1
|
Chen X, Sun F, Wang X, Feng X, Aref AR, Tian Y, Ashrafizadeh M, Wu D. Inflammation, microbiota, and pancreatic cancer. Cancer Cell Int 2025; 25:62. [PMID: 39987122 PMCID: PMC11847367 DOI: 10.1186/s12935-025-03673-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/04/2025] [Indexed: 02/24/2025] Open
Abstract
Pancreatic cancer (PC) is a malignancy of gastrointestinal tract threatening the life of people around the world. In spite of the advances in the treatment of PC, the overall survival of this disease in advanced stage is less than 12%. Moreover, PC cells have aggressive behaviour in proliferation and metastasis as well as capable of developing therapy resistance. Therefore, highlighting the underlying molecular mechanisms in PC pathogenesis can provide new insights for its treatment. In the present review, inflammation and related pathways as well as role of gut microbiome in the regulation of PC pathogenesis are highlighted. The various kinds of interleukins and chemokines are able to regulate angiogenesis, metastasis, proliferation, inflammation and therapy resistance in PC cells. Furthermore, a number of molecular pathways including NF-κB, TLRs and TGF-β demonstrate dysregulation in PC aggravating inflammation and tumorigenesis. Therapeutic regulation of these pathways can reverse inflammation and progression of PC. Both chronic and acute pancreatitis have been shown to be risk factors in the development of PC, further highlighting the role of inflammation. Finally, the composition of gut microbiota can be a risk factor for PC development through affecting pathways such as NF-κB to mediate inflammation.
Collapse
Affiliation(s)
- XiaoLiang Chen
- Department of General Surgery and Integrated Traditional Chinese and Western Medicine Oncology, Tiantai People'S Hospital of Zhejiang Province(Tiantai Branch of Zhejiang Provincial People'S Hospital), Hangzhou Medical College, Taizhou, Zhejiang, China
| | - Feixia Sun
- Nursing Department, Shandong First Medical University Affiliated Occupational Disease Hospital (Shandong Provincial Occupational Disease Hospital), Jinan, China
| | - Xuqin Wang
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, 401120, China
| | - Xiaoqiang Feng
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, 525200, Guangdong, China
| | - Amir Reza Aref
- VitroVision Department, DeepkinetiX, Inc, Boston, MA, USA
| | - Yu Tian
- Research Center, the Huizhou Central People'S Hospital, Guangdong Medical University, Huizhou, Guangdong, China.
- School of Public Health, Benedictine University, No. 5700 College Road, Lisle, IL, 60532, USA.
| | - Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250000, Shandong, China.
| | - Dengfeng Wu
- Department of Emergency, The People'S Hospital of Gaozhou, No. 89 Xiguan Road, Gaozhou, 525200, Guangdong, China.
| |
Collapse
|
2
|
Liu MW, Zhang CH, Ma SH, Zhang DQ, Jiang LQ, Tan Y. Protective Effects of Baicalein on Lipopolysaccharide-Induced AR42J PACs through Attenuation of Both Inflammation and Pyroptosis via Downregulation of miR-224-5p/PARP1. Mediators Inflamm 2024; 2024:6618927. [PMID: 39421730 PMCID: PMC11486537 DOI: 10.1155/2024/6618927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 05/22/2024] [Accepted: 08/24/2024] [Indexed: 10/19/2024] Open
Abstract
Background Baicalein has been used to treat inflammation-related diseases; nevertheless, its specific mechanism of action is unclear. Therefore, we examined the protective effects of baicalein on lipopolysaccharide-induced damage to AR42J pancreatic acinar cells (PACs) and determined its mechanism of action for protection. Methods An in vitro cell model of acute pancreatitis (AP) was established using lipopolysaccharide (LPS) (1 mg/L)-induced PACs (AR42J), and the relative survival rate was determined using the 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide (MTT) technique. Flow cytometry was applied to evaluate the apoptotic rates of AR42J PACs. The RNA and protein expression of miR-224-5p, poly ADP-ribose polymerase-1 (PARP1), nuclear transcription factor-κB65 (NF-κB65), phospho-kappa B alpha(p-IκB-α), interleukin(IL)-18R, NOD-like receptor thermal protein domain-associated protein 3 (NLRP3), gasdermin D (GSDMD), apoptosis-associated speck-like protein containing a CARD (ASC), and caspase-1 was detected based on the WB and RT-PCR assays. IL-1β, IL-6, IL-18, and TNF-α expression levels in AR42J cells were measured via ELISA method. The cell morphology was examined using the AO/EB method. Results The experiment confirmed a significant increase in the activity of AR42J cells treated with various doses of baicalein. Moreover, IL-1β, IL-6, TNF-α, and IL-18 expression levels in AR42J cells were dramatically reduced (P < 0.05), while miR-224-5p level was obviously enhanced. The protein and gene expression of PARP1, NF-κB65, p-IκB-α, IL-18R, GSDMD, ASC, NLRP3, and caspase-1 was obviously decreased (P < 0.05). Apoptosis in AR42J cells was significantly reduced with significant improvement in cell morphology. Conclusion Baicalein may significantly alleviate LPS-induced AR42J PAC damage by inhibiting the inflammatory response and pyroptosis. Its mode of action might be linked to higher miR-224-5p expression, which inhibits the PARP1/NF-κB and NLPR3/ASC/caspase-1/GSDMD pathways.
Collapse
Affiliation(s)
- Ming-Wei Liu
- Department of Emergency, Dali Bai Autonomous Prefecture People's Hospital, Dali 671000, China
| | - Chun-Hai Zhang
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Shou-Hong Ma
- Department of Medical Affairs, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi 653100, China
| | - De-Qiong Zhang
- Department of Medical Imaging, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Li-Qiong Jiang
- Physical Examination Center, Yunnan Fuwai Cardiovascular Hospital, Kunming 650032, China
| | - Yang Tan
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| |
Collapse
|
3
|
Qin A, Shi K, Tindall RR, Li J, Cheng B, Li J, Yang B, Yu Q, Zhang Y, Hong B, Kaur B, Younes M, Shen Q, Bailey-Lundberg JM, Cao Y, Ko TC. Characterization of Pancreatic Collagen-Expressing Fibroblasts in Mouse Acute Pancreatitis. GASTRO HEP ADVANCES 2024; 4:100557. [PMID: 39866719 PMCID: PMC11761323 DOI: 10.1016/j.gastha.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 09/16/2024] [Indexed: 01/28/2025]
Abstract
Background and Aims Pancreatic stellate cells (PSCs) are critical mediators in chronic pancreatitis with an undefined role in acute pancreatitis (AP). PSCs consist of a heterogenous group of cells and are considered interchangeable with pancreatic fibroblasts. This study explored the heterogeneous nature of PSCs by characterizing pancreatic collagen-expressing fibroblasts (PCFs) via lineage tracing in mouse normal and AP pancreas and determining the effect of PCF depletion in AP. Methods Tandem dimer Tomato (tdTom+) PCFs in collagen type 1 (Col1)a2CreERtdTomato (Tom) mice receiving tamoxifen were characterized via fluorescence, Oil Red staining, and flow cytometry. AP was induced by cerulein, AP injury was assessed, and tdTom+ PCFs were monitored. The effect of PCF depletion on AP injury was evaluated in Col1a2CreERdiphtheria toxin A mice. Results Approximately 13% of pancreatic cells in Col1a2CreERTom mice were labeled by tdTom (tdTom+ PCFs), which surrounded acini, ducts, and blood vessels, and stained with Oil Red, collagen type I, vimentin, and desmin. tdTom+ PCFs increased 2-fold during AP, correlating with AP score, amylase, and alpha-smooth muscle actin+ and Ki67+ staining. PCF depletion in Col1a2CreERdiphtheria toxin A mice receiving tamoxifen resulted in enhanced inflammation compared to control. Conclusion PCFs may constitute a subset of PSCs and can be activated during AP. PCF depletion aggravates AP, suggesting a protective role for PCFs.
Collapse
Affiliation(s)
- Amy Qin
- Department of Surgery, UTHealth at Houston, Houston, Texas
| | - Kevin Shi
- Department of Surgery, UTHealth at Houston, Houston, Texas
| | | | - Jiajing Li
- Department of Surgery, UTHealth at Houston, Houston, Texas
| | - Binglu Cheng
- Department of Surgery, UTHealth at Houston, Houston, Texas
| | - Jing Li
- Department of Surgery, UTHealth at Houston, Houston, Texas
| | - Baibing Yang
- Department of Surgery, UTHealth at Houston, Houston, Texas
| | - Qiang Yu
- Department of Surgery, UTHealth at Houston, Houston, Texas
| | - Yinjie Zhang
- Department of Surgery, UTHealth at Houston, Houston, Texas
| | - Bangxing Hong
- Department of Pathology, Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Balveen Kaur
- Department of Pathology, Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Mamoun Younes
- Department of Pathology, George Washington University, Washington, District of Columbia
| | - Qiang Shen
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | | | - Yanna Cao
- Department of Surgery, UTHealth at Houston, Houston, Texas
| | - Tien C. Ko
- Department of Surgery, UTHealth at Houston, Houston, Texas
| |
Collapse
|
4
|
Mattke J, Darden CM, Lawrence MC, Kuncha J, Shah YA, Kane RR, Naziruddin B. Toll-like receptor 4 in pancreatic damage and immune infiltration in acute pancreatitis. Front Immunol 2024; 15:1362727. [PMID: 38585277 PMCID: PMC10995222 DOI: 10.3389/fimmu.2024.1362727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Acute pancreatitis is a complex inflammatory disease resulting in extreme pain and can result in significant morbidity and mortality. It can be caused by several factors ranging from genetics, alcohol use, gall stones, and ductal obstruction caused by calcification or neutrophil extracellular traps. Acute pancreatitis is also characterized by immune cell infiltration of neutrophils and M1 macrophages. Toll-like receptor 4 (TLR4) is a pattern recognition receptor that has been noted to respond to endogenous ligands such as high mobility group box 1 (HMGB1) protein and or exogenous ligands such as lipopolysaccharide both of which can be present during the progression of acute pancreatitis. This receptor can be found on a variety of cell types from endothelial cells to resident and infiltrating immune cells leading to production of pro-inflammatory cytokines as well as immune cell activation and maturation resulting in the furthering of pancreatic damage during acute pancreatitis. In this review we will address the various mechanisms mediated by TLR4 in the advancement of acute pancreatitis and how targeting this receptor could lead to improved outcomes for patients suffering from this condition.
Collapse
Affiliation(s)
- Jordan Mattke
- Baylor University, Institute of Biomedical Studies, Waco, TX, United States
| | - Carly M. Darden
- Baylor University Medical Center, Annette C. and Harold C. Simmons Transplant Institute, Dallas, TX, United States
| | - Michael C. Lawrence
- Islet Cell Laboratory, Baylor Scott and White Research Institute, Dallas, TX, United States
| | - Jayachandra Kuncha
- Islet Cell Laboratory, Baylor Scott and White Research Institute, Dallas, TX, United States
| | - Yumna Ali Shah
- Islet Cell Laboratory, Baylor Scott and White Research Institute, Dallas, TX, United States
| | - Robert R. Kane
- Baylor University, Institute of Biomedical Studies, Waco, TX, United States
| | - Bashoo Naziruddin
- Baylor University Medical Center, Annette C. and Harold C. Simmons Transplant Institute, Dallas, TX, United States
| |
Collapse
|
5
|
Shirai H, Tsukada K. Understanding bacterial infiltration of the pancreas through a deformable pancreatic duct. J Biomech 2024; 162:111883. [PMID: 38064997 DOI: 10.1016/j.jbiomech.2023.111883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 01/16/2024]
Abstract
Tiny amount of bacteria are found in the pancreas in pancreatitis and cancer, which seemed involved in inflammation and carcinogenesis. However, bacterial infiltration from the duodenum is inhibited by the physical defense mechanisms such as bile flow and the sphincter of Oddi. To understand how the bacteria possibly infiltrate the pancreas through a deformable pancreatic duct, influenced by the periodic contractions of the sphincter of Oddi, a mathematical model of bacterial infiltration is developed that considered large deformation, fluid flow, and bacterial transport in a deformable pancreatic duct. In addition, the sphincter's contraction wave is modeled by including its propagation from the pancreas toward the duodenum. Simulated structure of the deformed duct with the relaxed sphincter and simulated bile distribution agreed reasonably well with the literature, validating the model. Bacterial infiltration from the duodenum in a deformable pancreatic duct, following the sphincter's contraction, is counteracted by a gradual peristalsis-like deformation of the pancreatic duct, due to an antegrade contraction wave propagation from the pancreas to the duodenum, Parametric sensitivity analysis demonstrated that bacterial infiltration is increased with lower bile and pancreatic juice flow rate, greater contraction amplitude and frequency, thinner wall thickness, and retrograde contraction wave propagation. Since contraction waves following retrograde propagation are increased in patients with common bile duct stones and pancreatitis, they may possibly be factors for continuum inflammation of pancreas. (224 words).
