1
|
Yi J, Jiang C, Xia L. Mediated roles of oxidative stress and kidney function to leukocyte telomere length and prognosis in chronic kidney disease. Ren Fail 2025; 47:2464828. [PMID: 40011224 PMCID: PMC11866651 DOI: 10.1080/0886022x.2025.2464828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Few studies have focused on the correlation between leukocyte telomere length (LTL) and cancer-related mortality or identified potential factors that mediate the relationship between LTL and mortality among chronic kidney disease (CKD) patients. Our study aimed to explore the associations between LTL and all-cause and cause-specific mortality and to identify the underlying mediators. METHODS CKD patients were obtained from the National Health and Nutrition Examination Survey (NHANES) 1999-2002. Cox regression analysis and restricted cubic spline analysis were used to explore the associations between LTL and all-cause or specific-cause mortality and their nonlinear connections. Stratified analyses were executed to assess the relationships among the different subgroups. The latent mediated factors were confirmed using mediation analysis. Sensitivity analyses were used to evaluate the robustness of our findings. RESULTS Longer LTL associated with the lower risk of all-cause mortality, cardiovascular disease (CVD) and cancer-related mortality, and U-shaped relationships were detected. Patients younger than 65 years with greater LTL or who had hypertension had better prognoses. Age and history of hypertension were associated with LTL and overall mortality. In addition, estimated glomerular filtration rate (eGFR), albumin, and total bilirubin mediated the association, and the proportions of indirect effects were 7.81%, 3.77%, and 2.50%, respectively. Six sensitivity analyses confirmed the robustness of our findings. CONCLUSIONS This study revealed that LTL was a protective factor for survival among patients with CKD and emphasized the mediating roles of oxidative stress and kidney function.
Collapse
Affiliation(s)
- Jiahong Yi
- Department of VIP Region, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Chang Jiang
- Department of VIP Region, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Liangping Xia
- Department of VIP Region, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| |
Collapse
|
2
|
Cong Y, Li X, Hong H. Current strategies for senescence treatment: Focused on theranostic performance of nanomaterials. J Control Release 2025; 382:113710. [PMID: 40220869 DOI: 10.1016/j.jconrel.2025.113710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/03/2025] [Accepted: 04/06/2025] [Indexed: 04/14/2025]
Abstract
Age-related diseases imposed heavy burdens to the healthcare systems globally, while cell senescence served as one fundamental molecular/cellular basis for these diseases. How to tackle the senescence-relevant problems is a hotspot for biomedical research. In this review article, the hallmarks and molecular pathways of cell senescence were firstly discussed, followed by the introduction of the current anti-senescence strategies, including senolytics and senomorphics. With suitable physical or chemical properties, multiple types of nanomaterials were used successfully in senescence therapeutics, as well as senescence detection. Based on the accumulating knowledges for senescence, the rules of how to use these nanoplatforms more efficiently against senescence were also summarized, including but not limited to surface modification, material-cargo interactions, factor responsiveness etc. The comparison of these "senescence-selective" nanoplatforms to other treatment options (prodrugs, ADCs, PROTACs, CART etc.) was also given. Learning from the past, nanotechnology can add more choice for treating age-related diseases, and provide more (diagnostic) information to further our understanding of senescence process.
Collapse
Affiliation(s)
- Yiyang Cong
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center at Nanjing University, Medical School of Nanjing University, Nanjing 210093, China
| | - Xiaoyang Li
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center at Nanjing University, Medical School of Nanjing University, Nanjing 210093, China
| | - Hao Hong
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center at Nanjing University, Medical School of Nanjing University, Nanjing 210093, China.
| |
Collapse
|
3
|
Wang J, Zhao Y, Wei Y, Li T, Huang T, Pan T, Wu J, Bai L, Zhu D, Zhao Q, Wang Z, Feng F, Zhou X. Mai-wei-yang-fei decoction protects against pulmonary fibrosis by reducing telomere shortening and inhibiting AECII senescence via FBW7/TPP1 regulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156682. [PMID: 40215816 DOI: 10.1016/j.phymed.2025.156682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 11/17/2024] [Accepted: 03/21/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Pulmonary fibrosis (PF) is a fatal disease associated with ageing. The senescence of alveolar epithelial type II cells (AECIIs) can drive PF. Therefore, reducing AECII senescence is a promising treatment to prevent PF. Mai-wei-yang-fei decoction (MWYF) has shown significant clinical efficacy in the treatment of patients with PF. However, its mechanism of action remains unclear. PURPOSE To investigate the role and underlying mechanism of MWYF in protecting against PF. METHODS The main chemical components of MWYF were identified using UPLC-MS. The mouse and in vitro cell models of PF were established using BLM. Micro-CT, H&E, and Masson staining were used to observe the protective effect of MWYF on mice with PF. Immunohistochemistry, β-galactosidase staining, and IF-FISH were used to observe the inhibitory effect of MWYF on senescence and telomere shortening in mouse lung tissue or A549 cells. The Transwell assay and cell co-culture method were used to observe the effect of MWYF on the migration and activation of lung fibroblasts by inhibiting AECII senescence. Finally, lentiviral vector was used to overexpress FBW7 gene in A549 cells in vitro to observe the mechanism pathway of MWYF inhibiting AECII senescence and telomere shortening. RESULTS MWYF was effective in protecting against bleomycin (BLM)-induced PF. Furthermore, MWYF alleviated cellular senescence by reducing the DNA damage response (DDR) and shortening of the telomere in AECⅡs in mouse lung tissues. Mechanistically, genes related to telomere disorders were detected in BLM-induced PF mouse models using q-PCR. MWYF mainly inhibited telomere shortening by regulating FBW7 and reducing the degradation of TPP1. In vitro, MWYF reduced BLM-induced senescence in A549 cells, as well as proliferation and migration of MRC5 cells, by inhibiting DDR and telomere shortening via regulation of the FBW7/TPP1 axis. CONCLUSION MWYF is a potential therapeutic agent against PF, as it inhibits telomere shortening and reduces AECII senescence by regulating FBW7/TPP1.
Collapse
Affiliation(s)
- Jing Wang
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Zhao
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun Wei
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tingyuan Li
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tongxing Huang
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tingyu Pan
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jieyu Wu
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Le Bai
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dongwei Zhu
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi Zhao
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhichao Wang
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Fanchao Feng
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Xianmei Zhou
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
4
|
Giroud J, Combémorel E, Pourtier A, Abbadie C, Pluquet O. Unraveling the functional and molecular interplay between cellular senescence and the unfolded protein response. Am J Physiol Cell Physiol 2025; 328:C1764-C1782. [PMID: 40257464 DOI: 10.1152/ajpcell.00091.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/12/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025]
Abstract
Senescence is a complex cellular state that can be considered as a stress response phenotype. A decade ago, we suggested the intricate connections between unfolded protein response (UPR) signaling and the development of the senescent phenotype. Over the past ten years, significant advances have been made in understanding the multifaceted role of the UPR in regulating cellular senescence, highlighting its contribution to biological processes such as oxidative stress and autophagy. In this updated review, we expand these interconnections with the benefit of new insights, and we suggest that targeting specific components of the UPR could provide novel therapeutic strategies to mitigate the deleterious effects of senescence, with significant implications for age-related pathologies and geroscience.
Collapse
Affiliation(s)
- Joëlle Giroud
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, Lille, France
| | - Emilie Combémorel
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, Lille, France
| | - Albin Pourtier
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, Lille, France
| | - Corinne Abbadie
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, Lille, France
| | - Olivier Pluquet
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, Lille, France
| |
Collapse
|
5
|
Li C, Xiang Y, Liu M, Wang Z, Wu Y, Yang Q, Huang L. Selenium alleviates cadmium-induced biological aging acceleration and the potential mediating role of inflammation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 299:118361. [PMID: 40413928 DOI: 10.1016/j.ecoenv.2025.118361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/23/2025] [Accepted: 05/18/2025] [Indexed: 05/27/2025]
Abstract
Aging and heavy metal pollution are global challenges, and cadmium (Cd) may negatively affect aging. However, effective interventions for Cd toxicity among populations remain insufficient. Selenium (Se) is recognized for its protective effects against heavy metal toxicity and aging. This study utilized data from the National Health and Nutrition Examination Survey (2015-2018) to explore the individual and joint effects of Cd and Se on biological aging acceleration, measured by Klemera-Doubal method biological age acceleration (KDM-BA-Accel) (n = 7119) and Phenotypic age acceleration (PhenoAge-Accel) (n = 7433). Results showed that Cd was positively associated with KDM-BA-Accel (β = 0.57) and PhenoAge-Accel (β = 0.77), while Se had negative associations with both (β values were -4.01 and -5.30, respectively). Nonlinear analyses revealed J-shaped associations for Cd and L-shaped for Se with aging indicators. Moreover, inflammation significantly mediated the Cd-aging and Se-aging relationships. Most importantly, a significant negative interaction between Cd and Se on PhenoAge-Accel (β for interaction = -1.29) suggested an antagonistic effect, particularly among never smokers. Increasing Se content can mitigate the harmful effects of Cd on PhenoAge-Accel were demonstrated through three methods. Specifically, ⅰ) compared to "Cd (-) & Se (-)" group, "Cd (+) & Se (-)" group had β = 0.87, while "Cd (+) & Se (+)" group was non-significant; ⅱ) higher Se content was associated with a lower increase in PhenoAge-Accel as Cd content rose; ⅲ) there were no significant associations between Cd & Se mixture and aging indicators (both p > 0.310). These findings highlight Se supplementation as a potential strategy to counteract Cd-induced aging, offering a new direction for public health interventions in polluted populations.
Collapse
Affiliation(s)
- Chen Li
- Center for Public Health Research, Medical School, Nanjing University, Nanjing 210093, PR China; State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yuerong Xiang
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Mingliang Liu
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Zhaokun Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| | - Yangyang Wu
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Qinyi Yang
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Lei Huang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing 210093, PR China; State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, PR China; Nanjing University (Suzhou) High-Tech Institute, Suzhou 215123, PR China.
| |
Collapse
|
6
|
Tavares-Marcos C, Correia M, de Jesus BB. Telomeres as hallmarks of iPSC aging: a review on telomere dynamics during stemness and cellular reprogramming. Ageing Res Rev 2025:102773. [PMID: 40414363 DOI: 10.1016/j.arr.2025.102773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/03/2025] [Accepted: 05/14/2025] [Indexed: 05/27/2025]
Abstract
Telomeres, the protective ends of chromosome, are key to tissue repair and regeneration. Telomere shortening is linked to aging and age-related disorders, while excessive telomerase activity may support tissue regeneration or transformation. Some of the functions of telomeres and telomerase may be mediated by its important role in the process of stemness. Active telomerase, and subsequent telomerase-dependent telomere extension, supports stem-cells self-renewal and pluripotency - essential for tissue healing. During cellular reprogramming, differentiated cells are converted into induced pluripotent stem cells (iPSCs), which resemble embryonic stem cells. During iPSC derivation, telomere length is reset, enhancing iPSCs' regenerative potential. During this process, incomplete telomerase activation and telomere extension can lead to genomic instability and/or haltered cell functionality. Understanding the intricate relation of telomeres, telomerase and stemness may be critical when designing novel cell-based therapies targeting degenerative diseases or to unlock strategies to delay aging. Here, we explore the recent bibliography linking these areas, raising awareness of their important when designing novel breakthroughs in health and longevity.
Collapse
Affiliation(s)
- Carlota Tavares-Marcos
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Magda Correia
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bruno Bernardes de Jesus
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
7
|
Xie G, Okuda S, Gao JY, Wu T, Jeong J, Lu KP, Zhou XZ. The Central Role of Pin1 in Age-Related Cancer Signaling Pathways. Semin Cancer Biol 2025:S1044-579X(25)00072-0. [PMID: 40412492 DOI: 10.1016/j.semcancer.2025.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/05/2025] [Accepted: 05/13/2025] [Indexed: 05/27/2025]
Abstract
The prolyl-isomerase Pin1 is a unique enzyme that catalyzes cis-trans isomerization of phosphorylated Ser/Thr-Pro motifs. These motifs are present in many proteins, where isomerization of the typically rigid prolyl-peptide bond can lead to conformational changes, and subsequently regulate activity, stability, or localization. The specificity of Pin1 for phosphorylated motifs allows it to serve as a master regulator of proteins after phosphorylation, adding an additional layer of regulation to intricately control cellular signaling. As such, Pin1 plays an expansive role in numerous cancer and age-related signaling pathways, and is recognized as a major driver of cancer and promising therapeutic target. In this review, we discuss the role of Pin1 in regulation of age-related cancer signaling pathways, and we highlight the early development and current landscape of Pin1 inhibitors, and the prospect of Pin1 inhibition for cancer therapy.
