1
|
Anderson BD, Lee T, Bell B, Song Y, Dunaief JL. Low ceruloplasmin levels exacerbate retinal degeneration in a hereditary hemochromatosis model. Dis Model Mech 2023; 16:dmm050226. [PMID: 37439255 PMCID: PMC10354715 DOI: 10.1242/dmm.050226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/09/2023] [Indexed: 07/14/2023] Open
Abstract
In a previous report, a 39-year-old patient with high serum iron levels from hereditary hemochromatosis (HH) was diagnosed with a form of retinal degeneration called bull's eye maculopathy. This is atypical for patients with HH, so it was theorized that the low serum levels of ferroxidase ceruloplasmin (CP) of this patient coupled with the high iron levels led to the retinal degeneration. CP, by oxidizing iron from its ferrous to ferric form, helps prevent the oxidative damage caused by ferrous iron. To test this, a hepcidin knockout (KO) mouse model of HH was combined with Cp KO to test whether the combination would lead to more severe retinal degeneration. Monthly in vivo retinal images were acquired and, after 11 months, mice were euthanized for further analyses. Both heterozygous and homozygous Cp KO increased the rate and severity of retinal degeneration. These results demonstrate the protective role of CP, which is most likely owing to its ferroxidase activity. The findings suggest that CP levels may influence the severity of retinal degeneration, especially in individuals with high serum iron.
Collapse
Affiliation(s)
- Brandon D. Anderson
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Timothy Lee
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Brent Bell
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ying Song
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Joshua L. Dunaief
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Kumar R, Sharma D, Kumar N, Kumari B, Kumar S, Kumar R. Substitution of carbonate by non-physiological synergistic anion modulates the stability and iron release kinetics of serum transferrin. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140856. [PMID: 36252939 DOI: 10.1016/j.bbapap.2022.140856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
Serum transferrin (sTf) is a bi-lobal protein. Each lobe of sTf binds one Fe3+ ion in the presence of a synergistic anion. Physiologically, carbonate is the main synergistic anion but other anions such as oxalate, malonate, glycolate, maleate, glycine, etc. can substitute for carbonate in vitro. The present work provides the possible pathways by which the substitution of carbonate with oxalate affects the structural, kinetic, thermodynamic, and functional properties of blood plasma sTf. Analysis of equilibrium experiments measuring iron release and structural unfolding of carbonate and oxalate bound diferric-sTf (Fe2sTf) as a function of pH, urea concentration, and temperature reveal that the structural and iron-centers stability of Fe2sTf increase by substitution of carbonate with oxalate. Analysis of isothermal titration calorimetry (ITC) scans showed that the affinity of Fe3+ with apo-sTf is enhanced by substituting carbonate with oxalate. Analysis of kinetic and thermodynamic parameters measured for the iron release from the carbonate and oxalate bound monoferric-N-lobe of sTf (FeNsTf) and Fe2sTf at pH 7.4 and pH 5.6 reveals that the substitution of carbonate with oxalate inhibits/retards the iron release via increasing the enthalpic barriers.
Collapse
Affiliation(s)
- Rajesh Kumar
- School of Chemistry and Biochemistry, Thapar University, Patiala 147004, India
| | - Deepak Sharma
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Navinder Kumar
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Beeta Kumari
- Deparment of Chemistry, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Sanjeev Kumar
- Deparment of Chemistry, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Rajesh Kumar
- Deparment of Chemistry, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda 151401, India; School of Chemistry and Biochemistry, Thapar University, Patiala 147004, India.
| |
Collapse
|
3
|
Zhang Y, Mou Y, Zhang J, Suo C, Zhou H, Gu M, Wang Z, Tan R. Therapeutic Implications of Ferroptosis in Renal Fibrosis. Front Mol Biosci 2022; 9:890766. [PMID: 35655759 PMCID: PMC9152458 DOI: 10.3389/fmolb.2022.890766] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/12/2022] [Indexed: 12/13/2022] Open
Abstract
Renal fibrosis is a common feature of chronic kidney disease (CKD), and can lead to the destruction of normal renal structure and loss of kidney function. Little progress has been made in reversing fibrosis in recent years. Ferroptosis is more immunogenic than apoptosis due to the release and activation of damage-related molecular patterns (DAMPs) signals. In this paper, the relationship between renal fibrosis and ferroptosis was reviewed from the perspective of iron metabolism and lipid peroxidation, and some pharmaceuticals or chemicals associated with both ferroptosis and renal fibrosis were summarized. Other programmed cell death and ferroptosis in renal fibrosis were also firstly reviewed for comparison and further investigation.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanhua Mou
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Jianjian Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chuanjian Suo
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hai Zhou
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Gu
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ruoyun Tan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Ruoyun Tan,
| |
Collapse
|
4
|
Profitt LA, Baxter RHG, Valentine AM. Superstoichiometric Binding of the Anticancer Agent Titanocene Dichloride by Human Serum Transferrin and the Accompanying Lobe Closure. Biochemistry 2022; 61:795-803. [PMID: 35373558 DOI: 10.1021/acs.biochem.1c00813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Titanocene dichloride (TDC) is an anticancer agent that delivers Ti(IV) into each of the two Fe(III) binding sites of bilobal human serum transferrin (Tf). This protein has been implicated in the selective transport of Ti(IV) to cells. How Ti(IV) might be released from the Tf Fe(III) binding site has remained a question, and crystal structures have raised issues about lobe occupancy and lobe closure in Ti(IV)-loaded Tf, compared with the Fe(III)-loaded form. Here, inductively coupled plasma optical emission spectroscopy reveals that Tf can stabilize toward hydrolytic precipitation more than 2 equiv of Ti, implying superstoichiometric binding beyond the two Fe(III) binding sites. Further studies support the inability of TDC to induce a complete lobe closure of Tf. Fluorescence data for TDC binding at low equivalents of TDC support an initial protein conformational change and lobe closure upon Ti binding, whereas data at higher equivalents support an open lobe configuration. Spectroscopic titration reveals less intense protein-metal electronic transitions as TDC equivalents are increased. Denaturing urea-PAGE gels and small angle X-ray scattering studies support an open lobe conformation. The concentrations of bicarbonate used in some earlier studies are demonstrated here to cause a pH change over time, which may contribute to variation in the apparent molar absorptivity associated with Ti(IV) binding in the Fe binding site. Finally, Fe(III)-bound holo-Tf still stabilizes TDC toward hydrolytic precipitation, a finding that underscores the importance of the interactions of Tf and TDC outside the Fe(III) binding site and suggests possible new pathways of Ti introduction to cells.
Collapse
Affiliation(s)
- Lauren A Profitt
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Richard H G Baxter
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Ann M Valentine
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
5
|
Kosman DJ. A holistic view of mammalian (vertebrate) cellular iron uptake. Metallomics 2021; 12:1323-1334. [PMID: 32766655 DOI: 10.1039/d0mt00065e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cell iron uptake in mammals is commonly distinguished by whether the iron is presented to the cell as transferrin-bound or not: TBI or NTBI. This generic perspective conflates TBI with canonical transferrin receptor, endosomal iron uptake, and NTBI with uptake supported by a plasma membrane-localized divalent metal ion transporter, most often identified as DMT1. In fact, iron uptake by mammalian cells is far more nuanced than this somewhat proscribed view suggests. This view fails to accommodate the substantial role that ZIP8 and ZIP14 play in iron uptake, while adhering to the traditional premise that a relatively high endosomal [H+] is thermodynamically required for release of iron from holo-Tf. The canonical view of iron uptake also does not encompass the fact that plasma membrane electron transport - PMET - has long been linked to cell iron uptake. In fact, the known mammalian metallo-reductases - Dcytb and the STEAP proteins - are members of this cohort of cytochrome-dependent oxido-reductases that shuttle reducing equivalents across the plasma membrane. A not commonly appreciated fact is the reduction potential of ferric iron in holo-Tf is accessible to cytoplasmic reducing equivalents - reduced pyridine and flavin mono- and di-nucleotides and dihydroascorbic acid. This allows for the reductive release of Fe2+ at the extracellular surface of the PM and subsequent transport into the cytoplasm by a neutral pH transporter - a ZIP protein. What this perspective emphasizes is that there are two TfR-dependent uptake pathways, one which does and one which does not involve clathrin-dependent, endolysosomal trafficking. This raises the question as to the selective advantage of having two Tf, TfR-dependent routes of iron accumulation. This review of canonical and non-canonical iron uptake uses cerebral iron trafficking as a point of discussion, a focus that encourages inclusion also of the importance of ferritin as a circulating 'chaperone' of ferric iron.
