1
|
Niknam M, Sadeghi L, Zarrini G. Isolation and characterization of antimicrobial peptides from Lactobacillus: Exploring mechanisms of action. Microb Pathog 2025; 204:107537. [PMID: 40187579 DOI: 10.1016/j.micpath.2025.107537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 03/25/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
The rise of antibiotic-resistant bacteria necessitates the development of novel antimicrobial agents. In this study, antimicrobial peptides (AMPs) were isolated from Lactobacillus sp., yielding Bioactive Peptide I (BAP I) and Bioactive Peptide III (BAP III). Purified via gel filtration chromatography (GFC), these peptides were characterized by MALDI-TOF MS and SDS-PAGE, which confirmed their molecular masses as 4168.14 Da and 8076.45 Da, respectively, and verified their high purity. Both peptides demonstrated potent antibacterial activity against Pseudomonas aeruginosa, Streptococcus sanguinis, Bacillus cereus, and Staphylococcus aureus, with BAP I exhibiting superior efficacy. This enhanced activity is likely due to its amphipathic structure and hydrophobic C-terminal region, which promote effective bacterial membrane disruption as evidenced by FE-SEM imaging. In addition to compromising membrane integrity, both BAP I and BAP III inhibited bacterial DNA polymerase activity, as shown by reduced PCR product formation. Complementary Circular Dichroism (CD) spectroscopy analysis indicated that peptide binding induced conformational changes in Taq polymerase, reducing its α-helical and β-sheet content while increasing the proportion of random coil structures-thus enhancing the enzyme's flexibility. Molecular docking and dynamics studies further revealed stable interactions between the peptides and the enzyme, suggesting a dual mechanism of action that targets both the bacterial membrane and DNA replication processes. Collectively, these findings highlight the significant potential of BAP I and BAP III as novel antimicrobial agents against multidrug-resistant infections. Future research should focus on evaluating their safety and clinical efficacy, as well as exploring their synergistic potential with existing antibiotics to advance these peptides as therapeutic alternatives.
Collapse
Affiliation(s)
- Mahsa Niknam
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Leila Sadeghi
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Gholamreza Zarrini
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
2
|
Chen L, Tian L, Zhang Y, Shi Y, Yuan W, Zou Y, Zhang Q, Chen M, Zeng P. Updated Insights into Probiotic Interventions for Metabolic Syndrome: Mechanisms and Evidence. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10554-x. [PMID: 40332670 DOI: 10.1007/s12602-025-10554-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2025] [Indexed: 05/08/2025]
Abstract
Metabolic syndrome (MetS) is a disease with complex and diverse etiologies. Extrinsic factors such as diet and lifestyle can induce dysbiosis of gut microbes, compromising intestinal barrier integrity and leading to inflammation and insulin resistance, thereby advancing MetS. Probiotic interventions have shown potential in ameliorating gut microbiota dysbiosis and regulating host metabolism by assimilating lipids, metabolizing carbohydrates, and producing short-chain fatty acids (SCFA), indole compounds, secondary bile acids, conjugated linoleic acid (CLA), and other active ingredients. An increasing number of new strains are being isolated and validated for their effective roles intervening on MetS in animal and population studies. This review aims to provide updated insights into the pathogenic mechanisms of MetS, highlight the newly identified probiotic strains that have demonstrated improvements in MetS, and elucidate their mechanisms of action, with the aim of offering contemporary perspectives for the future use of probiotics in mitigating MetS.
Collapse
Affiliation(s)
- Lili Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610000, People's Republic of China
| | - Lvbo Tian
- Sichuan International Travel Health Care Center (Chengdu Customs Port Clinic), Chengdu, 610000, People's Republic of China
| | - Yuqi Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610000, People's Republic of China
| | - Ying Shi
- Sichuan International Travel Health Care Center (Chengdu Customs Port Clinic), Chengdu, 610000, People's Republic of China
| | - Wenyi Yuan
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610000, People's Republic of China
| | - Yue Zou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610000, People's Republic of China
| | - Qin Zhang
- Sichuan International Travel Health Care Center (Chengdu Customs Port Clinic), Chengdu, 610000, People's Republic of China
| | - Moutong Chen
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangdong 510070, Guangzhou, China
| | - Peibin Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610000, People's Republic of China.
| |
Collapse
|
3
|
Sharma S, Sharma A, Sodhi GK, George N, Alarjani KM, Mukherjee A, Kumar Rath S, Kaur R, Dwibedi V. Staphylococcus epidermidis SAS1: new probiotic candidate for obesity and allergy treatment their mechanistic insights and cytotoxicity evaluation. Front Microbiol 2025; 16:1546687. [PMID: 40371109 PMCID: PMC12075200 DOI: 10.3389/fmicb.2025.1546687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 04/07/2025] [Indexed: 05/16/2025] Open
Abstract
Background Probiotics are live bacteria that provides numerous healthy and beneficial effects to the consumers. The present study aimed to investigate the effect of a probiotic candidate Staphylococcus epidermidis SAS1, in immunoregulation and obesity management. Methods : This probiotic candidate was isolated from a soil sample collected from a region of fruit waste decomposition. In vitro cytotoxicity was assessed using the THP-1 (human leukemia monocytic cell line) cells using MTT assay. Results An IC50 value of 47.52 ± 0.18 μg/mL and cell shrinkage were observed along with the release of cellular content of THP-1 cells. The higher production of reactive oxygen species and lesser release of interleukins (IL-4, 5, and 13) are attributed to the antiallergic potential of this strain. Furthermore, in vitro cytotoxicity evaluation using 3T3-L1 cells identified this strain as a promising candidate for anti-obesity treatment. The observed IC50 value was 514.4 ± 0.061 μg/mL. Discussion This extract was shown to have good lipase-inhibiting enzyme activity and was reported to prevent adipogenesis, depicted by increased HDL levels and decreased LDL and triglyceride levels. These results suggested that Staphylococcus epidermidis SAS1 may have therapeutic use in the treatment of obesity and allergies.
Collapse
Affiliation(s)
- Sonia Sharma
- University Institute of Biotechnology, Chandigarh University, Mohali, India
| | - Aarjoo Sharma
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Gurleen Kaur Sodhi
- University Institute of Biotechnology, Chandigarh University, Mohali, India
| | - Nancy George
- University Institute of Biotechnology, Chandigarh University, Mohali, India
| | - Khaloud Mohammed Alarjani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Arkadeep Mukherjee
- Department of Civil Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Santosh Kumar Rath
- School of Pharmaceuticals and Population Health Informatics, Faculty of Pharmacy, DIT University, Dehradun, India
| | - Ramandeep Kaur
- Department of Biotechnology, Chandigarh Group of Colleges, Landran, India
| | - Vagish Dwibedi
- University Institute of Biotechnology, Chandigarh University, Mohali, India
| |
Collapse
|
4
|
Satoh K, Hazama M, Maeda-Yamamoto M, Nishihira J. Relationship Between Dietary Habits and Stress Responses Exerted by Different Gut Microbiota. Nutrients 2025; 17:1388. [PMID: 40284251 PMCID: PMC12030070 DOI: 10.3390/nu17081388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES A number of studies have reported on the improvement in physical and psychological diseases through diet; however, the findings for these ameliorative effects have differed. Such differences may be due to the varying metabolism of the nutrient content in food among subjects. It has been reported that differences in the enterotypes of gut microbiota are associated with metabolic differences, and enterotypes vary between countries and regions. This study investigated whether differences in gut microbiota affect the relationship between dietary habits and stress responses. METHODS We administered a questionnaire to 810 subjects who participated in the "Sukoyaka Health Survey" regarding their dietary habits and stress reactions. We also performed an analysis of the gut microbiota from fecal samples. RESULTS The gut microbiota was grouped into four clusters based on the abundance of genus strains. The relationship between dietary habits and stress responses revealed two patterns of eating: one where more frequent intakes were associated with a lower stress response, and another with a higher stress response. We investigated the relationship between dietary habits and stress responses for each gut microbiota cluster. The results showed that the relationship between dietary habits and stress responses differed for each cluster. CONCLUSIONS Our analysis showed that dietary habits affect stress responses, but the relationship varies depending on the gut microbiota. This finding suggests that one of the factors for the difference in the ameliorative efficacy of physical and psychological diseases through diet is the difference in the abundance ratio of the gut microbiota (enterotype).
Collapse
Affiliation(s)
- Kouji Satoh
- Department of Medical Management and Informatics, Hokkaido Information University, Ebetsu 069-0832, Japan; (K.S.); (M.H.)
| | - Makoto Hazama
- Department of Medical Management and Informatics, Hokkaido Information University, Ebetsu 069-0832, Japan; (K.S.); (M.H.)
| | - Mari Maeda-Yamamoto
- Institute of Food Research, National Agriculture and Food Research Organization, Tsukuba 305-8642, Japan;
| | - Jun Nishihira
- Department of Medical Management and Informatics, Hokkaido Information University, Ebetsu 069-0832, Japan; (K.S.); (M.H.)
| |
Collapse
|
5
|
Chero‐Sandoval L, Higuera‐Gómez A, Martínez‐Urbistondo M, Castejón R, Mellor‐Pita S, Moreno‐Torres V, de Luis D, Cuevas‐Sierra A, Martínez JA. Comparative assessment of phenotypic markers in patients with chronic inflammation: Differences on Bifidobacterium concerning liver status. Eur J Clin Invest 2025; 55:e14339. [PMID: 39468772 PMCID: PMC11744921 DOI: 10.1111/eci.14339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND The relationship between systemic lupus erythematosus (SLE) and low-grade metabolic inflammation (MI) with the microbiota is crucial for understanding the pathogenesis of these diseases and developing effective therapeutic interventions. In this context, it has been observed that the gut microbiota plays a key role in the immune regulation and inflammation contributing to the exacerbation through inflammatory mediators. This research aimed to describe similarities/differences in anthropometric, biochemical, inflammatory, and hepatic markers as well as to examine the putative role of gut microbiota concerning two inflammatory conditions: SLE and MI. METHODS Data were obtained from a cohort comprising adults with SLE and MI. Faecal samples were determined by 16S technique. Statistical analyses compared anthropometric and clinical variables, and LEfSe and MetagenomeSeq were used for metagenomic data. An interaction analysis was fitted to investigate associations of microbiota with fatty liver index (FLI) depending on the inflammatory condition. RESULTS Participants with low-grade MI showed worse values in anthropometry and biochemicals compared with patients with SLE. The liver profile of patients with MI was unhealthier, while no relevant differences were found in most of the inflammatory markers between groups. LEfSe analysis revealed an overrepresentation of Bifidobacteriaceae family in SLE group. An interactive association between gut Bifidobacterium abundance and type of disease was identified for FLI values, suggesting an effect modification of the gut microbiota concerning liver markers depending on the inflammatory condition. CONCLUSION This study found phenotypical and microbial similarities and disparities between these two inflammatory conditions, evidenced in clinical and hepatic markers, and showed the interactive interplay between gut Bifidobacterium and liver health (measured by FLI) that occur in a different manner depending on the type of inflammatory disease. These results underscore the importance of personalized approaches and individual microbiota in the screening of different inflammatory situations, considering unique hepatic and microbiota profiles.
Collapse
Affiliation(s)
- Lourdes Chero‐Sandoval
- Precision Nutrition and Cardiometabolic Health, IMDEA‐Food Institute (Madrid Institute for Advanced Studies)Campus of International Excellence (CEI) UAM+CSICMadridSpain
- Department of Endocrinology and Nutrition, University Clinical HospitalUniversity of ValladolidValladolidSpain
| | - Andrea Higuera‐Gómez
- Precision Nutrition and Cardiometabolic Health, IMDEA‐Food Institute (Madrid Institute for Advanced Studies)Campus of International Excellence (CEI) UAM+CSICMadridSpain
| | | | - Raquel Castejón
- Internal Medicine ServicePuerta de Hierro Majadahonda University HospitalMadridSpain
| | - Susana Mellor‐Pita
- Internal Medicine ServicePuerta de Hierro Majadahonda University HospitalMadridSpain
| | - Víctor Moreno‐Torres
- Internal Medicine ServicePuerta de Hierro Majadahonda University HospitalMadridSpain
- Health Sciences School and Medical CentreInternational University of the Rioja (UNIR)MadridSpain
| | - Daniel de Luis
- Department of Endocrinology and Nutrition, University Clinical HospitalUniversity of ValladolidValladolidSpain
- Centre of Endocrinology and NutritionUniversity of ValladolidValladolidSpain
| | - Amanda Cuevas‐Sierra
- Precision Nutrition and Cardiometabolic Health, IMDEA‐Food Institute (Madrid Institute for Advanced Studies)Campus of International Excellence (CEI) UAM+CSICMadridSpain
- Health Sciences School and Medical CentreInternational University of the Rioja (UNIR)MadridSpain
| | - J. Alfredo Martínez
- Precision Nutrition and Cardiometabolic Health, IMDEA‐Food Institute (Madrid Institute for Advanced Studies)Campus of International Excellence (CEI) UAM+CSICMadridSpain
- Centre of Endocrinology and NutritionUniversity of ValladolidValladolidSpain
- CIBERobn Physiopathology of Obesity and NutritionInstitute of Health Carlos III (ISCIII)MadridSpain
| |
Collapse
|
6
|
Mushraf S, Chawla K, Fayaz SMA, Mathew AJ, Reddy GPK, Kappettu Gadahad MR, Shenoy PA, Devi V, Adiga S, Nayak V. Exploring the effects of probiotics on olanzapine-induced metabolic syndrome through the gut microbiota. Gut Pathog 2024; 16:77. [PMID: 39709451 DOI: 10.1186/s13099-024-00664-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/07/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Maintaining gut microbial homeostasis is crucial for human health, as imbalances in the gut microbiota (GM) can lead to various diseases, including metabolic syndrome (MS), exacerbated by the use of antipsychotic medications such as olanzapine (OLZ). Understanding the role of the GM in OLZ-induced MS could lead to new therapeutic strategies. This study used metagenomic analysis to explore the impact of OLZ on the GM composition and examined how probiotics can mitigate its adverse effects in a rat model. Changes in weight, blood pressure, and lipid levels, which are key parameters defining MS, were assessed. Additionally, this study investigated serotonin, dopamine, and histopathological changes to explore their possible link with the microbiota-gut-brain axis (MGBA). RESULTS OLZ had an antagonistic effect on serotonin and dopamine receptors, and it was consistently found to alter the composition of the GM, with an increase in the relative abundance (RA) of the Firmicutes/Bacteroidetes phyla ratio and TM7 genera, indicating that the anticommonsal action of OLZ affects appetite and energy expenditure, contributing to obesity, dyslipidemia and increased blood pressure, which are core components of MS. Hepatic steatosis and intestinal damage in OLZ-treated rat tissues further indicate its role in MS. Conversely, the administration of probiotics, either alone or in combination with OLZ, was found to mitigate these OLZ-induced symptoms of MS by altering the GM composition. These alterations included increases in the abundances of the taxa Bacteroidetes, Actinobacteria, Prevotella, Blautia, Bacteroides, Bacteroidales, and Ruminococcaceae and a decrease in Firmicute abundance. These changes helped maintain gut barrier integrity and modulated neurotransmitter levels, suggesting that probiotics can counteract the adverse metabolic effects of OLZ by restoring the GM balance. Moreover, this study highlights the modulation of the MGBA by OLZ as a potential mechanism through which probiotics modulate serotonin and dopamine levels, influencing metabolic health. CONCLUSION These findings emphasise the significant impact of OLZ on the GM and its contribution to MS. These findings suggest that interventions targeting the GM, such as probiotics, could mitigate the metabolic side effects of OLZ. Future research should focus on developing integrative treatment approaches that consider the health of the gut microbiome in managing antipsychotic-induced adverse effects.