Collapse
Affiliation(s)
- George Xie
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Sho Okuda
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Jing-Yan Gao
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; Department of Chemistry, Western University, London, ON N6A 5C1, Canada
| | - Timothy Wu
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Jessica Jeong
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Kun Ping Lu
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; Robarts Research Institute, Schulich School of Medicine & Dentistry, Western University, London, ON N6G 2V4, Canada.
| | - Xiao Zhen Zhou
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; Lawson Health Research Institute, Western University, London, ON N6C 2R5, Canada.
| |
Collapse
|
8
|
Glover C, Fairbanks S, Robertson CC, Richard Keene F, Green NH, Thomas JA. An optical ratiometric approach using enantiopure luminescent metal complexes indicates changes in the average quadruplex DNA content as primary cells undergo multiple divisions. Dalton Trans 2025; 54:8241-8250. [PMID: 40100080 DOI: 10.1039/d4dt03238a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The three stereoisomers of a previously reported dinuclear ruthenium(II) complex have been quantitatively separated using cation-exchange chromatography and the individual crystal structures of the racemic pair are reported. Cell-based studies on the three stereoisomers disclosed differences in the rate of uptake of the two chiral forms of the rac diastereoisomer with the ΛΛ-enantiomer being taken up noticeably more rapidly than the ΔΔ-form. Cell viability studies reveal that the three cations show identical cytotoxicity over 24 hours, but over more extended exposure periods, the meso-ΔΛ stereoisomer becomes slightly less active. More significantly, microscopy studies revealed that although both isomers display a near infra-red "light-switch" effect associated with binding to duplex DNA on binding to chromatin in live MCF7 and L5178-R cells, only the ΛΛ enantiomer displays a distinctive, blue-shifted component associated with binding to quadruplex DNA. An analysis of the ratio of "quadruplex emission" compared to "duplex emission" for the ΛΛ-enantiomer indicated that there was a decrease in the average quadruplex DNA content within live primary cells as they undergo multiple cell divisions.
Collapse
Affiliation(s)
- Caroline Glover
- Chemistry, School of Mathematics and, Physical Sciences, Dainton Building, University of Sheffield, Sheffield, S3 7HF, UK.
- School of Chemical, Materials and Biological Engineering, Sir Robert Hadfield Building, University of Sheffield, Sheffield, S1 3JD, UK
| | - Simon Fairbanks
- Chemistry, School of Mathematics and, Physical Sciences, Dainton Building, University of Sheffield, Sheffield, S3 7HF, UK.
| | - Craig C Robertson
- Chemistry, School of Mathematics and, Physical Sciences, Dainton Building, University of Sheffield, Sheffield, S3 7HF, UK.
| | - F Richard Keene
- Discipline of Chemistry, School of Chemistry, Physics & Earth Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Nicola H Green
- School of Chemical, Materials and Biological Engineering, Sir Robert Hadfield Building, University of Sheffield, Sheffield, S1 3JD, UK
| | - Jim A Thomas
- Chemistry, School of Mathematics and, Physical Sciences, Dainton Building, University of Sheffield, Sheffield, S3 7HF, UK.
| |
Collapse
|
9
|
Adam N, Yang Y, Djamshidi M, Seifan S, Ting NSY, Glover J, Touret N, Gordon PMK, Vineetha Warriyar KV, Krowicki H, Garcia CK, Savage SA, Goodarzi AA, Baird DM, Beattie TL, Riabowol K. hTERT Increases TRF2 to Induce Telomere Compaction and Extend Cell Replicative Lifespan. Aging Cell 2025:e70105. [PMID: 40371663 DOI: 10.1111/acel.70105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 04/22/2025] [Accepted: 04/29/2025] [Indexed: 05/16/2025] Open
Abstract
Replicative senescence occurs in response to shortened telomeres and is triggered by ATM and TP53-mediated DNA damage signaling that blocks replication. hTERT lengthens telomeres, which is thought to block damage signaling and the onset of senescence. We find that normal diploid fibroblasts expressing hTERT mutants unable to maintain telomere length do not initiate DNA damage signaling and continue to replicate, despite having telomeres shorter than senescent cells. The TRF1 and TRF2 DNA binding proteins of the shelterin complex stabilize telomeres, and we find that expression of different mutant hTERT proteins decreases levels of the Siah1 E3 ubiquitin ligase that targets TRF2 to the proteasome, by increasing levels of the CDC20 and FBXO5 E3 ligases that target Siah1. This restores the TRF2:TRF1 ratio to block the activation of ATM and subsequent activation of TP53 that is usually associated with DNA damage-induced senescence signaling. All hTERT variants reduce DNA damage signaling, and this occurs concomitantly with telomeres assuming a more compact, denser conformation than senescent cells as measured by super-resolution microscopy. This indicates that hTERT variants induce TRF2-mediated telomere compaction that is independent of telomere length, and it plays a dominant role in regulating the DNA damage signaling that induces senescence and blocks replication of human fibroblasts. These observations support the idea that very short telomeres often seen in cancer cells may fail to induce senescence due to selective stabilization of components of the shelterin complex, increasing telomere density, rather than maintaining telomere length via the reverse transcriptase activity of hTERT.
Collapse
Affiliation(s)
- Nancy Adam
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Departments of Biochemistry & Molecular Biology and/or Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Yang Yang
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Departments of Biochemistry & Molecular Biology and/or Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mahbod Djamshidi
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Departments of Biochemistry & Molecular Biology and/or Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sara Seifan
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Nicholas S Y Ting
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Departments of Biochemistry & Molecular Biology and/or Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Joel Glover
- Live Cell Imaging Laboratory, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nicolas Touret
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Paul M K Gordon
- Centre for Health Genomics and Informatics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - K V Vineetha Warriyar
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Hokan Krowicki
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Departments of Biochemistry & Molecular Biology and/or Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Aaron A Goodarzi
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Departments of Biochemistry & Molecular Biology and/or Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Duncan M Baird
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Tara L Beattie
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Departments of Biochemistry & Molecular Biology and/or Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Karl Riabowol
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Departments of Biochemistry & Molecular Biology and/or Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
10
|
Affonso JM, D'Amico TP, Horst MA, Moreno FS, Heidor R. Telomeres and Telomerase: Targets for Chemoprevention of Hepatocellular Carcinoma With Bioactive Food Compounds. Mol Nutr Food Res 2025:e70088. [PMID: 40351047 DOI: 10.1002/mnfr.70088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 04/08/2025] [Accepted: 04/14/2025] [Indexed: 05/14/2025]
Abstract
The maintenance of telomere length by telomerase plays an essential role in senescence, aging, and cancer. Mutations in the TERT promoter, a telomerase subunit, are frequent in human cancers. In hepatocellular carcinoma (HCC), telomere shortening contributes to preneoplastic conditions such as cirrhosis. Telomerase activation during cirrhosis may reduce chromosomal instability, while its suppression in early dysplastic nodules may prevent hepatocarcinogenesis. Evidence suggests that bioactive food compounds (BFCs) can reduce the incidence and/or delay the onset of HCC by modulating telomerase activity. A systematic review was conducted on the role of BFCs in telomerase activity during hepatocarcinogenesis. BFCs were analyzed in isolated form or as part of extracts and categorized into fatty acids, isoprenoids, isothiocyanates, and phenolic compounds. Despite structural diversity, BFCs modulate telomerase through common mechanisms, including inhibition of activating proteins at the TERT promoter, activation of nuclear receptors, or histone H3 hyperacetylation. Indirectly, telomerase can also be modulated via activation of antioxidant defense pathways. Understanding telomerase reactivation and its modulation by BFCs is key to establishing effective HCC chemoprevention strategies targeting telomerase.
Collapse
Affiliation(s)
- Juliana Marques Affonso
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Thais Pereira D'Amico
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria Aderuza Horst
- Nutritional Genomics Research Group, Faculty of Nutrition, Federal University of Goiás, Goiânia, Brazil
| | - Fernando Salvador Moreno
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Renato Heidor
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Bae YA. In silico identification and structural characterization of telomerase reverse transcriptases in parasitic platyhelminths. Gene 2025; 962:149558. [PMID: 40360013 DOI: 10.1016/j.gene.2025.149558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/28/2025] [Accepted: 05/08/2025] [Indexed: 05/15/2025]
Abstract
Telomere shortening during eukaryotic cell division can lead to severe problems such as inactivation of neighboring genes and aberrant chromosomal fusion. To protect chromosome ends from the replicative errors, most eukaryotes have evolved an enzymatic defense mechanism called telomerase, in which telomerase reverse transcriptase (TERT) plays a central role. This enzymatic activity is highly elevated in consecutively dividing somatic cells of regenerating and probably asexually reproducing, platyhelminths. Therefore, flatworms can be powerful models to investigate the biological implications of TERT in these non-embryonic developments. Current information on the protein is largely limited to a handful of representative species within the phylum Platyhelminthes. This study characterizes the structural features of TERT proteins and their encoding genes in flatworms, aiming to expand our knowledge of the telomere-protecting protein in this lower animal taxon. The platyhelminth genes exhibited exon-intron architectures that were highly divergent from their orthologs in the other lophotrochozoans, and their protein products lacked some TERT-specific domains such as the telomerase essential N-terminal and repeat addition processivity domains. Nevertheless, the unique gene and protein structures were tightly conserved among the flatworm homologs. Analysis of the tert transcripts showed that use of alternative splice acceptors or donors in a minor AT-AC intron, as well as intron retention and exon exclusion, contribute to the generation of aberrant mRNAs. The present findings demonstrate that the tert gene has undergone structural changes soon after the emergence of the platyhelminth lineage, which might have been coordinated with those of its functional counterpart, the telomerase RNA molecule.
Collapse
Affiliation(s)
- Young-An Bae
- Department of Microbiology and Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon 21999, Korea.
| |
Collapse
|
12
|
Hölbling BV, Gupta Y, Marchi PM, Atilano ML, Flower M, Ureña E, Goulden RA, Dobbs HK, Katona E, Mikheenko A, Giblin A, Awan AR, Fisher-Ward CL, O'Brien N, Vaizoglu D, Kempthorne L, Wilson KM, Gittings LM, Carcolé M, Ruepp MD, Mizielinska S, Partridge L, Fratta P, Tabrizi SJ, Selvaraj BT, Chandran S, Armstrong E, Whiting P, Isaacs AM. A multimodal screening platform for endogenous dipeptide repeat proteins in C9orf72 patient iPSC neurons. Cell Rep 2025; 44:115695. [PMID: 40349338 DOI: 10.1016/j.celrep.2025.115695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/04/2024] [Accepted: 04/23/2025] [Indexed: 05/14/2025] Open
Abstract
Repeat expansions in C9orf72 are the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia. Repeat-associated non-AUG (RAN) translation generates neurotoxic dipeptide repeat proteins (DPRs). To study endogenous DPRs, we inserted the minimal HiBiT luciferase reporter downstream of sense repeat derived DPRs polyGA or polyGP in C9orf72 patient iPSCs. We show these "DPReporter" lines sensitively and rapidly report DPR levels in lysed and live cells and optimize screening in iPSC neurons. Small-molecule screening showed the ERK1/2 activator periplocin dose dependently increases DPR levels. Consistent with this, ERK1/2 inhibition reduced DPR levels and prolonged survival in C9orf72 repeat expansion flies. CRISPR knockout screening of all human helicases revealed telomere-associated helicases modulate DPR expression, suggesting common regulation of telomeric and C9orf72 repeats. These DPReporter lines allow investigation of DPRs in their endogenous context and provide a template for studying endogenous RAN-translated proteins, at scale, in other repeat expansion disorders.
Collapse
Affiliation(s)
- Benedikt V Hölbling
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK
| | - Yashica Gupta
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK
| | - Paolo M Marchi
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK
| | - Magda L Atilano
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, UCL, London, UK
| | - Michael Flower
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK
| | - Enric Ureña
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, UCL, London, UK
| | - Rajkumar A Goulden
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, UCL, London, UK
| | - Hannah K Dobbs
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK
| | - Eszter Katona
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK
| | - Alla Mikheenko
- UK Dementia Research Institute at UCL, London, UK; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Ashling Giblin
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK; Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, UCL, London, UK
| | - Ali Raza Awan
- Genomics Innovation Unit, Guy's and St Thomas' NHS Trust, London, UK; Comprehensive Cancer Centre, King's College London, London, UK
| | | | - Niamh O'Brien
- UK Dementia Research Institute at King's College London, London, UK; Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Deniz Vaizoglu
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK
| | - Liam Kempthorne
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK
| | - Katherine M Wilson
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK
| | - Lauren M Gittings
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK
| | - Mireia Carcolé
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK
| | - Marc-David Ruepp
- UK Dementia Research Institute at King's College London, London, UK; Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Sarah Mizielinska
- UK Dementia Research Institute at King's College London, London, UK; Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Linda Partridge
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, UCL, London, UK
| | - Pietro Fratta
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK; The Francis Crick Institute, London, UK
| | - Sarah J Tabrizi
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK
| | - Bhuvaneish T Selvaraj
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Siddharthan Chandran
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Emma Armstrong
- Alzheimer's Research UK Drug Discovery Institute, UCL, London, UK
| | - Paul Whiting
- UK Dementia Research Institute at UCL, London, UK; Alzheimer's Research UK Drug Discovery Institute, UCL, London, UK
| | - Adrian M Isaacs
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK.
| |
Collapse
|
13
|
Lin XJ, Wang ML, Kong WW, Mo BX. Molecular Studies on Plant Telomeres: Expanding Horizons in Plant Biology. ACS Synth Biol 2025. [PMID: 40340407 DOI: 10.1021/acssynbio.4c00846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
The integrity of plant genomes is intricately safeguarded by telomeres, the protective caps located at the ends of the chromosome. This review provides a comprehensive analysis of the molecular mechanisms governing the structure, maintenance, and dynamics of plant telomeres, highlighting their genetic and epigenetic regulation and their pivotal roles in plant development, longevity, stress adaptation, and disease resistance. Recent advancements, such as next-generation sequencing and single-molecule imaging, have revolutionized our understanding of telomere biology, unveiling new insights into telomerase activity and telomere-associated genetic variants. Additionally, the review also discusses the challenges and future directions of telomere research, including the potential applications of telomere biology in plant breeding and genetic engineering.
