1
|
Paula S, Jahani F, Almahmodi D, Sobota S, Devaraja S, O'Brien NS, Young KA, Prichard K, McCluskey A. Quinoline- and Pyrimidine-based Allosteric Modulators of the Sarco/Endoplasmic Reticulum Calcium ATPase. ChemMedChem 2025; 20:e202400763. [PMID: 39499613 DOI: 10.1002/cmdc.202400763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/07/2024]
Abstract
Small-molecule allosteric activators of the enzyme sarco/endoplasmic reticulum calcium ATPase (SERCA) hold promise as novel experimental tools to manipulate intracellular calcium concentrations and as therapeutic agents to treat medical conditions associated with elevated cytosolic calcium levels. Here, we synthesized and characterized 20 analogs of the known allosteric SERCA activator CDN1163 and tested their ability to stimulate SERCA activity. The structures of the compounds varied in the alkyl group of the parent scaffold's ether moiety as well as in the composition of the nitrogenous aromatic ring system. The most active compounds exhibited potencies in the sub-micromolar range while increasing enzyme activity by more than 25 %. The observed structure-activity relationships indicated that bulky alkyl groups in the ether moiety along with a quinoline ring methyl substituent were beneficial for activity. Replacement of the quinoline by a pyrimidine ring system reduced activity. To conceive a potential mechanism of action, we generated a molecular model of the transition state of SERCA when undergoing the rate-limiting step of its catalytic cycle. Subsequent blind docking with CDN1163 identified a high-affinity binding site close to the enzyme's ATP binding pocket, suggesting that the activators may accelerate SERCA's catalytic cycle by aiding in ATP binding and positioning.
Collapse
Affiliation(s)
- Stefan Paula
- Department of Chemistry, California State University Sacramento, 6000 J Street, Sacramento, CA, 95819, USA
| | - Farnaz Jahani
- Department of Chemistry, California State University Sacramento, 6000 J Street, Sacramento, CA, 95819, USA
| | - Dina Almahmodi
- Department of Chemistry, California State University Sacramento, 6000 J Street, Sacramento, CA, 95819, USA
| | - Sydni Sobota
- Department of Chemistry, California State University Sacramento, 6000 J Street, Sacramento, CA, 95819, USA
| | - Shiffany Devaraja
- Department of Chemistry, California State University Sacramento, 6000 J Street, Sacramento, CA, 95819, USA
| | - Nicholas S O'Brien
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, New South Wales, Australia
| | - Kelly A Young
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, New South Wales, Australia
| | - Kate Prichard
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, New South Wales, Australia
| | - Adam McCluskey
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, New South Wales, Australia
| |
Collapse
|
2
|
Llansó L, Ravenscroft G, Aceituno C, Gutiérrez A, Parmar J, Gallano P, Caballero-Ávila M, Carbayo Á, Vesperinas A, Collet R, Blanco R, Laing N, Hove-Madsen L, Gallardo E, Olivé M. A Homozygous ATP2A2 Variant Alters Sarcoendoplasmic Reticulum Ca 2+-ATPase 2 Function in Skeletal Muscle and Causes a Novel Vacuolar Myopathy. Neuropathol Appl Neurobiol 2025; 51:e70000. [PMID: 39817497 DOI: 10.1111/nan.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/13/2024] [Accepted: 12/30/2024] [Indexed: 01/18/2025]
Abstract
AIMS Sarcoendoplasmic reticulum Ca2+-ATPase 2 (SERCA2), encoded by ATP2A2, is a key protein involved in intracellular Ca2+ homeostasis. The SERCA2a isoform is predominantly expressed in cardiomyocytes and type I myofibres. Variants in this gene are related to Darier disease, an autosomal dominant dermatologic disorder, but have never been linked to myopathy. We describe four patients suffering from a novel myopathy caused by a homozygous missense variant in ATP2A2. METHODS We studied a family with four individuals suffering from an adult-onset skeletal myopathy. We evaluated the clinicopathological phenotype, muscle imaging, and genetic workup including whole genome sequencing and segregation analysis. SERCA2 expression in skeletal muscle was assessed. Functional studies to evaluate Ca2+ handling in patient myotubes in response to electrical stimulation or caffeine exposure were performed. RESULTS Four sisters developed slowly progressive proximal weakness in adulthood. Biopsy findings showed small vacuoles restricted to type I myofibres. Ultrastructural analysis showed sarcotubular dilation and autophagic vacuoles. Genome sequencing revealed a homozygous variant in ATP2A2 (c.1117G > A, p.(Glu373Lys)) which segregated with the disease. Immunohistochemistry suggested that there was SERCA2 mislocalisation in patient myofibres. Western blotting did not show changes in the amount of protein. In vitro functional studies revealed delayed sarcoendoplasmic reticulum Ca2+ reuptake in patient myotubes, consistent with an altered pumping capacity of SERCA2 after cell stimulation. CONCLUSIONS We report a novel adult-onset vacuolar myopathy caused by a homozygous variant in ATP2A2. Biopsy findings and functional studies demonstrating an impaired function of SERCA2 and consequent Ca2+ dysregulation in slow-twitch skeletal myofibres highly support the pathogenicity of the variant.
Collapse
Affiliation(s)
- Laura Llansó
- Department of Neurology, Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Institut de Recerca Sant Pau (IR Sant Pau), Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gianina Ravenscroft
- Harry Perkins Institute of Medical Research, and Centre for Medical Research, University of Western Australia, Perth, Australia
| | - Cristina Aceituno
- Biomedical Research Institute Barcelona (IIBB-CSIC) and Institut de Recerca Sant Pau (IR Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Cardiovascular diseases, Biomedical Network Research Centre on Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Antonio Gutiérrez
- Department of Neurology, Hospital Insular de Gran Canaria, Islas Canarias, Spain
| | - Jevin Parmar
- Harry Perkins Institute of Medical Research, and Centre for Medical Research, University of Western Australia, Perth, Australia
| | - Pia Gallano
- Department of Genetics, Hospital de la Santa Creu i Sant Pau, Institut de Recerca Sant Pau (IR Sant Pau), Barcelona, Spain
- Neuromuscular diseases, Biomedical Network Research Centre on Rare Diseases (CIBERER), Madrid, Spain
| | - Marta Caballero-Ávila
- Department of Neurology, Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Institut de Recerca Sant Pau (IR Sant Pau), Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Álvaro Carbayo
- Department of Neurology, Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Institut de Recerca Sant Pau (IR Sant Pau), Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana Vesperinas
- Department of Neurology, Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Institut de Recerca Sant Pau (IR Sant Pau), Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Roger Collet
- Department of Neurology, Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Institut de Recerca Sant Pau (IR Sant Pau), Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rosa Blanco
- Department of Neurology, Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Institut de Recerca Sant Pau (IR Sant Pau), Barcelona, Spain
- Neuromuscular diseases, Biomedical Network Research Centre on Rare Diseases (CIBERER), Madrid, Spain
| | - Nigel Laing
- Harry Perkins Institute of Medical Research, and Centre for Medical Research, University of Western Australia, Perth, Australia
| | - Leif Hove-Madsen
- Biomedical Research Institute Barcelona (IIBB-CSIC) and Institut de Recerca Sant Pau (IR Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Cardiovascular diseases, Biomedical Network Research Centre on Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Eduard Gallardo
- Department of Neurology, Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Institut de Recerca Sant Pau (IR Sant Pau), Barcelona, Spain
- Neuromuscular diseases, Biomedical Network Research Centre on Rare Diseases (CIBERER), Madrid, Spain
| | - Montse Olivé
- Department of Neurology, Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Institut de Recerca Sant Pau (IR Sant Pau), Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Neuromuscular diseases, Biomedical Network Research Centre on Rare Diseases (CIBERER), Madrid, Spain
| |
Collapse
|
3
|
Vornanen M, Badr A, Haverinen J. Cardiac arrhythmias in fish induced by natural and anthropogenic changes in environmental conditions. J Exp Biol 2024; 227:jeb247446. [PMID: 39119881 DOI: 10.1242/jeb.247446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
A regular heartbeat is essential for maintaining the homeostasis of the vertebrate body. However, environmental pollutants, oxygen deficiency and extreme temperatures can impair heart function in fish. In this Review, we provide an integrative view of the molecular origins of cardiac arrhythmias and their functional consequences, from the level of ion channels to cardiac electrical activity in living fish. First, we describe the current knowledge of the cardiac excitation-contraction coupling of fish, as the electrical activity of the heart and intracellular Ca2+ regulation act as a platform for cardiac arrhythmias. Then, we compile findings on cardiac arrhythmias in fish. Although fish can experience several types of cardiac arrhythmia under stressful conditions, the most typical arrhythmia in fish - both under heat stress and in the presence of toxic substances - is atrioventricular block, which is the inability of the action potential to progress from the atrium to the ventricle. Early and delayed afterdepolarizations are less common in fish hearts than in the hearts of endotherms, perhaps owing to the excitation-contraction coupling properties of the fish heart. In fish hearts, Ca2+-induced Ca2+ release from the sarcoplasmic reticulum plays a smaller role than Ca2+ influx through the sarcolemma. Environmental changes and ion channel toxins can induce arrhythmias in fish and weaken their tolerance to environmental stresses. Although different from endotherm hearts in many respects, fish hearts can serve as a translational model for studying human cardiac arrhythmias, especially for human neonates.
Collapse
Affiliation(s)
- Matti Vornanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| | - Ahmed Badr
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
- Department of Zoology, Faculty of Science, Sohag University, 82524 Sohag, Egypt
| | - Jaakko Haverinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| |
Collapse
|
4
|
Klocke B, Britzolaki A, Saurine J, Ott H, Krone K, Bahamonde K, Thelen C, Tzimas C, Sanoudou D, Kranias EG, Pitychoutis PM. A novel role for phospholamban in the thalamic reticular nucleus. Sci Rep 2024; 14:6376. [PMID: 38493225 PMCID: PMC10944534 DOI: 10.1038/s41598-024-56447-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
The thalamic reticular nucleus (TRN) is a brain region that influences vital neurobehavioral processes, including executive functioning and the generation of sleep rhythms. TRN dysfunction underlies hyperactivity, attention deficits, and sleep disturbances observed across various neurodevelopmental disorders. A specialized sarco-endoplasmic reticulum calcium (Ca2+) ATPase 2 (SERCA2)-dependent Ca2+ signaling network operates in the dendrites of TRN neurons to regulate their bursting activity. Phospholamban (PLN) is a prominent regulator of SERCA2 with an established role in myocardial Ca2+-cycling. Our findings suggest that the role of PLN extends beyond the cardiovascular system to impact brain function. Specifically, we found PLN to be expressed in TRN neurons of the adult mouse brain, and utilized global constitutive and innovative conditional genetic knockout mouse models in concert with electroencephalography (EEG)-based somnography and the 5-choice serial reaction time task (5-CSRTT) to investigate the role of PLN in sleep and executive functioning, two complex behaviors that map onto thalamic reticular circuits. The results of the present study indicate that perturbed PLN function in the TRN results in aberrant TRN-dependent phenotypes in mice (i.e., hyperactivity, impulsivity and sleep deficits) and support a novel role for PLN as a critical regulator of SERCA2 in the TRN neurocircuitry.