Collapse
Affiliation(s)
- Syed Mushraf
- Division of Pharmacology, Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kiran Chawla
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shaik Mohammed Abdul Fayaz
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Aranjani Jesil Mathew
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Gayam Prasanna Kumar Reddy
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Mohandas Rao Kappettu Gadahad
- Division of Anatomy, Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Padmaja A Shenoy
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Vasudha Devi
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shalini Adiga
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Veena Nayak
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
7
|
Frăsinariu OE, Lupu VV, Trandafir LM, Streanga V, Jechel E, Bararu-Bojan I, Vasiliu I, Cuciureanu M, Loghin II, Mitrofan C, Nedelcu AH, Knieling A, Lupu A. Metabolic syndrome therapy in pediatric age - between classic and modern. From diets to pipeline drugs. Front Nutr 2024; 11:1475111. [PMID: 39723164 PMCID: PMC11669255 DOI: 10.3389/fnut.2024.1475111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024] Open
Abstract
The metabolic syndrome, made up of the sum of the entities that define it (obesity, hypertension, dyslipidemias and non-alcoholic hepatic steatosis) has gained an important place in the research of the last decades. This aspect is mainly due to the complexity of management in pediatric practice. The main directions in his approach therefore bring together the concern of counteracting the noise or systemic, of the multiple intercurrents at the physiopathological level, as well as the negative imprint exerted on the quality of life. Its appearance and evolution are currently controversial topics, but the influence of genetic predisposition and lifestyle (diet, physical activity, psychological balance) are certainties. Considering the escalation of the incident at the global level, it is self-evident that it is necessary to know the pathogenesis and practice countermeasures for prophylactic or therapeutic purposes. The present work aims to summarize general aspects related to the metabolic syndrome encountered in pediatric age, with an emphasis on complementary therapeutic perspectives and their effectiveness, by analyzing the latest data from the specialized literature, accessed with the help of international databases (e.g., PubMed, Web of Science, Scopus, Embase, Google Scholar).
Collapse
Affiliation(s)
- Otilia Elena Frăsinariu
- Faculty of Medicine, Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| | - Vasile Valeriu Lupu
- Faculty of Medicine, Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| | - Laura Mihaela Trandafir
- Faculty of Medicine, Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| | - Violeta Streanga
- Faculty of Medicine, Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| | - Elena Jechel
- Faculty of Medicine, Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| | - Iris Bararu-Bojan
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| | - Ioana Vasiliu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| | - Magdalena Cuciureanu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| | - Isabela Ioana Loghin
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| | - Costica Mitrofan
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| | - Alin Horatiu Nedelcu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| | - Anton Knieling
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| | - Ancuta Lupu
- Faculty of Medicine, Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| |
Collapse
|
8
|
Bocchio F, Mancabelli L, Milani C, Lugli GA, Tarracchini C, Longhi G, Conto FD, Turroni F, Ventura M. Compendium of Bifidobacterium-based probiotics: characteristics and therapeutic impact on human diseases. MICROBIOME RESEARCH REPORTS 2024; 4:2. [PMID: 40207278 PMCID: PMC11977362 DOI: 10.20517/mrr.2024.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 04/11/2025]
Abstract
The human microbiota, a complex community of microorganisms residing in and on the human body, plays a crucial role in maintaining health and preventing disease. Bifidobacterium species have shown remarkable therapeutic potential across a range of health conditions, thus being considered optimal probiotic bacteria. This review provides insights into the concept of probiotics and explores the impact of bifidobacteria on human health, focusing on the gastrointestinal, respiratory, skeletal, muscular, and nervous systems. It also integrates information on the available genetic bases underlying the beneficial effects of each bifidobacterial probiotic species on different aspects of human physiology. Notably, Bifidobacterium-based probiotics have proven effective in managing gastrointestinal conditions such as constipation, antibiotic-associated diarrhea, irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), and Helicobacter pylori infections. These benefits are achieved by modulating the intestinal microbiota, boosting immune responses, and strengthening the gut barrier. Moreover, Bifidobacterium species have been reported to reduce respiratory infections and asthma severity. Additionally, these probiotic bacteria offer benefits for skeletal and muscular health, as evidenced by Bifidobacterium adolescentis and Bifidobacterium breve, which have shown anti-inflammatory effects and symptom relief in arthritis models, suggesting potential in treating conditions like rheumatoid arthritis. Furthermore, probiotic therapies based on bifidobacterial species have shown promising effects in alleviating anxiety and depression, reducing stress, and enhancing cognitive function. Overall, this review integrates the extensive scientific literature now available that supports the health-promoting applications of probiotic Bifidobacterium species and underscores the need for further research to confirm their clinical efficacy across different body systems.
Collapse
Affiliation(s)
- Fabiana Bocchio
- Department of Medicine and Surgery, University of Parma, Parma 43124, Italy
- Authors contributed equally
| | - Leonardo Mancabelli
- Department of Medicine and Surgery, University of Parma, Parma 43124, Italy
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Parma 43124, Italy
- Authors contributed equally
| | - Christian Milani
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Parma 43124, Italy
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Gabriele Andrea Lugli
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Parma 43124, Italy
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Giulia Longhi
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Flora De Conto
- Department of Medicine and Surgery, University of Parma, Parma 43124, Italy
| | - Francesca Turroni
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Parma 43124, Italy
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Marco Ventura
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Parma 43124, Italy
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| |
Collapse
|
9
|
Sugino KY, Hernandez TL, Barbour LA, Kofonow JM, Frank DN, Friedman JE. Distinct Plasma Metabolomic and Gut Microbiome Profiles after Gestational Diabetes Mellitus Diet Treatment: Implications for Personalized Dietary Interventions. Microorganisms 2024; 12:1369. [PMID: 39065137 PMCID: PMC11278888 DOI: 10.3390/microorganisms12071369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/24/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Gestational diabetes mellitus (GDM) triggers alterations in the maternal microbiome. Alongside metabolic shifts, microbial products may impact clinical factors and influence pregnancy outcomes. We investigated maternal microbiome-metabolomic changes, including over 600 metabolites from a subset of the "Choosing Healthy Options in Carbohydrate Energy" (CHOICE) study. Women diagnosed with GDM were randomized to a diet higher in complex carbohydrates (CHOICE, n = 18, 60% complex carbohydrate/25% fat/15% protein) or a conventional GDM diet (CONV, n = 16, 40% carbohydrate/45% fat/15% protein). All meals were provided. Diets were eucaloric, and fiber content was similar. CHOICE was associated with increases in trimethylamine N-oxide, indoxyl sulfate, and several triglycerides, while CONV was associated with hippuric acid, betaine, and indole propionic acid, suggestive of a healthier metabolome. Conversely, the microbiome of CHOICE participants was enriched with carbohydrate metabolizing genes and beneficial taxa such as Bifidobacterium adolescentis, while CONV was associated with inflammatory pathways including antimicrobial resistance and lipopolysaccharide biosynthesis. We also identified latent metabolic groups not associated with diet: a metabolome associated with less of a decrease in fasting glucose, and another associated with relatively higher fasting triglycerides. Our results suggest that GDM diets produce specific microbial and metabolic responses during pregnancy, while host factors also play a role in triglycerides and glucose metabolism.
Collapse
Affiliation(s)
- Kameron Y. Sugino
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Teri L. Hernandez
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA; (T.L.H.); (L.A.B.)
- College of Nursing, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA
| | - Linda A. Barbour
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA; (T.L.H.); (L.A.B.)
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA
| | - Jennifer M. Kofonow
- Department of Medicine, Division of Infectious Diseases, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA; (J.M.K.); (D.N.F.)
| | - Daniel N. Frank
- Department of Medicine, Division of Infectious Diseases, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA; (J.M.K.); (D.N.F.)
| | - Jacob E. Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Department of Biochemistry & Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
10
|
Chen H, Wu Q, Chen X, Yu X, Zhao H, Huang Q, Huang Y, Wang J, Huang X, Wei J, Wu F, Xiao X, Wang L. Gestational supplementation of Bifidobacterium, Lactobacillus, and Streptococcus thermophilus attenuates hepatic steatosis in offspring mice through promoting fatty acid β-oxidation. J Food Sci 2024; 89:3064-3077. [PMID: 38578136 DOI: 10.1111/1750-3841.17056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/03/2024] [Accepted: 03/15/2024] [Indexed: 04/06/2024]
Abstract
Currently, Bifidobacterium, Lactobacillus, and Streptococcus thermophilus (BLS) are widely recognized as the crucially beneficial bacteria in the gut. Many preclinical and clinical studies have shown their protective effects against non-alcoholic fatty liver disease (NAFLD). However, whether gestational BLS supplementation could alleviate NAFLD in the offspring is still unknown. Kunming mice were given a high-fat diet (HFD) for 4 weeks before mating. They received BLS supplementation by gavage during pregnancy. After weaning, offspring mice were fed with a regular diet up to 5 weeks old. Gestational BLS supplementation significantly increased the abundance of Actinobacteriota, Bifidobacterium, and Faecalibaculum in the gut of dams exposed to HFD. In offspring mice exposed to maternal HFD, maternal BLS intake significantly decreased the ratio of Firmicutes to Bacteroidetes as well as the relative abundance of Prevotella and Streptococcus, but increased the relative abundance of Parabacteroides. In offspring mice, maternal BLS supplementation significantly decreased the hepatic triglyceride content and mitigated hepatic steatosis. Furthermore, maternal BLS supplementation increased the glutathione content and reduced malondialdehyde content in the liver. In addition, mRNA and protein expression levels of key rate-limiting enzymes in mitochondrial β-oxidation (CPT1α, PPARα, and PGC1α) in the livers of offspring mice were significantly increased after gestational BLS supplementation. Thus, gestational BLS supplementation may ameliorate maternal HFD-induced steatosis and oxidative stress in the livers of offspring mice by modulating fatty acid β-oxidation.
Collapse
Affiliation(s)
- Hangjun Chen
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Qiongmei Wu
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Xingyi Chen
- Liwan District Maternal and Child Health Hospital, Guangzhou, People's Republic of China
| | - Xinxue Yu
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Hanqing Zhao
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Qiaoli Huang
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Yurong Huang
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Jinting Wang
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Xueyi Huang
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Jun Wei
- Department of Science and Technology, Guangzhou Customs, Guangzhou, People's Republic of China
| | - Feng Wu
- Department of Science and Technology, Guangzhou Customs, Guangzhou, People's Republic of China
| | - Xiaomin Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, People's Republic of China
| | - Lijun Wang
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| |
Collapse
|
11
|
Kober AKMH, Saha S, Ayyash M, Namai F, Nishiyama K, Yoda K, Villena J, Kitazawa H. Insights into the Anti-Adipogenic and Anti-Inflammatory Potentialities of Probiotics against Obesity. Nutrients 2024; 16:1373. [PMID: 38732619 PMCID: PMC11085650 DOI: 10.3390/nu16091373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Functional foods with probiotics are safe and effective dietary supplements to improve overweight and obesity. Thus, altering the intestinal microflora may be an effective approach for controlling or preventing obesity. This review aims to summarize the experimental method used to study probiotics and obesity, and recent advances in probiotics against obesity. In particular, we focused on studies (in vitro and in vivo) that used probiotics to treat obesity and its associated comorbidities. Several in vitro and in vivo (animal and human clinical) studies conducted with different bacterial species/strains have reported that probiotics promote anti-obesity effects by suppressing the differentiation of pre-adipocytes through immune cell activation, maintaining the Th1/Th2 cytokine balance, altering the intestinal microbiota composition, reducing the lipid profile, and regulating energy metabolism. Most studies on probiotics and obesity have shown that probiotics are responsible for a notable reduction in weight gain and body mass index. It also increases the levels of anti-inflammatory adipokines and decreases those of pro-inflammatory adipokines in the blood, which are responsible for the regulation of glucose and fatty acid breakdown. Furthermore, probiotics effectively increase insulin sensitivity and decrease systemic inflammation. Taken together, the intestinal microbiota profile found in overweight individuals can be modified by probiotic supplementation which can create a promising environment for weight loss along enhancing levels of adiponectin and decreasing leptin, tumor necrosis factor (TNF)-α, interleukin (IL)-6, monocyte chemotactic protein (MCP)-1, and transforming growth factor (TGF)-β on human health.
Collapse
Affiliation(s)
- A. K. M. Humayun Kober
- Department of Dairy and Poultry Science, Chittagong Veterinary and Animal Sciences University, Khulshi, Chittagong 4225, Bangladesh;
| | - Sudeb Saha
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan; (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Tohoku University, Sendai 980-8576, Japan
- Department of Dairy Science, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates;
| | - Fu Namai
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan; (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Tohoku University, Sendai 980-8576, Japan
| | - Keita Nishiyama
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan; (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Tohoku University, Sendai 980-8576, Japan
| | - Kazutoyo Yoda
- Technical Research Laboratory, Takanashi Milk Products Co., Ltd., Yokohama 241-0023, Japan;
| | - Julio Villena
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan; (F.N.); (K.N.)