Collapse
Affiliation(s)
- Xiao J Lin
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Ming L Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Wen W Kong
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Bei X Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
14
|
Quach TK, Taylor MF, Currie PD, Eynon N, Ruparelia AA. Skeletal Muscle Aging: Lessons From Teleosts. J Gerontol A Biol Sci Med Sci 2025; 80:glae052. [PMID: 38367020 PMCID: PMC12080710 DOI: 10.1093/gerona/glae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Indexed: 02/19/2024] Open
Abstract
Aging is the greatest risk factor for a multitude of age-related diseases including sarcopenia-the loss of skeletal muscle mass and strength-which occurs at remarkable rates each year. There is an unmet need not only to understand the mechanisms that drive sarcopenia but also to identify novel therapeutic strategies. Given the ease and affordability of husbandry, along with advances in genomics, genome editing technologies, and imaging capabilities, teleost models are increasingly used for aging and sarcopenia research. Here, we explain how teleost species such as zebrafish, African turquoise killifish, and medaka recapitulate many of the classical hallmarks of sarcopenia, and discuss the various dietary, pharmacological, and genetic approaches that have been used in teleosts to understand the mechanistic basis of sarcopenia.
Collapse
Affiliation(s)
- Tuyen K Quach
- Centre for Muscle Research, Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine, Dentistry, and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Megan F Taylor
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
- EMBL Australia, Victorian Node, Monash University, Clayton, Victoria, Australia
| | - Nir Eynon
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Avnika A Ruparelia
- Centre for Muscle Research, Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine, Dentistry, and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia (Biological Sciences Section)
| |
Collapse
|
15
|
Martinez-Fernandez V, Barascu A, Teixeira MT. Life and Death without Telomerase: The Saccharomyces cerevisiae Model. Cold Spring Harb Perspect Biol 2025; 17:a041699. [PMID: 39694811 PMCID: PMC12047662 DOI: 10.1101/cshperspect.a041699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Saccharomyces cerevisiae, a model organism in telomere biology, has been instrumental in pioneering a comprehensive understanding of the molecular processes that occur in the absence of telomerase across eukaryotes. This exploration spans investigations into telomere dynamics, intracellular signaling cascades, and organelle-mediated responses, elucidating their impact on proliferative capacity, genome stability, and cellular variability. Through the lens of budding yeast, numerous sources of cellular heterogeneity have been identified, dissected, and modeled, shedding light on the risks associated with telomeric state transitions, including the evasion of senescence. Moreover, the unraveling of the intricate interplay between the nucleus and other organelles upon telomerase inactivation has provided insights into eukaryotic evolution and cellular communication networks. These contributions, akin to milestones achieved using budding yeast, such as the discovery of the cell cycle, DNA damage checkpoint mechanisms, and DNA replication and repair processes, have been of paramount significance for the telomere field. Particularly, these insights extend to understanding replicative senescence as an anticancer mechanism in humans and enhancing our understanding of eukaryotes' evolution.
Collapse
Affiliation(s)
- Veronica Martinez-Fernandez
- Sorbonne Université, CNRS, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, LBMCE, F-75005 Paris, France
| | - Aurélia Barascu
- Sorbonne Université, CNRS, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, LBMCE, F-75005 Paris, France
| | - Maria Teresa Teixeira
- Sorbonne Université, CNRS, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, LBMCE, F-75005 Paris, France
| |
Collapse
|
16
|
Bidikian A, Bewersdorf JP, Kewan T, Podoltsev NA, Stahl M, Zeidan AM. Imetelstat in myeloid malignancies: current data and future directions. Expert Rev Anticancer Ther 2025; 25:517-528. [PMID: 40116730 DOI: 10.1080/14737140.2025.2482721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
INTRODUCTION Telomerase reactivation allows cancer cells to maintain telomere length and evade senescence, making it an appealing therapeutic target. Imetelstat, an antisense oligonucleotide, is the first clinically effective telomerase inhibitor approved by the FDA and the European Commission for treating anemia in transfusion-dependent low-risk myelodysplastic syndromes (MDS). AREAS COVERED Sources for this review were identified through searches of PubMed, ClinicalTrials.gov, and conference abstracts. This review highlights the pharmacology, efficacy, and ongoing trials of imetelstat in treating MDS, myelofibrosis, essential thrombocythemia, and other malignancies. In the IMerge trial, imetelstat induced durable transfusion independence in heavily transfused LR-MDS patients. Pilot trials in myelofibrosis suggest imetelstat's potential disease-modifying properties and survival benefit, warranting further studies of imetelstat as a monotherapy or in combination therapies. Imetelstat can cause thrombocytopenia, leukopenia, elevated liver enzymes, and infusion reactions, which are mostly reversible but may rarely lead to fatal events. EXPERT OPINION Future clinical trials in LR-MDS should focus on optimal sequencing and combination strategies for imetelstat with other agents, and identifying biomarkers that can predict response. Monitoring real-world outcomes will offer valuable insights into imetelstat's safety and efficacy in patient populations underrepresented in clinical trials. Imetelstat's role in other malignancies, especially myelofibrosis, is being explored.
Collapse
Affiliation(s)
- Aram Bidikian
- Department of Internal Medicine, Yale School of Medicine and Yale New Haven Hospital, New Haven, CT, USA
| | - Jan P Bewersdorf
- Section of Medical Oncology and Hematology, Department of Internal Medicine, Yale School of Medicine and Yale New Haven Hospital, New Haven, CT, USA
| | - Tariq Kewan
- Section of Medical Oncology and Hematology, Department of Internal Medicine, Yale School of Medicine and Yale New Haven Hospital, New Haven, CT, USA
| | - Nikolai A Podoltsev
- Section of Medical Oncology and Hematology, Department of Internal Medicine, Yale School of Medicine and Yale New Haven Hospital, New Haven, CT, USA
| | - Maximilian Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amer M Zeidan
- Section of Medical Oncology and Hematology, Department of Internal Medicine, Yale School of Medicine and Yale New Haven Hospital, New Haven, CT, USA
| |
Collapse
|
17
|
Osburn SC, Smith ME, Wahl D, LaRocca TJ. Novel effects of reverse transcriptase inhibitor supplementation in skeletal muscle of old mice. Physiol Genomics 2025; 57:308-320. [PMID: 40062980 DOI: 10.1152/physiolgenomics.00115.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/08/2024] [Accepted: 02/15/2025] [Indexed: 04/01/2025] Open
Abstract
Aging is the primary risk factor for the development of many chronic diseases, including dementias, cardiovascular disease, and diabetes. There is significant interest in identifying novel "geroprotective" agents, including by repurposing existing drugs, but such treatments may affect organ systems differently. One current example is the nucleoside reverse transcriptase inhibitor 3TC, which has been increasingly studied as a potential gerotherapeutic. Recent data suggest that 3TC may reduce inflammation and improve cognitive function in older mice; however, the effects of 3TC on other tissues in aged animals are less well characterized. Here, we use transcriptomics (RNA-seq) and targeted metabolomics to investigate the influence of 3TC supplementation on skeletal muscle in older mice. We show that 3TC 1) does not overtly affect muscle mass or functional/health markers, 2) largely reverses age-related changes in gene expression and metabolite signatures, and 3) is potentially beneficial for mitochondrial function in old animals via increases in antioxidant enzymes and decreases in mitochondrial reactive oxygen species. Collectively, our results suggest that, in addition to its protective effects in other tissues, 3TC supplementation does not have adverse effects in aged muscle and may even protect muscle/mitochondrial health in this context.NEW & NOTEWORTHY Recent studies suggest that the nucleoside reverse transcriptase inhibitor 3TC may improve brain health and cognitive function in old mice, but its effects on other aging tissues have not been comprehensively studied. This is the first study to use a multiomics approach to investigate the effects of 3TC treatment on skeletal muscle of old mice. The results suggest that 3TC reverses age-related transcriptomic and metabolite signatures and is potentially beneficial for mitochondrial function in aged muscle.
Collapse
Affiliation(s)
- Shelby C Osburn
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, United States
- Center for Healthy Aging, Colorado State University, Fort Collins, Colorado, United States
| | - Meghan E Smith
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, United States
- Center for Healthy Aging, Colorado State University, Fort Collins, Colorado, United States
| | - Devin Wahl
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, United States
- Center for Healthy Aging, Colorado State University, Fort Collins, Colorado, United States
| | - Thomas J LaRocca
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, United States
- Center for Healthy Aging, Colorado State University, Fort Collins, Colorado, United States
| |
Collapse
|
18
|
Yu P, Liu B, Dong C, Chang Y. Induced Pluripotent Stem Cells-Based Regenerative Therapies in Treating Human Aging-Related Functional Decline and Diseases. Cells 2025; 14:619. [PMID: 40277944 PMCID: PMC12025799 DOI: 10.3390/cells14080619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/26/2025] Open
Abstract
A significant increase in life expectancy worldwide has resulted in a growing aging population, accompanied by a rise in aging-related diseases that pose substantial societal, economic, and medical challenges. This trend has prompted extensive efforts within many scientific and medical communities to develop and enhance therapies aimed at delaying aging processes, mitigating aging-related functional decline, and addressing aging-associated diseases to extend health span. Research in aging biology has focused on unraveling various biochemical and genetic pathways contributing to aging-related changes, including genomic instability, telomere shortening, and cellular senescence. The advent of induced pluripotent stem cells (iPSCs), derived through reprogramming human somatic cells, has revolutionized disease modeling and understanding in humans by addressing the limitations of conventional animal models and primary human cells. iPSCs offer significant advantages over other pluripotent stem cells, such as embryonic stem cells, as they can be obtained without the need for embryo destruction and are not restricted by the availability of healthy donors or patients. These attributes position iPSC technology as a promising avenue for modeling and deciphering mechanisms that underlie aging and associated diseases, as well as for studying drug effects. Moreover, iPSCs exhibit remarkable versatility in differentiating into diverse cell types, making them a promising tool for personalized regenerative therapies aimed at replacing aged or damaged cells with healthy, functional equivalents. This review explores the breadth of research in iPSC-based regenerative therapies and their potential applications in addressing a spectrum of aging-related conditions.
Collapse
Affiliation(s)
- Peijie Yu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China; (P.Y.); (B.L.)
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Bin Liu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China; (P.Y.); (B.L.)
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Cheng Dong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China; (P.Y.); (B.L.)
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Yun Chang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China; (P.Y.); (B.L.)
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
19
|
Hong Y, Lee JM, Lee C, Na D, Jung J, Ahn A, Yoo JW, Lee JW, Chung NG, Kim M, Kim Y. Telomere Length and Genetic Variations in Acquired Pediatric Aplastic Anemia: A Flow-FISH Study in Korean Patients. Diagnostics (Basel) 2025; 15:931. [PMID: 40218281 PMCID: PMC11988933 DOI: 10.3390/diagnostics15070931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
Background: Aplastic anemia (AA) is a rare bone marrow failure syndrome characterized by notably short telomere length, which is associated with treatment responses. In this study, we measured telomere lengths in Korean pediatric AA patients using flow-fluorescence in situ hybridization (Flow-FISH) and explored their shortening in relation to disease characteristics, genetic conditions and patient outcomes. Methods: We analyzed peripheral blood samples from 75 AA patients and 101 healthy controls. Telomere lengths were measured using Flow-FISH, and relative telomere length (RTL) and delta RTL assessments were conducted. Genetic evaluations included karyotyping, chromosome breakage tests and clinical exome sequencing (CES) to identify inherited bone marrow failure syndrome (IBMFS)-associated genetic variants. Results: Telomere lengths in AA patients were significantly lower than those of age-adjusted healthy controls. Patients receiving immunosuppressive therapy tended to have long telomeres, as indicated by high delta RTL values. Patients with genetic abnormalities, including karyotype abnormalities (n = 2) and genetic variants (n = 11) such as carrier genes of IBMFS or variants of unclear significance, showed significantly short telomere lengths. Conclusions: This study reinforces the importance of telomere length as a biomarker in acquired AA. Utilizing Flow-FISH, we were able to accurately measure telomere lengths and establish confidence in this method as an appropriate laboratory test. We found significant reduction in telomere lengths in AA patients, and importantly, longer telomeres were correlated with better outcomes in immunosuppressive therapy. Additionally, our genetic analysis underscored the relevance of variants in IBMFS-associated genes to the pathophysiology of short telomeres.
Collapse
Affiliation(s)
- Yuna Hong
- Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (Y.H.); (J.-M.L.); (C.L.); (D.N.); (Y.K.)
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jong-Mi Lee
- Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (Y.H.); (J.-M.L.); (C.L.); (D.N.); (Y.K.)
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Chaeyeon Lee
- Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (Y.H.); (J.-M.L.); (C.L.); (D.N.); (Y.K.)
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Duyeon Na
- Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (Y.H.); (J.-M.L.); (C.L.); (D.N.); (Y.K.)
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jin Jung
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Ari Ahn
- Department of Laboratory Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Jae Won Yoo
- Department of Pediatrics, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (J.W.Y.); (J.W.L.)
| | - Jae Wook Lee
- Department of Pediatrics, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (J.W.Y.); (J.W.L.)
| | - Nack-Gyun Chung
- Department of Pediatrics, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (J.W.Y.); (J.W.L.)
| | - Myungshin Kim
- Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (Y.H.); (J.-M.L.); (C.L.); (D.N.); (Y.K.)