Collapse
Affiliation(s)
- Daniel J Kosman
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, The University of Buffalo, Suite 4102, 995 Main St., Buffalo, NY 14203, USA.
| |
Collapse
|
6
|
Cain TJ, Smith AT. Ferric iron reductases and their contribution to unicellular ferrous iron uptake. J Inorg Biochem 2021; 218:111407. [PMID: 33684686 PMCID: PMC8035299 DOI: 10.1016/j.jinorgbio.2021.111407] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/29/2021] [Accepted: 02/19/2021] [Indexed: 12/21/2022]
Abstract
Iron is a necessary element for nearly all forms of life, and the ability to acquire this trace nutrient has been identified as a key virulence factor for the establishment of infection by unicellular pathogens. In the presence of O2, iron typically exists in the ferric (Fe3+) oxidation state, which is highly unstable in aqueous conditions, necessitating its sequestration into cofactors and/or host proteins to remain soluble. To counter this insolubility, and to compete with host sequestration mechanisms, many unicellular pathogens will secrete low molecular weight, high-affinity Fe3+ chelators known as siderophores. Once acquired, unicellular pathogens must liberate the siderophore-bound Fe3+ in order to assimilate this nutrient into metabolic pathways. While these organisms may hydrolyze the siderophore backbone to release the chelated Fe3+, this approach is energetically costly. Instead, iron may be liberated from the Fe3+-siderophore complex through reduction to Fe2+, which produces a lower-affinity form of iron that is highly soluble. This reduction is performed by a class of enzymes known as ferric reductases. Ferric reductases are broadly-distributed electron-transport proteins that are expressed by numerous infectious organisms and are connected to the virulence of unicellular pathogens. Despite this importance, ferric reductases remain poorly understood. This review provides an overview of our current understanding of unicellular ferric reductases (both soluble and membrane-bound), with an emphasis on the important but underappreciated connection between ferric-reductase mediated Fe3+ reduction and the transport of Fe2+ via ferrous iron transporters.
Collapse
Affiliation(s)
- Timothy J Cain
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Aaron T Smith
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA.
| |
Collapse
|
7
|
Crumbliss AL, Banerjee S. A perspective essay on the use of Ga 3+ as a proxy for Fe 3+ in bioinorganic model studies and its successful use for therapeutic purposes. J Inorg Biochem 2021; 219:111411. [PMID: 33853006 DOI: 10.1016/j.jinorgbio.2021.111411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/15/2021] [Accepted: 02/23/2021] [Indexed: 11/20/2022]
Abstract
The use of Ga3+ as a structural mimic for Fe3+ in model bioinorganic investigations is usually based on a common assumption that Ga3+ and Fe3+ should form bioligand complexes of similar stabilities due to their similar charge/radius ratio (z/r). However, the literature survey presented here is contrary to this notion, showing that under laboratory conditions often Ga3+ forms weaker bioligand complexes than Fe3+in aqueous medium. We hypothesize that this is because Ga3+ is more aquaphilic than Fe3+ as suggested by their relative heats of hydration (ΔHhyd). The successful use of Ga3+ as a therapeutic agent is also briefly reviewed, showing this success often stems from the redox inertness as well as different pharmacokinetics of Ga3+ than Fe3+, but similar metabolic pathways as Fe3+ in human serum.
Collapse
Affiliation(s)
- Alvin L Crumbliss
- Duke University Department of Chemistry, Durham, NC 27708-0346, USA.
| | - Sambuddha Banerjee
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
8
|
Gonzalez DH, Diaz DA, Baumann JP, Ghio AJ, Paulson SE. Effects of albumin, transferrin and humic-like substances on iron-mediated OH radical formation in human lung fluids. Free Radic Biol Med 2021; 165:79-87. [PMID: 33486087 DOI: 10.1016/j.freeradbiomed.2021.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/01/2021] [Accepted: 01/10/2021] [Indexed: 11/21/2022]
Abstract
Inhalation of particulate matter is hypothesized to contribute to health effects by overproducing reactive oxygen species (ROS) and inducing oxidative stress. Fe(II) has been shown to contribute to ROS generation in acellular simulated lung fluids. Atmospheric humic-like substances (HULIS) have been shown to chelate Fe(II) and significantly enhance this ROS generation. Here, we investigate Fe(II)-mediated .OH generation from the iron active proteins in lung fluid, albumin and transferrin, and fulvic acid, a surrogate for HULIS, in human bronchoalveolar lavage fluid (BALF). We find that albumin enhances .OH generation from inorganic Fe(II) and that transferrin attenuates this enhancement. We estimate the rate constants for albumin-Fe(II) and fulvic acid-Fe(II) mediated O2.- reduction (1.9 ± 0.3) M-1 s-1 and (2.7 ± 0.3) M-1s-1 (pH = 5.5, T = 37 °C), 17-25 times the rate for free iron, which we measured to be (110 ± 20) × 10-3 M-1s-1, in agreement with the literature. .OH generation measured from fulvic acid-Fe(II) in BALF from 8 individuals with added fulvic acid is successfully predicted rates of .OH generation by mixtures of Fe(II), albumin, transferrin, fulvic acid, and ascorbate in saline solution. This indicates that fulvic acid enhances .OH formation in BALF, and that albumin and transferrin in BALF moderate the effect. We propose that fulvic acid, and thereby HULIS, is capable of mobilizing Fe(II) away from albumin and transferrin and this increases the formation rate of O2.- and ultimately of .OH. Furthermore, we find that albumin and transferrin have significantly different impacts on Fe(II)-mediated .OH than citrate, a common component of simulated lung fluids, a factor that should be considered carefully in the interpretation of results obtained from solutions containing citrate.
Collapse
Affiliation(s)
- David H Gonzalez
- University of California at Los Angeles, Department of Atmospheric and Oceanic Sciences, 405 Hilgard Ave., Los Angeles, CA, 90405, USA
| | - David A Diaz
- California State University, Northridge Department of Environmental & Occupational Health, 18111 Nordhoff St, Northridge, CA, 91330, USA
| | - J Puna Baumann
- California State University, Northridge Department of Environmental & Occupational Health, 18111 Nordhoff St, Northridge, CA, 91330, USA
| | - Andrew J Ghio
- US Environmental Protection Agency, Chapel Hill, NC, 27599, USA
| | - Suzanne E Paulson
- University of California at Los Angeles, Department of Atmospheric and Oceanic Sciences, 405 Hilgard Ave., Los Angeles, CA, 90405, USA.
| |
Collapse
|
9
|
Mosleth EF, Vedeler CA, Liland KH, McLeod A, Bringeland GH, Kroondijk L, Berven FS, Lysenko A, Rawlings CJ, Eid KEH, Opsahl JA, Gjertsen BT, Myhr KM, Gavasso S. Cerebrospinal fluid proteome shows disrupted neuronal development in multiple sclerosis. Sci Rep 2021; 11:4087. [PMID: 33602999 PMCID: PMC7892850 DOI: 10.1038/s41598-021-82388-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/18/2021] [Indexed: 12/11/2022] Open
Abstract
Despite intensive research, the aetiology of multiple sclerosis (MS) remains unknown. Cerebrospinal fluid proteomics has the potential to reveal mechanisms of MS pathogenesis, but analyses must account for disease heterogeneity. We previously reported explorative multivariate analysis by hierarchical clustering of proteomics data of MS patients and controls, which resulted in two groups of individuals. Grouping reflected increased levels of intrathecal inflammatory response proteins and decreased levels of proteins involved in neural development in one group relative to the other group. MS patients and controls were present in both groups. Here we reanalysed these data and we also reanalysed data from an independent cohort of patients diagnosed with clinically isolated syndrome (CIS), who have symptoms of MS without evidence of dissemination in space and/or time. Some, but not all, CIS patients had intrathecal inflammation. The analyses reported here identified a common protein signature of MS/CIS that was not linked to elevated intrathecal inflammation. The signature included low levels of complement proteins, semaphorin-7A, reelin, neural cell adhesion molecules, inter-alpha-trypsin inhibitor heavy chain H2, transforming growth factor beta 1, follistatin-related protein 1, malate dehydrogenase 1 cytoplasmic, plasma retinol-binding protein, biotinidase, and transferrin, all known to play roles in neural development. Low levels of these proteins suggest that MS/CIS patients suffer from abnormally low oxidative capacity that results in disrupted neural development from an early stage of the disease.
Collapse
Affiliation(s)
- Ellen F Mosleth
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, 1430, Ås, Norway.
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK.
| | - Christian Alexander Vedeler
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Kristian Hovde Liland
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, 1430, Ås, Norway
- Faculty of Science and Technology, Norwegian University of Life Sciences, 1430, Ås, Norway
| | - Anette McLeod
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, 1430, Ås, Norway
- Center for Laboratory Medicine, Østfold Hospital Trust, Grålum, Norway
| | - Gerd Haga Bringeland
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Liesbeth Kroondijk
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | | | - Artem Lysenko
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | | | - Karim El-Hajj Eid
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, 1430, Ås, Norway
- Faculty of Science and Technology, Norwegian University of Life Sciences, 1430, Ås, Norway
| | - Jill Anette Opsahl
- Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Bjørn Tore Gjertsen
- Center for Cancer Biomarkers (CCBIO), Department of Clinical Science, Precision Oncology Research Group, University of Bergen, Bergen, Norway
- Department of Medicine, Haematology Section, Haukeland University Hospital, Bergen, Norway
| | - Kjell-Morten Myhr
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Sonia Gavasso
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
10
|
Rodríguez I, Gautam R, Tinoco AD. Using X-ray Diffraction Techniques for Biomimetic Drug Development, Formulation, and Polymorphic Characterization. Biomimetics (Basel) 2020; 6:1. [PMID: 33396786 PMCID: PMC7838816 DOI: 10.3390/biomimetics6010001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 12/31/2022] Open
Abstract
Drug development is a decades-long, multibillion dollar investment that often limits itself. To decrease the time to drug approval, efforts are focused on drug targets and drug formulation for optimal biocompatibility and efficacy. X-ray structural characterization approaches have catalyzed the drug discovery and design process. Single crystal X-ray diffraction (SCXRD) reveals important structural details and molecular interactions for the manifestation of a disease or for therapeutic effect. Powder X-ray diffraction (PXRD) has provided a method to determine the different phases, purity, and stability of biological drug compounds that possess crystallinity. Recently, synchrotron sources have enabled wider access to the study of noncrystalline or amorphous solids. One valuable technique employed to determine atomic arrangements and local atom ordering of amorphous materials is the pair distribution function (PDF). PDF has been used in the study of amorphous solid dispersions (ASDs). ASDs are made up of an active pharmaceutical ingredient (API) within a drug dispersed at the molecular level in an amorphous polymeric carrier. This information is vital for appropriate formulation of a drug for stability, administration, and efficacy purposes. Natural or biomimetic products are often used as the API or the formulation agent. This review profiles the deep insights that X-ray structural techniques and associated analytical methods can offer in the development of a drug.