Collapse
Affiliation(s)
- Benjamin Klocke
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA
| | - Aikaterini Britzolaki
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA
| | - Joseph Saurine
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA
| | - Hayden Ott
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA
| | - Kylie Krone
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA
| | - Kiara Bahamonde
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA
| | - Connor Thelen
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA
| | - Christos Tzimas
- Molecular Biology Department, Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece
| | - Despina Sanoudou
- Molecular Biology Department, Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece
- 4th Department of Internal Medicine, Clinical Genomics and Pharmacogenomics Unit, Medical School, "Attikon" Hospital, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Evangelia G Kranias
- Molecular Biology Department, Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Pothitos M Pitychoutis
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA.
| |
Collapse
|
5
|
Klocke B, Britzolaki A, Saurine J, Ott H, Krone K, Bahamonde K, Thelen C, Tzimas C, Sanoudou D, Kranias EG, Pitychoutis PM. A Novel Role for Phospholamban in the Thalamic Reticular Nucleus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568306. [PMID: 38045420 PMCID: PMC10690257 DOI: 10.1101/2023.11.22.568306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The thalamic reticular nucleus (TRN) is a critical brain region that greatly influences vital neurobehavioral processes, including executive functioning and the generation of sleep rhythms. Recently, TRN dysfunction was suggested to underlie hyperactivity, attention deficits, and sleep disturbances observed across various devastating neurodevelopmental disorders, including autism, schizophrenia and attention-deficit/hyperactivity disorder (ADHD). Notably, a highly specialized sarco- endoplasmic reticulum calcium (Ca 2+ ) ATPase 2 (SERCA2)-dependent Ca 2+ signaling network operates in the dendrites of TRN neurons to regulate their high-frequency bursting activity. Phospholamban (PLN) is a prominent regulator of the SERCA2 with an established role in maintaining Ca 2+ homeostasis in the heart; although the interaction of PLN with SERCA2 has been largely regarded as cardiac-specific, our findings challenge this view and suggest that the role of PLN extends beyond the cardiovascular system to impact brain function. Specifically, we found PLN to be expressed in the TRN neurons of the adult mouse brain and utilized global constitutive and innovative conditional genetic mouse models, in combination with 5-choice serial reaction time task (5-CSRTT) and electroencephalography (EEG)-based somnography to assess the role of PLN in regulating executive functioning and sleep, two complex behaviors that map onto thalamic reticular circuits. Overall, the results of the present study show that perturbed PLN function in the TRN results in aberrant thalamic reticular behavioral phenotypes in mice (i.e., hyperactivity, impulsivity and sleep deficits) and support a novel role for PLN as a critical regulator of the SERCA2 in the thalamic reticular neurocircuitry.
Collapse
|
6
|
Palmgren M. P-type ATPases: Many more enigmas left to solve. J Biol Chem 2023; 299:105352. [PMID: 37838176 PMCID: PMC10654040 DOI: 10.1016/j.jbc.2023.105352] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023] Open
Abstract
P-type ATPases constitute a large ancient super-family of primary active pumps that have diverse substrate specificities ranging from H+ to phospholipids. The significance of these enzymes in biology cannot be overstated. They are structurally related, and their catalytic cycles alternate between high- and low-affinity conformations that are induced by phosphorylation and dephosphorylation of a conserved aspartate residue. In the year 1988, all P-type sequences available by then were analyzed and five major families, P1 to P5, were identified. Since then, a large body of knowledge has accumulated concerning the structure, function, and physiological roles of members of these families, but only one additional family, P6 ATPases, has been identified. However, much is still left to be learned. For each family a few remaining enigmas are presented, with the intention that they will stimulate interest in continued research in the field. The review is by no way comprehensive and merely presents personal views with a focus on evolution.
Collapse
Affiliation(s)
- Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| |
Collapse
|
7
|
Valentim M, Brahmbhatt A, Tupling A. Skeletal and cardiac muscle calcium transport regulation in health and disease. Biosci Rep 2022; 42:BSR20211997. [PMID: 36413081 PMCID: PMC9744722 DOI: 10.1042/bsr20211997] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/04/2022] [Accepted: 11/22/2022] [Indexed: 11/23/2022] Open
Abstract
In healthy muscle, the rapid release of calcium ions (Ca2+) with excitation-contraction (E-C) coupling, results in elevations in Ca2+ concentrations which can exceed 10-fold that of resting values. The sizable transient changes in Ca2+ concentrations are necessary for the activation of signaling pathways, which rely on Ca2+ as a second messenger, including those involved with force generation, fiber type distribution and hypertrophy. However, prolonged elevations in intracellular Ca2+ can result in the unwanted activation of Ca2+ signaling pathways that cause muscle damage, dysfunction, and disease. Muscle employs several calcium handling and calcium transport proteins that function to rapidly return Ca2+ concentrations back to resting levels following contraction. This review will detail our current understanding of calcium handling during the decay phase of intracellular calcium transients in healthy skeletal and cardiac muscle. We will also discuss how impairments in Ca2+ transport can occur and how mishandling of Ca2+ can lead to the pathogenesis and/or progression of skeletal muscle myopathies and cardiomyopathies.
Collapse
Affiliation(s)
- Mark A. Valentim
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Aditya N. Brahmbhatt
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - A. Russell Tupling
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
8
|
Akyürek EE, Busato F, Murgiano L, Bianchini E, Carotti M, Sandonà D, Drögemüller C, Gentile A, Sacchetto R. Differential Analysis of Gly211Val and Gly286Val Mutations Affecting Sarco(endo)plasmic Reticulum Ca 2+-ATPase (SERCA1) in Congenital Pseudomyotonia Romagnola Cattle. Int J Mol Sci 2022; 23:ijms232012364. [PMID: 36293223 PMCID: PMC9604440 DOI: 10.3390/ijms232012364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Congenital pseudomyotonia in cattle (PMT) is a rare skeletal muscle disorder, clinically characterized by stiffness and by delayed muscle relaxation after exercise. Muscle relaxation impairment is due to defective content of the Sarco(endo)plasmic Reticulum Ca2+ ATPase isoform 1 (SERCA1) protein, caused by missense mutations in the ATP2A1 gene. PMT represents the only mammalian model of human Brody myopathy. In the Romagnola breed, two missense variants occurring in the same allele were described, leading to Gly211Val and Gly286Val (G211V/G286V) substitutions. In this study, we analyzed the consequences of G211V and G286V mutations. Results support that the reduced amount of SERCA1 is a consequence of the G211V mutation, the G286V mutation almost being benign and the ubiquitin–proteasome system (UPS) being involved. After blocking the proteasome using a proteasome inhibitor, we found that the G211V mutant accumulates in cells at levels comparable to those of WT SERCA1. Our conclusion is that G211/286V mutations presumably originate in a folding-defective SERCA1 protein, recognized and diverted to degradation by UPS, although still catalytically functional, and that the main role is played by G211V mutation. Rescue of mutated SERCA1 to the sarcoplasmic reticulum membrane can re-establish resting cytosolic Ca2+ concentration and prevent the appearance of pathological signs, paving the way for a possible therapeutic approach against Brody disease.
Collapse
Affiliation(s)
- Eylem Emek Akyürek
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, Legnaro, 35020 Padova, Italy
| | - Francesca Busato
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, Legnaro, 35020 Padova, Italy
- Veterinary Clinic San Marco, Viale dell’Industria 3, Veggiano, 35030 Padova, Italy
| | - Leonardo Murgiano
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey Street, Philadelphia, PA 19104, USA
| | - Elisa Bianchini
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy
- Aptuit, Via A. Fleming 4, 37135 Verona, Italy
| | - Marcello Carotti
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy
| | - Dorianna Sandonà
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy
| | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3012 Bern, Switzerland
| | - Arcangelo Gentile
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy
| | - Roberta Sacchetto
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, Legnaro, 35020 Padova, Italy
- Correspondence: ; Tel.: +39-049-827-2653
| |
Collapse
|
9
|
Bolaños P, Calderón JC. Excitation-contraction coupling in mammalian skeletal muscle: Blending old and last-decade research. Front Physiol 2022; 13:989796. [PMID: 36117698 PMCID: PMC9478590 DOI: 10.3389/fphys.2022.989796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
The excitation–contraction coupling (ECC) in skeletal muscle refers to the Ca2+-mediated link between the membrane excitation and the mechanical contraction. The initiation and propagation of an action potential through the membranous system of the sarcolemma and the tubular network lead to the activation of the Ca2+-release units (CRU): tightly coupled dihydropyridine and ryanodine (RyR) receptors. The RyR gating allows a rapid, massive, and highly regulated release of Ca2+ from the sarcoplasmic reticulum (SR). The release from triadic places generates a sarcomeric gradient of Ca2+ concentrations ([Ca2+]) depending on the distance of a subcellular region from the CRU. Upon release, the diffusing Ca2+ has multiple fates: binds to troponin C thus activating the contractile machinery, binds to classical sarcoplasmic Ca2+ buffers such as parvalbumin, adenosine triphosphate and, experimentally, fluorescent dyes, enters the mitochondria and the SR, or is recycled through the Na+/Ca2+ exchanger and store-operated Ca2+ entry (SOCE) mechanisms. To commemorate the 7th decade after being coined, we comprehensively and critically reviewed “old”, historical landmarks and well-established concepts, and blended them with recent advances to have a complete, quantitative-focused landscape of the ECC. We discuss the: 1) elucidation of the CRU structures at near-atomic resolution and its implications for functional coupling; 2) reliable quantification of peak sarcoplasmic [Ca2+] using fast, low affinity Ca2+ dyes and the relative contributions of the Ca2+-binding mechanisms to the whole concert of Ca2+ fluxes inside the fibre; 3) articulation of this novel quantitative information with the unveiled structural details of the molecular machinery involved in mitochondrial Ca2+ handing to understand how and how much Ca2+ enters the mitochondria; 4) presence of the SOCE machinery and its different modes of activation, which awaits understanding of its magnitude and relevance in situ; 5) pharmacology of the ECC, and 6) emerging topics such as the use and potential applications of super-resolution and induced pluripotent stem cells (iPSC) in ECC. Blending the old with the new works better!
Collapse
Affiliation(s)
- Pura Bolaños
- Laboratory of Cellular Physiology, Centre of Biophysics and Biochemistry, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| | - Juan C. Calderón
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellín, Colombia
- *Correspondence: Juan C. Calderón,
| |
Collapse
|
10
|
Ambur A, Zaidi A, Dunn C, Nathoo R. Impaired Calcium Signaling and Neuropsychiatric Disorders in Darier Disease: An Exploratory Review. Exp Dermatol 2022; 31:1302-1310. [PMID: 35801378 DOI: 10.1111/exd.14642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 11/28/2022]
Abstract
Darier (Darier-White) disease (DD) is an autosomal dominant skin disorder caused by pathogenic mutations in the ATP2A2 gene which encodes a calcium ATPase in the sarco-endoplasmic reticulum (SERCA2). Defects in the SERCA2 protein leads to an impairment of cellular calcium homeostasis, which in turn, triggers cell death pathways. There is a high prevalence of neuropsychiatric disorders in patients affected by this condition, namely intellectual disability, bipolar disorder, schizophrenia, and suicidality. Though these associations have been well-documented over the years, little has been discussed or investigated regarding the pathophysiological mechanisms. The goal of this article is to review the literature related to the most commonly associated neuropsychiatric disorders found in patients with DD, highlight the pathophysiological mechanisms underlying each condition, and examine potential interventions that may be of interest for future development. A literature search was performed using PubMed to access and review relevant articles published in the last 40 years. Keywords searched included Darier disease neuropsychiatric, Darier disease pathophysiology, SERCA2 central nervous system, SERCA 2 skin, ATP2A2 central nervous system, ATP2A2 skin, sphingosine-1-phosphate signaling skin, sphingosine-1-phosphate signaling central nervous system, P2X7 receptor skin, and P2X7 receptor central nervous system. Our search resulted in 2,692 articles, of which 61 articles were ultimately included in this review.
