1
|
Rosas PC, Solaro RJ. p21-Activated Kinase 1 (Pak1) as an Element in Functional and Dysfunctional Interplay Among the Myocardium, Adipose Tissue, and Pancreatic Beta Cells. Compr Physiol 2025; 15:e70006. [PMID: 40065530 PMCID: PMC11894248 DOI: 10.1002/cph4.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/22/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025]
Abstract
This review focuses on p21-activated kinase 1 (Pak1), a multifunctional, highly conserved enzyme that regulates multiple downstream effectors present in many tissues. Upstream signaling via Ras-related small G-proteins, Cdc42/Rac1 promotes the activity of Pak1. Our hypothesis is that this signaling cascade is an important element in communication among the myocardium, adipose tissue, and pancreatic β-cells. Evidence indicates that a shared property of these tissues is that structure/function stability requires homeostatic Pak1 activity. Increases or decreases in Pak1 activity may promote dysfunction or increase susceptibility to stressors. Evidence that increased levels of Pak1 activity may be protective provides support for efforts to develop therapeutic approaches activating Pak1 with potential use in prevalent disorders associated with obesity, diabetes, and myocardial dysfunction. On the other hand, since increased Pak1 activity is associated with cancer progression, there has been a significant effort to develop Pak1 inhibitors. These opposing therapeutic approaches highlight the need for a deep understanding of Pak1 signaling in relation to the development of effective and selective therapies with minimal or absent off-target effects.
Collapse
Affiliation(s)
- Paola C. Rosas
- Department of Pharmacy Practice, College of PharmacyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - R. John Solaro
- Department of Physiology and Biophysics, College of MedicineUniversity of Illinois at ChicagoChicagoIllinoisUSA
| |
Collapse
|
2
|
Neupane R, Malla S, Karthikeyan C, Asbhy CR, Boddu SHS, Jayachandra Babu R, Tiwari AK. Endocytic highways: Navigating macropinocytosis and other endocytic routes for precision drug delivery. Int J Pharm 2025; 673:125356. [PMID: 39956408 DOI: 10.1016/j.ijpharm.2025.125356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/22/2024] [Accepted: 02/11/2025] [Indexed: 02/18/2025]
Abstract
Drug molecules can reach intracellular targets by different mechanisms, such as passive diffusion, active transport, and endocytosis. Endocytosis is the process by which cells engulf extracellular material by forming a vesicle and transporting it into the cells. In addition to its biological functions, endocytosis plays a vital role in the internalization of the therapeutic molecules. Clathrin-mediated endocytosis, caveolar endocytosis, and macropinocytosis are the most researched routes in the field of drug delivery. In addition to conventional small therapeutic molecules, the use of nanoformulations and large molecules, such as nucleic acids, peptides, and antibodies, have broadened the field of drug delivery. Although the majority of small therapeutic molecules can enter cells via passive diffusion, large molecules, and advanced targeted delivery systems, such as nanoparticles, are internalized by the endocytic route. Therefore, it is imperative to understand the characteristics of the endocytic routes in greater detail to design therapeutic molecules or formulations for successful delivery to the intracellular targets. This review highlights the prospects and limitations of the major endocytic routes for drug delivery, with a major emphasis on macropinocytosis. Since macropinocytosis is a non-selective uptake of extracellular matrix, the selective induction of macropinocytosis, using compounds that induce macropinocytosis and modulate macropinosome trafficking pathways, could be a potential approach for the intracellular delivery of diverse therapeutic modalities. Furthermore, we have summarized the characteristics associated with the formulations or drug carriers that can affect the endocytic routes for cellular internalization. The techniques that are used to study the intracellular uptake processes of therapeutic molecules are briefly discussed. Finally, the major limitations for intracellular targeting, endo-lysosomal degradation, and different approaches that have been used in overcoming these limitations, are highlighted in this review.
Collapse
Affiliation(s)
- Rabin Neupane
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, OH 43614, USA
| | - Saloni Malla
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, OH 43614, USA
| | - Chandrabose Karthikeyan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak 484887, India
| | - Charles R Asbhy
- Department of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, St. John's University, Queens, NY 10049, USA
| | - Sai H S Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - R Jayachandra Babu
- Department of Drug Discovery and Development, Auburn University, AL 36849, USA
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, OH 43614, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
3
|
Zhang Z, Liu X, Sha B, Zhang Y, Zhao L, Zhao G, Feng J, Zhang Y, Yang J, Wang Z, Xu F, Lu TJ, Lin M. Tunable Integrin-Ligand Coupling Strength Modulates Cellular Adaptive Mechanosensing. NANO LETTERS 2025; 25:4170-4179. [PMID: 40052581 DOI: 10.1021/acs.nanolett.4c05199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Cells sense and respond to the matrix by exerting traction force through binding of integrins to an integrin-specific ligand. Here, Arg-Gly-Asp (RGD) peptide is covalently conjugated to the double-stranded DNA (dsDNA) and stem-loop DNA (slDNA) tethers with a tension tolerance of 43pN and immobilized on a PEG substrate. Unlike dsDNA, which is ruptured under high tension, leading to the removal of RGD, slDNA remains bound even when ruptured. Our results suggest that cells adapt their adhesion state by modulating actin filament polymerization and cofilin phosphorylation, effectively balancing the talin conformation to prevent dsDNA rupture and maintain normal adhesion. This phenomenon, termed integrin-ligand coupling strength, mediated cellular adaptive mechanosensing. Furthermore, we demonstrate that positive durotaxis can shift to negative durotaxis, depending on the integrin-ligand coupling strength. This study highlights the significance of the coupling strength in cell-extracellular matrix (ECM) interactions and offers new insights into designing biomaterials with tunable adhesive properties for cell-based applications.
Collapse
Affiliation(s)
- Zheng Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P.R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, P.R. China
| | - Xiaoxi Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Baoyong Sha
- School of Basic Medical Science, Xi'an Medical University, Xi'an 710021, P.R. China
| | - Yu Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, P.R. China
| | - Lingzhu Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Guoqing Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Jinteng Feng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P.R. China
- Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Ying Zhang
- Xijing 986 Hospital Department, Fourth Military Medical University, Xi'an 710054, P.R. China
| | - Jin Yang
- Department of Medical Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
- Pancreatic Disease Treatment Center, Department of Medical Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Tian Jian Lu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R. China
| | - Min Lin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P.R. China
| |
Collapse
|
4
|
Domenach L, Rooryck C, Legendre M, Bouchghoul H, Beneteau C, Margot H. Antenatal phenotype associated with PAK2 pathogenic variants: bilateral pleural effusion as a warning sign. BMC Med Genomics 2025; 18:35. [PMID: 39994693 PMCID: PMC11853806 DOI: 10.1186/s12920-025-02096-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/29/2025] [Indexed: 02/26/2025] Open
Abstract
Fetal pleural effusions can arise in various contexts with different prognosis. They have been reported in fetuses presenting with hereditary or acquired conditions. One particularly rare genetic disorder, known as Knobloch syndrome, seems to emerge as a potential new cause of fetal pleural effusions, associated with severe outcomes. Knobloch syndrome 1 can be caused by biallelic variants in COL18A1. It is primarily characterized by its ophthalmic features, including severe vitreoretinal degeneration with retinal detachment and macular abnormalities. Neurological defects such as encephalocele and developmental delay, along with skeletal and renal malformations, are also associated with the syndrome. The Knobloch syndrome 2 is caused by monoallelic variants in the kinase domain of PAK2. It is less described and seems to also be associated with cardiac and respiratory damage in addition to the Knobloch syndrome 1 phenotype. PAK2 is a ubiquitous protein with a major implication in regulation and remodeling of the cytoskeleton and numerous other cellular pathways. Knobloch-associated variants seem to cause a loss of the kinase function of the protein. Even if the ophthalmic defects are almost constant, PAK2-associated Knobloch syndrome has slightly different features from Knobloch syndrome 1 in which pulmonary and lymphatic damages are still unseen. In a prenatal trio exome sequencing, we identified a novel de novo PAK2 missense variant, NM_002577.4:c.836 A > C, p.(Gln279Pro), classified as likely pathogenic in a 24 weeks of gestation fetus whose only sign was severe bilateral pleural effusion. From a literature review of patients, we recognize this sign as an important antenatal indicator of Knobloch syndrome 2, as it was the first sign identifiable in 2 out of 5 patients. This adds new evidence for the implication of this gene in fetal pleural effusions, with potentially severe outcomes.
Collapse
Affiliation(s)
- Louis Domenach
- Service de Génétique Médicale, CHU de Bordeaux, Bordeaux, F-33000, France.
| | - Caroline Rooryck
- Service de Génétique Médicale, CHU de Bordeaux, Bordeaux, F-33000, France
- Univ. Bordeaux, Génétique et Métabolisme (MRGM), INSERM U1211, Bordeaux, F-33000, France
| | - Marine Legendre
- Service de Génétique Médicale, CHU de Bordeaux, Bordeaux, F-33000, France
| | - Hanane Bouchghoul
- Service de Gynécologie Obstétrique, CHU de Bordeaux, Bordeaux, F-33000, France
| | - Claire Beneteau
- Service de Génétique Médicale, CHU de Bordeaux, Bordeaux, F-33000, France
| | - Henri Margot
- Service de Génétique Médicale, CHU de Bordeaux, Bordeaux, F-33000, France.
| |
Collapse
|
5
|
Kim JE, Wang SH, Lee DS, Kim TH, Kang TC. Neuronal PLPP/CIN exaggerates the immune response of hippocampal microglia to LPS challenge dependent on PAK1-NF-κB-COX-2 signaling pathway. Brain Res 2025; 1849:149345. [PMID: 39581524 DOI: 10.1016/j.brainres.2024.149345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/04/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
Recently, we have reported that pyridoxal-5'-phosphate phosphatase/chronophin (PLPP/CIN) selectively dephosphorylates neurofibromin 2 (NF2, also known as merlin) at serine (S) 10 site. Since NF2 inhibits p21-activated kinase 1 (PAK1)-mediated nuclear factor-κB (NF-κB) activation, in the present study, we investigated the role of PLPP/CIN-mediated NF2 S10 dephosphorylation in lipopolysaccharide (LPS)-induced neuroinflammation and explored its related signaling pathways in the mouse hippocampus. PLPP/CIN overexpression increased NF2 S10 dephosphorylation and PAK1 S204 autophosphorylation under physiological condition, which were reversed by PLPP/CIN deletion. Following LPS injection, PLPP/CIN overexpression exacerbated microglial activation, although microglial PLPP/CIN expression was undetectable. In addition, PLPP/CIN overexpression enhanced PAK1 and NF-κB phosphorylations, and upregulated cyclooxygenase-2 (COX-2) and prostaglandin E synthase 2 (PTGES2) expressions in CA1 neurons. PLPP/CIN overexpression also augmented microglial interleukin-1β induction. PLPP/CIN ablation and 1,1'-dithiodi-2-naphthtol (IPA-3, a PAK1 inhibitor) pretreatment ameliorated these LPS-induced neuroinflammatory responses. These findings indicate that PLPP/CIN-mediated NF2 S10 dephosphorylation may facilitate PAK1-NF-κB-COX-2-PTGES2 signaling pathway in CA1 neurons, which would subsequently exaggerate immune response of microglia following LPS treatment. Therefore, our findings suggest that this PLPP/CIN-mediated neuron-microglia interaction may play an important role in the pathogenesis of inflammation-related neurological diseases.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, South Korea
| | - Su Hyeon Wang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, South Korea
| | - Duk-Shin Lee
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, South Korea
| | - Tae-Hyun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, South Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, South Korea.
| |
Collapse
|
6
|
Ahn EH, Park JB. Molecular Mechanisms of Alzheimer's Disease Induced by Amyloid-β and Tau Phosphorylation Along with RhoA Activity: Perspective of RhoA/Rho-Associated Protein Kinase Inhibitors for Neuronal Therapy. Cells 2025; 14:89. [PMID: 39851517 PMCID: PMC11764136 DOI: 10.3390/cells14020089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/30/2024] [Accepted: 01/06/2025] [Indexed: 01/26/2025] Open
Abstract
Amyloid-β peptide (Aβ) is a critical cause of Alzheimer's disease (AD). It is generated from amyloid precursor protein (APP) through cleavages by β-secretase and γ-secretase. γ-Secretase, which includes presenilin, is regulated by several stimuli. Tau protein has also been identified as a significant factor in AD. In particular, Tau phosphorylation is crucial for neuronal impairment, as phosphorylated Tau detaches from microtubules, leading to the formation of neurofibrillary tangles and the destabilization of the microtubule structure. This instability in microtubules damages axons and dendrites, resulting in neuronal impairment. Notably, Aβ is linked to Tau phosphorylation. Another crucial factor in AD is neuroinflammation, primarily occurring in the microglia. Microglia possess several receptors that bind with Aβ, triggering the expression and release of an inflammatory factor, although their main physiological function is to phagocytose debris and pathogens in the brain. NF-κB activation plays a major role in neuroinflammation. Additionally, the production of reactive oxygen species (ROS) in the microglia contributes to this neuroinflammation. In microglia, superoxide is produced through NADPH oxidase, specifically NOX2. Rho GTPases play an essential role in regulating various cellular processes, including cytoskeletal rearrangement, morphology changes, migration, and transcription. The typical function of Rho GTPases involves regulating actin filament formation. Neurons, with their complex processes and synapse connections, rely on cytoskeletal dynamics for structural support. Other brain cells, such as astrocytes, microglia, and oligodendrocytes, also depend on specific cytoskeletal structures to maintain their unique cellular architectures. Thus, the aberrant regulation of Rho GTPases activity can disrupt actin filaments, leading to altered cell morphology, including changes in neuronal processes and synapses, and potentially contributing to brain diseases such as AD.
Collapse
Affiliation(s)
- Eun Hee Ahn
- Department of Physiology, Hallym University College of Medicine, Chuncheon 24252, Kangwon-do, Republic of Korea;
- Department of Neurology, Hallym University College of Medicine, Chuncheon 24252, Kangwon-do, Republic of Korea
| | - Jae-Bong Park
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon 24252, Kangwon-do, Republic of Korea
- Institute of Cell Differentiation and Aging, Hallym University College of Medicine, Chuncheon 24252, Kangwon-do, Republic of Korea
- ELMED Co., Hallym University College of Medicine, Chuncheon 24252, Kangwon-do, Republic of Korea
| |
Collapse
|
7
|
Baldwin AG, Foley DW, Collins R, Lee H, Jones DH, Wahab B, Waters L, Pedder J, Paine M, Feng GJ, Privitera L, Ashall-Kelly A, Thomas C, Gillespie JA, Schino L, Belelli D, Rocha C, Maussion G, Krahn AI, Durcan TM, Elkins JM, Lambert JJ, Atack JR, Ward SE. Discovery of MDI-114215: A Potent and Selective LIMK Inhibitor To Treat Fragile X Syndrome. J Med Chem 2025; 68:719-752. [PMID: 39711116 PMCID: PMC11726654 DOI: 10.1021/acs.jmedchem.4c02694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 12/24/2024]
Abstract
LIMKs are serine/threonine and tyrosine kinases responsible for controlling cytoskeletal dynamics as key regulators of actin stability, ensuring synaptic health through normal synaptic bouton structure and function. However, LIMK1 overactivation results in abnormal dendritic synaptic development that characterizes the pathogenesis of Fragile X Syndrome (FXS). As a result, the development of LIMK inhibitors represents an emerging disease-modifying therapeutic approach for FXS. We report the discovery of MDI-114215 (85), a novel, potent allosteric dual-LIMK1/2 inhibitor that demonstrates exquisite kinome selectivity. 85 reduces phospho-cofilin in mouse brain slices and rescues impaired hippocampal long-term potentiation in brain slices from FXS mice. We also show that LIMK inhibitors are effective in reducing phospho-cofilin levels in iPSC neurons derived from FXS patients, demonstrating 85 to be a potential therapeutic candidate for FXS that could have broad application to neurological disorders or cancers caused by LIMK1/2 overactivation and actin instability.