Collapse
Affiliation(s)
- Israel Rodríguez
- Department of Chemistry, University of Puerto Rico Río Piedras, San Juan, PR 00925, USA
| | - Ritika Gautam
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Arthur D. Tinoco
- Department of Chemistry, University of Puerto Rico Río Piedras, San Juan, PR 00925, USA
| |
Collapse
|
11
|
Benjamín-Rivera JA, Cardona-Rivera AE, Vázquez-Maldonado ÁL, Dones-Lassalle CY, Pabón-Colon HL, Rodríguez-Rivera HM, Rodríguez I, González-Espiet JC, Pazol J, Pérez-Ríos JD, Catala-Torres JF, Carrasquillo Rivera M, De Jesus-Soto MG, Cordero-Virella NA, Cruz-Maldonado PM, González-Pagan P, Hernández-Ríos R, Gaur K, Loza-Rosas SA, Tinoco AD. Exploring Serum Transferrin Regulation of Nonferric Metal Therapeutic Function and Toxicity. INORGANICS 2020; 8:48. [PMID: 36844373 PMCID: PMC9957567 DOI: 10.3390/inorganics8090048] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Serum transferrin (sTf) plays a pivotal role in regulating iron biodistribution and homeostasis within the body. The molecular details of sTf Fe(III) binding blood transport, and cellular delivery through transferrin receptor-mediated endocytosis are generally well-understood. Emerging interest exists in exploring sTf complexation of nonferric metals as it facilitates the therapeutic potential and toxicity of several of them. This review explores recent X-ray structural and physiologically relevant metal speciation studies to understand how sTf partakes in the bioactivity of key non-redox active hard Lewis acidic metals. It challenges preconceived notions of sTf structure function correlations that were based exclusively on the Fe(III) model by revealing distinct coordination modalities that nonferric metal ions can adopt and different modes of binding to metal-free and Fe(III)-bound sTf that can directly influence how they enter into cells and, ultimately, how they may impact human health. This knowledge informs on biomedical strategies to engineer sTf as a delivery vehicle for metal-based diagnostic and therapeutic agents in the cancer field. It is the intention of this work to open new avenues for characterizing the functionality and medical utility of nonferric-bound sTf and to expand the significance of this protein in the context of bioinorganic chemistry.
Collapse
Affiliation(s)
- Josué A. Benjamín-Rivera
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | - Andrés E. Cardona-Rivera
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | | | | | - Héctor L. Pabón-Colon
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | | | - Israel Rodríguez
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | - Jean C. González-Espiet
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | - Jessika Pazol
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | - Jobaniel D. Pérez-Ríos
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | - José F. Catala-Torres
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | | | - Michael G. De Jesus-Soto
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | | | - Paola M. Cruz-Maldonado
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | - Patricia González-Pagan
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | - Raul Hernández-Ríos
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | - Kavita Gaur
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | - Sergio A. Loza-Rosas
- Departamento de Química y Bioquímica, Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Tunja 150003, Colombia
| | - Arthur D. Tinoco
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
- Correspondence: ; Tel.: +1-939-319-9701
| |
Collapse
|
12
|
Reilley DJ, Fuller JT, Nechay MR, Victor M, Li W, Ruberry JD, Mujika JI, Lopez X, Alexandrova AN. Toxic and Physiological Metal Uptake and Release by Human Serum Transferrin. Biophys J 2020; 118:2979-2988. [PMID: 32497515 PMCID: PMC7300305 DOI: 10.1016/j.bpj.2020.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/03/2020] [Accepted: 04/29/2020] [Indexed: 10/24/2022] Open
Abstract
An atomistic understanding of metal transport in the human body is critical to anticipate the side effects of metal-based therapeutics and holds promise for new drugs and drug delivery designs. Human serum transferrin (hTF) is a central part of the transport processes because of its ubiquitous ferrying of physiological Fe(III) and other transition metals to tightly controlled parts of the body. There is an atomistic mechanism for the uptake process with Fe(III), but not for the release process, or for other metals. This study provides initial insight into these processes for a range of transition metals-Ti(IV), Co(III), Fe(III), Ga(III), Cr(III), Fe(II), Zn(II)-through fully atomistic, extensive quantum mechanical/discrete molecular dynamics sampling and provides, to our knowledge, a new technique we developed to calculate relative binding affinities between metal cations and the protein. It identifies protonation of Tyr188 as a trigger for metal release rather than protonation of Lys206 or Lys296. The study identifies the difficulty of metal release from hTF as potentially related to cytotoxicity. Simulations identify a few critical interactions that stabilize the metal binding site in a flexible, nuanced manner.
Collapse
Affiliation(s)
- David J Reilley
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California
| | - Jack T Fuller
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California
| | - Michael R Nechay
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California
| | - Marie Victor
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California; Institut Lumire Matire, Villeurbanne, France
| | - Wei Li
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
| | - Josiah D Ruberry
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California
| | - Jon I Mujika
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia, International Physics Center, Donostia, Euskadi, Spain
| | - Xabier Lopez
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia, International Physics Center, Donostia, Euskadi, Spain
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
13
|
Kadassery KJ, Crawley MR, MacMillan SN, Lacy DC. A hemilabile manganese(i)–phenol complex and its coordination induced O–H bond weakening. Dalton Trans 2020; 49:16217-16225. [DOI: 10.1039/d0dt00973c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Synthesis and characterization of [(HPO)(PO)Mn(CO)2 (H1), a phenol bound first-row transition metal complex, is reported. Thermochemical analysis of H1 indicated the presence of coordination induced O–H bond weakening.
Collapse
Affiliation(s)
| | - Matthew R. Crawley
- Department of Chemistry
- University at Buffalo
- State University of New York
- Buffalo
- USA
| | | | - David C. Lacy
- Department of Chemistry
- University at Buffalo
- State University of New York
- Buffalo
- USA
| |
Collapse
|
14
|
Levina A, Lay PA. Transferrin Cycle and Clinical Roles of Citrate and Ascorbate in Improved Iron Metabolism. ACS Chem Biol 2019; 14:893-900. [PMID: 30973710 DOI: 10.1021/acschembio.8b01100] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Fe(III) delivery from blood plasma to cells via the transferrin (Tf) cycle was studied intensively due to its crucial role in Fe homeostasis. Tf-cycle disruptions are linked to anemia, infections, immunodeficiency, and neurodegeneration. Biolayer interferometry (BLI) enabled direct kinetic and thermodynamic measurements for all Tf-cycle steps in a single in vitro experiment using Tf within blood serum or released into the medium by cultured liver cells. In these media, known Tf cycle features were reproduced, and unprecedented insights were gained into conditions of rapid endosomal (pH 5.6) Fe(III) release from the Tf-Tf receptor 1 (TfR1) adduct. This release occurred via synergistic citrate and ascorbate effects, which pointed to respective roles as the likely elusive Fe chelator and reductant within the Tf cycle. These results explain enhanced cellular Fe uptake by ascorbate, the clinical efficacy of anemia treatment with Fe citrate and ascorbate, and dietary effects associated with loss of Fe homeostasis, including the large health burden of infections and neurodegeneration.
Collapse
Affiliation(s)
- Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Peter A. Lay
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
15
|
Gaur K, Vázquez-Salgado A, Duran-Camacho G, Dominguez-Martinez I, Benjamín-Rivera J, Fernández-Vega L, Carmona Sarabia L, Cruz García A, Pérez-Deliz F, Méndez Román J, Vega-Cartagena M, Loza-Rosas S, Rodriguez Acevedo X, Tinoco A. Iron and Copper Intracellular Chelation as an Anticancer Drug Strategy. INORGANICS 2018. [DOI: https://doi.org/10.3390/inorganics6040126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A very promising direction in the development of anticancer drugs is inhibiting the molecular pathways that keep cancer cells alive and able to metastasize. Copper and iron are two essential metals that play significant roles in the rapid proliferation of cancer cells and several chelators have been studied to suppress the bioavailability of these metals in the cells. This review discusses the major contributions that Cu and Fe play in the progression and spreading of cancer and evaluates select Cu and Fe chelators that demonstrate great promise as anticancer drugs. Efforts to improve the cellular delivery, efficacy, and tumor responsiveness of these chelators are also presented including a transmetallation strategy for dual targeting of Cu and Fe. To elucidate the effectiveness and specificity of Cu and Fe chelators for treating cancer, analytical tools are described for measuring Cu and Fe levels and for tracking the metals in cells, tissue, and the body.