Collapse
Affiliation(s)
- Austin Ambur
- Department of Dermatology, Kansas City University
| | - Asma Zaidi
- Department of Basic Sciences, Kansas City University
| | - Charles Dunn
- Department of Dermatology, Kansas City University
| | - Rajiv Nathoo
- Department of Dermatology, Kansas City University
| |
Collapse
|
11
|
Pereira AC, Araújo AV, Paulo M, da Silva RS, Bendhack LM. RuBPY decreases intracellular calcium by decreasing influx and increasing storage. Clin Exp Pharmacol Physiol 2022; 49:759-766. [PMID: 35527704 DOI: 10.1111/1440-1681.13652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/30/2022]
Abstract
RuBPY is a ruthenium complex NO donor that presents a nitrite in its moiety and has been shown to induce vasodilation in various arteries, as well as arterial pressure reduction with no changes in heart rate. Since vascular tone is highly dependent on the cytosolic calcium concentration ([Ca2+ ]c), the current study aimed to investigate the effects of RuBPY on the intracellular mobilization of calcium stores of rat aortic vascular smooth muscle cells. Vascular reactivity experiments were performed in isolated aortic rings that were contracted with a high concentration of KCl or phenylephrine (Phe). Moreover, primary cultured vascular smooth muscle cells were used to measure [Ca2+ ]c by confocal microscopy. The NO donor RuBPY decreased the [Ca2+ ]c and reduced KCl and Phe -induced contractile responses. The selective inhibitor of sarco-endoplasmic Ca-ATPase (SERCA) with thapsigargin impaired the effect of RuBPY on Phe -induced contractile response. RuBPY also reduced caffeine-induced contraction, and the contraction dependent on the capacitive Ca2+ influx. Therefore, our results suggest that NO released from RuBPY decreased [Ca2+ ]c by calcium influx blockade, and activation of guanylyl-cyclase-cGMP-GK pathway. These results indicate that RuBPY increases Ca2+ storage in the sarcoplasmic reticulum by SERCA activation, and also by capacitive Ca2+ influx inhibition, which is dependent on the intracellular release of nitric oxide from this compound. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- A C Pereira
- Faculty of Medicine of Itajubá (FMIt), Itajubá, MG, Brazil
| | - A V Araújo
- Department of Public Health, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão, PE, Brazil
| | - M Paulo
- Faculty of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - R S da Silva
- Faculty of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - L M Bendhack
- Faculty of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
12
|
Elongation and Contraction of Scallop Sarcoplasmic Reticulum (SR): ATP Stabilizes Ca 2+-ATPase Crystalline Array Elongation of SR Vesicles. Int J Mol Sci 2022; 23:ijms23063311. [PMID: 35328731 PMCID: PMC8954933 DOI: 10.3390/ijms23063311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
The Ca2+-ATPase is an integral transmembrane Ca2+ pump of the sarcoplasmic reticulum (SR). Crystallization of the cytoplasmic surface ATPase molecules of isolated scallop SR vesicles was studied at various calcium concentrations by negative stain electron microscopy. In the absence of ATP, round SR vesicles displaying an assembly of small crystalline patches of ATPase molecules were observed at 18 µM [Ca2+]. These partly transformed into tightly elongated vesicles containing ATPase crystalline arrays at low [Ca2+] (≤1.3 µM). The arrays were classified as ‘’tetramer’’, “two-rail” (like a railroad) and ‘’monomer’’. Their crystallinity was low, and they were unstable. In the presence of ATP (5 mM) at a low [Ca2+] of ~0.002 µM, “two-rail” arrays of high crystallinity appeared more frequently in the tightly elongated vesicles and the distinct tetramer arrays disappeared. During prolonged (~2.5 h) incubation, ATP was consumed and tetramer arrays reappeared. A specific ATPase inhibitor, thapsigargin, prevented both crystal formation and vesicle elongation in the presence of ATP. Together with the second part of this study, these data suggest that the ATPase forms tetramer units and longer tetramer crystalline arrays to elongate SR vesicles, and that the arrays transform into more stable “two-rail” forms in the presence of ATP at low [Ca2+].
Collapse
|
13
|
Weiner AC, Chen HY, Roegner ME, Watson RD. Calcium signaling and regulation of ecdysteroidogenesis in crustacean Y-organs. Gen Comp Endocrinol 2021; 314:113901. [PMID: 34530000 DOI: 10.1016/j.ygcen.2021.113901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 01/21/2023]
Abstract
Crustacean Y-organs secrete ecdysteroid molting hormones. Ecdysteroids are released in increased amount during premolt, circulate in hemolymph, and stimulate the events in target cells that lead to molting. During much of the molting cycle, ecdysteroid production is suppressed by molt-inhibiting hormone (MIH), a peptide neurohormone produced in the eyestalks. The suppressive effect of MIH is mediated by a cyclic nucleotide second messenger. A decrease in circulating MIH is associated with an increase in the hemolymphatic ecdysteroid titer during pre-molt. Nevertheless, it has long been hypothesized that a positive regulatory signal or stimulus is also involved in promoting ecdysteroidogenensis during premolt. Data reviewed here are consistent with the hypothesis that an intracellular Ca2+ signal provides that stimulus. Pharmacological agents that increase intracellular Ca2+ in Y-organs promote ecdysteroidogenesis, while agents that lower intracellular Ca2+ or disrupt Ca2+ signaling suppress ecdysteroidogenesis. Further, an increase in the hemolymphatic ecdysteroid titer after eyestalk ablation or during natural premolt is associated with an increase in intracellular free Ca2+ in Y-organ cells. Several lines of evidence suggest elevated intracellular calcium is linked to enhanced ecdysteroidogenesis through activation of Ca2+/calmodulin dependent cyclic nucleotide phosphodiesterase, thereby lowering intracellular cyclic nucleotide second messenger levels and promoting ecdysteroidogenesis. Results of transcriptomic studies show genes involved in Ca2+ signaling are well represented in Y-organs. Several recent studies have focused on Ca2+ transport proteins in Y-organs. Complementary DNAs encoding a plasma membrane Ca2+ ATPase (PMCA) and a sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) have been cloned from crab Y-organs. The relative abundance of PMCA and SERCA transcripts in Y-organs is elevated during premolt, a time when Ca2+ levels in Y-organs are likewise elevated. The results are consistent with the notion that these transport proteins act to maintain the Ca2+ gradient across the cell membrane and re-set the cell for future Ca2+ signals.
Collapse
Affiliation(s)
- Amanda C Weiner
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Hsiang-Yin Chen
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Megan E Roegner
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - R Douglas Watson
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
14
|
Structural and energetic analysis of metastable intermediate states in the E1P-E2P transition of Ca 2+-ATPase. Proc Natl Acad Sci U S A 2021; 118:2105507118. [PMID: 34593638 PMCID: PMC8501872 DOI: 10.1073/pnas.2105507118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 01/05/2023] Open
Abstract
Ion pumps (or P-type ATPases) are membrane proteins, which transport ions through biological membranes against a concentration gradient, a function essential for many biological processes, such as muscle contraction, neurotransmission, and metabolism. Molecular mechanisms underlying active ion transport by ion pumps have been investigated by biochemical experiments and high-resolution structure analyses. Here, the transition of sarcoplasmic reticulum Ca2+-ATPase upon dissociation of Ca2+ is investigated using atomistic molecular dynamics simulations. We find intermediate structures along the pathway are stabilized by transient interactions between A- and P-domains as well as lipid molecules in the transmembrane helices. Sarcoplasmic reticulum (SR) Ca2+-ATPase transports two Ca2+ ions from the cytoplasm to the SR lumen against a large concentration gradient. X-ray crystallography has revealed the atomic structures of the protein before and after the dissociation of Ca2+, while biochemical studies have suggested the existence of intermediate states in the transition between E1P⋅ADP⋅2Ca2+ and E2P. Here, we explore the pathway and free energy profile of the transition using atomistic molecular dynamics simulations with the mean-force string method and umbrella sampling. The simulations suggest that a series of structural changes accompany the ordered dissociation of ADP, the A-domain rotation, and the rearrangement of the transmembrane (TM) helices. The luminal gate then opens to release Ca2+ ions toward the SR lumen. Intermediate structures on the pathway are stabilized by transient sidechain interactions between the A- and P-domains. Lipid molecules between TM helices play a key role in the stabilization. Free energy profiles of the transition assuming different protonation states suggest rapid exchanges between Ca2+ ions and protons when the Ca2+ ions are released toward the SR lumen.
Collapse
|
15
|
Nakajima K, Ishiwata M, Weitemier AZ, Shoji H, Monai H, Miyamoto H, Yamakawa K, Miyakawa T, McHugh TJ, Kato T. Brain-specific heterozygous loss-of-function of ATP2A2, endoplasmic reticulum Ca2+ pump responsible for Darier's disease, causes behavioral abnormalities and a hyper-dopaminergic state. Hum Mol Genet 2021; 30:1762-1772. [PMID: 34104969 PMCID: PMC8411987 DOI: 10.1093/hmg/ddab137] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 01/09/2023] Open
Abstract
A report of a family of Darier's disease with mood disorders drew attention when the causative gene was identified as ATP2A2 (or SERCA2), which encodes a Ca2+ pump on the endoplasmic reticulum (ER) membrane and is important for intracellular Ca2+ signaling. Recently, it was found that loss-of-function mutations of ATP2A2 confer a risk of neuropsychiatric disorders including depression, bipolar disorder and schizophrenia. In addition, a genome-wide association study found an association between ATP2A2 and schizophrenia. However, the mechanism of how ATP2A2 contributes to vulnerability to these mental disorders is unknown. Here, we analyzed Atp2a2 heterozygous brain-specific conditional knockout (hetero cKO) mice. The ER membranes prepared from the hetero cKO mouse brain showed decreased Ca2+ uptake activity. In Atp2a2 heterozygous neurons, decays of cytosolic Ca2+ level were slower than control neurons after depolarization. The hetero cKO mice showed altered behavioral responses to novel environments and impairments in fear memory, suggestive of enhanced dopamine signaling. In vivo dialysis demonstrated that extracellular dopamine levels in the NAc were indeed higher in the hetero cKO mice. These results altogether indicate that the haploinsufficiency of Atp2a2 in the brain causes prolonged cytosolic Ca2+ transients, which possibly results in enhanced dopamine signaling, a common feature of mood disorders and schizophrenia. These findings elucidate how ATP2A2 mutations causing a dermatological disease may exert their pleiotropic effects on the brain and confer a risk for mental disorders.
Collapse
Affiliation(s)
- Kazuo Nakajima
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Mizuho Ishiwata
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Adam Z Weitemier
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Saitama 351-0198, Japan
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Saitama, Japan
| | - Hirotaka Shoji
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Hiromu Monai
- Laboratory for Neuron-Glia Circuitry, RIKEN Center for Brain Science, Saitama, Japan
- Faculty of Core Research Natural Science Division, Ochanomizu University, Tokyo 112-8610, Japan
| | - Hiroyuki Miyamoto
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Saitama, Japan
| | - Kazuhiro Yamakawa
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Saitama, Japan
- Department of Neurodevelopmental Disorder Genetics, Nagoya City University Graduate School of Medical Sciences, Institute of Brain Science, Nagoya, Aichi 467-8601, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Saitama, Japan
| | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Saitama 351-0198, Japan
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
16
|
Michelucci A, Liang C, Protasi F, Dirksen RT. Altered Ca 2+ Handling and Oxidative Stress Underlie Mitochondrial Damage and Skeletal Muscle Dysfunction in Aging and Disease. Metabolites 2021; 11:metabo11070424. [PMID: 34203260 PMCID: PMC8304741 DOI: 10.3390/metabo11070424] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/26/2022] Open
Abstract
Skeletal muscle contraction relies on both high-fidelity calcium (Ca2+) signals and robust capacity for adenosine triphosphate (ATP) generation. Ca2+ release units (CRUs) are highly organized junctions between the terminal cisternae of the sarcoplasmic reticulum (SR) and the transverse tubule (T-tubule). CRUs provide the structural framework for rapid elevations in myoplasmic Ca2+ during excitation-contraction (EC) coupling, the process whereby depolarization of the T-tubule membrane triggers SR Ca2+ release through ryanodine receptor-1 (RyR1) channels. Under conditions of local or global depletion of SR Ca2+ stores, store-operated Ca2+ entry (SOCE) provides an additional source of Ca2+ that originates from the extracellular space. In addition to Ca2+, skeletal muscle also requires ATP to both produce force and to replenish SR Ca2+ stores. Mitochondria are the principal intracellular organelles responsible for ATP production via aerobic respiration. This review provides a broad overview of the literature supporting a role for impaired Ca2+ handling, dysfunctional Ca2+-dependent production of reactive oxygen/nitrogen species (ROS/RNS), and structural/functional alterations in CRUs and mitochondria in the loss of muscle mass, reduction in muscle contractility, and increase in muscle damage in sarcopenia and a wide range of muscle disorders including muscular dystrophy, rhabdomyolysis, central core disease, and disuse atrophy. Understanding the impact of these processes on normal muscle function will provide important insights into potential therapeutic targets designed to prevent or reverse muscle dysfunction during aging and disease.