Collapse
Affiliation(s)
- Alex G. Baldwin
- Medicines
Discovery Institute, School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - David W. Foley
- Medicines
Discovery Institute, School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Ross Collins
- Medicines
Discovery Institute, School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Hyunah Lee
- Centre
for Medicines Discovery, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, U.K.
| | - D. Heulyn Jones
- Medicines
Discovery Institute, School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Ben Wahab
- Medicines
Discovery Institute, School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Loren Waters
- Medicines
Discovery Institute, School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Josephine Pedder
- Medicines
Discovery Institute, School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Marie Paine
- Medicines
Discovery Institute, School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Gui Jie Feng
- Medicines
Discovery Institute, School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Lucia Privitera
- Division
of Neuroscience, School of Medicine, Medical Sciences Institute, Dundee University, Dow Street, Dundee DD1
5HL, U.K.
| | - Alexander Ashall-Kelly
- Medicines
Discovery Institute, School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Carys Thomas
- Medicines
Discovery Institute, School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Jason A. Gillespie
- Medicines
Discovery Institute, School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Lauramariú Schino
- Medicines
Discovery Institute, School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Delia Belelli
- Division
of Neuroscience, School of Medicine, Medical Sciences Institute, Dundee University, Dow Street, Dundee DD1
5HL, U.K.
| | - Cecilia Rocha
- The
Neuro’s Early Drug Discovery Unit (EDDU), Department of Neurology
and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
| | - Gilles Maussion
- The
Neuro’s Early Drug Discovery Unit (EDDU), Department of Neurology
and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
| | - Andrea I. Krahn
- The
Neuro’s Early Drug Discovery Unit (EDDU), Department of Neurology
and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
| | - Thomas M. Durcan
- The
Neuro’s Early Drug Discovery Unit (EDDU), Department of Neurology
and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
| | - Jonathan M. Elkins
- Centre
for Medicines Discovery, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, U.K.
| | - Jeremy J. Lambert
- Division
of Neuroscience, School of Medicine, Medical Sciences Institute, Dundee University, Dow Street, Dundee DD1
5HL, U.K.
| | - John R. Atack
- Medicines
Discovery Institute, School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Simon E. Ward
- Medicines
Discovery Institute, School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| |
Collapse
|
8
|
Casanova-Sepúlveda G, Boggon TJ. Regulation and signaling of the LIM domain kinases. Bioessays 2025; 47:e2400184. [PMID: 39361252 DOI: 10.1002/bies.202400184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 11/17/2024]
Abstract
The LIM domain kinases (LIMKs) are important actin cytoskeleton regulators. These proteins, LIMK1 and LIMK2, are nodes downstream of Rho GTPases and are the key enzymes that phosphorylate cofilin/actin depolymerization factors to regulate filament severing. They therefore perform an essential role in cascades that control actin depolymerization. Signaling of the LIMKs is carefully regulated by numerous inter- and intra-molecular mechanisms. In this review, we discuss recent findings that improve the understanding of LIM domain kinase regulation mechanisms. We also provide an up-to-date review of the role of the LIM domain kinases, their architectural features, how activity is impacted by other proteins, and the implications of these findings for human health and disease.
Collapse
Affiliation(s)
| | - Titus J Boggon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA
- Yale Cancer Center, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
9
|
Nishikawa M, Hayashi S, Nakayama A, Nishio Y, Shiraki A, Ito H, Maruyama K, Muramatsu Y, Ogi T, Mizuno S, Nagata KI. Pathophysiological significance of the p.E31G variant in RAC1 responsible for a neurodevelopmental disorder with microcephaly. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167520. [PMID: 39307291 DOI: 10.1016/j.bbadis.2024.167520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/04/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024]
Abstract
RAC1 encodes a Rho family small GTPase that regulates actin cytoskeletal reorganization and intracellular signaling pathways. Pathogenic RAC1 variants lead to a neurodevelopmental disorder with diverse phenotypic manifestations, including abnormalities in brain size and facial dysmorphism. However, the underlying pathophysiological mechanisms have yet to be elucidated. Here, we present the case of a school-aged male who exhibited global developmental delay, intellectual disability, and acquired microcephaly. Through whole exome sequencing, we identified a novel de novo variant in RAC1, (NM_006908.5): c.92 A > G,p.(E31G). We then examined the pathophysiological significance of the p.E31G variant by focusing on brain development. Biochemical analyses revealed that the recombinant RAC1-E31G had no discernible impact on the intrinsic GDP/GTP exchange activity. However, it exhibited a slight inhibitory effect on GTP hydrolysis. Conversely, it demonstrated a typical response to both a guanine-nucleotide exchange factor and a GTPase-activating protein. In transient expression analyses using COS7 cells, RAC1-E31G exhibited minimal interaction with the downstream effector PAK1, even in its GTP-bound state. Additionally, overexpression of RAC1-E31G was observed to exert a weak inhibitory effect on the differentiation of primary cultured hippocampal neurons. Moreover, in vivo studies employing in utero electroporation revealed that acute expression of RAC1-E31G resulted in impairments in axonal elongation and dendritic arborization in the young adult stage. These findings suggest that the p.E31G variant functions as a dominant-negative version in the PAK1-mediated signaling pathway and is responsible for the clinical features observed in the patient under investigation, namely microcephaly and intellectual disability.
Collapse
Affiliation(s)
- Masashi Nishikawa
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Shin Hayashi
- Department of Genetics, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Atsushi Nakayama
- Department of Pediatrics, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, 3-35 Michishita-cho, Nagoya 453-8511, Japan
| | - Yosuke Nishio
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Furo-Cho, Nagoya 464-8602, Japan
| | - Anna Shiraki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Nagoya 466-8550, Japan
| | - Hidenori Ito
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Kouichi Maruyama
- Central Hospital, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Yukako Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Nagoya 466-8550, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Furo-Cho, Nagoya 464-8602, Japan
| | - Seiji Mizuno
- Central Hospital, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan; Department of Neurochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Nagoya 466-8550, Japan.
| |
Collapse
|
10
|
Lateef OM, Foote C, Power G, Manrique-Acevedo C, Padilla J, Martinez-Lemus LA. LIM kinases in cardiovascular health and disease. Front Physiol 2024; 15:1506356. [PMID: 39744707 PMCID: PMC11688343 DOI: 10.3389/fphys.2024.1506356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/28/2024] [Indexed: 01/14/2025] Open
Abstract
The Lim Kinase (LIMK) family of serine/threonine kinases is comprised of LIMK1 and LIMK2, which are central regulators of cytoskeletal dynamics via their well-characterized roles in promoting actin polymerization and destabilizing the cellular microtubular network. The LIMKs have been demonstrated to modulate several fundamental physiological processes, including cell cycle progression, cell motility and migration, and cell differentiation. These processes play important roles in maintaining cardiovascular health. However, LIMK activity in healthy and pathological states of the cardiovascular system is poorly characterized. This review highlights the cellular and molecular mechanisms involved in LIMK activation and inactivation, examining its roles in the pathophysiology of vascular and cardiac diseases such as hypertension, aneurysm, atrial fibrillation, and valvular heart disease. It addresses the LIMKs' involvement in processes that support cardiovascular health, including vasculogenesis, angiogenesis, and endothelial mechanotransduction. The review also features how LIMK activity participates in endothelial cell, vascular smooth muscle cell, and cardiomyocyte physiology and its implications in pathological states. A few recent preclinical studies demonstrate the therapeutic potential of LIMK inhibition. We conclude by proposing that future research should focus on the potential clinical relevance of LIMK inhibitors as therapeutic agents to reduce the burden of cardiovascular disease and improve patient outcomes.
Collapse
Affiliation(s)
- Olubodun M. Lateef
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, University of Missouri Columbia, Columbia, MO, United States
| | - Christopher Foote
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| | - Gavin Power
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Camila Manrique-Acevedo
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, United States
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Columbia, MO, United States
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, MO, United States
| | - Jaume Padilla
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, United States
| | - Luis A. Martinez-Lemus
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, University of Missouri Columbia, Columbia, MO, United States
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
11
|
Lai J, Zhang X, Liang K. In Vitro Experiment Present ROCK2 Inhibition Promotes the Therapeutic Effect of Bevacizumab in the Treatment of Glioblastoma Multiforme. Clin Neuropharmacol 2024; 47:193-200. [PMID: 39792535 DOI: 10.1097/wnf.0000000000000613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
OBJECTIVE Gliomas are a general designation for neuroepithelial tumors derived from the glial cells of the central nervous system. According to the histopathological and immunohistochemical features, the World Health Organization classifies gliomas into four grades. Bevacizumab is a monoclonal antibody targeting vascular endothelial growth factor that has been approved for the treatment of glioblastoma multiforme (GBM) as a second-line therapy. However, its efficacy remains limited. Rho/Rho-associated kinase (ROCK) is a downstream molecule of small guanosine triphosphatases (GTPases) that regulates multiple cellular processes, including motility, migration, and proliferation. Thus, ROCK has been regarded as a therapeutic target for cardiovascular diseases, neurological diseases, immune diseases, and cancer, and ROCK inhibitors have high potential clinical value. METHODS Viability rate of cells was detected using MTT assay, and apoptosis of cells was detected using FACS. Expression of target genes and proteins was detected using qPCR and western blotting analysis. Concentration of cytokines was detected using ELISA methods. RESULTS Viability and migration of GBM cells were reduced after bevacizumab treatment and that these effects were enhanced by ROCK2 inhibition. We further found that ROCK2 inhibition promoting the effect of bevacizumab was mainly mediated by the RhoA/ROCK2 pathway, further inducing apoptosis in GBM cells. In addition, we found that angiogenesis and degradation of cellular matrix-related cytokines were reduced by ROCK2 inhibition. CONCLUSIONS ROCK2 inhibition contributes to the therapeutic effects of bevacizumab.
Collapse
Affiliation(s)
- Jun Lai
- Department of Neurosurgery, Chongqing General Hospital, Chongqing, China
| | - Xiaojing Zhang
- Department of Neurosurgery, Linfen Central Hospital of Shanxi Province, Shanxi, China
| | - Kaixin Liang
- Department of Neurosurgery, Yubei District Hospital of TCM, Chongqing, China
| |
Collapse
|
12
|
Wang H, Jia Z, Fang Y. Chemo-mechanical model of cell polarization initiated by structural polarity. SOFT MATTER 2024; 20:8407-8419. [PMID: 39392308 DOI: 10.1039/d4sm00800f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Cell polarization is crucial in most physiological functions. Living cells at the extracellular matrix (ECM) actively coordinate a polarized morphology to target the preferred signals. In particular, the initial heterogeneity of subcellular components, termed as structural polarity, has been discovered to mediate the early attachment and transmigration of cells in tumour metastasis. However, how heterogeneous cells initiate the early polarization remains incompletely discovered. Here, we establish a multiscale model of a cell to explore the chemo-mechanical mechanisms of cell polarization initiated by structural polarity. The two-dimensional vertex model of the cell is built with the main mechanical components of eukaryotic cells. The initial structural polarity of the modeled cell is introduced by seeding heterogeneous actin filaments at the cell cortex and quantified by the ratio of the filamentous forces at the vertices. Then, the structural polarity is integrated in the reaction-diffusion system of Rho GTPase (Cdc42) at the cell cortex to obtain the traction forces at the leading vertices. Finally, the modeled cell is actuated to spread under the traction forces and discovered to develop into a characteristic polarized morphology. The results indicate that the cell polarization is initiated and dynamically developed by structural polarity through the reaction-diffusion system of Cdc42. In addition, the bistability of Cdc42 activation at the cell cortex is defined and discovered to dominate the polarization status of the cell. Furthermore, biphasic (i.e., positive and negative) durotaxis of the cell is successfully modeled at an ECM with a stiffness gradient, and concluded to be codetermined by the chemo-mechanical coupling of the initial structural polarity and ECM stiffness gradient. The proposed multiscale model provides a quantitative way to probe cell polarization coupled with mechanical stimuli, biochemical reaction and cytoskeletal reorganization, and holds the potential to guide studies of cell polarization under multiple stimuli.
Collapse
Affiliation(s)
- Hexiang Wang
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, China.
| | - Zhimeng Jia
- College of Automotive Engineering, Jilin University, Changchun, China
| | - Yuqiang Fang
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, China.
| |
Collapse
|
13
|
Abé T, Yamazaki M, Nozumi M, Maruyama S, Takamura K, Ohashi R, Ajioka Y, Tanuma JI. Ladinin-1 in actin arcs of oral squamous cell carcinoma is involved in cell migration and epithelial phenotype. Sci Rep 2024; 14:22778. [PMID: 39354061 PMCID: PMC11445451 DOI: 10.1038/s41598-024-74041-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
Histopathologically, oral squamous cell carcinoma (OSCC) consists of well-defined interfaces with adjacent non-cancerous epithelium. Previously, we found that SCC tissues expressed higher levels of specific proteins at this interface. Ladinin-1 (LAD1) is one of the specific molecules that has increased expressions in cancer fronts; however, its function in OSCC is unknown. Therefore, this study aimed to elucidate the function of LAD1 in human OSCC cells. LAD1 was localized on the actin arc at the distal periphery of cell clusters in the OSCC cell lines HSC-2, HSC-3, and HSC-4. When LAD1 was knocked down, cellular migration was repressed in wound scratch assays but was reversed in three-dimensional collagen gel invasion assays. Characteristic LAD1 localization along actin arcs forming the leading edge of migrating cells was diminished with loss of filopodia formation and ruffling in knockdown cells, in which the expression levels of cell motility-related genes-p21-activated kinase 1 (PAK1) and caveolin-1 (CAV1)-were upregulated and downregulated, respectively. LAD1 expression was also associated with the downregulation of vimentin and increased histological differentiation of OSCC. These results suggest that LAD1 is involved in actin dynamics during filopodia and lamellipodia formation, and in maintaining the epithelial phenotype of OSCC cells.