Collapse
|
16
|
Gaur K, Vázquez-Salgado AM, Duran-Camacho G, Dominguez-Martinez I, Benjamín-Rivera JA, Fernández-Vega L, Sarabia LC, García AC, Pérez-Deliz F, Méndez Román JA, Vega-Cartagena M, Loza-Rosas SA, Acevedo XR, Tinoco AD. Iron and Copper Intracellular Chelation as an Anticancer Drug Strategy. INORGANICS 2018; 6:126. [PMID: 33912613 PMCID: PMC8078164 DOI: 10.3390/inorganics6040126] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A very promising direction in the development of anticancer drugs is inhibiting the molecular pathways that keep cancer cells alive and able to metastasize. Copper and iron are two essential metals that play significant roles in the rapid proliferation of cancer cells and several chelators have been studied to suppress the bioavailability of these metals in the cells. This review discusses the major contributions that Cu and Fe play in the progression and spreading of cancer and evaluates select Cu and Fe chelators that demonstrate great promise as anticancer drugs. Efforts to improve the cellular delivery, efficacy, and tumor responsiveness of these chelators are also presented including a transmetallation strategy for dual targeting of Cu and Fe. To elucidate the effectiveness and specificity of Cu and Fe chelators for treating cancer, analytical tools are described for measuring Cu and Fe levels and for tracking the metals in cells, tissue, and the body.
Collapse
Affiliation(s)
- Kavita Gaur
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | | | - Geraldo Duran-Camacho
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | | | - Josué A Benjamín-Rivera
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Lauren Fernández-Vega
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Lesly Carmona Sarabia
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Angelys Cruz García
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Felipe Pérez-Deliz
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - José A Méndez Román
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Melissa Vega-Cartagena
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Sergio A Loza-Rosas
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | | | - Arthur D Tinoco
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| |
Collapse
|
17
|
Saxena M, Loza-Rosas SA, Gaur K, Sharma S, Pérez Otero SC, Tinoco AD. Exploring titanium(IV) chemical proximity to iron(III) to elucidate a function for Ti(IV) in the human body. Coord Chem Rev 2018; 363:109-125. [PMID: 30270932 PMCID: PMC6159949 DOI: 10.1016/j.ccr.2018.03.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite its natural abundance and widespread use as food, paint additive, and in bone implants, no specific biological function of titanium is known in the human body. High concentrations of Ti(IV) could result in cellular toxicity, however, the absence of Ti toxicity in the blood of patients with titanium bone implants indicates the presence of one or more biological mechanisms to mitigate toxicity. Similar to Fe(III), Ti(IV) in blood binds to the iron transport protein serum transferrin (sTf), which gives credence to the possibility of its cellular uptake mechanism by transferrin-directed endocytosis. However, once inside the cell, how sTf bound Ti(IV) is released into the cytoplasm, utilized, or stored remain largely unknown. To explain the molecular mechanisms involved in Ti use in cells we have drawn parallels with those for Fe(III). Based on its chemical similarities with Fe(III), we compare the biological coordination chemistry of Fe(III) and Ti(IV) and hypothesize that Ti(IV) can bind to similar intracellular biomolecules. The comparable ligand affinity profiles suggest that at high Ti(IV) concentrations, Ti(IV) could compete with Fe(III) to bind to biomolecules and would inhibit Fe bioavailability. At the typical Ti concentrations in the body, Ti might exist as a labile pool of Ti(IV) in cells, similar to Fe. Ti could exhibit different types of properties that would determine its cellular functions. We predict some of these functions to mimic those of Fe in the cell and others to be specific to Ti. Bone and cellular speciation and localization studies hint toward various intracellular targets of Ti like phosphoproteins, DNA, ribonucleotide reductase, and ferritin. However, to decipher the exact mechanisms of how Ti might mediate these roles, development of innovative and more sensitive methods are required to track this difficult to trace metal in vivo.
Collapse
Affiliation(s)
- Manoj Saxena
- Department of Chemistry, University of Puerto Rico Río Piedras, San Juan, PR 00931
| | - Sergio A. Loza-Rosas
- Department of Chemistry, University of Puerto Rico Río Piedras, San Juan, PR 00931
| | - Kavita Gaur
- Department of Chemistry, University of Puerto Rico Río Piedras, San Juan, PR 00931
| | - Shweta Sharma
- Department of Environmental Sciences, University of Puerto Rico Río Piedras, San Juan, PR 00931
| | - Sofia C. Pérez Otero
- Department of Chemistry, University of Puerto Rico Río Piedras, San Juan, PR 00931
| | - Arthur D. Tinoco
- Department of Chemistry, University of Puerto Rico Río Piedras, San Juan, PR 00931
| |
Collapse
|
18
|
Knutson MD. Iron transport proteins: Gateways of cellular and systemic iron homeostasis. J Biol Chem 2017; 292:12735-12743. [PMID: 28615441 DOI: 10.1074/jbc.r117.786632] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cellular iron homeostasis is maintained by iron and heme transport proteins that work in concert with ferrireductases, ferroxidases, and chaperones to direct the movement of iron into, within, and out of cells. Systemic iron homeostasis is regulated by the liver-derived peptide hormone, hepcidin. The interface between cellular and systemic iron homeostasis is readily observed in the highly dynamic iron handling of four main cell types: duodenal enterocytes, erythrocyte precursors, macrophages, and hepatocytes. This review provides an overview of how these cell types handle iron, highlighting how iron and heme transporters mediate the exchange and distribution of body iron in health and disease.
Collapse
Affiliation(s)
- Mitchell D Knutson
- Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida 32611-03170.
| |
Collapse
|
19
|
Thévenod F, Wolff NA. Iron transport in the kidney: implications for physiology and cadmium nephrotoxicity. Metallomics 2016; 8:17-42. [PMID: 26485516 DOI: 10.1039/c5mt00215j] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The kidney has recently emerged as an organ with a significant role in systemic iron (Fe) homeostasis. Substantial amounts of Fe are filtered by the kidney, which have to be reabsorbed to prevent Fe deficiency. Accordingly Fe transporters and receptors for protein-bound Fe are expressed in the nephron that may also function as entry pathways for toxic metals, such as cadmium (Cd), by way of "ionic and molecular mimicry". Similarities, but also differences in handling of Cd by these transport routes offer rationales for the propensity of the kidney to develop Cd toxicity. This critical review provides a comprehensive update on Fe transport by the kidney and its relevance for physiology and Cd nephrotoxicity. Based on quantitative considerations, we have also estimated the in vivo relevance of the described transport pathways for physiology and toxicology. Under physiological conditions all segments of the kidney tubules are likely to utilize Fe for cellular Fe requiring processes for metabolic purposes and also to contribute to reabsorption of free and bound forms of Fe into the circulation. But Cd entering tubule cells disrupts metabolic pathways and is unable to exit. Furthermore, our quantitative analyses contest established models linking chronic Cd nephrotoxicity to proximal tubular uptake of metallothionein-bound Cd. Hence, Fe transport by the kidney may be beneficial by preventing losses from the body. But increased uptake of Fe or Cd that cannot exit tubule cells may lead to kidney injury, and Fe deficiency may facilitate renal Cd uptake.
Collapse
Affiliation(s)
- Frank Thévenod
- Institute of Physiology, Pathophysiology & Toxicology, Center for Biomedical Training and Research (ZBAF), University of Witten/Herdecke, Stockumer Str. 12, 58453 Witten, Germany.
| | - Natascha A Wolff
- Institute of Physiology, Pathophysiology & Toxicology, Center for Biomedical Training and Research (ZBAF), University of Witten/Herdecke, Stockumer Str. 12, 58453 Witten, Germany.
| |
Collapse
|
20
|
Tinoco AD, Saxena M, Sharma S, Noinaj N, Delgado Y, Quiñones González EP, Conklin SE, Zambrana N, Loza-Rosas SA, Parks TB. Unusual Synergism of Transferrin and Citrate in the Regulation of Ti(IV) Speciation, Transport, and Toxicity. J Am Chem Soc 2016; 138:5659-65. [PMID: 27070073 DOI: 10.1021/jacs.6b01966] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human serum transferrin (sTf) is a protein that mediates the transport of iron from blood to cells. Assisted by the synergistic anion carbonate, sTf transports Fe(III) by binding the metal ion in a closed conformation. Previous studies suggest sTf's role as a potential transporter of other metals such as titanium. Ti is a widely used metal in colorants, foods, and implants. A substantial amount of Ti is leached into blood from these implants. However, the fate of the leached Ti and its transport into the cells is not known. Understanding Ti interaction with sTf assumes a greater significance with our ever increasing exposure to Ti in the form of implants. On the basis of in vitro studies, it was speculated that transferrin can bind Ti(IV) assisted by a synergistic anion. However, the role and identity of the synergistic anion(s) and the conformational state in which sTf binds Ti(IV) are not known. Here we have solved the first X-ray crystal structure of a Ti(IV)-bound sTf. We find that sTf binds Ti(IV) in an open conformation with both carbonate and citrate as synergistic anions at the metal binding sites, an unprecedented role for citrate. Studies with cell lines suggest that Ti(IV)-sTf is transported into cells and that sTf and citrate regulate the metal's blood speciation and attenuate its cytotoxic property. Our results provide the first glimpse into the citrate-transferrin synergism in the regulation of Ti(IV) bioactivity and offers insight into the future design of Ti(IV)-based anticancer drugs.
