1
|
Hu Y, Wen T, Tuo B. The role of ICG NIRL fluorescence imaging in the surgical treatment of digestive system tumors (Review). Mol Med Rep 2025; 32:181. [PMID: 40280113 PMCID: PMC12059463 DOI: 10.3892/mmr.2025.13546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
Indocyanine green (ICG) is a relatively non‑toxic fluorescent dye with a history of safe use, which has fueled the development of new applications for ICG. Research on the use of ICG near‑infrared light (NIRL) fluorescence imaging during oncologic surgery has increased, revealing its role in tumor identification and localization, lymph node navigational resection and blood perfusion assessment. The purpose of the present review was to provide a comprehensive overview of advances in the clinical application of ICG NIRL fluorescence imaging during gastrointestinal tumor surgery. The present review discusses the techniques, outcomes, limitations and key considerations necessary for clinical practice, aiming to provide a valuable resource for professionals in the field.
Collapse
Affiliation(s)
- Yanxia Hu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Tingyuan Wen
- Department of Obstetrics and Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
2
|
Dell’Anna G, Mandarino F, Centanni L, Lodola I, Fanizza J, Fasulo E, Bencardino S, Fuccio L, Facciorusso A, Donatelli G, Parigi TL, Furfaro F, D’Amico F, Massironi S, Malesci A, Ungaro F, Danese S, Annese V. Transforming Gastrointestinal Diagnosis with Molecular Endoscopy: Challenges and Opportunities. Int J Mol Sci 2025; 26:4834. [PMID: 40429975 PMCID: PMC12112569 DOI: 10.3390/ijms26104834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 05/09/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025] Open
Abstract
Molecular endoscopy represents a transformative advance in the detection, diagnosis, and management of gastrointestinal diseases, addressing the critical limitations of conventional techniques. Current diagnostic standards, such as white light endoscopy (WLE), often fail to detect early-stage lesions, particularly in high-risk populations like Barrett's esophagus or inflammatory bowel disease patients. To overcome these challenges, molecular endoscopy, using fluorescent molecular probes, may offer ultimate precision by targeting disease-specific biomarkers. Technologies like Confocal Laser Endomicroscopy (CLE) and Immunoendoscopy are revolutionizing in vivo diagnostics, enabling the real-time visualization of tissue microarchitecture and physiological mechanisms. Fluorescence molecular endoscopy (FME) enhances the detection of precancerous and cancerous lesions, even those undetectable by conventional methods, by highlighting subtle molecular changes. Clinical applications include early tumor detection, therapy response monitoring, and improved lesion characterization. Despite these advancements, challenges persist, including high costs, a lack of standardization, and the need for specialized training. Recent innovations, such as a multi-parametric rigid standard, aim to ensure the reliable performance assessment and quality control of FME systems, addressing subjective variability and improving reproducibility. In addition, the integration of artificial intelligence (AI) with molecular endoscopy offers the potential to further reduce detection errors and significantly enhance diagnostic accuracy. This advancement underscores the potential of molecular endoscopy for personalized GI disease management, while highlighting the need for ongoing research to refine the technology, validate its clinical utility, and overcome the barriers to routine clinical application.
Collapse
Affiliation(s)
- Giuseppe Dell’Anna
- Gastroenterology and Gastrointestinal Endoscopy Division, IRCCS San Raffaele Institute, Via Olgettina 60, 20132 Milan, Italy; (G.D.); (F.M.); (L.C.); (I.L.); (J.F.); (E.F.); (S.B.); (T.L.P.); (F.F.); (F.D.); (S.M.); (A.M.); (F.U.); (S.D.)
- Gastroenterology and Gastrointestinal Endoscopy Division, IRCCS Policlinico San Donato, Piazza Edmondo Malan 2, 20097 San Donato Milanese, Italy
| | - Francesco Mandarino
- Gastroenterology and Gastrointestinal Endoscopy Division, IRCCS San Raffaele Institute, Via Olgettina 60, 20132 Milan, Italy; (G.D.); (F.M.); (L.C.); (I.L.); (J.F.); (E.F.); (S.B.); (T.L.P.); (F.F.); (F.D.); (S.M.); (A.M.); (F.U.); (S.D.)
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Via Olgettina 56, 20132 Milan, Italy
| | - Lucia Centanni
- Gastroenterology and Gastrointestinal Endoscopy Division, IRCCS San Raffaele Institute, Via Olgettina 60, 20132 Milan, Italy; (G.D.); (F.M.); (L.C.); (I.L.); (J.F.); (E.F.); (S.B.); (T.L.P.); (F.F.); (F.D.); (S.M.); (A.M.); (F.U.); (S.D.)
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Via Olgettina 56, 20132 Milan, Italy
| | - Ilaria Lodola
- Gastroenterology and Gastrointestinal Endoscopy Division, IRCCS San Raffaele Institute, Via Olgettina 60, 20132 Milan, Italy; (G.D.); (F.M.); (L.C.); (I.L.); (J.F.); (E.F.); (S.B.); (T.L.P.); (F.F.); (F.D.); (S.M.); (A.M.); (F.U.); (S.D.)
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Via Olgettina 56, 20132 Milan, Italy
| | - Jacopo Fanizza
- Gastroenterology and Gastrointestinal Endoscopy Division, IRCCS San Raffaele Institute, Via Olgettina 60, 20132 Milan, Italy; (G.D.); (F.M.); (L.C.); (I.L.); (J.F.); (E.F.); (S.B.); (T.L.P.); (F.F.); (F.D.); (S.M.); (A.M.); (F.U.); (S.D.)
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Via Olgettina 56, 20132 Milan, Italy
| | - Ernesto Fasulo
- Gastroenterology and Gastrointestinal Endoscopy Division, IRCCS San Raffaele Institute, Via Olgettina 60, 20132 Milan, Italy; (G.D.); (F.M.); (L.C.); (I.L.); (J.F.); (E.F.); (S.B.); (T.L.P.); (F.F.); (F.D.); (S.M.); (A.M.); (F.U.); (S.D.)
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Via Olgettina 56, 20132 Milan, Italy
| | - Sarah Bencardino
- Gastroenterology and Gastrointestinal Endoscopy Division, IRCCS San Raffaele Institute, Via Olgettina 60, 20132 Milan, Italy; (G.D.); (F.M.); (L.C.); (I.L.); (J.F.); (E.F.); (S.B.); (T.L.P.); (F.F.); (F.D.); (S.M.); (A.M.); (F.U.); (S.D.)
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Via Olgettina 56, 20132 Milan, Italy
| | - Lorenzo Fuccio
- Unit of Gastroenterology, Department of Medical and Surgical Sciences, S. Orsola-Malpighi University Hospital, University of Bologna, via Massarenti 9, 40138 Bologna, Italy;
| | - Antonio Facciorusso
- Faculty of Medicine and Surgery, University of Salento, Piazza Tancredi 7, 73100 Lecce, Italy;
| | - Gianfranco Donatelli
- Unité d’Endoscopie Interventionnelle, Hopital Privé des Peupliers, Ramsay Générale de Santé, 75013 Paris, France;
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy
| | - Tommaso Lorenzo Parigi
- Gastroenterology and Gastrointestinal Endoscopy Division, IRCCS San Raffaele Institute, Via Olgettina 60, 20132 Milan, Italy; (G.D.); (F.M.); (L.C.); (I.L.); (J.F.); (E.F.); (S.B.); (T.L.P.); (F.F.); (F.D.); (S.M.); (A.M.); (F.U.); (S.D.)
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Via Olgettina 56, 20132 Milan, Italy
| | - Federica Furfaro
- Gastroenterology and Gastrointestinal Endoscopy Division, IRCCS San Raffaele Institute, Via Olgettina 60, 20132 Milan, Italy; (G.D.); (F.M.); (L.C.); (I.L.); (J.F.); (E.F.); (S.B.); (T.L.P.); (F.F.); (F.D.); (S.M.); (A.M.); (F.U.); (S.D.)
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Via Olgettina 56, 20132 Milan, Italy
| | - Ferdinando D’Amico
- Gastroenterology and Gastrointestinal Endoscopy Division, IRCCS San Raffaele Institute, Via Olgettina 60, 20132 Milan, Italy; (G.D.); (F.M.); (L.C.); (I.L.); (J.F.); (E.F.); (S.B.); (T.L.P.); (F.F.); (F.D.); (S.M.); (A.M.); (F.U.); (S.D.)
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Via Olgettina 56, 20132 Milan, Italy
| | - Sara Massironi
- Gastroenterology and Gastrointestinal Endoscopy Division, IRCCS San Raffaele Institute, Via Olgettina 60, 20132 Milan, Italy; (G.D.); (F.M.); (L.C.); (I.L.); (J.F.); (E.F.); (S.B.); (T.L.P.); (F.F.); (F.D.); (S.M.); (A.M.); (F.U.); (S.D.)
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Via Olgettina 56, 20132 Milan, Italy
| | - Alberto Malesci
- Gastroenterology and Gastrointestinal Endoscopy Division, IRCCS San Raffaele Institute, Via Olgettina 60, 20132 Milan, Italy; (G.D.); (F.M.); (L.C.); (I.L.); (J.F.); (E.F.); (S.B.); (T.L.P.); (F.F.); (F.D.); (S.M.); (A.M.); (F.U.); (S.D.)
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Via Olgettina 56, 20132 Milan, Italy
| | - Federica Ungaro
- Gastroenterology and Gastrointestinal Endoscopy Division, IRCCS San Raffaele Institute, Via Olgettina 60, 20132 Milan, Italy; (G.D.); (F.M.); (L.C.); (I.L.); (J.F.); (E.F.); (S.B.); (T.L.P.); (F.F.); (F.D.); (S.M.); (A.M.); (F.U.); (S.D.)
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Via Olgettina 56, 20132 Milan, Italy
| | - Silvio Danese
- Gastroenterology and Gastrointestinal Endoscopy Division, IRCCS San Raffaele Institute, Via Olgettina 60, 20132 Milan, Italy; (G.D.); (F.M.); (L.C.); (I.L.); (J.F.); (E.F.); (S.B.); (T.L.P.); (F.F.); (F.D.); (S.M.); (A.M.); (F.U.); (S.D.)
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Via Olgettina 56, 20132 Milan, Italy
| | - Vito Annese
- Gastroenterology and Gastrointestinal Endoscopy Division, IRCCS Policlinico San Donato, Piazza Edmondo Malan 2, 20097 San Donato Milanese, Italy
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Via Olgettina 56, 20132 Milan, Italy
| |
Collapse
|
3
|
Zweedijk BE, Dalmeijer SWR, van Manen L, Galema HA, Lauwerends LJ, Abbasi H, Kremer B, Verhoef C, Robinson DJ, Koppes SA, Vahrmeijer AL, van der Vorst JR, Hilling DE, Keereweer S. Molecular-Targeted Fluorescence Lymph Node Imaging Could Play a Clinical Role in the Surgical Setting: A Systematic Review. Cancers (Basel) 2025; 17:1352. [PMID: 40282528 PMCID: PMC12025374 DOI: 10.3390/cancers17081352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/08/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
The lymphatic system plays a crucial role in the spread of solid tumors and is often the first site of metastasis, as cancer cells typically invade nearby lymph nodes (LN) before potentially spreading to other LNs through the lymphatic system and distant organs through the bloodstream [...].
Collapse
Affiliation(s)
- Bo E. Zweedijk
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, University Hospital Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands (H.A.); (D.J.R.)
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (C.V.)
| | - Sebastiaan W. R. Dalmeijer
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, University Hospital Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands (H.A.); (D.J.R.)
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (C.V.)
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Labrinus van Manen
- Department of Otorhinolaryngology, Groene Hart Hospital, Bleulandweg 10, 2803 HG Gouda, The Netherlands
| | - Hidde A. Galema
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, University Hospital Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands (H.A.); (D.J.R.)
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (C.V.)
| | - Lorraine J. Lauwerends
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, University Hospital Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands (H.A.); (D.J.R.)
| | - Hamed Abbasi
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, University Hospital Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands (H.A.); (D.J.R.)
| | - Bernd Kremer
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, University Hospital Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands (H.A.); (D.J.R.)
| | - Cornelis Verhoef
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (C.V.)
| | - Dominic J. Robinson
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, University Hospital Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands (H.A.); (D.J.R.)
| | - Sjors A. Koppes
- Department of Pathology, Erasmus Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Alexander L. Vahrmeijer
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Joost R. van der Vorst
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Denise E. Hilling
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (C.V.)