Collapse
Affiliation(s)
- Hiroaki Shirai
- Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi Kohoku-ku, Yokohama-shi, Kanagawa 223-8522, Japan.
| | - Kosuke Tsukada
- Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi Kohoku-ku, Yokohama-shi, Kanagawa 223-8522, Japan; Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi Kohoku-ku, Yokohama-shi, Kanagawa 223-8522, Japan
| |
Collapse
|
6
|
Abeyta MA, Horst EA, Goetz BM, Mayorga EJ, Rodriguez-Jimenez S, Caratzu M, Baumgard LH. Effects of hindgut acidosis on production, metabolism, and inflammatory biomarkers in previously immune-activated lactating dairy cows. J Dairy Sci 2023; 106:4324-4335. [PMID: 37080781 DOI: 10.3168/jds.2022-22696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/08/2023] [Indexed: 04/22/2023]
Abstract
Previous stressors and systemic inflammation may increase the intestine's susceptibility to hindgut acidosis (HGA). Therefore, our experimental objectives were to evaluate the effects of isolated HGA on metabolism, production, and inflammation in simultaneously immune-activated lactating cows. Twelve rumen-cannulated Holstein cows (118 ± 41 d in milk; 1.7 ± 0.8 parity) were enrolled in a study with 3 experimental periods (P). Baseline data were collected during P1 (5 d). On d 1 of P2 (2 d), all cows received an i.v. lipopolysaccharide (LPS) bolus (0.2 µg/kg of body weight; BW). During P3 (4 d), cows were randomly assigned to 1 of 2 abomasal infusion treatments: (1) control (LPS-CON; 6 L of H2O/d; n = 6) or (2) starch infused (LPS-ST; 4 kg of corn starch + 6 L of H2O/d; n = 6). Treatments were allocated into 4 equal doses (1.5 L of H2O or 1 kg of starch and 1.5 L of H2O, respectively) and administered at 0000, 0600, 1200, and 1800 h daily. Additionally, both treatments received i.v. LPS on d 1 and 3 of P3 (0.8 and 1.6 µg/kg of BW, respectively) to maintain an inflamed state. Effects of treatment, time, and their interaction were assessed. Repeated LPS administration initiated and maintained an immune-activated state, as indicated by increased circulating white blood cells (WBC), serum amyloid A (SAA), and LPS-binding protein (LBP) during P2 and P3 (29%, 3-fold, and 50% relative to P1, respectively) for both abomasal infusion treatments. Regardless of abomasal treatment, milk yield and dry matter intake were decreased throughout P2 and P3 but with lesser severity following each LPS challenge (54, 44, and 37%, and 49, 42, and 40% relative to baseline on d 1 of P2, d 1 and d 3 of P3, respectively). As expected, starch infusions markedly decreased fecal pH (5.56 at nadir vs. 6.57 during P1) and increased P3 fecal starch relative to LPS-CON (23.7 vs. 2.4% of dry matter). Neither LPS nor starch infusions altered circulating glucose, insulin, nonesterified fatty acids, or β-hydroxybutyrate, although LPS-ST cows had decreased blood urea nitrogen throughout P3 (16% relative to LPS-CON). Despite the striking reduction in fecal pH, HGA had no additional effect on circulating WBC, SAA, or LBP. Thus, in previously immune-activated dairy cows, HGA did not augment the inflammatory state, as indicated by a lack of perturbations in production, metabolism, and inflammatory biomarkers.
Collapse
Affiliation(s)
- M A Abeyta
- Department of Animal Science, Iowa State University, Ames 50011
| | - E A Horst
- Department of Animal Science, Iowa State University, Ames 50011
| | - B M Goetz
- Department of Animal Science, Iowa State University, Ames 50011
| | - E J Mayorga
- Department of Animal Science, Iowa State University, Ames 50011
| | | | - M Caratzu
- Department of Animal Science, Iowa State University, Ames 50011
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames 50011.
| |
Collapse
|
7
|
Al Mamun A, Suchi SA, Aziz MA, Zaeem M, Munir F, Wu Y, Xiao J. Pyroptosis in acute pancreatitis and its therapeutic regulation. Apoptosis 2022; 27:465-481. [PMID: 35687256 DOI: 10.1007/s10495-022-01729-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2022] [Indexed: 12/20/2022]
Abstract
Pyroptosis defines a new type of GSDMs-mediated programmed cell death, distinguishes from the classical concepts of apoptosis and necrosis-mediated cell death and is prescribed by cell swelling and membrane denaturation, leading to the extensive secretion of cellular components and low-grade inflammatory response. However, NLRP3 inflammasome activation can trigger its downstream inflammatory cytokines, leading to the activation of pyroptosis-regulated cell death. Current studies reveal that activation of caspase-4/5/11-driven non-canonical inflammasome signaling pathways facilitates the pathogenesis and progression of acute pancreatitis (AP). In addition, a large number of studies have reported that NLRP3 inflammasome-dependent pyroptosis is a crucial player in driving the course of the pathogenesis of AP. Excessive uncontrolled GSDMD-mediated pyroptosis has been implicated in AP. Therefore, the pyroptosis-related molecule GSDMD may be an independent prognostic biomarker for AP. The present review paper summarizes the molecular mechanisms of pyroptotic signaling pathways and their pathophysiological impacts on the progress of AP. Moreover, we briefly present some experimental compounds targeting pyroptosis-regulated cell death for exploring novel therapeutic directions for the treatment and management of AP. Our review investigations strongly suggest that targeting pyroptosis could be an ideal therapeutic approach in AP.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Suzia Aktar Suchi
- Department of Pharmacy, College of Pharmacy, Chosun University, Gwangju, 501759, South Korea
| | - Md Abdul Aziz
- Department of Pharmacy, Faculty of Pharmacy and Health Sciences, State University of Bangladesh, Dhaka, 1205, Bangladesh.,Laboratory of Pharmacogenomics and Molecular Biology, Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Muhammad Zaeem
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Fahad Munir
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Province, Wenzhou, 325000, China
| | - Yanqing Wu
- Institute of Life Sciences, Wenzhou University, Zhejiang Province, Wenzhou, 325035, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China. .,Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China.
| |
Collapse
|
8
|
Sexton RE, Uddin MH, Bannoura S, Khan HY, Mzannar Y, Li Y, Aboukameel A, Al-Hallak MN, Al-Share B, Mohamed A, Nagasaka M, El-Rayes B, Azmi AS. Connecting the Human Microbiome and Pancreatic Cancer. Cancer Metastasis Rev 2022; 41:317-331. [PMID: 35366155 PMCID: PMC8976105 DOI: 10.1007/s10555-022-10022-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/02/2022] [Indexed: 11/02/2022]
Abstract
Pancreatic cancer is a deadly disease that is increasing in incidence throughout the world. There are no clear causal factors associated with the incidence of pancreatic cancer; however, some correlation to smoking, diabetes and alcohol has been described. Recently, a few studies have linked the human microbiome (oral and gastrointestinal tract) to pancreatic cancer development. A perturbed microbiome has been shown to alter normal cells while promoting cancer-related processes such as increased cell signaling, immune system evasion and invasion. In this article, we will review in detail the alterations within the gut and oral microbiome that have been linked to pancreatic cancer and explore the ability of other microbiomes, such as the lung and skin microbiome, to contribute to disease development. Understanding ways to identify a perturbed microbiome can result in advancements in pancreatic cancer research and allow for prevention, earlier detection and alternative treatment strategies for patients.
Collapse
Affiliation(s)
- Rachel E Sexton
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Md Hafiz Uddin
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Sahar Bannoura
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Husain Yar Khan
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Yousef Mzannar
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Yiwei Li
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Amro Aboukameel
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Mohammad Najeeb Al-Hallak
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Bayan Al-Share
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Amr Mohamed
- UH Seidman Cancer Center, University Hospitals, Case Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Misako Nagasaka
- University of California, Irvine, UCI Health Chao Family Comprehensive Cancer Center, CA, Irvine, USA
| | - Bassel El-Rayes
- O'Neal Comprehensive Cancer Center, University of Alabama, AL, Tuscaloosa, USA
| | - Asfar S Azmi
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA.
| |
Collapse
|
9
|
Tong J, Zhou J, Fang M, Wang G, Fu S, Sun B, Lv J. The anti-inflammatory mechanism of SAHA in acute pancreatitis through HDAC5/SLIT2/Akt/β-catenin axis. Hum Mol Genet 2022; 31:2023-2034. [PMID: 35022732 DOI: 10.1093/hmg/ddab370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/27/2021] [Accepted: 12/21/2021] [Indexed: 11/14/2022] Open
Abstract
Acute pancreatitis (AP) is widely recognized to be an inflammation-related disease, in which HDAC was upregulated. The anti-inflammatory role of suberoylanilide hydroxamic acid (SAHA), a HDAC inhibitor, has been documented. In this context, this research was implemented to figure out whether SAHA manipulated inflammation in AP. Subsequent to induction of AP mouse model, HDAC5 expression was detected. The binding of HDAC5 and SLIT2 was detected by Co-Immunoprecipitation and ChIP assays. SAHA treatment and gain- and loss-of-function approaches were used in AP mice and lipopolysaccharide (LPS)-induced pancreatic acinar cells. In mice, biochemical methods were implemented to measure activities of pancreatic lipase, trypsin, MPO and pancreatic edema, TUNEL staining to determine pancreatic cell apoptosis, and flow cytometry to assess the total number of leukocytes and neutrophils in pancreas. In pancreatic acinar cells, CCK-8 was performed to evaluate cell viability. HDAC5 exhibited overexpression in AP mice. Mechanical analysis showed that HDAC5 facilitated SLIT2 deacetylation to downregulate SLIT2, thus activating Akt/β-catenin pathway in pancreatic acinar cells. SAHA treatment, HDAC5 silencing, or SLIT2 overexpression diminished inflammation in AP in vivo and in vitro. SAHA treatment, HDAC5 silencing, or SLIT2 overexpression reduced activities of pancreatic lipase, trypsin, MPO, pancreatic edema, and cell apoptosis in AP mice as well as elevated viability of LPS-induced pancreatic acinar cells. SAHA might exert anti-inflammatory effects in AP mice via HDAC5/SLIT2/Akt/β-catenin axis.