Collapse
Affiliation(s)
| | | | | | - Nicholas Noinaj
- Department of Biological Sciences, Purdue University , 240 S. Martin Jischke Drive, Hockmeyer Hall, West Lafayette, Indiana 47907, United States
| | | | | | | | | | | | - Timothy B Parks
- VA Caribbean Healthcare System, 10 Casia Street, San Juan, Puerto Rico 00921
| |
Collapse
|
21
|
Iron overload of human colon adenocarcinoma cells studied by synchrotron-based X-ray techniques. J Biol Inorg Chem 2016; 21:241-9. [DOI: 10.1007/s00775-015-1331-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 12/30/2015] [Indexed: 01/05/2023]
|
22
|
Transcytosis in the blood-cerebrospinal fluid barrier of the mouse brain with an engineered receptor/ligand system. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2015; 2:15037. [PMID: 26491705 PMCID: PMC4596253 DOI: 10.1038/mtm.2015.37] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 08/13/2015] [Indexed: 12/13/2022]
Abstract
Crossing the blood-brain and the blood-cerebrospinal fluid barriers (BCSFB) is one of the fundamental challenges in the development of new therapeutic molecules for brain disorders because these barriers prevent entry of most drugs from the blood into the brain. However, some large molecules, like the protein transferrin, cross these barriers using a specific receptor that transports them into the brain. Based on this mechanism, we engineered a receptor/ligand system to overcome the brain barriers by combining the human transferrin receptor with the cohesin domain from Clostridium thermocellum, and we tested the hybrid receptor in the choroid plexus of the mouse brain with a dockerin ligand. By expressing our receptor in choroidal ependymocytes, which are part of the BCSFB, we found that our systemically administrated ligand was able to bind to the receptor and accumulate in ependymocytes, where some of the ligand was transported from the blood side to the brain side.
Collapse
|
23
|
Exploring the Fe(III) binding sites of human serum transferrin with EPR at 275 GHz. J Biol Inorg Chem 2014; 20:487-96. [DOI: 10.1007/s00775-014-1229-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/10/2014] [Indexed: 10/24/2022]
|
24
|
Iron transport across the blood-brain barrier: development, neurovascular regulation and cerebral amyloid angiopathy. Cell Mol Life Sci 2014; 72:709-27. [PMID: 25355056 DOI: 10.1007/s00018-014-1771-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/10/2014] [Accepted: 10/23/2014] [Indexed: 12/14/2022]
Abstract
There are two barriers for iron entry into the brain: (1) the brain-cerebrospinal fluid (CSF) barrier and (2) the blood-brain barrier (BBB). Here, we review the literature on developmental iron accumulation by the brain, focusing on the transport of iron through the brain microvascular endothelial cells (BMVEC) of the BBB. We review the iron trafficking proteins which may be involved in the iron flux across BMVEC and discuss the plausible mechanisms of BMVEC iron uptake and efflux. We suggest a model for how BMVEC iron uptake and efflux are regulated and a mechanism by which the majority of iron is trafficked across the developing BBB under the direct guidance of neighboring astrocytes. Thus, we place brain iron uptake in the context of the neurovascular unit of the adult brain. Last, we propose that BMVEC iron is involved in the aggregation of amyloid-β peptides leading to the progression of cerebral amyloid angiopathy which often occurs prior to dementia and the onset of Alzheimer's disease.
Collapse
|
25
|
Eid C, Hémadi M, Ha-Duong NT, El Hage Chahine JM. Iron uptake and transfer from ceruloplasmin to transferrin. Biochim Biophys Acta Gen Subj 2014; 1840:1771-81. [DOI: 10.1016/j.bbagen.2014.01.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/19/2013] [Accepted: 01/03/2014] [Indexed: 01/03/2023]
|
26
|
Direct thermodynamic and kinetic measurements of Fe²⁺ and Zn²⁺ binding to human serum transferrin. J Inorg Biochem 2014; 136:24-32. [PMID: 24705244 DOI: 10.1016/j.jinorgbio.2014.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/12/2014] [Accepted: 03/13/2014] [Indexed: 11/21/2022]
Abstract
Human serum transferrin (hTf) is a single-chain bilobal glycoprotein that efficiently delivers iron to mammalian cells by endocytosis via the transferrin/transferrin receptor system. While extensive studies have been directed towards the study of ferric ion binding to hTf, ferrous ion interactions with the protein have never been firmly investigated owing to the rapid oxidation of Fe(II) to Fe(III) and the difficulty in maintaining a fully anaerobic environment. Here, the binding of Fe(2+) and Zn(2+) ions to hTf has been studied under anaerobic and aerobic conditions, respectively, in the presence and absence of bicarbonate by means of isothermal titration calorimetry (ITC) and fluorescence spectroscopy. The ITC data indicate the presence of one class of strong binding sites with dissociation constants of 25.2 nM for Fe(2+) and 6.7 nM for Zn(2+) and maximum binding stoichiometries of 1 Zn(2+) (or 1 Fe(2+)) per hTf molecule. With either metal, the binding interaction was achieved by both favorable enthalpy and entropy changes (ΔH(0)~-12 kJ/mol and ΔS(0)~106 J/mol·K for Fe(2+) and ΔH(0)~-18 kJ/mol and ΔS(0)~97 J/mol·K for Zn(2+)). The large and positive entropy values are most likely due to the change in the hydration of the protein and the metal ions upon interaction. Rapid kinetics stopped-flow fluorescence spectroscopy revealed two different complexation mechanisms with different degrees of conformational changes upon metal ion binding. Our results are discussed in terms of a plausible scenario for iron dissociation from transferrin by which the highly stable Fe(3+)-hTf complex might be reduced to the more labile Fe(2+) ion before iron is released to the cytosol.
Collapse
|
27
|
Mechanistic analysis of iron accumulation by endothelial cells of the BBB. Biometals 2012; 25:665-75. [PMID: 22434419 DOI: 10.1007/s10534-012-9538-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 03/04/2012] [Indexed: 01/06/2023]
Abstract
The mechanism(s) by which iron in blood is transported across the blood-brain barrier (BBB) remains controversial. Here we have examined the first step of this trans-cellular pathway, namely the mechanism(s) of iron uptake into human brain microvascular endothelial cells (hBMVEC). We show that hBMVEC actively reduce non-transferrin bound Fe(III) (NTBI) and transferrin-bound Fe(III) (TBI); this activity is associated with one or more ferrireductases. Efficient, exo-cytoplasmic ferri-reduction from TBI is dependent upon transferrin receptor (TfR), also. Blocking holo-Tf binding with an anti-TfR antibody significantly decreases the reduction of iron from transferrin by hBMVEC, suggesting that holo-Tf needs to bind to TfR in order for efficient reduction to occur. Ferri-reduction from TBI significantly decreases when hBMVEC are pre-treated with Pt(II), an inhibitor of cell surface reductase activity. Uptake of (59)Fe from (59)Fe-Tf by endothelial cells is inhibited by 50 % when ferrozine is added to solution; in contrast, no inhibition occurs when cells are alkalinized with NH(4)Cl. This indicates that the iron reduced from holo-transferrin at the plasma membrane accounts for at least 50 % of the iron uptake observed. hBMVEC-dependent reduction and uptake of NTBI utilizes a Pt(II)-insensitive reductase. Reductase-independent uptake of Fe(II) by hBMVEC is inhibited up to 50 % by Zn(II) and/or Mn(II) by a saturable process suggesting that redundant Fe(II) transporters exist in the hBMVEC plasma membrane. These results are the first to demonstrate multiple mechanism(s) of TBI and NTBI reduction and uptake by endothelial cells (EC) of the BBB.
Collapse
|
28
|
Steere AN, Byrne SL, Chasteen ND, Mason AB. Kinetics of iron release from transferrin bound to the transferrin receptor at endosomal pH. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1820:326-33. [PMID: 21699959 PMCID: PMC3253137 DOI: 10.1016/j.bbagen.2011.06.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 06/02/2011] [Accepted: 06/07/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND Human serum transferrin (hTF) is a bilobal glycoprotein that reversibly binds Fe(3+) and delivers it to cells by the process of receptor-mediated endocytosis. Despite decades of research, the precise events resulting in iron release from each lobe of hTF within the endosome have not been fully delineated. SCOPE OF REVIEW We provide an overview of the kinetics of iron release from hTF±the transferrin receptor (TFR) at endosomal pH (5.6). A critical evaluation of the array of biophysical techniques used to determine accurate rate constants is provided. GENERAL SIGNIFICANCE Delivery of Fe(3+)to actively dividing cells by hTF is essential; too much or too little Fe(3+) directly impacts the well-being of an individual. Because the interaction of hTF with the TFR controls iron distribution in the body, an understanding of this process at the molecular level is essential. MAJOR CONCLUSIONS Not only does TFR direct the delivery of iron to the cell through the binding of hTF, kinetic data demonstrate that it also modulates iron release from the N- and C-lobes of hTF. Specifically, the TFR balances the rate of iron release from each lobe, resulting in efficient Fe(3+) release within a physiologically relevant time frame. This article is part of a Special Issue entitled Molecular Mechanisms of Iron Transport and Disorders.
Collapse
Affiliation(s)
- Ashley N. Steere
- Department of Biochemistry, University of Vermont, College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405 USA
| | - Shaina L. Byrne
- Department of Biochemistry, University of Vermont, College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405 USA
| | - N. Dennis Chasteen
- Emeritus Professor, Department of Chemistry, Parsons Hall, University of New Hampshire, Durham, NH 03824, USA
| | - Anne B. Mason
- Department of Biochemistry, University of Vermont, College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405 USA
| |
Collapse
|
29
|
Sheftel AD, Mason AB, Ponka P. The long history of iron in the Universe and in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1820:161-87. [PMID: 21856378 PMCID: PMC3258305 DOI: 10.1016/j.bbagen.2011.08.002] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/19/2011] [Accepted: 08/01/2011] [Indexed: 12/21/2022]
Abstract
BACKGROUND Not long after the Big Bang, iron began to play a central role in the Universe and soon became mired in the tangle of biochemistry that is the prima essentia of life. Since life's addiction to iron transcends the oxygenation of the Earth's atmosphere, living things must be protected from the potentially dangerous mix of iron and oxygen. The human being possesses grams of this potentially toxic transition metal, which is shuttling through his oxygen-rich humor. Since long before the birth of modern medicine, the blood-vibrant red from a massive abundance of hemoglobin iron-has been a focus for health experts. SCOPE OF REVIEW We describe the current understanding of iron metabolism, highlight the many important discoveries that accreted this knowledge, and describe the perils of dysfunctional iron handling. GENERAL SIGNIFICANCE Isaac Newton famously penned, "If I have seen further than others, it is by standing upon the shoulders of giants". We hope that this review will inspire future scientists to develop intellectual pursuits by understanding the research and ideas from many remarkable thinkers of the past. MAJOR CONCLUSIONS The history of iron research is a long, rich story with early beginnings, and is far from being finished. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders.