Collapse
Affiliation(s)
- Antonio Michelucci
- DNICS, Department of Neuroscience, Imaging, and Clinical Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
- Correspondence:
| | - Chen Liang
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; (C.L.); (R.T.D.)
| | - Feliciano Protasi
- CAST, Center for Advanced Studies and Technology, DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy;
| | - Robert T. Dirksen
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; (C.L.); (R.T.D.)
| |
Collapse
|
17
|
Gerbin KA, Grancharova T, Donovan-Maiye RM, Hendershott MC, Anderson HG, Brown JM, Chen J, Dinh SQ, Gehring JL, Johnson GR, Lee H, Nath A, Nelson AM, Sluzewski MF, Viana MP, Yan C, Zaunbrecher RJ, Cordes Metzler KR, Gaudreault N, Knijnenburg TA, Rafelski SM, Theriot JA, Gunawardane RN. Cell states beyond transcriptomics: Integrating structural organization and gene expression in hiPSC-derived cardiomyocytes. Cell Syst 2021; 12:670-687.e10. [PMID: 34043964 DOI: 10.1016/j.cels.2021.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/07/2020] [Accepted: 04/30/2021] [Indexed: 12/11/2022]
Abstract
Although some cell types may be defined anatomically or by physiological function, a rigorous definition of cell state remains elusive. Here, we develop a quantitative, imaging-based platform for the systematic and automated classification of subcellular organization in single cells. We use this platform to quantify subcellular organization and gene expression in >30,000 individual human induced pluripotent stem cell-derived cardiomyocytes, producing a publicly available dataset that describes the population distributions of local and global sarcomere organization, mRNA abundance, and correlations between these traits. While the mRNA abundance of some phenotypically important genes correlates with subcellular organization (e.g., the beta-myosin heavy chain, MYH7), these two cellular metrics are heterogeneous and often uncorrelated, which suggests that gene expression alone is not sufficient to classify cell states. Instead, we posit that cell state should be defined by observing full distributions of quantitative, multidimensional traits in single cells that also account for space, time, and function.
Collapse
Affiliation(s)
- Kaytlyn A Gerbin
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | - Tanya Grancharova
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | | | | | - Helen G Anderson
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | - Jackson M Brown
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | - Jianxu Chen
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | - Stephanie Q Dinh
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | - Jamie L Gehring
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | - Gregory R Johnson
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | - HyeonWoo Lee
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | - Aditya Nath
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | | | - M Filip Sluzewski
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | - Matheus P Viana
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | - Calysta Yan
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | | | | | | | | | | | - Julie A Theriot
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA; Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
18
|
Thirman J, Rui H, Roux B. Elusive Intermediate State Key in the Conversion of ATP Hydrolysis into Useful Work Driving the Ca 2+ Pump SERCA. J Phys Chem B 2021; 125:2921-2928. [PMID: 33720716 DOI: 10.1021/acs.jpcb.1c00558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A key event in the ATP-driven transport cycle of the calcium pump sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) occurs when autophosphorylation of the pump with two bound ions Ca2+ triggers a large conformational change that opens a gate on the luminal side of the membrane allowing the release of the ions. It is believed that this conformational transition proceeds through a two-step mechanism, with an initial rearrangement of the three cytoplasmic domains of the pump responsible for ATP binding and hydrolysis followed by the opening of the gate toward the luminal side in the transmembrane region. Here, molecular dynamics computation of the free energy landscapes associated with this transition show how, in response to phosphorylation, the cytoplasmic domains are partially reconfigured into an intermediate state on the path toward the E2 state with a closed luminal gate. It is suggested that the free energy associated with this conformational reorganization must subsequently be used to drive the opening of the gate on the luminal side.
Collapse
Affiliation(s)
- Jonathan Thirman
- Department of Chemistry, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois 60637, United States
| | - Huan Rui
- Department of Chemistry, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois 60637, United States
| | - Benoît Roux
- Department of Chemistry, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
19
|
Nakamura J, Maruyama Y, Tajima G, Komeiji Y, Suwa M, Sato C. Ca 2+-ATPase Molecules as a Calcium-Sensitive Membrane-Endoskeleton of Sarcoplasmic Reticulum. Int J Mol Sci 2021; 22:ijms22052624. [PMID: 33807779 PMCID: PMC7961605 DOI: 10.3390/ijms22052624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/13/2021] [Accepted: 02/24/2021] [Indexed: 11/16/2022] Open
Abstract
The Ca2+-transport ATPase of sarcoplasmic reticulum (SR) is an integral, transmembrane protein. It sequesters cytoplasmic calcium ions released from SR during muscle contraction, and causes muscle relaxation. Based on negative staining and transmission electron microscopy of SR vesicles isolated from rabbit skeletal muscle, we propose that the ATPase molecules might also be a calcium-sensitive membrane-endoskeleton. Under conditions when the ATPase molecules scarcely transport Ca2+, i.e., in the presence of ATP and ≤ 0.9 nM Ca2+, some of the ATPase particles on the SR vesicle surface gathered to form tetramers. The tetramers crystallized into a cylindrical helical array in some vesicles and probably resulted in the elongated protrusion that extended from some round SRs. As the Ca2+ concentration increased to 0.2 µM, i.e., under conditions when the transporter molecules fully carry out their activities, the ATPase crystal arrays disappeared, but the SR protrusions remained. In the absence of ATP, almost all of the SR vesicles were round and no crystal arrays were evident, independent of the calcium concentration. This suggests that ATP induced crystallization at low Ca2+ concentrations. From the observed morphological changes, the role of the proposed ATPase membrane-endoskeleton is discussed in the context of calcium regulation during muscle contraction.
Collapse
Affiliation(s)
- Jun Nakamura
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan; (Y.M.); (Y.K.)
- Correspondence: (J.N.); (C.S.)
| | - Yuusuke Maruyama
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan; (Y.M.); (Y.K.)
| | - Genichi Tajima
- Institute for Excellence in Higher Education, Tohoku University, 41 Kawauchi, Aoba-ku, Sendai, Miyagi 980-8576, Japan;
| | - Yuto Komeiji
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan; (Y.M.); (Y.K.)
| | - Makiko Suwa
- Biological Science Course, Graduate School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuou-ku, Sagamihara, Kanagawa 252-5258, Japan;
| | - Chikara Sato
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan; (Y.M.); (Y.K.)
- Correspondence: (J.N.); (C.S.)
| |
Collapse
|
20
|
Wang K, Zhang W. Mitochondria-associated endoplasmic reticulum membranes: At the crossroad between familiar and sporadic Alzheimer's disease. Synapse 2021; 75:e22196. [PMID: 33559220 DOI: 10.1002/syn.22196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia and is incurable. The widely accepted amyloid hypothesis failed to produce efficient clinical therapies. In contrast, there is increasing evidence suggesting that the disruption of mitochondria-associated endoplasmic reticulum (ER) membranes (MAM) is a critical upstream event of AD pathogenesis. Here, we review MAM's role in some AD symptoms such as plaque formation, tau hyperphosphorylation, synaptic loss, aberrant lipid synthesis, disturbed calcium homeostasis, and abnormal autophagy. At last, we proposed that MAM plays a central role in familial AD (FAD) and sporadic AD (SAD).
Collapse
Affiliation(s)
- Kangrun Wang
- Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Wenling Zhang
- The Third Xiangya Hospital, Central South University, Changsha, P.R. China
| |
Collapse
|
21
|
Barbot T, Beswick V, Montigny C, Quiniou É, Jamin N, Mouawad L. Deciphering the Mechanism of Inhibition of SERCA1a by Sarcolipin Using Molecular Simulations. Front Mol Biosci 2021; 7:606254. [PMID: 33614704 PMCID: PMC7890198 DOI: 10.3389/fmolb.2020.606254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/06/2020] [Indexed: 12/02/2022] Open
Abstract
SERCA1a is an ATPase calcium pump that transports Ca2+ from the cytoplasm to the sarco/endoplasmic reticulum lumen. Sarcolipin (SLN), a transmembrane peptide, regulates the activity of SERCA1a by decreasing its Ca2+ transport rate, but its mechanism of action is still not well-understood. To decipher this mechanism, we have performed normal mode analysis in the all-atom model, with the SERCA1a-SLN complex, or the isolated SERCA1a, embedded in an explicit membrane. The comparison of the results allowed us to provide an explanation at the atomic level for the action of SLN that is in good agreement with experimental observations. In our analyses, the presence of SLN locally perturbs the TM6 transmembrane helix and as a consequence modifies the position of D800, one of the key metal-chelating residues. Additionally, it reduces the flexibility of the gating residues, V304, and E309 in TM4, at the entrance of the Ca2+ binding sites, which would decrease the affinity for Ca2+. Unexpectedly, SLN has also an effect on the ATP binding site more than 35 Å away, due to the straightening of TM5, a long helix considered as the spine of the protein. The straightening of TM5 modifies the structure of the P-N linker that sits above it, and which comprises the 351DKTG354 conserved motif, resulting in an increase of the distance between ATP and the phosphorylation site. As a consequence, the turn-over rate could be affected. All this gives SERCA1a the propensity to go toward a Ca2+ low-affinity E2-like state in the presence of SLN and toward a Ca2+ high-affinity E1-like state in the absence of SLN. In addition to a general mechanism of inhibition of SERCA1a regulatory peptides, this study also provides an insight into the conformational transition between the E2 and E1 states.
Collapse
Affiliation(s)
- Thomas Barbot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Veronica Beswick
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France.,Physics Department, Evry-Val-d'Essonne University, Paris-Saclay University, Evry, France
| | - Cédric Montigny
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Éric Quiniou
- CNRS UMR9187 / INSERM U1196, Institut Curie, PSL Research University, Université Paris-Saclay, Orsay, France
| | - Nadège Jamin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Liliane Mouawad
- CNRS UMR9187 / INSERM U1196, Institut Curie, PSL Research University, Université Paris-Saclay, Orsay, France
| |
Collapse
|
22
|
Britzolaki A, Saurine J, Klocke B, Pitychoutis PM. A Role for SERCA Pumps in the Neurobiology of Neuropsychiatric and Neurodegenerative Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:131-161. [PMID: 31646509 DOI: 10.1007/978-3-030-12457-1_6] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Calcium (Ca2+) is a fundamental regulator of cell fate and intracellular Ca2+ homeostasis is crucial for proper function of the nerve cells. Given the complexity of neurons, a constellation of mechanisms finely tunes the intracellular Ca2+ signaling. We are focusing on the sarco/endoplasmic reticulum (SR/ER) calcium (Ca2+)-ATPase (SERCA) pump, an integral ER protein. SERCA's well established role is to preserve low cytosolic Ca2+ levels ([Ca2+]cyt), by pumping free Ca2+ ions into the ER lumen, utilizing ATP hydrolysis. The SERCA pumps are encoded by three distinct genes, SERCA1-3, resulting in 12 known protein isoforms, with tissue-dependent expression patterns. Despite the well-established structure and function of the SERCA pumps, their role in the central nervous system is not clear yet. Interestingly, SERCA-mediated Ca2+ dyshomeostasis has been associated with neuropathological conditions, such as bipolar disorder, schizophrenia, Parkinson's disease and Alzheimer's disease. We summarize here current evidence suggesting a role for SERCA in the neurobiology of neuropsychiatric and neurodegenerative disorders, thus highlighting the importance of this pump in brain physiology and pathophysiology.