Collapse
Affiliation(s)
- Jinxue Tong
- Second Colorectal Surgery Department, Harbin Medical University Tumor Hospital, Harbin 150081, P.R. China
| | - Jiandang Zhou
- Second Colorectal Surgery Department, Harbin Medical University Tumor Hospital, Harbin 150081, P.R. China
| | - Min Fang
- Second Colorectal Surgery Department, Harbin Medical University Tumor Hospital, Harbin 150081, P.R. China
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Songbin Fu
- Genetic Laboratory, Harbin Medical University, Harbin 150081, P.R. China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Jiachen Lv
- Second Colorectal Surgery Department, Harbin Medical University Tumor Hospital, Harbin 150081, P.R. China
| |
Collapse
|
10
|
Koppel K, Tang H, Javed I, Parsa M, Mortimer M, Davis TP, Lin S, Chaffee AL, Ding F, Ke PC. Elevated amyloidoses of human IAPP and amyloid beta by lipopolysaccharide and their mitigation by carbon quantum dots. NANOSCALE 2020; 12:12317-12328. [PMID: 32490863 PMCID: PMC7325865 DOI: 10.1039/d0nr02710c] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Type 2 diabetes (T2D) and Alzheimer's disease (AD) represent two most prevalent amyloid diseases with a significant global burden. Pathologically, T2D and AD are characterized by the presence of amyloid plaques consisting primarily of toxic human islet amyloid polypeptide (IAPP) and amyloid beta (Aβ). It has been recently revealed that the gut microbiome plays key functions in the pathological progression of neurological disorders through the production of bacterial endotoxins, such as lipopolysaccharide (LPS). In this study, we examined the catalytic effects of LPS on IAPP and Aβ amyloidoses, and further demonstrated their mitigation with zero-dimensional carbon quantum dots (CQDs). Whereas LPS displayed preferred binding with the N-terminus of IAPP and the central hydrophobic core and C-terminus of Aβ, CQDs exhibited propensities for the amyloidogenic and C-terminus regions of IAPP and the N-terminus of Aβ, accordingly. The inhibitory effect of CQDs was verified by an embryonic zebrafish model exposed to the peptides and LPS, where impaired embryonic hatching was rescued and production of reactive oxygen species in the organism was suppressed by the nanomaterial. This study revealed a robust synergy between LPS and amyloid peptides in toxicity induction, and implicated CQDs as a potential therapeutic against the pathologies of T2D and AD.
Collapse
Affiliation(s)
- Kairi Koppel
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
| | - Huayuan Tang
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA.
| | - Ibrahim Javed
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
| | - Mehrdad Parsa
- School of Chemistry, Monash University, 17 Rainforest Walk, Clayton, VIC 3800, Australia
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia. and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
| | - Sijie Lin
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Alan L Chaffee
- School of Chemistry, Monash University, 17 Rainforest Walk, Clayton, VIC 3800, Australia
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA.
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia. and Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai, 200032, China
| |
Collapse
|
11
|
Ozmen O, Topsakal S. Pregabalin Ameliorates Lipopolysaccharide-Induced Pancreatic Inflammation in Aged Rats. Endocr Metab Immune Disord Drug Targets 2020; 19:1141-1147. [PMID: 30843496 DOI: 10.2174/1871530319666190306095532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/06/2019] [Accepted: 02/21/2019] [Indexed: 01/06/2023]
Abstract
OBJECTIVE The aim of this study was to examine pancreatic pathology and the prophylactic effects of pregabalin in lipopolysaccharide (LPS) induced sepsis model in aged rats. METHODS Twenty-four female, one-year-old, Wistar Albino rats were assigned to three groups; Group I (control), Group II (study group: 5mg/kg LPS intraperitoneal, single dose) and Group III(treatment group: 5mg/kg LPS+30 mg/kg oral pregabalin one hour before LPS). Animals were sacrificed by exsanguination 6 hours after LPS administration. Blood and pancreatic tissue samples were collected for biochemical, pathological, and immunohistochemical analyses. RESULTS LPS caused increases in serum amylase and lipase level but led to a reduction in glucose levels. Following histopathological analysis, numerous neutrophil leucocyte infiltrations were observed in vessels and pancreatic tissues. Increased caspase-3 expression was observed in both the endocrine and exocrine pancreas in the LPS group. Similarly, IL-6, caspase-3 (Cas-3), inducible nitric oxide synthase (iNOS), granulocyte colony-stimulating factor (G-CSF) and serum amyloid-A (SAA) expressions were increased by LPS. Pregabalin improved biochemical, histopathological, and immunohistochemical findings. CONCLUSION This study showed that LPS causes pathological findings in the pancreas, but pregabalin has ameliorative effects in aged rats with sepsis. Cas-3, IL-6, iNOS, G-CSF, and SAA all play pivotal roles in the pathogenesis of LPS-induced pancreatic damage.
Collapse
Affiliation(s)
- Ozlem Ozmen
- Department of Pathology, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Burdur, Turkey
| | - Senay Topsakal
- Pamukkale University, Department of Endocrinology and Metabolism, Denizli, Turkey
| |
Collapse
|
12
|
Srinivasan P, Ramesh V, Wu J, Heskett C, Chu BD, Said HM. Pyridoxine and pancreatic acinar cells: transport physiology and effect on gene expression profile. Am J Physiol Cell Physiol 2019; 317:C1107-C1114. [PMID: 31483702 DOI: 10.1152/ajpcell.00225.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pyridoxine (vitamin B6), an essential micronutrient for normal cell physiology, plays an important role in the function of the exocrine pancreas. Pancreatic acinar cells (PACs) obtain vitamin B6 from circulation, but little is known about the mechanism involved in the uptake process; limited information also exists on the effect of pyridoxine availability on the gene expression profile in these cells. We addressed both these issues in the current investigation using mouse-derived pancreatic acinar 266-6 cells (PAC 266-6) and human primary PACs (hPACs; obtained from organ donors), together with appropriate physiological and molecular (RNA-Seq) approaches. The results showed [3H]pyridoxine uptake to be 1) pH and temperature (but not Na+) dependent, 2) saturable as a function of concentration, 3) cis-inhibited by unlabeled pyridoxine and its close structural analogs, 4) trans-stimulated by unlabeled pyridoxine, 5) regulated by an intracellular Ca2+/calmodulin-mediated pathway, 6) adaptively-regulated by extracellular substrate (pyridoxine) availability, and 7) negatively impacted by exposure to cigarette smoke extract. Vitamin B6 availability was found (by means of RNA-Seq) to significantly (FDR < 0.05) modulate the expression profile of many genes in PAC 266-6 cells (including those that are relevant to pancreatic health and development). These studies demonstrate, for the first time, the involvement of a regulatable and specific carrier-mediated mechanism for pyridoxine uptake by PACs; the results also show that pyridoxine availability exerts profound effects on the gene expression profile in mammalian PACs.
Collapse
Affiliation(s)
- Padmanabhan Srinivasan
- Department of Medicine, University of California, Irvine, California.,Department of Physiology/Biophysics, University of California, Irvine, California.,Department of Medical Research, Veterans Affairs Medical Center, Long Beach, California
| | - Vignesh Ramesh
- Department of Medicine, University of California, Irvine, California.,Department of Physiology/Biophysics, University of California, Irvine, California.,Department of Medical Research, Veterans Affairs Medical Center, Long Beach, California
| | - Jie Wu
- Department of Biological Chemistry, University of California, Irvine, California
| | - Christopher Heskett
- Department of Medicine, University of California, Irvine, California.,Department of Physiology/Biophysics, University of California, Irvine, California.,Department of Medical Research, Veterans Affairs Medical Center, Long Beach, California
| | - Brian D Chu
- Department of Medicine, University of California, Irvine, California.,Department of Physiology/Biophysics, University of California, Irvine, California.,Department of Medical Research, Veterans Affairs Medical Center, Long Beach, California
| | - Hamid M Said
- Department of Medicine, University of California, Irvine, California.,Department of Physiology/Biophysics, University of California, Irvine, California.,Department of Medical Research, Veterans Affairs Medical Center, Long Beach, California
| |
Collapse
|
13
|
Waller K, James C, de Jong A, Blackmore L, Ma Y, Stagg A, Kelsell D, O'Dwyer M, Hutchins R, Alazawi W. ADAM17-Mediated Reduction in CD14 ++CD16 + Monocytes ex vivo and Reduction in Intermediate Monocytes With Immune Paresis in Acute Pancreatitis and Acute Alcoholic Hepatitis. Front Immunol 2019; 10:1902. [PMID: 31507587 PMCID: PMC6718469 DOI: 10.3389/fimmu.2019.01902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022] Open
Abstract
Impaired immune responses and increased susceptibility to infection characterize acute inflammatory conditions such as pancreatitis and alcoholic hepatitis and are major causes of morbidity and mortality. However, the mechanisms that drive this apparent immune paresis remain poorly understood. Monocytes mediate host responses to damage and pathogens in health and disease, and three subsets of monocytes have been defined based on CD14 and CD16 expression. We sought to determine the changes in monocyte subsets in acute pancreatitis (AP) and acute alcoholic hepatitis (AAH), together with functional consequences and mechanisms that underlie this change. Peripheral blood mononuclear cells (PBMCs) from patients with AP or AAH were compared with healthy controls. Monocyte subsets were defined by HLA-DR, CD14, and CD16 expression. Changes in surface and intracellular protein expression and phosphorylation were determined by flow cytometry. Phenotype and function were assessed following stimulation with lipopolysaccharide (LPS) or other agonists in the presence of specific inhibitors of TNFα and a disintegrin and metalloproteinase 17 (ADAM17). Patients with AP and AAH had reduced CD14++CD16+ intermediate monocytes compared to controls. Reduction of intermediate monocytes was recapitulated ex vivo by stimulating healthy control PBMCs with Toll-like receptor (TLR) agonists LPS, flagellin or polyinosilic:polycytidylic acid (poly I:C). Stimulation caused shedding of CD14 and CD16, which could be reversed using the ADAM17 inhibitor, TMI005 but not direct inhibitors of TNFα, a known ADAM17-target. Culturing PBMCs from healthy controls resulted in expansion of intermediate monocytes, which did not occur when LPS was in the culture medium. Cultured intermediate monocytes showed reduced expression of CX3CR1, CCR2, TLR4, and TLR5. We found reduced migratory responses, intracellular signaling and pro-inflammatory cytokine production, and increased expression of IL-10. Stimulation with TLR agonists results in ADAM17-mediated shedding of phenotypic markers from CD16+ monocytes, leading to apparent “loss” of intermediate monocytes. Reduction in CD14++CD16− monocytes and increased CD14++CD16+ is associated with altered responses in functional assays ex vivo. Patients with AP and AAH had reduced proportions of CD14++CD16+ monocytes and reduced phosphorylation of NFκB and IL-6 production in response to bacterial LPS. Together, these processes may contribute to the susceptibility to infection observed in AP and AAH.