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Yonggoo Kim
- Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (Y.H.); (J.-M.L.); (C.L.); (D.N.); (Y.K.)
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| |
Collapse
|
20
|
Jiang H, Inoue S, Hatakeyama J, Liu P, Zhao T, Zhang Y, Liu B, He C, Moriyama H. Effects of aging and resistance exercise on muscle strength, physiological properties, longevity proteins, and telomere length in SAMP8 mice. Biogerontology 2025; 26:88. [PMID: 40186023 DOI: 10.1007/s10522-025-10234-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
Skeletal muscle aging, characterized by progressive declines in muscle mass and strength, correlates with reduced quality of life and increased mortality. Resistance exercise is known to be critical for maintaining skeletal muscle health. This study investigated the effects of aging and resistance exercise on muscle strength, physiological properties, longevity proteins, and telomere length in mice. Twenty-eight-week-old senescence-accelerated mouse prone 8 (SAMP8) mice were used as a model for muscle aging, with senescence-accelerated mouse resistant 1 (SAMR1) mice serving as healthy controls. The mice underwent a 12-week regimen of ladder-climbing training, a form of resistance exercise, performed three days per week. After the training, muscle strength and muscle weight were measured. Levels of the longevity proteins adenosine monophosphate-activated kinase (AMPK), mammalian target of rapamycin (mTOR), and sirtuin 1 (SIRT1) were assessed via western blotting, and telomere length was evaluated by qPCR. SAMP8 mice exhibited significantly lower muscle mass and strength than SAMR1 mice, while resistance exercise attenuated these deficits in SAMP8 mice. SAMP8 mice showed elevated AMPK phosphorylation and SIRT1 levels compared to SAMR1 mice; resistance exercise normalized AMPK phosphorylation levels to approximate those of SAMR1 mice. mTOR activity was significantly reduced in SAMP8 mice but tended to be restored by resistance exercise. Telomere length remained unchanged in SAMP8 mice after resistance exercise compared to their sedentary controls. In conclusion, aging reduces muscle function and disrupts levels of longevity proteins. Resistance exercise mitigates these effects by improving muscle function and restoring molecular balance.
Collapse
Affiliation(s)
- Hanlin Jiang
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Shota Inoue
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Junpei Hatakeyama
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Peng Liu
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Tingrui Zhao
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Yifan Zhang
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Bin Liu
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Chunxiao He
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Hideki Moriyama
- Life and Medical Sciences Area, Health Sciences Discipline, Kobe University, Tomogaoka 7-10-2, Suma-Ku, Kobe, Hyogo, 654-0142, Japan.
| |
Collapse
|
21
|
Xue CC, Nusinovici S, Yu M, Chee ML, Teo K, Su X, Cheung CMG, Sabanayagam C, Cheng CY, Tham YC. Associations between shorter leucocyte telomere length and increased risk of age-related macular degeneration in women: insights from the United Kingdom Biobank study. Eye (Lond) 2025; 39:1146-1152. [PMID: 39719503 PMCID: PMC11978758 DOI: 10.1038/s41433-024-03566-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 12/26/2024] Open
Abstract
OBJECTIVES To determine the association between telomere length (TL) and age-related macular degeneration (AMD) and examine the potential variations with sex and ethnicity. METHODS Population-based, cross-sectional study. A total of 52,083 participants from the UK Biobank were included. Leucocyte TL, measured using quantitative polymerase chain reaction assay, was presented as the ratio of telomere repeat copy number relative to that of a single copy gene, and then log-transformed and Z-standardised. AMD cases were identified based on a combination of in-patient, self-reported and primary care data, and furtherly classified as early, intermediate and late AMD using the Beckmann classification system (based on more severe eye). RESULTS Among the 52,083 participants aged 60.2 ± 5.4 years, 725 were any-AMD cases. AMD patients had shorter TL than those without AMD (-0.22 ± 0.95 vs. -0.10 ± 0.99, P = 0.001). In multivariable model, shorter TL (per standard deviation) was significantly associated with higher odds of AMD in Whites (OR:1.09; 95% CI: 1.01-1.18; P = 0.036). When stratified by sex and ethnicity, this association was only significant in White women (OR:1.14; 95%CI: 1.02, 1.27; P = 0.018), but not in men and nonwhite populations (all P ≥ 0.335). Among white women, the association was more pronounced (OR:1.47; 95%CI:1.23-1.77; P < 0.001) for intermediate/late AMD but not for early AMD (P = 0.789). CONCLUSIONS Shorter TL was associated with any AMD in white women but not in men and other ethnicities. Our findings highlight the potential role of telomere length in the pathogenesis of AMD and the importance of considering sex and ethnicity variation in this research area.
Collapse
Affiliation(s)
- Can Can Xue
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Simon Nusinovici
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Marco Yu
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Miao-Li Chee
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Kelvin Teo
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Xinyi Su
- Department of Ophthalmology, National University Health System, Singapore, Singapore
- Centre for Innovation and Precision Eye Health & Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chui Ming Gemmy Cheung
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Charumathi Sabanayagam
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Centre for Innovation and Precision Eye Health & Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yih-Chung Tham
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore.
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore.
- Centre for Innovation and Precision Eye Health & Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
22
|
Marciau C, Bestley S, Costantini D, Hicks O, Hindell M, Kato A, Raclot T, Ribout C, Ropert-Coudert Y, Angelier F. Sibling similarity in telomere length in Adélie penguin chicks. Comp Biochem Physiol A Mol Integr Physiol 2025; 302:111818. [PMID: 39884423 DOI: 10.1016/j.cbpa.2025.111818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/01/2025]
Abstract
Early life telomere length is thought to influence and predict an individual's fitness. It has been shown to vary significantly in early life compared to adulthood. Investigating the factors influencing telomere length in young individuals is therefore of particular interest, especially as the relative importance of heredity compared to post-natal conditions remains largely uncertain. Adélie penguins are eco-indicators of the Antarctic ecosystem and their population are currently undergoing variable trajectories due to climate change. Here, we conducted a correlative study to investigate how telomere length was influenced by external and internal factors in Adélie penguin chicks. We found that most of the parameters we tested, including sex, body mass, brood size and hatching order as well as parental foraging trip duration, did not significantly influence chick telomere length at 32 days. However, siblings had similar telomere length, suggesting that hereditary factors play a stronger role in determining telomere length at this stage compared to the post-natal environment. In addition, telomere length and oxidative damage did not directly correlate but did interact in a complex way mediated by chick mass. High levels of oxidative damage were associated with longer telomeres in heavy chicks, whereas they were associated with shorter telomeres in light chicks. Although this mass-dependent relationship between telomere length and oxidative damage needs to be confirmed in future studies, it could reflect two different scenarios: (1) short telomeres may mimic the cost of poor nutritional conditions and oxidative damage in light chicks; (2) long telomeres may be maintained despite high oxidative damage in heavy chicks thanks to optimal nutritional conditions.
Collapse
Affiliation(s)
- Coline Marciau
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia; Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-La Rochelle Université, Villiers en Bois, France.
| | - Sophie Bestley
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - David Costantini
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Universit'a, 01100 Viterbo, Italy; Unité Physiologie Moléculaire et Adaptation, UMR7221-Muséum National d'Histoire Naturelle-CNRS, 75005 Paris, France
| | - Olivia Hicks
- Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-La Rochelle Université, Villiers en Bois, France
| | - Mark Hindell
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Akiko Kato
- Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-La Rochelle Université, Villiers en Bois, France
| | - Thierry Raclot
- Institut Pluridisciplinaire Hubert Curien, CNRS-UMR7178, Strasbourg, France
| | - Cécile Ribout
- Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-La Rochelle Université, Villiers en Bois, France
| | - Yan Ropert-Coudert
- Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-La Rochelle Université, Villiers en Bois, France
| | - Frederic Angelier
- Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-La Rochelle Université, Villiers en Bois, France
| |
Collapse
|
23
|
Jones-Weinert C, Mainz L, Karlseder J. Telomere function and regulation from mouse models to human ageing and disease. Nat Rev Mol Cell Biol 2025; 26:297-313. [PMID: 39614014 DOI: 10.1038/s41580-024-00800-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 12/01/2024]
Abstract
Telomeres protect the ends of chromosomes but shorten following cell division in the absence of telomerase activity. When telomeres become critically short or damaged, a DNA damage response is activated. Telomeres then become dysfunctional and trigger cellular senescence or death. Telomere shortening occurs with ageing and may contribute to associated maladies such as infertility, neurodegeneration, cancer, lung dysfunction and haematopoiesis disorders. Telomere dysfunction (sometimes without shortening) is associated with various diseases, known as telomere biology disorders (also known as telomeropathies). Telomere biology disorders include dyskeratosis congenita, Høyeraal-Hreidarsson syndrome, Coats plus syndrome and Revesz syndrome. Although mouse models have been invaluable in advancing telomere research, full recapitulation of human telomere-related diseases in mice has been challenging, owing to key differences between the species. In this Review, we discuss telomere protection, maintenance and damage. We highlight the differences between human and mouse telomere biology that may contribute to discrepancies between human diseases and mouse models. Finally, we discuss recent efforts to generate new 'humanized' mouse models to better model human telomere biology. A better understanding of the limitations of mouse telomere models will pave the road for more human-like models and further our understanding of telomere biology disorders, which will contribute towards the development of new therapies.
Collapse
Affiliation(s)
| | - Laura Mainz
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jan Karlseder
- The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
24
|
Zhu T, Hu P, Mi Y, Zhang J, Xu A, Gao M, Zhang Y, Shen S, Yang G, Pan Y. Telomerase reverse transcriptase gene knock-in unleashes enhanced longevity and accelerated damage repair in mice. Aging Cell 2025; 24:e14445. [PMID: 39660787 PMCID: PMC11984681 DOI: 10.1111/acel.14445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/24/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
While previous research has demonstrated the therapeutic efficacy of telomerase reverse transcriptase (TERT) overexpression using adeno-associated virus and cytomegalovirus vectors to combat aging, the broader implications of TERT germline gene editing on the mammalian genome, proteomic composition, phenotypes, lifespan extension, and damage repair remain largely unexplored. In this study, we elucidate the functional properties of transgenic mice carrying the Tert transgene, guided by precise gene targeting into the Rosa26 locus via embryonic stem (ES) cells under the control of the elongation factor 1α (EF1α) promoter. The Tert knock-in (TertKI) mice harboring the EF1α-Tert gene displayed elevated telomerase activity, elongated telomeres, and extended lifespan, with no spontaneous genotoxicity or carcinogenicity. The TertKI mice showed also enhanced wound healing, characterized by significantly increased expression of Fgf7, Vegf, and collagen. Additionally, TertKI mice exhibited robust resistance to the progression of colitis induced by dextran sodium sulfate (DSS), accompanied by reduced expression of disease-deteriorating genes. These findings foreshadow the potential of TertKI as an extraordinary rejuvenation force, promising not only longevity but also rejuvenation in skin and intestinal aging.
Collapse
Affiliation(s)
- Tian‐Yi Zhu
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsuChina
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | - Po Hu
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsuChina
| | - Yu‐Hui Mi
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsuChina
| | - Jun‐Li Zhang
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsuChina
| | - An‐Na Xu
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsuChina
| | - Ming‐Tong Gao
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsuChina
| | - Ying‐Ying Zhang
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsuChina
| | - San‐Bing Shen
- Regenerative Medicine Institute, School of MedicineUniversity of GalwayGalwayIreland
| | - Guang‐Ming Yang
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsuChina
| | - Yang Pan
- School of PharmacyNanjing University of Chinese MedicineNanjingJiangsuChina
| |
Collapse
|
25
|
Bellelli F, Angioni D, Arosio B, Vellas B, De Souto Barreto P. Hallmarks of aging and Alzheimer's Disease pathogenesis: Paving the route for new therapeutic targets. Ageing Res Rev 2025; 106:102699. [PMID: 39986483 DOI: 10.1016/j.arr.2025.102699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 01/10/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
Aging is the leading risk factor for Alzheimer's Disease (AD). Understanding the intricate interplay between biological aging and the AD pathophysiology may help to discover innovative treatments. The relationship between aging and core pathways of AD pathogenesis (amyloidopathy and tauopathy) have been extensively studied in preclinical models. However, the potential discordance between preclinical models and human pathology could represent a limitation in the identification of new therapeutic targets. This narrative review aims to gather the evidence currently available on the associations of β-Amyloid and Tau pathology with the hallmarks of aging in human studies. Briefly, our review suggests that while several hallmarks exhibit a robust association with AD pathogenesis (e.g., epigenetic alterations, chronic inflammation, dysbiosis), others (e.g., telomere attrition, cellular senescence, stem cell exhaustion) demonstrate either no relationship or weak associations. This is often due to limitations such as small sample sizes and study designs, being either cross-sectional or with short follow-up intervals, limiting the generalizability of the findings. Distinct hallmarks play varying roles in different stages of AD pathology, emphasizing the need for longitudinal studies with longer follow-up periods. Considering the intricate interconnections across the hallmarks of aging, future research on AD pathology should focus on multiple hallmarks simultaneously.