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Stijn Keereweer
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, University Hospital Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands (H.A.); (D.J.R.)
| |
Collapse
|
4
|
Teng X, Tang C, He K, Chen C, Tian J, Du Y. Novel GAL7-targeted fluorescent molecular imaging probe for high-grade squamous intraepithelial lesion and cervical cancer screening. EJNMMI Res 2025; 15:22. [PMID: 40082314 PMCID: PMC11906962 DOI: 10.1186/s13550-025-01218-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Early detection and treatment are critical for improving the survival and prognosis of patients with cervical cancer. However, there is a notable scarcity of targeted imaging probes specifically designed to detect high-grade squamous intraepithelial lesions (HSIL) and cervical cancer. Our study aimed to address this gap by identifying and validating a targeted imaging probe for these conditions. RESULTS Using bioinformatics data, we identified galectin-7 (GAL7) as highly expressed in patients with cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC). Immunohistochemical staining of biopsy samples from 30 HSIL and cervical cancer patients verified the high and specific expression of GAL7. Further validation was performed using mouse and human CESC cell lines and tumor xenografts, confirming the consistent expression of GAL7. Based on this finding, we synthesized a GAL7-specific antibody conjugated with FITC, creating the GAL7-FITC fluorescence imaging probe. Fluorescence molecular imaging revealed that GAL7-FITC exhibited specific binding to various CESC cell lines and xenograft mouse models. Additionally, the diagnostic capability of GAL7-FITC was demonstrated in fresh HSIL specimens from cervical cone excisions, validated through histopathology and immunohistochemical analysis. CONCLUSIONS Our study identified GAL7 as a specific target for CESC and successfully developed the GAL7-FITC fluorescence imaging probe. GAL7-FITC has shown promising potential for clinical application in the early detection of HSIL and CESC, providing rapid fluorescence imaging diagnosis without observable toxicity. This advancement may significantly enhance the accuracy and speed of cervical cancer diagnostics, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Xiaohui Teng
- Department of Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361000, China
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chu Tang
- Engineering Research Center of Molecular and Neuro Imaging, School of Life Science and Technology, Ministry of Education, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Kunshan He
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chunlin Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China.
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
- The Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology of China, Beijing, 100191, China.
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
- The University of Chinese Academy of Sciences, Beijing, 100080, China.
| |
Collapse
|
5
|
Darai A, de Gooyer JM, Ubels S, Bremers AJA, de Reuver PR, Aarntzen EHJG, Nagtegaal ID, Rijpkema M, de Wilt JHW. Multimodal carcinoembryonic antigen-targeted fluorescence and radio-guided cytoreductive surgery for peritoneal metastases of colorectal origin: single-arm confirmatory trial. BJS Open 2025; 9:zraf045. [PMID: 40270484 PMCID: PMC12018875 DOI: 10.1093/bjsopen/zraf045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Selection of suitable candidates for intraoperative tumour detection and cytoreductive surgery (CRS) combined with hyperthermic intraperitoneal chemotherapy (HIPEC) is important for improving outcomes for patients with colorectal peritoneal metastases. Previous research demonstrated the use of single-photon emission computed tomography (SPECT), intraoperative radiodetection, and near-infrared fluorescence (NIRF)-guided surgery with a dual-labelled 111In-labelled dodecane tetra-acetic acid (DOTA)-labetuzumab-IRDye800CW tracer to detect peritoneal metastases before operation. The aim of this study was to validate these results. METHODS A single-centre phase II study was conducted to evaluate the safety and feasibility of 111In-labelled DOTA-labetuzumab-IRDye800CW in patients with colorectal peritoneal metastases undergoing CRS-HIPEC. SPECT/computed tomography (CT) was undertaken before surgery, after intravenous administration of 10 mg 111In-labelled DOTA-labetuzumab-IRDye800CW (mean 101.25 MBq). During surgery, radiodetection and NIRF imaging were used for tumour detection. Adverse events were assessed, and tumour-to-background ratios (TBRs) and peritoneal cancer index scores were analysed. RESULTS Seven patients were included. No study-related severe adverse events were reported. Imaging before surgery revealed previously undetected metastases in one patient. The mean(standard deviation, s.d.) SPECT/CT peritoneal cancer index score was 3(2), and the intraoperative score was 14(7) (P = 0.032). A total of 52 lesions were removed during CRS, of which 37 were malignant. With NIRF imaging, 34 (92%) of 37 malignant lesions were detectable. Of 52 fluorescent lesions, 4 were false-positive. Mean(s.d.) fluorescence TBR was 3.4(1.8) and mean radiodetection TBR was 4.4(1.4). CONCLUSION This study confirmed the safety and feasibility of multimodal image-guided surgery in patients with peritoneal metastases.
Collapse
Affiliation(s)
- Aaya Darai
- Department of Surgery, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Jan Marie de Gooyer
- Department of Surgery, Radboud University Medical Centre, Nijmegen, the Netherlands
- Department of Medical Imaging and Nuclear Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Sander Ubels
- Department of Surgery, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Andreas J A Bremers
- Department of Surgery, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Philip R de Reuver
- Department of Surgery, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Erik H J G Aarntzen
- Department of Medical Imaging and Nuclear Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Iris D Nagtegaal
- Department of Pathology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Mark Rijpkema
- Department of Medical Imaging and Nuclear Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Johannes H W de Wilt
- Department of Surgery, Radboud University Medical Centre, Nijmegen, the Netherlands
| |
Collapse
|
6
|
Houvast RD, van Duijvenvoorde M, Thijse K, de Steur WO, de Geus-Oei LF, Crobach ASLP, Burggraaf J, Vahrmeijer AL, Kuppen PJK. Selecting Targets for Molecular Imaging of Gastric Cancer: An Immunohistochemical Evaluation. Mol Diagn Ther 2025; 29:213-227. [PMID: 39541080 PMCID: PMC11860997 DOI: 10.1007/s40291-024-00755-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Tumor-targeted positron emission tomography (PET) and fluorescence-guided surgery (FGS) could address current challenges in pre- and intraoperative imaging of gastric cancer. Adequate selection of molecular imaging targets remains crucial for successful tumor visualization. This study evaluated the potential of integrin αvβ6, carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5), epidermal growth factor receptor (EGFR), epithelial cell adhesion molecule (EpCAM) and human epidermal growth factor receptor-2 (HER2) for molecular imaging of primary gastric cancer, as well as lymph node and distant metastases. METHODS Expression of αvβ6, CEACAM5, EGFR, EpCAM and HER2 was determined using immunohistochemistry in human tissue specimens of primary gastric adenocarcinoma, healthy surrounding stomach, esophageal and duodenal tissue, tumor-positive and tumor-negative lymph nodes, and distant metastases, followed by quantification using the total immunostaining score (TIS). RESULTS Positive biomarker expression in primary gastric tumors was observed in 86% for αvβ6, 72% for CEACAM5, 77% for EGFR, 93% for EpCAM and 71% for HER2. Tumor expression of CEACAM5, EGFR and EpCAM was higher compared to healthy stomach tissue expression, while this was not the case for αvβ6 and HER2. Tumor-positive lymph nodes could be distinguished from tumor-negative lymph nodes, with accuracy ranging from 82 to 93% between biomarkers. CEACAM5, EGFR and EpCAM were abundantly expressed on distant metastases, with expression in 88-95% of tissue specimens. CONCLUSION Our findings show that CEACAM5, EGFR and EpCAM are promising targets for molecular imaging of primary gastric cancer, as well as visualization of both lymph node and distant metastases. Further clinical evaluation of PET and FGS tracers targeting these antigens is warranted.
Collapse
Affiliation(s)
- Ruben D Houvast
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands.
| | | | - Kira Thijse
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Wobbe O de Steur
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Lioe-Fee de Geus-Oei
- Department of Radiation Science & Technology, Delft University of Technology, Delft, The Netherlands
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Biomedical Photonic Imaging Group, University of Twente, Enschede, The Netherlands
| | - A Stijn L P Crobach
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacobus Burggraaf
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
- Centre for Human Drug Research, Leiden, The Netherlands
| | | | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
7
|
Martinelli S, Fortuna L, Coratti F, Passagnoli F, Amedei A, Cianchi F. Potential Probes for Targeted Intraoperative Fluorescence Imaging in Gastric Cancer. Cancers (Basel) 2024; 16:4141. [PMID: 39766041 PMCID: PMC11675003 DOI: 10.3390/cancers16244141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/29/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Gastric cancer (GC) is a malignant tumor of the gastrointestinal tract associated with high mortality rates and accounting for approximately 1 million new cases diagnosed annually. Surgery, particularly radical gastrectomy, remains the primary treatment; however, there are currently no specific approaches to better distinguish malignant from healthy tissue or to differentiate between metastatic and non-metastatic lymph nodes. As a result, surgeons have to remove all lymph nodes indiscriminately, increasing intraoperative risks for patients and prolonging hospital stay. Near-infrared fluorescence imaging with indocyanine green (ICG) can provide real-time visualization of the surgical field using both conventional laparoscopy and robotic mini-invasive precision surgery platforms. However, its application shows some limits, as ICG is a non-targeted contrast agent. Several studies are now investigating the potential efficacy of fluorescent targeted agents that could selectively bind to the tumor tissue, offering a valuable tool for metastatic mapping during robotic gastrectomy. This review aims to summarize the key fluorescent agents that have been developed to recognize GC markers, as well as those targeting the tumor microenvironment (TME) and metabolic features. These agents hold great potential as valuable tools for enhancing precision surgery in robotic gastrectomy procedures improving the clinical recovery of GC patients.
Collapse
Affiliation(s)
- Serena Martinelli
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; (L.F.); (F.C.); (F.P.); (A.A.); (F.C.)
| | - Laura Fortuna
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; (L.F.); (F.C.); (F.P.); (A.A.); (F.C.)
| | - Francesco Coratti
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; (L.F.); (F.C.); (F.P.); (A.A.); (F.C.)
| | - Federico Passagnoli
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; (L.F.); (F.C.); (F.P.); (A.A.); (F.C.)
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; (L.F.); (F.C.); (F.P.); (A.A.); (F.C.)