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina
| | - Haruki Kitazawa
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan; (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Tohoku University, Sendai 980-8576, Japan
| |
Collapse
|
12
|
Zhang L, Wang P, Huang J, Xing Y, Wong FS, Suo J, Wen L. Gut microbiota and therapy for obesity and type 2 diabetes. Front Endocrinol (Lausanne) 2024; 15:1333778. [PMID: 38596222 PMCID: PMC11002083 DOI: 10.3389/fendo.2024.1333778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/06/2024] [Indexed: 04/11/2024] Open
Abstract
There has been a major increase in Type 2 diabetes and obesity in many countries, and this will lead to a global public health crisis, which not only impacts on the quality of life of individuals well but also places a substantial burden on healthcare systems and economies. Obesity is linked to not only to type 2 diabetes but also cardiovascular diseases, musculoskeletal disorders, and certain cancers, also resulting in increased medical costs and diminished quality of life. A number of studies have linked changes in gut in obesity development. Dysbiosis, a deleterious change in gut microbiota composition, leads to altered intestinal permeability, associated with obesity and Type 2 diabetes. Many factors affect the homeostasis of gut microbiota, including diet, genetics, circadian rhythms, medication, probiotics, and antibiotics. In addition, bariatric surgery induces changes in gut microbiota that contributes to the metabolic benefits observed post-surgery. Current obesity management strategies encompass dietary interventions, exercise, pharmacotherapy, and bariatric surgery, with emerging treatments including microbiota-altering approaches showing promising efficacy. While pharmacotherapy has demonstrated significant advancements in recent years, bariatric surgery remains one of the most effective treatments for sustainable weight loss. However, access to this is generally limited to those living with severe obesity. This underscores the need for non-surgical interventions, particularly for adolescents and mildly obese patients. In this comprehensive review, we assess longitudinal alterations in gut microbiota composition and functionality resulting from the two currently most effective anti-obesity treatments: pharmacotherapy and bariatric surgery. Additionally, we highlight the functions of gut microbiota, focusing on specific bacteria, their metabolites, and strategies for modulating gut microbiota to prevent and treat obesity. This review aims to provide insights into the evolving landscape of obesity management and the potential of microbiota-based approaches in addressing this pressing global health challenge.
Collapse
Affiliation(s)
- Luyao Zhang
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Pai Wang
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Juan Huang
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, Changsha, Hunan, China
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanpeng Xing
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - F Susan Wong
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Jian Suo
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Li Wen
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
13
|
Balaguer F, Barrena M, Enrique M, Maicas M, Álvarez B, Tortajada M, Chenoll E, Ramón D, Martorell P. Bifidobacterium animalis subsp. lactis BPL1™ and Its Lipoteichoic Acid Modulate Longevity and Improve Age/Stress-Related Behaviors in Caenorhabditis elegans. Antioxidants (Basel) 2023; 12:2107. [PMID: 38136226 PMCID: PMC10740966 DOI: 10.3390/antiox12122107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Life expectancy has increased globally in recent decades, driving interest in maintaining a healthy life that includes preservation of physical and mental abilities, particularly in elderly people. The gut microbiome becomes increasingly perturbed with aging so the use of probiotics can be a strategy for maintaining a balanced gut microbiome. A previous report showed that Bifidobacterium animalis subsp. lactis BPL1™ induces through its lipoteichoic acid (LTA) fat reduction activities via the insulin/IGF-1 signaling pathway. Here, we have delved into the mechanism of action, eliminating alternative pathways as putative mechanisms. Furthermore, we have identified that BPL1™, its heat treated form (BPL1™ HT) and its LTA prolong longevity in Caenorhabditis elegans (C. elegans) in an insulin/IGF-1-dependent mechanism, and its consumption improves the oxidative stress response, gut permeability and protection against pathogenic infections. Furthermore, positive effects on C. elegans stress-related behaviors and in the Alzheimer's Disease model were found, highlighting the potential of the strain in improving the cognitive functions and proteotoxicity in the nematode. These results indicate the pivotal role of the IGF-1 pathway in the activity of the strain and pave the way for potential applications of BPL1™, BPL1™ HT and its LTA in the field of longevity and age-related markers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Patricia Martorell
- Archer Daniels Midland, Nutrition, Health & Wellness, Biopolis S.L. Parc Científic Universitat de València, C/Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Spain (M.B.); (M.E.); (M.T.); (E.C.)
| |
Collapse
|
14
|
Chen CY, Ho HC. Roles of gut microbes in metabolic-associated fatty liver disease. Tzu Chi Med J 2023; 35:279-289. [PMID: 38035063 PMCID: PMC10683521 DOI: 10.4103/tcmj.tcmj_86_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/04/2023] [Accepted: 05/31/2023] [Indexed: 12/02/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is the most common chronic liver disease. Gut dysbiosis is considered a significant contributing factor in disease development. Increased intestinal permeability can be induced by gut dysbiosis, followed by the entry of lipopolysaccharide into circulation to reach peripheral tissue and result in chronic inflammation. We reviewed how microbial metabolites push host physiology toward MAFLD, including short-chain fatty acids (SCFAs), bile acids, and tryptophan metabolites. The effects of SCFAs are generally reported as anti-inflammatory and can improve intestinal barrier function and restore gut microbiota. Gut microbes can influence intestinal barrier function through SCFAs produced by fermentative bacteria, especially butyrate and propionate producers. This is achieved through the activation of free fatty acid sensing receptors. Bile is directly involved in lipid absorption. Gut microbes can alter bile acid composition by bile salt hydrolase-producing bacteria and bacterial hydroxysteroid dehydrogenase-producing bacteria. These bile acids can affect host physiology by activating farnesoid X receptor Takeda G protein-coupled receptor 5. Gut microbes can also induce MAFLD-associated symptoms by producing tryptophan metabolites kynurenine, serotonin, and indole-3-propionate. A summary of bacterial genera involved in SCFAs production, bile acid transformation, and tryptophan metabolism is provided. Many bacteria have demonstrated efficacy in alleviating MAFLD in animal models and are potential therapeutic candidates for MAFLD.
Collapse
Affiliation(s)
- Chun-Yao Chen
- Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien, Taiwan
| | - Han-Chen Ho
- Department of Anatomy, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
15
|
Moreira ALG, Silva GA, Silva PHF, Salvador SL, Vicente RM, Ferreira GC, Tanus-Santos JE, Mayer MPA, Ishikawa KH, de Souza SLS, Furlaneto FAC, Messora MR. Bifidobacterium animalis subspecies lactis HN019 can reduce the sequelae of experimental periodontitis in rats modulating intestinal parameters, expression of lipogenic genes, and levels of hepatic steatosis. J Periodontal Res 2023; 58:1006-1019. [PMID: 37482954 DOI: 10.1111/jre.13163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/15/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023]
Abstract
OBJECTIVE To determine whether Bifidobacterium animalis subspecies lactis HN019 (B. lactis HN019) can reduce the sequelae of experimental periodontitis (EP) in rats modulating systemic parameters. BACKGROUND This study evaluated the effects of probiotic therapy (PROB) in the prevention of local and systemic damage resulting from EP. METHODS Forty-eight rats were allocated into four groups: C (control), PROB, EP, and EP-PROB. PROB (1 × 1010 CFU/mL) administration lasted 8 weeks and PE was induced on the 7th week by placing ligature on the animals' lower first molars. All animals were euthanized in the 9th week of the experiment. Biomolecular analyses, RT-PCR, and histomorphometric analyses were performed. The data obtained were analyzed statistically (ANOVA, Tukey, p < .05). RESULTS The EP group had higher dyslipidemia when compared to the C group, as well as higher levels of insulin resistance, proteinuria levels, percentages of systolic blood pressure, percentage of fatty hepatocytes in the liver, and expression of adipokines was up-regulated (LEPR, NAMPT, and FABP4). All these parameters (except insulin resistance, systolic blood pressure, LEPR and FABP4 gene expression) were reduced in the EP-PROB group when compared to the EP group. The EP group had lower villus height and crypt depth, as well as a greater reduction in Bacteroidetes and a greater increase in Firmicutes when compared to the EP-PROB group. Greater alveolar bone loss was observed in the EP group when compared to the EP-PROB group. CONCLUSION Bifidobacterium lactis HN019 can reduce the sequelae of EP in rats modulating intestinal parameters, attenuating expression of lipogenic genes and hepatic steatosis.
Collapse
Affiliation(s)
- André L G Moreira
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Giselle A Silva
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Pedro H F Silva
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Sérgio L Salvador
- Department of Clinical Analyses, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Raphael M Vicente
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Graziele C Ferreira
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Marcia P A Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Karin H Ishikawa
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sérgio Luís Scombatti de Souza
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Flávia A C Furlaneto
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Michel R Messora
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
16
|
Bishehsari F, Drees M, Adnan D, Sharma D, Green S, Koshy J, Giron LB, Goldman A, Abdel-Mohsen M, Rasmussen HE, Miller GE, Keshavarzian A. Multi-omics approach to socioeconomic disparity in metabolic syndrome reveals roles of diet and microbiome. Proteomics 2023; 23:e2300023. [PMID: 37525324 DOI: 10.1002/pmic.202300023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/23/2023] [Accepted: 07/10/2023] [Indexed: 08/02/2023]
Abstract
The epidemy of metabolic syndrome (MetS) is typically preceded by adoption of a "risky" lifestyle (e.g., dietary habit) among populations. Evidence shows that those with low socioeconomic status (SES) are at an increased risk for MetS. To investigate this, we recruited 123 obese subjects (body mass index [BMI] ≥ 30) from Chicago. Multi-omic data were collected to interrogate fecal microbiota, systemic markers of inflammation and immune activation, plasma metabolites, and plasma glycans. Intestinal permeability was measured using the sugar permeability testing. Our results suggest a heterogenous metabolic dysregulation among obese populations who are at risk of MetS. Systemic inflammation, linked to poor diet, intestinal microbiome dysbiosis, and gut barrier dysfunction may explain the development of MetS in these individuals. Our analysis revealed 37 key features associated with increased numbers of MetS features. These features were used to construct a composite metabolic-inflammatory (MI) score that was able to predict progression of MetS among at-risk individuals. The MI score was correlated with several markers of poor diet quality as well as lower levels of gut microbial diversity and abnormalities in several species of bacteria. This study reveals novel targets to reduce the burden of MetS and suggests access to healthy food options as a practical intervention.
Collapse
Affiliation(s)
- Faraz Bishehsari
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, Illinois, USA
| | - Michael Drees
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, Illinois, USA
| | - Darbaz Adnan
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, Illinois, USA
| | - Deepak Sharma
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, Illinois, USA
| | - Stefan Green
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, Illinois, USA
| | - Jane Koshy
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Leila B Giron
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Aaron Goldman
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | | | - Gregory E Miller
- Institute for Policy Research and Dept of Psychology, Northwestern Univ, Evanston, Illinois, USA
| | - Ali Keshavarzian
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
17
|
Ismail HM, Spall M, Evans-Molina C, DiMeglio LA. Evaluating the effect of prebiotics on the gut microbiome profile and β cell function in youth with newly diagnosed type 1 diabetes: protocol of a pilot randomized controlled trial. Pilot Feasibility Stud 2023; 9:150. [PMID: 37626387 PMCID: PMC10463339 DOI: 10.1186/s40814-023-01373-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
INTRODUCTION Data show that disturbances in the gut microbiota play a role in glucose homeostasis, type 1 diabetes (T1D) risk and progression. The prebiotic high amylose maize starch (HAMS) alters the gut microbiome profile and metabolites favorably with an increase in bacteria producing short chain fatty acids (SCFAs) that have significant anti-inflammatory effects. HAMS also improves glycemia, insulin sensitivity, and secretion in healthy non-diabetic adults. Additionally, a recent study testing an acetylated and butyrylated form of HAMS (HAMS-AB) that further increases SCFA production prevented T1D in a rodent model without adverse safety effects. The overall objective of this human study will be to assess how daily HAMS-AB consumption impacts the gut microbiome profile, SCFA production, β cell heath, function, and glycemia as well as immune responses in newly diagnosed T1D youth. METHODS AND ANALYSIS We hypothesize that HAMS-AB intake will improve the gut microbiome profile, increase SCFA production, improve β cell health, function and glycemia as well as modulate the immune system. We describe here a pilot, randomized crossover trial of HAMS-AB in 12 newly diagnosed T1D youth, ages 11-17 years old, with residual β cell function. In Aim 1, we will determine the effect of HAMS-AB on the gut microbiome profile and SCFA production; in Aim 2, we will determine the effect of HAMS-AB on β cell health, function and glycemia; and in Aim 3, we will determine the peripheral blood effect of HAMS-AB on frequency, phenotype and function of specific T cell markers. Results will be used to determine the effect-size estimate of using HAMS-AB. We anticipate beneficial effects from a simple, inexpensive, and safe dietary approach. ETHICS AND DISSEMINATION The Institutional Review Board at Indiana University approved the study protocol. The findings of this trial will be submitted to a peer-reviewed pediatric journal. Abstracts will be submitted to relevant national and international conferences. TRIAL REGISTRATION NCT04114357; Pre-results.