Collapse
Affiliation(s)
- Tatsuya Abé
- Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan.
| | - Manabu Yamazaki
- Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Motohiro Nozumi
- Department of Neurochemistry and Molecular Cell Biology, Graduate School of Medicine, Niigata University, Niigata, Japan
| | - Satoshi Maruyama
- Oral Pathology Section, Department of Surgical Pathology, Niigata University Hospital, Niigata, Japan
| | - Kaori Takamura
- Division of Molecular and Diagnostic Pathology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Riuko Ohashi
- Division of Molecular and Diagnostic Pathology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yoichi Ajioka
- Division of Molecular and Diagnostic Pathology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Jun-Ichi Tanuma
- Division of Oral Pathology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| |
Collapse
|
14
|
Li WJ, Li RY, Wang DY, Shen M, Liu HL. CXCR3 participates in asymmetric division of mouse oocytes by modulating actin dynamics. Theriogenology 2024; 225:43-54. [PMID: 38788628 DOI: 10.1016/j.theriogenology.2024.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/24/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
Extensive research has been conducted on the role of CXCR3 in immune responses and inflammation. However, the role of CXCR3 in the reproductive system, particularly in oocyte development, remains unknown. In this study, we present findings on the involvement of CXCR3 in the meiotic division process of mouse oocytes. We found CXCR3 was expressed consistently throughout the entire maturation process of mouse oocyte. Inhibition of CXCR3 impaired the asymmetric division of oocyte, while the injection of Cxcr3 mRNA was capable of restoring these defects. Further study showed that inhibition of CXCR3 perturbed spindle migration by affecting LIMK/cofilin pathway-mediated actin remodeling. Knockout of CXCR3 led to an upregulation of actin-binding protein and an increased ATP level in GV-stage oocytes, while maintaining normal actin dynamics during the process of meiosis. Additionally, we noticed the expression level of DYNLT1 is markedly elevated in CXCR3-null oocytes. DYNLT1 bound with the Arp2/3 complex, and knockdown of DYNLT1 in CXCR3-null oocytes impaired the organization of cytoplasmic actin, suggesting the regulatory role of DYNLT1 in actin organization, and the compensatory expression of DYNLT1 may contribute to maintain normal actin dynamics in CXCR3-knockout oocytes. In summary, our findings provide insights into the intricate network of actin dynamics associated with CXCR3 during oocyte meiosis.
Collapse
Affiliation(s)
- Wei-Jian Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| | - Rong-Yang Li
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
| | - Da-Yu Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| | - Ming Shen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| | - Hong-Lin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
15
|
Berry JA, Guhle DC, Davis RL. Active forgetting and neuropsychiatric diseases. Mol Psychiatry 2024; 29:2810-2820. [PMID: 38532011 PMCID: PMC11420092 DOI: 10.1038/s41380-024-02521-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024]
Abstract
Recent and pioneering animal research has revealed the brain utilizes a variety of molecular, cellular, and network-level mechanisms used to forget memories in a process referred to as "active forgetting". Active forgetting increases behavioral flexibility and removes irrelevant information. Individuals with impaired active forgetting mechanisms can experience intrusive memories, distressing thoughts, and unwanted impulses that occur in neuropsychiatric diseases. The current evidence indicates that active forgetting mechanisms degrade, or mask, molecular and cellular memory traces created in synaptic connections of "engram cells" that are specific for a given memory. Combined molecular genetic/behavioral studies using Drosophila have uncovered a complex system of cellular active-forgetting pathways within engram cells that is regulated by dopamine neurons and involves dopamine-nitric oxide co-transmission and reception, endoplasmic reticulum Ca2+ signaling, and cytoskeletal remodeling machinery regulated by small GTPases. Some of these molecular cellular mechanisms have already been found to be conserved in mammals. Interestingly, some pathways independently regulate forgetting of distinct memory types and temporal phases, suggesting a multi-layering organization of forgetting systems. In mammals, active forgetting also involves modulation of memory trace synaptic strength by altering AMPA receptor trafficking. Furthermore, active-forgetting employs network level mechanisms wherein non-engram neurons, newly born-engram neurons, and glial cells regulate engram synapses in a state and experience dependent manner. Remarkably, there is evidence for potential coordination between the network and cellular level forgetting mechanisms. Finally, subjects with several neuropsychiatric diseases have been tested and shown to be impaired in active forgetting. Insights obtained from research on active forgetting in animal models will continue to enrich our understanding of the brain dysfunctions that occur in neuropsychiatric diseases.
Collapse
Affiliation(s)
- Jacob A Berry
- Department of Biological Sciences, University of Alberta, Edmonton, AL, T6G 2E9, Canada.
| | - Dana C Guhle
- Department of Biological Sciences, University of Alberta, Edmonton, AL, T6G 2E9, Canada
| | - Ronald L Davis
- Department of Neuroscience, UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL, 33458, USA.
| |
Collapse
|
16
|
Falace A, Corbieres L, Palminha C, Guarnieri FC, Schaller F, Buhler E, Tuccari di San Carlo C, Montheil A, Watrin F, Manent JB, Represa A, de Chevigny A, Pallesi-Pocachard E, Cardoso C. FLNA regulates neuronal maturation by modulating RAC1-Cofilin activity in the developing cortex. Neurobiol Dis 2024; 198:106558. [PMID: 38852754 DOI: 10.1016/j.nbd.2024.106558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024] Open
Abstract
Periventricular nodular heterotopia (PNH), the most common brain malformation diagnosed in adulthood, is characterized by the presence of neuronal nodules along the ventricular walls. PNH is mainly associated with mutations in the FLNA gene - encoding an actin-binding protein - and patients often develop epilepsy. However, the molecular mechanisms underlying the neuronal failure still remain elusive. It has been hypothesized that dysfunctional cortical circuitry, rather than ectopic neurons, may explain the clinical manifestations. To address this issue, we depleted FLNA from cortical pyramidal neurons of a conditional Flnaflox/flox mice by timed in utero electroporation of Cre recombinase. We found that FLNA regulates dendritogenesis and spinogenesis thus promoting an appropriate excitatory/inhibitory inputs balance. We demonstrated that FLNA modulates RAC1 and cofilin activity through its interaction with the Rho-GTPase Activating Protein 24 (ARHGAP24). Collectively, we disclose an uncharacterized role of FLNA and provide strong support for neural circuit dysfunction being a consequence of FLNA mutations.
Collapse
Affiliation(s)
- Antonio Falace
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto "Giannina Gaslini", Genova, Italy.
| | - Lea Corbieres
- INMED, INSERM UMR1249, Aix Marseille University, Parc Scientifique de Luminy, Marseille, France
| | - Catia Palminha
- INMED, INSERM UMR1249, Aix Marseille University, Parc Scientifique de Luminy, Marseille, France
| | - Fabrizia Claudia Guarnieri
- Institute of Neuroscience, National Research Council (CNR), Vedano al Lambro (MB), Italy; IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - Fabienne Schaller
- INMED, INSERM UMR1249, Aix Marseille University, Parc Scientifique de Luminy, Marseille, France
| | - Emmanuelle Buhler
- INMED, INSERM UMR1249, Aix Marseille University, Parc Scientifique de Luminy, Marseille, France
| | - Clara Tuccari di San Carlo
- Pediatric Neurology Unit and Laboratories, IRCCS Meyer Children's Hospital University of Florence, Firenze, Italy
| | - Aurelie Montheil
- INMED, INSERM UMR1249, Aix Marseille University, Parc Scientifique de Luminy, Marseille, France; INMED, INSERM UMR1249, Aix Marseille University, Molecular and Cellular Biology Platform, Parc Scientifique de Luminy, Marseille, France
| | - Françoise Watrin
- INMED, INSERM UMR1249, Aix Marseille University, Parc Scientifique de Luminy, Marseille, France
| | - Jean Bernard Manent
- INMED, INSERM UMR1249, Aix Marseille University, Parc Scientifique de Luminy, Marseille, France
| | - Alfonso Represa
- INMED, INSERM UMR1249, Aix Marseille University, Parc Scientifique de Luminy, Marseille, France
| | - Antoine de Chevigny
- INMED, INSERM UMR1249, Aix Marseille University, Parc Scientifique de Luminy, Marseille, France
| | - Emilie Pallesi-Pocachard
- INMED, INSERM UMR1249, Aix Marseille University, Parc Scientifique de Luminy, Marseille, France; INMED, INSERM UMR1249, Aix Marseille University, Molecular and Cellular Biology Platform, Parc Scientifique de Luminy, Marseille, France
| | - Carlos Cardoso
- INMED, INSERM UMR1249, Aix Marseille University, Parc Scientifique de Luminy, Marseille, France.
| |
Collapse
|
17
|
Baudouin L, Adès N, Kanté K, Bachelin C, Hmidan H, Deboux C, Panic R, Ben Messaoud R, Velut Y, Hamada S, Pionneau C, Duarte K, Poëa-Guyon S, Barnier JV, Nait Oumesmar B, Bouslama-Oueghlani L. Antagonistic actions of PAK1 and NF2/Merlin drive myelin membrane expansion in oligodendrocytes. Glia 2024; 72:1518-1540. [PMID: 38794866 DOI: 10.1002/glia.24570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
In the central nervous system, the formation of myelin by oligodendrocytes (OLs) relies on the switch from the polymerization of the actin cytoskeleton to its depolymerization. The molecular mechanisms that trigger this switch have yet to be elucidated. Here, we identified P21-activated kinase 1 (PAK1) as a major regulator of actin depolymerization in OLs. Our results demonstrate that PAK1 accumulates in OLs in a kinase-inhibited form, triggering actin disassembly and, consequently, myelin membrane expansion. Remarkably, proteomic analysis of PAK1 binding partners enabled the identification of NF2/Merlin as its endogenous inhibitor. Our findings indicate that Nf2 knockdown in OLs results in PAK1 activation, actin polymerization, and a reduction in OL myelin membrane expansion. This effect is rescued by treatment with a PAK1 inhibitor. We also provide evidence that the specific Pak1 loss-of-function in oligodendroglia stimulates the thickening of myelin sheaths in vivo. Overall, our data indicate that the antagonistic actions of PAK1 and NF2/Merlin on the actin cytoskeleton of the OLs are critical for proper myelin formation. These findings have broad mechanistic and therapeutic implications in demyelinating diseases and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Lucas Baudouin
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Noémie Adès
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Kadia Kanté
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Corinne Bachelin
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Hatem Hmidan
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
- Al-Quds University, Faculty of Medicine, Jerusalem, Palestine
| | - Cyrille Deboux
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Radmila Panic
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Rémy Ben Messaoud
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Yoan Velut
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Soumia Hamada
- Sorbonne Université, Inserm, UMS Production et Analyse des Données en Sciences de la vie et en Santé, PASS, Plateforme Post-génomique de la Pitié-Salpêtrière, Paris, France
| | - Cédric Pionneau
- Sorbonne Université, Inserm, UMS Production et Analyse des Données en Sciences de la vie et en Santé, PASS, Plateforme Post-génomique de la Pitié-Salpêtrière, Paris, France
| | - Kévin Duarte
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Sandrine Poëa-Guyon
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Jean-Vianney Barnier
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Brahim Nait Oumesmar
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Lamia Bouslama-Oueghlani
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
18
|
Gómez-Morón Á, Alegre-Gómez S, Ramirez-Muñoz R, Hernaiz-Esteban A, Carrasco-Padilla C, Scagnetti C, Aguilar-Sopeña Ó, García-Gil M, Borroto A, Torres-Ruiz R, Rodriguez-Perales S, Sánchez-Madrid F, Martín-Cófreces NB, Roda-Navarro P. Human T-cell receptor triggering requires inactivation of Lim kinase-1 by Slingshot-1 phosphatase. Commun Biol 2024; 7:918. [PMID: 39080357 PMCID: PMC11289303 DOI: 10.1038/s42003-024-06605-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
Actin dynamics control early T-cell receptor (TCR) signalling during T-cell activation. However, the precise regulation of initial actin rearrangements is not completely understood. Here, we have investigated the regulatory role of the phosphatase Slingshot-1 (SSH1) in this process. Our data show that SSH1 rapidly polarises to nascent cognate synaptic contacts and later relocalises to peripheral F-actin networks organised at the mature immunological synapse. Knockdown of SSH1 expression by CRISPR/Cas9-mediated genome editing or small interfering RNA reveal a regulatory role for SSH1 in CD3ε conformational change, allowing Nck binding and proper downstream signalling and immunological synapse organisation. TCR triggering induces SSH1-mediated activation of actin dynamics through a mechanism mediated by Limk-1 inactivation. These data suggest that during early TCR activation, SSH1 is required for rapid F-actin rearrangements that mediate initial conformational changes of the TCR, integrin organisation and proximal signalling events for proper synapse organisation. Therefore, the SSH1 and Limk-1 axis is a key regulatory element for full T cell activation.
Collapse
Affiliation(s)
- Álvaro Gómez-Morón
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28040, Madrid, Spain
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, UAM, 28006, Madrid, Spain
| | - Sergio Alegre-Gómez
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28040, Madrid, Spain
| | - Rocio Ramirez-Muñoz
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28040, Madrid, Spain
| | - Alicia Hernaiz-Esteban
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28040, Madrid, Spain
| | - Carlos Carrasco-Padilla
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28040, Madrid, Spain
| | - Camila Scagnetti
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, UAM, 28006, Madrid, Spain
- Videomicroscopy Unit, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, UAM, 28006, Madrid, Spain
| | - Óscar Aguilar-Sopeña
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28040, Madrid, Spain
| | - Marta García-Gil
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28040, Madrid, Spain
| | - Aldo Borroto
- Centro de Biología Molecular Severo Ochoa, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Raul Torres-Ruiz
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
- Division of Hematopoietic Innovative Therapies, Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnologicas (CIEMAT); Advanced Therapies Unit, Instituto de Investigacion Sanitaria Fundacion Jiménez Díaz; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040, Madrid, Spain
| | - Sandra Rodriguez-Perales
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, UAM, 28006, Madrid, Spain
- Area of Vascular Pathophysiology, Laboratory of Intercellular Communication, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, 28029, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Noa Beatriz Martín-Cófreces
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, UAM, 28006, Madrid, Spain.
- Videomicroscopy Unit, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, UAM, 28006, Madrid, Spain.
- Area of Vascular Pathophysiology, Laboratory of Intercellular Communication, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, 28029, Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| | - Pedro Roda-Navarro
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.