Collapse
Affiliation(s)
- Federico Bellelli
- IHU HealthAge, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France; Fellowship in Geriatric and Gerontology, University of Milan, Milan, Italy.
| | - Davide Angioni
- IHU HealthAge, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France; CERPOP, Inserm 1295, Toulouse University, INSERM, UPS, Toulouse, France
| | | | - Bruno Vellas
- IHU HealthAge, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France; CERPOP, Inserm 1295, Toulouse University, INSERM, UPS, Toulouse, France
| | - Philipe De Souto Barreto
- IHU HealthAge, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, Toulouse, France; CERPOP, Inserm 1295, Toulouse University, INSERM, UPS, Toulouse, France
| |
Collapse
|
26
|
Giunco S, Petrara MR, Indraccolo S, Ciminale V, De Rossi A. Beyond Telomeres: Unveiling the Extratelomeric Functions of TERT in B-Cell Malignancies. Cancers (Basel) 2025; 17:1165. [PMID: 40227701 PMCID: PMC11987798 DOI: 10.3390/cancers17071165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/15/2025] Open
Abstract
The reactivation of telomerase enables cancer cells to maintain the telomere length, bypassing replicative senescence and achieving cellular immortality. In addition to its canonical role in telomere maintenance, accumulating evidence highlights telomere-length-independent functions of TERT, the catalytic subunit of telomerase. These extratelomeric functions involve the regulation of signaling pathways and transcriptional networks, creating feed-forward loops that promote cancer cell proliferation, resistance to apoptosis, and disease progression. This review explores the complex mechanisms by which TERT modulates key signaling pathways, such as NF-κB, AKT, and MYC, highlighting its role in driving autonomous cancer cell growth and resistance to therapy in B-cell malignancies. Furthermore, we discuss the therapeutic potential of targeting TERT's extratelomeric functions. Unlike telomere-directed approaches, which may require prolonged treatment to achieve effective telomere erosion, inhibiting TERT's extratelomeric functions offers the prospect of rapid tumor-specific effects. This strategy could complement existing chemotherapeutic regimens, providing an innovative and effective approach to managing B-cell malignancies.
Collapse
Affiliation(s)
- Silvia Giunco
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (S.G.); (S.I.); (V.C.)
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy;
| | - Maria Raffaella Petrara
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy;
| | - Stefano Indraccolo
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (S.G.); (S.I.); (V.C.)
- Basic and Translational Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Vincenzo Ciminale
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (S.G.); (S.I.); (V.C.)
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy;
| | - Anita De Rossi
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (S.G.); (S.I.); (V.C.)
| |
Collapse
|
27
|
Gerić M, Nanić L, Micek V, Novak Jovanović I, Gajski G, Rašić D, Orct T, Ljubojević M, Karaica D, Jurasović J, Vrhovac Madunić I, Peraica M, Sabolić I, de Andrade VM, Breljak D, Rubelj I. The Impact of Resveratrol and Melatonin on the Genome and Oxidative Status in Ageing Rats. Nutrients 2025; 17:1187. [PMID: 40218945 PMCID: PMC11990809 DOI: 10.3390/nu17071187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Given the growing challenges posed by an ageing population, particularly in Western countries, we aimed to investigate the potential geroprotective effects of resveratrol and melatonin in ageing rats. METHODS The animals were treated with these two compounds starting at 3 months of age and continuing until 1 year or 2 years of age. Using a multibiomarker approach, we assessed DNA damage, telomere length, and the oxidative status in their urine, liver, and kidneys. RESULTS Despite employing this experimental approach, our results did not provide conclusive evidence of geroprotective effects across the evaluated organs. However, we observed sex-dependent differences in response to treatment. CONCLUSIONS Given the high potency of these two compounds, further research is warranted to explore their incorporation into daily routines as a strategy to mitigate ageing-related effects.
Collapse
Affiliation(s)
- Marko Gerić
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Lucia Nanić
- Laboratory for Molecular and Cellular Biology, Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Vedran Micek
- Animal Breeding Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Ivana Novak Jovanović
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Goran Gajski
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Dubravka Rašić
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Tatjana Orct
- Division of Occupational and Environmental Health, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Marija Ljubojević
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Dean Karaica
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Jasna Jurasović
- Animal Breeding Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Ivana Vrhovac Madunić
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Maja Peraica
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Ivan Sabolić
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Vanessa Moraes de Andrade
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina–UNESC, Criciúma 88806-000, Brazil;
| | - Davorka Breljak
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Ivica Rubelj
- Laboratory for Molecular and Cellular Biology, Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
28
|
Mannherz W, Crompton A, Lampl N, Agarwal S. Metabolic constraint of human telomere length by nucleotide salvage efficiency. Nat Commun 2025; 16:3000. [PMID: 40148339 PMCID: PMC11950188 DOI: 10.1038/s41467-025-58221-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Human telomere length is tightly regulated and associated with diseases at either extreme, but how these bounds are established remains incompletely understood. Here, we developed a rapid cell-based telomere synthesis assay and found that nucleoside salvage bidirectionally constrains human telomere length. Metabolism of deoxyguanosine (dG) or guanosine via purine nucleoside phosphorylase (PNP) and hypoxanthine-guanine phosphoribosyltransferase to form guanine ribonucleotides strongly inhibited telomerase and shortened telomeres. Conversely, salvage of dG to its nucleotide forms via deoxycytidine kinase drove potent telomerase activation, the extent of which was controlled by the dNTPase SAMHD1. Circumventing limits on salvage by expressing Drosophila melanogaster deoxynucleoside kinase or augmenting dG metabolism using the PNP inhibitor ulodesine robustly lengthened telomeres in human cells, including those from patients with lethal telomere diseases. Our results provide an updated paradigm for telomere length control, wherein telomerase reverse transcriptase activity is actively and bidirectionally constrained by the availability of its dNTP substrates, in a manner that may be therapeutically actionable.
Collapse
Affiliation(s)
- William Mannherz
- Division of Hematology/Oncology and Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
- Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Initiative for RNA Medicine, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Biological and Biomedical Sciences PhD Program, Harvard Medical School, Boston, MA, USA
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA, USA
| | - Andrew Crompton
- Division of Hematology/Oncology and Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
- Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Initiative for RNA Medicine, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Biological and Biomedical Sciences PhD Program, Harvard Medical School, Boston, MA, USA
| | - Noah Lampl
- Division of Hematology/Oncology and Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
- Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Initiative for RNA Medicine, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Suneet Agarwal
- Division of Hematology/Oncology and Stem Cell Program, Boston Children's Hospital, Boston, MA, USA.
- Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard Initiative for RNA Medicine, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
- Biological and Biomedical Sciences PhD Program, Harvard Medical School, Boston, MA, USA.
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
29
|
Kong W, Xie Y, Cen M, Xiong K. Association of ultra-processed foods with phenotypic age acceleration in US adults: a mediation analysis of body mass index in the NHANES. Front Nutr 2025; 12:1485456. [PMID: 40196021 PMCID: PMC11973088 DOI: 10.3389/fnut.2025.1485456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/28/2025] [Indexed: 04/09/2025] Open
Abstract
Background The rising intake of ultra-processed foods (UPFs) has been linked to adverse health outcomes, yet its impact on aging acceleration remains unclear. Objective This study aimed to examine the association between the percentage of total daily calories (%Kcal) and grams (%Gram) from UPFs and phenotypic age acceleration (PhenoAgeAccel). Methods Data from 12,079 adults in the NHANES 2005-2010 cycles were analyzed. The relationship between UPFs intake and PhenoAgeAccel was assessed using multivariable linear regression and restricted cubic splines, with adjustments for relevant covariates. The mediating role of body mass index (BMI) was also explored. Results A significant positive linear association was observed between UPFs intake (%Gram) and PhenoAgeAccel, with the highest quartile showing an increase of 0.60 (95% CI: 0.15, 1.05; p for trend = 0.039), but no association was found between UPFs intake (%Kcal) and PhenoAgeAccel. Mediation analysis indicated that BMI mediated 27.5% of the association between UPFs intake (%Gram) and PhenoAgeAccel. Sensitivity analyses confirmed the robustness of the results. Conclusion Higher intake of UPFs intake (%Gram) is positively associated with PhenoAgeAccel, with BMI playing a significant mediating role.
Collapse
Affiliation(s)
- Weiliang Kong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo, China
| | - Yilian Xie
- Department of Hepatology, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo, China
| | - Mengyuan Cen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo, China
| | - Kunlong Xiong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo, China
| |
Collapse
|
30
|
Kong W, Jin Y. Environmental exposure to perchlorate, nitrate, and thiocyanate in relation to biological aging in U.S. adults, a cross-sectional NHANES study. Front Public Health 2025; 13:1518254. [PMID: 40171432 PMCID: PMC11958956 DOI: 10.3389/fpubh.2025.1518254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/28/2025] [Indexed: 04/03/2025] Open
Abstract
Background Few studies have investigated the associations between perchlorate, nitrate, and thiocyanate (PNT) and biological aging. This study aimed to assess the association between PNT and biological aging among U.S. adults. Methods Utilizing multivariable linear regression and restricted cubic splines (RCS), we analyzed urinary PNT levels' impact on phenotypic age and biological age. Subgroup and sensitivity analyses were also conducted. Weighted Quantile Sum (WQS) and Bayesian Kernel Machine Regression (BKMR) models examined PNT mixtures. Results 8,368 participants were analyzed. Mean phenotypic age was 43.05 ± 0.48 years, mean biological age was 47.08 ± 0.4 years. Multivariable linear regression showed significant negative associations between higher PNT levels and phenotypic age (perchlorate β = -0.6, 95% CI: -0.93 to -0.27; nitrate β = -0.81, 95% CI: -1.19 to -0.42; thiocyanate β = -0.56, 95% CI: -0.77 to -0.34) after covariates adjusted. RCS demonstrated negative nonlinear relationships between PNT exposure and phenotypic age (nonlinear p values: 0.002, <0.001, and <0.001), with stable results in sensitivity analyses. Nitrate exposure showed a significant negative association with biological age (β = -0.78, 95% CI: -1.13 to -0.44), indicating a consistent negative linear relationship observed through RCS and remaining stable across sensitivity analyses. WQS regression revealed a negative association between the mixture and phenotypic age in both positive and negative directions, with a significant negative association with biological age in the negative direction. BKMR analysis revealed a negative association between PNT mixtures and phenotypic age, with nitrate and thiocyanate identified as the primary predictors of phenotypic age. No association found between PNT mixture and biological age. Conclusion Individual or combined PNT are negatively associated with phenotypic age. High nitrate is associated with reduced biological age, showcasing consistent outcomes.
Collapse
Affiliation(s)
- Weiliang Kong
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | | |
Collapse
|
31
|
Cabral JE, Lin S, Zhou H, Wu A, Lackner A, Pham MA, Chi F, McNulty R. NLRP10 Cleaves Oxidized DNA inhibited by OGG1 inhibitors: A Newly Identified Role in DNA Damage Processing and Senescence Regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.07.642110. [PMID: 40161730 PMCID: PMC11952316 DOI: 10.1101/2025.03.07.642110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Mitochondrial DNA (mtDNA) release into the cytosol is a critical event in innate immune activation, often acting as a damage-associated molecular pattern (DAMP) that triggers inflammasome assembly. Here, we demonstrate that NLRP3 plays a direct role in cleaving and facilitating the release of D-loop mtDNA into the cytosol. We further show that NLRP3 interacts with NLRP10. NLRP10-mediated ox-DNA cleavage involves a Schiff base intermediate and is inhibited by small molecules known to inhibit glycosylases. These findings support a model where NLRP10 interaction with oxidized DNA may contribute to long-term senescence secretory phenotype and modulate inflammasome activation. Our study highlights a novel mechanism by which NLRP10 can respond to mitochondrial stress signals to influence innate immunity and suggests therapeutic potential for targeting these interactions in inflammatory diseases.
Collapse
|
32
|
Thau H, Gerjol BP, Hahn K, von Gudenberg RW, Knoedler L, Stallcup K, Emmert MY, Buhl T, Wyles SP, Tchkonia T, Tullius SG, Iske J. Senescence as a molecular target in skin aging and disease. Ageing Res Rev 2025; 105:102686. [PMID: 39929368 DOI: 10.1016/j.arr.2025.102686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 02/18/2025]
Abstract
Skin aging represents a multifactorial process influenced by both intrinsic and extrinsic factors, collectively known as the skin exposome. Cellular senescence, characterized by stable cell cycle arrest and secretion of pro-inflammatory molecules, has been implicated as a key driver of physiological and pathological skin aging. Increasing evidence points towards the role of senescence in a variety of dermatological diseases, where the accumulation of senescent cells in the epidermis and dermis exacerbates disease progression. Emerging therapeutic strategies such as senolytics and senomorphics offer promising avenues to target senescent cells and mitigate their deleterious effects, providing potential treatments for both skin aging and senescence-associated skin diseases. This review explores the molecular mechanisms of cellular senescence and its role in promoting age-related skin changes and pathologies, while compiling the observed effects of senotherapeutics in the skin and discussing the translational relevance.