Collapse
Affiliation(s)
- Kathryn Waller
- Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Charlotte James
- Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Anja de Jong
- Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Laura Blackmore
- Institute of Liver Studies and Transplantation, King's College London, London, United Kingdom
| | - Yun Ma
- Institute of Liver Studies and Transplantation, King's College London, London, United Kingdom
| | - Andrew Stagg
- Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - David Kelsell
- Blizard Institute, Queen Mary University of London, London, United Kingdom
| | | | - Robert Hutchins
- Hepatopancreaticobiliary Unit, Barts Health NHS Trust, London, United Kingdom
| | - William Alazawi
- Blizard Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
14
|
Ramenzoni LL, Zuellig RA, Hussain A, Lehmann R, Heumann C, Attin T, Schmidlin PR. Bacterial supernatants elevate glucose-dependent insulin secretion in rat pancreatic INS-1 line and islet β-cells via PI3K/AKT signaling. Mol Cell Biochem 2018; 452:17-27. [PMID: 30039349 PMCID: PMC6373304 DOI: 10.1007/s11010-018-3408-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 07/13/2018] [Indexed: 01/04/2023]
Abstract
Diabetes and periodontitis are considered associated chronic diseases, and hyperinsulinemia in prediabetes has been shown to be present in normoglycemic animals with periodontitis. As periodontal bacterial species are significant sources of endotoxemia and may directly stimulate insulin secretion, we hypothesized that increased bacterial virulence may exert an adverse effect on rat pancreatic β-cell function via PI3K/AKT signaling. INS-1 cells and isolated pancreatic islets were cultured separately with the following supernatants: Streptococcus anginosus, Streptococcus mutans, Fusobacterium nucleatum, Prevotella intermedia, Porphyromonas gingivalis (P.g), and Treponema denticola (T.d). Supernatants were purified from single bacterial cultures and prepared at different dilutions (100 pg/ml, 50 ng/ml, 200 ng/ml, and 500 ng/ml) to challenge INS-1 and islets. Gene expression (IL-1β, TNFα, IL-6, TLR2, TLR4, Ins1, and Ins2) and insulin secretion were measured. The results showed upregulation of gene expression up to 5.5-fold, not only as a result of the different dilutions used, but also due to bacterial virulence (p < 0.05). P.g and T.d supernatants demonstrated an increase in insulin secretion to fivefold at hypo- and hyperglycemia, yet stimulation from hypo- to hyperglycemia stays in the same ratio. Activation of TLR4/PI3K/AKT signaling by supernatants in INS-1 cells resulted in increased IL-1β, TNFα, IL-6 gene expression levels, and AKT phosphorylation, which were abolished by TLR4 and PI3K/AKT signaling inhibitor. We demonstrated that bacterial supernatants derived from gram-negative species increasingly stimulate insulin secretion in β-cells and TLR4 may promote inflammation by activating the PI3K/AKT signaling pathway to induce pro-inflammatory molecules. Bacterial species, depending on their virulence, appear to play a role in the relationship between periodontitis and prediabetes by promoting insulin resistance and β-cell compensatory response.
Collapse
Affiliation(s)
- Liza L Ramenzoni
- Clinic of Preventive Dentistry, Periodontology and Cariology, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland
| | - Richard A Zuellig
- Division of Endocrinology, Diabetes and Clinical Nutrition, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Abbas Hussain
- Clinic of Preventive Dentistry, Periodontology and Cariology, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland
| | - Roger Lehmann
- Division of Endocrinology, Diabetes and Clinical Nutrition, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Christian Heumann
- Department for Statistics, Ludwig-Maximilians-University Munich, Theresienstrasse 39/I, 80333, Munich, Germany
| | - Thomas Attin
- Clinic of Preventive Dentistry, Periodontology and Cariology, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland
| | - Patrick R Schmidlin
- Clinic of Preventive Dentistry, Periodontology and Cariology, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland.
| |
Collapse
|
15
|
Effect of Endotoxemia in Suckling Rats on Pancreatic Integrity and Exocrine Function in Adults: A Review Report. Gastroenterol Res Pract 2018; 2018:6915059. [PMID: 29576768 PMCID: PMC5821989 DOI: 10.1155/2018/6915059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/29/2017] [Accepted: 12/10/2017] [Indexed: 02/07/2023] Open
Abstract
Background. Endotoxin (LPS), the component of Gram-negative bacteria, is responsible for sepsis and neonatal mortality, but low concentrations of LPS produced tissue protection in experimental studies. The effects of LPS applied to the suckling rats on the pancreas of adult animals have not been previously explored. We present the impact of neonatal endotoxemia on the pancreatic exocrine function and on the acute pancreatitis which has been investigated in the adult animals. Endotoxemia was induced in suckling rats by intraperitoneal application of LPS from Escherichia coli or Salmonella typhi. In the adult rats, pretreated in the early period of life with LPS, histological manifestations of acute pancreatitis have been reduced. Pancreatic weight and plasma lipase activity were decreased, and SOD concentration was reversed and accompanied by a significant reduction of lipid peroxidation products (MDA + 4 HNE) in the pancreatic tissue. In the pancreatic acini, the significant increases in protein signals for toll-like receptor 4 and for heat shock protein 60 were found. Signal for the CCK1 receptor was reduced and pancreatic secretory responses to caerulein were diminished, whereas basal enzyme secretion was unaffected. These pioneer studies have shown that exposition of suckling rats to endotoxin has an impact on the pancreas in the adult organism.
Collapse
|
16
|
Artesunate ameliorates severe acute pancreatitis (SAP) in rats by inhibiting expression of pro-inflammatory cytokines and Toll-like receptor 4. Int Immunopharmacol 2016; 38:252-60. [PMID: 27318790 DOI: 10.1016/j.intimp.2016.06.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 06/08/2016] [Accepted: 06/11/2016] [Indexed: 02/06/2023]
Abstract
Severe acute pancreatitis (SAP) is a severe clinical condition with significant morbidity and mortality. Multiple organs dysfunction (MOD) is the leading cause of SAP-related death. The over-release of pro-inflammatory cytokines such as IL-1β, IL-6, and TNF-α is the underlying mechanism of MOD; however, there is no effective agent against the inflammation. Herein, artesunate (AS) was found to increase the survival of SAP rats significantly when injected with 3.5% sodium taurocholate into the biliopancreatic duct in a retrograde direction, improving their pancreatic pathology and decreasing serum amylase and pancreatic lipase activities along with substantially reduced pancreatic IL-1β and IL-6 release. In vitro, AS-pretreatment strongly inhibited IL-1β and IL-6 release and their mRNA expressions in the pancreatic acinar cells treated with lipopolysaccharide (LPS) but exerted little effect on TNF-α release. Additionally, AS reduced the mRNA expressions of Toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB) p65 as well as their protein expressions in the pancreatic acinar cells. In conclusion, our results demonstrated that AS could significantly protect SAP rats, and this protection was related to the reduction of digestive enzyme activities and pro-inflammatory cytokine expressions via inhibition of TLR4/NF-κB signaling pathway. Therefore, AS may be considered as a potential therapeutic agent against SAP.
Collapse
|
17
|
Knockdown of Myeloid Differentiation Factor 88 Attenuates Lipopolysaccharide-Induced Inflammatory Response in Pancreatic Ductal Cells. Pancreas 2016; 45:755-60. [PMID: 26684858 DOI: 10.1097/mpa.0000000000000565] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES The aim of the study was to explore the potential role of myeloid differentiation factor 88 (MyD88), which acts as an adaptor in the TLR4 signalling pathway, in immune responses of the pancreatic duct during acute pancreatitis. METHODS Primary cultures of pancreatic duct epithelial cells from Wistar rats and cultures of the pancreatic ductal ARIP cell line were treated with lipopolysaccharide (LPS), and expression of toll-like receptor 4 mRNA was determined using real-time PCR, expression of MyD88 protein using Western blot, and levels of inflammatory cytokines using enzyme-linked immunosorbent assay. These experiments were repeated using ARIP cells in which MyD88 expression was stably knocked down. RESULTS Toll-like receptor 4 and MyD88 expression were similar between pancreatic duct epithelial cells and ARIP cells after LPS stimulation. Myeloid differentiation factor 88 knockdown led to significantly lower levels of inflammatory cytokines after LPS induction in ARIP cells. CONCLUSIONS Myeloid differentiation factor 88 knockdown attenuates LPS-induced inflammatory responses in pancreatic ductal cells, suggesting that the MyD88 pathway plays a critical role in their immune defense activity.
Collapse
|
18
|
DelGiorno KE, Tam JW, Hall JC, Thotakura G, Crawford HC, van der Velden AWM. Persistent salmonellosis causes pancreatitis in a murine model of infection. PLoS One 2014; 9:e92807. [PMID: 24717768 PMCID: PMC3981665 DOI: 10.1371/journal.pone.0092807] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 02/25/2014] [Indexed: 12/29/2022] Open
Abstract
Pancreatitis, a known risk factor for the development of pancreatic ductal adenocarcinoma, is a serious, widespread medical condition usually caused by alcohol abuse or gallstone-mediated ductal obstruction. However, many cases of pancreatitis are of an unknown etiology. Pancreatitis has been linked to bacterial infection, but causality has yet to be established. Here, we found that persistent infection of mice with the bacterial pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) was sufficient to induce pancreatitis reminiscent of the human disease. Specifically, we found that pancreatitis induced by persistent S. Typhimurium infection was characterized by a loss of pancreatic acinar cells, acinar-to-ductal metaplasia, fibrosis and accumulation of inflammatory cells, including CD11b+ F4/80+, CD11b+ Ly6Cint Ly6G+ and CD11b+ Ly6Chi Ly6G- cells. Furthermore, we found that S. Typhimurium colonized and persisted in the pancreas, associated with pancreatic acinar cells in vivo, and could invade cultured pancreatic acinar cells in vitro. Thus, persistent infection of mice with S. Typhimurium may serve as a useful model for the study of pancreatitis as it relates to bacterial infection. Increased knowledge of how pathogenic bacteria can cause pancreatitis will provide a more integrated picture of the etiology of the disease and could lead to the development of new therapeutic approaches for treatment and prevention of pancreatitis and pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Kathleen E. DelGiorno
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States of America
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Jason W. Tam
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, United States of America
| | - Jason C. Hall
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States of America
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Gangadaar Thotakura
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Howard C. Crawford
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States of America
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Adrianus W. M. van der Velden
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
- Department of Pathology, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
19
|
Saitoh N, Awaya A, Sakudo A, SungWook S, Saeki K, Matsumoto Y, Onodera T. Serum Thymic Factor Prevents LPS-Induced Pancreatic Cell Damage in Mice via Up-Regulation of Bcl-2 Expression in Pancreas. Microbiol Immunol 2013; 48:629-38. [PMID: 15383698 DOI: 10.1111/j.1348-0421.2004.tb03471.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The protective effect of synthetic serum thymic factor (FTS) nonapeptide on lipopolysaccharide (LPS)-induced pancreatic cell damage in 10-week-old BALB/c male mice was investigated. Mice were divided into three groups. Group I was treated with LPS (10 micro g/head; i.p.) (LPS-treated mice). Group II was administered with FTS (50 micro g/head; i.p.) 24 hr before treatment with LPS and complemented immediately before LPS injection with FTS (50 micro g/head; i.p.) (FTS-administered mice). Group III was only treated with the same volume of saline (control mice). Treatment of LPS in vivo resulted in the destruction of pancreatic acinar cells. In those cells, many apoptotic cells were detected by immunohistochemistry using an anti-single stranded DNA antibody. Immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR) revealed that LPS treatment also caused low or a lack of insulin expression in pancreatic islets. In contrast, morphological change was not seen and apoptotic cell death was suppressed in pancreatic cells of FTS-administered mice. Moreover, insulin expression was normal in those mice. FTS administration enhanced expression of Bcl-2 mRNA levels in pancreatic tissues and IL-6 mRNA levels in splenocytes significantly compared with those of LPS treatment at 3 hr after LPS injection. These findings suggest that FTS prevents LPS-induced cell damage via enhancing Bcl-2 expression in the pancreas and systemic IL-6 production.
Collapse
Affiliation(s)
- Noriko Saitoh
- Department of Molecular Immunology, School of Agricultural and Life Sciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Shigekawa M, Hikita H, Kodama T, Shimizu S, Li W, Uemura A, Miyagi T, Hosui A, Kanto T, Hiramatsu N, Tatsumi T, Takeda K, Akira S, Takehara T. Pancreatic STAT3 protects mice against caerulein-induced pancreatitis via PAP1 induction. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:2105-13. [PMID: 23064197 DOI: 10.1016/j.ajpath.2012.08.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 08/13/2012] [Accepted: 08/28/2012] [Indexed: 02/07/2023]
Abstract
The signal transducer and activator of transcription 3 (STAT3) is a transcription factor that controls expressions of several genes involved in cell survival, proliferation and differentiation, and tissue inflammation. However, the significance of pancreatic STAT3 in acute pancreatitis remains unclear. We generated conditional STAT3 knockout (stat3(Δ/Δ)) mice by crossing stat3(flox/flox) mice with Pdx1-promoter Cre transgenic mice. Caerulein administration activated pancreatic STAT3 and induced acute pancreatitis as early as 3 hours in wild-type mice, and full recovery from the induced pancreatic injury was observed within 7 days. The levels of serum amylase and lipase and histologic scores of pancreatic necrosis and inflammatory cell infiltration were significantly higher at 3 hours in stat3(Δ/Δ) mice than in stat3(flox/flox) mice. Pancreatic recovery after pancreatitis was significantly delayed in stat3(Δ/Δ) mice compared with stat3(flox/flox) mice. Although stat3(flox/flox) mice had marked production in the pancreas of pancreatitis-associated protein 1 (PAP1), a serum acute phase protein, this induction was completely abrogated in stat3(Δ/Δ) mice. Enforced production of PAP1 by a hydrodynamic procedure in the liver significantly suppressed pancreatic necrosis and inflammation and also promoted pancreatic regeneration and recovery in stat3(Δ/Δ) mice to levels similar to those observed in stat3(flox/flox) mice. In conclusion, pancreatic STAT3 is indispensable for PAP1 production, and this STAT3/PAP1 pathway plays a protective role in caerulein-induced pancreatitis.