Collapse
Affiliation(s)
- Heba M Ismail
- Department of Pediatrics, Indiana University School of Medicine, 635 Barnhill Drive | MS 2053, Indianapolis, IN, 46202, USA.
| | - Maria Spall
- Department of Pediatrics, Indiana University School of Medicine, 635 Barnhill Drive | MS 2053, Indianapolis, IN, 46202, USA
| | - Carmella Evans-Molina
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Linda A DiMeglio
- Department of Pediatrics, Indiana University School of Medicine, 635 Barnhill Drive | MS 2053, Indianapolis, IN, 46202, USA
| |
Collapse
|
18
|
Pepe RB, Lottenberg AM, Fujiwara CTH, Beyruti M, Cintra DE, Machado RM, Rodrigues A, Jensen NSO, Caldas APS, Fernandes AE, Rossoni C, Mattos F, Motarelli JHF, Bressan J, Saldanha J, Beda LMM, Lavrador MSF, Del Bosco M, Cruz P, Correia PE, Maximino P, Pereira S, Faria SL, Piovacari SMF. Position statement on nutrition therapy for overweight and obesity: nutrition department of the Brazilian association for the study of obesity and metabolic syndrome (ABESO-2022). Diabetol Metab Syndr 2023; 15:124. [PMID: 37296485 PMCID: PMC10251611 DOI: 10.1186/s13098-023-01037-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 03/23/2023] [Indexed: 06/12/2023] Open
Abstract
Obesity is a chronic disease resulting from multifactorial causes mainly related to lifestyle (sedentary lifestyle, inadequate eating habits) and to other conditions such as genetic, hereditary, psychological, cultural, and ethnic factors. The weight loss process is slow and complex, and involves lifestyle changes with an emphasis on nutritional therapy, physical activity practice, psychological interventions, and pharmacological or surgical treatment. Because the management of obesity is a long-term process, it is essential that the nutritional treatment contributes to the maintenance of the individual's global health. The main diet-related causes associated with excess weight are the high consumption of ultraprocessed foods, which are high in fats, sugars, and have high energy density; increased portion sizes; and low intake of fruits, vegetables, and grains. In addition, some situations negatively interfere with the weight loss process, such as fad diets that involve the belief in superfoods, the use of teas and phytotherapics, or even the avoidance of certain food groups, as has currently been the case for foods that are sources of carbohydrates. Individuals with obesity are often exposed to fad diets and, on a recurring basis, adhere to proposals with promises of quick solutions, which are not supported by the scientific literature. The adoption of a dietary pattern combining foods such as grains, lean meats, low-fat dairy, fruits, and vegetables, associated with an energy deficit, is the nutritional treatment recommended by the main international guidelines. Moreover, an emphasis on behavioral aspects including motivational interviewing and the encouragement for the individual to develop skills will contribute to achieve and maintain a healthy weight. Therefore, this Position Statement was prepared based on the analysis of the main randomized controlled studies and meta-analyses that tested different nutrition interventions for weight loss. Topics in the frontier of knowledge such as gut microbiota, inflammation, and nutritional genomics, as well as the processes involved in weight regain, were included in this document. This Position Statement was prepared by the Nutrition Department of the Brazilian Association for the Study of Obesity and Metabolic Syndrome (ABESO), with the collaboration of dietitians from research and clinical fields with an emphasis on strategies for weight loss.
Collapse
Affiliation(s)
- Renata Bressan Pepe
- Grupo de Obesidade e Sindrome Metabolica, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, SP Brazil
| | - Ana Maria Lottenberg
- Laboratório de Lipides (LIM10), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP Brazil
- Nutrition Department of the Brazilian Association for the Study of Obesity and Metabolic Syndrome (ABESO), Rua Mato Grosso 306 – cj 1711, Sao Paulo, SP 01239-040 Brazil
| | - Clarissa Tamie Hiwatashi Fujiwara
- Grupo de Obesidade e Sindrome Metabolica, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, SP Brazil
| | - Mônica Beyruti
- Brazilian Association for the Study of Obesity and Metabolic Syndrome (ABESO), São Paulo, SP Brazil
| | - Dennys Esper Cintra
- Centro de Estudos em Lipídios e Nutrigenômica – CELN – University of Campinas, Campinas, SP Brazil
| | - Roberta Marcondes Machado
- Liga Acadêmica de Controle de Diabetes do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP Brazil
| | - Alessandra Rodrigues
- Brazilian Association for the Study of Obesity and Metabolic Syndrome (ABESO), São Paulo, SP Brazil
| | - Natália Sanchez Oliveira Jensen
- Liga Acadêmica de Controle de Diabetes do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP Brazil
| | | | - Ariana Ester Fernandes
- Grupo de Obesidade e Sindrome Metabolica, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, SP Brazil
| | - Carina Rossoni
- Instituto de Saúde Ambiental, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Fernanda Mattos
- Programa de Obesidade e Cirurgia Bariátrica do Hospital Universitário Clementino Fraga Filho da UFRJ, Rio de Janeiro, RJ Brazil
| | - João Henrique Fabiano Motarelli
- Núcleo de Estudos e Extensão em Comportamento Alimentar e Obesidade (NEPOCA) da Universidade de São Paulo - FMRP/USP, Ribeirão Preto, Brazil
| | - Josefina Bressan
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | | | - Lis Mie Masuzawa Beda
- Brazilian Association for the Study of Obesity and Metabolic Syndrome (ABESO), São Paulo, SP Brazil
| | - Maria Sílvia Ferrari Lavrador
- Liga Acadêmica de Controle de Diabetes do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP Brazil
| | - Mariana Del Bosco
- Brazilian Association for the Study of Obesity and Metabolic Syndrome (ABESO), São Paulo, SP Brazil
| | - Patrícia Cruz
- Grupo de Obesidade e Sindrome Metabolica, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, SP Brazil
| | | | - Priscila Maximino
- Instituto PENSI - Fundação José Luiz Egydio Setúbal, Instituto Pensi, Fundação José Luiz Egydio Setúbal, Hospital Infantil Sabará, São Paulo, SP Brazil
| | - Silvia Pereira
- Núcleo de Saúde Alimentar da Sociedade Brasileira de Cirurgia Bariátrica e Metabólica, São Paulo, Brazil
| | | | | |
Collapse
|
19
|
Singh RP, Niharika J, Thakur R, Wagstaff BA, Kumar G, Kurata R, Patel D, Levy CW, Miyazaki T, Field RA. Utilization of dietary mixed-linkage β-glucans by the Firmicute Blautia producta. J Biol Chem 2023; 299:104806. [PMID: 37172725 PMCID: PMC10318527 DOI: 10.1016/j.jbc.2023.104806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
The β-glucans are structurally varied, naturally occurring components of the cell walls, and storage materials of a variety of plant and microbial species. In the human diet, mixed-linkage glucans [MLG - β-(1,3/4)-glucans] influence the gut microbiome and the host immune system. Although consumed daily, the molecular mechanism by which human gut Gram-positive bacteria utilize MLG largely remains unknown. In this study, we used Blautia producta ATCC 27340 as a model organism to develop an understanding of MLG utilization. B. producta encodes a gene locus comprising a multi-modular cell-anchored endo-glucanase (BpGH16MLG), an ABC transporter, and a glycoside phosphorylase (BpGH94MLG) for utilizing MLG, as evidenced by the upregulation of expression of the enzyme- and solute binding protein (SBP)-encoding genes in this cluster when the organism is grown on MLG. We determined that recombinant BpGH16MLG cleaved various types of β-glucan, generating oligosaccharides suitable for cellular uptake by B. producta. Cytoplasmic digestion of these oligosaccharides is then performed by recombinant BpGH94MLG and β-glucosidases (BpGH3-AR8MLG and BpGH3-X62MLG). Using targeted deletion, we demonstrated BpSBPMLG is essential for B. producta growth on barley β-glucan. Furthermore, we revealed that beneficial bacteria, such as Roseburia faecis JCM 17581T, Bifidobacterium pseudocatenulatum JCM 1200T, Bifidobacterium adolescentis JCM 1275T, and Bifidobacterium bifidum JCM 1254, can also utilize oligosaccharides resulting from the action of BpGH16MLG. Disentangling the β-glucan utilizing the capability of B. producta provides a rational basis on which to consider the probiotic potential of this class of organism.
Collapse
Affiliation(s)
- Ravindra Pal Singh
- Department of Industrial Biotechnology, Gujarat Biotechnology University, Near Gujarat International Finance Tec (GIFT)-City, Gandhinagar, Gujarat, India; Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, SAS Nagar, Punjab, India.
| | - Jayashree Niharika
- Department of Industrial Biotechnology, Gujarat Biotechnology University, Near Gujarat International Finance Tec (GIFT)-City, Gandhinagar, Gujarat, India; Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, SAS Nagar, Punjab, India
| | - Raksha Thakur
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, SAS Nagar, Punjab, India
| | - Ben A Wagstaff
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Gulshan Kumar
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, SAS Nagar, Punjab, India
| | - Rikuya Kurata
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka City, Shizuoka, Japan
| | - Dhaval Patel
- Department of Industrial Biotechnology, Gujarat Biotechnology University, Near Gujarat International Finance Tec (GIFT)-City, Gandhinagar, Gujarat, India
| | - Colin W Levy
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Takatsugu Miyazaki
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka City, Shizuoka, Japan; Research Institute of Green Science and Technology, Shizuoka University, Shizuoka City, Shizuoka, Japan
| | - Robert A Field
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK.
| |
Collapse
|
20
|
Al-Ishaq RK, Samuel SM, Büsselberg D. The Influence of Gut Microbial Species on Diabetes Mellitus. Int J Mol Sci 2023; 24:ijms24098118. [PMID: 37175825 PMCID: PMC10179351 DOI: 10.3390/ijms24098118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Diabetes mellitus (DM) is a metabolic disorder with an alarming incidence rate and a considerable burden on the patient's life and health care providers. An increase in blood glucose level and insulin resistance characterizes it. Internal and external factors such as urbanization, obesity, and genetic mutations could increase the risk of DM. Microbes in the gut influence overall health through immunity and nutrition. Recently, more studies have been conducted to evaluate and estimate the role of the gut microbiome in diabetes development, progression, and management. This review summarizes the current knowledge addressing three main bacterial species: Bifidobacterium adolescentis, Bifidobacterium bifidum, and Lactobacillus rhamnosus and their influence on diabetes and its underlying molecular mechanisms. Most studies illustrate that using those bacterial species positively reduces blood glucose levels and activates inflammatory markers. Additionally, we reported the relationship between those bacterial species and metformin, one of the commonly used antidiabetic drugs. Overall, more research is needed to understand the influence of the gut microbiome on the development of diabetes. Furthermore, more efforts are required to standardize the model used, concentration ranges, and interpretation tools to advance the field further.
Collapse
Affiliation(s)
- Raghad Khalid Al-Ishaq
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| |
Collapse
|
21
|
Vallianou NG, Kounatidis D, Tsilingiris D, Panagopoulos F, Christodoulatos GS, Evangelopoulos A, Karampela I, Dalamaga M. The Role of Next-Generation Probiotics in Obesity and Obesity-Associated Disorders: Current Knowledge and Future Perspectives. Int J Mol Sci 2023; 24:ijms24076755. [PMID: 37047729 PMCID: PMC10095285 DOI: 10.3390/ijms24076755] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Obesity and obesity-associated disorders pose a major public health issue worldwide. Apart from conventional weight loss drugs, next-generation probiotics (NGPs) seem to be very promising as potential preventive and therapeutic agents against obesity. Candidate NGPs such as Akkermansia muciniphila, Faecalibacterium prausnitzii, Anaerobutyricum hallii, Bacteroides uniformis, Bacteroides coprocola, Parabacteroides distasonis, Parabacteroides goldsteinii, Hafnia alvei, Odoribacter laneus and Christensenella minuta have shown promise in preclinical models of obesity and obesity-associated disorders. Proposed mechanisms include the modulation of gut flora and amelioration of intestinal dysbiosis, improvement of intestinal barrier function, reduction in chronic low-grade inflammation and modulation of gut peptide secretion. Akkermansia muciniphila and Hafnia alvei have already been administered in overweight/obese patients with encouraging results. However, safety issues and strict regulations should be constantly implemented and updated. In this review, we aim to explore (1) current knowledge regarding NGPs; (2) their utility in obesity and obesity-associated disorders; (3) their safety profile; and (4) their therapeutic potential in individuals with overweight/obesity. More large-scale, multicentric and longitudinal studies are mandatory to explore their preventive and therapeutic potential against obesity and its related disorders.
Collapse
Affiliation(s)
- Natalia G. Vallianou
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Street, 10676 Athens, Greece
| | - Dimitris Kounatidis
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Street, 10676 Athens, Greece
| | - Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Fotis Panagopoulos
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Street, 10676 Athens, Greece
| | - Gerasimos Socrates Christodoulatos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece
- Department of Microbiology, Sismanogleio General Hospital, 1 Sismanogleiou Street, 15126 Athens, Greece
| | - Angelos Evangelopoulos
- Roche Hellas Diagnostics S.A., 18-20 Amarousiou-Chalandriou Street, 15125 Athens, Greece
| | - Irene Karampela
- 2nd Department of Critical Care, Medical School, University of Athens, Attikon General University Hospital, 1 Rimini Street, 12462 Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece
| |
Collapse
|
22
|
Aljuraiban GS, Alfhili MA, Aldhwayan MM, Aljazairy EA, Al-Musharaf S. Metagenomic Shotgun Sequencing Reveals Specific Human Gut Microbiota Associated with Insulin Resistance and Body Fat Distribution in Saudi Women. Biomolecules 2023; 13:biom13040640. [PMID: 37189387 DOI: 10.3390/biom13040640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
(1) Background: Gut microbiota dysbiosis may lead to diseases such as insulin resistance and obesity. We aimed to investigate the relationship between insulin resistance, body fat distribution, and gut microbiota composition. (2) Methods: The present study included 92 Saudi women (18–25 years) with obesity (body mass index (BMI) ≥ 30 kg/m2, n = 44) and with normal weight (BMI 18.50–24.99 kg/m2, n = 48). Body composition indices, biochemical data, and stool samples were collected. The whole-genome shotgun sequencing technique was used to analyze the gut microbiota. Participants were divided into subgroups stratified by the homeostatic model assessment for insulin resistance (HOMA-IR) and other adiposity indices. (3) Results: HOMA-IR was inversely correlated with Actinobacteria (r = −0.31, p = 0.003), fasting blood glucose was inversely correlated with Bifidobacterium kashiwanohense (r = −0.22, p = 0.03), and insulin was inversely correlated with Bifidobacterium adolescentis (r = −0.22, p = 0.04). There were significant differences in α- and β-diversities in those with high HOMA-IR and waist–hip ratio (WHR) compared to low HOMA-IR and WHR (p = 0.02, 0.03, respectively). (4) Conclusions: Our findings highlight the relationship between specific gut microbiota at different taxonomic levels and measures of glycemic control in Saudi Arabian women. Future studies are required to determine the role of the identified strains in the development of insulin resistance.