Collapse
Affiliation(s)
- Aikaterini Britzolaki
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA
| | - Joseph Saurine
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA
| | - Benjamin Klocke
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA
| | - Pothitos M Pitychoutis
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA.
| |
Collapse
|
23
|
Rahate K, Bhatt LK, Prabhavalkar KS. SERCA stimulation: A potential approach in therapeutics. Chem Biol Drug Des 2019; 95:5-15. [DOI: 10.1111/cbdd.13620] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Kiran Rahate
- Department of Pharmacology SVKM’s Dr. Bhanuben Nanavati College of Pharmacy Mumbai India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology SVKM’s Dr. Bhanuben Nanavati College of Pharmacy Mumbai India
| | - Kedar S. Prabhavalkar
- Department of Pharmacology SVKM’s Dr. Bhanuben Nanavati College of Pharmacy Mumbai India
| |
Collapse
|
24
|
Rui H, Das A, Nakamoto R, Roux B. Proton Countertransport and Coupled Gating in the Sarcoplasmic Reticulum Calcium Pump. J Mol Biol 2018; 430:5050-5065. [PMID: 30539761 DOI: 10.1016/j.jmb.2018.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/25/2018] [Accepted: 10/20/2018] [Indexed: 10/28/2022]
Abstract
The calcium pump of the sarcoplasmic reticulum (SERCA) is an ATP-driven active transporter of Ca2+ ions that functions via an "alternating-access" cycle mechanism. In each cycle, SERCA transports two Ca2+ ions toward the lumen of the sarcoplasmic reticulum and two to three protons to the cytoplasm. How the latter conformational transition is coupled to cytoplasmic release of protons remains poorly understood. The present computational study shows how the mechanism of proton countertransport is coupled to the alternating access gating process in SERCA. Molecular dynamics simulation trajectories are generated starting from a series of configurations taken along the E2 to E1 transition pathway determined by the string method with swarms-of-trajectories. Simulations of different protonation configurations at the binding sites reveal how deprotonation events affect the opening of the cytoplasmic gate. The results show that there is a strong coupling between the chronological order of deprotonation, the entry of water molecules into the TM region, and the opening of the cytoplasmic gate. Deprotonation of E309 and E771 is sequential with E309 being the first to lose the proton. The deprotonation promotes the opening of the cytoplasmic gate but leads to a productive gating transition only if it occurs after the transmembrane domain has reached an intermediate conformation. Deprotonation of E309 and E771 is unproductive when it occurs too early because it causes the re-opening of the luminal gate.
Collapse
Affiliation(s)
- Huan Rui
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Avisek Das
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Robert Nakamoto
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, PO Box 800886, 480 Ray C. Hunt Drive, Charlottesville, VA 22908, USA
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
25
|
Britzolaki A, Saurine J, Flaherty E, Thelen C, Pitychoutis PM. The SERCA2: A Gatekeeper of Neuronal Calcium Homeostasis in the Brain. Cell Mol Neurobiol 2018; 38:981-994. [PMID: 29663107 PMCID: PMC11481958 DOI: 10.1007/s10571-018-0583-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/03/2018] [Indexed: 12/16/2022]
Abstract
Calcium (Ca2+) ions are prominent cell signaling regulators that carry information for a variety of cellular processes and are critical for neuronal survival and function. Furthermore, Ca2+ acts as a prominent second messenger that modulates divergent intracellular cascades in the nerve cells. Therefore, nerve cells have developed intricate Ca2+ signaling pathways to couple the Ca2+ signal to their biochemical machinery. Notably, intracellular Ca2+ homeostasis greatly relies on the rapid redistribution of Ca2+ ions into the diverse subcellular organelles which serve as Ca2+ stores, including the endoplasmic reticulum (ER). It is well established that Ca2+ released into the neuronal cytoplasm is pumped back into the ER by the sarco-/ER Ca2+ ATPase 2 (SERCA2), a P-type ion-motive ATPase that resides on the ER membrane. Even though the SERCA2 is constitutively expressed in nerve cells, its precise role in brain physiology and pathophysiology is not well-characterized. Intriguingly, SERCA2-dependent Ca2+ dysregulation has been implicated in several disorders that affect cognitive function, including Darier's disease, schizophrenia, Alzheimer's disease, and cerebral ischemia. The current review summarizes knowledge on the expression pattern of the different SERCA2 isoforms in the nervous system, and further discusses evidence of SERCA2 dysregulation in various neuropsychiatric disorders. To the best of our knowledge, this is the first literature review that specifically highlights the critical role of the SERCA2 in the brain. Advancing knowledge on the role of SERCA2 in maintaining neuronal Ca2+ homeostasis may ultimately lead to the development of safer and more effective pharmacotherapies to combat debilitating neuropsychiatric disorders.
Collapse
Affiliation(s)
- Aikaterini Britzolaki
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA
| | - Joseph Saurine
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA
| | - Emily Flaherty
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA
| | - Connor Thelen
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA
| | - Pothitos M Pitychoutis
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, 300 College Park, Dayton, OH, 45469-2320, USA.
| |
Collapse
|
26
|
Liu G, Li SQ, Hu PP, Tong XY. Altered sarco(endo)plasmic reticulum calcium adenosine triphosphatase 2a content: Targets for heart failure therapy. Diab Vasc Dis Res 2018; 15:322-335. [PMID: 29762054 DOI: 10.1177/1479164118774313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Sarco(endo)plasmic reticulum calcium adenosine triphosphatase is responsible for transporting cytosolic calcium into the sarcoplasmic reticulum and endoplasmic reticulum to maintain calcium homeostasis. Sarco(endo)plasmic reticulum calcium adenosine triphosphatase is the dominant isoform expressed in cardiac tissue, which is regulated by endogenous protein inhibitors, post-translational modifications, hormones as well as microRNAs. Dysfunction of sarco(endo)plasmic reticulum calcium adenosine triphosphatase is associated with heart failure, which makes sarco(endo)plasmic reticulum calcium adenosine triphosphatase a promising target for heart failure therapy. This review summarizes current approaches to ameliorate sarco(endo)plasmic reticulum calcium adenosine triphosphatase function and focuses on phospholamban, an endogenous inhibitor of sarco(endo)plasmic reticulum calcium adenosine triphosphatase, pharmacological tools and gene therapies.
Collapse
Affiliation(s)
- Gang Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Si Qi Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Ping Ping Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Xiao Yong Tong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
27
|
Roegner ME, Chen HY, Watson RD. Molecular cloning and characterization of a sarco/endoplasmic reticulum Ca 2+ ATPase (SERCA) from Y-organs of the blue crab (Callinectes sapidus). Gene 2018; 673:12-21. [PMID: 29886036 DOI: 10.1016/j.gene.2018.06.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/28/2018] [Accepted: 06/06/2018] [Indexed: 11/27/2022]
Abstract
Existing data indicate that a Ca2+ signal stimulates ecdysteroid hormone production by crustacean molting glands (Y-organs). Ca2+ signaling is dependent on a tightly regulated Ca2+ gradient, with intracellular free Ca2+ maintained at a low basal level (typically sub-micromolar). This is achieved through the action of proteins intrinsic to the plasma membrane and the membranes of organelles. One such protein, the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA), pumps Ca2+ from cytosol to the lumen of the endoplasmic reticulum. As a step toward understanding Ca2+-mediated regulation of ecdysteroidogenesis, we have begun investigating Ca2+ transport proteins in Y-organs. In studies reported here, we used a PCR-based strategy to clone from Y-organs of the blue crab (Callinectes sapidus) a cDNA encoding a putative SERCA protein. The cloned Cas-SERCA cDNA (3806 bp) includes a 3057-bp open reading frame that encodes a 1019-residue protein (Cas-SERCA). The conceptually translated protein has a predicted molecular mass of 111.42 × 103 and contains all signature domains of an authentic SERCA, including ten transmembrane domains and a phosphorylation site at aspartate 351. A homology model of Cas-SERCA closely resembles models of related SERCA proteins. Phylogenetic analysis shows Cas-SERCA clusters with SERCA proteins from other arthropods. An assessment of tissue distribution indicates the Cas-SERCA transcript is widely distributed across tissues. Studies using quantitative PCR showed Cas-SERCA transcript abundance increased significantly in Y-organs activated by eyestalk ablation, a pattern consistent with the hypothesis that Cas-SERCA functions to maintain Ca2+ homeostasis in Y-organs.
Collapse
Affiliation(s)
- Megan E Roegner
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Hsiang-Yin Chen
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - R Douglas Watson
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
28
|
Mikkelsen SA, Vangheluwe P, Andersen JP. A Darier disease mutation relieves kinetic constraints imposed by the tail of sarco(endo)plasmic reticulum Ca 2+-ATPase 2b. J Biol Chem 2018; 293:3880-3889. [PMID: 29363575 DOI: 10.1074/jbc.ra117.000941] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/19/2018] [Indexed: 11/06/2022] Open
Abstract
The sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) 2b isoform possesses an extended C terminus (SERCA2b tail) forming an 11th transmembrane (TM) helix, which slows conformational changes of the Ca2+-pump reaction cycle. Here, we report that a Darier disease (DD) mutation of SERCA2b that changes a glutamate to a lysine in the cytoplasmic loop between TM8 and TM9 (E917K) relieves these kinetic constraints. We analyzed the effects of this mutation on the overall reaction and the individual partial reactions of the Ca2+ pump compared with the corresponding mutations of the SERCA2a and SERCA1a isoforms, lacking the SERCA2b tail. In addition to a reduced affinity for Ca2+, caused by the mutation in all three isoforms examined, we observed a unique enhancing effect on the turnover rates of ATPase activity and Ca2+ transport for the SERCA2b E917K mutation. This relief of kinetic constraints contrasted with inhibitory effects observed for the corresponding SERCA2a and SERCA1a (E918K) mutations. These observations indicated that the E917K/E918K mutations affect the rate-limiting conformational change in isoform-specific ways and that the SERCA2b mutation perturbs the interactions of TM11 with other SERCA2b regions. Mutational analysis of an arginine in TM7 that interacts with the glutamate in SERCA1a crystal structures suggested that in wildtype SERCA2b, the corresponding arginine (Arg-835) may be involved in mediating the conformational restriction by TM11. Moreover, the E917K mutation may disturb TM11 through the cytoplasmic loop between TM10 and TM11. In conclusion, our findings have identified structural elements of importance for the kinetic constraints imposed by TM11.
Collapse
Affiliation(s)
- Stine A Mikkelsen
- From the Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark and
| | - Peter Vangheluwe
- the Department of Cellular and Molecular Medicine, KU Leuven, B-3000 Leuven, Belgium
| | - Jens Peter Andersen
- From the Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark and
| |
Collapse
|
29
|
Krishnan B, Massilamany C, Basavalingappa RH, Gangaplara A, Rajasekaran RA, Afzal MZ, Khalilzad-Sharghi V, Zhou Y, Riethoven JJ, Nandi SS, Mishra PK, Sobel RA, Strande JL, Steffen D, Reddy J. Epitope Mapping of SERCA2a Identifies an Antigenic Determinant That Induces Mainly Atrial Myocarditis in A/J Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:523-537. [PMID: 29229678 PMCID: PMC5760440 DOI: 10.4049/jimmunol.1701090] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/05/2017] [Indexed: 12/20/2022]
Abstract
Sarcoplasmic/endoplasmic reticulum Ca2+ adenosine triphosphatase (SERCA)2a, a critical regulator of calcium homeostasis, is known to be decreased in heart failure. Patients with myocarditis or dilated cardiomyopathy develop autoantibodies to SERCA2a suggesting that they may have pathogenetic significance. In this report, we describe epitope mapping analysis of SERCA2a in A/J mice that leads us to make five observations: 1) SERCA2a contains multiple T cell epitopes that induce varying degrees of myocarditis. One epitope, SERCA2a 971-990, induces widespread atrial inflammation without affecting noncardiac tissues; the cardiac abnormalities could be noninvasively captured by echocardiography, electrocardiography, and magnetic resonance microscopy imaging. 2) SERCA2a 971-990-induced disease was associated with the induction of CD4 T cell responses and the epitope preferentially binds MHC class II/IAk rather than IEk By creating IAk/and IEk/SERCA2a 971-990 dextramers, the T cell responses were determined by flow cytometry to be Ag specific. 3) SERCA2a 971-990-sensitized T cells produce both Th1 and Th17 cytokines. 4) Animals immunized with SERCA2a 971-990 showed Ag-specific Abs with enhanced production of IgG2a and IgG2b isotypes, suggesting that SERCA2a 971-990 can potentially act as a common epitope for both T cells and B cells. 5) Finally, SERCA2a 971-990-sensitized T cells were able to transfer disease to naive recipients. Together, these data indicate that SERCA2a is a critical autoantigen in the mediation of atrial inflammation in mice and that our model may be helpful to study the inflammatory events that underlie the development of conditions such as atrial fibrillation in humans.