Collapse
Affiliation(s)
- Henriette Thau
- Van Cleve Cardiac Regenerative Medicine Program Mayo Clinic, Rochester, Minesota, USA; Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bastian P Gerjol
- Department of Internal Medicine, Klinik Hirslanden, Zurich, Switzerland
| | - Katharina Hahn
- Department of Dermatology, Venereology and Allergology, Göttingen University Medical Center, Göttingen, Germany
| | - Rosalie Wolff von Gudenberg
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Leonard Knoedler
- Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin, Germany
| | - Kenneth Stallcup
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
| | - Maximilian Y Emmert
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Timo Buhl
- Department of Dermatology, Venereology and Allergology, Göttingen University Medical Center, Göttingen, Germany
| | | | - Tamar Tchkonia
- Center for Advanced Gerotherapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stefan G Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jasper Iske
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
33
|
Bozza A, Marengo A, Camisassa E, Valsania MC, Ugazio E, Benetti E, Guglielmo S, Argenziano M, Pisani M, Sereno A, Macagno N, Accorinti M, Quaglino P, Battaglia L. Green solid lipid nanoparticles by coacervation of fatty acids: An innovative cosmetic ingredient for the delivery of anti-age compounds through the skin. Int J Pharm 2025; 671:125233. [PMID: 39842739 DOI: 10.1016/j.ijpharm.2025.125233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
The constant exposure of the skin to internal and external stimuli drives towards skin aging and lost in skin hydration and elasticity. Chronic low-grade inflammation, called inflammaging, and oxidative stress are the leading causes of this phenomenon. Fatty acid coacervation is a preparation method for Solid Lipid Nanoparticles (SLNs), which does not employ solvents, and is associated to low energy consumption. Of note, Green SLNs by coacervation may be obtained from natural soaps. Within this concern, in this experimental work, Mango and Shea SLNs, prepared by coacervation from the corresponding vegetal soaps, were loaded with an UV-filter, 2-ethylhexyl 4-(dimethylamino)benzoate, and two anti-age ingredients, α-Tocopherol and Tocopheryl nicotinate, and characterized by a physico-chemical standpoint. Such Green cosmetic SLNs were monitored for stability after storage at 4, 25, 40 °C for 28 days. Moreover, an anti-age serum and hydrogel were prepared, based upon Green cosmetic SLNs. Stability studies were performed on sera and hydrogels, including physico-chemical stability studies (rheology, pH, centrifugation) and evaluation of organoleptic characteristics (appearance, odour, colour) after storage at 4, 25, 40 °C up to 1 year, with the best results obtained for Mango SLNs-based serum. Therefore, Franz cells studies with pig-ear skin were carried out on Mango SLNs and Mango SLNs-based serum, showing that loading in SLNs enhances the permeation of compounds. A challenge test and a patch test assessed the safety of such serum for human usage, and an efficacy study on human volunteers demonstrated its capability to increase skin hydration and elasticity.
Collapse
Affiliation(s)
- Annalisa Bozza
- University of Turin, Department of Drug Science and Technology, via Pietro Giuria 9, 10125 Turin, Italy.
| | - Arianna Marengo
- University of Turin, Department of Drug Science and Technology, via Pietro Giuria 9, 10125 Turin, Italy
| | | | - Maria Carmen Valsania
- University of Turin, Department of Chemistry, Via Quarello 15/a, 10135 Turin, Italy; University of Turin, Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, 10124 Turin, Italy
| | - Elena Ugazio
- University of Turin, Department of Drug Science and Technology, via Pietro Giuria 9, 10125 Turin, Italy
| | - Elisa Benetti
- University of Turin, Department of Drug Science and Technology, via Pietro Giuria 9, 10125 Turin, Italy
| | - Stefano Guglielmo
- University of Turin, Department of Drug Science and Technology, via Pietro Giuria 9, 10125 Turin, Italy
| | - Monica Argenziano
- University of Turin, Department of Drug Science and Technology, via Pietro Giuria 9, 10125 Turin, Italy
| | - Martina Pisani
- University of Turin, Department of Drug Science and Technology, via Pietro Giuria 9, 10125 Turin, Italy
| | - Alessandra Sereno
- University of Turin, Department of Veterinary Sciences, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Nicole Macagno
- University of Turin, Department of Medical Sciences, Dermatologic Clinic, Via Cherasco 23, 10126 Turin, Italy
| | - Martina Accorinti
- University of Turin, Department of Medical Sciences, Dermatologic Clinic, Via Cherasco 23, 10126 Turin, Italy
| | - Pietro Quaglino
- University of Turin, Department of Medical Sciences, Dermatologic Clinic, Via Cherasco 23, 10126 Turin, Italy
| | - Luigi Battaglia
- University of Turin, Department of Drug Science and Technology, via Pietro Giuria 9, 10125 Turin, Italy; University of Turin, Department of Medical Sciences, Dermatologic Clinic, Via Cherasco 23, 10126 Turin, Italy
| |
Collapse
|
34
|
Otgaar TC, Bernert M, Morris G, Baichan P, Bignoux MJ, Letsolo B, Weiss SFT, Ferreira E. 37 kDa LRP::FLAG enhances telomerase activity and reduces ageing markers in vivo. Cell Mol Life Sci 2025; 82:83. [PMID: 39985566 PMCID: PMC11846807 DOI: 10.1007/s00018-025-05593-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/30/2024] [Accepted: 01/13/2025] [Indexed: 02/24/2025]
Abstract
Ageing is a degenerative process characterised by a decline in physiological functioning of the organism. One of the core regulators of cellular ageing are telomeres, repetitive DNA sequences of TTAGGG that cap the ends of chromosomes and are maintained by the ribonucleoprotein complex, telomerase. Age-dependent progressive loss of the telomere ends eventually induces cell cycle arrest for the induction of either replicative senescence or apoptosis. It was previously established that overexpression of the 37 kDa/ 67 kDa laminin receptor (LRP/LR) increased telomerase activity and telomere length while concomitantly reducing senescence markers in aged normal cells in vitro. Therefore, it was hypothesized that elevating LRP/LR in vivo may increase telomerase activity and hinder the ageing process on an organism scale. To this end, aged C57BL/6J mice were treated/transfected to induce an overexpression of LRP::FLAG. Various physiological tests and histological analyses were performed to assess overall organism fitness as well as to discern the treatments' ability at reducing tissue degeneration and atrophy. It was found that mice overexpressing LRP::FLAG displayed improved physiological characteristics and markedly less tissue degeneration and atrophy when compared to control and non-treated mice. Alongside these improvements, certain organs displayed increased telomerase activity with a corresponding elongation in average telomere length. In addition the overexpression of LRP::FLAG significantly improved various proliferative and anti-ageing associated proteins while causing a concomitant decrease in senescence associated proteins. These findings are therefore indicative of a novel function of LRP/LR delaying the onset of senescence, while also promoting healthier ageing through elevating TERT and telomerase activity.
Collapse
Affiliation(s)
- Tyrone C Otgaar
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits, Johannesburg, 2050, Republic of South Africa
| | - Martin Bernert
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits, Johannesburg, 2050, Republic of South Africa
| | - Gavin Morris
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits, Johannesburg, 2050, Republic of South Africa
| | - Pavan Baichan
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits, Johannesburg, 2050, Republic of South Africa
| | - Monique J Bignoux
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits, Johannesburg, 2050, Republic of South Africa
| | - Boitelo Letsolo
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits, Johannesburg, 2050, Republic of South Africa
| | - Stefan F T Weiss
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits, Johannesburg, 2050, Republic of South Africa
| | - Eloise Ferreira
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits, Johannesburg, 2050, Republic of South Africa.
| |
Collapse
|
35
|
Pan Q, Zhu Y, Ye Z, Zhang H, Wang J, Yi G, Li Z, Xu R, Wang L, Wu Z, Qi S, Huang G, Qu S. Unveiling the complexity of cellular senescence in cancers: From mechanism to therapeutic opportunities. BMEMAT 2025. [DOI: 10.1002/bmm2.12137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/23/2024] [Indexed: 06/23/2025]
Abstract
AbstractCellular senescence is characterized by a sustained and irreversible cessation of cell proliferation in response to diverse environmental stimuli. However, senescent cells exhibit strong metabolic activity and release a range of cytokines and inflammatory mediators into the tumor microenvironment, collectively referred to as the senescence‐associated secretory phenotype (SASP). In recent years, to develop new therapies for cancers, researchers have conducted extensive studies on the mechanism of cancer cell senescence and revealed that induction of cancer cell senescence could effectively suppress cancer progression. However, it has been documented that cellular senescence not only inhibits cancer initiation but also contributes significantly to cancer progression in some cases. Hence, it is imperative to comprehend the correlation between cellular senescence and tumorigenesis, and discuss the potential utilization of cellular senescence mechanisms to suppress cancer progression, which lays a theoretical foundation for new drugs to treat cancers. In this review, we first provide an overview of the discovery of cellular senescence and its key milestone events. Meanwhile, this review examines the major stimulus for the induction of senescence, and provides an overview of the categorization of cellular senescence. Subsequently, an examination of the primary regulatory mechanisms of cellular senescence is discussed, followed by a summary of the control of the SASP expression and its dual biological roles in cancers. Additionally, we also provide an overview of common biomarkers utilized in the identification of cellular senescence. Finally, this review investigates the efficacy of the “One‐Two punch” sequential treatment approach for cancers, and examines the emerging challenges of this novel approach.
Collapse
Affiliation(s)
- Qiuming Pan
- Department of Neurosurgery Nanfang Hospital Southern Medical University Guangzhou China
- The First Clinical Medical College of Southern Medical University Guangzhou China
| | - Ye Zhu
- Department of Neurosurgery Nanfang Hospital Southern Medical University Guangzhou China
- The First Clinical Medical College of Southern Medical University Guangzhou China
| | - Zhi Ye
- Department of Neurosurgery Nanfang Hospital Southern Medical University Guangzhou China
- The First Clinical Medical College of Southern Medical University Guangzhou China
| | - Huayang Zhang
- Department of Neurosurgery Nanfang Hospital Southern Medical University Guangzhou China
- The First Clinical Medical College of Southern Medical University Guangzhou China
| | - Junxi Wang
- Department of Neurosurgery Nanfang Hospital Southern Medical University Guangzhou China
- The First Clinical Medical College of Southern Medical University Guangzhou China
| | - Guozhong Yi
- Department of Neurosurgery Nanfang Hospital Southern Medical University Guangzhou China
- Nanfang Glioma Center Nanfang Hospital Southern Medical University Guangzhou China
- Institute of Brain Disease Nanfang Hospital Southern Medical University Guangzhou China
| | - Zhiyong Li
- Department of Neurosurgery Nanfang Hospital Southern Medical University Guangzhou China
- Nanfang Glioma Center Nanfang Hospital Southern Medical University Guangzhou China
- Institute of Brain Disease Nanfang Hospital Southern Medical University Guangzhou China
| | - Rongyang Xu
- Department of Neurosurgery Nanfang Hospital Southern Medical University Guangzhou China
- The First Clinical Medical College of Southern Medical University Guangzhou China
| | - Luyao Wang
- Department of Neurosurgery Nanfang Hospital Southern Medical University Guangzhou China
- The First Clinical Medical College of Southern Medical University Guangzhou China
| | - Zhenzhen Wu
- Department of Neurosurgery Nanfang Hospital Southern Medical University Guangzhou China
| | - Songtao Qi
- Department of Neurosurgery Nanfang Hospital Southern Medical University Guangzhou China
- Nanfang Glioma Center Nanfang Hospital Southern Medical University Guangzhou China
- Institute of Brain Disease Nanfang Hospital Southern Medical University Guangzhou China
| | - Guanglong Huang
- Department of Neurosurgery Nanfang Hospital Southern Medical University Guangzhou China
- Nanfang Glioma Center Nanfang Hospital Southern Medical University Guangzhou China
- Institute of Brain Disease Nanfang Hospital Southern Medical University Guangzhou China
| | - Shanqiang Qu
- Department of Neurosurgery Nanfang Hospital Southern Medical University Guangzhou China
- Nanfang Glioma Center Nanfang Hospital Southern Medical University Guangzhou China
- Institute of Brain Disease Nanfang Hospital Southern Medical University Guangzhou China
| |
Collapse
|
36
|
Thyagarajan A, Travers JB, Sahu RP. Relevance of the Platelet-activating factor system in chemical warfare agents-induced effects. Free Radic Biol Med 2025; 228:62-67. [PMID: 39706499 PMCID: PMC11788046 DOI: 10.1016/j.freeradbiomed.2024.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
The threats to chemical warfare-associated agents (CWA), including nitrogen mustard, are increasing, and no direct antidote is currently available to mitigate the deleterious cutaneous and systemic responses to prevent mortality. Though most of these agents act as alkylating agents, a significant knowledge gap exists in the molecular mechanisms of how these vesicants cause toxic effects. Studies, including ours, have shown that exposure to reactive oxygen species (ROS)-generating stimuli, including alkylating chemotherapeutic agents, and thermal burn injuries with ethanol produce the potent family of lipid mediators, Platelet-activating factor (PAF) agonists that induce local inflammation, and multi-system organ dysfunction (MOD). Notably, nano-sized microvesicle particles (MVPs), released from cells in response to stimuli, carry PAF-agonists and act as potent signaling agents to induce the local (cutaneous) and systemic responses. The current review highlights mechanistic insights and applicable approaches to mitigate CWA-induced local and systemic toxic responses with implications in cellular senescence and aging.