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 50134 Florence, Italy
| | - Fabio Cianchi
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; (L.F.); (F.C.); (F.P.); (A.A.); (F.C.)
| |
Collapse
|
8
|
Rosenblum LT, Sever RE, Gilbert R, Guerrero D, Vincze SR, Menendez DM, Birikorang PA, Rodgers MR, Jaswal AP, Vanover AC, Latoche JD, Cortez AG, Day KE, Foley LM, Sneiderman CT, Raphael I, Hitchens TK, Nedrow JR, Kohanbash G, Edwards WB, Malek MM. Dual-labeled anti-GD2 targeted probe for intraoperative molecular imaging of neuroblastoma. J Transl Med 2024; 22:940. [PMID: 39407274 PMCID: PMC11476241 DOI: 10.1186/s12967-024-05728-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Surgical resection is integral for the treatment of neuroblastoma, the most common extracranial solid malignancy in children. Safely locating and resecting primary tumor and remote deposits of disease remains a significant challenge, resulting in high rates of complications and incomplete surgery, worsening outcomes. Intraoperative molecular imaging (IMI) uses targeted radioactive or fluorescent tracers to identify and visualize tumors intraoperatively. GD2 was selected as an IMI target, as it is highly overexpressed in neuroblastoma and minimally expressed in normal tissue. METHODS GD2 expression in neuroblastoma cell lines was measured by flow cytometry. DTPA and IRDye® 800CW were conjugated to anti-GD2 antibody to generate DTPA-αGD2-IR800. Binding affinity (Kd) of the antibody and the non-radiolabeled tracer were then measured by ELISA assay. Human neuroblastoma SK-N-BE(2) cells were surgically injected into the left adrenal gland of 3.5-5-week-old nude mice and the orthotopic xenograft tumors grew for 5 weeks. 111In-αGD2-IR800 or isotype control tracer was administered via tail vein injection. After 4 and 6 days, mice were euthanized and gamma and fluorescence biodistributions were measured using a gamma counter and ImageJ analysis of acquired SPY-PHI fluorescence images of resected organs (including tumor, contralateral adrenal, kidneys, liver, muscle, blood, and others). Organ uptake was compared by one-way ANOVA (with a separate analysis for each tracer/day combination), and if significant, Sidak's multiple comparison test was used to compare the uptake of each organ to the tumor. Handheld tools were also used to detect and visualize tumor in situ, and to assess for residual disease following non-guided resection. RESULTS 111In-αGD2-IR800 was successfully synthesized with 0.75-2.0 DTPA and 2-3 IRDye® 800CW per antibody and retained adequate antigen-binding (Kd = 2.39 nM for aGD2 vs. 21.31 nM for DTPA-aGD2-IR800). The anti-GD2 tracer demonstrated antigen-specific uptake in mice with human neuroblastoma xenografts (gamma biodistribution tumor-to-blood ratios of 3.87 and 3.88 on days 4 and 6 with anti-GD2 tracer), while isotype control tracer did not accumulate (0.414 and 0.514 on days 4 and 6). Probe accumulation in xenografts was detected and visualized using widely available operative tools (Neoprobe® and SPY-PHI camera) and facilitated detection ofputative residual disease in the resection cavity following unguided resection. CONCLUSIONS We have developed a dual-labeled anti-GD2 antibody-based tracer that incorporates In-111 and IRDye® 800CW for radio- and fluorescence-guided surgery, respectively. The tracer adequately binds to GD2, specifically accumulates in GD2-expressing xenograft tumors, and enables tumor visualization with a hand-held NIR camera. These results encourage the development of 111In-αGD2-IR800 for future use in children with neuroblastoma, with the goal of improving patient safety, completeness of resection, and overall patient outcomes.
Collapse
Affiliation(s)
- Lauren Taylor Rosenblum
- Department of General Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - ReidAnn E Sever
- Department of Neurological Surgery, Children's Hospital of Pittsburgh of UPMC, 7131 Rangos Research Building, 530 45th Street, Pittsburgh, PA, 15201, USA
| | - Ryan Gilbert
- University of Pittsburgh School of Medicine, 3550 Terrace Street, Pittsburgh, PA, 15213, USA
| | - David Guerrero
- University of Pittsburgh School of Medicine, 3550 Terrace Street, Pittsburgh, PA, 15213, USA
| | - Sarah R Vincze
- Department of Neurological Surgery, Children's Hospital of Pittsburgh of UPMC, 7131 Rangos Research Building, 530 45th Street, Pittsburgh, PA, 15201, USA
| | - Dominic M Menendez
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO, 65211, USA
| | - Peggy A Birikorang
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO, 65211, USA
| | - Mikayla R Rodgers
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO, 65211, USA
| | - Ambika Parmar Jaswal
- Department of Neurological Surgery, Children's Hospital of Pittsburgh of UPMC, 7131 Rangos Research Building, 530 45th Street, Pittsburgh, PA, 15201, USA
| | - Alexander C Vanover
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO, 65211, USA
| | - Joseph D Latoche
- In Vivo Imaging Facility Core, Hillman Cancer Center, University of Pittsburgh Medical Center, 5115 Centre Avenue, Pittsburgh, PA, 15232, USA
| | - Angel G Cortez
- In Vivo Imaging Facility Core, Hillman Cancer Center, University of Pittsburgh Medical Center, 5115 Centre Avenue, Pittsburgh, PA, 15232, USA
| | - Kathryn E Day
- In Vivo Imaging Facility Core, Hillman Cancer Center, University of Pittsburgh Medical Center, 5115 Centre Avenue, Pittsburgh, PA, 15232, USA
| | - Lesley M Foley
- In Vivo Imaging Facility Core, Hillman Cancer Center, University of Pittsburgh Medical Center, 5115 Centre Avenue, Pittsburgh, PA, 15232, USA
| | - Chaim T Sneiderman
- Department of Neurological Surgery, Children's Hospital of Pittsburgh of UPMC, 7131 Rangos Research Building, 530 45th Street, Pittsburgh, PA, 15201, USA
| | - Itay Raphael
- Department of Neurological Surgery, Children's Hospital of Pittsburgh of UPMC, 7131 Rangos Research Building, 530 45th Street, Pittsburgh, PA, 15201, USA
| | - T Kevin Hitchens
- In Vivo Imaging Facility Core, Hillman Cancer Center, University of Pittsburgh Medical Center, 5115 Centre Avenue, Pittsburgh, PA, 15232, USA
| | - Jessie R Nedrow
- In Vivo Imaging Facility Core, Hillman Cancer Center, University of Pittsburgh Medical Center, 5115 Centre Avenue, Pittsburgh, PA, 15232, USA
| | - Gary Kohanbash
- Department of Neurological Surgery, Children's Hospital of Pittsburgh of UPMC, 7131 Rangos Research Building, 530 45th Street, Pittsburgh, PA, 15201, USA.
- Department of Immunology, University of Pittsburgh Medical Center, 200 Lothrop Street, Pittsburgh, PA, 15213, USA.
| | - W Barry Edwards
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO, 65211, USA
| | - Marcus M Malek
- Department of General Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15213, USA.
- Department of Pediatric General Surgery, University of Pittsburgh Medical Center, One Children's Hospital Drive, 4401 Penn Ave., Faculty Pavilion 7th Floor, Pittsburgh, PA, 15224, USA.
| |
Collapse
|
9
|
Shao H, Lv K, Wang P, Jin J, Cai Y, Chen J, Kamara S, Zhu S, Zhu G, Zhang L. Novel anti-CEA affibody for rapid tumor-targeting and molecular imaging diagnosis in mice bearing gastrointestinal cancer cell lines. Front Microbiol 2024; 15:1464088. [PMID: 39444679 PMCID: PMC11496145 DOI: 10.3389/fmicb.2024.1464088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/12/2024] [Indexed: 10/25/2024] Open
Abstract
Gastrointestinal cancer is a common malignant tumor with a high incidence worldwide. Despite continuous improvements in diagnosis and treatment strategies, the overall prognosis of gastrointestinal tumors remains poor. Carcinoembryonic antigen (CEA) is highly expressed in various types of cancers, especially in gastrointestinal cancers, making it a potential target for therapeutic intervention. Therefore, the expression of CEA can be used as an indication of the existence of tumors, chosen as a target for molecular imaging diagnosis, and effectively utilized in the targeted therapy of gastrointestinal cancers. In this study, we report the selection and characterization of affibody molecules (ZCEA539, ZCEA546, and ZCEA919) specific to the CEA protein. Their ability to bind to recombinant and native CEA protein has been confirmed by surface plasmon resonance (SPR), immunofluorescence, and immunohistochemistry assays. Furthermore, Dylight755-labeled ZCEA affibody showed accumulation within the tumor site 1 h post injection and was continuously enhanced for 4 h. The Dylight755-labeled ZCEA affibody exhibited high tumor-targeting specificity in CEA+ xenograft-bearing mice and possesses promising characteristics for tumor-targeting imaging. Overall, our results suggest the potential use of ZCEA affibodies as fluorescent molecular imaging probes for detecting CEA expression in gastrointestinal cancer.
Collapse
Affiliation(s)
- Huanyi Shao
- Department of Pediatric Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Kaiji Lv
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Pengfei Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jinji Jin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiqi Cai
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jun Chen
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Saidu Kamara
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Shanli Zhu
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Guanbao Zhu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lifang Zhang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
10
|
Fadel MG, Zonoobi E, Rodríguez-Luna MR, Mishima K, Ris F, Diana M, Vahrmeijer AL, Perretta S, Ashrafian H, Fehervari M. Efficacy and Safety of Fluorescence-Guided Surgery Compared to Conventional Surgery in the Management of Colorectal Cancer: A Systematic Review and Meta-Analysis. Cancers (Basel) 2024; 16:3377. [PMID: 39409997 PMCID: PMC11476237 DOI: 10.3390/cancers16193377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/09/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND The use of fluorescence agents and imaging systems is a promising adjunct in the surgical management of colorectal cancer. This systematic review and meta-analysis aimed to assess the safety and efficacy of fluorescence-guided surgery in the management of colorectal cancer, with a comparison to conventional (non-fluorescence-guided) surgery. METHODS A literature search of MEDLINE, Embase, Emcare, and CINAHL databases was performed for studies that reported data on the outcomes of fluorescence-guided surgery, with or without a comparison group undergoing conventional surgery, for colorectal cancer between January 2000 and January 2024. A meta-analysis was performed using random-effect models, and between-study heterogeneity was assessed. RESULTS 35 studies of 3217 patients with colorectal cancer were included: 26 studies (964 patients) reported on fluorescence-guided surgery and 9 studies (2253 patients) reported on fluorescence versus conventional surgery. The weighted mean of the cancer detection rate of fluorescence-guided surgery was 71% (95% CI 0.55-0.85), with no significant difference in lymph node yield ratio (WMD -0.04; 95% CI -0.10-0.02; p = 0.201) between fluorescence and conventional surgery groups. There was a significantly lower blood loss (WMD -4.38; 95% CI -7.05--1.70; p = 0.001) and complication rate (WMD -0.04; 95% CI -0.07-0.00; p = 0.027) in the fluorescence-guided surgery group, with a potentially lower anastomotic leak rate (WMD -0.05; 95% CI -0.10-0.01; p = 0.092). CONCLUSIONS Fluorescence-guided surgery is a safe and effective approach in the management of colorectal cancer, potentially reducing blood loss and complications. Further randomised controlled trials are required comparing fluorescence-guided surgery with conventional surgery to determine its prognostic benefit and where it should precisely fit within the management pathway of colorectal cancer.
Collapse
Affiliation(s)
- Michael G. Fadel
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
- Department of General Surgery, Chelsea and Westminster Hospital, London SW10 9NH, UK
| | - Elham Zonoobi
- Edinburgh Molecular Imaging Limited, Nine Edinburgh Bioquarter, Edinburgh EH16 4UX, UK
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | | | - Kohei Mishima
- Research Institute Against Digestive Cancer (IRCAD), 67000 Strasbourg, France
| | - Frédéric Ris
- Department of Surgery, University Hospital of Geneva, 1205 Geneva, Switzerland
- Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Michele Diana
- Department of Surgery, University Hospital of Geneva, 1205 Geneva, Switzerland
- Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- ICube Laboratory, Photonics Instrumentation for Health, 67034 Strasbourg, France
| | | | - Silvana Perretta
- Research Institute Against Digestive Cancer (IRCAD), 67000 Strasbourg, France
- IHU-Strasbourg, Institute of Image-Guided Surgery, 67000 Strasbourg, France
- Department of Digestive and Endocrine Surgery, University of Strasbourg, 67081 Strasbourg, France
| | - Hutan Ashrafian
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
| | - Matyas Fehervari
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
- Department of Gastrointestinal Surgery, Maidstone and Tunbridge Wells NHS Trust, Tunbridge Wells TN2 4QJ, UK
| |
Collapse
|
11
|
Lee KH, Cox KE, Amirfakhri S, Jaiswal S, Liu S, Hosseini M, Lwin TM, Yazaki PJ, Hoffman RM, Bouvet M. Accurate Co-Localization of Luciferase Expression and Fluorescent Anti-CEA Antibody Targeting of Liver Metastases in an Orthotopic Mouse Model of Colon Cancer. Cancers (Basel) 2024; 16:3341. [PMID: 39409961 PMCID: PMC11475688 DOI: 10.3390/cancers16193341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND The present study aimed to validate the accuracy of a tumor-specific antibody to target liver metastases of colorectal cancer. METHODS A humanized anti-CEA antibody conjugated to a fluorescent dye (M5A-IR800) was tested for targeting human colorectal cancer liver metastases (CRLMs) expressing luciferase in an orthotopic mouse model. Orthotopic mouse models of CRLMs were established by implanting fragments of a luciferase-expressing human colorectal cancer cell line, LS174T, in the liver of nude mice. Mice received 50 µg M5A-IR800 72 h prior to imaging. To test co-localization, bioluminescence imaging was performed using D-luciferin, which was given via intraperitoneal injection just prior to imaging. RESULTS Tumors were able to be visualized non-invasively through the skin with the luciferase-luciferin signal. Intra-abdominal imaging showed accurate labeling of CRLMs with M5A-IR800, which co-localized with the luciferase-luciferin signal. CONCLUSIONS The present results validate the accuracy of a tumor-specific anti-CEA antibody in targeting liver metastases of colorectal cancer.