Collapse
Affiliation(s)
- Bharathi Krishnan
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Chandirasegaran Massilamany
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Rakesh H Basavalingappa
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Arunakumar Gangaplara
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Rajkumar A Rajasekaran
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
| | | | - Vahid Khalilzad-Sharghi
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - You Zhou
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588
| | | | - Shyam S Nandi
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198; and
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198; and
| | - Raymond A Sobel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94304
| | | | - David Steffen
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583;
| |
Collapse
|
30
|
Franzini-Armstrong C. The relationship between form and function throughout the history of excitation-contraction coupling. J Gen Physiol 2018; 150:189-210. [PMID: 29317466 PMCID: PMC5806676 DOI: 10.1085/jgp.201711889] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Franzini-Armstrong reviews the development of the excitation–contraction coupling field over time. The concept of excitation–contraction coupling is almost as old as Journal of General Physiology. It was understood as early as the 1940s that a series of stereotyped events is responsible for the rapid contraction response of muscle fibers to an initial electrical event at the surface. These early developments, now lost in what seems to be the far past for most young investigators, have provided an endless source of experimental approaches. In this Milestone in Physiology, I describe in detail the experiments and concepts that introduced and established the field of excitation–contraction coupling in skeletal muscle. More recent advances are presented in an abbreviated form, as readers are likely to be familiar with recent work in the field.
Collapse
Affiliation(s)
- Clara Franzini-Armstrong
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA
| |
Collapse
|
31
|
Abstract
The calcium pump (a.k.a. Ca2+-ATPase or SERCA) is a membrane transport protein ubiquitously found in the endoplasmic reticulum (ER) of all eukaryotic cells. As a calcium transporter, SERCA maintains the low cytosolic calcium level that enables a vast array of signaling pathways and physiological processes (e.g. synaptic transmission, muscle contraction, fertilization). In muscle cells, SERCA promotes relaxation by pumping calcium ions from the cytosol into the lumen of the sarcoplasmic reticulum (SR), the main storage compartment for intracellular calcium. X-ray crystallographic studies have provided an extensive understanding of the intermediate states that SERCA populates as it progresses through the calcium transport cycle. Historically, SERCA is also known to be regulated by small transmembrane peptides, phospholamban (PLN) and sarcolipin (SLN). PLN is expressed in cardiac muscle, whereas SLN predominates in skeletal and atrial muscle. These two regulatory subunits play critical roles in cardiac contractility. While our understanding of these regulatory mechanisms are still developing, SERCA and PLN are one of the best understood examples of peptide-transporter regulatory interactions. Nonetheless, SERCA appeared to have only two regulatory subunits, while the related sodium pump (a.k.a. Na+, K+-ATPase) has at least nine small transmembrane peptides that provide tissue specific regulation. The last few years have seen a renaissance in our understanding of SERCA regulatory subunits. First, structures of the SERCA-SLN and SERCA-PLN complexes revealed molecular details of their interactions. Second, an array of micropeptides concealed within long non-coding RNAs have been identified as new SERCA regulators. This chapter will describe our current understanding of SERCA structure, function, and regulation.
Collapse
|
32
|
Aït Ghezali L, Arbabian A, Roudot H, Brouland JP, Baran-Marszak F, Salvaris E, Boyd A, Drexler HG, Enyedi A, Letestu R, Varin-Blank N, Papp B. Induction of endoplasmic reticulum calcium pump expression during early leukemic B cell differentiation. J Exp Clin Cancer Res 2017; 36:87. [PMID: 28651627 PMCID: PMC5485704 DOI: 10.1186/s13046-017-0556-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/18/2017] [Indexed: 11/15/2022] Open
Abstract
Background Endoplasmic reticulum (ER) calcium storage and release play important roles in B lymphocyte maturation, survival, antigen-dependent cell activation and immunoglobulin synthesis. Calcium is accumulated in the endoplasmic reticulum (ER) by Sarco/Endoplasmic Reticulum Calcium ATPases (SERCA enzymes). Because lymphocyte function is critically dependent on SERCA activity, it is important to understand qualitative and quantitative changes of SERCA protein expression that occur during B lymphoid differentiation and leukemogenesis. Methods In this work we investigated the modulation of SERCA expression during the pharmacologically induced differentiation of leukemic precursor B lymphoblast cell lines that carry the E2A-PBX1 fusion oncoprotein. Changes of SERCA levels during differentiation were determined and compared to those of established early B lymphoid differentiation markers. SERCA expression of the cells was compared to that of mature B cell lines as well, and the effect of the direct inhibition of SERCA-dependent calcium transport on the differentiation process was investigated. Results We show that E2A-PBX1+ leukemia cells simultaneously express SERCA2 and SERCA3-type calcium pumps; however, their SERCA3 expression is markedly inferior to that of mature B cells. Activation of protein kinase C enzymes by phorbol ester leads to phenotypic differentiation of the cells, and this is accompanied by the induction of SERCA3 expression. Direct pharmacological inhibition of SERCA-dependent calcium transport during phorbol ester treatment interferes with the differentiation process. Conclusion These data show that the calcium pump composition of the ER is concurrent with increased SERCA3 expression during the differentiation of precursor B acute lymphoblastic leukemia cells, that a cross-talk exists between SERCA function and the control of differentiation, and that SERCA3 may constitute an interesting new marker for the study of early B cell phenotype. Electronic supplementary material The online version of this article (doi:10.1186/s13046-017-0556-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lamia Aït Ghezali
- Institut National de la Santé et de la Recherche Médicale, U978, Bobigny, France.,Université Paris-13, PRES Sorbonne Paris-Cité, 74, rue Marcel Cachin 93017, Bobigny, France
| | | | - Hervé Roudot
- Institut National de la Santé et de la Recherche Médicale, U978, Bobigny, France.,Université Paris-13, PRES Sorbonne Paris-Cité, 74, rue Marcel Cachin 93017, Bobigny, France.,Service d'Hématologie Biologique, Hôpitaux Universitaires Paris Seine-Saint-Denis, AP-HP, Hôpital Avicenne, Bobigny, France
| | | | - Fanny Baran-Marszak
- Institut National de la Santé et de la Recherche Médicale, U978, Bobigny, France.,Université Paris-13, PRES Sorbonne Paris-Cité, 74, rue Marcel Cachin 93017, Bobigny, France.,Service d'Hématologie Biologique, Hôpitaux Universitaires Paris Seine-Saint-Denis, AP-HP, Hôpital Avicenne, Bobigny, France
| | - Evelyn Salvaris
- Immunology Research Centre, St Vincent's Hospital, Melbourne, VIC, Australia
| | - Andrew Boyd
- Department of Medicine, University of Queensland, Queensland, Australia
| | - Hans G Drexler
- Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Brauschweig, Germany
| | - Agnes Enyedi
- Second Institute of Pathology, Semmelweis University Medical School, Budapest, Hungary
| | - Remi Letestu
- Institut National de la Santé et de la Recherche Médicale, U978, Bobigny, France.,Université Paris-13, PRES Sorbonne Paris-Cité, 74, rue Marcel Cachin 93017, Bobigny, France.,Service d'Hématologie Biologique, Hôpitaux Universitaires Paris Seine-Saint-Denis, AP-HP, Hôpital Avicenne, Bobigny, France
| | - Nadine Varin-Blank
- Institut National de la Santé et de la Recherche Médicale, U978, Bobigny, France.,Université Paris-13, PRES Sorbonne Paris-Cité, 74, rue Marcel Cachin 93017, Bobigny, France
| | - Bela Papp
- Institut National de la Santé et de la Recherche Médicale, U978, Bobigny, France. .,Université Paris-13, PRES Sorbonne Paris-Cité, 74, rue Marcel Cachin 93017, Bobigny, France. .,U978 Inserm, UFR SMBH, Université Paris-13, 74, rue Marcel Cachin, 93017, Bobigny, France.
| |
Collapse
|
33
|
Das A, Rui H, Nakamoto R, Roux B. Conformational Transitions and Alternating-Access Mechanism in the Sarcoplasmic Reticulum Calcium Pump. J Mol Biol 2017; 429:647-666. [PMID: 28093226 PMCID: PMC5467534 DOI: 10.1016/j.jmb.2017.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/31/2016] [Accepted: 01/08/2017] [Indexed: 11/22/2022]
Abstract
Ion pumps are integral membrane proteins responsible for transporting ions against concentration gradients across biological membranes. Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA), a member of the P-type ATPases family, transports two calcium ions per hydrolyzed ATP molecule via an "alternating-access" mechanism. High-resolution crystallographic structures provide invaluable insight on the structural mechanism of the ion pumping process. However, to understand the molecular details of how ATP hydrolysis is coupled to calcium transport, it is necessary to gain knowledge about the conformational transition pathways connecting the crystallographically resolved conformations. Large-scale transitions in SERCA occur at time-scales beyond the current reach of unbiased molecular dynamics simulations. Here, we overcome this challenge by employing the string method, which represents a transition pathway as a chainofstates linking two conformational endpoints. Using a multiscale methodology, we have determined all-atom transition pathways for three main conformational transitions responsible for the alternating-access mechanism. The present pathways provide a clear chronology and ordering of the key events underlying the active transport of calcium ions by SERCA. Important conclusions are that the conformational transition that leads to occlusion with bound ATP and calcium is highly concerted and cooperative, the phosphorylation of Asp351 causes areorganization of the cytoplasmic domains that subsequently drives the opening of the luminal gate, and thereclosing of luminal gate induces a shift in the cytoplasmic domains that subsequently enables the dephosphorylation of Asp351-P. Formation of transient residue-residue contacts along the conformational transitions predicted by the computations provide an experimental route to test the general validity of the computational pathways.
Collapse
Affiliation(s)
- Avisek Das
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, Chicago,IL 60637, USA
| | - Huan Rui
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, Chicago,IL 60637, USA
| | - Robert Nakamoto
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, PO Box 800886, 480Ray C. Hunt Drive, Charlottesville, VA 22908, USA
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, Chicago,IL 60637, USA.
| |
Collapse
|
34
|
Structure-Function Relationship of the SERCA Pump and Its Regulation by Phospholamban and Sarcolipin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 981:77-119. [DOI: 10.1007/978-3-319-55858-5_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Páez-Pérez ED, De La Cruz-Torres V, Sampedro JG. Nucleotide Binding in an Engineered Recombinant Ca 2+-ATPase N-Domain. Biochemistry 2016; 55:6751-6765. [PMID: 27951662 DOI: 10.1021/acs.biochem.6b00194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A recombinant Ca2+-ATPase nucleotide binding domain (N-domain) harboring the mutations Trp552Leu and Tyr587Trp was expressed and purified. Chemical modification by N-bromosuccinimide and fluorescence quenching by acrylamide showed that the displaced Trp residue was located at the N-domain surface and slightly exposed to solvent. Guanidine hydrochloride-mediated N-domain unfolding showed the low structural stability of the α6-loop-α7 motif (the new Trp location) located near the nucleotide binding site. The binding of nucleotides (free and in complex with Mg2+) to the engineered N-domain led to significant intrinsic fluorescence quenching (ΔFmax ∼ 30%) displaying a saturable hyperbolic pattern; the calculated affinities decreased in the following order: ATP > ADP = ADP-Mg2+ > ATP-Mg2+. Interestingly, it was found that Ca2+ binds to the N-domain as monitored by intrinsic fluorescence quenching (ΔFmax ∼ 12%) with a dissociation constant (Kd) of 50 μM. Notably, the presence of Ca2+ (200 μM) increased the ATP and ADP affinity but favored the binding of ATP over that of ADP. In addition, binding of ATP to the N-domain generated slight changes in secondary structure as evidenced by circular dichroism spectral changes. Molecular docking of ATP to the N-domain provided different binding modes that potentially might be the binding stages prior to γ-phosphate transfer. Finally, the nucleotide binding site was studied by fluorescein isothiocyanate labeling and molecular docking. The N-domain of Ca2+-ATPase performs structural dynamics upon Ca2+ and nucleotide binding. It is proposed that the increased affinity of the N-domain for ATP mediated by Ca2+ binding may be involved in Ca2+-ATPase activation under normal physiological conditions.