Collapse
Affiliation(s)
- Minoru Shigekawa
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Parikh A, Stephan AF, Tzanakakis ES. Regenerating proteins and their expression, regulation and signaling. Biomol Concepts 2011; 3:57-70. [PMID: 22582090 DOI: 10.1515/bmc.2011.055] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The regenerating (Reg) protein family comprises C-type lectin-like proteins discovered independently during pancreatitis and pancreatic islet regeneration. However, an increasing number of studies provide evidence of participation of Reg proteins in the proliferation and differentiation of diverse cell types. Moreover, Reg family members are associated with various pathologies, including diabetes and forms of gastrointestinal cancer. These findings have led to the emergence of key roles for Reg proteins as anti-inflammatory, antiapoptotic and mitogenic agents in multiple physiologic and disease contexts. Yet, there are significant gaps in our knowledge regarding the regulation of expression of different Reg genes. In addition, the pathways relaying Reg-triggered signals, their targets and potential cross-talk with other cascades are still largely unknown. In this review, the expression patterns of different Reg members in the pancreas and extrapancreatic tissues are described. Moreover, factors known to modulate Reg levels in different cell types are discussed. Several signaling pathways, which have been implicated in conferring the effects of Reg ligands to date, are also delineated. Further efforts are necessary for elucidating the biological processes underlying the action of Reg proteins and their involvement in various maladies. Better understanding of the function of Reg genes and proteins will be beneficial in the design and development of therapies utilizing or targeting this protein group.
Collapse
Affiliation(s)
- Abhirath Parikh
- Department of Chemical and Biological Engineering, State University of New York at Buffalo, Buffalo, NY 14260
| | | | | |
Collapse
|
22
|
Abstract
Alcoholic beverages contain numerous non-alcoholic compounds that could have beneficial or pathological effects. For example, up to now in beer more than 2,000 and in wine more than 1,000 organic and inorganic constituents have been identified. Whereas the role of alcohol (ethanol) in the development of pancreatic diseases - in particular acute and chronic pancreatitis - has been intensively investigated, only little is known about the effects of non-alcoholic compounds in this context. Some of the non-alcoholic constituents have been shown to be biologically active, although discussions of the results in appropriate publications were often not performed with regard to their consumption as a mixture in alcoholic beverages. In this article we provide an overview about the newest data concerning the effect of non-alcoholic constituents of alcoholic beverages, especially of beer, on pancreatic secretion and their possible role in alcoholic pancreatitis. The data indicate that non-alcoholic constituents of beer stimulate pancreatic enzyme secretion in humans and rats, at least in part, by direct action on pancreatic acinar cells. However, there is accumulating evidence that non-alcoholic compounds of alcoholic beverages exert different effects on the pancreas. The effects and mechanisms of most single compounds and their combinations are still unknown and thus caution is required in attempting to draw firm conclusions on the effect of non-alcoholic compounds of alcoholic beverages on defining alcoholic etiology of pancreatitis.
Collapse
Affiliation(s)
- Andreas Gerloff
- Department of Medicine II, University Hospital of Heidelberg at Mannheim, Mannheim, Germany.
| | | | | |
Collapse
|
23
|
Li YY, Lu S, Li K, Feng JY, Li YN, Gao ZR, Chen CJ. Down-regulation of HSP60 expression by RNAi increases lipopolysaccharide- and cerulein-induced damages on isolated rat pancreatic tissues. Cell Stress Chaperones 2010; 15:965-75. [PMID: 20574674 PMCID: PMC3024061 DOI: 10.1007/s12192-010-0207-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 05/20/2010] [Accepted: 05/24/2010] [Indexed: 01/16/2023] Open
Abstract
The objective of this study was to investigate the function of heat shock protein 60 (HSP60) on pancreatic tissues by applying HSP60 small interfering RNA (siRNA) to reduce HSP60 expression. Rat pancreas was isolated and pancreatic tissue snips were prepared, cultured, and stimulated with low and high concentrations of cerulein (10(-11) and 10(-5) mol/L) or lipopolysaccharide (LPS, 10 and 20 μg/mL). Before the stimulation and 1 and 4 h after the stimulation, the viability and the level of trypsinogen activation peptide (TAP) in the tissue fragments were determined and the levels of tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6) in the culture supernatants were measured. Real-time PCR and Western blotting were used to evaluate the HSP60 mRNA and protein expression. After the administration of siRNA to inhibit HSP60 expression in the isolated tissues, these injury parameters were measured and compared. The pancreatic tissues in the control (mock-interfering) group showed a decreased viability to varying degrees after being stimulated with cerulein or LPS, and the levels of TAP, TNF-α, and IL-6 increased significantly (p < 0.05) in the tissues and/or in the culture supernatant. The expressions of HSP60 mRNA and protein were raised moderately after stimulating 1 h with low concentrations of cerulein or LPS, but decreased with high concentrations of the toxicants. In particular, the expression of HSP60 protein was reduced significantly (p < 0.05) when the tissues were stimulated by the two toxicants for 4 h. In contrast, the tissue fragments in which HSP60 siRNA was applied showed much lower tissue viability (p < 0.01) and higher levels of TNF-a, IL-6, and TAP (p < 0.01) in the tissues or culture supernatant after stimulating with the toxicants at the same dose and for the same time duration as compared with those of the control groups (p < 0.05). The results indicated that both cerulein and LPS can induce injuries on isolated pancreatic tissues, but the induction effects are dependent on the duration of the stimulation and on the concentrations of the toxicants. HSP60 siRNA reduces HSP60 expression and worsens the cerulein- or LPS-induced injuries on isolated pancreatic tissues, suggesting that HSP60 has a protective effect on pancreatic tissues against these toxicants.
Collapse
Affiliation(s)
- Yong-Yu Li
- Institute of Digestive Diseases, Department of Pathophysiology, Tongji University School of Medicine, 1239 Si Ping Road, Shanghai, 200092, China.
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
OBJECTIVES We previously reported the finding that pancreatic stellate cells (PSCs) have a phagocytic function. The aim of the present study was to investigate whether engulfment of gram-positive bacteria by PSCs plays any role in the pathogenesis of pancreatic fibrosis. METHODS Rat PSCs were cultured with lipoteichoic acid (LTA) or bacteria and analyzed for α-smooth muscle actin expression and collagen secretion. Human pancreata were obtained from routine autopsies of 20 cases; a diagnosis of gram-positive sepsis was made in 10 of the cases (sepsis group), but sepsis had not been diagnosed in the other 10 cases (control group). Pancreatic tissue was stained with anti-LTA antibody, and the severity of pancreatic fibrosis was evaluated by histological scoring. RESULTS Bacteria and LTA were internalized into the cytoplasm of cultured PSCs. Exposure to LTA or bacteria significantly increased α-smooth muscle actin expression and collagen secretion. Blockade of toll-like receptor 2 significantly inhibited the increase in collagen secretion in response to LTA. There was no significant difference in the severity of pancreatic fibrosis between the sepsis group and the control group. CONCLUSIONS The fibrogenic action of PSCs seems to be more strongly associated with activation of the toll-like receptor-dependent pathway than it is with phagocytosis of bacteria by PSCs.
Collapse
|
25
|
Axelsson JBF, Akbarshahi H, Said K, Malmström A, Andersson R. Proposed protective mechanism of the pancreas in the rat. J Inflamm (Lond) 2010; 7:24. [PMID: 20482799 PMCID: PMC2887862 DOI: 10.1186/1476-9255-7-24] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 05/18/2010] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Heparan sulphate is known to have various functions in the animal body, including surveillance of tissue integrity. Administered intraperitoneally, it induces a systemic inflammatory response syndrome and when given locally in the pancreas it initiates a protective inflammatory response. The aim of the present study was to investigate the underlying mechanisms behind cell recruitment following intra-ductal infusion of heparan sulphate. METHODS Rats were subjected to intraductal-infusion of heparan sulphate, lipopolysaccharide and phosphate buffered saline into the pancreas. Pancreatic tissue was harvested 1, 3, 6, 9 or 48 hours after infusion and stained immunohistochemically for myeloperoxidase, ED-1, CINC-1 and MCP-1, as well as using eosin hematoxylin staining. Furthermore, MPO activity and MCP-1 and CINC-1 concentrations of tissue homogenates were measured. All differences were analyzed statistically using the Mann-Whitney U-test. RESULTS During HS infusion, a rapid influx of macrophages/monocytes, as visualized as ED-1 positive cells, was seen reaching a maximum at 6 hours. After 48 hours, the same levels of ED-1 positive cells were noted in the pancreatic tissue, but with different location and morphology. Increased neutrophil numbers of heparan sulphate treated animals compared to control could be detected only 9 hours after infusion. The number of neutrophils was lower than the number of ED-1 positive cells. On the contrary, LPS infusion caused increased neutrophil numbers to a larger extent than heparan sulphate. Furthermore, this accumulation of neutrophils preceded the infiltration of ED-1 positive cells. Chemokine expression correlates very well to the cell infiltrate. MCP-1 was evident in the ductal cells of both groups early on. MCP-1 preceded monocyte infiltration in both groups, while the CINC-1 increase was only noticeable in the LPS group. CONCLUSIONS Our data suggest that heparan and LPS both induce host defense reactions, though by using different mechanisms of cell-recruitment. This implies that the etiology of pancreatic inflammation may influence how the subsequent events will develop.
Collapse
Affiliation(s)
- Jakob BF Axelsson
- Department of Clinical Sciences Lund, Lund University, BMC, D12, SE-221 84 Lund, Sweden
| | - Hamid Akbarshahi
- Department of Clinical Sciences Lund, Lund University, BMC, D12, SE-221 84 Lund, Sweden
| | - Katarzyna Said
- Department of Clinical Sciences Lund, Lund University, BMC, D12, SE-221 84 Lund, Sweden
| | - Anders Malmström
- Department of Experimental Medical Science, Lund University, BMC, D12, SE-221 84 Lund, Sweden
| | - Roland Andersson
- Department of Clinical Sciences Lund, Lund University, BMC, D12, SE-221 84 Lund, Sweden
| |
Collapse
|
26
|
Microarray analysis of somatostatin receptor 5-regulated gene expression profiles in murine pancreas. World J Surg 2009; 33:630-7. [PMID: 19137362 DOI: 10.1007/s00268-008-9893-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND We previously demonstrated that somatostatin receptor type 5 (SSTR5) gene ablation results in alterations in insulin secretion and glucose metabolism, accompanied by morphologic alterations in the islets of Langerhans. The underlying mechanism(s) by which SSTR5 exerts its cellular functions remain(s) unknown. We hypothesized that SSTR5 mediates the inhibitory effect of somatostatin (SST) on insulin secretion and islet proliferation by regulating a specific set of pancreatic genes. METHODS To identify SSTR5-regulated pancreatic genes, gene expression microarray analysis was performed on the whole pancreas of 1- and 3-month-old wild-type (WT) and SSTR5 knockout (SSTR5-/-) male mice. Real-time RT-PCR and immunofluorescence were performed to validate selected differentially expressed genes. RESULTS A set of 143 probes were identified to be differentially expressed in the pancreas of 1-month-old SSTR5-/- mice, 72 of which were downregulated and 71 upregulated. At 3 months of age, SSTR5 gene ablation resulted in downregulation of a set of 30 probes and upregulation of a set of 37 probes. Among these differentially expressed genes, there were 15 and 5 genes that were upregulated and downregulated, respectively, in mice at both 1 and 3 months of age. Three genes, PAP/INGAP, ANG, and TDE1, were selected to be validated by real-time RT-PCR and immunofluorescence. CONCLUSIONS A specific set of genes linked to a wide range of cellular functions such as islet proliferation, apoptosis, angiogenesis, and tumorigenesis were either upregulated or downregulated in SSTR5-deficient male mice compared with their expression in wild-type mice. Therefore, these genes are potential SSTR5-regulated genes during normal pancreatic development and functional maintenance.