- 12 de Octubre Health Research Institute (imas12), 28040, Madrid, Spain.
| |
Collapse
|
19
|
Hoisington ZW, Salvi A, Laguesse S, Ehinger Y, Shukla C, Phamluong K, Ron D. The Small G-Protein Rac1 in the Dorsomedial Striatum Promotes Alcohol-Dependent Structural Plasticity and Goal-Directed Learning in Mice. J Neurosci 2024; 44:e1644232024. [PMID: 38886056 PMCID: PMC11255432 DOI: 10.1523/jneurosci.1644-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 06/20/2024] Open
Abstract
The small G-protein Ras-related C3 botulinum toxin substrate 1 (Rac1) promotes the formation of filamentous actin (F-actin). Actin is a major component of dendritic spines, and we previously found that alcohol alters actin composition and dendritic spine structure in the nucleus accumbens (NAc) and the dorsomedial striatum (DMS). To examine if Rac1 contributes to these alcohol-mediated adaptations, we measured the level of GTP-bound active Rac1 in the striatum of mice following 7 weeks of intermittent access to 20% alcohol. We found that chronic alcohol intake activates Rac1 in the DMS of male mice. In contrast, Rac1 is not activated by alcohol in the NAc and DLS of male mice or in the DMS of female mice. Similarly, closely related small G-proteins are not activated by alcohol in the DMS, and Rac1 activity is not increased in the DMS by moderate alcohol or natural reward. To determine the consequences of alcohol-dependent Rac1 activation in the DMS of male mice, we inhibited endogenous Rac1 by infecting the DMS of mice with an adeno-associated virus (AAV) expressing a dominant negative form of the small G-protein (Rac1-DN). We found that overexpression of AAV-Rac1-DN in the DMS inhibits alcohol-mediated Rac1 signaling and attenuates alcohol-mediated F-actin polymerization, which corresponded with a decrease in dendritic arborization and spine maturation. Finally, we provide evidence to suggest that Rac1 in the DMS plays a role in alcohol-associated goal-directed learning. Together, our data suggest that Rac1 in the DMS plays an important role in alcohol-dependent structural plasticity and aberrant learning.
Collapse
Affiliation(s)
- Zachary W Hoisington
- Alcohol and Addiction Research Group, Department of Neurology, University of California San Francisco, San Francisco, California 94107
| | - Alexandra Salvi
- Alcohol and Addiction Research Group, Department of Neurology, University of California San Francisco, San Francisco, California 94107
| | - Sophie Laguesse
- GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, Liège 4000, Belgium
| | - Yann Ehinger
- Alcohol and Addiction Research Group, Department of Neurology, University of California San Francisco, San Francisco, California 94107
| | - Chhavi Shukla
- Alcohol and Addiction Research Group, Department of Neurology, University of California San Francisco, San Francisco, California 94107
| | - Khanhky Phamluong
- Alcohol and Addiction Research Group, Department of Neurology, University of California San Francisco, San Francisco, California 94107
| | - Dorit Ron
- Alcohol and Addiction Research Group, Department of Neurology, University of California San Francisco, San Francisco, California 94107
| |
Collapse
|
20
|
Hoisington ZW, Salvi A, Laguesse S, Ehinger Y, Shukla C, Phamluong K, Ron D. The small G-protein Rac1 in the dorsomedial striatum promotes alcohol-dependent structural plasticity and goal-directed learning in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.30.555562. [PMID: 37693512 PMCID: PMC10491244 DOI: 10.1101/2023.08.30.555562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The small G-protein Rac1 promotes the formation of filamentous actin (F-Actin). Actin is a major component of dendritic spines, and we previously found that alcohol alters actin composition and dendritic spine structure in the nucleus accumbens (NAc) and the dorsomedial striatum (DMS). To examine if Rac1 contributes to these alcohol-mediated adaptations, we measured the level of GTP-bound active Rac1 in the striatum of mice following 7 weeks of intermittent access to 20% alcohol. We found that chronic alcohol intake activates Rac1 in the DMS of male mice. In contrast, Rac1 is not activated by alcohol in the NAc and DLS of male mice, or in the DMS of female mice. Similarly, closely related small G-proteins are not activated by alcohol in the DMS, and Rac1 activity is not increased in the DMS by moderate alcohol or natural reward. To determine the consequences of alcohol-dependent Rac1 activation in the DMS of male mice, we inhibited endogenous Rac1 by infecting the DMS of mice with an AAV expressing a dominant negative form of the small G-protein (Rac1-DN). We found that overexpression of AAV-Rac1-DN in the DMS inhibits alcohol-mediated Rac1 signaling and attenuates alcohol-mediated F-actin polymerization, which corresponded with a decrease in dendritic arborization and spine maturation. Finally, we provide evidence to suggest that Rac1 in the DMS plays a role in alcohol-associated goal-directed learning. Together, our data suggest that Rac1 in the DMS plays an important role in alcohol-dependent structural plasticity and aberrant learning. Significance Statement Addiction, including alcohol use disorder, is characterized by molecular and cellular adaptations that promote maladaptive behaviors. We found that Rac1 was activated by alcohol in the dorsomedial striatum (DMS) of male mice. We show that alcohol-mediated Rac1 signaling is responsible for alterations in actin dynamics and neuronal morphology. We also present data to suggest that Rac1 is important for alcohol-associated learning processes. These results suggest that Rac1 in the DMS is an important contributor to adaptations that promote alcohol use disorder.
Collapse
|
21
|
Donkó Á, Sharapova SO, Kabat J, Ganesan S, Hauck FH, Bergerson JRE, Marois L, Abbott J, Moshous D, Williams KW, Campbell N, Martin PL, Lagresle-Peyrou C, Trojan T, Kuzmenko NB, Deordieva EA, Raykina EV, Abers MS, Abolhassani H, Barlogis V, Milla C, Hall G, Mousallem T, Church J, Kapoor N, Cros G, Chapdelaine H, Franco-Jarava C, Lopez-Lerma I, Miano M, Leiding JW, Klein C, Stasia MJ, Fischer A, Hsiao KC, Martelius T, Sepännen MRJ, Barmettler S, Walter J, Masmas TN, Mukhina AA, Falcone EL, Kracker S, Shcherbina A, Holland SM, Leto TL, Hsu AP. Clinical and functional spectrum of RAC2-related immunodeficiency. Blood 2024; 143:1476-1487. [PMID: 38194689 PMCID: PMC11033590 DOI: 10.1182/blood.2023022098] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024] Open
Abstract
ABSTRACT Mutations in the small Rho-family guanosine triphosphate hydrolase RAC2, critical for actin cytoskeleton remodeling and intracellular signal transduction, are associated with neonatal severe combined immunodeficiency (SCID), infantile neutrophilic disorder resembling leukocyte adhesion deficiency (LAD), and later-onset combined immune deficiency (CID). We investigated 54 patients (23 previously reported) from 37 families yielding 15 novel RAC2 missense mutations, including one present only in homozygosity. Data were collected from referring physicians and literature reports with updated clinical information. Patients were grouped by presentation: neonatal SCID (n = 5), infantile LAD-like disease (n = 5), or CID (n = 44). Disease correlated to RAC2 activity: constitutively active RAS-like mutations caused neonatal SCID, dominant-negative mutations caused LAD-like disease, whereas dominant-activating mutations caused CID. Significant T- and B-lymphopenia with low immunoglobulins were seen in most patients; myeloid abnormalities included neutropenia, altered oxidative burst, impaired neutrophil migration, and visible neutrophil macropinosomes. Among 42 patients with CID with clinical data, upper and lower respiratory infections and viral infections were common. Twenty-three distinct RAC2 mutations, including 15 novel variants, were identified. Using heterologous expression systems, we assessed downstream effector functions including superoxide production, p21-activated kinase 1 binding, AKT activation, and protein stability. Confocal microscopy showed altered actin assembly evidenced by membrane ruffling and macropinosomes. Altered protein localization and aggregation were observed. All tested RAC2 mutant proteins exhibited aberrant function; no single assay was sufficient to determine functional consequence. Most mutants produced elevated superoxide; mutations unable to support superoxide formation were associated with bacterial infections. RAC2 mutations cause a spectrum of immune dysfunction, ranging from early onset SCID to later-onset combined immunodeficiencies depending on RAC2 activity. This trial was registered at www.clinicaltrials.gov as #NCT00001355 and #NCT00001467.
Collapse
Affiliation(s)
- Ágnes Donkó
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Svetlana O. Sharapova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Juraj Kabat
- Research Technologies Branch, Biological Imaging Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Sundar Ganesan
- Research Technologies Branch, Biological Imaging Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Fabian H. Hauck
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jenna R. E. Bergerson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Louis Marois
- Department of Medicine, Centre Hospitalier Universitaire de Montréal and Institut de Recherches Cliniques de Montréal, Université de Montréal, Montreal, QC, Canada
- Department of Medecine, Centre Hospitalier Universitaire de Québec, Université de Laval, Québec, QC, Canada
| | - Jordan Abbott
- University of Colorado School of Medicine, Department of Pediatrics, Section of Allergy and Immunology, Children’s Hospital of Colorado, Aurora, CO
| | - Despina Moshous
- Pediatric Hematology-Immunology and Rheumatology Department, Hôpital Necker-Enfants Malades, Assistance Publique – Hôpitaux de Paris Centre Université de Paris, Paris, France
- Université de Paris, Imagine Institute, Laboratory of Genome Dynamics in the Immune System, INSERM UMR 1163, Paris, France
| | - Kelli W. Williams
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| | | | - Paul L. Martin
- Division of Transplant and Cellular Therapy, Duke University Medical School, Durham, NC
| | - Chantal Lagresle-Peyrou
- Université Paris Cité, Imagine Institute, INSERM UMR 1163, Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique–Hôpitaux de Paris, INSERM, Paris, France
| | | | - Natalia B. Kuzmenko
- D. Rogachev National Medical and Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Ekaterina A. Deordieva
- D. Rogachev National Medical and Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Elena V. Raykina
- D. Rogachev National Medical and Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Michael S. Abers
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Vincent Barlogis
- Pediatric Hematology Unit, La Timone University Hospital, Marseille, France
| | - Carlos Milla
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA
| | - Geoffrey Hall
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Duke University Medical Center, Durham, NC
| | - Talal Mousallem
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, NC
| | - Joseph Church
- Pediatric Allergy/Immunology, Children’s Hospital Los Angeles, Los Angeles, CA
- Clinical Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Neena Kapoor
- Division of Hematology, Oncology and Blood and Marrow Transplant, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Guilhem Cros
- Department of Medicine, Université de Montreal, Montreal, QC, Canada
- Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
| | - Hugo Chapdelaine
- Department of Medicine, Université de Montreal, Montreal, QC, Canada
- Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
| | - Clara Franco-Jarava
- Department of Immunology, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Ingrid Lopez-Lerma
- Department of Immunology, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Maurizio Miano
- Haematology Unit, Scientific Institute for Research, Hospitalization and Healthcare Istituto Giannina Gaslini, Genoa, Italy
| | - Jennifer W. Leiding
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins University, Baltimore, MD
- Institute for Clinical and Translational Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Marie José Stasia
- Centre Hospitalier Universitaire Grenoble Alpes, Pôle de Biologie, Centre Diagnostic et Recherche sur la Granulomatose Septique Chronique, Grenoble, France
- Université Grenoble Alpes, Centre National de le Recherche Scientifique, CEA, UMR5075, Institut de Biologie Structurale, Grenoble, France
| | - Alain Fischer
- Université Paris Cité, Imagine Institute, Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France
| | - Kuang-Chih Hsiao
- Department of Immunology, Starship Child Health, Te Whatu Ora, Auckland, New Zealand
- Department of Paediatrics: Child and Youth Health, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Timi Martelius
- Inflammation Center/Infectious Diseases, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland
| | - Mikko R. J. Sepännen
- Adult Immunodeficiency Unit, Infectious Diseases, Inflammation Center, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland
- ERN-RITA Core Center Member, RITAFIN, Helsinki, Finland
- Rare Disease Center and Pediatric Research Center, Children and Adolescents, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Sara Barmettler
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, MA
| | - Jolan Walter
- University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - Tania N. Masmas
- Pediatric Hematopoietic Stem Cell Transplantation and Immunodeficiency, The Child and Adolescent Department, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anna A. Mukhina
- D. Rogachev National Medical and Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Emilia Liana Falcone
- Center for Inflammation, Immunity and Infectious Diseases, Montreal Clinical Research Institute, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Sven Kracker
- Université Paris Cité, Imagine Institute, Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France
| | - Anna Shcherbina
- D. Rogachev National Medical and Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Steven M. Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Thomas L. Leto
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Amy P. Hsu
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
22
|
Peng L, He Y, Wang W, Dai J, Li Q, Ju S. PAK1-Dependent Regulation of Microtubule Organization and Spindle Migration Is Essential for the Metaphase I-Metaphase II Transition in Porcine Oocytes. Biomolecules 2024; 14:237. [PMID: 38397472 PMCID: PMC10886677 DOI: 10.3390/biom14020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
P21-activated kinase 1 (PAK1) is a critical downstream target that mediates the effect of small Rho GTPase on the regulation of cytoskeletal kinetics, cell proliferation, and cell migration. PAK1 has been identified as a crucial regulator of spindle assembly during the first meiotic division; however, its roles during the metaphase I (MI) to metaphase II (MII) transition in oocytes remain unclear. In the present study, the potential function of PAK1 in regulating microtubule organization and spindle positioning during the MI-MII transition was addressed in porcine oocytes. The results showed that activated PAK1 was co-localized with α-tubulin, and its expression was increased from the MI to MII stage (p < 0.001). However, inhibiting PAK1 activity with an inhibitor targeting PAK1 activation-3 (IPA-3) at the MI stage decreased the first polar body (PB1) extrusion rate (p < 0.05), with most oocytes arrested at the anaphase-telophase (ATI) stage. IPA-3-treated oocytes displayed a decrease in actin distribution in the plasma membrane (p < 0.001) and an increase in the rate of defects in MII spindle reassembly with abnormal spindle positioning (p < 0.001). Nevertheless, these adverse effects of IPA-3 on oocytes were reversed when the disulfide bond between PAK1 and IPA-3 was reduced by dithiothreitol (DTT). Co-immunoprecipitation revealed that PAK1 could recruit activated Aurora A and transform acidic coiled-coil 3 (TACC3) to regulate spindle assembly and interact with LIM kinase 1 (LIMK1) to facilitate actin filament-mediated spindle migration. Together, PAK1 is essential for microtubule organization and spindle migration during the MI-MII transition in porcine oocytes, which is associated with the activity of p-Aurora A, p-TACC3 and p-LIMK1.