Collapse
Affiliation(s)
- Kyung-Ha Lee
- Department of Surgery, University of California San Diego, La Jolla, CA 92037, USA; (K.-H.L.); (R.M.H.)
- VA San Diego Healthcare System, La Jolla, CA 92161, USA
- Department of Colorectal Surgery, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Kristin E. Cox
- Department of Surgery, University of California San Diego, La Jolla, CA 92037, USA; (K.-H.L.); (R.M.H.)
- VA San Diego Healthcare System, La Jolla, CA 92161, USA
| | - Siamak Amirfakhri
- Department of Surgery, University of California San Diego, La Jolla, CA 92037, USA; (K.-H.L.); (R.M.H.)
- VA San Diego Healthcare System, La Jolla, CA 92161, USA
| | - Sunidhi Jaiswal
- Department of Surgery, University of California San Diego, La Jolla, CA 92037, USA; (K.-H.L.); (R.M.H.)
- VA San Diego Healthcare System, La Jolla, CA 92161, USA
| | - Shanglei Liu
- Department of Surgery, University of California San Diego, La Jolla, CA 92037, USA; (K.-H.L.); (R.M.H.)
- VA San Diego Healthcare System, La Jolla, CA 92161, USA
| | - Mojgan Hosseini
- Department of Pathology, University of California San Diego, La Jolla, CA 92037, USA
| | - Thinzar M. Lwin
- Department of Surgical Oncology, City of Hope, Duarte, CA 91010, USA
| | - Paul J. Yazaki
- Department of Immunology and Theranostics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Robert M. Hoffman
- Department of Surgery, University of California San Diego, La Jolla, CA 92037, USA; (K.-H.L.); (R.M.H.)
- VA San Diego Healthcare System, La Jolla, CA 92161, USA
- AntiCancer Inc., San Diego, CA 92111, USA
| | - Michael Bouvet
- Department of Surgery, University of California San Diego, La Jolla, CA 92037, USA; (K.-H.L.); (R.M.H.)
- VA San Diego Healthcare System, La Jolla, CA 92161, USA
| |
Collapse
|
12
|
Zeng F, Li C, Wang H, Wang Y, Ren T, He F, Jiang J, Xu J, Wang B, Wu Y, Yu Y, Hu Z, Tian J, Wang S, Tang X. Intraoperative Resection Guidance and Rapid Pathological Diagnosis of Osteosarcoma using B7H3 Targeted Probe under NIR-II Fluorescence Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310167. [PMID: 38502871 PMCID: PMC11434027 DOI: 10.1002/advs.202310167] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/31/2024] [Indexed: 03/21/2024]
Abstract
Complete removal of all tumor tissue with a wide surgical margin is essential for the treatment of osteosarcoma (OS). However, it's difficult, sometimes impossible, to achieve due to the invisible small satellite lesions and blurry tumor boundaries. Besides, intraoperative frozen-section analysis of resection margins of OS is often restricted by the hard tissues around OS, which makes it impossible to know whether a negative margin is achieved. Any unresected small tumor residuals will lead to local recurrence and worse prognosis. Herein, based on the high expression of B7H3 in OS, a targeted probe B7H3-IRDye800CW is synthesized by conjugating anti-B7H3 antibody and IRDye800CW. B7H3-IRDye800CW can accurately label OS areas after intravenous administration, thereby helping surgeons identify and resect residual OS lesions (<2 mm) and lung metastatic lesions. The tumor-background ratio reaches 4.42 ± 1.77 at day 3. After incubating fresh human OS specimen with B7H3-IRDye800CW, it can specifically label the OS area and even the microinvasion area (confirmed by hematoxylin-eosin [HE] staining). The probe labeled area is consistent with the tumor area shown by magnetic resonance imaging and complete HE staining of the specimen. In summary, B7H3-IRDye800CW has translational potential in intraoperative resection guidance and rapid pathological diagnosis of OS.
Collapse
Affiliation(s)
- Fanwei Zeng
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Changjian Li
- School of Engineering Medicine & Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, 100191, China
| | - Han Wang
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Yueqi Wang
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tingting Ren
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Fangzhou He
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Jie Jiang
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Jiuhui Xu
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Boyang Wang
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Yifan Wu
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Yiyang Yu
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Zhenhua Hu
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jie Tian
- School of Engineering Medicine & Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, 100191, China
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shidong Wang
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Xiaodong Tang
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| |
Collapse
|
13
|
Vulasala SS, Sutphin P, Shyn P, Kalva S. Intraoperative Imaging Techniques in Oncology. Clin Oncol (R Coll Radiol) 2024; 36:e255-e268. [PMID: 38242817 DOI: 10.1016/j.clon.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/05/2024] [Indexed: 01/21/2024]
Abstract
Imaging-based procedures have become well integrated into the diagnosis and management of oncological patients and play a significant role in reducing morbidity and mortality rates. Here we describe the established and upcoming surgical oncological imaging techniques and their impact on cancer management.
Collapse
Affiliation(s)
- S S Vulasala
- Department of Radiology, University of Florida College of Medicine, Jacksonville, Florida, USA.
| | - P Sutphin
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - P Shyn
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - S Kalva
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Meijer RPJ, Galema HA, Faber RA, Bijlstra OD, Maat APWM, Cailler F, Braun J, Keereweer S, Hilling DE, Burggraaf J, Vahrmeijer AL, Hutteman M. Intraoperative molecular imaging of colorectal lung metastases with SGM-101: a feasibility study. Eur J Nucl Med Mol Imaging 2024; 51:2970-2979. [PMID: 37552367 PMCID: PMC11300526 DOI: 10.1007/s00259-023-06365-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/24/2023] [Indexed: 08/09/2023]
Abstract
PURPOSE Metastasectomy is a common treatment option for patients with colorectal lung metastases (CLM). Challenges exist with margin assessment and identification of small nodules, especially during minimally invasive surgery. Intraoperative fluorescence imaging has the potential to overcome these challenges. The aim of this study was to assess feasibility of targeting CLM with the carcinoembryonic antigen (CEA) specific fluorescent tracer SGM-101. METHODS This was a prospective, open-label feasibility study. The primary outcome was the number of CLM that showed a true positive fluorescence signal with SGM-101. Fluorescence positive signal was defined as a signal-to-background ratio (SBR) ≥ 1.5. A secondary endpoint was the CEA expression in the colorectal lung metastases, assessed with the immunohistochemistry, and scored by the total immunostaining score. RESULTS Thirteen patients were included in this study. Positive fluorescence signal with in vivo, back table, and closed-field bread loaf imaging was observed in 31%, 45%, and 94% of the tumors respectively. Median SBRs for the three imaging modalities were 1.00 (IQR: 1.00-1.53), 1.45 (IQR: 1.00-1.89), and 4.81 (IQR: 2.70-7.41). All tumor lesions had a maximum total immunostaining score for CEA expression of 12/12. CONCLUSION This study demonstrated the potential of fluorescence imaging of CLM with SGM-101. CEA expression was observed in all tumors, and closed-field imaging showed excellent CEA specific targeting of the tracer to the tumor nodules. The full potential of SGM-101 for in vivo detection of the tracer can be achieved with improved minimal invasive imaging systems and optimal patient selection. TRIAL REGISTRATION The study was registered in ClinicalTrial.gov under identifier NCT04737213 at February 2021.
Collapse
Affiliation(s)
- Ruben P J Meijer
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
- Center for Human Drug Research, Zernikedreef 8, 2333 CL, Leiden, The Netherlands
| | - Hidde A Galema
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Robin A Faber
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Okker D Bijlstra
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Alexander P W M Maat
- Department of Cardiothoracic Surgery, Erasmus Medical Center, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Françoise Cailler
- Surgimab, 10 Parc Club du Millénaire, 1025 Avenue Henri Becquerel, 34000, Montpellier, France
| | - Jerry Braun
- Department of Cardiothoracic Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Stijn Keereweer
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Denise E Hilling
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Jacobus Burggraaf
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
- Center for Human Drug Research, Zernikedreef 8, 2333 CL, Leiden, The Netherlands
| | - Alexander L Vahrmeijer
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Merlijn Hutteman
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
- Department of Cardiothoracic Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
- Department of Surgery, Radboud University Medical Center, Geert Grooteplein Zuid 10, GA, 6525, Nijmegen, The Netherlands.
| |
Collapse
|
15
|
Tappero S, Fallara G, Chierigo F, Micalef A, Ambrosini F, Diaz R, Dorotei A, Pompeo E, Limena A, Bravi CA, Longoni M, Piccinelli ML, Barletta F, Albano L, Mazzone E, Dell'Oglio P. Intraoperative image-guidance during robotic surgery: is there clinical evidence of enhanced patient outcomes? Eur J Nucl Med Mol Imaging 2024; 51:3061-3078. [PMID: 38607386 DOI: 10.1007/s00259-024-06706-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND To date, the benefit of image guidance during robot-assisted surgery (IGS) is an object of debate. The current study aims to address the quality of the contemporary body of literature concerning IGS in robotic surgery throughout different surgical specialties. METHODS A systematic review of all English-language articles on IGS, from January 2013 to March 2023, was conducted using PubMed, Cochrane library's Central, EMBASE, MEDLINE, and Scopus databases. Comparative studies that tested performance of IGS vs control were included for the quantitative synthesis, which addressed outcomes analyzed in at least three studies: operative time, length of stay, blood loss, surgical margins, complications, number of nodal retrievals, metastatic nodes, ischemia time, and renal function loss. Bias-corrected ratio of means (ROM) and bias-corrected odds ratio (OR) compared continuous and dichotomous variables, respectively. Subgroup analyses according to guidance type (i.e., 3D virtual reality vs ultrasound vs near-infrared fluoresce) were performed. RESULTS Twenty-nine studies, based on 11 surgical procedures of three specialties (general surgery, gynecology, urology), were included in the quantitative synthesis. IGS was associated with 12% reduction in length of stay (ROM 0.88; p = 0.03) and 13% reduction in blood loss (ROM 0.87; p = 0.03) but did not affect operative time (ROM 1.00; p = 0.9), or complications (OR 0.93; p = 0.4). IGS was associated with an estimated 44% increase in mean number of removed nodes (ROM 1.44; p < 0.001), and a significantly higher rate of metastatic nodal disease (OR 1.82; p < 0.001), as well as a significantly lower rate of positive surgical margins (OR 0.62; p < 0.001). In nephron sparing surgery, IGS significantly decreased renal function loss (ROM 0.37; p = 0.002). CONCLUSIONS Robot-assisted surgery benefits from image guidance, especially in terms of pathologic outcomes, namely higher detection of metastatic nodes and lower surgical margins. Moreover, IGS enhances renal function preservation and lowers surgical blood loss.
Collapse
Affiliation(s)
- Stefano Tappero
- Department of Urology, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Giuseppe Fallara
- Department of Urology, European Institute of Oncology (IEO), University of Milan, Milan, Italy
| | - Francesco Chierigo
- Department of Urology, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Urology, Azienda Ospedaliera Nazionale SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
- Department of Urology, IRCCS Ospedale Policlinico San Martino, University of Genova, Genoa, Italy
- Department of Surgical and Diagnostic Integrated Sciences (DISC), University of Genova, Genoa, Italy
| | - Andrea Micalef
- Department of General Surgery, Luigi Sacco University Hospital, Milan, Italy
- Università Degli Studi Di Milano, Milan, Italy
| | - Francesca Ambrosini
- Department of Urology, IRCCS Ospedale Policlinico San Martino, University of Genova, Genoa, Italy
- Department of Surgical and Diagnostic Integrated Sciences (DISC), University of Genova, Genoa, Italy
| | - Raquel Diaz
- Department of Surgical and Diagnostic Integrated Sciences (DISC), University of Genova, Genoa, Italy
| | - Andrea Dorotei
- Department of Orthopaedics, Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Edoardo Pompeo
- Neurosurgery and Gamma Knife Radiosurgery Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Alessia Limena
- Infertility Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Carlo Andrea Bravi
- Department of Urology, Northampton General Hospital, Northampton, UK
- Department of Urology, Royal Marsden Foundation Trust, London, UK
| | - Mattia Longoni
- Unit of Urology/Division of Oncology, Gianfranco Soldera Prostate Cancer Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Mattia Luca Piccinelli
- Department of Urology, European Institute of Oncology (IEO), University of Milan, Milan, Italy
| | - Francesco Barletta
- Unit of Urology/Division of Oncology, Gianfranco Soldera Prostate Cancer Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Luigi Albano
- Neurosurgery and Gamma Knife Radiosurgery Unit, IRCCS Ospedale San Raffaele, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Elio Mazzone
- Unit of Urology/Division of Oncology, Gianfranco Soldera Prostate Cancer Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Paolo Dell'Oglio
- Department of Urology, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy.