Collapse
Affiliation(s)
- Edgar D Páez-Pérez
- Instituto de Física, Universidad Autónoma de San Luis Potosí , Manuel Nava 6, Zona Universitaria, CP, 78290 San Luis Potosí, SLP, Mexico
| | - Valentín De La Cruz-Torres
- Instituto de Física, Universidad Autónoma de San Luis Potosí , Manuel Nava 6, Zona Universitaria, CP, 78290 San Luis Potosí, SLP, Mexico
| | - José G Sampedro
- Instituto de Física, Universidad Autónoma de San Luis Potosí , Manuel Nava 6, Zona Universitaria, CP, 78290 San Luis Potosí, SLP, Mexico
| |
Collapse
|
36
|
Sánchez GA, Takara D, Toma AF, Alonso GL. Characteristics of the Sarcoplasmic Reticulum Ca2+-dependent ATPase from Masticatory Muscles. J Dent Res 2016; 83:557-61. [PMID: 15218046 DOI: 10.1177/154405910408300709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We compared the sarcoplasmic reticulum (SR) Ca-ATPase from masseter (M) and medial pterygoid (MP) muscles with that from fast muscles (FM) to examine whether its calcium transport capability and enzymatic activity are different. SR vesicles from FM, M, and MP muscles were obtained according to Champeil et al.(1985) . Assays for characterization of the enzyme properties were performed. The results showed similar optimal conditions for the Ca-ATPase activity and calcium transport in M, MP, and FM. However, the maximal values of calcium transport, Ca-ATPase activity, and Ki for thapsigargin were significantly lower in the masticatory muscles. These findings are likely related to different Ca-ATPase isoforms. Since the local anesthetics used in dentistry inhibit Ca-ATPase and calcium transport in FM, it will be important for the effects of these drugs on the Ca-ATPase of masticatory muscles to be assessed.
Collapse
Affiliation(s)
- G A Sánchez
- Biophysics Department, Faculty of Dentistry, University of Buenos Aires, MT de Alvear 2142, 1122 Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
37
|
Abstract
The various isoforms of the sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA) are responsible for the Ca(2+) uptake from the cytosol into the endoplasmic or sarcoplasmic reticulum (ER/SR). In some tissues, the activity of SERCA can be modulated by binding partners, such as phospholamban and sarcolipin. The activity of SERCA can be characterized by its apparent affinity for Ca(2+) as well as maximal enzymatic velocity. Both parameters can be effectively determined by the protocol described here. Specifically, we describe the measurement of the rate of oxalate-facilitated (45)Ca uptake into the SR of crude mouse ventricular homogenates. This protocol can easily be adapted for different tissues and animal models as well as cultured cells.
Collapse
Affiliation(s)
- Philip A Bidwell
- Department of Pharmacology and Cell Biophysics, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Evangelia G Kranias
- Department of Pharmacology and Cell Biophysics, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA.
| |
Collapse
|
38
|
Andersen JP, Vestergaard AL, Mikkelsen SA, Mogensen LS, Chalat M, Molday RS. P4-ATPases as Phospholipid Flippases-Structure, Function, and Enigmas. Front Physiol 2016; 7:275. [PMID: 27458383 PMCID: PMC4937031 DOI: 10.3389/fphys.2016.00275] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 06/20/2016] [Indexed: 01/26/2023] Open
Abstract
P4-ATPases comprise a family of P-type ATPases that actively transport or flip phospholipids across cell membranes. This generates and maintains membrane lipid asymmetry, a property essential for a wide variety of cellular processes such as vesicle budding and trafficking, cell signaling, blood coagulation, apoptosis, bile and cholesterol homeostasis, and neuronal cell survival. Some P4-ATPases transport phosphatidylserine and phosphatidylethanolamine across the plasma membrane or intracellular membranes whereas other P4-ATPases are specific for phosphatidylcholine. The importance of P4-ATPases is highlighted by the finding that genetic defects in two P4-ATPases ATP8A2 and ATP8B1 are associated with severe human disorders. Recent studies have provided insight into how P4-ATPases translocate phospholipids across membranes. P4-ATPases form a phosphorylated intermediate at the aspartate of the P-type ATPase signature sequence, and dephosphorylation is activated by the lipid substrate being flipped from the exoplasmic to the cytoplasmic leaflet similar to the activation of dephosphorylation of Na(+)/K(+)-ATPase by exoplasmic K(+). How the phospholipid is translocated can be understood in terms of a peripheral hydrophobic gate pathway between transmembrane helices M1, M3, M4, and M6. This pathway, which partially overlaps with the suggested pathway for migration of Ca(2+) in the opposite direction in the Ca(2+)-ATPase, is wider than the latter, thereby accommodating the phospholipid head group. The head group is propelled along against its concentration gradient with the hydrocarbon chains projecting out into the lipid phase by movement of an isoleucine located at the position corresponding to an ion binding glutamate in the Ca(2+)- and Na(+)/K(+)-ATPases. Hence, the P4-ATPase mechanism is quite similar to the mechanism of these ion pumps, where the glutamate translocates the ions by moving like a pump rod. The accessory subunit CDC50 may be located in close association with the exoplasmic entrance of the suggested pathway, and possibly promotes the binding of the lipid substrate. This review focuses on properties of mammalian and yeast P4-ATPases for which most mechanistic insight is available. However, the structure, function and enigmas associated with mammalian and yeast P4-ATPases most likely extend to P4-ATPases of plants and other organisms.
Collapse
Affiliation(s)
| | | | | | | | - Madhavan Chalat
- Department of Biochemistry and Molecular Biology, University of British ColumbiaVancouver, BC, Canada
| | - Robert S. Molday
- Department of Biochemistry and Molecular Biology, University of British ColumbiaVancouver, BC, Canada
- *Correspondence: Robert S. Molday
| |
Collapse
|
39
|
Delgado-Coello B, Mas-Oliva J. Relevance of the plasma membrane calcium-ATPase in the homeostasis of calcium in the fetal liver. Organogenesis 2015; 10:333-9. [PMID: 25836032 PMCID: PMC4594366 DOI: 10.1080/15476278.2015.1011918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
During the early stages of development, the embryo depends on the placenta as provider of oxygen and calcium, among other essential compounds. Although fetal liver accomplishes a well-known haematopoietic function, its contribution to calcium homeostasis upon development is poorly understood. The homeostasis of cell calcium contributes to diverse signaling pathways across developmental stages of most tissues and the calcium-ATPase located at the plasma membrane (PMCA) helps pumping excess calcium into the extracellular space. To date, the understanding of the equilibrium shift between PMCA isoforms during liver development is still missing. This review focuses on the characterization of the hepatic PMCA along the early stages of development, followed by a description of modern approaches to study calcium homeostasis involving several types of pluripotent cells. The application of interdisciplinary techniques to improve our understanding of liver development and the role calcium homeostasis plays in the definition of pathogenesis is also discussed.
Collapse
Affiliation(s)
- Blanca Delgado-Coello
- a Departamento de Bioquímica y Biología Estructural ; Instituto de Fisiología Celular ; Universidad Nacional Autónoma de México ; México D.F. , México
| | | |
Collapse
|
40
|
Philippe R, Antigny F, Buscaglia P, Norez C, Becq F, Frieden M, Mignen O. SERCA and PMCA pumps contribute to the deregulation of Ca2+ homeostasis in human CF epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:892-903. [PMID: 25661196 DOI: 10.1016/j.bbamcr.2015.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 01/12/2015] [Accepted: 01/15/2015] [Indexed: 11/26/2022]
Abstract
Cystic Fibrosis (CF) disease is caused by mutations in the CFTR gene (CF transmembrane conductance regulator). F508 deletion is the most represented mutation, and F508del-CFTR is absent of plasma membrane and accumulates into the endoplasmic reticulum (ER) compartment. Using specific Ca2+ genetics cameleon probes, we showed in the human bronchial CF epithelial cell line CFBE that ER Ca2+ concentration was strongly increased compared to non-CF (16HBE) cells, and normalized by the F508del-CFTR corrector agent, VX-809. We also showed that ER F508del-CFTR retention increases SERCA (Sarcoplasmic/Reticulum Ca2+ ATPase) pump activity whereas PMCA (Plasma Membrane Ca2+ ATPase) activities were reduced in these CF cells compared to corrected CF cells (VX-809) and non-CF cells. We are showing for the first time CFTR/SERCA and CFTR/PMCA interactions that are modulated in CF cells and could explain part of Ca2+ homeostasis deregulation due to mislocalization of F508del-CFTR. Using ER or mitochondria genetics Ca2+ probes, we are showing that ER Ca2+ content, mitochondrial Ca2+ uptake, SERCA and PMCA pump, activities are strongly affected by the localization of F508del-CFTR protein.
Collapse
Affiliation(s)
- Réginald Philippe
- NSERM U1078, Université Bretagne Occidentale, 22 Avenue Camille Desmoulins, 29200 Brest, France
| | - Fabrice Antigny
- Department of Basic Neurosciences, 1, Rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Paul Buscaglia
- NSERM U1078, Université Bretagne Occidentale, 22 Avenue Camille Desmoulins, 29200 Brest, France
| | - Caroline Norez
- Laboratoire Signalisation et Transport Ioniques Membranaires, Université Poitiers-CNRS Pole Biologie Santé, 1 rue George Bonnet, 86073 Poitiers Cedex, France
| | - Frédéric Becq
- Laboratoire Signalisation et Transport Ioniques Membranaires, Université Poitiers-CNRS Pole Biologie Santé, 1 rue George Bonnet, 86073 Poitiers Cedex, France
| | - Maud Frieden
- Cell Physiology and Metabolism University of Geneva Medical School, 1, Rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Olivier Mignen
- NSERM U1078, Université Bretagne Occidentale, 22 Avenue Camille Desmoulins, 29200 Brest, France.
| |
Collapse
|
41
|
Kósa M, Brinyiczki K, van Damme P, Goemans N, Hancsák K, Mendler L, Zádor E. The neonatal sarcoplasmic reticulum Ca2+-ATPase gives a clue to development and pathology in human muscles. J Muscle Res Cell Motil 2014; 36:195-203. [PMID: 25487304 DOI: 10.1007/s10974-014-9403-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/03/2014] [Indexed: 01/07/2023]
Abstract
The sarcoplasmic/endoplasmic reticulum calcium ATPase 1 (SERCA1) has two muscle specific splice isoforms; SERCA1a in fast-type adult and SERCA1b in neonatal and regenerating skeletal muscles. At the protein level the only difference between these two isoforms is that SERCA1a has C-terminal glycine while SERCA1b has an octapeptide tail instead. This makes the generation of a SERCA1a specific antibody not feasible. The switch between the two isoforms is a hallmark of differentiation so we describe here a method based on the signal ratios of the SERCA1b specific and pan SERCA1 antibodies to estimate the SERCA1b/SERCA1a dominance on immunoblot of human muscles. Using this method we showed that unlike in mouse and rat, SERCA1b was only expressed in pre-matured infant leg and arm muscles; it was replaced by SERCA1a in more matured neonatal muscles and was completely absent in human foetal and neonatal diaphragms. Interestingly, only SERCA1a and no SERCA1b were detected in muscles of 7-12 years old boys with Duchenne, a degenerative-regenerative muscular dystrophy. However, in adult patients with myotonic dystrophy type 2 (DM2), the SERCA1b dominated over SERCA1a. Thus the human SERCA1b has a different expression pattern from that of rodents and it is associated with DM2.
Collapse
Affiliation(s)
- Magdolna Kósa
- Department of Biochemistry, Faculty of General Medicine, University of Szeged, Dóm tér 9, H-6720, Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
42
|
Affiliation(s)
- Pimprapa Vejpongsa
- From the Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston (P.V., E.T.H.Y.); and Texas Heart Institute, Houston (E.T.H.Y.)
| | | |
Collapse
|
43
|
Jin S, Kim J, Willert T, Klein-Rodewald T, Garcia-Dominguez M, Mosqueira M, Fink R, Esposito I, Hofbauer LC, Charnay P, Kieslinger M. Ebf factors and MyoD cooperate to regulate muscle relaxation via Atp2a1. Nat Commun 2014; 5:3793. [PMID: 24786561 DOI: 10.1038/ncomms4793] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/02/2014] [Indexed: 01/08/2023] Open
Abstract
Myogenic regulatory factors such as MyoD and Myf5 lie at the core of vertebrate muscle differentiation. However, E-boxes, the cognate binding sites for these transcription factors, are not restricted to the promoters/enhancers of muscle cell-specific genes. Thus, the specificity in myogenic transcription is poorly defined. Here we describe the transcription factor Ebf3 as a new determinant of muscle cell-specific transcription. In the absence of Ebf3 the lung does not unfold at birth, resulting in respiratory failure and perinatal death. This is due to a hypercontractile diaphragm with impaired Ca(2+) efflux-related muscle functions. Expression of the Ca(2+) pump Serca1 (Atp2a1) is downregulated in the absence of Ebf3, and its transgenic expression rescues this phenotype. Ebf3 binds directly to the promoter of Atp2a1 and synergises with MyoD in the induction of Atp2a1. In skeletal muscle, the homologous family member Ebf1 is strongly expressed and together with MyoD induces Atp2a1. Thus, Ebf3 is a new regulator of terminal muscle differentiation in the diaphragm, and Ebf factors cooperate with MyoD in the induction of muscle-specific genes.