Collapse
Affiliation(s)
- Alex D. Sheftel
- University of Ottawa Heart Institute, 40 Ruskin St., Ottawa, ON K1Y 4W7, Canada
| | - Anne B. Mason
- Department of Biochemistry, College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405-0068, USA
| | - Prem Ponka
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte-Ste.-Catherine Rd., Montréal, QC H3T 1E2, and Departments of Physiology and Medicine, McGill University, Montréal, QC, Canada
| |
Collapse
|
30
|
Abstract
Essential to iron homeostasis is the transport of iron by the bilobal protein human serum transferrin (hTF). Each lobe (N- and C-lobe) of hTF forms a deep cleft which binds a single Fe(3+). Iron-bearing hTF in the blood binds tightly to the specific transferrin receptor (TFR), a homodimeric transmembrane protein. After undergoing endocytosis, acidification of the endosome initiates the release of Fe(3+) from hTF in a TFR-mediated process. Iron-free hTF remains tightly bound to the TFR at acidic pH; following recycling back to the cell surface, it is released to sequester more iron. Efficient delivery of iron is critically dependent on hTF/TFR interactions. Therefore, identification of the pH-specific contacts between hTF and the TFR is crucial. Recombinant protein production has enabled deconvolution of this complex system. The studies reviewed herein support a model in which pH-induced interrelated events control receptor-stimulated iron release from each lobe of hTF.
Collapse
Affiliation(s)
| | - Anne B. Mason
- Department of Biochemistry, University of Vermont, College of Medicine, Burlington, VT, USA
| |
Collapse
|
31
|
Shawki A, Knight PB, Maliken BD, Niespodzany EJ, Mackenzie B. H(+)-coupled divalent metal-ion transporter-1: functional properties, physiological roles and therapeutics. CURRENT TOPICS IN MEMBRANES 2012. [PMID: 23177986 DOI: 10.1016/b978-0-12-394316-3.00005-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Divalent metal-ion transporter-1 (DMT1) is a widely expressed, iron-preferring membrane transport protein. Animal models establish that DMT1 plays indispensable roles in intestinal nonheme-iron absorption and iron acquisition by erythroid precursor cells. Rare mutations in human DMT1 result in severe microcytic-hypochromic anemia. When we express DMT1 in RNA-injected Xenopus oocytes, we observe rheogenic Fe(2+) transport that is driven by the proton electrochemical potential gradient. In that same preparation, DMT1 also transports cadmium and manganese but not copper. Whether manganese metabolism relies upon DMT1 remains unclear but DMT1 contributes to the effects of overexposure to cadmium and manganese in some tissues. There exist at least four DMT1 isoforms that arise from variant transcription of the SLC11A2 gene. Whereas these isoforms display identical functional properties, N- and C-terminal variations contain cues that direct the cell-specific targeting of DMT1 isoforms to discrete subcellular compartments (plasma membrane, endosomes, and lysosomes). An iron-responsive element (IRE) in the mRNA 3'-untranslated region permits the regulation of some isoforms by iron status, and additional mechanisms by which DMT1 is regulated are emerging. Natural-resistance-associated macrophage protein-1 (NRAMP1)-the only other member of the mammalian SLC11 gene family-contributes to antimicrobial function by extruding from the phagolysosome divalent metal ions (e.g. Mn(2+)) that may be essential cofactors for bacteria-derived enzymes or required for bacterial growth. The principal or only intestinal nonheme-iron transporter, DMT1 is a validated therapeutic target in hereditary hemochromatosis (HHC) and other iron-overload disorders.
Collapse
Affiliation(s)
- Ali Shawki
- Department of Molecular & Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | | | | | |
Collapse
|
32
|
Parker Siburt CJ, Mietzner TA, Crumbliss AL. FbpA--a bacterial transferrin with more to offer. Biochim Biophys Acta Gen Subj 2011; 1820:379-92. [PMID: 21933698 DOI: 10.1016/j.bbagen.2011.09.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 08/25/2011] [Accepted: 09/02/2011] [Indexed: 01/26/2023]
Abstract
BACKGROUND Gram negative bacteria require iron for growth and virulence. It has been shown that certain pathogenic bacteria such as Neisseria gonorrhoeae possess a periplasmic protein called ferric binding protein (FbpA), which is a node in the transport of iron from the cell exterior to the cytosol. SCOPE OF REVIEW The relevant literature is reviewed which establishes the molecular mechanism of FbpA mediated iron transport across the periplasm to the inner membrane. MAJOR CONCLUSIONS Here we establish that FbpA may be considered a bacterial transferrin on structural and functional grounds. Data are presented which suggest a continuum whereby FbpA may be considered as a naked iron carrier, as well as a Fe-chelate carrier, and finally a member of the larger family of periplasmic binding proteins. GENERAL SIGNIFICANCE An investigation of the molecular mechanisms of action of FbpA as a member of the transferrin super family enhances our understanding of bacterial mechanisms for acquisition of the essential nutrient iron, as well as the modes of action of human transferrin, and may provide approaches to the control of pathogenic diseases. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders.
Collapse
|
33
|
El Hage Chahine JM, Hémadi M, Ha-Duong NT. Uptake and release of metal ions by transferrin and interaction with receptor 1. Biochim Biophys Acta Gen Subj 2011; 1820:334-47. [PMID: 21872645 DOI: 10.1016/j.bbagen.2011.07.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/12/2011] [Accepted: 07/13/2011] [Indexed: 10/17/2022]
Abstract
BACKGROUND For a metal to follow the iron acquisition pathway, four conditions are required: 1-complex formation with transferrin; 2-interaction with receptor 1; 3-metal release in the endosome; and 4-metal transport to cytosol. SCOPE OF THE REVIEW This review deals with the mechanisms of aluminum(III), cobalt(III), uranium(VI), gallium(III) and bismuth(III) uptake by transferrin and interaction with receptor 1. MAJOR CONCLUSIONS The interaction of the metal-loaded transferrin with receptor 1 takes place in one or two steps: a very fast first step (μs to ms) between the C-lobe and the helical domain of the receptor, and a second slow step (2-6h) between the N-lobe and the protease-like domain. In transferrin loaded with metals other than iron, the dissociation constants for the interaction of the C-lobe with TFR are in a comparable range of magnitudes 10 to 0.5μM, whereas those of the interaction of the N-lobe are several orders of magnitudes lower or not detected. Endocytosis occurs in minutes, which implies a possible internalization of the metal-loaded transferrin with only the C-lobe interacting with the receptor. GENERAL SIGNIFICANCE A competition with iron is possible and implies that metal internalization is more related to kinetics than thermodynamics. As for metal release in the endosome, it is faster than the recycling time of transferrin, which implies its possible liberation in the cell. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders.
Collapse
Affiliation(s)
- Jean-Michel El Hage Chahine
- Université Paris Diderot Sorbonne Paris Cité–CNRS, Interfaces, Traitements, Organisation Dynamique des Systèmes–UMR 7086, Bâtiment Lavoisier, 15 rue Jean-Antoine de Baïf,75205 Paris Cedex 13, France.
| | | | | |
Collapse
|
34
|
Shen M, Wang J, Yang M, Li G. Direct electrochemistry of the Ti(IV)–transferrin complex: Probing into the transport of Ti(IV) by human serum transferrin. Electrochem commun 2011. [DOI: 10.1016/j.elecom.2010.11.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
35
|
A simple method for large-scale purification of plasma-derived apo-transferrin. Biotechnol Appl Biochem 2011; 57:87-95. [DOI: 10.1042/ba20100156] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
36
|
Garrick MD. Human iron transporters. GENES AND NUTRITION 2010; 6:45-54. [PMID: 21437029 DOI: 10.1007/s12263-010-0184-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 08/24/2010] [Indexed: 01/17/2023]
Abstract
Human iron transporters manage iron carefully because tissues need iron for critical functions, but too much iron increases the risk of reactive oxygen species. Iron acquisition occurs in the duodenum via divalent metal transporter (DMT1) and ferroportin. Iron trafficking depends largely on the transferrin cycle. Nevertheless, non-digestive tissues have a variety of other iron transporters that may render DMT1 modestly redundant, and DMT1 levels exceed those needed for the just-mentioned tasks. This review begins to consider why and also describes advances after 2008 that begin to address this challenge.
Collapse
Affiliation(s)
- Michael D Garrick
- Department of Biochemistry, 140 Farber Hall, SUNY at Buffalo, 3435 Main St., Buffalo, NY 14214 USA
| |
Collapse
|
37
|
Hotta K, Kim CY, Fox DT, Koppisch AT. Siderophore-mediated iron acquisition in Bacillus anthracis and related strains. MICROBIOLOGY-SGM 2010; 156:1918-1925. [PMID: 20466767 DOI: 10.1099/mic.0.039404-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recent observations have shed light on some of the endogenous iron-acquisition mechanisms of members of the Bacillus cereus sensu lato group. In particular, pathogens in the B. cereus group use siderophores with both unique chemical structures and biological roles. This review will focus on recent discoveries in siderophore biosynthesis and biology in this group, which contains numerous human pathogens, most notably the causative agent of anthrax, Bacillus anthracis.