- Department of Urology, Netherlands Cancer Institute-Antoni Van Leeuwenhoek Hospital, Amsterdam, The Netherlands.
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
16
|
Li D, Hu Y, Kang M, Fang C, Gan Y, Yang X, Peng F, Li B, Wu J, Su S. A bibliometric analysis of indocyanine green (ICG) in hepatobiliary surgery from 2008 to 2021. Heliyon 2024; 10:e31989. [PMID: 38952371 PMCID: PMC11215208 DOI: 10.1016/j.heliyon.2024.e31989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/16/2024] [Accepted: 05/27/2024] [Indexed: 07/03/2024] Open
Abstract
Hundreds of scientific documents have reported on the application of indocyanine green (ICG) in hepatobiliary surgery in the past 13 years, but few bibliometric studies have been conducted. This study aimed to identify the situations of authors, countries/regions, institutions, journals, and hot topics in this field. The overall status and prospects of the current research in this field can be elucidated by bibliometric analysis. Publications from 2008 to 2021 were retrieved from the Web of Science (WoS) Core Collection. The search terms included "liver," "hepatic," "gallbladder," "bile duct," "surgery," "hepatectomy," "ICG," "indocyanine green," and related synonyms. The full records of the search results were exported in text, and the cooperation network and hot topics were evaluated and visualized using CiteSpace software. The number of publications increased between 2008 and 2021. A total of 1527 publications were included in the results, and the frequency of citations was 30,742. The largest proportion of the publications emanated from Japan, and the majority of the papers were published by Kokudo. Tian Jie contributed the largest number of papers in China. Research was relatively concentrated among one country/region. The latest hotspots, "preservation" and "resistance", frequently occurred. Cooperation between authors, countries, and institutions needs to be strengthened for high-quality research. Recent studies have focused on hepatectomy, bile duct resection, liver transplantation, and tumors in this field. Future research may focus on other aspects, such as liver preservation and resistance.
Collapse
Affiliation(s)
- Donglun Li
- Department of Nephrology, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Yue Hu
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou City, China
| | - Maoji Kang
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou City, China
| | - Cheng Fang
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou City, China
| | - Yu Gan
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou City, China
| | - Xiaoli Yang
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou City, China
| | - Fangyi Peng
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou City, China
| | - Bo Li
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou City, China
| | - Jiali Wu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou City, China
| | - Song Su
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou City, China
| |
Collapse
|
17
|
Ding Y, Zhou R, Shi G, Jiang Y, Li Z, Xu X, Ma J, Huang J, Fu C, Zhou H, Wang H, Li J, Dong Z, Yu Q, Jiang K, An Y, Liu Y, Li Y, Yu L, Li Z, Zhang X, Wang J. Cadherin 17 Nanobody-Mediated Near-Infrared-II Fluorescence Imaging-Guided Surgery and Immunotoxin Delivery for Colorectal Cancer. Biomater Res 2024; 28:0041. [PMID: 38911825 PMCID: PMC11192146 DOI: 10.34133/bmr.0041] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/08/2024] [Indexed: 06/25/2024] Open
Abstract
Surgery and targeted therapy are of equal importance for colorectal cancer (CRC) treatment. However, complete CRC tumor resection remains challenging, and new targeted agents are also needed for efficient CRC treatment. Cadherin 17 (CDH17) is a membrane protein that is highly expressed in CRC and, therefore, is an ideal target for imaging-guided surgery and therapeutics. This study utilizes CDH17 nanobody (E8-Nb) with the near-infrared (NIR) fluorescent dye IRDye800CW to construct a NIR-II fluorescent probe, E8-Nb-IR800CW, and a Pseudomonas exotoxin (PE)-based immunotoxin, E8-Nb-PE38, to evaluate their performance for CRC imaging, imaging-guided precise tumor excision, and antitumor effects. Our results show that E8-Nb-IR800CW efficiently recognizes CDH17 in CRC cells and tumor tissues, produces high-quality NIR-II images for CRC tumors, and enables precise tumor removal guided by NIR-II imaging. Additionally, fluorescent imaging confirms the targeting ability and specificity of the immunotoxin toward CDH17-positive tumors, providing the direct visible evidence for immunotoxin therapy. E8-Nb-PE38 immunotoxin markedly delays the growth of CRC through the induction of apoptosis and immunogenic cell death (ICD) in multiple CRC tumor models. Furthermore, E8-Nb-PE38 combined with 5-FU exerts synergistically antitumor effects and extends survival. This study highlights CDH17 as a promising target for CRC imaging, imaging-guided surgery, and drug delivery. Nanobodies targeting CDH17 hold great potential to construct NIR-II fluorescent probes for surgery navigation, and PE-based toxins fused with CDH17 nanobodies represent a novel therapeutic strategy for CRC treatment. Further investigation is warranted to validate these findings for potential clinical translation.
Collapse
Affiliation(s)
- Youbin Ding
- Department of Medical Imaging, The Third Affiliated Hospital,
Southern Medical University (Academy of Orthopedics Guangdong Province), Guangzhou 510515, P. R. China
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
| | - Runhua Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, P. R. China
- Department of Pharmacy, Nanfang Hospital,
Southern Medical University, Guangzhou 510515, P. R. China
| | - Guangwei Shi
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
- Department of Neurosurgery and Medical Research Center, Shunde Hospital,
Southern Medical University (The First People’s Hospital of Shunde Foshan), Guangzhou 510515, P. R. China
| | - Yuke Jiang
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
| | - Zhifen Li
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Pingcheng District, Datong, Shanxi Province 037009, P. R. China
| | - Xiaolong Xu
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
| | - Jingbo Ma
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
| | - Jingnan Huang
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
| | - Chunjin Fu
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
| | - Hongchao Zhou
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
| | - Huifang Wang
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
| | - Jiexuan Li
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
| | - Zhiyu Dong
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
| | - Qingling Yu
- Department of Medical Imaging, The Third Affiliated Hospital,
Southern Medical University (Academy of Orthopedics Guangdong Province), Guangzhou 510515, P. R. China
| | - Kexin Jiang
- Department of Medical Imaging, The Third Affiliated Hospital,
Southern Medical University (Academy of Orthopedics Guangdong Province), Guangzhou 510515, P. R. China
| | - Yehai An
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, P. R. China
| | - Yawei Liu
- Department of Neurosurgery and Medical Research Center, Shunde Hospital,
Southern Medical University (The First People’s Hospital of Shunde Foshan), Guangzhou 510515, P. R. China
| | - Yilei Li
- Department of Pharmacy, Nanfang Hospital,
Southern Medical University, Guangzhou 510515, P. R. China
| | - Le Yu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, P. R. China
| | - Zhijie Li
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
| | - Xiaodong Zhang
- Department of Medical Imaging, The Third Affiliated Hospital,
Southern Medical University (Academy of Orthopedics Guangdong Province), Guangzhou 510515, P. R. China
| | - Jigang Wang
- Department of Medical Imaging, The Third Affiliated Hospital,
Southern Medical University (Academy of Orthopedics Guangdong Province), Guangzhou 510515, P. R. China
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, P. R. China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
- State Key Laboratory of Antiviral Drugs, School of Pharmacy,
Henan University, Kaifeng 475004, Henan, P. R. China
- Department of Oncology,
the Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, P. R. China
| |
Collapse
|
18
|
Chen S, Li G, Pan R, Zhou K, Wen W, Tao J, Wang F, Han RPS, Pan H, Tu Y. Novel Near-Infrared Fluorescent Probe for Hepatocyte Growth Factor in Vivo Imaging in Surgical Navigation of Colorectal Cancer. Anal Chem 2024; 96:9016-9025. [PMID: 38780636 DOI: 10.1021/acs.analchem.4c00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Despite recent advancements in colorectal cancer (CRC) treatment, the prognosis remains unfavorable primarily due to high recurrence and liver metastasis rates. Fluorescence molecular imaging technologies, combined with specific probes, have gained prominence in facilitating real-time tumor resection guided by fluorescence. Hepatocyte growth factor (HGF) is overexpressed in CRC, but the advancement of HGF fluorescent probes has been impeded by the absence of effective HGF-targeting small-molecular ligands. Herein, we present the targeted capabilities of the novel V-1-GGGK-MPA probe labeled with a near-infrared fluorescent dye, which targets HGF in CRC. The V-1-GGGK peptide exhibits high specificity and selectivity for HGF-positive in vitro tumor cells and in vivo tumors. Biodistribution analysis of V-1-GGGK-MPA revealed tumor-specific accumulation with low background uptake, yielding signal-to-noise ratio (SNR) values of tumor-to-colorectal >6 in multiple subcutaneous CRC models 12 h postinjection. Quantitative analysis confirmed the probe's high uptake in SW480 and HT29 orthotopic and liver metastatic models, with SNR values of tumor-to-colorectal and -liver being 5.6 ± 0.4, 4.6 ± 0.5, and 2.1 ± 0.3, 2.0 ± 0.5, respectively, enabling precise tumor visualization for surgical navigation. Pathological analysis demonstrated the excellent tumor boundaries discrimination capacity of the V-1-GGGK-MPA probe at the molecular level. With its rapid tumor targeting, sustained tumor retention, and precise tumor boundary delineation, V-1-GGGK-MPA merges as a promising HGF imaging agent, enriching the toolbox of intraoperative navigational fluorescent probes for CRC.
Collapse
Affiliation(s)
- Shuying Chen
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Gang Li
- Department of Ecology and Environment, Yuzhang Normal University, Nanchang 330103, China
| | - Rongbin Pan
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Kuncheng Zhou
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Weijie Wen
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Ji Tao
- Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Fang Wang
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Ray P S Han
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Huaping Pan
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yuanbiao Tu
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
19
|
Zhou K, Li G, Pan R, Xin S, Wen W, Wang H, Luo C, Han RPS, Gu Y, Tu Y. Preclinical evaluation of AGTR1-Targeting molecular probe for colorectal cancer imaging in orthotopic and liver metastasis mouse models. Eur J Med Chem 2024; 271:116452. [PMID: 38685142 DOI: 10.1016/j.ejmech.2024.116452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Despite advancements in colorectal cancer (CRC) treatment, the prognosis remains unfavorable for patients with distant liver metastasis. Fluorescence molecular imaging with specific probes is increasingly used to guide CRC surgical resection in real-time and treatment planning. Here, we demonstrate the targeted imaging capacity of an MPA-PEG4-N3-Ang II probe labeled with near-infrared (NIR) fluorescent dye targeting the angiotensin II (Ang II) type 1 receptor (AGTR1) that is significantly upregulated in CRC. MPA-PEG4-N3-Ang II was highly selective and specific to in vitro tumor cells and in vivo tumors in a mouse CRC xenograft model. The favorable ex vivo imaging and in vivo biodistribution of MPA-PEG4-N3-Ang II afforded tumor-specific accumulation with low background and >10 contrast tumor-to-colorectal values in multiple subcutaneous CRC models at 8 h following injection. Biodistribution analysis confirmed the probe's high uptake in HT29 and HCT116 orthotopic and liver metastatic models of CRC with signal-to-noise ratio (SNR) values of tumor-to-colorectal and -liver fluorescence of 5.8 ± 0.6, 5.3 ± 0.7, and 2.7 ± 0.5, 2.6 ± 0.5, respectively, enabling high-contrast intraoperative tumor visualization for surgical navigation. Given its rapid tumor targeting, precise tumor boundary delineation, durable tumor retention and docking study, MPA-PEG4-N3-Ang II is a promising high-contrast imaging agent for the clinical detection of CRC.