Collapse
Affiliation(s)
- Lei Peng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (L.P.); (Y.H.); (W.W.)
| | - Yijing He
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (L.P.); (Y.H.); (W.W.)
| | - Weihan Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (L.P.); (Y.H.); (W.W.)
| | - Jianjun Dai
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China;
| | - Qiao Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (L.P.); (Y.H.); (W.W.)
| | - Shiqiang Ju
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (L.P.); (Y.H.); (W.W.)
| |
Collapse
|
23
|
Mortazavi A, Khan AU, Nieblas-Bedolla E, Boddeti U, Bachani M, Ksendzovsky A, Johnson K, Zaghloul KA. Differential gene expression underlying epileptogenicity in patients with gliomas. Neurooncol Adv 2024; 6:vdae103. [PMID: 39022648 PMCID: PMC11252565 DOI: 10.1093/noajnl/vdae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Background Seizures are a common sequela for patients suffering from gliomas. Molecular properties are known to influence the initiation of seizures that may influence tumor growth. Different levels of gene expression with seizures related to gliomas remain unclear. We analyzed RNA sequencing of gliomas to further probe these differences. Methods Total RNA sequencing was obtained from The Cancer Genome Atlas-Lower-Grade Glioma project, comprised of 2021 World Health Organization classification low-grade gliomas, including IDH-mutant and IDH-wild type, to distinguish differential expression in patients who did and did not experience seizures. Utilizing QIAGEN Ingenuity Pathways Analysis, we identified canonical and functional pathways to characterize differential expression. Results Of 289 patients with gliomas, 83 (28.7%) had available information regarding seizure occurrence prior to intervention and other pertinent variables of interest. Of these, 50 (60.2%) were allocated to the seizure group. When comparing the level of RNA expression from these tumors between the seizure and non-seizure groups, 52 genes that were significantly differentially regulated were identified. We found canonical pathways that were altered, most significantly RhoGDI and semaphorin neuronal repulsive signaling. Functional gene analysis revealed tumors that promoted seizures had significantly increased functional gene sets involving neuronal differentiation and synaptogenesis. Conclusions In the setting of gliomas, differences in tumor gene expression exist between individuals with and without seizures, despite similarities in patient demographics and other tumor characteristics. There are significant differences in gene expression associated with neuron development and synaptogenesis, ultimately suggesting a mechanistic role of a tumor-neuron synapse in seizure initiation.
Collapse
Affiliation(s)
- Armin Mortazavi
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Anas U Khan
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | | | - Ujwal Boddeti
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Muzna Bachani
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Alexander Ksendzovsky
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kory Johnson
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Kareem A Zaghloul
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
24
|
Lee H, Kang H, Moon C, Youn B. PAK3 downregulation induces cognitive impairment following cranial irradiation. eLife 2023; 12:RP89221. [PMID: 38131292 PMCID: PMC10746143 DOI: 10.7554/elife.89221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Cranial irradiation is used for prophylactic brain radiotherapy as well as the treatment of primary brain tumors. Despite its high efficiency, it often induces unexpected side effects, including cognitive dysfunction. Herein, we observed that mice exposed to cranial irradiation exhibited cognitive dysfunction, including altered spontaneous behavior, decreased spatial memory, and reduced novel object recognition. Analysis of the actin cytoskeleton revealed that ionizing radiation (IR) disrupted the filamentous/globular actin (F/G-actin) ratio and downregulated the actin turnover signaling pathway p21-activated kinase 3 (PAK3)-LIM kinase 1 (LIMK1)-cofilin. Furthermore, we found that IR could upregulate microRNA-206-3 p (miR-206-3 p) targeting PAK3. As the inhibition of miR-206-3 p through antagonist (antagomiR), IR-induced disruption of PAK3 signaling is restored. In addition, intranasal administration of antagomiR-206-3 p recovered IR-induced cognitive impairment in mice. Our results suggest that cranial irradiation-induced cognitive impairment could be ameliorated by regulating PAK3 through antagomiR-206-3 p, thereby affording a promising strategy for protecting cognitive function during cranial irradiation, and promoting quality of life in patients with radiation therapy.
Collapse
Affiliation(s)
- Haksoo Lee
- Department of Integrated Biological Science, Pusan National UniversityBusanRepublic of Korea
| | - Hyunkoo Kang
- Department of Integrated Biological Science, Pusan National UniversityBusanRepublic of Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National UniversityGwangjuRepublic of Korea
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National UniversityBusanRepublic of Korea
- Department of Biological Sciences, Pusan National UniversityBusanRepublic of Korea
- Nuclear Science Research Institute, Pusan National UniversityBusanRepublic of Korea
| |
Collapse
|
25
|
Ishii M, Matsumoto Y, Yamada T, Uga H, Katada T, Ohata S. TrCla4 promotes actin polymerization at the hyphal tip and mycelial growth in Trichophyton rubrum. Microbiol Spectr 2023; 11:e0292323. [PMID: 37905917 PMCID: PMC10714743 DOI: 10.1128/spectrum.02923-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE Superficial fungal infections, such as athlete's foot, affect more than 10% of the world's population and have a significant impact on quality of life. Despite the fact that treatment-resistant fungi are a concern, there are just a few antifungal drug targets accessible, as opposed to the wide range of therapeutic targets found in bacterial infections. As a result, additional alternatives are sought. In this study, we generated a PAK TrCla4 deletion strain (∆Trcla4) of Trichophyton rubrum. The ∆Trcla4 strain exhibited deficiencies in mycelial growth, hyphal morphology, and polarized actin localization at the hyphal tip. IPA-3 and FRAX486, small chemical inhibitors of mammalian PAK, were discovered to limit fungal mycelial proliferation. According to our findings, fungal PAKs are interesting therapeutic targets for the development of new antifungal medicines.
Collapse
Affiliation(s)
- Masaki Ishii
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Nishitokyo-shi, Tokyo, Japan
| | - Yasuhiko Matsumoto
- Department of Microbiology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Tsuyoshi Yamada
- Teikyo University Institute of Medical Mycology, Teikyo University, Hachioji, Tokyo, Japan
- Asia International Institute of Infectious Disease Control, Teikyo University, Hachioji, Tokyo, Japan
| | - Hideko Uga
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Nishitokyo-shi, Tokyo, Japan
| | - Toshiaki Katada
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Nishitokyo-shi, Tokyo, Japan
| | - Shinya Ohata
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Nishitokyo-shi, Tokyo, Japan
| |
Collapse
|
26
|
Scorrano G, D'Onofrio G, Accogli A, Severino M, Buchert R, Kotzaeridou U, Iapadre G, Farello G, Iacomino M, Dono F, Di Francesco L, Fiorile MF, La Bella S, Corsello A, Calì E, Di Rosa G, Gitto E, Verrotti A, Fortuna S, Soler MA, Chiarelli F, Oehl-Jaschkowitz B, Haack TB, Zara F, Striano P, Salpietro V. A PAK1 Mutational Hotspot Within the Regulatory CRIPaK Domain is Associated With Severe Neurodevelopmental Disorders in Children. Pediatr Neurol 2023; 149:84-92. [PMID: 37820543 DOI: 10.1016/j.pediatrneurol.2023.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND P-21-activated kinases (PAKs) are protein serine/threonine kinases, part of the RAS/mitogen-activated protein kinase pathway. PAK1 is highly expressed in the central nervous system and crucially involved in neuronal migration and brain developmental processes. Recently, de novo heterozygous missense variants in PAK1 have been identified as an ultrarare cause of pediatric neurodevelopmental disorders. METHODS We report a series of children affected with postnatal macrocephaly, neurodevelopmental impairment, and drug-resistant epilepsy. Repeated electroencephalographic (EEG) and video-EEG evaluations were performed over a two- to 10-year period during follow-up to delineate electroclinical histories. Genetic sequencing studies and computational evaluation of the identified variants were performed in our patient cohort. RESULTS We identified by whole-exome sequencing three novel de novo variants in PAK1 (NM_001128620: c.427A>G, p.Met143Val; c.428T>C, p.Met143Thr; c.428T>A, p.Met143Lys) as the underlying cause of the disease in our families. The three variants affected the same highly conserved Met143 residue within the cysteine-rich inhibitor of PAK1 (CRIPaK) domain, which was identified before as a PAK1 inhibitor target. Computational studies suggested a defective autoinhibition presumably due to impaired PAK1 autoregulation as a result of the recurrent substitution. CONCLUSIONS We delineated the electroclinical phenotypes of PAK1-related neurological disorders and highlight a novel mutational hotspot that may involve defective autoinhibition of the PAK1 protein. The three novel variants affecting the same hotspot residue within the CRIPaK domain highlight potentially impaired PAK1-CRIPaK interaction as a novel disease mechanism. These findings shed light on possible future treatments targeted at the CRIPaK domain, to modulate PAK1 activity and function.
Collapse
Affiliation(s)
- Giovanna Scorrano
- Department of Pediatrics, University of Chieti-Pescara, Chieti, Italy; Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Gianluca D'Onofrio
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy; Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Andrea Accogli
- Department of Medical Genetics, Montreal Children's Hospital, McGill University Health Centre (MUHC), Montreal, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada
| | | | - Rebecca Buchert
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Urania Kotzaeridou
- Division of Child Neurology and Inherited Metabolic Diseases, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Giulia Iapadre
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giovanni Farello
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Michele Iacomino
- Unit of Medical Genetics, IRCCS Istituto "Giannina Gaslini", Genova, Italy
| | - Fedele Dono
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Ludovica Di Francesco
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | | | - Saverio La Bella
- Department of Pediatrics, University of Chieti-Pescara, Chieti, Italy
| | - Antonio Corsello
- Department of Clinical Science and Community Health, University of Milan, Milan, Italy
| | - Elisa Calì
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Eloisa Gitto
- Neonatal and Pediatric Intensive Care Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | | | - Sara Fortuna
- Computational Modelling of Nanoscale and Biophysical Systems Laboratory (CONCEPT), Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Miguel A Soler
- Department of Mathematics, Computer Science and Physics, University of Udine, Udine, Italy
| | | | | | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy; Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genova, Italy; Unit of Medical Genetics, IRCCS Istituto "Giannina Gaslini", Genova, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy; Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Vincenzo Salpietro
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy; Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
27
|
Ripoli C, Dagliyan O, Renna P, Pastore F, Paciello F, Sollazzo R, Rinaudo M, Battistoni M, Martini S, Tramutola A, Sattin A, Barone E, Saneyoshi T, Fellin T, Hayashi Y, Grassi C. Engineering memory with an extrinsically disordered kinase. SCIENCE ADVANCES 2023; 9:eadh1110. [PMID: 37967196 PMCID: PMC10651130 DOI: 10.1126/sciadv.adh1110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 10/13/2023] [Indexed: 11/17/2023]
Abstract
Synaptic plasticity plays a crucial role in memory formation by regulating the communication between neurons. Although actin polymerization has been linked to synaptic plasticity and dendritic spine stability, the causal link between actin polymerization and memory encoding has not been identified yet. It is not clear whether actin polymerization and structural changes in dendritic spines are a driver or a consequence of learning and memory. Using an extrinsically disordered form of the protein kinase LIMK1, which rapidly and precisely acts on ADF/cofilin, a direct modifier of actin, we induced long-term enlargement of dendritic spines and enhancement of synaptic transmission in the hippocampus on command. The activation of extrinsically disordered LIMK1 in vivo improved memory encoding and slowed cognitive decline in aged mice exhibiting reduced cofilin phosphorylation. The engineered memory by an extrinsically disordered LIMK1 supports a direct causal link between actin-mediated synaptic transmission and memory.
Collapse
Affiliation(s)
- Cristian Ripoli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Onur Dagliyan
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17165 Stockholm, Sweden
| | - Pietro Renna
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Pastore
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Fabiola Paciello
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Raimondo Sollazzo
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Marco Rinaudo
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Martina Battistoni
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Sara Martini
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonella Tramutola
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy
| | - Andrea Sattin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Eugenio Barone
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy
| | - Takeo Saneyoshi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Yasunori Hayashi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
28
|
Quadri R, Rotondo G, Sertic S, Pozzi S, dell’Oca MC, Guerrini L, Muzi-Falconi M. A Haspin-ARHGAP11A axis regulates epithelial morphogenesis through Rho-ROCK dependent modulation of LIMK1-Cofilin. iScience 2023; 26:108011. [PMID: 37841592 PMCID: PMC10570125 DOI: 10.1016/j.isci.2023.108011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/20/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Throughout mitosis, a plethora of processes must be efficiently concerted to ensure cell proliferation and tissue functionality. The mitotic spindle does not only mediate chromosome segregation, but also defines the axis of cellular division, thus determining tissue morphology. Functional spindle orientation relies on precise actin dynamics, shaped in mitosis by the LIMK1-Cofilin axis. The kinase Haspin acts as a guardian of faithful chromosome segregation that ensures amphitelic chromosome attachment and prevents unscheduled cohesin cleavage. Here, we report an unprecedented role for Haspin in the determination of spindle orientation in mitosis. We show that, during mitosis, Haspin regulates Rho-ROCK activity through ARHGAP11A, a poorly characterized GAP, and that ROCK is in turn responsible for the mitotic activation of LIMK1 and stabilization of the actin cytoskeleton, thus supporting a functional spindle orientation. By exploiting 3D cell cultures, we show that this pathway is pivotal for the establishment of a morphologically functional tissue.
Collapse
Affiliation(s)
- Roberto Quadri
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Giuseppe Rotondo
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Sarah Sertic
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Sara Pozzi
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | | | - Luisa Guerrini
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Marco Muzi-Falconi
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
29
|
Bencivenga M, Torroni L, Dal Cero M, Quinzii A, Zecchetto C, Merz V, Casalino S, Taus F, Pietrobono S, Mangiameli D, Filippini F, Alloggio M, Castelli C, Iglesias M, Pera M, Melisi D. YAP Activation Is Associated with a Worse Prognosis of Poorly Cohesive Gastric Cancer. J Pers Med 2023; 13:1294. [PMID: 37763062 PMCID: PMC10532557 DOI: 10.3390/jpm13091294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Poorly cohesive (PC) gastric cancer (GC) is extremely aggressive in progression, and there is an urgent need to identify the molecular pathways involved. We hypothesized the essential role of the RhoA-YAP axis in these mechanisms. The present observational multicenter retrospective study included 133 patients with PC GC treated at two dedicated European surgical centers between 2004 and 2014. YAP nuclear localization was measured by immunohistochemical (IHC) analysis of tissue biopsies. The complete absence of nuclear reactivity was coded as negative expression; we considered "any positive" as low nuclear expression (>0% but <10% of cells) and high nuclear expression (≥10% of cells). Women represented about half of the present series (52%), and the median age was 64 years (p25-p75 range: 53-75). Neoadjuvant and adjuvant treatments were administered to 10% and 54% of the cases, respectively. Extended systemic lymphadenectomy (D2) was the most common (54%). In nearly all cases, the number of retrieved nodes was ≥15, i.e., adequate for tumor staging (94%). An R0 resection was achieved in 80% of the cases. Most patients were pathological T stage 3 and 4 (pT3/pT4 = 79.0%) and pathological N stage 2, 3a, and 3b (pN2/pN3a/pN3b = 47.0%) at the pathological examination. Twenty patients (15%) presented distant metastases. Five-year overall survival (OS) was significantly higher (p = 0.029) in patients with negative YAP (46%, 95% CI 31.1-60.0%) than in the other patients (27%, 17.5-38.1%). Moreover, when controlling for sex, age, pT, pN, and percentage of signet ring cells in the multivariable analysis, YAP expression was a significant predictor of OS (HR 2.03, 95% CI: 1.18-3.51, p = 0.011). Our results provide new insights into the role of the YAP signaling cascade, as its activation was associated with a worse prognosis in PC GC.
Collapse
Affiliation(s)
- Maria Bencivenga
- General and Upper GI Surgery, Department of Surgery, Verona University, 37126 Verona, Italy; (M.B.)
| | - Lorena Torroni
- General and Upper GI Surgery, Department of Surgery, Verona University, 37126 Verona, Italy; (M.B.)