Collapse
Affiliation(s)
- Ghadeer S. Aljuraiban
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad A. Alfhili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Madhawi M. Aldhwayan
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Esra’a A. Aljazairy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sara Al-Musharaf
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
23
|
Ji J, Wu L, Wei J, Wu J, Guo C. The Gut Microbiome and Ferroptosis in MAFLD. J Clin Transl Hepatol 2023; 11:174-187. [PMID: 36406312 PMCID: PMC9647110 DOI: 10.14218/jcth.2022.00136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/22/2022] [Accepted: 06/12/2022] [Indexed: 12/04/2022] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a new disease definition, and is proposed to replace the previous name, nonalcoholic fatty liver disease (NAFLD). Globally, MAFLD/NAFLD is the most common liver disease, with an incidence rate ranging from 6% to 35% in adult populations. The pathogenesis of MAFLD/NAFLD is closely related to insulin resistance (IR), and the genetic susceptibility to acquired metabolic stress-associated liver injury. Similarly, the gut microbiota in MAFLD/NAFLD is being revaluated by scientists, as the gut and liver influence each other via the gut-liver axis. Ferroptosis is a novel form of programmed cell death caused by iron-dependent lipid peroxidation. Emerging evidence suggests that ferroptosis has a key role in the pathological progression of MAFLD/NAFLD, and inhibition of ferroptosis may become a novel therapeutic strategy for the treatment of NAFLD. This review focuses on the main mechanisms behind the promotion of MAFLD/NAFLD occurrence and development by the intestinal microbiota and ferroptosis. It outlines new strategies to target the intestinal microbiota and ferroptosis to facilitate future MAFLD/NAFLD therapies.
Collapse
Affiliation(s)
- Jie Ji
- Department of Gastroenterology, Putuo People’s Hospital, Tongji University, Shanghai, China
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liwei Wu
- Department of Gastroenterology, Putuo People’s Hospital, Tongji University, Shanghai, China
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jue Wei
- Department of Gastroenterology Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People’s Hospital, Tongji University, Shanghai, China
- Correspondence to: Chuanyong Guo, Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing’an District, Shanghai 200072, China. ORCID: https://orcid.org/0000-0002-6527-4673. E-mail: ; Jianye Wu: Department of Gastroenterology, Putuo People’s Hospital, NO. 1291, Jiangning road, Putuo, Shanghai 200060, China. ORCID: https://orcid.org/0000-0003-2675-4241. E-mail:
| | - Chuanyong Guo
- Department of Gastroenterology, Putuo People’s Hospital, Tongji University, Shanghai, China
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Correspondence to: Chuanyong Guo, Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing’an District, Shanghai 200072, China. ORCID: https://orcid.org/0000-0002-6527-4673. E-mail: ; Jianye Wu: Department of Gastroenterology, Putuo People’s Hospital, NO. 1291, Jiangning road, Putuo, Shanghai 200060, China. ORCID: https://orcid.org/0000-0003-2675-4241. E-mail:
| |
Collapse
|
24
|
Positive effects of steamed Polygonatum sibiricum polysaccharides including a glucofructan on fatty acids and intestinal microflora. Food Chem 2023; 402:134068. [DOI: 10.1016/j.foodchem.2022.134068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/20/2022] [Accepted: 08/28/2022] [Indexed: 11/22/2022]
|
25
|
Corrie L, Awasthi A, Kaur J, Vishwas S, Gulati M, Kaur IP, Gupta G, Kommineni N, Dua K, Singh SK. Interplay of Gut Microbiota in Polycystic Ovarian Syndrome: Role of Gut Microbiota, Mechanistic Pathways and Potential Treatment Strategies. Pharmaceuticals (Basel) 2023; 16:197. [PMID: 37259345 PMCID: PMC9967581 DOI: 10.3390/ph16020197] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 11/26/2023] Open
Abstract
Polycystic Ovarian Syndrome (PCOS) comprises a set of symptoms that pose significant risk factors for various diseases, including type 2 diabetes, cardiovascular disease, and cancer. Effective and safe methods to treat all the pathological symptoms of PCOS are not available. The gut microbiota has been shown to play an essential role in PCOS incidence and progression. Many dietary plants, prebiotics, and probiotics have been reported to ameliorate PCOS. Gut microbiota shows its effects in PCOS via a number of mechanistic pathways including maintenance of homeostasis, regulation of lipid and blood glucose levels. The effect of gut microbiota on PCOS has been widely reported in animal models but there are only a few reports of human studies. Increasing the diversity of gut microbiota, and up-regulating PCOS ameliorating gut microbiota are some of the ways through which prebiotics, probiotics, and polyphenols work. We present a comprehensive review on polyphenols from natural origin, probiotics, and fecal microbiota therapy that may be used to treat PCOS by modifying the gut microbiota.
Collapse
Affiliation(s)
- Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Jaskiran Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
- ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jaipur 302017, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600007, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | | | - Kamal Dua
- ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
- ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
26
|
Al-Khaldy NS, Al-Musharaf S, Aljazairy EA, Hussain SD, Alnaami AM, Al-Daghri N, Aljuraiban G. Serum Vitamin D Level and Gut Microbiota in Women. Healthcare (Basel) 2023; 11:healthcare11030351. [PMID: 36766926 PMCID: PMC9914434 DOI: 10.3390/healthcare11030351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Obesity and vitamin D deficiency are two major public health concerns. Evidence suggests that alteration in gut microbiota composition is a possible risk factor for obesity. Additionally, altered vitamin D status has a potential role in shaping the gut microbial community. Further, the prevalence of obesity has been rising in the Middle East, especially among women of reproductive age, which is of specific concern due to its adverse effects on the health of their offspring. To date, limited evidence is available on the association between gut microbiota composition and vitamin D levels in Arab women. This study aims to identify the associations between serum vitamin D, gut microbiota, and obesity among Saudi females. The current study is a case-control study including 92 women aged 18 to 25 years, (n = 48) with normal weight and (n = 44) with obesity. Anthropometric, biochemical, lifestyle data, and fecal samples were collected and analyzed. We used shotgun metagenomic sequencing to characterize microbial communities of stool samples. Vitamin D levels were significantly associated with alpha and beta diversities. Serum vitamin D levels were positively associated with bacteria known to regulate immunological responses; Bacteroides thetaiotaomicron in the normal weight group (r = 0.34, p = 0.03) and Bifidobacterium adolescentis in the obesity group (r = 0.33, p = 0.04). In conclusion, the findings suggest that vitamin D status may play a role in regulating the gut microbiota composition by inhibiting the growth of pathogenic bacteria while nourishing the beneficial strains.
Collapse
Affiliation(s)
- Noorah S. Al-Khaldy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sara Al-Musharaf
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence: ; Tel.: +966-55-424-3033
| | - Esra’a A. Aljazairy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Syed Danish Hussain
- Biomarkers of Chronic Diseases, Riyadh Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah M. Alnaami
- Biomarkers of Chronic Diseases, Riyadh Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nasser Al-Daghri
- Biomarkers of Chronic Diseases, Riyadh Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ghadeer Aljuraiban
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
27
|
Zhang J, Yu H, Wang Q, Cai H, Shen F, Ruan S, Wu Y, Liu T, Feng F, Zhao M. Dietary additive octyl and decyl glycerate modulates metabolism and inflammation under different dietary patterns with the contribution of the gut microbiota. Food Funct 2023; 14:525-540. [PMID: 36520115 DOI: 10.1039/d2fo03059d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Octyl and decyl glycerate (ODG), a medium-chain triglyceride (MCT), is widely used as a food additive. Medium-chain monoglycerides, such as glycerol monolaurate and glycerol monocaprylate, were found to change the composition of the gut microbiota and influence glucose and lipid metabolism and inflammation. However, whether ODG influences the gut microbiota and whether the alteration in the gut microbiota contributes to the metabolic phenotype remain unknown. Under a normal-chow diet, mice were treated with or without different dosages of ODG (150, 800, 1600 mg kg-1) for 22 weeks. All doses of ODG significantly decreased the ratio of HDL to LDL cholesterol, improved the inflammation and insulin resistance, and increased the α-diversity of the gut microbiota and the abundance of Bifidobacterium and Turicibacter. Under a high-fat diet, mice were treated with or without 1600 mg kg-1 ODG for 16 weeks. The results demonstrated that ODG significantly alleviated the increase in the ratio of HDL to LDL cholesterol, insulin resistance, and inflammation caused by HFD. The expression of related genes was consistent with the above observations. ODG also altered the composition of the gut microbiota and increased the Bifidobacterium abundance under HFD. Our findings indicated that ODG similarly improved glucose metabolism and inflammation but exhibited differential effects on lipid metabolism under different dietary patterns. Furthermore, changes in the gut microbiota caused by ODG supplementation might contribute to the alteration in glucose and lipid metabolism and inflammation, which might be influenced by dietary patterns.
Collapse
Affiliation(s)
- Junhui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China. .,National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Huilin Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China. .,National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Qianqian Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China. .,National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Haiying Cai
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China. .,School of Biological & Chemical Engineering, Zhejiang University of Science &Technology, Hangzhou, 310023, China
| | - Fei Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China. .,National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Shengyue Ruan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China. .,National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Yue Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China. .,National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Tao Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China. .,National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China. .,National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Minjie Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China. .,National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
28
|
ITO E, OHKI T, TOYA N, NAKAGAWA H, HORIGOME A, ODAMAKI T, XIAO JZ, KOIDO S, NISHIKAWA Y, OHKUSA T, SATO N. Impact of Bifidobacterium adolescentis in patients with abdominal aortic aneurysm: a cross-sectional study. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2023; 42:81-86. [PMID: 36660598 PMCID: PMC9816055 DOI: 10.12938/bmfh.2022-055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/13/2022] [Indexed: 01/01/2023]
Abstract
The relationships between various diseases and the human gut microbiota (GM) have been revealed. However, the relationships between the human abdominal aortic aneurysm (AAA) and GM remains unknown. The aim of this cross-sectional study was to clarify the association between the human AAA and GM. Stool samples from 30 consecutive patients with AAA before aneurysm repair and those of 30 controls without vascular diseases were analyzed by 16S rRNA gene (V3-4) sequencing using an Illumina MiSeq system and QIIME 2. There was no significant difference in age (75 vs. 75 years) or gender (80% vs. 87% males) between the groups. No significant difference in GM composition was observed in principal coordinate analysis between the two groups, whereas the AAA group showed a significantly lower abundance of Bifidobacterium adolescentis (p<0.01) at the species level than the controls. This study demonstrated that the abundance of B. adolescentis decreased in patients with AAA. This is the first study to show the characteristics of the GM in patients with AAA. Studies are needed to reveal if causal relationships exists between the human AAA and GM.
Collapse
Affiliation(s)
- Eisaku ITO
- Department of Surgery, Division of Vascular Surgery, The
Jikei University Kashiwa Hospital, 163-1 Kashiwa-shita, Kashiwa, Chiba 277-0004,
Japan
| | - Takao OHKI
- Division of Vascular Surgery, Department of Surgery, The
Jikei University School of Medicine, 3-19-18 Nishi-shimbashi, Minato, Tokyo 105-8471,
Japan,*Corresponding author. Takao Ohki (E-mail: )
| | - Naoki TOYA
- Department of Surgery, Division of Vascular Surgery, The
Jikei University Kashiwa Hospital, 163-1 Kashiwa-shita, Kashiwa, Chiba 277-0004,
Japan
| | - Hikaru NAKAGAWA
- Department of Surgery, Division of Vascular Surgery, The
Jikei University Kashiwa Hospital, 163-1 Kashiwa-shita, Kashiwa, Chiba 277-0004,
Japan
| | - Ayako HORIGOME
- Next Generation Science Institute, Morinaga Milk Industry
Co., Ltd., 5-1 Higashihara, Zama, Kanagawa 252-0004, Japan
| | - Toshitaka ODAMAKI
- Next Generation Science Institute, Morinaga Milk Industry
Co., Ltd., 5-1 Higashihara, Zama, Kanagawa 252-0004, Japan
| | - Jin-zhong XIAO
- Next Generation Science Institute, Morinaga Milk Industry
Co., Ltd., 5-1 Higashihara, Zama, Kanagawa 252-0004, Japan
| | - Shigeo KOIDO
- Division of Gastroenterology and Hepatology, Department of
Internal Medicine, The Jikei University Kashiwa Hospital, 163-1 Kashiwa-shita, Kashiwa,
Chiba 277-0004, Japan
| | - Yuriko NISHIKAWA
- Division of Gastroenterology and Hepatology, Department of
Internal Medicine, The Jikei University Kashiwa Hospital, 163-1 Kashiwa-shita, Kashiwa,
Chiba 277-0004, Japan
| | - Toshifumi OHKUSA
- Department of Microbiota Research, Juntendo University
Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Nobuhiro SATO
- Department of Microbiota Research, Juntendo University
Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
29
|
Araujo R, Borges-Canha M, Pimentel-Nunes P. Microbiota Modulation in Patients with Metabolic Syndrome. Nutrients 2022; 14:4490. [PMID: 36364752 PMCID: PMC9658393 DOI: 10.3390/nu14214490] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 07/31/2023] Open
Abstract
Metabolic syndrome (MS) comprises a vast range of metabolic dysfunctions, which can be associated to cardiovascular disease risk factors. MS is reaching pandemic levels worldwide and it currently affects around 25% in the adult population of developed countries. The definition states for the diagnosis of MS may be clear, but it is also relevant to interpret the patient data and realize whether similar criteria were used by different clinicians. The different criteria explain, at least in part, the controversies on the theme. Several studies are presently focusing on the microbiota changes according to the components of MS. It is widely accepted that the gut microbiota is a regulator of metabolic homeostasis, being the gut microbiome in MS described as dysbiotic and certain taxonomic groups associated to metabolic changes. Probiotics, and more recently synbiotics, arise as promising therapeutic alternatives that can mitigate some metabolic disturbances, namely by correcting the microbiome and bringing homeostasis to the gut. The most recent studies were revised and the promising results and perspectives revealed in this review.