Collapse
Affiliation(s)
- Anita Thyagarajan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine Wright State University, Dayton, OH, 45435, USA
| | - Jeffrey B Travers
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine Wright State University, Dayton, OH, 45435, USA; Department of Dermatology, Boonshoft School of Medicine Wright State University, Dayton, OH, 45435, USA; Department of Medicine, Dayton Veterans Administration Medical Center, Dayton, OH, 45428, USA
| | - Ravi P Sahu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine Wright State University, Dayton, OH, 45435, USA.
| |
Collapse
|
37
|
Qiu J, Fang H, Liu D, Lai Q, Xie J, Wang Y, Chen S, Xie Y. Accelerated biological aging mediates the association between inflammatory markers with Helicobacter pylori infection and mortality. J Transl Med 2025; 23:174. [PMID: 39930506 PMCID: PMC11812229 DOI: 10.1186/s12967-025-06189-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 01/30/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND The aim of this study was to explore the systemic inflammation response in relation to mortality in Helicobacter pylori (H. pylori) infection, and whether this relationship was mediated by accelerated biological aging. METHODS This cross-sectional study encompassed U.S. participants from National Health and Nutrition Examination Survey (NHANES) in 1999-2000. Kaplan-Meier survival curve, Cox regression analysis, K-means clustering, mediation analysis and restricted cubic spline (RCS) were used to explore the relationships between inflammatory markers, biological aging, H. pylori infection and all-cause mortality. RESULTS A total of 3509 U.S. participants enrolled form NHANES 1999-2000. Compared with H. pylori seronegative participants, H. pylori seropositive participants had significantly higher all-cause mortality (P < 0.001). Among these H. pylori seropositive participants, both phenotypic age acceleration (PhenoAgeAccel) and all-cause mortality were positively associated with the increased levels of inflammation (P < 0.001). A significant indirect effect of inflammatory markers (neutrophil count and systemic inflammatory response index (SIRI)) with H. pylori infection on all-cause mortality through PhenoageAccel was found, and the proportions mediated were 50.0% and 49.1%, respectively. CONCLUSION The elevation of blood inflammatory markers is positively associated with an increased risk of all-cause mortality in H. pylori infection among U.S. population, and accelerated biological aging might be one of its biological mechanisms.
Collapse
Affiliation(s)
- Jiayu Qiu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi, China
| | - Hui Fang
- Jiangxi Medical College, Huan Kui College of Nanchang University, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Dingwei Liu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi, China
| | - Qirui Lai
- Jiangxi Medical College, Huan Kui College of Nanchang University, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Jinliang Xie
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi, China
| | - Youhua Wang
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi, China
| | - Sihai Chen
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Nanchang, Jiangxi, China.
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi, China.
- Postdoctoral Innovation Practice Base, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Yong Xie
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Nanchang, Jiangxi, China.
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi, China.
| |
Collapse
|
38
|
Lindstedt S, Perch M, Niroomand A. Vintage vitality: Embracing older donor lungs for transplants. J Heart Lung Transplant 2025; 44:304-305. [PMID: 39278605 DOI: 10.1016/j.healun.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/16/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024] Open
Affiliation(s)
- Sandra Lindstedt
- Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden; Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden.
| | - Michael Perch
- Department of Cardiology, Section for Lung Transplantation, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anna Niroomand
- Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Stem Cell Center, Lund University, Lund, Sweden; Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden; Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden; Department of Cardiothoracic Surgery, New York University, New York, New York
| |
Collapse
|
39
|
Mohamed HABE, Agus HH, Palabiyik B. A novel method for telomere length detection in fission yeast. FEMS Yeast Res 2025; 25:foae040. [PMID: 39719362 PMCID: PMC11781191 DOI: 10.1093/femsyr/foae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/25/2024] [Accepted: 12/23/2024] [Indexed: 12/26/2024] Open
Abstract
Fission yeast is the ideal model organism for studying telomere maintenance in higher eukaryotes. Telomere length has been directly correlated with life expectancy and the onset of aging-related diseases in mammals. In this study, we developed a novel simple, and reproducible method to measure the telomere length, by investigating the effect of caffeine and cisplatin on the telomere length in fission yeast. Hydroxyurea-synchronized fission yeast cells were exposed to 62 µM cisplatin and 8.67 mM caffeine treatments for 2 h, then their telomere lengths were evaluated with two different methods. First, the quantitative polymerase chain reaction (qPCR) assay was used as a confirmative method, where telomere length was determined relative to a single-copy gene in the genome. Second, the newly developed method standard polymerase chain reaction (PCR)/ImageJ assay assessed the telomere length based on the amplified PCR band intensity using a set of telomere primers, reflecting telomeric sequence availability in the genome. Both methods show a significant decrease and a notable telomere lengthening in response to cisplatin and caffeine treatments, respectively. The finding supports the accuracy and productivity of the standard PCR/ImageJ assay as it can serve as a quick screening tool to study the effect of suspected chemotherapeutic and antiaging drugs on telomere length in fission yeast.
Collapse
Affiliation(s)
- Hadeel A B Elnaim Mohamed
- Institute of Graduate Studies in Science, Department of Molecular Biology and Genetics, Istanbul University, 34116, Istanbul, Turkey
| | - Hizlan Hincal Agus
- Faculty of Science and Literature, Department of Molecular Biology and Genetics, Istanbul Yeni Yuzyil University, 34010, Istanbul, Turkey
| | - Bedia Palabiyik
- Faculty of Science, Department of Molecular Biology and Genetics, Istanbul University, 34134, Istanbul, Turkey
| |
Collapse
|
40
|
Chang Y, Wu X, Deng L, Wang S, Mao G. [Mechanism and significance of cell senescence induced by viral infection]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2025; 54:70-80. [PMID: 39909458 PMCID: PMC11956860 DOI: 10.3724/zdxbyxb-2024-0213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 11/15/2024] [Indexed: 02/07/2025]
Abstract
Virus-induced senescence (VIS) is a significant biological phenomenon, which is associated with declining immune function, accelerating aging process and causing aging-related diseases. A variety of common viruses, including RNA viruses (such as SARS-CoV-2), DNA viruses (such as herpesviruses and hepatitis B virus), and prions can cause VIS in host cells. The primary mechanisms include abnormal activation of the cGAS-STING signaling pathway, DNA damage response, and potential correlations with the integrated stress response due to intracellular phase separation. Viral infection and cellular senescence influence each other: cellular senescence serves as a defense to restrict viral replication and transmission, while some viruses exploit cellular senescence to enhance their infectivity and replication. Understanding the mechanisms of VIS is conducive to the development of therapeutic strategies for viral infections and promotion of healthy aging. However, there is lack of research on therapeutic targets and drug development in this field so far. Although senolytics may be effective for anti-senescent cells therapy, their efficacy for VIS needs evidence from further clinical trials. This article reviews the research progress on the connection between viral infection and cellular senescence, to provide insights for the prevention and treatment of aging related diseases.
Collapse
Affiliation(s)
- Yunchuang Chang
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, Hubei Province, China.
| | - Xinna Wu
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lingli Deng
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, Hubei Province, China
| | - Sanying Wang
- Zhejiang Provincial Geriatrics Institute, Zhejiang Key Laboratory of Geriatrics, Zhejiang Hospital, Hangzhou 310030, China.
| | - Genxiang Mao
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, Hubei Province, China.
- Zhejiang Provincial Geriatrics Institute, Zhejiang Key Laboratory of Geriatrics, Zhejiang Hospital, Hangzhou 310030, China.
| |
Collapse
|
41
|
Forino NM, Woo JZ, Zaug AJ, Jimenez AG, Edelson E, Cech TR, Rouskin S, Stone MD. Telomerase RNA structural heterogeneity in living human cells detected by DMS-MaPseq. Nat Commun 2025; 16:925. [PMID: 39843442 PMCID: PMC11754830 DOI: 10.1038/s41467-025-56149-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/10/2025] [Indexed: 01/24/2025] Open
Abstract
Biogenesis of human telomerase requires its RNA subunit (hTR) to fold into a multi-domain architecture that includes the template-pseudoknot (t/PK) and the three-way junction (CR4/5). These hTR domains bind the telomerase reverse transcriptase (hTERT) protein and are essential for telomerase activity. Here, we probe hTR structure in living cells using dimethyl sulfate mutational profiling with sequencing (DMS-MaPseq) and ensemble deconvolution analysis. Approximately 15% of the steady state population of hTR has a CR4/5 conformation lacking features required for hTERT binding. The proportion of hTR CR4/5 folded into the primary functional conformation is independent of hTERT expression levels. Mutations that stabilize the alternative CR4/5 conformation are detrimental to telomerase assembly and activity. Moreover, the alternative CR4/5 conformation is not found in purified telomerase RNP complexes, supporting the hypothesis that only the primary CR4/5 conformer is active. We propose that this misfolded portion of the cellular hTR pool is either slowly refolded or degraded, suggesting that kinetic RNA folding traps studied in vitro may also hinder ribonucleoprotein assembly in vivo.
Collapse
Affiliation(s)
- Nicholas M Forino
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA, USA
| | - Jia Zheng Woo
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Arthur J Zaug
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
- Howard Hughes Medical Institute, University of Colorado, Boulder, CO, USA
| | | | - Eva Edelson
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA
| | - Thomas R Cech
- Department of Biochemistry, University of Colorado, Boulder, CO, USA.
- Howard Hughes Medical Institute, University of Colorado, Boulder, CO, USA.
| | - Silvi Rouskin
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| | - Michael D Stone
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA.
| |
Collapse
|
42
|
Canchi Sistla H, Talluri S, Rajagopal T, Venkatabalasubramanian S, Rao Dunna N. Genomic instability in ovarian cancer: Through the lens of single nucleotide polymorphisms. Clin Chim Acta 2025; 565:119992. [PMID: 39395774 DOI: 10.1016/j.cca.2024.119992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
Ovarian cancer (OC) is the deadliest gynecological malignancy among all female reproductive cancers. It is characterized by high mortality rate and poor prognosis. Genomic instability caused by mutations, single nucleotide polymorphisms (SNPs), copy number variations (CNVs), microsatellite instability (MSI), and chromosomal instability (CIN) are associated with OC predisposition. SNPs, which are highly prevalent in the general population, show a greater relative risk contribution, particularly in sporadic cancers. Understanding OC etiology in terms of genetic basis can increase the use of molecular diagnostics and provide promising approaches for designing novel treatment modalities. This will help deliver personalized medicine to OC patients, which may soon be within reach. Given the pivotal impact of SNPs in cancers, the primary emphasis of this review is to shed light on their prevalence in key caretaker genes that closely monitor genomic integrity, viz., DNA damage response, repair, cell cycle checkpoints, telomerase maintenance, and apoptosis and their clinical implications in OC. We highlight the current challenges faced in different SNP-based studies. Various computational methods and bioinformatic tools employed to predict the functional impact of SNPs have also been comprehensively reviewed concerning OC research. Overall, this review identifies that variants in the DDR and HRR pathways are the most studied, implying their critical role in the disease. Conversely, variants in other pathways, such as NHEJ, MMR, cell cycle, apoptosis, telomere maintenance, and PARP genes, have been explored the least.
Collapse
Affiliation(s)
- Harshavardhani Canchi Sistla
- Cancer Genomics Laboratory, Department of Biotechnology, School of Chemical and Biotechnology, SASTRA- Deemed University, Thanjavur 613 401, India
| | - Srikanth Talluri
- Dana Farber Cancer Institute, Boston, MA 02215, USA; Veterans Administration Boston Healthcare System, West Roxbury, MA 02132, USA
| | | | - Sivaramakrishnan Venkatabalasubramanian
- Department of Genetic Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur Campus, Chennai 603 203, India
| | - Nageswara Rao Dunna
- Cancer Genomics Laboratory, Department of Biotechnology, School of Chemical and Biotechnology, SASTRA- Deemed University, Thanjavur 613 401, India.
| |
Collapse
|
43
|
Iskandar M, Xiao Barbero M, Jaber M, Chen R, Gomez-Guevara R, Cruz E, Westerheide S. A Review of Telomere Attrition in Cancer and Aging: Current Molecular Insights and Future Therapeutic Approaches. Cancers (Basel) 2025; 17:257. [PMID: 39858038 PMCID: PMC11764024 DOI: 10.3390/cancers17020257] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES As cells divide, telomeres shorten through a phenomenon known as telomere attrition, which leads to unavoidable senescence of cells. Unprotected DNA exponentially increases the odds of mutations, which can evolve into premature aging disorders and tumorigenesis. There has been growing academic and clinical interest in exploring this duality and developing optimal therapeutic strategies to combat telomere attrition in aging and cellular immortality in cancer. The purpose of this review is to provide an updated overview of telomere biology and therapeutic tactics to address aging and cancer. METHODS We used the Rayyan platform to review the PubMed database and examined the ClinicalTrial.gov registry to gain insight into clinical trials and their results. RESULTS Cancer cells activate telomerase or utilize alternative lengthening of telomeres to escape telomere shortening, leading to near immortality. Contrarily, normal cells experience telomeric erosion, contributing to premature aging disorders, such as Werner syndrome and Hutchinson-Gilford Progeria, and (2) aging-related diseases, such as neurodegenerative and cardiovascular diseases. CONCLUSIONS The literature presents several promising therapeutic approaches to potentially balance telomere maintenance in aging and shortening in cancer. This review highlights gaps in knowledge and points to the potential of these optimal interventions in preclinical and clinical studies to inform future research in cancer and aging.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sandy Westerheide
- Department of Molecular Biosciences, University of South Florida, 4202 East Fowler Avenue, ISA2015, Tampa, FL 33620, USA; (M.I.); (M.X.B.); (M.J.); (R.C.); (R.G.-G.); (E.C.)
| |
Collapse
|
44
|
Lica JJ, Jakóbkiewicz-Banecka J, Hellmann A. In Vitro models of leukemia development: the role of very small leukemic stem-like cells in the cellular transformation cascade. Front Cell Dev Biol 2025; 12:1463807. [PMID: 39830209 PMCID: PMC11740207 DOI: 10.3389/fcell.2024.1463807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/28/2024] [Indexed: 01/22/2025] Open
Abstract
Recent experimental findings indicate that cancer stem cells originate from transformed very small embryonic-like stem cells. This finding represents an essential advancement in uncovering the processes that drive the onset and progression of cancer. In continuously growing cell lines, for the first time, our team's follow-up research on leukemia, lung cancer, and healthy embryonic kidney cells revealed stages that resembles very small precursor stem cells. This review explores the origin of leukemic stem-like cells from very small leukemic stem-like cells establish from transformed very small embryonic-like stem cells. We explore theoretical model of acute myeloid leukemia initiation and progresses through various stages, as well basing the HL60 cell line, present its hierarchical stage development in vitro, highlighting the role of these very small precursor primitive stages. We also discuss the potential implications of further research into these unique cellular stages for advancing leukemia and cancer treatment and prevention.
