney, NSW 2560, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
- Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW 2170, Australia
- South Western Sydney Clinical School, University of New South Wales, Liverpool Hospital, Liverpool, NSW 2170, Australia
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, NSW 2560, Australia
| |
Collapse
|