Collapse
Affiliation(s)
- Ricardo Araujo
- Nephrology & Infectious Diseases R&D Group, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Marta Borges-Canha
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário de São João, 4200-319 Porto, Portugal
| | - Pedro Pimentel-Nunes
- Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário de São João, 4200-319 Porto, Portugal
- RISE@CI-IPOP (Health Research Network, IPO Porto), Porto Comprehensive Cancer Center (Porto CCC), 4200-072 Porto, Portugal
| |
Collapse
|
30
|
Sarfraz MH, Shahid A, Asghar S, Aslam B, Ashfaq UA, Raza H, Prieto MA, Simal-Gandara J, Barba FJ, Rajoka MSR, Khurshid M, Nashwan AJ. Personalized nutrition, microbiota, and metabolism: A triad for eudaimonia. Front Mol Biosci 2022; 9:1038830. [PMID: 36330221 PMCID: PMC9623024 DOI: 10.3389/fmolb.2022.1038830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/06/2022] [Indexed: 11/28/2022] Open
Abstract
During the previous few years, the relationship between the gut microbiota, metabolic disorders, and diet has come to light, especially due to the understanding of the mechanisms that particularly link the gut microbiota with obesity in animal models and clinical trials. Research has led to the understanding that the responses of individuals to dietary inputs vary remarkably therefore no single diet can be suggested to every individual. The variations are attributed to differences in the microbiome and host characteristics. In general, it is believed that the immanent nature of host-derived factors makes them difficult to modulate. However, diet can more easily shape the microbiome, potentially influencing human physiology through modulation of digestion, absorption, mucosal immune response, and the availability of bioactive compounds. Thus, diet could be useful to influence the physiology of the host, as well as to ameliorate various disorders. In the present study, we have described recent developments in understanding the disparities of gut microbiota populations between individuals and the primary role of diet-microbiota interactions in modulating human physiology. A deeper understanding of these relationships can be useful for proposing personalized nutrition strategies and nutrition-based therapeutic interventions to improve human health.
Collapse
Affiliation(s)
| | - Aqsa Shahid
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
- Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Faisalabad, Pakistan
| | - Samra Asghar
- Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Faisalabad, Pakistan
| | - Bilal Aslam
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Hammad Raza
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - Francisco J. Barba
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| | - Muhammad Shahid Riaz Rajoka
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Mohsin Khurshid
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Abdulqadir J. Nashwan
- Nursing Department, Hazm Mebaireek General Hospital (HMGH), Hamad Medical Corporation (HMC), Doha, Qatar
| |
Collapse
|
31
|
Jiang T, Li Y, Li L, Liang T, Du M, Yang L, Yang J, Yang R, Zhao H, Chen M, Ding Y, Zhang J, Wang J, Xie X, Wu Q. Bifidobacterium longum 070103 Fermented Milk Improve Glucose and Lipid Metabolism Disorders by Regulating Gut Microbiota in Mice. Nutrients 2022; 14:nu14194050. [PMID: 36235706 PMCID: PMC9573661 DOI: 10.3390/nu14194050] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 12/08/2022] Open
Abstract
Background: Fermented milk is beneficial for metabolic disorders, while the underlying mechanisms of action remain unclear. This study explored the benefits and underlying mechanisms of Bifidobacterium longum 070103 fermented milk (BLFM) in thirteen-week high-fat and high-sugar (HFHS) fed mice using omics techniques. Methods and results: BLFM with activated glucokinase (GK) was screened by a double-enzyme coupling method. After supplementing BLFM with 10 mL/kg BW per day, fasting blood glucose, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and leptin were significantly reduced compared with the HFHS group. Among them, the final body weight (BW), epididymal fat, perirenal fat, and brown fat in BLFM group had better change trends than Lacticaseibacillus rhamnosus GG fermented milk (LGGFM) group. The amplicon and metabolomic data analysis identified Bifibacterium as a key gut microbiota at regulating glycolipid metabolism. BLFM reverses HFHS-induced reduction in bifidobacteria abundance. Further studies showed that BLFM significantly reduces the content of 3-indoxyl sulofphate associated with intestinal barrier damage. In addition, mice treated with BLFM improved BW, glucose tolerance, insulin resistance, and hepatic steatosis. Conclusion: BLFM consumption attenuates obesity and related symptoms in HFHS-fed mice probably via the modulation of gut microbes and metabolites.
Collapse
Affiliation(s)
- Tong Jiang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Ying Li
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Longyan Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Tingting Liang
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Mingzhu Du
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Lingshuang Yang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Juan Yang
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Runshi Yang
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Hui Zhao
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Moutong Chen
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yu Ding
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jumei Zhang
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (J.W.); (X.X.); (Q.W.)
| | - Xinqiang Xie
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Correspondence: (J.W.); (X.X.); (Q.W.)
| | - Qingping Wu
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Correspondence: (J.W.); (X.X.); (Q.W.)
| |
Collapse
|
32
|
The Activity of Prebiotics and Probiotics in Hepatogastrointestinal Disorders and Diseases Associated with Metabolic Syndrome. Int J Mol Sci 2022; 23:ijms23137229. [PMID: 35806234 PMCID: PMC9266451 DOI: 10.3390/ijms23137229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/27/2022] [Indexed: 12/11/2022] Open
Abstract
The components of metabolic syndrome (MetS) and hepatogastrointestinal diseases are widespread worldwide, since many factors associated with lifestyle and diet influence their development and correlation. Due to these growing health problems, it is necessary to search for effective alternatives for prevention or adjuvants in treating them. The positive impact of regulated microbiota on health is known; however, states of dysbiosis are closely related to the development of the conditions mentioned above. Therefore, the role of prebiotics, probiotics, or symbiotic complexes has been extensively evaluated; the results are favorable, showing that they play a crucial role in the regulation of the immune system, the metabolism of carbohydrates and lipids, and the biotransformation of bile acids, as well as the modulation of their central receptors FXR and TGR-5, which also have essential immunomodulatory and metabolic activities. It has also been observed that they can benefit the host by displacing pathogenic species, improving the dysbiosis state in MetS. Current studies have reported that paraprobiotics (dead or inactive probiotics) or postbiotics (metabolites generated by active probiotics) also benefit hepatogastrointestinal health.
Collapse
|
33
|
Gravina AG, Romeo M, Pellegrino R, Tuccillo C, Federico A, Loguercio C. Just Drink a Glass of Water? Effects of Bicarbonate-Sulfate-Calcium-Magnesium Water on the Gut-Liver Axis. Front Pharmacol 2022; 13:869446. [PMID: 35837275 PMCID: PMC9274271 DOI: 10.3389/fphar.2022.869446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/16/2022] [Indexed: 12/18/2022] Open
Abstract
Background and Aim: Fonte Essenziale® water is a bicarbonate-sulfate-calcium-magnesium water, low in sodium, recognized by the Italian health care system in hydropinotherapy and hepatobiliary dyspepsia therapy. We wanted to explore its effects on the gut-liver axis and microbiota in non-alcoholic fatty liver disease patients. Patients and Methods: We considered enrollment for 70 patients, of which four were excluded. We finally enrolled 55 patients with ultrasound-documented steatosis (SPs+) and 11 patients without it (SPs-). They then drank 400 ml of water for 6 months in the morning on an empty stomach. Routine hematochemical and metabolic parameters, oxidative stress parameters, gastrointestinal hormone levels, and fecal parameters of the gut microbiota were evaluated at three different assessment times, at baseline (T0), after 6 months (T6), and after a further 6 months of water washout (T12). We lost, in follow-up, 4 (T6) and 22 (T12) patients. Results: Between T0-T6, we observed a significant Futuin A and Selenoprotein A decrease and a GLP-1 and PYY increase in SPs+ and the same for Futuin A and GLP-1 in SPs-. Effects were lost at T12. In SPs+, between T0-T12 and T6-12, a significant reduction in Blautia was observed; between T0-T12, a reduction of Collinsella unc. was observed; and between T0-T12 and T6-12, an increase in Subdoligranulum and Dorea was observed. None of the bacterial strains we analyzed varied significantly in the SPs- population. Conclusion: These results indicate beneficial effects of water on gastrointestinal hormones and hence on the gut-liver axis in the period in which subjects drank water both in SPs- and in SPs+.
Collapse
|
34
|
Bifidobacterium adolescentis Is Effective in Relieving Type 2 Diabetes and May Be Related to Its Dominant Core Genome and Gut Microbiota Modulation Capacity. Nutrients 2022; 14:nu14122479. [PMID: 35745208 PMCID: PMC9227778 DOI: 10.3390/nu14122479] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 01/30/2023] Open
Abstract
The prevalence of diabetes mellitus is increasing globally. Probiotics have been shown to be an effective intervention for diabetes. This study focused on the relieving effects and possible mechanisms of 16 strains of two dominant Bifidobacterium species (B. bifidum and B. adolescentis, which exist in the human gut at different life stages) on type 2 diabetes (T2D). The results indicated that more B. adolescentis strains appeared to be superior in alleviating T2D symptoms than B. bifidum strains. This effect was closely related to the ability of B. adolescentis to restore the homeostasis of the gut microbiota, increase the abundance of short-chain fatty acid-producing flora, and alleviate inflammation in mice with T2D. In addition, compared with B. bifidum, B. adolescentis had a higher number of core genes, and these genes were more evolutionarily stable, including unique environmental tolerance, carbon and nitrogen utilization genes, and a blood sugar regulation gene, glgP. This may be one of the reasons why B. adolescentis is more likely to colonize in the adult gut and show a superior ability to relieve T2D. This study provides insights into future studies aimed at investigating probiotics for the treatment of metabolic diseases.
Collapse
|
35
|
Zheng H, Ji H, Fan K, Xu H, Huang Y, Zheng Y, Xu Q, Li C, Zhao L, Li Y, Gao H. Targeting Gut Microbiota and Host Metabolism with Dendrobium officinale Dietary Fiber to Prevent Obesity and Improve Glucose Homeostasis in Diet-Induced Obese Mice. Mol Nutr Food Res 2022; 66:e2100772. [PMID: 35225418 DOI: 10.1002/mnfr.202100772] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/29/2021] [Indexed: 12/26/2022]
Abstract
SCOPE Obesity is becoming a major public health problem due to excess dietary fat intake. Dendrobium officinale (D. officinale) is a medicine food homology plant and exerts multiple health-promoting effects. However, its antiobesity effects and the potential mechanisms remain unclear. METHODS AND RESULTS High-fat diet (HFD)-fed mice are administered D. officinale dietary fiber (DODF) daily by gavage for 11 weeks. The results show that treatment with DODF alleviates obesity, liver steatosis, inflammation, and oxidant stress in HFD-induced obese mice. Improved glucose homeostasis in obese mice after DODF treatment is achieved by enhancing insulin pathway and hepatic glycogen synthesis. DODF restructures the gut microbiota in obese mice by decreasing the relative abundance of Bilophila and increasing the relative abundances of Akkermansia, Bifidobacterium, and Muribaculum. Also, DODF reshapes the metabolic phenotype of obese mice as indicated by up-regulating energy metabolism, increasing acetate and taurine, and reducing serum low density/very low density lipoproteins (LDL/VLDL). These beneficial effects are partly transferred by FMT, implying the gut microbiota as a target for the protective effect of DODF on obesity-related symptoms. CONCLUSION The results suggest that DODF can be used as a novel prebiotics to maintain the gut microbial homeostasis and improve metabolic health, preventing obesity and related metabolic syndrome.
Collapse
Affiliation(s)
- Hong Zheng
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.,Department of Endocrinology, Pingyang Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325400, China
| | - Hui Ji
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Kai Fan
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hangying Xu
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yinli Huang
- Department of Endocrinology, Pingyang Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325400, China
| | - Yafei Zheng
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qingqing Xu
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Chen Li
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Liangcai Zhao
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yuping Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Hongchang Gao
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.,Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
36
|
Whole-Genome Shotgun Metagenomic Sequencing Reveals Distinct Gut Microbiome Signatures of Obese Cats. Microbiol Spectr 2022; 10:e0083722. [PMID: 35467389 PMCID: PMC9241680 DOI: 10.1128/spectrum.00837-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Overweight and obesity are growing health problems in domestic cats, increasing the risks of insulin resistance, lipid dyscrasias, neoplasia, cardiovascular disease, and decreasing longevity. The signature of obesity in the feline gut microbiota has not been studied at the whole-genome metagenomic level. We performed whole-genome shotgun metagenomic sequencing in the fecal samples of eight overweight/obese and eight normal cats housed in the same research environment. We obtained 271 Gbp of sequences and generated a 961-Mbp de novo reference contig assembly, with 1.14 million annotated microbial genes. In the obese cat microbiome, we discovered a significant reduction in microbial diversity (P < 0.01) and Firmicutes abundance (P = 0.005), as well as decreased Firmicutes/Bacteroidetes ratios (P = 0.02), which is the inverse of obese human/mouse microbiota. Linear discriminant analysis and quantitative PCR (qPCR) validation revealed significant increases of Bifidobacterium sp., Olsenella provencensis, Dialister sp.CAG:486, and Campylobacter upsaliensis as the hallmark of obese microbiota among 400 enriched species, whereas 1,525 bacterial species have decreased abundance in the obese microbiome. Phascolarctobacterium succinatutens and an uncharacterized Erysipelotrichaceae bacterium are highly abundant (>0.05%) in the normal gut with over 400-fold depletion in the obese microbiome. Fatty acid synthesis-related pathways are significantly overrepresented in the obese compared with the normal cat microbiome. In conclusion, we discovered dramatically decreased microbial diversity in obese cat gut microbiota, suggesting potential dysbiosis. A panel of seven significantly altered, highly abundant species can serve as a microbiome indicator of obesity. Our findings in the obese cat microbiome composition, abundance, and functional capacities provide new insights into feline obesity. IMPORTANCE Obesity affects around 45% of domestic cats, and licensed drugs for treating feline obesity are lacking. Physical exercise and calorie restrictions are commonly used for weight loss but with limited efficacy. Through comprehensive analyses of normal and obese cat gut bacteria flora, we identified dramatic shifts in the obese gut microbiome, including four bacterial species significantly enriched and two species depleted in the obese cats. The key bacterial community and functional capacity alterations discovered from this study will inform new weight management strategies for obese cats, such as evaluations of specific diet formulas that alter the microbiome composition, and the development of prebiotics and probiotics that promote the increase of beneficial species and the depletion of obesity-associated species. Interestingly, these bacteria identified in our study were also reported to affect the weight loss success in human patients, suggesting translational potential in human obesity.