Collapse
Affiliation(s)
- Kuncheng Zhou
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Gang Li
- Department of Ecology and Environment, Yuzhang Normal University, Nanchang, 330103, China
| | - Rongbin Pan
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Sulin Xin
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Weijie Wen
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Huiyi Wang
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Chao Luo
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Ray P S Han
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Yueqing Gu
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China.
| | - Yuanbiao Tu
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| |
Collapse
|
20
|
Rijsemus CJV, Kok NFM, Aalbers AGJ, Grotenhuis BA, Berardi E, Snaebjornsson P, Lambregts DMJ, Beets-Tan RGH, Lahaye MJ. Investigating locations of recurrences with MRI after CRS-HIPEC for colorectal peritoneal metastases. Eur J Radiol 2024; 175:111478. [PMID: 38677041 DOI: 10.1016/j.ejrad.2024.111478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/13/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
PURPOSE Patients with colorectal peritoneal metastases (PM) treated with cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) are at high risk of recurrent disease. Understanding where and why recurrences occur is the first step in finding solutions to reduce recurrence rates. Although diffusion-weighted (DW) MRI is not routinely used in the follow-up of CRC patients, it has a clear advantage over CT in detecting the location and spread of (recurrent) PM. This study aimed to identify common locations of recurrence in CRC patients after CRS-HIPEC with MRI. METHOD This was a single-centre retrospective study of patients with recurrent PM after CRS-HIPEC performed between January 2016 and August 2020. Patients were eligible for inclusion if they had both an MRI preoperatively (MRI1) and at the time of recurrent disease (MRI2). Two abdominal radiologists reviewed in consensus and categorized recurrences according to their location on MRI2 and in correlation with previous disease location on prior imaging (MRI1) and the surgical report of the CRS-HIPEC. RESULTS Thirty patients were included, with a median surgical PCI of 7 (range 3-21) at the time of primary CRS-HIPEC. In total, 68 recurrent metastases were detected on MRI2, of which 14 were extra-peritoneal. Of the remaining 54 PM, 42 (78%) occurred where the peritoneum was damaged due to earlier resections or other surgical procedures (e.g. inserted surgical abdominal drains). Most recurrent metastases were found in the mesentery, lower abdomen/pelvis and abdominal wall (87%). CONCLUSIONS Most recurrent PMs appeared in the mesentery, lower abdomen/pelvis and abdominal wall, especially where the peritoneum was previously damaged.
Collapse
Affiliation(s)
- C J V Rijsemus
- Department of Radiology, Netherlands Cancer Institute, Plesmanlaan 121 1066CX, Amsterdam, the Netherlands; Department of Surgery, Netherlands Cancer Institute, Plesmanlaan 121 1066CX, Amsterdam, the Netherlands; GROW School for Oncology and Developmental Biology - University of Maastricht, Maastricht, the Netherlands.
| | - N F M Kok
- Department of Surgery, Netherlands Cancer Institute, Plesmanlaan 121 1066CX, Amsterdam, the Netherlands
| | - A G J Aalbers
- Department of Surgery, Netherlands Cancer Institute, Plesmanlaan 121 1066CX, Amsterdam, the Netherlands
| | - B A Grotenhuis
- Department of Surgery, Netherlands Cancer Institute, Plesmanlaan 121 1066CX, Amsterdam, the Netherlands
| | - E Berardi
- Department of Radiology, Netherlands Cancer Institute, Plesmanlaan 121 1066CX, Amsterdam, the Netherlands
| | - P Snaebjornsson
- Department of Pathology, Netherlands Cancer Institute, Plesmanlaan 121 1066CX, Amsterdam, the Netherlands; Department of Pathology, Faculty of Medicine - University of Iceland, Reykjavik, Iceland
| | - D M J Lambregts
- Department of Radiology, Netherlands Cancer Institute, Plesmanlaan 121 1066CX, Amsterdam, the Netherlands
| | - R G H Beets-Tan
- Department of Radiology, Netherlands Cancer Institute, Plesmanlaan 121 1066CX, Amsterdam, the Netherlands; GROW School for Oncology and Developmental Biology - University of Maastricht, Maastricht, the Netherlands
| | - M J Lahaye
- Department of Radiology, Netherlands Cancer Institute, Plesmanlaan 121 1066CX, Amsterdam, the Netherlands
| |
Collapse
|
21
|
Kalayarasan R, Chandrasekar M, Sai Krishna P, Shanmugam D. Indocyanine green fluorescence in gastrointestinal surgery: Appraisal of current evidence. World J Gastrointest Surg 2023; 15:2693-2708. [PMID: 38222003 PMCID: PMC10784830 DOI: 10.4240/wjgs.v15.i12.2693] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/12/2023] [Accepted: 11/09/2023] [Indexed: 12/27/2023] Open
Abstract
Applying indocyanine green (ICG) fluorescence in surgery has created a new dimension of navigation surgery to advance in various disciplines. The research in this field is nascent and fragmented, necessitating academic efforts to gain a comprehensive understanding. The present review aims to integrate diverse perspectives and recent advances in its application in gastrointestinal surgery. The relevant articles were selected by using the appropriate keyword search in PubMed. The angiography and cholangiography property of ICG fluorescence is helpful in various hepatobiliary disorders. In gastroesophageal and colorectal surgery, the lymphangiography and angiography property of ICG is applied to evaluate bowel vascularity and guide lymphadenectomy. The lack of objective parameters to assess ICG fluorescence has been the primary limitation when ICG is used to evaluate bowel perfusion. The optimum dose and timing of ICG administration need to be standardized in some new application areas in gastrointestinal surgery. Binding tumor-specific ligands with fluorophores can potentially widen the fluorescence application to detect primary and metastatic gastrointestinal tumors. The narrative review outlines prior contributions, limitations, and research opportunities for future studies across gastrointestinal sub-specialty. The findings of the present review would be helpful for scholars and practitioners to explore and progress in this exciting domain of gastrointestinal surgery.
Collapse
Affiliation(s)
- Raja Kalayarasan
- Department of Surgical Gastroenterology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Murugesan Chandrasekar
- Department of Surgical Gastroenterology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Pothugunta Sai Krishna
- Department of Surgical Gastroenterology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Dasarathan Shanmugam
- Department of Surgical Gastroenterology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| |
Collapse
|
22
|
Lu J, Guo Y, Hao H, Ma J, Lu Y, Sun Y, Shi Z, Dong X, Zhang B, Fang L, Che J. Targeted delivery of cathepsin-activatable near-infrared fluorescence probe for ultrahigh specific imaging of peritoneal metastasis. Eur J Med Chem 2023; 262:115909. [PMID: 37907024 DOI: 10.1016/j.ejmech.2023.115909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/11/2023] [Accepted: 10/22/2023] [Indexed: 11/02/2023]
Abstract
Inadequate cytoreductive surgery (CRS) has been identified as a prognostic factor for poor patient outcomes in cases of peritoneal metastasis. While imaging probes are used to identify peritoneal metastasis to facilitate CRS, many of these probes exhibit high background signals, resulting in a significant delay in achieving a satisfactory tumor-to-normal ratio (TNR) due to prolonged clearance time. In this study, we designed a novel fluorescent probe named Tras-AA-Cy NH2, which enables the relatively rapid imaging of subcutaneous tumors and peritoneal tumors while maintaining a high TNR. Mechanistically, Tras-AA-Cy NH2 exhibits selective targeting towards the Human epidermal growth factor receptor 2 on the surface of cancer cells. Following internalization, it undergoes enzymatic cleavage catalyzed by the overexpressed cathepsin, leading to the subsequent release of near-infrared fluorophores. Consequently, Tras-AA-Cy NH2 achieved a TNR of 7.8 at 6 h and 21.4 at 24 h in subcutaneous tumor mice. Even after 522 h of in vivo circulation, the TNR remained above 5, indicating an ultralong imaging time window. It is noteworthy that Tras-AA-Cy NH2 has demonstrated successful utilization for peritoneal tumor-specific imaging and further affirmed its tumor tissue-specific recognition capability using human resected tissues. In summary, these findings underscore the rational design of Tras-AA-Cy NH2 for visualizing peritoneal tumors.
Collapse
Affiliation(s)
- Jialiang Lu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yu Guo
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Huimin Hao
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Junjie Ma
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Yang Lu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yue Sun
- The Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, China
| | - Zheng Shi
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (Xinhua Hospital of Zhejiang Province), Hangzhou, 310005, China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China; Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Bo Zhang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China.
| | - Luo Fang
- The Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, China.
| | - Jinxin Che
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
23
|
Wang B, Tang C, Lin E, Jia X, Xie G, Li P, Li D, Yang Q, Guo X, Cao C, Shi X, Zou B, Cai C, Tian J, Hu Z, Li J. NIR-II fluorescence-guided liver cancer surgery by a small molecular HDAC6 targeting probe. EBioMedicine 2023; 98:104880. [PMID: 38035463 PMCID: PMC10698675 DOI: 10.1016/j.ebiom.2023.104880] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 11/05/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the sixth most common malignancy globally and ranks third in terms of both mortality and incidence rates. Surgical resection holds potential as a curative approach for HCC. However, the residual disease contributes to a high 5-year recurrence rate of 70%. Due to their excellent specificity and optical properties, fluorescence-targeted probes are deemed effective auxiliary tools for addressing residual lesions, enabling precise surgical diagnosis and treatment. Research indicates histone deacetylase 6 (HDAC6) overexpression in HCC cells, making it a potential imaging biomarker. This study designed a targeted small-molecule fluorescent probe, SeCF3-IRDye800cw (SeCF3-IRD800), operating within the Second near-infrared window (NIR-II, 1000-1700 nm). The study confirms the biocompatibility of SeCF3-IRD800 and proceeds to demonstrate its applications in imaging in vivo, fluorescence-guided surgery (FGS) for liver cancer, liver fibrosis imaging, and clinical samples incubation, thereby preliminarily validating its utility in liver cancer. METHODS SeCF3-IRD800 was synthesized by combining the near-infrared fluorescent dye IRDye800cw-NHS with an improved HDAC6 inhibitor. Initially, a HepG2-Luc subcutaneous tumor model (n = 12) was constructed to investigate the metabolic differences between SeCF3-IRD800 and ICG in vivo. Subsequently, HepG2-Luc (n = 12) and HCCLM3-Luc (n = 6) subcutaneous xenograft mouse models were used to assess in vivo targeting by SeCF3-IRD800. The HepG2-Luc orthotopic liver cancer model (n = 6) was employed to showcase the application of SeCF3-IRD800 in FGS. Liver fibrosis (n = 6) and HepG2-Luc orthotopic (n = 6) model imaging results were used to evaluate the impact of different pathological backgrounds on SeCF3-IRD800 imaging. Three groups of fresh HCC and normal liver samples from patients with liver cancer were utilized for SeCF3-IRD800 incubation ex vivo, while preclinical experiments illustrated its potential for clinical application. FINDINGS The HDAC6 inhibitor 6 (SeCF3) modified with trifluoromethyl was labeled with IRDy800CW-NHS to synthesize the small-molecule targeted probe SeCF3-IRD800, with NIR-II fluorescence signals. SeCF3-IRD800 was rapidly metabolized by the kidneys and exhibited excellent biocompatibility. In vivo validation demonstrated that SeCF3-IRD800 achieved optimal imaging within 8 h, displaying high tumor fluorescence intensity (7658.41 ± 933.34) and high tumor-to-background ratio (5.20 ± 1.04). Imaging experiments with various expression levels revealed its capacity for HDAC6-specific targeting across multiple HCC tumor models, suitable for NIR-II intraoperative imaging. Fluorescence-guided surgery experiments were found feasible and capable of detecting sub-visible 2 mm tumor lesions under white light, aiding surgical decision-making. Further imaging of liver fibrosis mice showed that SeCF3-IRD800's imaging efficacy remained unaffected by liver pathological conditions. Correlations were observed between HDAC6 expression levels and corresponding fluorescence intensity (R2 = 0.8124) among normal liver, liver fibrosis, and HCC tissues. SeCF3-IRD800 identified HDAC6-positive samples from patients with HCC, holding advantages for perspective intraoperative identification in liver cancer. Thus, the rapidly metabolized HDAC6-targeted small-molecule NIR-II fluorescence probe SeCF3-IRD800 holds significant clinical translational value. INTERPRETATION The successful application of NIR-II fluorescence-guided surgery in liver cancer indicates that SeCF3-IRD800 has great potential to improve the clinical diagnosis and treatment of liver cancer, and could be used as an auxiliary tool for surgical treatment of liver cancer without being affected by liver pathology. FUNDING This paper is supported by the National Natural Science Foundation of China (NSFC) (92,059,207, 62,027,901, 81,930,053, 81,227,901, 82,272,105, U21A20386 and 81,971,773), CAS Youth Interdisciplinary Team (JCTD-2021-08), the Zhuhai High-level Health Personnel Team Project (Zhuhai HLHPTP201703), and Guangdong Basic and Applied Basic Research Foundation under Grant No. 2022A1515011244.