Collapse
Affiliation(s)
- Kinya Hotta
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Chu-Young Kim
- Department of Biological Sciences, National University of Singapore, Singapore
| | - David T Fox
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Andrew T Koppisch
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| |
Collapse
|
38
|
Wadas TJ, Wong EH, Weisman GR, Anderson CJ. Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for PET and SPECT imaging of disease. Chem Rev 2010; 110:2858-902. [PMID: 20415480 PMCID: PMC2874951 DOI: 10.1021/cr900325h] [Citation(s) in RCA: 700] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Thaddeus J. Wadas
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd., Campus Box 8225, St. Louis, MO. 63110 USA
| | - Edward H. Wong
- Department of Chemistry, University of New Hampshire, Durham, NH 03824-3598 USA, Phone: 603-862-1788, Fax: 603-862-4278,
| | - Gary R. Weisman
- Department of Chemistry, University of New Hampshire, Durham, NH 03824-3598 USA, Phone: 603-862-2304, Fax: 603-862-4278,
| | - Carolyn J. Anderson
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd., Campus Box 8225, St. Louis, MO. 63110 USA
| |
Collapse
|
39
|
Byrne SL, Chasteen ND, Steere AN, Mason AB. The unique kinetics of iron release from transferrin: the role of receptor, lobe-lobe interactions, and salt at endosomal pH. J Mol Biol 2009; 396:130-40. [PMID: 19917294 DOI: 10.1016/j.jmb.2009.11.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 11/04/2009] [Accepted: 11/10/2009] [Indexed: 10/20/2022]
Abstract
Transferrins are a family of bilobal iron-binding proteins that play the crucial role of binding ferric iron and keeping it in solution, thereby controlling the levels of this important metal. Human serum transferrin (hTF) carries one iron in each of two similar lobes. Understanding the detailed mechanism of iron release from each lobe of hTF during receptor-mediated endocytosis has been extremely challenging because of the active participation of the transferrin receptor (TFR), salt, a chelator, lobe-lobe interactions, and the low pH within the endosome. Our use of authentic monoferric hTF (unable to bind iron in one lobe) or diferric hTF (with iron locked in one lobe) provided distinct kinetic end points, allowing us to bypass many of the previous difficulties. The capture and unambiguous assignment of all kinetic events associated with iron release by stopped-flow spectrofluorimetry, in the presence and in the absence of the TFR, unequivocally establish the decisive role of the TFR in promoting efficient and balanced iron release from both lobes of hTF during one endocytic cycle. For the first time, the four microscopic rate constants required to accurately describe the kinetics of iron removal are reported for hTF with and without the TFR. Specifically, at pH 5.6, the TFR enhances the rate of iron release from the C-lobe (7-fold to 11-fold) and slows the rate of iron release from the N-lobe (6-fold to 15-fold), making them more equivalent and producing an increase in the net rate of iron removal from Fe(2)hTF. Calculated cooperativity factors, in addition to plots of time-dependent species distributions in the absence and in the presence of the TFR, clearly illustrate the differences. Accurate rate constants for the pH and salt-induced conformational changes in each lobe precisely delineate how delivery of iron within the physiologically relevant time frame of 2 min might be accomplished.
Collapse
Affiliation(s)
- Shaina L Byrne
- Department of Biochemistry, College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
40
|
James NG, Byrne SL, Steere AN, Smith VC, MacGillivray RTA, Mason AB. Inequivalent contribution of the five tryptophan residues in the C-lobe of human serum transferrin to the fluorescence increase when iron is released. Biochemistry 2009; 48:2858-67. [PMID: 19281173 PMCID: PMC2664620 DOI: 10.1021/bi8022834] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human serum transferrin (hTF), with two Fe3+ binding lobes, transports iron into cells. Diferric hTF preferentially binds to a specific receptor (TFR) on the surface of cells, and the complex undergoes clathrin dependent receptor-mediated endocytosis. The clathrin-coated vesicle fuses with an endosome where the pH is lowered, facilitating iron release from hTF. On a biologically relevant time scale (2-3 min), the factors critical to iron release include pH, anions, a chelator, and the interaction of hTF with the TFR. Previous work, in which the increase in the intrinsic fluorescence signal was used to monitor iron release from the hTF/TFR complex, established that the TFR significantly enhances the rate of iron release from the C-lobe of hTF. In the current study, the role of the five C-lobe Trp residues in reporting the fluorescence change has been evaluated (+/-sTFR). Only four of the five recombinant Trp --> Phe mutants produced well. A single slow rate constant for iron release is found for the monoferric C-lobe (FeC hTF) and the four Trp mutants in the FeC hTF background. The three Trp residues equivalent to those in the N-lobe differed from the N-lobe and each other in their contributions to the fluorescent signal. Two rate constants are observed for the FeC hTF control and the four Trp mutants in complex with the TFR: k(obsC1) reports conformational changes in the C-lobe initiated by the TFR, and k(obsC2) is ascribed to iron release. Excitation at 295 nm (Trp only) and at 280 nm (Trp and Tyr) reveals interesting and significant differences in the rate constants for the complex.
Collapse
Affiliation(s)
- Nicholas G James
- Department of Biochemistry, College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington 05405, Vermont, USA
| | | | | | | | | | | |
Collapse
|
41
|
Electrochemical activity of holotransferrin and its electrocatalysis-mediated process of artemisinin. Bioorg Med Chem Lett 2009; 19:863-6. [DOI: 10.1016/j.bmcl.2008.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 10/13/2008] [Accepted: 12/02/2008] [Indexed: 11/19/2022]
|
42
|
Binding of artemisinin to holotransferrin: Electrochemical and spectroscopic characterization. J Electroanal Chem (Lausanne) 2008. [DOI: 10.1016/j.jelechem.2008.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Abstract
The liver plays a central role in iron metabolism. It is the major storage site for iron and also expresses a complex range of molecules which are involved in iron transport and regulation of iron homeostasis. An increasing number of genes associated with hepatic iron transport or regulation have been identified. These include transferrin receptors (TFR1 and 2), a ferrireductase (STEAP3), the transporters divalent metal transporter-1 (DMT1) and ferroportin (FPN) as well as the haemochromatosis protein, HFE and haemojuvelin (HJV), which are signalling molecules. Many of these genes also participate in iron regulatory pathways which focus on the hepatic peptide hepcidin. However, we are still only beginning to understand the complex interactions between liver iron transport and iron homeostasis. This review outlines our current knowledge of molecules of iron metabolism and their roles in iron transport and regulation of iron homeostasis.
Collapse
Affiliation(s)
- Ross-M Graham
- School of Medicine and Pharmacology, Fremantle Hospital, University of Western Australia, PO Box 480, Fremantle 6959, Western Australia, Australia
| | | | | | | | | |
Collapse
|
44
|
Flaherty MM, Rish KR, Smith A, Crumbliss AL. An investigation of hemopexin redox properties by spectroelectrochemistry: biological relevance for heme uptake. Biometals 2007; 21:239-48. [PMID: 17712531 DOI: 10.1007/s10534-007-9112-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 07/26/2007] [Indexed: 10/22/2022]
Abstract
Hemopexin (HPX) has two principal roles: it sequesters free heme in vivo for the purpose of preventing the toxic effects of this moiety, which is largely due to heme's ability to catalyze free radical formation, and it transports heme intracellularly thus limiting its availability as an iron source for pathogens. Spectroelectrochemistry was used to determine the redox potential for heme and meso-heme (mH) when bound by HPX. At pH 7.2, the heme-HPX assembly exhibits E (1/2) values in the range 45-90 mV and the mH-HPX assembly in the range 5-55 mV, depending on environmental electrolyte identity. The E (1/2) value exhibits a 100 mV positive shift with a change in pH from 7.2 to 5.5 for mH-HPX, suggesting a single proton dependent equilibrium. The E (1/2) values for heme-HPX are more positive in the presence of NaCl than KCl indicating that Na(+), as well as low pH (5.5) stabilizes ferro-heme-HPX. Furthermore, comparing KCl with K(2)HPO(4), the chloride salt containing system has a lower potential, indicating that heme-HPX is easier to oxidize. These physical properties related to ferri-/ferro-heme reduction are both structurally and biologically relevant for heme release from HPX for transport and regulation of heme oxygenase expression. Consistent with this, when the acidification of endosomes is prevented by bafilomycin then heme oxygenase-1 induction by heme-HPX no longer occurs.