Collapse
|
27
|
Fortunato F, Bürgers H, Bergmann F, Rieger P, Büchler MW, Kroemer G, Werner J. Impaired autolysosome formation correlates with Lamp-2 depletion: role of apoptosis, autophagy, and necrosis in pancreatitis. Gastroenterology 2009; 137:350-60, 360.e1-5. [PMID: 19362087 DOI: 10.1053/j.gastro.2009.04.003] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 03/13/2009] [Accepted: 04/02/2009] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Acute pancreatitis constitutes a life-threatening condition in which pancreatic acinar cells undergo massive cell death. We investigated the incidence of apoptosis, autophagy, and necrosis affecting acinar cells in the early onset of acute pancreatitis induced by chronic alcohol feeding and acute endotoxemia. METHODS Rats were fed either an ethanol-containing or a control diet over 14 weeks and killed 3 or 24 hours after a single lipopolysaccharide injection. Apoptosis, necrosis, and autophagy of pancreatic acinar cells were assessed by histology, electron microscopy, immunofluorescence, and biochemical methods. RESULTS The combination of alcohol exposure and endotoxemia resulted in the depletion of several lysosomal proteins including lysosomal-associated membrane protein-2 (Lamp-2), a protein that is required for the proper fusion of autophagosomes with lysosomes. Accordingly, Lamp-2 depletion correlated with the accumulation of autophagosomes and a relative paucity of autolysosomes, reduced adenosine-5'-triphosphate levels, and a switch from apoptotic to necrotic cell death. This switch to necrosis was accompanied by reduced caspase activation and the nuclear release of the proinflammatory factor high mobility group box 1. Importantly, human patients with alcoholic pancreatitis also exhibited local Lamp-2 depletion, which points to a crucial role for Lamp-2 and autophagy in pancreatic acinar cell death. CONCLUSIONS Our data suggest that acinar cell vacuolization in pancreatitis is mediated by an endotoxemia-induced inhibition of the late stage of autophagy. The combination of alcohol and endotoxemia attenuated apoptosis response yet enhanced acinar cell necrosis. The depletion of lysosomal proteins plays a critical role in the early onset of acute pancreatitis.
Collapse
Affiliation(s)
- Franco Fortunato
- Department of General, Visceral, and Transplantation Surgery, University Hospital Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
28
|
Gerloff A, Singer MV, Feick P. Beer but not wine, hard liquors, or pure ethanol stimulates amylase secretion of rat pancreatic acinar cells in vitro. Alcohol Clin Exp Res 2009; 33:1545-54. [PMID: 19485972 DOI: 10.1111/j.1530-0277.2009.00983.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND In contrast to pure ethanol, the effect of alcoholic beverages on the exocrine pancreas is greatly unknown. Besides ethanol, alcoholic beverages contain numerous nonalcoholic constituents which might have pathophysiological effects on the pancreas. The aim of the present study was to investigate whether some commonly used alcoholic beverages and pure ethanol influence the main function of rat pancreatic acinar cells, i.e., enzyme output in vitro. METHODS Rat pancreatic AR4-2J cells were differentiated by dexamethasone treatment for 72 hours and freshly isolated pancreatic acini were prepared from Sprague-Dawley rats using collagenase digestion. After incubation of cells in the absence or presence of 1 to 10% (v/v) beer (containing 4.7% v/v ethanol), 10% (v/v) wine (containing 10.5 to 12.5% v/v ethanol), 10% (v/v) hard liquor (such as whisky, rum, and gin), or of the corresponding ethanol concentrations (4.03 to 80.6 mM) for 60 minutes, protein secretion was measured using amylase activity assay. RESULTS Incubation of AR4-2J cells with beer caused a dose-dependent stimulation of basal amylase secretion that was significant at doses of beer above 0.5% (v/v). Stimulation with 10% (v/v) beer induced 92.7 +/- 25.2% of maximal amylase release in response to the most effective cholecystokinin (CCK) concentration (100 nM). In contrast, ethanol (up to 80.6 mM) did neither stimulate nor inhibit basal amylase release. Lactate dehydrogenase measurement after treatment of AR4-2J cells with beer for 24 hours indicated that the increase of amylase release was not due to cell membrane damage. Wine and hard liquor had no effect on basal amylase secretion neither diluted to the ethanol concentration of beer nor undiluted. In freshly isolated rat pancreatic acinar cells beer dose-dependently stimulated amylase secretion in a similar manner as in AR4-2J cells. CONCLUSIONS Our data demonstrate that beer dose-dependently increases amylase output. Since neither ethanol nor the other alcoholic beverages tested caused stimulation of amylase release, our findings indicate that nonalcoholic constituents specific for beer are responsible for this increase. These as yet unknown compounds have to be identified and considered in further studies of ethanol-induced pathological and functional changes of the pancreas.
Collapse
Affiliation(s)
- Andreas Gerloff
- Department of Medicine II (Gastroenterology, Hepatology and Infectious Diseases), University Hospital of Heidelberg at Mannheim, Mannheim, Germany
| | | | | |
Collapse
|
29
|
Shimizu K. Mechanisms of pancreatic fibrosis and applications to the treatment of chronic pancreatitis. J Gastroenterol 2009; 43:823-32. [PMID: 19012035 DOI: 10.1007/s00535-008-2249-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 07/01/2008] [Indexed: 02/07/2023]
Abstract
Pancreatic stellate cells (PSCs) play a crucial role in pancreatic fibrogenesis in chronic pancreatitis and in the desmoplastic reaction of pancreatic cancer. When PSCs are stimulated by oxidative stress, ethanol and its metabolite acetaldehyde, and cytokines, the phenotype of quiescent fat-storing cells converts to myofibroblastlike activated PSCs, which then produce extracellular matrix, adhesion molecules, and various chemokines in response to cytokines and growth factors. Recent data suggest that PSCs have a phagocytic function. Plateletderived growth factor is a potent stimulator of PSC proliferation. Transforming growth factor beta, activin A, and connective tissue growth factor also play a role in PSC-mediated pancreatic fibrogenesis through autocrine and paracrine loops. Following pancreatic damage, pathophysiological processes that occur in the pancreas, including pancreas tissue pressure, hyperglycemia, intracellular reactive oxygen species production, activation of protease-activated receptor 2, induction of cyclooxygenase 2, and bacterial infection play a role in sustaining pancreatic fibrosis through increased PSC proliferation and collagen production by PSCs. Targeting PSCs might be an effective therapeutic approach in chronic pancreatitis. Various substances including vitamin A, vitamin E, polyphenols, peroxisome proliferator-activated receptor gamma ligands, and inhibitors of the renin-angiotensin system show great promise of being useful in the treatment of chronic pancreatitis.
Collapse
Affiliation(s)
- Kyoko Shimizu
- Department of Gastroenterology, Tokyo Women's Medical University, School of Medicine, 8-1 Kawada, Shinjuku-ku, Tokyo 162-8666, Japan
| |
Collapse
|
30
|
Abstract
Pancreatitis-associated protein (PAP) was discovered in the pancreatic juice of rats with acute pancreatitis. PAP is a 16 kDa secretory protein structurally related to the C-type lectins although classical lectin-related function has not been reported yet. Then, it was demonstrated that PAP expression may be activated in some tissues in a constitutive or injury- and inflammation-induced manner. More recently, it has been found that PAP acts as an anti-inflammatory factor in vitro and in vivo. PAP expression can be induced by several pro- and anti-inflammatory cytokines and by itself through a JAK/STAT3-dependent pathway. PAP is able to activate the expression of the anti-inflammatory factor SOCS3 through the JAK/STAT3-dependent pathway. The JAK/STAT3/SOCS3 pathway seems to be a common point between PAP and several cytokines. Therefore, it is reasonable to propose that PAP is a new anti-inflammatory cytokine.
Collapse
|
31
|
Fortunato F, Deng X, Gates LK, McClain CJ, Bimmler D, Graf R, Whitcomb DC. Pancreatic response to endotoxin after chronic alcohol exposure: switch from apoptosis to necrosis? Am J Physiol Gastrointest Liver Physiol 2006; 290:G232-41. [PMID: 15976389 DOI: 10.1152/ajpgi.00040.2005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chronic alcohol consumption is known to increase the susceptibility to acute and chronic pancreatitis, and it is likely that a cofactor is required to initiate the progression to alcoholic pancreatitis. The severity and complications of alcoholic and nonalcoholic acute pancreatitis may be influenced by a number of cofactors, including endotoxemia. To explore the effect of a possible cofactor, we used endotoxin [lipopolysaccharide (LPS)] as a tool to induce cellular injury in the alcoholic pancreas. Single, increasing doses of endotoxin were injected in rats fed an alcohol or control diet and killed 24 h after the injection. We examined the mechanism by which LPS exacerbates pancreatic injury in alcohol-fed rats and whether the injury is associated with apoptosis or necrosis. We showed that chronic alcohol exposure alone inhibits apoptosis through the intrinsic pathway and the downstream apoptosis executor caspase-3 compared with the controls. Pancreatic necrosis and inflammation increased after LPS injection in control and alcohol-fed rats in a dose-dependent fashion but with a significantly greater response in the alcohol-fed animals. Caspase activities and TdT-mediated dUTP nick-end labeling positivity were lower in the alcoholic pancreas injected with LPS, whereas the histopathology and inflammation were more severe compared with the control-fed animals. Assessment of a putative indicator of necrosis, the ratio of ADP to ATP, indicated that alcohol exposure accelerates pancreatic necrosis in response to endotoxin. These findings suggest that the pancreas exposed to alcohol is more sensitive to LPS-induced damage because of increased sensitivity to necrotic cell death rather than apoptotic cell death. Similar to the liver, the pancreas is capable of responding to LPS with a more severe response in alcohol-fed animals, favoring pancreatic necrosis rather than apoptosis. We speculate that this mechanism may occur in acute alcoholic pancreatitis patients.