Collapse
Affiliation(s)
- Bo Wang
- Department of Hepatobiliary Surgery and Liver Transplantation, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China; CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chu Tang
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, 710071, China
| | - En Lin
- Department of Hepatobiliary Surgery and Liver Transplantation, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China; CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaohua Jia
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ganyuan Xie
- Department of Hepatobiliary Surgery and Liver Transplantation, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Peiping Li
- Department of Hepatobiliary Surgery and Liver Transplantation, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Decheng Li
- Department of Hepatobiliary Surgery and Liver Transplantation, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Qiyue Yang
- Key Laboratory of Digital Hepatobiliary Surgery, PLA, Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, 100048, China
| | - Xiaoyong Guo
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; Clinical College of Armed Police General Hospital of Anhui Medical University, Department of Gastroenterology of The Third Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Caiguang Cao
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojing Shi
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baojia Zou
- Department of Hepatobiliary Surgery and Liver Transplantation, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Chaonong Cai
- Department of Hepatobiliary Surgery and Liver Transplantation, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, 100191, China; Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, 710071, China.
| | - Zhenhua Hu
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jian Li
- Department of Hepatobiliary Surgery and Liver Transplantation, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China.
| |
Collapse
|
24
|
Pal R, Lwin TM, Krishnamoorthy M, Collins HR, Chan CD, Prilutskiy A, Nasrallah MP, Dijkhuis TH, Shukla S, Kendall AL, Marshall MS, Carp SA, Hung YP, Shih AR, Martinez-Lage M, Zukerberg L, Sadow PM, Faquin WC, Nahed BV, Feng AL, Emerick KS, Mieog JSD, Vahrmeijer AL, Rajasekaran K, Lee JYK, Rankin KS, Lozano-Calderon S, Varvares MA, Tanabe KK, Kumar ATN. Fluorescence lifetime of injected indocyanine green as a universal marker of solid tumours in patients. Nat Biomed Eng 2023; 7:1649-1666. [PMID: 37845517 DOI: 10.1038/s41551-023-01105-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 09/10/2023] [Indexed: 10/18/2023]
Abstract
The surgical resection of solid tumours can be enhanced by fluorescence-guided imaging. However, variable tumour uptake and incomplete clearance of fluorescent dyes reduces the accuracy of distinguishing tumour from normal tissue via conventional fluorescence intensity-based imaging. Here we show that, after systemic injection of the near-infrared dye indocyanine green in patients with various types of solid tumour, the fluorescence lifetime (FLT) of tumour tissue is longer than the FLT of non-cancerous tissue. This tumour-specific shift in FLT can be used to distinguish tumours from normal tissue with an accuracy of over 97% across tumour types, and can be visualized at the cellular level using microscopy and in larger specimens through wide-field imaging. Unlike fluorescence intensity, which depends on imaging-system parameters, tissue depth and the amount of dye taken up by tumours, FLT is a photophysical property that is largely independent of these factors. FLT imaging with indocyanine green may improve the accuracy of cancer surgeries.
Collapse
Affiliation(s)
- Rahul Pal
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Thinzar M Lwin
- Department of Surgical Oncology, City of Hope Hospital, Duarte, CA, USA
| | - Murali Krishnamoorthy
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Hannah R Collins
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Corey D Chan
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Andrey Prilutskiy
- Department of Pathology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - MacLean P Nasrallah
- Department of Pathology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Tom H Dijkhuis
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Shriya Shukla
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Amy L Kendall
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Michael S Marshall
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Stefan A Carp
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Yin P Hung
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Angela R Shih
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Maria Martinez-Lage
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lawrence Zukerberg
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter M Sadow
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Otolaryngology and Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - William C Faquin
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Otolaryngology and Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Brian V Nahed
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Allen L Feng
- Department of Otolaryngology and Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Kevin S Emerick
- Department of Otolaryngology and Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - J Sven D Mieog
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Karthik Rajasekaran
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - John Y K Lee
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth S Rankin
- The North of England Bone and Soft Tissue Tumour Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Santiago Lozano-Calderon
- Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark A Varvares
- Department of Otolaryngology and Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Kenneth K Tanabe
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anand T N Kumar
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
25
|
Xia W, Geng Y, Hu W. Peritoneal Metastasis: A Dilemma and Challenge in the Treatment of Metastatic Colorectal Cancer. Cancers (Basel) 2023; 15:5641. [PMID: 38067347 PMCID: PMC10705712 DOI: 10.3390/cancers15235641] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 10/25/2024] Open
Abstract
Peritoneal metastasis (PM) is a common mode of distant metastasis in colorectal cancer (CRC) and has a poorer prognosis compared to other metastatic sites. The formation of PM foci depends on the synergistic effect of multiple molecules and the modulation of various components of the tumor microenvironment. The current treatment of CRC-PM is based on systemic chemotherapy. However, recent developments in local therapeutic modalities, such as cytoreductive surgery (CRS) and intraperitoneal chemotherapy (IPC), have improved the survival of these patients. This article reviews the research progress on the mechanism, characteristics, diagnosis, and treatment strategies of CRC-PM, and discusses the current challenges, so as to deepen the understanding of CRC-PM among clinicians.
Collapse
Affiliation(s)
- Wei Xia
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou 213003, China;
| | - Yiting Geng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou 213003, China;
| | - Wenwei Hu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou 213003, China;
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| |
Collapse
|
26
|
Sikkenk DJ, Sterkenburg AJ, Burghgraef TA, Akol H, Schwartz MP, Arensman R, Verheijen PM, Nagengast WB, Consten ECJ. Robot-assisted fluorescent sentinel lymph node identification in early-stage colon cancer. Surg Endosc 2023; 37:8394-8403. [PMID: 37721591 PMCID: PMC10615938 DOI: 10.1007/s00464-023-10394-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/13/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND Patients with cT1-2 colon cancer (CC) have a 10-20% risk of lymph node metastases. Sentinel lymph node identification (SLNi) could improve staging and reduce morbidity in future organ-preserving CC surgery. This pilot study aimed to assess safety and feasibility of robot-assisted fluorescence-guided SLNi using submucosally injected indocyanine green (ICG) in patients with cT1-2N0M0 CC. METHODS Ten consecutive patients with cT1-2N0M0 CC were included in this prospective feasibility study. Intraoperative submucosal, peritumoral injection of ICG was performed during a colonoscopy. Subsequently, the near-infrared fluorescence 'Firefly' mode of the da Vinci Xi robotic surgical system was used for SLNi. SLNs were marked with a suture, after which a segmental colectomy was performed. The SLN was postoperatively ultrastaged using serial slicing and immunohistochemistry, in addition to the standard pathological examination of the specimen. Colonoscopy time, detection time (time from ICG injection to first SLNi), and total SLNi time were measured (time from the start of colonoscopy to start of segmental resection). Intraoperative, postoperative, and pathological outcomes were registered. RESULTS In all patients, at least one SLN was identified (mean 2.3 SLNs, SLN diameter range 1-13 mm). No tracer-related adverse events were noted. Median colonoscopy time was 12 min, detection time was 6 min, and total SLNi time was 30.5 min. Two patients had lymph node metastases present in the SLN, and there were no patients with false negative SLNs. No patient was upstaged due to ultrastaging of the SLN after an initial negative standard pathological examination. Half of the patients unexpectedly had pT3 tumours. CONCLUSIONS Robot-assisted fluorescence-guided SLNi using submucosally injected ICG in ten patients with cT1-2N0M0 CC was safe and feasible. SLNi was performed in an acceptable timespan and SLNs down to 1 mm were detected. All lymph node metastases would have been detected if SLN biopsy had been performed.
Collapse
Affiliation(s)
- Daan J Sikkenk
- Department of Surgery, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Department of Surgery, Meander Medical Center, Maatweg 3, 3813 TZ, Amersfoort, The Netherlands
| | - Andrea J Sterkenburg
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Thijs A Burghgraef
- Department of Surgery, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Department of Surgery, Meander Medical Center, Maatweg 3, 3813 TZ, Amersfoort, The Netherlands
| | - Halil Akol
- Department of Gastroenterology, Meander Medical Center, Maatweg 3, 3813 TZ, Amersfoort, The Netherlands
| | - Matthijs P Schwartz
- Department of Gastroenterology, Meander Medical Center, Maatweg 3, 3813 TZ, Amersfoort, The Netherlands
| | - René Arensman
- Department of Pathology, Meander Medical Center, Maatweg 3, 3813 TZ, Amersfoort, The Netherlands
| | - Paul M Verheijen
- Department of Surgery, Meander Medical Center, Maatweg 3, 3813 TZ, Amersfoort, The Netherlands
| | - Wouter B Nagengast
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Esther C J Consten
- Department of Surgery, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
- Department of Surgery, Meander Medical Center, Maatweg 3, 3813 TZ, Amersfoort, The Netherlands.
| |
Collapse
|
27
|
Rainu SK, Ramachandran RG, Parameswaran S, Krishnakumar S, Singh N. Advancements in Intraoperative Near-Infrared Fluorescence Imaging for Accurate Tumor Resection: A Promising Technique for Improved Surgical Outcomes and Patient Survival. ACS Biomater Sci Eng 2023; 9:5504-5526. [PMID: 37661342 DOI: 10.1021/acsbiomaterials.3c00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Clear surgical margins for solid tumor resection are essential for preventing cancer recurrence and improving overall patient survival. Complete resection of tumors is often limited by a surgeon's ability to accurately locate malignant tissues and differentiate them from healthy tissue. Therefore, techniques or imaging modalities are required that would ease the identification and resection of tumors by real-time intraoperative visualization of tumors. Although conventional imaging techniques such as positron emission tomography (PET), computed tomography (CT), magnetic resonance imaging (MRI), or radiography play an essential role in preoperative diagnostics, these cannot be utilized in intraoperative tumor detection due to their large size, high cost, long imaging time, and lack of cancer specificity. The inception of several imaging techniques has paved the way to intraoperative tumor margin detection with a high degree of sensitivity and specificity. Particularly, molecular imaging using near-infrared fluorescence (NIRF) based nanoprobes provides superior imaging quality due to high signal-to-noise ratio, deep penetration to tissues, and low autofluorescence, enabling accurate tumor resection and improved survival rates. In this review, we discuss the recent developments in imaging technologies, specifically focusing on NIRF nanoprobes that aid in highly specific intraoperative surgeries with real-time recognition of tumor margins.