Collapse
|
37
|
Zhao W, Guo M, Feng J, Gu Z, Zhao J, Zhang H, Wang G, Chen W. Myristica fragrans Extract Regulates Gut Microbes and Metabolites to Attenuate Hepatic Inflammation and Lipid Metabolism Disorders via the AhR-FAS and NF-κB Signaling Pathways in Mice with Non-Alcoholic Fatty Liver Disease. Nutrients 2022; 14:nu14091699. [PMID: 35565666 PMCID: PMC9104743 DOI: 10.3390/nu14091699] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 12/13/2022] Open
Abstract
Recent studies have shown that non-alcoholic fatty liver disease (NAFLD) is closely related to the gut microbiome. Myristica fragrans is widely used as a traditional seasoning and has a therapeutic effect on gastrointestinal diseases. Although previous studies have shown that M. fragrans extracts have anti-obesity and anti-diabetes effects in mice fed a high-fat diet, few studies have determined the active components or the corresponding mechanism in vivo. In this study, for the first time, an M. fragrans extract (MFE) was shown to be a prebiotic that regulates gut microbes and metabolites in mice fed a high-fat diet. Bioinformatics, network pharmacology, microbiome, and metabolomics analyses were used to analyze the nutrient–target pathway interactions in mice with NAFLD. The National Center for Biotechnology Information Gene Expression Omnibus database was used to analyze NAFLD-related clinical data sets to predict potential targets. The drug database and disease database were then integrated to perform microbiome and metabolomics analyses to predict the target pathways. The concentrations of inflammatory factors in the serum and liver, such as interleukin-6 and tumor necrosis factor-α, were downregulated by MFE. We also found that the hepatic concentrations of low-density lipoprotein cholesterol, total cholesterol, and triglycerides were decreased after MFE treatment. Inhibition of the nuclear factor kappa B (NF-κB) pathway and downregulation of the fatty acid synthase (FAS)-sterol regulatory element-binding protein 1c pathway resulted in the regulation of inflammation and lipid metabolism by activating tryptophan metabolite–mediated aryl hydrocarbon receptors (AhR). In summary, MFE effectively attenuated inflammation and lipid metabolism disorders in mice with NAFLD through the NF-κB and AhR–FAS pathways.
Collapse
Affiliation(s)
- Wenyu Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.Z.); (M.G.); (Z.G.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Min Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.Z.); (M.G.); (Z.G.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jun Feng
- Department of Ultrasound, Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi 214122, China
- Correspondence: (J.F.); (G.W.)
| | - Zhennan Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.Z.); (M.G.); (Z.G.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.Z.); (M.G.); (Z.G.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Yangzhou Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.Z.); (M.G.); (Z.G.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Yangzhou Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.Z.); (M.G.); (Z.G.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Yangzhou Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
- Correspondence: (J.F.); (G.W.)
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.Z.); (M.G.); (Z.G.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
38
|
Wang K, Li B, Fu R, Jiang Z, Wen X, Ni Y. Bentong ginger oleoresin mitigates liver injury and modulates gut microbiota in mouse with nonalcoholic fatty liver disease induced by high-fat diet. J Food Sci 2022; 87:1268-1281. [PMID: 35152443 DOI: 10.1111/1750-3841.16076] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 12/17/2023]
Abstract
The present study aimed to examine the protective effect of Bentong ginger oleoresin (BGO) on the occurrence of nonalcoholic fatty liver disease (NAFLD) and its underlying mechanism. In the present study, 14-week BGO treatment reduced the high-fat diet (HFD)-induced obesity. The serum total cholesterol (TC) was reduced from 4.76 ± 0.30 to 3.542 ± 0.49 mmol/L and fatty liver score decreased to the normal level (1.6 ± 0.55). BGO had antihypercholesterolemia activity, alleviated abnormal lipid metabolism, and improved liver fat accumulation. In addition, liver inflammatory cytokine tests and Western blotting analysis indicated that BGO might play an anti-inflammatory role by mediating the NF-κB signaling pathway. Moreover, BGO regulated the gut microbiota in NAFLD mice and finally mediated their benefits for the host, which might be associated with reduced abundance of Lachnospiraceae_NK4A136_group and Fournierella. BGO showed effective liver protection and regulation of gut microbiota for the HFD-induced NAFLD in obese mice. As a result, BGO may serve as an effective dietary supplement for the improvement of NAFLD-related metabolic diseases. PRACTICAL APPLICATION: This study provides a new way to improve the added value of Bentong ginger. It also provides certain experimental data on BGO as a kind of the functional food ingredient. The current work also provides new ideas for the improvement and treatment of NAFLD.
Collapse
Affiliation(s)
- Kunli Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P. R. China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing, P. R. China
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China
| | - Bei Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P. R. China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing, P. R. China
| | - Rao Fu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P. R. China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing, P. R. China
| | - Zefang Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P. R. China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing, P. R. China
| | - Xin Wen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P. R. China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing, P. R. China
| | - Yuanying Ni
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P. R. China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing, P. R. China
| |
Collapse
|
39
|
SUGAWARA Y, KANAZAWA A, AIDA M, YOSHIDA Y, YAMASHIRO Y, WATADA H. Association of gut microbiota and inflammatory markers in obese patients with type 2 diabetes mellitus: post hoc analysis of a synbiotic interventional study. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2022; 41:103-111. [PMID: 35854696 PMCID: PMC9246418 DOI: 10.12938/bmfh.2021-081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/26/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Yukiko SUGAWARA
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Akio KANAZAWA
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masanori AIDA
- Food Research Department, Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Yasuto YOSHIDA
- Food Research Department, Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Yuichiro YAMASHIRO
- Probiotics Research Laboratory, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hirotaka WATADA
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
40
|
Ashraf SA, Elkhalifa AEO, Ahmad MF, Patel M, Adnan M, Sulieman AME. Probiotic Fermented Foods and Health Promotion. AFRICAN FERMENTED FOOD PRODUCTS- NEW TRENDS 2022:59-88. [DOI: 10.1007/978-3-030-82902-5_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
41
|
Falalyeyeva T, Mamula Y, Scarpellini E, Leshchenko I, Humeniuk A, Pankiv I, Kobyliak N. Probiotics and obesity associated disease: an extended view beyond traditional strains. Minerva Gastroenterol (Torino) 2021; 67:348-356. [PMID: 35040301 DOI: 10.23736/s2724-5985.21.02909-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Interaction between intestinal microbiota and obesity is becoming abundantly according to current many scientific investigations. In this article, probiotic therapy was offered as the promising strategy of metabolic disorders control through the recovery of microbiota composition and health maintenance with the help of impact on the abovementioned mechanisms. First, this therapy is safe, with minimal side effects, well-tolerated, and appropriate for long-term use. Second, it can improve body mass, glucose, and fat metabolism, increase insulin sensitivity, and decrease systemic chronic inflammation. In conclusion, the restorative role of gut microbiota on metabolic disorders and associated diseases could open new ways in the treatment of obesity, insulin resistance, and type 2 diabetes.
Collapse
Affiliation(s)
- Tetyana Falalyeyeva
- Institute of Biology and Medicine, Educational and Scientific Center, Taras Shevchenko National University, Kyiv, Ukraine
| | - Yelyzaveta Mamula
- Institute of Biology and Medicine, Educational and Scientific Center, Taras Shevchenko National University, Kyiv, Ukraine
| | - Emidio Scarpellini
- Department of Chronic Diseases, Metabolism and Ageing (ChroMetA), Translational Research Center for Gastrointestinal Disorders (TARGID), Catholic University, Leuven, Belgium
| | - Ivan Leshchenko
- Department of Physiology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Alla Humeniuk
- Department of Physiology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Ivan Pankiv
- Department of Clinical Immunology, Allergology and Endocrinology, Bukovinian State Medical University, Chernivtsi, Ukraine
| | - Nazarii Kobyliak
- Department of Endocrinology, Bogomolets National Medical University, Kyiv, Ukraine -
- Medical Laboratory CSD, Kyiv, Ukraine
| |
Collapse
|
42
|
Human Milk Oligosaccharides Modulate Fecal Microbiota and Are Safe for Use in Children With Overweight: A Randomized Controlled Trial. J Pediatr Gastroenterol Nutr 2021; 73:408-414. [PMID: 34139746 DOI: 10.1097/mpg.0000000000003205] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVES Human milk oligosaccharides (HMOs) impact the intestinal microbiota by increasing beneficial bacteria in infants and adults, and are safe and well tolerated in these age groups. Effects on intestinal microbiota, safety, and digestive tolerance in children have not been, however, assessed. The aims of this trial were to evaluate if HMOs are able to specifically modulate the intestinal microbiota in children, and to assess safety and digestive tolerance. METHODS In this randomized, double-blinded, placebo-controlled trial, 75 children with overweight (including obesity) ages 6 to 12 years were randomized to receive 2'-fucosyllactose (2'FL), a mix of 2'FL and lacto-N-neotetraose (Mix), or a glucose placebo orally administrated once per day for 8 weeks. RESULTS The relative abundance of bifidobacteria increased significantly after 4 (P < 0.001) and 8 (P = 0.025) weeks of intervention in the 2'FL-group and after 4 weeks (P = 0.033) in the Mix-group, whereas no change was observed in the placebo group. Compared with placebo, the 2'FL-group had a significant increase in bifidobacteria abundance after 4 weeks (P < 0.001) and 8 weeks (P = 0.010) and the Mix-group showed a tendency to increased bifidobacteria abundance after 4 (P = 0.071) and 8 weeks (P = 0.071). Bifidobacterium adolescentis drove the bifidogenic effect in the 2 groups. Biochemical markers indicated no safety concerns, and the products did not induce digestive tolerance issues as assessed by Gastrointestinal Symptoms Rating Scale and Bristol Stool Form Scale. CONCLUSIONS Both 2'FL and the Mix beneficially modulate intestinal microbiota by increasing bifidobacteria. Furthermore, supplementation with either 2'FL alone or a Mix is safe and well tolerated in children.
Collapse
|
43
|
Ming J, Yu X, Xu X, Wang L, Ding C, Wang Z, Xie X, Li S, Yang W, Luo S, He Q, Du Y, Tian Z, Gao X, Ma K, Fang Y, Li C, Zhao J, Wang X, Ji Q. Effectiveness and safety of Bifidobacterium and berberine in human hyperglycemia and their regulatory effect on the gut microbiota: a multi-center, double-blind, randomized, parallel-controlled study. Genome Med 2021; 13:125. [PMID: 34365978 PMCID: PMC8351344 DOI: 10.1186/s13073-021-00942-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/21/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Berberine and Bifidobacterium have been reported to improve glucose tolerance in people with hyperglycemia or other metabolic disorders. This study aimed to assess the hypoglycemic effect and the regulation of the gut microbiota caused by berberine and Bifidobacterium and the possible additive benefits of their combination. METHODS This was an 18-week, multi-center, randomized, double-blind, parallel-controlled study of patients newly diagnosed with hyperglycemia. After a 2-week run-in period, 300 participants were randomly assigned to the following four groups for 16 weeks of treatment: berberine (Be), Bifidobacterium (Bi), berberine and Bifidobacterium (BB), and placebo group. The primary efficacy endpoint was the absolute value of fasting plasma glucose (FPG) compared with baseline after 16 weeks of treatment. RESULTS Between October 2015 and April 2018, a total of 297 participants were included in the primary analysis. Significant reductions of FPG were observed in the Be and BB groups compared with the placebo group, with a least square (LS) mean difference of - 0.50, 95% CI [- 0.85, - 0.15] mmol/L, and - 0.55, 95% CI [- 0.91, - 0.20] mmol/L, respectively. The Be and BB groups also showed significant reductions in 2-h postprandial plasma glucose. A pronounced decrease in HbA1c occurred in the BB group compared to the placebo group. Moreover, compared with the Bi and placebo groups, the Be and BB groups had more changes in the gut microbiota from the baseline. CONCLUSIONS Berberine could regulate the structure and function of the human gut microbiota, and Bifidobacterium has the potential to enhance the hypoglycemic effect of berberine. These findings provide new insights into the hypoglycemic potential of berberine and Bifidobacterium. TRIAL REGISTRATION ClinicalTrials.gov , NCT03330184. Retrospectively registered on 18 October 2017.
Collapse
Affiliation(s)
- Jie Ming
- Endocrinology Research Center, Department of Endocrinology and Metabolism, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xinwen Yu
- Endocrinology Research Center, Department of Endocrinology and Metabolism, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | | | - Li Wang
- Endocrinology Research Center, Department of Endocrinology and Metabolism, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Chao Ding
- Department of General Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | | | - Xuan Xie
- Department of Endocrinology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Sheli Li
- Department of Endocrinology, Affiliated Hospital of Yan'an University, Yan'an, China
| | - Wenjuan Yang
- The Fifth Department of Internal Medicine, Shaanxi Aerospace Hospital, Xi'an, China
- Department of Endocrinology, Xi'an Daxing Hospital, Xi'an, China
| | - Shu Luo
- Genertec Universal Xi'an Aero-Engine Hospital, Xi'an, China
| | - Qingzhen He
- Department of Endocrinology, Xi'an High-Tech Hospital, Xi'an, China
| | - Yafang Du
- Department of Endocrinology, Chang'an Hospital, Xi'an, China
| | - Zhufang Tian
- Department of Endocrinology, Xi'an Central Hospital, Xi'an, China
| | - Xiling Gao
- Department of Endocrinology, Yan'an People's Hospital, Yan'an, China
| | - Kaiyan Ma
- Department of Endocrinology, Shangluo Central Hospital, Shangluo, China
| | - Yujie Fang
- Endocrinology Research Center, Department of Endocrinology and Metabolism, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Chen Li
- Department of Health Statistics, Fourth Military Medical University, Xi'an, China
| | - Jiajun Zhao
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China.
| | | | - Qiuhe Ji
- Endocrinology Research Center, Department of Endocrinology and Metabolism, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
44
|
Le Bastard Q, Berthelot L, Soulillou JP, Montassier E. Impact of non-antibiotic drugs on the human intestinal microbiome. Expert Rev Mol Diagn 2021; 21:911-924. [PMID: 34225544 DOI: 10.1080/14737159.2021.1952075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The gut microbiota is composed of trillions of microbial cells and viruses that interact with hosts. The composition of the gut microbiota is influenced by several factors including age, diet, diseases, or medications. The impact of drugs on the microbiota is not limited to antibiotics and many non-antibiotic molecules significantly alter the composition of the intestinal microbiota. AREAS COVERED This review focuses on the impact of four of the most widely prescribed non-antibiotic drugs in the world: Proton-pump inhibitors, metformin, statins, and non-steroidal anti-inflammatory. We conducted a systematic review by searching online databases including Medline, Web of science, and Scopus for indexed articles published in English until February 2021. We included studies assessing the intestinal microbiome alterations associated with proton pump inhibitors (PPIs), metformin, statins, and nonsteroidal anti-inflammatory drugs (NSAIDs). Only studies using culture-independent molecular techniques were included. EXPERT OPINION The taxonomical signature associated with non-antibiotic drugs are not yet fully described, especially in the field of metabolomic. The identification of taxonomic profiles associated a specific molecule provides information on its mechanism of action through interaction with the intestinal microbiota. Many side effects could be related to the dysbiosis induced by these molecules.