Collapse
Affiliation(s)
- Franco Fortunato
- University Hospital Zurich, Department of Visceral and Transplantation Surgery, Sternwartstrasse 14, CH-8091 Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
32
|
Ramudo L, Manso MA, De Dios I. Biliary pancreatitis-associated ascitic fluid activates the production of tumor necrosis factor-alpha in acinar cells. Crit Care Med 2005; 33:143-8; discussion 248. [PMID: 15644661 DOI: 10.1097/01.ccm.0000150654.13653.5b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Acute pancreatitis is associated with increased cytokine release from different cell sources. We have investigated the ability of acinar cells, in comparison with inflammatory peripheral blood cells, to produce tumor necrosis factor (TNF)-alpha in response to pancreatitis-associated ascitic fluid (PAAF). DESIGN Controlled, randomized animal study. SETTING University research laboratory. SUBJECTS Male Wistar rats. INTERVENTIONS Flow cytometry using phycoerythrin-labeled monoclonal anti-TNF-alpha antiserum. MEASUREMENTS AND MAIN RESULTS PAAF (20%, v:v) obtained from rats with acute pancreatitis induced by bile-pancreatic duct obstruction significantly increased TNF-alpha production in acinar cells, as measured by flow cytometry using phycoerythrin-labeled monoclonal anti-TNF-alpha antiserum. Neither heating of PAAF nor the addition of soybean trypsin inhibitor or neutralizing amounts of anti-TNF-alpha monoclonal antiserum reduced the acinar cell TNF-alpha production. Monocytes and lymphocytes did not produce TNF-alpha in response to PAAF. Likewise, the typical monocyte and lymphocyte stimulating factors-lipopolysaccharide (10 microg/microL) and phorbol 12-myristate 13-acetate (250 ng/mL) plus ionomycin (1 microg/mL), respectively-were not able to produce TNF-alpha in acinar cells. By comparison of the two acinar cell populations differentiated by flow cytometry, R2 cells (with higher forward scatter values) showed a greater ability to produce TNF-alpha in response to PAAF than R1 cells. Acinar cell nuclear factor-kappaB was activated, but TNF-alpha production was not totally inhibited in presence of N-acetyl cysteine (30, 100 mM). CONCLUSIONS The production of TNF-alpha from different cell sources is selectively activated. PAAF may be involved in the pathophysiology of acute pancreatitis by TNF-alpha production in acinar cells through mechanisms partially mediated by nuclear factor-kappaB activation. PAAF components, such as TNF-alpha or trypsin, are not responsible for acinar cell activation. TNF-alpha was induced by heat-resistant PAAF factors, displaying acinar cells with higher forward scatter (R2) a greater ability to increase the TNF-alpha production than R1 cells.
Collapse
Affiliation(s)
- Laura Ramudo
- Department of Physiology and Pharmacology. University of Salamanca, Salamanca. Spain
| | | | | |
Collapse
|
33
|
Iovanna JL, Dagorn JC. The multifunctional family of secreted proteins containing a C-type lectin-like domain linked to a short N-terminal peptide. Biochim Biophys Acta Gen Subj 2005; 1723:8-18. [PMID: 15715980 DOI: 10.1016/j.bbagen.2005.01.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Revised: 12/27/2004] [Accepted: 01/05/2005] [Indexed: 11/18/2022]
Abstract
PSP/Lithostathine/PTP/regI, PAP/p23/HIP, reg1L, regIV and "similar to PAP" are the members of a multifunctional family of secreted proteins containing a C-type lectin-like domain linked to a short N-terminal peptide. The expression of this group of proteins is controlled by complex mechanisms, some members being constitutively expressed in certain tissues while, in others, they require activation by several factors. These members have several apparently unrelated biological effects, depending on the member studied and the target cell. These proteins may act as mitogenic, antiapoptotic or anti-inflammatory factors, can regulate cellular adhesion, promote bacterial aggregation, inhibit CaCO3 crystal growth or increase resistance to antitumoral agents. The presence of specific receptors for these proteins is suggested because biological effects were observed after the addition of purified protein to culture media or after systemic administration to animals, whereas other biological effects could be explained by their biochemical capacity to form homo or heteromers or to form insoluble fibrils at physiological pH.
Collapse
Affiliation(s)
- Juan L Iovanna
- INSERM U.624, Stress Cellulaire, 163 Avenue de Luminy, Case 915, Parc Scientifique et Technologique de Luminy, 13288 Marseille Cedex 9, France.
| | | |
Collapse
|
34
|
Yang R, Uchiyama T, Alber SM, Han X, Watkins SK, Delude RL, Fink MP. Ethyl pyruvate ameliorates distant organ injury in a murine model of acute necrotizing pancreatitis. Crit Care Med 2004; 32:1453-9. [PMID: 15241088 DOI: 10.1097/01.ccm.0000130835.65462.06] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Ethyl pyruvate has been shown to be an effective anti-inflammatory agent in a variety of in vitro and in vivo model systems. Herein, we used a murine model of acute pancreatitis to compare the effects of treatment with either Ringer's lactate solution or ethyl pyruvate solution on several physiologic and biochemical variables related to disease severity. DESIGN Experimental animal study. SETTING University laboratory. SUBJECTS C57Bl/6 mice. INTERVENTIONS Pancreatitis was induced by feeding the animals a choline-deficient diet supplemented with 0.5% ethionine for 24 hrs and then challenging the animals with seven hourly 50 microg/kg intraperitoneal injections of cerulein and a single intraperitoneal injection of Escherichia coli lipopolysaccharide (4 mg/kg). MEASUREMENTS AND MAIN RESULTS When mice were treated with ethyl pyruvate (40 mg/kg intraperitoneally every 6 hrs for 48 hrs) instead of Ringer's lactate solution starting 2 hrs after the injection of lipopolysaccharide, long-term survival was improved from one of ten to six of ten (p =.057). When mice were treated with a 40 mg/kg dose of ethyl pyruvate just before the first dose of cerulein and then injected with a second 40 mg/kg dose 6 hrs later, serum concentrations of alanine aminotransferase measured 10 hrs after the first cerulein dose were significantly lower than in mice with pancreatitis treated with Ringer's lactate solution. In this model of acute pancreatitis, the same dosing regimen for ethyl pyruvate also ameliorated bacterial translocation to mesenteric lymph nodes and leakage of fluorescein isothiocyanate-labeled albumin from blood into bronchoalveolar lavage fluid. Treatment with ethyl pyruvate decreased pancreatic expression of tumor necrosis factor and interleukin-6 messenger RNA and nuclear factor-kappaB DNA binding in nuclear extracts prepared from pancreatic tissue. CONCLUSION Treatment with ethyl pyruvate ameliorated the local inflammatory response and decreased local and distant organ injury in a murine model of necrotizing pancreatitis.
Collapse
Affiliation(s)
- Runkuan Yang
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Pastor CM, Pugin J, Kwak B, Chanson M, Mach F, Hadengue A, Frossard JL. Role of Toll-like receptor 4 on pancreatic and pulmonary injury in a mice model of acute pancreatitis associated with endotoxemia. Crit Care Med 2004; 32:1759-63. [PMID: 15286555 DOI: 10.1097/01.ccm.0000133020.47243.8e] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Infection of pancreatic necrosis is a severe complication of acute pancreatitis. Because Toll-like receptor 4 (TLR4) has been identified as a receptor necessary to transduct the signal of bacteria-derived lipopolysaccharide into cells, we investigated the role of TLR4 on pancreatic and pulmonary injury in acute pancreatitis and acute pancreatitis associated with endotoxemia in wild-type and TLR4-deficient mice. DESIGN Laboratory investigation. SETTING University laboratory. SUBJECTS Heterozygous TLR4 mice. INTERVENTIONS Mice were injected intraperitoneally with a supramaximal dose of cerulein each hour for 10 hrs. To mimic infection, additional groups of mice were injected with lipopolysaccharide in the presence or absence of cerulein injections. MEASUREMENTS AND MAIN RESULTS The severity of acute pancreatitis was assessed by serum amylase activity, pancreatic edema, acinar cell necrosis, and pancreas myeloperoxidase activity. Lung injury was quantitated by lung microvascular permeability and lung myeloperoxidase activity. Injections of cerulein induced an edematous pancreatitis that was of similar severity in wild-type and TLR4-deficient mice. Lipopolysaccharide alone had no toxic effect on pancreas and lungs and did not worsen the pancreatic injury induced by cerulein in wild-type and TRL4-deficient mice. In contrast, lipopolysaccharide worsened pancreatitis-associated lung injury, and the deficiency in TLR4 fully prevented this aggravation. CONCLUSIONS TLR4 may not play a role in the pancreatitis-associated lung injury but participates in the pulmonary injury mediated by endotoxemia.
Collapse
Affiliation(s)
- Catherine M Pastor
- Division of Gastroenterology and Hepatology, Department of Pediatrics (MC), Geneva University Hospitals, Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
36
|
Tribl B, Filipp D, Bödeker H, Yu P, Hammerrmüller I, McKerlie C, Keim V, Sibbald WJ. Pseudomonas pneumonia-mediated sepsis induces expression of pancreatitis-associated protein-I in rat pancreas. Pancreas 2004; 29:33-40. [PMID: 15211109 DOI: 10.1097/00006676-200407000-00053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Severe impairment of exocrine pancreatic secretion has recently been demonstrated in a clinical study in sepsis and septic shock patients. The purpose of this study was to further evaluate involvement of the pancreas in the acute phase reaction in sepsis. Using a normotensive rat model of Pseudomonas pneumonia-induced sepsis, we assessed the expression of PAP-I, amylase and trypsinogen mRNA, PAPI protein levels, and cytokine expression in the pancreas by Northern and Western blot analysis and RT-M PCR, respectively. Presence of several well-established features of pancreatitis in sepsis-induced animals were examined by biochemical and histopathological methods as well as by a determination of both water and myeloperoxidase content. Sepsis resulted in an up-regulation of PAP-I gene expression and increase in its protein level in pancreas while the mRNA levels of amylase and trypsinogen were down-regulated. Differences in the pancreatic cytokine expression, serum amylase and serum lipase levels, the occurrence of pancreatic edema as well as the severity of inflammatory infiltration and necrosis were not significantly different between sham and pneumonia groups. Acinar cells showed increased vacuolization in pneumonia animals 24 hours after the treatment. These findings demonstrate that the pancreas is actively involved in the acute phase reaction in sepsis of remote origin. This involvement occurs without concomitant biochemical and histopathologic alterations observed in pancreatitis. Taken all together, these features are indicative of a sepsis-specific dysfunction of the pancreas.
Collapse
Affiliation(s)
- Barbara Tribl
- Sunnybrook and Women's College Health Sciences Centre and University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Vasilescu C, Herlea V, Buttenschoen K, Beger HG. Endotoxin translocation in two models of experimental acute pancreatitis. J Cell Mol Med 2004. [PMID: 14754510 DOI: 10.111/j.1582-4934.2003.tb00244.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To test the hypothesis that endotoxin is absorbed from the gut into the circulation in rats with experimental acute pancreatitis we studied two different animal models. In the first model necrotizing pancreatitis was induced by the ligation of the distal bilio-pancreatic duct while in the second, experimental oedematous acute pancreatitis was induced by subcutaneous injections of caerulein. In both experiments, in the colon of rats with acute pancreatitis endotoxin from Salmonella abortus equi was injected. Endotoxin was detected by immunohistochemistry in peripheral organs with specific antibodies. The endotoxin was found only in rats with both acute pancreatitis and endotoxin injected into the colon and not in the control groups. The distribution of endotoxin in liver at 3 and 5 days was predominantly at hepatocytes level around terminal hepatic venules, while in lung a scattered diffuse pattern at the level of alveolar macrophages was identified. A positive staining was observed after 12 hours in the liver, lung, colon and mesenteric lymph nodes of rats with both caerulein pancreatitis and endotoxin injected into the colon. We conclude that the experimental acute pancreatitis leads to early endotoxin translocation from the gut lumen in the intestinal wall and consequent access of gut-derived endotoxin to the mesenteric lymph nodes, liver and lung.