- Unit of Epidemiology and Medical Statistics, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy
| | - Mariagiulia Dal Cero
- General and Upper GI Surgery, Department of Surgery, Verona University, 37126 Verona, Italy; (M.B.)
- Section of Gastrointestinal Surgery, Hospital del Mar, Hospital del Mar Medical Research Institute (IMIM), Department of Surgery, Universitat Autonoma de Barcelona, 08003 Barcelona, Spain
| | - Alberto Quinzii
- Investigational Cancer Therapeutics Clinical Unit, Azienda Ospedaliera Universitaria Integrata, 37134 Verona, Italy
- Digestive Molecular Clinical Oncology Research Unit, Università degli Studi di Verona, 37134 Verona, Italy
| | - Camilla Zecchetto
- Investigational Cancer Therapeutics Clinical Unit, Azienda Ospedaliera Universitaria Integrata, 37134 Verona, Italy
- Digestive Molecular Clinical Oncology Research Unit, Università degli Studi di Verona, 37134 Verona, Italy
| | - Valeria Merz
- Digestive Molecular Clinical Oncology Research Unit, Università degli Studi di Verona, 37134 Verona, Italy
| | - Simona Casalino
- Investigational Cancer Therapeutics Clinical Unit, Azienda Ospedaliera Universitaria Integrata, 37134 Verona, Italy
- Digestive Molecular Clinical Oncology Research Unit, Università degli Studi di Verona, 37134 Verona, Italy
| | - Francesco Taus
- Unit of Epidemiology and Medical Statistics, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy
| | - Silvia Pietrobono
- Digestive Molecular Clinical Oncology Research Unit, Università degli Studi di Verona, 37134 Verona, Italy
| | - Domenico Mangiameli
- Digestive Molecular Clinical Oncology Research Unit, Università degli Studi di Verona, 37134 Verona, Italy
| | - Federica Filippini
- General and Upper GI Surgery, Department of Surgery, Verona University, 37126 Verona, Italy; (M.B.)
| | - Mariella Alloggio
- General and Upper GI Surgery, Department of Surgery, Verona University, 37126 Verona, Italy; (M.B.)
| | - Claudia Castelli
- Anatomical Pathology Unit, Azienda Ospedaliera Universitaria Integrata, 37134 Verona, Italy
| | - Mar Iglesias
- Department of Pathology, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
| | - Manuel Pera
- Section of Gastrointestinal Surgery, Hospital del Mar, Hospital del Mar Medical Research Institute (IMIM), Department of Surgery, Universitat Autonoma de Barcelona, 08003 Barcelona, Spain
| | - Davide Melisi
- Investigational Cancer Therapeutics Clinical Unit, Azienda Ospedaliera Universitaria Integrata, 37134 Verona, Italy
- Digestive Molecular Clinical Oncology Research Unit, Università degli Studi di Verona, 37134 Verona, Italy
| |
Collapse
|
30
|
Dalto JF, Medina JH. Time-dependent inhibition of Rac1 in the VTA enhances long-term aversive memory: implications in active forgetting mechanisms. Sci Rep 2023; 13:13507. [PMID: 37598223 PMCID: PMC10439914 DOI: 10.1038/s41598-023-40434-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023] Open
Abstract
The fate of memories depends mainly on two opposing forces: the mechanisms required for the storage and maintenance of memory and the mechanisms underlying forgetting, being the latter much less understood. Here, we show the effect of inhibiting the small Rho GTPase Rac1 on the fate of inhibitory avoidance memory in male rats. The immediate post-training micro-infusion of the specific Rac1 inhibitor NSC23766 (150 ng/0.5 µl/ side) into the ventral tegmental area (VTA) enhanced long-term memory at 1, 7, and 14 days after a single training. Additionally, an opposed effect occurred when the inhibitor was infused at 12 h after training while no effect was observed immediately after testing animals at 1 day. Control experiments ruled out the possibility that post-training memory enhancement was due to facilitation of memory formation since no effect was found when animals were tested at 1 h after acquisition and no memory enhancement was observed after the formation of a weak memory. Immediate post-training micro-infusion of Rac1 inhibitor into the dorsal hippocampus, or the amygdala did not affect memory. Our findings support the idea of a Rac1-dependent time-specific active forgetting mechanism in the VTA controlling the strength of a long-term aversive memory.
Collapse
Affiliation(s)
- Juliana F Dalto
- Instituto de Biología Celular y Neurociencias "Prof. Eduardo de Robertis", Facultad de Medicina, Universidad de Buenos Aires-CONICET, Paraguay 2155, 3rd Floor, C1121ABG, Buenos Aires, Argentina
| | - Jorge H Medina
- Instituto de Biología Celular y Neurociencias "Prof. Eduardo de Robertis", Facultad de Medicina, Universidad de Buenos Aires-CONICET, Paraguay 2155, 3rd Floor, C1121ABG, Buenos Aires, Argentina.
- Instituto Tecnológico de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
31
|
Huang M, Zhang J, Li M, Cao H, Zhu Q, Yang D. PAK1 contributes to cerebral ischemia/reperfusion injury by regulating the blood-brain barrier integrity. iScience 2023; 26:107333. [PMID: 37529106 PMCID: PMC10387573 DOI: 10.1016/j.isci.2023.107333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/29/2023] [Accepted: 07/05/2023] [Indexed: 08/03/2023] Open
Abstract
Globally, stroke is one of the leading causes of death and significant contributors to disability. Gaining a thorough comprehension of the underlying pathogenic processes is essential for stroke treatment and prevention. In this study, we investigated the role of p21-activated kinase 1 (PAK1) in stroke by using oxygen-glucose deprivation (OGD) and transient middle cerebral artery occlusion and reperfusion (tMCAO/R) models. We reported that focal ischemia and reperfusion affect the PAK1 expression and activity levels. We further demonstrated that PAK1 is responsible for the endothelial hyperpermeability that occurs in the early stages of ischemia and reperfusion. Additionally, inhibition of PAK1 was discovered to alleviate blood-brain barrier disruption and protect against brain injury induced by tMCAO/R. Mechanistically, we provide the evidence that PAK1 regulates the formation of stress fibers and expression of surface junctional proteins. Together, our findings reveal a pathogenic function of PAK1 in stroke.
Collapse
Affiliation(s)
- Ming Huang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Jinshun Zhang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Mengwei Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Haowei Cao
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Qiuju Zhu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Dejun Yang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
32
|
Yamahashi Y, Tsuboi D, Funahashi Y, Kaibuchi K. Neuroproteomic mapping of kinases and their substrates downstream of acetylcholine: finding and implications. Expert Rev Proteomics 2023; 20:291-298. [PMID: 37787112 DOI: 10.1080/14789450.2023.2265067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/09/2023] [Indexed: 10/04/2023]
Abstract
INTRODUCTION Since the emergence of the cholinergic hypothesis of Alzheimer's disease (AD), acetylcholine has been viewed as a mediator of learning and memory. Donepezil improves AD-associated learning deficits and memory loss by recovering brain acetylcholine levels. However, it is associated with side effects due to global activation of acetylcholine receptors. Muscarinic acetylcholine receptor M1 (M1R), a key mediator of learning and memory, has been an alternative target. The importance of targeting a specific pathway downstream of M1R has recently been recognized. Elucidating signaling pathways beyond M1R that lead to learning and memory holds important clues for AD therapeutic strategies. AREAS COVERED This review first summarizes the role of acetylcholine in aversive learning, one of the outputs used for preliminary AD drug screening. It then describes the phosphoproteomic approach focused on identifying acetylcholine intracellular signaling pathways leading to aversive learning. Finally, the intracellular mechanism of donepezil and its effect on learning and memory is discussed. EXPERT OPINION The elucidation of signaling pathways beyond M1R by phosphoproteomic approach offers a platform for understanding the intracellular mechanism of AD drugs and for developing AD therapeutic strategies. Clarifying the molecular mechanism that links the identified acetylcholine signaling to AD pathophysiology will advance the development of AD therapeutic strategies.
Collapse
Affiliation(s)
- Yukie Yamahashi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Daisuke Tsuboi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Yasuhiro Funahashi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Kozo Kaibuchi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, Japan
| |
Collapse
|
33
|
Wang W, Wang Z, Cao J, Dong Y, Chen Y. Roles of Rac1-Dependent Intrinsic Forgetting in Memory-Related Brain Disorders: Demon or Angel. Int J Mol Sci 2023; 24:10736. [PMID: 37445914 DOI: 10.3390/ijms241310736] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Animals are required to handle daily massive amounts of information in an ever-changing environment, and the resulting memories and experiences determine their survival and development, which is critical for adaptive evolution. However, intrinsic forgetting, which actively deletes irrelevant information, is equally important for memory acquisition and consolidation. Recently, it has been shown that Rac1 activity plays a key role in intrinsic forgetting, maintaining the balance of the brain's memory management system in a controlled manner. In addition, dysfunctions of Rac1-dependent intrinsic forgetting may contribute to memory deficits in neurological and neurodegenerative diseases. Here, these new findings will provide insights into the neurobiology of memory and forgetting, pathological mechanisms and potential therapies for brain disorders that alter intrinsic forgetting mechanisms.
Collapse
Affiliation(s)
- Wei Wang
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zixu Wang
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jing Cao
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yulan Dong
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yaoxing Chen
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| |
Collapse
|
34
|
Yan R, Liu D, Wang J, Liu M, Guo H, Bai J, Yang S, Chang J, Yao Z, Yang Z, Blom T, Zhou K. miR-137-LAPTM4B regulates cytoskeleton organization and cancer metastasis via the RhoA-LIMK-Cofilin pathway in osteosarcoma. Oncogenesis 2023; 12:25. [PMID: 37147294 PMCID: PMC10163001 DOI: 10.1038/s41389-023-00471-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/07/2023] Open
Abstract
Osteosarcoma (OS) is a rare malignant bone tumor but is one leading cause of cancer mortality in childhood and adolescence. Cancer metastasis accounts for the primary reason for treatment failure in OS patients. The dynamic organization of the cytoskeleton is fundamental for cell motility, migration, and cancer metastasis. Lysosome Associated Protein Transmembrane 4B (LAPTM4B) is an oncogene participating in various biological progress central to cancer biogenesis. However, the potential roles of LAPTM4B in OS and the related mechanisms remain unknown. Here, we established the elevated LAPTM4B expression in OS, and it is essential in regulating stress fiber organization through RhoA-LIMK-cofilin signaling pathway. In terms of mechanism, our data revealed that LAPTM4B promotes RhoA protein stability by suppressing the ubiquitin-mediated proteasome degradation pathway. Moreover, our data show that miR-137, rather than gene copy number and methylation status, contributes to the upregulation of LAPTM4B in OS. We report that miR-137 is capable of regulating stress fiber arrangement, OS cell migration, and metastasis via targeting LAPTM4B. Combining results from cells, patients' tissue samples, the animal model, and cancer databases, this study further suggests that the miR-137-LAPTM4B axis represents a clinically relevant pathway in OS progression and a viable target for novel therapeutics.
Collapse
Affiliation(s)
- Ruyu Yan
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Dan Liu
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Junjie Wang
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Minxia Liu
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, 00290, Finland
| | - Hongjuan Guo
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Jing Bai
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Shuo Yang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Jun Chang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Zhihong Yao
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Zuozhang Yang
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Tomas Blom
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland.
- Minerva Foundation Institute for Medical Research, Helsinki, 00014, Finland.
| | - Kecheng Zhou
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China.
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland.
- Minerva Foundation Institute for Medical Research, Helsinki, 00014, Finland.
| |
Collapse
|
35
|
Hsu AP. Not too little, not too much: the impact of mutation types in Wiskott-Aldrich syndrome and RAC2 patients. Clin Exp Immunol 2023; 212:137-146. [PMID: 36617178 PMCID: PMC10128166 DOI: 10.1093/cei/uxad001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/23/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Primary immune deficiencies (PIDs) are genetic disorders impacting the appropriate development or functioning of any portion of the immune system. The broad adoption of high-throughput sequencing has driven discovery of new genes as well as expanded phenotypes associated with known genes. Beginning with the identification of WAS mutations in patients with severe Wiskott-Aldrich Syndrome, recognition of WAS mutations in additional patients has revealed phenotypes including isolated thrombocytopenia and X-linked neutropenia. Likewise RAC2 patients present with vastly different phenotypes depending on the mutation-ranging from reticular dysgenesis or severe neutrophil dysfunction with neonatal presentation to later onset common variable immune deficiency. This review examines genotype-phenotype correlations in patients with WAS (Wiskott-Aldrich Syndrome) and RAC2 mutations, highlighting functional protein domains, how mutations alter protein interactions, and how specific mutations can affect isolated functions of the protein leading to disparate phenotypes.
Collapse
Affiliation(s)
- Amy P Hsu
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
36
|
Barraza-Núñez N, Pérez-Núñez R, Gaete-Ramírez B, Barrios-Garrido A, Arriagada C, Poksay K, John V, Barnier JV, Cárdenas AM, Caviedes P. Pharmacological Inhibition of p-21 Activated Kinase (PAK) Restores Impaired Neurite Outgrowth and Remodeling in a Cellular Model of Down Syndrome. Neurotox Res 2023; 41:256-269. [PMID: 36867391 DOI: 10.1007/s12640-023-00638-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/27/2022] [Accepted: 02/10/2023] [Indexed: 03/04/2023]
Abstract
Down syndrome (DS) is characterized by the trisomy of chromosome 21 and by cognitive deficits that have been related to neuronal morphological alterations in humans, as well as in animal models. The gene encoding for amyloid precursor protein (APP) is present in autosome 21, and its overexpression in DS has been linked to neuronal dysfunction, cognitive deficit, and Alzheimer's disease-like dementia. In particular, the neuronal ability to extend processes and branching is affected. Current evidence suggests that APP could also regulate neurite growth through its role in the actin cytoskeleton, in part by influencing p21-activated kinase (PAK) activity. The latter effect is carried out by an increased abundance of the caspase cleavage-released carboxy-terminal C31 fragment. In this work, using a neuronal cell line named CTb, which derived from the cerebral cortex of a trisomy 16 mouse, an animal model of human DS, we observed an overexpression of APP, elevated caspase activity, augmented cleavage of the C-terminal fragment of APP, and increased PAK1 phosphorylation. Morphometric analyses showed that inhibition of PAK1 activity with FRAX486 increased the average length of the neurites, the number of crossings per Sholl ring, the formation of new processes, and stimulated the loss of processes. Considering our results, we propose that PAK hyperphosphorylation impairs neurite outgrowth and remodeling in the cellular model of DS, and therefore we suggest that PAK1 may be a potential pharmacological target.
Collapse
Affiliation(s)
- Natalia Barraza-Núñez
- Program of Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Ramón Pérez-Núñez
- Program of Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Belén Gaete-Ramírez
- Program of Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Alejandra Barrios-Garrido
- Program of Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Christian Arriagada
- Department of Anatomy & Forensic Medicine, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | - Varghese John
- Department of Neurology, Easton Center for Alzheimer's Disease Research, University of California, Los Angeles, CA, USA
| | - Jean-Vianney Barnier
- Neuroscience Paris-Saclay Institute, UMR 9197, CNRS-Université Paris-Saclay, Gif-Sur-Yvette, France
| | | | - Pablo Caviedes
- Program of Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile.