Collapse
Affiliation(s)
- Meghan M Flaherty
- Department of Chemistry, Duke University, Box 90346, Durham, NC 27708-0346, USA
| | | | | | | |
Collapse
|
45
|
Rish KR, Swartzlander R, Sadikot TN, Berridge MV, Smith A. Interaction of heme and heme-hemopexin with an extracellular oxidant system used to measure cell growth-associated plasma membrane electron transport. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:1107-17. [PMID: 17643387 DOI: 10.1016/j.bbabio.2007.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 06/12/2007] [Accepted: 06/13/2007] [Indexed: 11/18/2022]
Abstract
Since redox active metals are often transported across membranes into cells in the reduced state, we have investigated whether exogenous ferri-heme or heme bound to hemopexin (HPX), which delivers heme to cells via receptor-mediated endocytosis, interact with a cell growth-associated plasma membrane electron transport (PMET) pathway. PMET reduces the cell-impermeable tetrazolium salt, WST-1, in the presence of the mandatory low potential intermediate electron acceptor, mPMS. In human promyelocytic (HL60) cells, protoheme (iron protoporphyrin IX; 2,4-vinyl), mesoheme (2,4-ethyl) and deuteroheme (2,4-H) inhibited reduction of WST-1/mPMS in a saturable manner supporting interaction with a finite number of high affinity acceptor sites (Kd 221 nM for naturally occurring protoheme). A requirement for the redox-active iron was shown using gallium-protoporphyrin IX (PPIX) and tin-PPIX. Heme-hemopexin, but not apo-hemopexin, also inhibited WST-1 reduction, and copper was required. Importantly, since neither heme nor heme-hemopexin replace mPMS as an intermediate electron acceptor and since inhibition of WST-1/mPMS reduction requires living cells, the experimental evidence supports the view that heme and heme-hemopexin interact with electrons from PMET. We therefore propose that heme and heme-hemopexin are natural substrates for this growth-associated electron transfer across the plasma membrane.
Collapse
Affiliation(s)
- Kimberly R Rish
- School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO 64110-2499, USA
| | | | | | | | | |
Collapse
|
46
|
Lesnikov VA, Abbasi N, Lesnikova MP, Lazaro CA, Campbell JS, Fausto N, Deeg HJ. Protection of human and murine hepatocytes against Fas-induced death by transferrin and iron. Apoptosis 2007; 11:79-87. [PMID: 16374550 DOI: 10.1007/s10495-005-3086-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recent studies in a murine model show that transferrin (Tf) interferes with Fas-mediated hepatocyte death and liver failure by decreasing pro-apoptotic and increasing anti-apoptotic signals. We show here in vitro in murine and human hepatocyte cell lines and in vivo in mice that Fas-induced apoptosis is modulated by exogenous Tf and iron. The results obtained with iron-free Tf (ApoTf), iron-saturated Tf (FeTf), and the iron chelator salicylaldehyde isonicotinoyl hydrazone (SIH) in its iron-free and iron-saturated (FeSIH) forms indicate that apoptosis-modulating effects of Tf are not mediated by iron alone. Both the Tf molecule and iron affect multiple aspects of cell death, and the route of iron delivery to the cell may be critical for the final outcome of cellular Fas signaling. Survival of hepatocytes 'stressed' by Fas signals can be manipulated by Tf and iron and may be a target for prophylactic and therapeutic interventions.
Collapse
Affiliation(s)
- V A Lesnikov
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Tinoco AD, Incarvito CD, Valentine AM. Calorimetric, spectroscopic, and model studies provide insight into the transport of Ti(IV) by human serum transferrin. J Am Chem Soc 2007; 129:3444-54. [PMID: 17315875 DOI: 10.1021/ja068149j] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Evidence suggests that transferrin can bind Ti(IV) in an unhydrolyzed form (without bound hydroxide or oxide) or in a hydrolyzed form. Ti(IV) coordination by N,N'-di(o-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED) at different pH values models the two forms of Ti(IV)-loaded transferrin spectrally and structurally. 13C NMR and stopped-flow kinetic experiments reveal that when the metal is delivered to the protein using an unhydrolyzed source, Ti(IV) can coordinate in the typical distorted octahedral environment with a bound synergistic anion. The crystal structure of TiHBED obtained at low pH models this type of coordination. The solution structure of the complex compares favorably with the solid state from pH 3.0 to 4.0, and the complex can be reduced with E1/2 = -641 mV vs NHE. Kinetic and thermodynamic competition studies at pH 3.0 reveal that Ti(citrate)3 reacts with HBED via a dissociative mechanism and that the stability of TiHBED (log beta = 34.024) is weaker than that of the Fe(III) complex. pH stability studies show that Ti(IV) hydrolyzes ligand waters at higher pH but still remains bound to HBED until pH 9.5. Similarly, at a pH greater than 8.0 the synergistic anion that binds Ti(IV) in transferrin is readily displaced by irreversible metal hydrolysis although the metal remains bound to the protein until pH 9.5. Thermal denaturation studies conducted optically and by differential scanning calorimetry reveal that Ti(IV)-bound transferrin experiences only minimal enhanced thermal stability unlike when Fe(III) is bound. The C- and N-lobe transition Tm values shift to a few degrees higher. The stability, competition, and redox studies performed provide insight into the possible mechanism of Ti2-Tf transport in cells.
Collapse
Affiliation(s)
- Arthur D Tinoco
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, USA
| | | | | |
Collapse
|
48
|
Cheng Y, Zak O, Aisen P, Harrison SC, Walz T. Single particle reconstruction of the human apo-transferrin-transferrin receptor complex. J Struct Biol 2005; 152:204-10. [PMID: 16343946 DOI: 10.1016/j.jsb.2005.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 10/27/2005] [Accepted: 10/31/2005] [Indexed: 11/19/2022]
Abstract
Most organisms depend on iron as a co-factor for proteins catalyzing redox reactions. Iron is, however, a difficult element for cells to deal with, as it is insoluble in its ferric (Fe3+) form and potentially toxic in its ferrous (Fe2+) form. Thus, in vertebrates iron is transported through the circulation bound to transferrin (Tf) and delivered to cells through an endocytotic cycle involving the transferrin receptor (TfR). We have previously presented a model for the Tf-TfR complex in its iron-bearing form, the diferric transferrin (dTf)-TfR complex [Cheng, Y., Zak, O., Aisen, P., Harrison, S.C., Walz, T., 2004. Structure of the human transferrin receptor-transferrin complex. Cell 116, 565-576]. We have now calculated a single particle reconstruction for the complex in its iron-free form, the apo-transferrin (apoTf)-TfR complex. The same density map was obtained by aligning raw particle images or class averages of the vitrified apoTf-TfR complex to reference models derived from the structures of the dTf-TfR or apoTf-TfR complex. We were unable to improve the resolution of the apoTf-TfR density map beyond 16A, most likely because of significant structural variability of Tf in its iron-free state. The density map does, however, support the model for the apoTf-TfR we previously proposed based on the dTf-TfR complex structure, and it suggests that receptor-bound apoTf prefers to adopt an open conformation.
Collapse
Affiliation(s)
- Yifan Cheng
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
49
|
Ohgami RS, Campagna DR, Greer EL, Antiochos B, McDonald A, Chen J, Sharp JJ, Fujiwara Y, Barker JE, Fleming MD. Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells. Nat Genet 2005; 37:1264-9. [PMID: 16227996 PMCID: PMC2156108 DOI: 10.1038/ng1658] [Citation(s) in RCA: 526] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Accepted: 08/31/2005] [Indexed: 12/13/2022]
Abstract
The reduction of iron is an essential step in the transferrin (Tf) cycle, which is the dominant pathway for iron uptake by red blood cell precursors. A deficiency in iron acquisition by red blood cells leads to hypochromic, microcytic anemia. Using a positional cloning strategy, we identified a gene, six-transmembrane epithelial antigen of the prostate 3 (Steap3), responsible for the iron deficiency anemia in the mouse mutant nm1054. Steap3 is expressed highly in hematopoietic tissues, colocalizes with the Tf cycle endosome and facilitates Tf-bound iron uptake. Steap3 shares homology with F(420)H(2):NADP(+) oxidoreductases found in archaea and bacteria, as well as with the yeast FRE family of metalloreductases. Overexpression of Steap3 stimulates the reduction of iron, and mice lacking Steap3 are deficient in erythroid ferrireductase activity. Taken together, these findings indicate that Steap3 is an endosomal ferrireductase required for efficient Tf-dependent iron uptake in erythroid cells.
Collapse
Affiliation(s)
- Robert S Ohgami
- Department of Pathology Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Knight SAB, Vilaire G, Lesuisse E, Dancis A. Iron acquisition from transferrin by Candida albicans depends on the reductive pathway. Infect Immun 2005; 73:5482-92. [PMID: 16113264 PMCID: PMC1231083 DOI: 10.1128/iai.73.9.5482-5492.2005] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Host-pathogen interactions that alter virulence are influenced by critical nutrients such as iron. In humans, free iron is unavailable, being present only in high-affinity iron binding proteins such as transferrin. The fungal pathogen Candida albicans grows as a saprophyte on mucosal surfaces. Occasionally it invades systemically, and in this circumstance it will encounter transferrin iron. Here we report that C. albicans is able to acquire iron from transferrin. Iron-loaded transferrin restored growth to cultures arrested by iron deprivation, whereas apotransferrin was unable to promote growth. By using congenic strains, we have been able to show that iron uptake by C. albicans from transferrin was mediated by the reductive pathway (via FTR1). The genetically separate siderophore and heme uptake systems were not involved. FRE10 was required for a surface reductase activity and for efficient transferrin iron uptake activity in unbuffered medium. Other reductase genes were apparently up-regulated in medium buffered at pH 6.3 to 6.4, and the fre10(-/-) mutant had no effect under these conditions. Experiments in which transferrin was sequestered in a dialysis bag demonstrated that cell contact with the substrate was required for iron reduction and release. The requirement of FTR1 for virulence in a systemic infection model and its role in transferrin iron uptake raise the possibility that transferrin is a source of iron during systemic C. albicans infections.
Collapse
Affiliation(s)
- Simon A B Knight
- University of Pennsylvania, Department of Medicine, Division of Hematology/Oncology, 731 BRB II/III, 421 Curie Blvd., Philadelphia, PA 19104-6160, USA.
| | | | | | | |
Collapse
|