Collapse
Affiliation(s)
- C Vasilescu
- Department General Surgery II and Liver Transplantation, Fundeni Clinical Institute, Bucharest, Romania.
| | | | | | | |
Collapse
|
38
|
Vasilescu C, Herlea V, Buttenschoen K, Beger HG. Endotoxin translocation in two models of experimental acute pancreatitis. J Cell Mol Med 2004; 7:417-24. [PMID: 14754510 PMCID: PMC6740206 DOI: 10.1111/j.1582-4934.2003.tb00244.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
To test the hypothesis that endotoxin is absorbed from the gut into the circulation in rats with experimental acute pancreatitis we studied two different animal models. In the first model necrotizing pancreatitis was induced by the ligation of the distal bilio-pancreatic duct while in the second, experimental oedematous acute pancreatitis was induced by subcutaneous injections of caerulein. In both experiments, in the colon of rats with acute pancreatitis endotoxin from Salmonella abortus equi was injected. Endotoxin was detected by immunohistochemistry in peripheral organs with specific antibodies. The endotoxin was found only in rats with both acute pancreatitis and endotoxin injected into the colon and not in the control groups. The distribution of endotoxin in liver at 3 and 5 days was predominantly at hepatocytes level around terminal hepatic venules, while in lung a scattered diffuse pattern at the level of alveolar macrophages was identified. A positive staining was observed after 12 hours in the liver, lung, colon and mesenteric lymph nodes of rats with both caerulein pancreatitis and endotoxin injected into the colon. We conclude that the experimental acute pancreatitis leads to early endotoxin translocation from the gut lumen in the intestinal wall and consequent access of gut-derived endotoxin to the mesenteric lymph nodes, liver and lung.
Collapse
Affiliation(s)
- C Vasilescu
- Department General Surgery II and Liver Transplantation, Fundeni Clinical Institute, Bucharest, Romania.
| | | | | | | |
Collapse
|
39
|
Obermaier R, Drognitz O, Grub A, von Dobschuetz E, Schareck W, Hopt UT, Benz S. Endotoxin preconditioning in pancreatic ischemia/reperfusion injury. Pancreas 2003; 27:e51-6. [PMID: 14508141 DOI: 10.1097/00006676-200310000-00020] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Prospective organ donors are exposed to various stress types. The effect of endotoxin pretreatment (ETX) on pancreatic ischemia/reperfusion injury (IRI) is unclear. We investigated, using a rat model of pancreatic IRI of an in situ isolated pancreatic tail segment, the effect of ETX on postischemic microcirculation and organ damage. METHODS Twenty-four hours before pancreatic dissection, either intraperitoneal application of ETX (1 mg/kg in 0.9% NaCl) or saline only (control) was performed. Two-hour normothermic ischemia of the pancreatic tail was induced by clamping the splenic vessels and was followed by a reperfusion period of 2 hours. Microcirculatory parameters were measured by intravital epifluorescence microscopy [functional capillary density (FCD), adherent leukocytes (ALs), and histology]. The presented data represent the mean +/- SEM/SD as appropriate. RESULTS ETX pretreatment caused a significantly greater decrease in FCD (497 +/- 6 cm/cm2 baseline versus 326 +/- 15 cm/cm2 2 hours of reperfusion) compared with controls (498 +/- 8 versus 258 +/- 15 cm/cm2) 2 hours after reperfusion (P < 0.01). Two hours after reperfusion, ALs were significantly decreased in ETX animals compared with controls (ETX: 141 +/- 37 versus 273 +/- 36 cells/mm2, P < 0.05). Histologic damage was less in ETX (6.4 score points +/- 0.32 versus 8.8 +/- 0.33 control, P < 0.05). CONCLUSION ETX preconditioning decreases microcirculatory deterioration caused by IRI by means of less loss of nutritive tissue perfusion, decrease in ALs, and less histologic damage. This indicates a protective effect of ETX preconditioning in pancreatic IRI.
Collapse
Affiliation(s)
- Robert Obermaier
- Department of Surgery, University of Freiburg, Freiburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
40
|
Ding SP, Li JC, Jin C. A mouse model of severe acute pancreatitis induced with caerulein and lipopolysaccharide. World J Gastroenterol 2003; 9:584-9. [PMID: 12632523 PMCID: PMC4621587 DOI: 10.3748/wjg.v9.i3.584] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To establish a non-traumatic, easy to induce and reproducible mouse model of severe acute pancreatitis (SAP) induced with caerulein and lipopolyasccharide (LPS).
METHODS: Thirty-two healthy mature NIH female mice were selected and divided at random into four groups (each of 8 mice), i.e., the control group (NS group), the caerulein group (Cn group), the lipopolysaccharide group (LPS group), and the caerulein+LPS group (Cn + LPS group). Mice were injected intraperitoneally with caerulein only, or LPS only, and caerulein and LPS in combination. All the animals were then killed by neck dislocation three hours after the last intraperitoneal injection. The pancreas and exo-pancreatic organs were then carefully removed for microscopic examination. And the pancreatic acinus was further observed under transmission electron microscope (TEM). Pancreatic weight, serum amylase, serum nitric oxide (NO) concentration, superoxide dismutase (SOD) and malondialdehyde (MDA) concentration of the pancreas were assayed respectively.
RESULTS: (1) NS animals displayed normal pancreatic structure both in the exocrine and endocrine. In the LPS group, the pancreas was slightly edematous, with the infiltration of a few inflammatory cells and the necrosis of the adjacent fat tissues. All the animals of the Cn group showed distinct signs of a mild edematous pancreatitis characterized by interstitial edema, infiltration of neutrophil and mononuclear cells, but without obvious parenchyma necrosis and hemorrhage. In contrast, the Cn + LPS group showed more diffuse focal areas of nonviable pancreatic and hemorrhage as well as systemic organ dysfunction. According to Schmidt’s criteria, the pancreatic histologic score showed that there existed significant difference in the Cn + LPS group in the interstitial edema, inflammatory infiltration, parenchyma necrosis and parenchyma homorrhage in comparison with those of the Cn group, LPS group and NS group (P < 0.01 or P < 0.05). (2) The ultrasturcture of acinar cells was seriously damaged in the Cn + LPS group. Chromatin margination of nuclei was present, the number and volume of vacuoles greatly increased. Zymogen granules (ZGs) were greatly decreased in number and endoplasmic reticulum exhibited whorls. The swollen mitochondria appeared, the crista of which was decreased in number or disappeared. (3) Pancreatic weight and serum amylase levels in the Cn +LPS was significantly higher than those of the NS group and the LPS group respectively (P < 0.01 or P < 0.05). However, the pancreatic wet weight and serum amylase concentration showed no significant difference between the Cn + LPS group and the Cn group. (4) NO concentration in the Cn + LPS group was significantly higher than that of NS group, LPS group and Cn group(P < 0.05 or P < 0.01). 5) The SOD and MDA concentration of the pancreas in the Cn + LPS group were significantly higher than those of NS, LPS and Cn groups (P < 0.05 or P < 0.01).
CONCLUSION: The mouse model of severe acute pancreatitis could be induced with caerulein and LPS, which could be non-traumatic and easy to induce, reproducible with the same pathological characteristics as those of SAP in human, and could be used in the research on the mechanism of human SAP.
Collapse
Affiliation(s)
- Shi-Ping Ding
- Department of Lymphology, Department of Histology and Embryology, Medical College of Zhejiang University, Hangzhou 310031, Zhejiang Province, China.
| | | | | |
Collapse
|
41
|
Abstract
BACKGROUND Sepsis in critical illness is associated with the progressive failure of multiple organs. This study aims to establish a correlation between the severity of sepsis and exocrine pancreatic dysfunction. MATERIALS AND METHODS In a prospective cohort study pancreatic exocrine function was tested by means of a secretin-cholecystokinin test in 21 critically ill, mechanically ventilated patients with sepsis according to criteria of the American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference Committee (ACCP/SCCM): 11 patients with shock and 10 patients without shock. Data were compared with seven healthy controls. RESULTS The volume of duodenal fluid was not statistically different in the three groups. Sepsis patients without shock had significantly reduced content of amylase and chymotrypsin in duodenal juice compared with healthy controls (P < 0.01). Secretion of amylase, chymotrypsin, trypsin (P < 0.01 each) and bicarbonate in duodenal fluid (P < 0.05) was impaired in the septic shock patients when compared with the healthy controls. The content of trypsin was different between sepsis patients and septic shock patients (P < 0.05). Spearman correlation analysis was significant between the amylase secretion and the APACHE III and SOFA scores (P < 0.01). The SOFA score was also related to secretion of trypsin (P < 0.05). In patients on pressor therapy, use of norepinephrine was associated with a significant decrease in bicarbonate secretion (P < 0.05). CONCLUSIONS Sepsis is associated with secretory pancreatic dysfunction that is worse in septic shock than in sepsis without shock. Impaired exocrine function was significantly correlated to the APACHE III and SOFA scores.
Collapse
Affiliation(s)
- B Tribl
- Department of Internal Medicine IV, Division of Gastroenterology and Hepatology, University of Vienna, Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
INTRODUCTION The pathogenesis of chronic pancreatitis (CP), especially of acinar cell injury, is still unclear. Interleukin (IL)-8 is a chemokine that is involved in various inflammatory diseases. AIM To examine whether IL-8 and other chemokines are expressed in experimental acinar cell injury. METHODOLOGY IL-8 expression was analyzed in spontaneous CP in the WBN/Kob rat and in rat pancreatic acinar AR4-2J cells treated with various stimuli using reverse transcription-polymerase chain reaction (semiquantitative) and immunohistochemistry. RESULTS Chronic pancreatitis developed at 12 weeks in the WBN/Kob rats. IL-8, macrophage chemoattractant protein-1, and macrophage inflammatory protein-2 mRNA was expressed from 4 weeks and peaked at 12 weeks. Immunohistochemistry showed a strong expression of IL-8 in acinar cells, proliferating ductular cells, and interstitial infiltrating cells. In contrast, normal pancreatic tissues lacked IL-8 expression. Further, IL-8 mRNA and protein were detectable in AR4-2J cells treated with the various stimuli, such as menadione, tumor necrosis factor-alpha and transforming growth factor beta1. CONCLUSION These results suggest that IL-8 is expressed in the pancreatic parenchyma and infiltrates in CP and that it plays a role in the initial pathogenesis of CP together with other chemokines and cytokines.
Collapse
Affiliation(s)
- Min-Jue Xie
- Department of Internal Medicine and Medical Oncology, Cancer Research Institute, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-0934, Japan
| | | | | | | | | |
Collapse
|
43
|
Wang X, Wang B, Wu J. Pancreatitis-associated protein-I mRNA expression in mouse pancreas is upregulated by lipopolysaccharide independent of cerulein-pancreatitis. J Gastroenterol Hepatol 2001; 16:79-86. [PMID: 11206320 DOI: 10.1046/j.1440-1746.2001.02389.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIMS It is well known that endotoxemia, which is caused by a bacterial infection, can exacerbate acute pancreatitis, whereas pancreatitis-associated protein (PAP) has the ability to induce bacterial aggregation. Pancreatitis-associated protein is supposed to protect the tissue from infection during inflammation. In order to clarify the relationship between PAP mRNA expression and endotoxemia during acute pancreatitis, the kinetic patterns of PAP-I mRNA in mouse pancreas treated with either cerulein or lipopolysaccharide (LPS) or both were investigated in this study. METHODS AND RESULTS The administration of LPS (5 mg/kg) intraperitoneally resulted in a dramatic upregulation of PAP-I mRNA expression, increasing 18.61-fold to a maximum at 12 h, then decreasing, but still sustaining at a high level and reaching baseline on day five. These changes were accompanied by the upregulation of tumor necrosis factor (TNF)-alpha, interleukin-1beta (IL-1beta), interleukin 6 (IL-6) and interferon gamma (IFNgamma) mRNA expressions in the pancreas, but not by marked alterations of serum amylase, lactic dehydrogenase (LDH) and histology. Cerulein also increased PAP-I mRNA expression. However, the combination of cerulein and LPS was not able to enhance PAP-I mRNA expression further, although more prominent pancreatitis based on significant changes of serum amylase, LDH and histology were observed. CONCLUSION These results suggest that PAP-I mRNA might be modulated by endotoxemia, independent of cerulein-pancreatitis. There were no strong correlations between PAP-I mRNA expression and the severity of pancreatitis.
Collapse
Affiliation(s)
- X Wang
- Department of Gastroenterology, Shanghai First People's Hospital, People's Republic of China.
| | | | | |
Collapse
|