- Center for Biotechnology & Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology & Materials, Faculty of Physical & Mathematical Sciences, University of Chile, Santiago, Chile.
| |
Collapse
|
37
|
El-Mansi S, Robinson CL, Kostelnik KB, McCormack JJ, Mitchell TP, Lobato-Márquez D, Rajeeve V, Cutillas P, Cutler DF, Mostowy S, Nightingale TD. Proximity proteomics identifies septins and PAK2 as decisive regulators of actomyosin-mediated expulsion of von Willebrand factor. Blood 2023; 141:930-944. [PMID: 36564030 PMCID: PMC10023740 DOI: 10.1182/blood.2022017419] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/07/2022] [Accepted: 11/27/2022] [Indexed: 12/25/2022] Open
Abstract
In response to tissue injury, within seconds the ultra-large glycoprotein von Willebrand factor (VWF) is released from endothelial storage organelles (Weibel-Palade bodies) into the lumen of the blood vasculature, where it leads to the recruitment of platelets. The marked size of VWF multimers represents an unprecedented burden on the secretory machinery of endothelial cells (ECs). ECs have evolved mechanisms to overcome this, most notably an actomyosin ring that forms, contracts, and squeezes out its unwieldy cargo. Inhibiting the formation or function of these structures represents a novel therapeutic target for thrombotic pathologies, although characterizing proteins associated with such a dynamic process has been challenging. We have combined APEX2 proximity labeling with an innovative dual loss-of-function screen to identify proteins associated with actomyosin ring function. We show that p21 activated kinase 2 (PAK2) recruits septin hetero-oligomers, a molecular interaction that forms a ring around exocytic sites. This cascade of events controls actomyosin ring function, aiding efficient exocytic release. Genetic or pharmacological inhibition of PAK2 or septins led to inefficient release of VWF and a failure to form platelet-catching strings. This new molecular mechanism offers additional therapeutic targets for the control of thrombotic disease and is highly relevant to other secretory systems that employ exocytic actomyosin machinery.
Collapse
Affiliation(s)
- Sammy El-Mansi
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Christopher L. Robinson
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Katja B. Kostelnik
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Jessica J. McCormack
- MRC Laboratory of Molecular Cell Biology, University College London, London, United Kingdom
| | - Tom P. Mitchell
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Damián Lobato-Márquez
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Vinothini Rajeeve
- Cell Signalling & Proteomics Group, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Pedro Cutillas
- Cell Signalling & Proteomics Group, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Daniel F. Cutler
- MRC Laboratory of Molecular Cell Biology, University College London, London, United Kingdom
| | - Serge Mostowy
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Thomas D. Nightingale
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
38
|
Shi C, Luo W, Sun C, Yu L, Zhou X, Hua D, Jiang Z, Wang Q, Yu S. The miR-29 family members induce glioblastoma cell apoptosis by targeting cell division cycle 42 in a p53-dependent manner. Eur J Clin Invest 2023; 53:e13964. [PMID: 36727260 DOI: 10.1111/eci.13964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/03/2023]
Abstract
BACKGROUND Emerging evidence has shown that miR-29 is a promising biomarker and therapeutic target for malignancies. The roles of miR-29a/b/c in glioma pathogenesis remain need further investigation. METHODS The expression levels of miR-29a/b/c and CDC42 were systematically analysed, and prognostic significance was evaluated by Kaplan-Meier survival and Cox regression analyses. The roles of miR-29a/b/c in apoptosis and the underlying mechanisms were explored via an alkaline single-cell gel electrophoresis assay, caspase 3/7 activity assays and Western blotting. RESULTS miR-29a/b/c expression decreased progressively with the elevation of the WHO grade in our 147 human glioma specimens, compared with 20 non-tumour control brain tissues, and decreased miR-29a/b/c expression was associated with more aggressive phenotypes. Kaplan-Meier and Cox regression analyses demonstrated that lower miR-29a/b/c expression was correlated with worse prognosis, which was confirmed by analysis of 198 glioma patients from the CGGA cohort. These all indicate that miR-29a/b/c were independent predictors of prognosis in glioma patients. miR-29a/b/c induced apoptosis in GBM cells by silencing CDC42. Further detailed mechanistic investigation revealed that miR-29a/b/c promoted apoptosis in a p53-dependent manner by suppressing the CDC42/PAK/AKT/MDM2 pathway. CONCLUSIONS miR-29a/b/c are independent predictors of prognosis in glioma patients. They induce glioblastoma cell apoptosis via silencing of CDC42 and suppression of downstream PAK/AKT/MDM2 signalling in a p53-dependent manner.
Collapse
Affiliation(s)
- Cuijuan Shi
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Wenjun Luo
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Cuiyun Sun
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Lin Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences of Tianjin Medical University, Tianjin, China
| | - Xuexia Zhou
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Dan Hua
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Zhendong Jiang
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Qian Wang
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Shizhu Yu
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China.,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| |
Collapse
|
39
|
Tramadol regulates the activation of human platelets via Rac but not Rho/Rho-kinase. PLoS One 2023; 18:e0279011. [PMID: 36638092 PMCID: PMC9838859 DOI: 10.1371/journal.pone.0279011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 11/29/2022] [Indexed: 01/14/2023] Open
Abstract
Tramadol is a useful analgesic which acts as a serotonin and noradrenaline reuptake inhibitor in addition to μ-opioid receptor agonist. Cytoplasmic serotonin modulates the small GTPase activity through serotonylation, which is closely related to the human platelet activation. We recently reported that the combination of subthreshold collagen and CXCL12 synergistically activates human platelets. We herein investigated the effect and the mechanism of tramadol on the synergistic effect. Tramadol attenuated the synergistically stimulated platelet aggregation (300 μM of tramadol, 64.3% decrease, p<0.05). Not morphine or reboxetine, but duloxetine, fluvoxamine and sertraline attenuated the synergistic effect of the combination on the platelet aggregation (30 μM of fluvoxamine, 67.3% decrease, p<0.05; 30 μM of sertraline, 67.8% decrease, p<0.05). The geranylgeranyltransferase inhibitor GGTI-286 attenuated the aggregation of synergistically stimulated platelet (50 μM of GGTI-286, 80.8% decrease, p<0.05), in which GTP-binding Rac was increased. The Rac1-GEF interaction inhibitor NSC23766 suppressed the platelet activation and the phosphorylation of p38 MAPK and HSP27 induced by the combination of collagen and CXCL12. Tramadol and fluvoxamine almost completely attenuated the levels of GTP-binding Rac and the phosphorylation of both p38 MAPK and HSP27 stimulated by the combination. Suppression of the platelet aggregation after the duloxetine administration was observed in 2 of 5 patients in pain clinic. These results suggest that tramadol negatively regulates the combination of subthreshold collagen and CXCL12-induced platelet activation via Rac upstream of p38 MAPK.
Collapse
|
40
|
Bai H, Huang H, Zhao N, Gu H, Li Y, Zou W, Wu T, Huang X. Small G protein RAC-2 regulates forgetting via the JNK-1 signalling pathway in Caenorhabditis elegans. Eur J Neurosci 2022; 56:6162-6173. [PMID: 36321581 DOI: 10.1111/ejn.15855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 10/05/2022] [Accepted: 10/18/2022] [Indexed: 11/23/2022]
Abstract
Although forgetting was once regarded as a passive decline in memory and an occasional source of embarrassment, recent research suggests that it is an active biological process of removing outdated or irrelevant memories via activation of specific genes and signal transduction pathways. Rho family G proteins are known to have a role in synaptic plasticity mediated by the actin cytoskeleton. However, the current study reveals that another Rho guanosine triphosphate enzyme (GTPase), RAC-2, facilitates the occurrence of forgetting in Caenorhabditis elegans independent of actin dynamics. Functioning downstream of RAC-2 in the same signalling pathway, JNK-1 and its phosphorylated protein are required to positively regulate forgetting. The pan-neuronal rescue of RAC-2 or JNK-1, instead of AWC neuron-specific expression, reverses the delayed forgetting caused by the rac-2 mutation, which indicates that the involvement of RAC-2/JNK-1 in more than AWCs must be required. In summary, our work elucidates the action of the Rho GTPase RAC-2 and downstream JNK-1 as a potential novel pathway in forgetting in C. elegans.
Collapse
Affiliation(s)
- Hua Bai
- School of Medicine, and State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, China.,College of Public Health, Kunming Medical University, Kunming, China
| | - Hui Huang
- School of Medicine, and State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, China
| | - Ninghui Zhao
- Neurosurgery of the Second Hospital affiliated with Kunming Medical University, Kunming, China
| | - Huan Gu
- School of Medicine, and State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, China
| | - Yixin Li
- School of Medicine, and State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, China
| | - Wei Zou
- College of Public Health, Kunming Medical University, Kunming, China
| | - Tingting Wu
- Neurosurgery of the Second Hospital affiliated with Kunming Medical University, Kunming, China
| | - Xiaowei Huang
- School of Medicine, and State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, China
| |
Collapse
|
41
|
Schäfer I, Bauch J, Wegrzyn D, Roll L, van Leeuwen S, Jarocki A, Faissner A. The guanine nucleotide exchange factor Vav3 intervenes in the migration pathway of oligodendrocyte precursor cells on tenascin-C. Front Cell Dev Biol 2022; 10:1042403. [PMID: 36531963 PMCID: PMC9748482 DOI: 10.3389/fcell.2022.1042403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/10/2022] [Indexed: 10/22/2024] Open
Abstract
Oligodendrocyte precursor cells (OPCs) are the exclusive source of myelination in the central nervous system (CNS). Prior to myelination, OPCs migrate to target areas and mature into myelinating oligodendrocytes. This process is underpinned by drastic changes of the cytoskeleton and partially driven by pathways involving small GTPases of the Rho subfamily. In general, the myelination process requires migration, proliferation and differentiation of OPCs. Presently, these processes are only partially understood. In this study, we analyzed the impact of the guanine nucleotide exchange factor (GEF) Vav3 on the migration behavior of OPCs. Vav3 is known to regulate RhoA, Rac1 and RhoG activity and is therefore a promising candidate with regard to a regulatory role concerning the rearrangement of the cytoskeleton. Our study focused on the Vav3 knockout mouse and revealed an enhanced migration capacity of Vav3 -/- OPCs on the extracellular matrix (ECM) glycoprotein tenascin-C (TnC). The migration behavior of individual OPCs on further ECM molecules such as laminin-1 (Ln1), laminin-2 (Ln2) and tenascin-R (TnR) was not affected by the elimination of Vav3. The migration process was further investigated with regard to intracellular signal transmission by pharmacological blockade of downstream pathways of specific Rho GTPases. Our data suggest that activation of RhoA GTPase signaling compromises migration, as inhibition of RhoA-signaling promoted migration behavior. This study provides novel insights into the control of OPC migration, which could be useful for further understanding of the complex differentiation and myelination process.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
42
|
Lv S, Chen Z, Mi H, Yu X. Cofilin Acts as a Booster for Progression of Malignant Tumors Represented by Glioma. Cancer Manag Res 2022; 14:3245-3269. [PMID: 36452435 PMCID: PMC9703913 DOI: 10.2147/cmar.s389825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/10/2022] [Indexed: 07/20/2023] Open
Abstract
Cofilin, as a depolymerization factor of actin filaments, has been widely studied. Evidences show that cofilin has a role in actin structural reorganization and dynamic regulation. In recent years, several studies have demonstrated a regulatory role for cofilin in the migration and invasion mediated by cell dynamics and epithelial to mesenchymal transition (EMT)/EMT-like process, apoptosis, radiotherapy resistance, immune escape, and transcriptional dysregulation of malignant tumor cells, particularly glioma cells. On this basis, it is practical to evaluate cofilin as a biomarker for predicting tumor metastasis and prognosis. Targeting cofilin regulating kinases, Lin11, Isl-1 and Mec-3 kinases (LIM kinases/LIMKs) and their major upstream molecules inhibits tumor cell migration and invasion and targeting cofilin-mediated mitochondrial pathway induces apoptosis of tumor cells represent effective options for the development of novel anti-malignant tumor drug, especially anti-glioma drugs. This review explores the structure, general biological function, and regulation of cofilin, with an emphasis on the critical functions and prospects for clinical therapeutic applications of cofilin in malignant tumors represented by glioma.
Collapse
Affiliation(s)
- Shihong Lv
- Department of Gastroenterology, The Second Affiliated Hospital of Mudanjiang Medical College, Mudanjiang Medical College, Mudanjiang, 157011, People’s Republic of China
| | - Zhiye Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Hailong Mi
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Xingjiang Yu
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| |
Collapse
|
43
|
Chetty AK, Ha BH, Boggon TJ. Rho family GTPase signaling through type II p21-activated kinases. Cell Mol Life Sci 2022; 79:598. [PMID: 36401658 PMCID: PMC10105373 DOI: 10.1007/s00018-022-04618-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/07/2022] [Accepted: 10/28/2022] [Indexed: 11/21/2022]
Abstract
Signaling from the Rho family small GTPases controls a wide range of signaling outcomes. Key among the downstream effectors for many of the Rho GTPases are the p21-activated kinases, or PAK group. The PAK family comprises two types, the type I PAKs (PAK1, 2 and 3) and the type II PAKs (PAK4, 5 and 6), which have distinct structures and mechanisms of regulation. In this review, we discuss signal transduction from Rho GTPases with a focus on the type II PAKs. We discuss the role of PAKs in signal transduction pathways and selectivity of Rho GTPases for PAK family members. We consider the less well studied of the Rho GTPases and their PAK-related signaling. We then discuss the molecular basis for kinase domain recognition of substrates and for regulation of signaling. We conclude with a discussion of the role of PAKs in cross talk between Rho family small GTPases and the roles of PAKs in disease.
Collapse
Affiliation(s)
- Ashwin K Chetty
- Yale College, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Byung Hak Ha
- Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Titus J Boggon
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.
- Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.