Collapse
Affiliation(s)
- Saihong Jin
- Institute of Clinical Molecular Biology and Tumor Genetics, Helmholtz Zentrum München, National Research Center for Environmental Health, Marchioninistrasse 25, 81377 Munich, Germany
| | - Jeehee Kim
- Institute of Clinical Molecular Biology and Tumor Genetics, Helmholtz Zentrum München, National Research Center for Environmental Health, Marchioninistrasse 25, 81377 Munich, Germany
| | - Torsten Willert
- Institute of Clinical Molecular Biology and Tumor Genetics, Helmholtz Zentrum München, National Research Center for Environmental Health, Marchioninistrasse 25, 81377 Munich, Germany
| | - Tanja Klein-Rodewald
- Institute of Pathology, Helmholtz Zentrum München, National Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, 81377 Munich, Germany
| | - Mario Garcia-Dominguez
- 1] Developmental Biology Section, Ecole Normale Supérieure, Rue d'Ulm 46, 75230 Paris, France [2] Stem Cells Department, CABIMER (CISC), Av Américo Vespucio, 41092 Sevilla, Spain
| | - Matias Mosqueira
- Medical Biophysics Unit, Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Rainer Fink
- Medical Biophysics Unit, Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Irene Esposito
- 1] Institute of Pathology, Helmholtz Zentrum München, National Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, 81377 Munich, Germany [2] Institute of Pathology, Technische Universität München, Ismaningerstrasse 22, 81675 Munich, Germany
| | - Lorenz C Hofbauer
- Division of Endocrinology, Diabetes and Metabolic Bone Diseases, Department of Medicine III, TU Dresden Medical Center, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Patrick Charnay
- Developmental Biology Section, Ecole Normale Supérieure, Rue d'Ulm 46, 75230 Paris, France
| | - Matthias Kieslinger
- Institute of Clinical Molecular Biology and Tumor Genetics, Helmholtz Zentrum München, National Research Center for Environmental Health, Marchioninistrasse 25, 81377 Munich, Germany
| |
Collapse
|
44
|
Calderón JC, Bolaños P, Caputo C. The excitation-contraction coupling mechanism in skeletal muscle. Biophys Rev 2014; 6:133-160. [PMID: 28509964 PMCID: PMC5425715 DOI: 10.1007/s12551-013-0135-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 12/06/2013] [Indexed: 12/27/2022] Open
Abstract
First coined by Alexander Sandow in 1952, the term excitation-contraction coupling (ECC) describes the rapid communication between electrical events occurring in the plasma membrane of skeletal muscle fibres and Ca2+ release from the SR, which leads to contraction. The sequence of events in twitch skeletal muscle involves: (1) initiation and propagation of an action potential along the plasma membrane, (2) spread of the potential throughout the transverse tubule system (T-tubule system), (3) dihydropyridine receptors (DHPR)-mediated detection of changes in membrane potential, (4) allosteric interaction between DHPR and sarcoplasmic reticulum (SR) ryanodine receptors (RyR), (5) release of Ca2+ from the SR and transient increase of Ca2+ concentration in the myoplasm, (6) activation of the myoplasmic Ca2+ buffering system and the contractile apparatus, followed by (7) Ca2+ disappearance from the myoplasm mediated mainly by its reuptake by the SR through the SR Ca2+ adenosine triphosphatase (SERCA), and under several conditions movement to the mitochondria and extrusion by the Na+/Ca2+ exchanger (NCX). In this text, we review the basics of ECC in skeletal muscle and the techniques used to study it. Moreover, we highlight some recent advances and point out gaps in knowledge on particular issues related to ECC such as (1) DHPR-RyR molecular interaction, (2) differences regarding fibre types, (3) its alteration during muscle fatigue, (4) the role of mitochondria and store-operated Ca2+ entry in the general ECC sequence, (5) contractile potentiators, and (6) Ca2+ sparks.
Collapse
Affiliation(s)
- Juan C Calderón
- Physiology and Biochemistry Research Group-Physis, Department of Physiology and Biochemistry, Faculty of Medicine, University of Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia.
- Laboratory of Cellular Physiology, Centre of Biophysics and Biochemistry, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela.
- Departamento de Fisiología y Bioquímica, Grupo de Investigación en Fisiología y Bioquímica-Physis, Facultad de Medicina, Universidad de Antioquia, Calle 70 No 52-21, Medellín, Colombia.
| | - Pura Bolaños
- Laboratory of Cellular Physiology, Centre of Biophysics and Biochemistry, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| | - Carlo Caputo
- Laboratory of Cellular Physiology, Centre of Biophysics and Biochemistry, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| |
Collapse
|
45
|
Mazzitelli LR, Adamo HP. Hyperactivation of the human plasma membrane Ca2+ pump PMCA h4xb by mutation of Glu99 to Lys. J Biol Chem 2014; 289:10761-10768. [PMID: 24584935 DOI: 10.1074/jbc.m113.535583] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transport of calcium to the extracellular space carried out by plasma membrane Ca(2+) pumps (PMCAs) is essential for maintaining low Ca(2+) concentrations in the cytosol of eukaryotic cells. The activity of PMCAs is controlled by autoinhibition. Autoinhibition is relieved by the binding of Ca(2+)-calmodulin to the calmodulin-binding autoinhibitory sequence, which in the human PMCA is located in the C-terminal segment and results in a PMCA of high maximal velocity of transport and high affinity for Ca(2+). Autoinhibition involves the intramolecular interaction between the autoinhibitory domain and a not well defined region of the molecule near the catalytic site. Here we show that the fusion of GFP to the C terminus of the h4xb PMCA causes partial loss of autoinhibition by specifically increasing the Vmax. Mutation of residue Glu(99) to Lys in the cytosolic portion of the M1 transmembrane helix at the other end of the molecule brought the Vmax of the h4xb PMCA to near that of the calmodulin-activated enzyme without increasing the apparent affinity for Ca(2+). Altogether, the results suggest that the autoinhibitory interaction of the extreme C-terminal segment of the h4 PMCA is disturbed by changes of negatively charged residues of the N-terminal region. This would be consistent with a recently proposed model of an autoinhibited form of the plant ACA8 pump, although some differences are noted.
Collapse
Affiliation(s)
- Luciana R Mazzitelli
- Instituto de Química y Fisicoquímica Biológicas-Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina
| | - Hugo P Adamo
- Instituto de Química y Fisicoquímica Biológicas-Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina.
| |
Collapse
|
46
|
Ca(2+)/H (+) exchange, lumenal Ca(2+) release and Ca (2+)/ATP coupling ratios in the sarcoplasmic reticulum ATPase. J Cell Commun Signal 2013; 8:5-11. [PMID: 24302441 PMCID: PMC3972395 DOI: 10.1007/s12079-013-0213-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 11/01/2013] [Indexed: 12/29/2022] Open
Abstract
The Ca2+ transport ATPase (SERCA) of sarcoplasmic reticulum (SR) plays an important role in muscle cytosolic signaling, as it stores Ca2+ in intracellular membrane bound compartments, thereby lowering cytosolic Ca2+ to induce relaxation. The stored Ca2+ is in turn released upon membrane excitation to trigger muscle contraction. SERCA is activated by high affinity binding of cytosolic Ca2+, whereupon ATP is utilized by formation of a phosphoenzyme intermediate, which undergoes protein conformational transitions yielding reduced affinity and vectorial translocation of bound Ca2+. We review here biochemical and biophysical evidence demonstrating that release of bound Ca2+ into the lumen of SR requires Ca2+/H+ exchange at the low affinity Ca2+ sites. Rise of lumenal Ca2+ above its dissociation constant from low affinity sites, or reduction of the H+ concentration by high pH, prevent Ca2+/H+ exchange. Under these conditions Ca2+ release into the lumen of SR is bypassed, and hydrolytic cleavage of phosphoenzyme may yield uncoupled ATPase cycles. We clarify how such Ca2+pump slippage does not occur within the time length of muscle twitches, but under special conditions and in special cells may contribute to thermogenesis.
Collapse
|
47
|
Sánchez GA, Trinks PW, Richard SB, Di Croce DE, Takara D. Expression of sarcoplasmic-endoplasmic reticulum Ca-ATPase isoforms in masticatory muscles. Eur J Oral Sci 2013; 122:36-41. [DOI: 10.1111/eos.12098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Gabriel A. Sánchez
- Biophysics Department; School of Dentistry; University of Buenos Aires; Buenos Aires Argentina
| | - Pablo W. Trinks
- Department of Anatomy; School of Dentistry; University of Buenos Aires; Buenos Aires Argentina
| | - Susana B. Richard
- Biophysics Department; School of Dentistry; University of Buenos Aires; Buenos Aires Argentina
| | - Daniel E. Di Croce
- Biophysics Department; School of Dentistry; University of Buenos Aires; Buenos Aires Argentina
| | - Delia Takara
- Biophysics Department; School of Dentistry; University of Buenos Aires; Buenos Aires Argentina
| |
Collapse
|
48
|
Abstract
Ca(2+)-ATPases (pumps) are key to the regulation of Ca(2+) in eukaryotic cells: nine are known today, belonging to three multigene families. The three endo(sarco)plasmic reticulum (SERCA) and the four plasma membrane (PMCA) pumps have been known for decades, the two Secretory Pathway Ca(2+) ATPase (SPCA) pumps have only become known recently. The number of pump isoforms is further increased by alternative splicing processes. The three pump types share the basic features of the catalytic mechanism, but differ in a number of properties related to tissue distribution, regulation, and role in the cellular homeostasis of Ca(2+). The molecular understanding of the function of all pumps has received great impetus from the solution of the three-dimensional (3D) structure of one of them, the SERCA pump. This landmark structural advance has been accompanied by the emergence and rapid expansion of the area of pump malfunction. Most of the pump defects described so far are genetic and produce subtler, often tissue and isoform specific, disturbances that affect individual components of the Ca(2+)-controlling and/or processing machinery, compellingly indicating a specialized role for each Ca(2+) pump type and/or isoform.
Collapse
Affiliation(s)
- Marisa Brini
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro Padova, Italy.
| | | | | | | |
Collapse
|
49
|
Lam AK, Galione A. The endoplasmic reticulum and junctional membrane communication during calcium signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2542-59. [DOI: 10.1016/j.bbamcr.2013.06.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 06/03/2013] [Accepted: 06/03/2013] [Indexed: 12/13/2022]
|
50
|
Safwat Y, Yassin N, Gamal El Din M, Kassem L. Modulation of Skeletal Muscle Performance and SERCA by Exercise and Adiponectin Gene Therapy in Insulin-Resistant Rat. DNA Cell Biol 2013; 32:378-85. [DOI: 10.1089/dna.2012.1919] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Yasmeen Safwat
- Department of Physiology, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo City, Egypt
| | - Nadia Yassin
- Department of Physiology, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo City, Egypt
- Department of Physiology, Kasr Al Aini-Faculty of Medicine, Cairo University, New Cairo City, Egypt
| | - Maha Gamal El Din
- Department of Physiology, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo City, Egypt
- Department of Physiology, Kasr Al Aini-Faculty of Medicine, Cairo University, New Cairo City, Egypt
| | - Lobna Kassem
- Department of Physiology, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo City, Egypt
- Department of Physiology, Kasr Al Aini-Faculty of Medicine, Cairo University, New Cairo City, Egypt
| |
Collapse
|