Collapse
Affiliation(s)
- Quentin Le Bastard
- Microbiota Hosts Antibiotics and Bacterial Resistances (Mihar), Université De Nantes, Nantes, France.,Service Des Urgences, CHU De Nantes, Nantes, France
| | - Laureline Berthelot
- Centre De Recherche En Transplantation Et Immunologie UMR 1064, INSERM, Université De Nantes, Nantes, France.,Institut De Transplantation Urologie Néphrologie (ITUN), CHU De Nantes, Nantes, France
| | - Jean-Paul Soulillou
- Centre De Recherche En Transplantation Et Immunologie UMR 1064, INSERM, Université De Nantes, Nantes, France.,Institut De Transplantation Urologie Néphrologie (ITUN), CHU De Nantes, Nantes, France
| | - Emmanuel Montassier
- Microbiota Hosts Antibiotics and Bacterial Resistances (Mihar), Université De Nantes, Nantes, France.,Service Des Urgences, CHU De Nantes, Nantes, France
| |
Collapse
|
45
|
Wongkuna S, Ghimire S, Chankhamhaengdecha S, Janvilisri T, Scaria J. Mediterraneibacter catenae SW178 sp. nov., an intestinal bacterium of feral chicken. PeerJ 2021; 9:e11050. [PMID: 33986975 PMCID: PMC8086573 DOI: 10.7717/peerj.11050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/10/2021] [Indexed: 11/20/2022] Open
Abstract
A Gram-positive, coccobacillus, white raised and circular with an entire edge colony, and obligately anaerobic bacterium, strain SW178 was isolated from the cecum content of feral chickens in Brookings, South Dakota, USA. The most closely related strain based on 16S rRNA gene sequence analysis of strain SW178 was Mediterraneibacter torques ATCC 27756T (Ruminococcus torques ATCC 27756T) with 96.94% similarity. The genome of strain SW178 is 3.18 Mbp with G+C content of 46.9 mol%. The optimal temperature and pH for growth in modified brain heart infusion (BHI-M) medium were 45 °C and pH 7.5, respectively. The sole carbon sources of the strain were dextrin, L-fucose, D-galacturonic, α-D-glucose, L-rhamnose and D-sorbitol. The primary cellular fatty acids were C14 : 0, C16 : 0 and C16 : 0 dimethyl acetal (DMA). Based on the genotypic and phenotypic comparison, we proposed that strain SW178 belong to the genus Mediterraneibacter in the family Lachnospiraceae as a novel species, in which the name Mediterraneibacter catenae is proposed. The type strain is SW178 (= DSM 109242T = CCOS 1886T).
Collapse
Affiliation(s)
- Supapit Wongkuna
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, United States
| | - Sudeep Ghimire
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, United States
- South Dakota Center for Biologics Research and Commercialization, Brookings, South Dakota, United States
| | | | - Tavan Janvilisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Joy Scaria
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, United States
- South Dakota Center for Biologics Research and Commercialization, Brookings, South Dakota, United States
| |
Collapse
|
46
|
Liu C, Kang D, Xiao J, Huang Y, Peng X, Wang W, Xie P, Yang Y, Zhao J, Wu R. Dietary fiber and probiotics for the treatment of atypical antipsychotic-induced metabolic side effects: study protocol for a randomized, double-blind, placebo-controlled trial. Trials 2021; 22:159. [PMID: 33622382 PMCID: PMC7903643 DOI: 10.1186/s13063-021-05123-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/11/2021] [Indexed: 01/12/2023] Open
Abstract
Background Atypical antipsychotic medications, which are effective for the treatment of schizophrenia and bipolar disorder, are associated with features of metabolic syndrome, such as weight gain, hyperglycemia, dyslipidemia, and insulin resistance. Although there are a few studies on the effects of dietary fiber or probiotics on weight loss in obese people, no published trials have reported the efficacy of dietary fiber and probiotics on reducing atypical antipsychotic-induced weight gain. Methods For this 12-week randomized, double-blind, placebo-controlled study, 100 patients with a weight gain of more than 10% after taking atypical antipsychotic medications were recruited. Participants were randomized to four groups as follows: probiotics (840 mg twice daily (bid)) plus dietary fiber (30 g bid), probiotics (840 mg bid) plus placebo, placebo plus dietary fiber (30 g bid), or placebo group. The primary outcome was the change in body weight. Secondary outcomes included changes in metabolic syndrome parameters, appetite score, biomarkers associated with a change in weight, and gut microbiota composition and function. Discussion To date, this is the first randomized, placebo-controlled, double-blinded trial investigating the efficacy of dietary fiber and probiotics alone and in combination to reduce metabolic side effects induced by atypical antipsychotic medications. If effective, it is possible to conclude that dietary fiber and probiotics can reduce atypical antipsychotic-induced metabolic side effects. Trial registration number ClinicalTrials.gov NCT03379597. Registered on 19 November 2017. Supplementary Information The online version contains supplementary material available at 10.1186/s13063-021-05123-w.
Collapse
Affiliation(s)
- Chenchen Liu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Dongyu Kang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jingmei Xiao
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yuyan Huang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xingjie Peng
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Weiyan Wang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Peng Xie
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Ye Yang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jingping Zhao
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Renrong Wu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China. .,Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
47
|
Long X, Liu D, Gao Q, Ni J, Qian L, Ni Y, Fang Q, Jia W, Li H. Bifidobacterium adolescentis Alleviates Liver Steatosis and Steatohepatitis by Increasing Fibroblast Growth Factor 21 Sensitivity. Front Endocrinol (Lausanne) 2021; 12:773340. [PMID: 35035378 PMCID: PMC8756294 DOI: 10.3389/fendo.2021.773340] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota is a newly identified contributor to the development of non-alcoholic fatty liver disease (NAFLD). Previous studies of Bifidobacterium adolescentis (B. adolescentis), a species of Bifidobacterium that is common in the human intestinal tract, have demonstrated that it can alleviate liver steatosis and steatohepatitis. Fibroblast growth factor 21 (FGF21) has long been considered as a biomarker of NAFLD, and recent studies have shown the protective effect of FGF21 analogs on NAFLD. We wondered whether B. adolescentis treatment would alleviate NAFLD via the interaction with FGF21. To this end, male C57BL/6J mice on a choline-deficient high-fat diet (CDHFD) were treated with drinking water supplemented with B. adolescentis for 8 weeks, followed by the acute administration of recombinant mouse FGF21 protein (rmFGF21) to conduct the FGF21 response test. Consistent with previous studies, B. adolescentis supplementation reversed the CDHFD-induced liver steatosis and steatohepatitis. This was evaluated on the NAFLD activity score (NAS), reduced liver enzymes, and lipid accumulation. Further studies demonstrated that B. adolescentis supplementation preserved the gut barrier, reduced the gut microbiota-derived lipopolysaccharide (LPS), and inhibited the hepatic TLR4/NF-κB pathway. This was accompanied by the elevated expressions of the receptors of FGF21, fibroblast growth factor receptor 1 (FGFR1) and β-klotho (KLB), in the liver and the decreased expression of FGF21. The results of FGF21 response test showed that B. adolescentis supplementation alleviated the CDHFD-induced FGF21 resistance. In vivo experiments suggested that LPS could suppress the expression of FGF21 and KLB in a dose-dependent manner. Collectively, this study showed that B. adolescentis supplementation could alleviate NAFLD by increasing FGF21 sensitivity.
Collapse
Affiliation(s)
- Xiaoxue Long
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai, China
- Department of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Liu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai, China
- Department of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiongmei Gao
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai, China
| | - Jiacheng Ni
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai, China
| | - Lingling Qian
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai, China
| | - Yueqiong Ni
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai, China
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Qichen Fang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai, China
| | - Weiping Jia
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai, China
- *Correspondence: Weiping Jia, ; Huating Li,
| | - Huating Li
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai, China
- *Correspondence: Weiping Jia, ; Huating Li,
| |
Collapse
|
48
|
Du J, Zhang P, Luo J, Shen L, Zhang S, Gu H, He J, Wang L, Zhao X, Gan M, Yang L, Niu L, Zhao Y, Tang Q, Tang G, Jiang D, Jiang Y, Li M, Jiang A, Jin L, Ma J, Shuai S, Bai L, Wang J, Zeng B, Wu D, Li X, Zhu L. Dietary betaine prevents obesity through gut microbiota-drived microRNA-378a family. Gut Microbes 2021; 13:1-19. [PMID: 33550882 PMCID: PMC7889173 DOI: 10.1080/19490976.2020.1862612] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/05/2020] [Accepted: 11/20/2020] [Indexed: 02/04/2023] Open
Abstract
Betaine is a natural compound present in commonly consumed foods and may have a potential role in the regulation of glucose and lipids metabolism. However, the underlying molecular mechanism of its action remains largely unknown. Here, we show that supplementation with betaine contributes to improved high-fat diet (HFD)-induced gut microbiota dysbiosis and increases anti-obesity strains such as Akkermansia muciniphila, Lactobacillus, and Bifidobacterium. In mice lacking gut microbiota, the functional role of betaine in preventing HFD-induced obesity, metabolic syndrome, and inactivation of brown adipose tissues are significantly reduced. Akkermansia muciniphila is an important regulator of betaine in improving microbiome ecology and increasing strains that produce short-chain fatty acids (SCFAs). Increasing two main members of SCFAs including acetate and butyrate can significantly regulate the levels of DNA methylation at host miR-378a promoter, thus preventing the development of obesity and glucose intolerance. However, these beneficial effects are partially abolished by Yin yang (YY1), a common target gene of the miR-378a family. Taken together, our findings demonstrate that betaine can improve obesity and associated MS via the gut microbiota-derived miR-378a/YY1 regulatory axis, and reveal a novel mechanism by which gut microbiota improve host health.
Collapse
Affiliation(s)
- Jingjing Du
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Peiwen Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jiang Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Linyuan Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shunhua Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Hao Gu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jin He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Linghui Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xue Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mailing Gan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Liu Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Lili Niu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ye Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qianzi Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Guoqing Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dongmei Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yanzhi Jiang
- College of Life and Biology Science, Sichuan Agricultural University, Chengdu, China
| | - Mingzhou Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Anan Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Long Jin
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jideng Ma
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Surong Shuai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Lin Bai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jinyong Wang
- Chongqing Academy of Animal Science, Rongchang, China
| | - Bo Zeng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - De Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Xuewei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
49
|
Khalid M, Shoaib A, Akhtar J, Alqarni MH, Siddiqui HH, Foudah AI. Anti obesity prospective of Dalbergia latifolia (Roxb.) hydroalcoholic bark extract in high fat diet induced obese rats. 3 Biotech 2020; 10:493. [PMID: 33134011 DOI: 10.1007/s13205-020-02491-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/15/2020] [Indexed: 11/26/2022] Open
Abstract
Obesity is an alarming sign and considered as a threat word wide. Since it not only hurt the human body but plays as a basis for other serious diseases like cardiovascular and many more. The 50% hydro-ethanolic extract of Dalbergia latifolia bark (D. latifolia) (DLBE; %yield = 16.34) and methanolic extract (4.32%) of D. latifolia were made. The DLBE was used for the acute oral toxicity and anti-obesity activity in the rodent. However, methanolic extract was used for characterization by high-performance thin layer chromatography (HPTLC) method. During acute toxicity study, it was shown that certainly there was no mortality or morbidity observed up to the maximum dose of 2000 mg/kg after administration of DLBE. The ultimate body weight, food intake, liver weight, total cholesterol (TC), high-density lipoprotein (HDL), low-density lipoprotein (LDL), very low-density lipoprotein (VLDL), triglycerides (TG), aspartate aminotransferase (AST), alanine transaminase (ALT), serum creatinine and blood urea nitrogen (BUN) of rats treated with DLBE at a dose of 200 and 400 mg/kg respectively was considerably diminished to p < 0.01 and p < 0.05 as compared with high-fat diet (HFD) induced obese animals. However, DLBE treated with quite smaller dose revealed a non-significant (p > 0.05) effects on above parameters. The histopathological findings of the study from the cross section of liver and kidney show normal architecture in the cells treated with DLBE at a dose of 200 and 400 mg/kg respectively. Thus we can conclude that the bark extract of D. latifolia can be used for the treatment of obesity and a novel approach for further investigations of its pathology.
Collapse
Affiliation(s)
- Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box No. 173, Al-Kharj, 11942 Kingdom of Saudi Arabia
| | - Ambreen Shoaib
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, 45142 Kingdom of Saudi Arabia
| | - Juber Akhtar
- Department of Pharmaceutics, Faculty of Pharmacy, Integral University, Lucknow, 226026 India
| | - Mohammed H Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box No. 173, Al-Kharj, 11942 Kingdom of Saudi Arabia
| | - Hefazat H Siddiqui
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, 226026 India
| | - Ahmed I Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box No. 173, Al-Kharj, 11942 Kingdom of Saudi Arabia
| |
Collapse
|
50
|
Oral delivery of bacteria: Basic principles and biomedical applications. J Control Release 2020; 327:801-833. [PMID: 32926886 DOI: 10.1016/j.jconrel.2020.09.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/05/2020] [Indexed: 12/18/2022]
|