- Yale Cancer Center, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.
| |
Collapse
|
44
|
Zhang Z, Sha B, Zhao L, Zhang H, Feng J, Zhang C, Sun L, Luo M, Gao B, Guo H, Wang Z, Xu F, Lu TJ, Genin GM, Lin M. Programmable integrin and N-cadherin adhesive interactions modulate mechanosensing of mesenchymal stem cells by cofilin phosphorylation. Nat Commun 2022; 13:6854. [PMID: 36369425 PMCID: PMC9652405 DOI: 10.1038/s41467-022-34424-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022] Open
Abstract
During mesenchymal development, the sources of mechanical forces transduced by cells transition over time from predominantly cell-cell interactions to predominantly cell-extracellular matrix (ECM) interactions. Transduction of the associated mechanical signals is critical for development, but how these signals converge to regulate human mesenchymal stem cells (hMSCs) mechanosensing is not fully understood, in part because time-evolving mechanical signals cannot readily be presented in vitro. Here, we established a DNA-driven cell culture platform that could be programmed to present the RGD peptide from fibronectin, mimicking cell-ECM interactions, and the HAVDI peptide from N-cadherin, mimicking cell-cell interactions, through DNA hybridization and toehold-mediated strand displacement reactions. The platform could be programmed to mimic the evolving cell-ECM and cell-cell interactions during mesenchymal development. We applied this platform to reveal that RGD/integrin ligation promoted cofilin phosphorylation, while HAVDI/N-cadherin ligation inhibited cofilin phosphorylation. Cofilin phosphorylation upregulated perinuclear apical actin fibers, which deformed the nucleus and thereby induced YAP nuclear localization in hMSCs, resulting in subsequent osteogenic differentiation. Our programmable culture platform is broadly applicable to the study of dynamic, integrated mechanobiological signals in development, healing, and tissue engineering.
Collapse
Affiliation(s)
- Zheng Zhang
- grid.43169.390000 0001 0599 1243The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 P.R. China ,grid.43169.390000 0001 0599 1243Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, 710049 P.R. China
| | - Baoyong Sha
- grid.508540.c0000 0004 4914 235XSchool of Basic Medical Science, Xi’an Medical University, Xi’an, 710021 P.R. China
| | - Lingzhu Zhao
- grid.43169.390000 0001 0599 1243The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 P.R. China ,grid.43169.390000 0001 0599 1243Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, 710049 P.R. China
| | - Huan Zhang
- grid.43169.390000 0001 0599 1243The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 P.R. China ,grid.43169.390000 0001 0599 1243Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, 710049 P.R. China
| | - Jinteng Feng
- grid.43169.390000 0001 0599 1243The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 P.R. China ,grid.43169.390000 0001 0599 1243Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, 710049 P.R. China ,grid.452438.c0000 0004 1760 8119Department of Medical Oncology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 P.R. China
| | - Cheng Zhang
- grid.43169.390000 0001 0599 1243The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 P.R. China ,grid.43169.390000 0001 0599 1243Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, 710049 P.R. China
| | - Lin Sun
- grid.43169.390000 0001 0599 1243The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 P.R. China ,grid.43169.390000 0001 0599 1243Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, 710049 P.R. China
| | - Meiqing Luo
- grid.43169.390000 0001 0599 1243The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 P.R. China ,grid.43169.390000 0001 0599 1243Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, 710049 P.R. China
| | - Bin Gao
- Department of Endocrinology, Second Affiliated Hospital of Air Force Military Medical University, Xi’an, 710038 P.R. China
| | - Hui Guo
- grid.452438.c0000 0004 1760 8119Department of Medical Oncology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 P.R. China
| | - Zheng Wang
- grid.452438.c0000 0004 1760 8119Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 P.R. China
| | - Feng Xu
- grid.43169.390000 0001 0599 1243The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 P.R. China ,grid.43169.390000 0001 0599 1243Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, 710049 P.R. China
| | - Tian Jian Lu
- grid.64938.300000 0000 9558 9911State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 P.R. China ,grid.64938.300000 0000 9558 9911MIIT Key Laboratory for Multifunctional Lightweight Materials and Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 P.R. China
| | - Guy M. Genin
- grid.43169.390000 0001 0599 1243The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 P.R. China ,grid.43169.390000 0001 0599 1243Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, 710049 P.R. China ,grid.4367.60000 0001 2355 7002Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, 63130 MO USA ,grid.4367.60000 0001 2355 7002NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, 63130 MO USA
| | - Min Lin
- grid.43169.390000 0001 0599 1243The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 P.R. China ,grid.43169.390000 0001 0599 1243Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, 710049 P.R. China
| |
Collapse
|
45
|
Wang T, Rao D, Yu C, Sheng J, Luo Y, Xia L, Huang W. RHO GTPase family in hepatocellular carcinoma. Exp Hematol Oncol 2022; 11:91. [DOI: 10.1186/s40164-022-00344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractRHO GTPases are a subfamily of the RAS superfamily of proteins, which are highly conserved in eukaryotic species and have important biological functions, including actin cytoskeleton reorganization, cell proliferation, cell polarity, and vesicular transport. Recent studies indicate that RHO GTPases participate in the proliferation, migration, invasion and metastasis of cancer, playing an essential role in the tumorigenesis and progression of hepatocellular carcinoma (HCC). This review first introduces the classification, structure, regulators and functions of RHO GTPases, then dissects its role in HCC, especially in migration and metastasis. Finally, we summarize inhibitors targeting RHO GTPases and highlight the issues that should be addressed to improve the potency of these inhibitors.
Collapse
|
46
|
Wurz AI, Schulz AM, O’Bryant CT, Sharp JF, Hughes RM. Cytoskeletal dysregulation and neurodegenerative disease: Formation, monitoring, and inhibition of cofilin-actin rods. Front Cell Neurosci 2022; 16:982074. [PMID: 36212686 PMCID: PMC9535683 DOI: 10.3389/fncel.2022.982074] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/31/2022] [Indexed: 12/04/2022] Open
Abstract
The presence of atypical cytoskeletal dynamics, structures, and associated morphologies is a common theme uniting numerous diseases and developmental disorders. In particular, cytoskeletal dysregulation is a common cellular feature of Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease. While the numerous activators and inhibitors of dysregulation present complexities for characterizing these elements as byproducts or initiators of the disease state, it is increasingly clear that a better understanding of these anomalies is critical for advancing the state of knowledge and plan of therapeutic attack. In this review, we focus on the hallmarks of cytoskeletal dysregulation that are associated with cofilin-linked actin regulation, with a particular emphasis on the formation, monitoring, and inhibition of cofilin-actin rods. We also review actin-associated proteins other than cofilin with links to cytoskeleton-associated neurodegenerative processes, recognizing that cofilin-actin rods comprise one strand of a vast web of interactions that occur as a result of cytoskeletal dysregulation. Our aim is to present a current perspective on cytoskeletal dysregulation, connecting recent developments in our understanding with emerging strategies for biosensing and biomimicry that will help shape future directions of the field.
Collapse
Affiliation(s)
- Anna I. Wurz
- Department of Chemistry, East Carolina University, Greenville, NC, United States
| | - Anna M. Schulz
- Department of Chemistry, East Carolina University, Greenville, NC, United States
| | - Collin T. O’Bryant
- Department of Chemistry, East Carolina University, Greenville, NC, United States
| | - Josephine F. Sharp
- Department of Chemistry, Notre Dame College, South Euclid, OH, United States
| | - Robert M. Hughes
- Department of Chemistry, East Carolina University, Greenville, NC, United States
- *Correspondence: Robert M. Hughes,
| |
Collapse
|
47
|
Huang E, Li S. Liver Kinase B1 Functions as a Regulator for Neural Development and a Therapeutic Target for Neural Repair. Cells 2022; 11:cells11182861. [PMID: 36139438 PMCID: PMC9496952 DOI: 10.3390/cells11182861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/02/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
The liver kinase B1 (LKB1), also known as serine/threonine kinase 11 (STK11) and Par-4 in C. elegans, has been identified as a master kinase of AMPKs and AMPK-related kinases. LKB1 plays a crucial role in cell growth, metabolism, polarity, and tumor suppression. By interacting with the downstream signals of SAD, NUAK, MARK, and other kinases, LKB1 is critical to regulating neuronal polarization and axon branching during development. It also regulates Schwann cell function and the myelination of peripheral axons. Regulating LKB1 activity has become an attractive strategy for repairing an injured nervous system. LKB1 upregulation enhances the regenerative capacity of adult CNS neurons and the recovery of locomotor function in adult rodents with CNS axon injury. Here, we update the major cellular and molecular mechanisms of LKB1 in regulating neuronal polarization and neural development, and the implications thereof for promoting neural repair, axon regeneration, and functional recovery in adult mammals.
Collapse
|
48
|
Mehrotra S, Pierce ML, Dravid SM, Murray TF. Stimulation of Neurite Outgrowth in Cerebrocortical Neurons by Sodium Channel Activator Brevetoxin-2 Requires Both N-Methyl-D-aspartate Receptor 2B (GluN2B) and p21 Protein (Cdc42/Rac)-Activated Kinase 1 (PAK1). Mar Drugs 2022; 20:559. [PMID: 36135748 PMCID: PMC9504648 DOI: 10.3390/md20090559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 12/05/2022] Open
Abstract
N-methyl-D-aspartate (NMDA) receptors play a critical role in activity-dependent dendritic arborization, spinogenesis, and synapse formation by stimulating calcium-dependent signaling pathways. Previously, we have shown that brevetoxin 2 (PbTx-2), a voltage-gated sodium channel (VGSC) activator, produces a concentration-dependent increase in intracellular sodium [Na+]I and increases NMDA receptor (NMDAR) open probabilities and NMDA-induced calcium (Ca2+) influxes. The objective of this study is to elucidate the downstream signaling mechanisms by which the sodium channel activator PbTx-2 influences neuronal morphology in murine cerebrocortical neurons. PbTx-2 and NMDA triggered distinct Ca2+-influx pathways, both of which involved the NMDA receptor 2B (GluN2B). PbTx-2-induced neurite outgrowth in day in vitro 1 (DIV-1) neurons required the small Rho GTPase Rac1 and was inhibited by both a PAK1 inhibitor and a PAK1 siRNA. PbTx-2 exposure increased the phosphorylation of PAK1 at Thr-212. At DIV-5, PbTx-2 induced increases in dendritic protrusion density, p-cofilin levels, and F-actin throughout the dendritic arbor and soma. Moreover, PbTx-2 increased miniature excitatory post-synaptic currents (mEPSCs). These data suggest that the stimulation of neurite outgrowth, spinogenesis, and synapse formation produced by PbTx-2 are mediated by GluN2B and PAK1 signaling.
Collapse
Affiliation(s)
- Suneet Mehrotra
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
- Omeros, Seattle, WA 98119, USA
| | - Marsha L. Pierce
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
- Department of Pharmacology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| | - Shashank M. Dravid
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Thomas F. Murray
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
49
|
Lafrance AE, Chimalapati S, Garcia Rodriguez N, Kinch LN, Kaval KG, Orth K. Enzymatic Specificity of Conserved Rho GTPase Deamidases Promotes Invasion of Vibrio parahaemolyticus at the Expense of Infection. mBio 2022; 13:e0162922. [PMID: 35862776 PMCID: PMC9426531 DOI: 10.1128/mbio.01629-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 11/23/2022] Open
Abstract
Vibrio parahaemolyticus is among the leading causes of bacterial seafood-borne acute gastroenteritis. Like many intracellular pathogens, V. parahaemolyticus invades host cells during infection by deamidating host small Rho GTPases. The Rho GTPase deamidating activity of VopC, a type 3 secretion system (T3SS) translocated effector, drives V. parahaemolyticus invasion. The intracellular pathogen uropathogenic Escherichia coli (UPEC) invades host cells by secreting a VopC homolog, the secreted toxin cytotoxic necrotizing factor 1 (CNF1). Because of the homology between VopC and CNF1, we hypothesized that topical application of CNF1 during V. parahaemolyticus infection could supplement VopC activity. Here, we demonstrate that CNF1 improves the efficiency of V. parahaemolyticus invasion, a bottleneck in V. parahaemolyticus infection, across a range of doses. CNF1 increases V. parahaemolyticus invasion independent of both VopC and the T3SS altogether but leaves a disproportionate fraction of intracellular bacteria unable to escape the endosome and complete their infection cycle. This phenomenon holds true in the presence or absence of VopC but is particularly pronounced in the absence of a T3SS. The native VopC, by contrast, promotes a far less efficient invasion but permits the majority of internalized bacteria to escape the endosome and complete their infection cycle. These studies highlight the significance of enzymatic specificity during infection, as virulence factors (VopC and CNF1 in this instance) with similarities in function (bacterial uptake), catalytic activity (deamidation), and substrates (Rho GTPases) are not sufficiently interchangeable for mediating a successful invasion for neighboring bacterial pathogens. IMPORTANCE Many species of intracellular bacterial pathogens target host small Rho GTPases to initiate invasion, including the human pathogens Vibrio parahaemolyticus and uropathogenic Escherichia coli (UPEC). The type three secretion system (T3SS) effector VopC of V. parahaemolyticus promotes invasion through the deamidation of Rac1 and CDC42 in the host, whereas the secreted toxin cytotoxic necrotizing factor 1 (CNF1) drives UPEC's internalization through the deamidation of Rac1, CDC42, and RhoA. Despite these similarities in the catalytic activity of CNF1 and VopC, we observed that the two enzymes were not interchangeable. Although CNF1 increased V. parahaemolyticus endosomal invasion, most intracellular V. parahaemolyticus aborted their infection cycle and remained trapped in endosomes. Our findings illuminate how the precise biochemical fine-tuning of T3SS effectors is essential for efficacious pathogenesis. Moreover, they pave the way for future investigations into the biochemical mechanisms underpinning V. parahaemolyticus endosomal escape and, more broadly, the regulation of successful pathogenesis.
Collapse
Affiliation(s)
- Alexander E. Lafrance
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Suneeta Chimalapati
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nalleli Garcia Rodriguez
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lisa N. Kinch
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Karan Gautam Kaval
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
50
|
Sertoli cell survival and barrier function are regulated by miR-181c/d-Pafah1b1 axis during mammalian spermatogenesis. Cell Mol Life Sci 2022; 79:498. [PMID: 36008729 PMCID: PMC9411099 DOI: 10.1007/s00018-022-04521-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/03/2022]
Abstract
Sertoli cells contribute to the formation of the blood-testis barrier (BTB), which is necessary for normal spermatogenesis. Recently, microRNAs (miRNAs) have emerged as posttranscriptional regulatory elements in BTB function during spermatogenesis. Our previous study has shown that miR-181c or miR-181d (miR-181c/d) is highly expressed in testes from boars at 60 days old compared with at 180 days old. Herein, we found that overexpression of miR-181c/d via miR-181c/d mimics in murine Sertoli cells (SCs) or through injecting miR-181c/d-overexpressing lentivirus in murine testes perturbs BTB function by altering BTB-associated protein distribution at the Sertoli cell-cell interface and F-actin organization, but this in vivo perturbation disappears approximately 6 weeks after the final treatment. We also found that miR-181c/d represses Sertoli cell proliferation and promotes its apoptosis. Moreover, miR-181c/d regulates Sertoli cell survival and barrier function by targeting platelet-activating factor acetylhydrolase 1b regulatory subunit 1 (Pafah1b1) gene. Furthermore, miR-181c/d suppresses PAFAH1B1 expression, reduces the complex of PAFAH1B1 with IQ motif-containing GTPase activating protein 1, and inhibits CDC42/PAK1/LIMK1/Cofilin pathway which is required for F-actin stabilization. In total, our results reveal the regulatory axis of miR-181c/d-Pafah1b1 in cell survival and barrier function of Sertoli cells and provide additional insights into miRNA functions in mammalian spermatogenesis.
Collapse
|