Collapse
Affiliation(s)
- Jan Jakub Lica
- Department Medical Biology and Genetics, Faculty of Biology, University of Gdansk, Gdansk, Poland
- Department Health Science; Powiśle University, Gdańsk, Poland
| | | | - Andrzej Hellmann
- Department of Hematology and Transplantology, Faculty of Medicine, Medical University of Gdansk, Gdańsk, Poland
| |
Collapse
|
45
|
Bridges JP, Vladar EK, Kurche JS, Krivoi A, Stancil IT, Dobrinskikh E, Hu Y, Sasse SK, Lee JS, Blumhagen RZ, Yang IV, Gerber AN, Peljto AL, Evans CM, Redente EF, Riches DW, Schwartz DA. Progressive lung fibrosis: reprogramming a genetically vulnerable bronchoalveolar epithelium. J Clin Invest 2025; 135:e183836. [PMID: 39744946 PMCID: PMC11684817 DOI: 10.1172/jci183836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is etiologically complex, with well-documented genetic and nongenetic origins. In this Review, we speculate that the development of IPF requires two hits: the first establishes a vulnerable bronchoalveolar epithelium, and the second triggers mechanisms that reprogram distal epithelia to initiate and perpetuate a profibrotic phenotype. While vulnerability of the bronchoalveolar epithelia is most often driven by common or rare genetic variants, subsequent injury of the bronchoalveolar epithelia results in persistent changes in cell biology that disrupt tissue homeostasis and activate fibroblasts. The dynamic biology of IPF can best be contextualized etiologically and temporally, including stages of vulnerability, early disease, and persistent and progressive lung fibrosis. These dimensions of IPF highlight critical mechanisms that adversely disrupt epithelial function, activate fibroblasts, and lead to lung remodeling. Together with better recognition of early disease, this conceptual approach should lead to the development of novel therapeutics directed at the etiologic and temporal drivers of lung fibrosis that will ultimately transform the care of patients with IPF from palliative to curative.
Collapse
Affiliation(s)
- James P. Bridges
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Eszter K. Vladar
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jonathan S. Kurche
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
| | - Andrei Krivoi
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ian T. Stancil
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, School of Medicine, Stanford, California, USA
| | - Evgenia Dobrinskikh
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Yan Hu
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sarah K. Sasse
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Joyce S. Lee
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rachel Z. Blumhagen
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA
| | - Ivana V. Yang
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Anthony N. Gerber
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Anna L. Peljto
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christopher M. Evans
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
| | - Elizabeth F. Redente
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - David W.H. Riches
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - David A. Schwartz
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
46
|
Laouris P, Muñoz-Espín D. Current Methodologies to Assess Cellular Senescence in Cancer. Methods Mol Biol 2025; 2906:21-44. [PMID: 40082348 DOI: 10.1007/978-1-0716-4426-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Cellular senescence plays a critical role in cancer, acting as both a tumor-suppressive and tumor-promoting mechanism. Senescent cells undergo stable cell-cycle arrest in response to various stressors, including DNA damage and oncogenic signaling, and exhibit a complex secretory phenotype known as the senescence-associated secretory phenotype (SASP), which can impact the tumor microenvironment. The hallmarks of senescence include cell-cycle arrest, secretion of pro-inflammatory factors, structural changes, and metabolic alterations. These features, while initially suppressing tumorigenesis, can later contribute to cancer progression under certain conditions. Methods for studying senescence in preclinical models include in vitro assays, ex vivo tissue analysis, and in vivo detection techniques. Emerging therapeutic strategies focus on exploiting senescence for cancer treatment, particularly through the use of senolytic agents that selectively eliminate senescent cells and senomorphic compounds that modulate SASP activity. However, the identification of reliable and universal biomarkers for senescence remains a challenge, necessitating a multimarker approach to accurately detect and characterize senescent cells in various contexts.
Collapse
Affiliation(s)
- Panayiotis Laouris
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Daniel Muñoz-Espín
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK.
- CRUK Cambridge Centre Thoracic Cancer Programme, Cambridge, UK.
| |
Collapse
|
47
|
Pratsinis H, Mavrogonatou E, Zervou SK, Triantis T, Hiskia A, Kletsas D. Natural Product-Derived Senotherapeutics: Extraction and Biological Evaluation Techniques. Methods Mol Biol 2025; 2906:315-359. [PMID: 40082365 DOI: 10.1007/978-1-0716-4426-3_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Selective targeting of senescent cells has been thus far considered a widespread preventive strategy, as well as a main or adjuvant therapy for age-associated diseases, fueling the research on the discovery of senotherapeutics (i.e., senolytic or senomorphic compounds). Given that until now no single senotherapeutic has been reported to exert a universal anti-senescence action due to the cell- /tissue-, and context-dependent specificity of such compounds, seeking novel selective senotherapeutics remains of great importance. In this chapter, a research strategy that could be followed to screen natural product collections for putative senotherapeutics with enhanced specificity and reduced toxicity is presented, from the extraction of the source material and the isolation and chemical characterization of the compounds of interest to their biological evaluation in vitro and in vivo.
Collapse
Affiliation(s)
- Harris Pratsinis
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Eleni Mavrogonatou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Sevasti-Kiriaki Zervou
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience and Nanotechnology, National Centre of Scientific Research "Demokritos", Athens, Greece
| | - Theodoros Triantis
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience and Nanotechnology, National Centre of Scientific Research "Demokritos", Athens, Greece
| | - Anastasia Hiskia
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience and Nanotechnology, National Centre of Scientific Research "Demokritos", Athens, Greece
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece.
| |
Collapse
|
48
|
Nonaka K, Aida J, Hasegawa Y, Arai T, Ishiwata T, Takubo K. Telomere Length Measurement in Human Tissue Sections by Quantitative Fluorescence In Situ Hybridization (Q-FISH). Methods Mol Biol 2025; 2857:9-14. [PMID: 39348051 DOI: 10.1007/978-1-0716-4128-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Telomeres in most somatic cells shorten with each cell division, and critically short telomeres lead to cellular dysfunction, cell cycle arrest, and senescence. Thus, telomere shortening is an important hallmark of human cellular senescence. Quantitative fluorescence in situ hybridization (Q-FISH) using formalin-fixed paraffin-embedded (FFPE) tissue sections allows the estimation of telomere lengths in individual cells in histological sections. In our Q-FISH method, fluorescently labelled peptide nucleic acid (PNA) probes are hybridized to telomeric and centromeric sequences in FFPE human tissue sections, and relative telomere lengths (telomere signal intensities relative to centromere signal intensities) are measured. This chapter describes our Q-FISH protocols for assessing relative telomere lengths in FFPE human tissue sections.
Collapse
Affiliation(s)
- Keisuke Nonaka
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan.
| | - Junko Aida
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Yasuko Hasegawa
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Toshiyuki Ishiwata
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Kaiyo Takubo
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| |
Collapse
|
49
|
Inui T, Kawamura N, Yamamura M, Kubo K, Yamakage H, Satoh-Asahara N, Ogawa Y, Katsuura G. Oral intake of degalactosylated whey protein increases peripheral blood telomere length in young and aged mice. Sci Rep 2024; 14:30859. [PMID: 39730524 DOI: 10.1038/s41598-024-81597-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/27/2024] [Indexed: 12/29/2024] Open
Abstract
In order to elucidate novel actions of degalactosylated whey protein (D-WP) in comparison with intact whey protein (WP), the effects of oral intake of D-WP on peripheral blood telomere length and telomerase were examined in young and aged mice. In young mice, peripheral blood telomere length was significantly elongated following oral intake of D-WP for 4 weeks. mRNA expression of both telomerase reverse transcriptase (TERT) and telomerase RNA component (TERC) was significantly increased in the peripheral blood following oral intake of D-WP for 4 weeks. In aged mice, peripheral blood telomere length was significantly decreased as compared with that of young mice, and significantly restored to the level of young mice drinking water by the oral intake of D-WP for 4 weeks. The mRNA expression of peripheral blood TERT and TERC mRNA in aged mice significantly decreased as compared with the level in young mice drinking water, and was significantly restored to the level of expression of young mice drinking water by oral intake of D-WP for 4 weeks. These results suggest that D-WP, but not WP, potently increases peripheral blood telomere length accompanied by increased mRNA expression of TERT and TERC in both young and aged mice.
Collapse
Affiliation(s)
- Toshio Inui
- Saisei Mirai Cell Processing Center, Moriguchi, Japan.
- Cancer Immunotherapy Clinic, 6-14-17 Kinda-cho, Moriguchi-shi, Osaka, 570-0011, Japan.
- Kobe Saisei Mirai Clinic, Kobe, Japan.
- Inui Immunotherapy Clinic, Moriguchi, Japan.
- Saisei Pharma, Moriguchi, Japan.
| | - Namiko Kawamura
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Kentaro Kubo
- Cancer Immunotherapy Clinic, 6-14-17 Kinda-cho, Moriguchi-shi, Osaka, 570-0011, Japan
| | - Hajime Yamakage
- Department of Endocrinology, Metabolism, and Hypertension Research, Clinical Research Institute, NHO Kyoto Medical Center, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto, 612-8555, Japan
| | - Noriko Satoh-Asahara
- Department of Endocrinology, Metabolism, and Hypertension Research, Clinical Research Institute, NHO Kyoto Medical Center, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto, 612-8555, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Goro Katsuura
- Department of Endocrinology, Metabolism, and Hypertension Research, Clinical Research Institute, NHO Kyoto Medical Center, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto, 612-8555, Japan.
| |
Collapse
|
50
|
Lopes-Bastos B, Nabais J, Ferreira T, Allavena G, El Maï M, Bird M, Targen S, Tattini L, Kang D, Yue JX, Liti G, Carvalho TG, Godinho Ferreira M. The absence of telomerase leads to immune response and tumor regression in zebrafish melanoma. Cell Rep 2024; 43:115035. [PMID: 39643971 DOI: 10.1016/j.celrep.2024.115035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/29/2024] [Accepted: 11/14/2024] [Indexed: 12/09/2024] Open
Abstract
Most cancers re-activate telomerase to maintain telomere length and thus acquire immortality. Activating telomerase promoter mutations are found in many cancers, including melanoma. However, it is unclear when and if telomerase is strictly required during tumorigenesis. We combined the telomerase mutant (tert-/-) with two established zebrafish melanoma models. We show that tert-/- melanomas initially develop with similar incidence and invasiveness to tert+/+ tumors. However, they eventually decline in growth and regress. Late tert-/- tumors exhibit reduced cell proliferation, increased apoptosis, and melanocyte differentiation. Notably, these tumors show enhanced immune cell infiltration and can resume growth when transplanted into immunocompromised hosts. We propose that telomerase is required for melanoma in zebrafish, albeit at later stages of progression, to sustain tumor growth while avoiding immune rejection and regression. Thus, the absence of telomerase restricts melanoma through tumor-autonomous mechanisms (cell-cycle arrest, apoptosis, and melanocyte differentiation) and a non-tumor-autonomous mechanism (immune rejection).
Collapse
Affiliation(s)
- Bruno Lopes-Bastos
- Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR7284, INSERM U1081, Université Côte d'Azur, 06107 Nice, France; Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Joana Nabais
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Tânia Ferreira
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Giulia Allavena
- Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR7284, INSERM U1081, Université Côte d'Azur, 06107 Nice, France
| | - Mounir El Maï
- Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR7284, INSERM U1081, Université Côte d'Azur, 06107 Nice, France; Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Malia Bird
- Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR7284, INSERM U1081, Université Côte d'Azur, 06107 Nice, France
| | - Seniye Targen
- Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR7284, INSERM U1081, Université Côte d'Azur, 06107 Nice, France
| | - Lorenzo Tattini
- Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR7284, INSERM U1081, Université Côte d'Azur, 06107 Nice, France
| | - Da Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jia-Xing Yue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Gianni Liti
- Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR7284, INSERM U1081, Université Côte d'Azur, 06107 Nice, France
| | | | - Miguel Godinho Ferreira
- Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR7284, INSERM U1081, Université Côte d'Azur, 06107 Nice, France; Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal.
| |
Collapse
|