Collapse
Affiliation(s)
- Simran Kaur Rainu
- Center for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Remya Girija Ramachandran
- L&T Ocular Pathology Department, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai 600006, India
| | - Sowmya Parameswaran
- L&T Ocular Pathology Department, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai 600006, India
| | - Subramanian Krishnakumar
- L&T Ocular Pathology Department, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai 600006, India
| | - Neetu Singh
- Center for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Biomedical Engineering Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
28
|
Ueda K, Ushijima H, Kawamura J. Lymphatic flow mapping during colon cancer surgery using indocyanine green fluorescence imaging. MINIM INVASIV THER 2023; 32:233-239. [PMID: 36628437 DOI: 10.1080/13645706.2022.2164468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/29/2022] [Indexed: 01/12/2023]
Abstract
With the development of surgical technology, indocyanine green (ICG) fluorescence navigation systems may be useful in various areas of colorectal surgery, including tumor location confirmation, bowel perfusion, ureter identification, and lymph node mapping. This review provides an overview of the current status of ICG-based navigation surgery in colorectal surgery, emphasizing its role in lymphatic flow mapping. This state-of-the-art approach will allow for appropriate oncological surgeries in the field of colorectal cancer and improve the patient's prognosis.
Collapse
Affiliation(s)
- Kazuki Ueda
- Department of Surgery, Kindai University Faculty of Medicine, Osaka Sayama, Japan
| | - Hokuto Ushijima
- Department of Surgery, Kindai University Faculty of Medicine, Osaka Sayama, Japan
| | - Junichiro Kawamura
- Department of Surgery, Kindai University Faculty of Medicine, Osaka Sayama, Japan
| |
Collapse
|
29
|
Shi NQ, Cui XY, Zhou C, Tang N, Cui DX. Application of near-infrared fluorescence imaging in theranostics of gastrointestinal tumors. Gastroenterol Rep (Oxf) 2023; 11:goad055. [PMID: 37781571 PMCID: PMC10533422 DOI: 10.1093/gastro/goad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/06/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Gastrointestinal cancers have become an important cause of cancer-related death in humans. Improving the early diagnosis rate of gastrointestinal tumors and improving the effect of surgical treatment can significantly improve the survival rate of patients. The conventional diagnostic method is high-definition white-light endoscopy, which often leads to missed diagnosis. For surgical treatment, intraoperative tumor localization and post-operative anastomotic state evaluation play important roles in the effect of surgical treatment. As a new imaging method, near-infrared fluorescence imaging (NIRFI) has its unique advantages in the diagnosis and auxiliary surgical treatment of gastrointestinal tumors due to its high sensitivity and the ability to image deep tissues. In this review, we focus on the latest advances of NIRFI technology applied in early diagnosis of gastrointestinal tumors, identification of tumor margins, identification of lymph nodes, and assessment of anastomotic leakage. In addition, we summarize the advances of NIRFI systems such as macro imaging and micro imaging systems, and also clearly describe the application process of NIRFI from system to clinical application, and look into the prospect of NIRFI applied in the theranostics of gastrointestinal tumors.
Collapse
Affiliation(s)
- Nan-Qing Shi
- Department of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Xin-Yuan Cui
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Cheng Zhou
- Department of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Ning Tang
- Department of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Da-Xiang Cui
- Department of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
- National Engineering Center for Nanotechnology, Shanghai, P. R. China
| |
Collapse
|
30
|
Azari F, Kennedy GT, Chang A, Bernstein E, Nadeem B, Pèlegrin A, Cailler F, Sullivan NT, Kucharczuk J, Singhal S. Glycoprotein Receptor CEACAM5-Targeted Intraoperative Molecular Imaging Tracer in Non-Small Cell Lung Cancer. Ann Thorac Surg 2023; 116:631-641. [PMID: 35644263 PMCID: PMC9701246 DOI: 10.1016/j.athoracsur.2022.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/19/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Intraoperative molecular imaging has emerged as a potential tool in addressing challenges faced during lung cancer surgery by localizing small lesions, ensuring negative margins, and identifying synchronous cancers. Carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) glycoprotein has emerged as a potential target in fluorescent labeling of non-small cell lung cancer given the high antigen density in tumor cells and absence of expression in normal parenchyma. The goal of our study was to determine whether anti-CEACAM5 targeted near-infrared fluorochrome could be a suitable target in non-small cell lung cancer. METHODS The CEACAM5 expression was evaluated in AB-12 (known negative control), HT29 (known positive control), and H460 (non-small cell lung cancer) cell lines by polymerase chain reaction. SGM-101, a CEACAM5 antibody, coupled with a BM-104 near-infrared fluorescent tracer was evaluated with dose escalation, in vitro cellular localization, and immunofluorescence microscopy. Subsequently, in vivo validation was performed in 52 athymic nude xenografts. RESULTS Polymerase chain reaction analysis demonstrated 3000x relative expression of CEACAM5 in HT-29 cells compared with AB-12. The H460 cells showed 1000x relative expression compared with AB12 (P < .05). Both HT29 and H460 cells showed tracer internalization with signal to background ratio of 4.5 (SD 0.34) whereas there was minimal uptake by AB12 cells with signal to background ratio 1.1 (SD 0.1; P < .05). There was linear fluorescence increase with increasing tracer dosing in receptor expressing cell lines. In preclinical models, HT-29 and H460 cells lines produced near-infrared fluorescence with average tumor to background ratio of 3.89 (SD 0.25) irrespective of tumor size compared with no fluorescence by AB12 tumors (P < .05). The CEACAM5 expressing tumors had excellent dye uptake compared with AB12 tumors. CONCLUSIONS CEACAM5 serves as a possible receptor for targeted intraoperative molecular imaging resections in lung cancer. This study sets a path for evaluation of CEACAM5 targets in future clinical trials.
Collapse
Affiliation(s)
- Feredun Azari
- Department of Thoracic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gregory T Kennedy
- Department of Thoracic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ashley Chang
- Department of Thoracic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elizabeth Bernstein
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Bilal Nadeem
- Department of Thoracic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - André Pèlegrin
- SurgiMab, Montpellier, France; Montpellier Cancer Research Institute, University of Montpellier, INSERM, ICM, Montpellier, France
| | | | - Neil T Sullivan
- Department of Thoracic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John Kucharczuk
- Department of Thoracic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sunil Singhal
- Department of Thoracic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
31
|
Tu Y, Han Z, Pan R, Zhou K, Tao J, Liu P, Han RPS, Gong S, Gu Y. Novel GRPR-Targeting Peptide for Pancreatic Cancer Molecular Imaging in Orthotopic and Liver Metastasis Mouse Models. Anal Chem 2023; 95:11429-11439. [PMID: 37465877 DOI: 10.1021/acs.analchem.3c01765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Despite advancements in pancreatic cancer treatment, it remains one of the most lethal malignancies with extremely poor diagnosis and prognosis. Herein, we demonstrated the efficiency of a novel peptide GB-6 labeled with a near-infrared (NIR) fluorescent dye 3H-indolium, 2-[2-[2-[(2-carboxyethyl)thio]-3-[2-[1,3-dihydro-3,3-dimethyl-5-sulfo-1-(3-sulfopropyl)-2H-indol-2-ylidene]ethylidene]-1-cyclohexen-1-yl]ethenyl]-3,3-dimethyl-5-sulfo-1-(3-sulfopropyl)-, inner salt (MPA) and radionuclide technetium-99m (99mTc) as targeting probes using the gastrin-releasing peptide receptor (GRPR) that is overexpressed in pancreatic cancer as the target. A short linear peptide with excellent in vivo stability was identified, and its radiotracer [99mTc]Tc-HYNIC-PEG4-GB-6 and the NIR probe MPA-PEG4-GB-6 exhibited selective and specific uptake by tumors in an SW1990 pancreatic cancer xenograft mouse model. The favorable biodistribution of the tracer [99mTc]Tc-HYNIC-PEG4-GB-6 in vivo afforded tumor-specific accumulation with high tumor-to-muscle and -bone contrasts and renal body clearance at 1 h after injection. The biodistribution analysis revealed that the tumor-to-pancreas and -intestine fluorescence signal ratios were 5.2 ± 0.3 and 6.3 ± 1.5, respectively, in the SW1990 subcutaneous xenograft model. Furthermore, the high signal accumulation in the orthotopic pancreatic and liver metastasis tumor models with tumor-to-pancreas and -liver fluorescence signal ratios of 7.66 ± 0.48 and 3.94 ± 0.47, respectively, enabled clear tumor visualization for intraoperative navigation. The rapid tumor targeting, precise tumor boundary delineation, chemical versatility, and high potency of the novel GB-6 peptide established it as a high-contrast imaging probe for the clinical detection of GRPR, with compelling additional potential in molecular-targeted therapy.
Collapse
Affiliation(s)
- Yuanbiao Tu
- Cancer Research Center, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Zhihao Han
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Rongbin Pan
- Cancer Research Center, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Kuncheng Zhou
- Cancer Research Center, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Ji Tao
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Peifei Liu
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Ray P S Han
- Cancer Research Center, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Shuaichang Gong
- Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
| | - Yueqing Gu
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
32
|
Liang M, Wang L, Xiao Y, Yang M, Mei C, Zhang Y, Shan H, Li D. Preclinical evaluation of a novel EGFR&c-Met bispecific near infrared probe for visualization of esophageal cancer and metastatic lymph nodes. Eur J Nucl Med Mol Imaging 2023; 50:2787-2801. [PMID: 37145165 DOI: 10.1007/s00259-023-06250-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
PURPOSE This study aimed to establish a near infrared fluorescent (NIRF) probe based on an EGFR&c-Met bispecific antibody for visualization of esophageal cancer (EC) and metastatic lymph nodes (mLNs). METHODS EGFR and c-Met expression were assessed by immunohistochemistry. EGFR&c-Met bispecific antibody EMB01 was labeled with IRDye800cw. The binding of EMB01-IR800 was assessed by enzyme linked immunosorbent assay, flow cytometry, and immunofluorescence. Subcutaneous tumors, orthotopic tumors, and patient-derived xenograft (PDX) were established for in vivo fluorescent imaging. PDX models using lymph nodes with or without metastasis were constructed to assess the performance of EMB01-IR800 in differential diagnosis of lymph nodes. RESULTS The prevalence of overexpressing EGFR or c-Met was significantly higher than single marker either in EC or corresponding mLNs. The bispecific probe EMB01-IR800 was successfully synthesized, with strong binding affinity. EMB01-IR800 showed strong cellular binding to both Kyse30 (EGFR overexpressing) and OE33 (c-Met overexpressing) cells. In vivo fluorescent imaging showed prominent EMB01-IR800 uptake in either Kyse30 or OE33 subcutaneous tumors. Likewise, EMB01-IR800 exhibited superior tumor enrichment in both thoracic orthotopic esophageal squamous cell carcinoma and abdominal orthotopic esophageal adenocarcinoma models. Moreover, EMB01-IR800 produced significantly higher fluorescence in patient-derived mLNs than in benign lymph nodes. CONCLUSION This study demonstrated the complementary overexpression of EGFR and c-Met in EC. Compared to single-target probes, the EGFR&c-Met bispecific NIRF probe can efficiently depict heterogeneous esophageal tumors and mLNs, which greatly increased the sensitivity of tumor and mLN identification.
Collapse
Affiliation(s)
- Mingzhu Liang
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
- Center for Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Lizhu Wang
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
- Center for Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Yitai Xiao
- Department of Nuclear Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Meilin Yang
- Department of Nuclear Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Chaoming Mei
- Department of Nuclear Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Yaqin Zhang
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China.
- Center for Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China.
| | - Hong Shan
- Center for Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China.
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China.
| | - Dan Li
- Department of Nuclear Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China.
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China.
| |
Collapse
|
33
|
Stibbe JA, de Barros HA, Linders DGJ, Bhairosingh SS, Bekers EM, van Leeuwen PJ, Low PS, Kularatne SA, Vahrmeijer AL, Burggraaf J, van der Poel HG. First-in-patient study of OTL78 for intraoperative fluorescence imaging of prostate-specific membrane antigen-positive prostate cancer: a single-arm, phase 2a, feasibility trial. Lancet Oncol 2023; 24:457-467. [PMID: 37062295 DOI: 10.1016/s1470-2045(23)00102-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 04/18/2023]
Abstract
BACKGROUND Targeted real-time imaging during robot-assisted radical prostatectomy provides information on the localisation and extent of prostate cancer. We assessed the safety and feasibility of the prostate-specific membrane antigen (PSMA)-targeted fluorescent tracer OTL78 in patients with prostate cancer. METHODS In this single-arm, phase 2a, feasibility trial with an adaptive design was carried out in The Netherlands Cancer Institute, Netherlands. Male patients aged 18 years or older, with PSMA PET-avid prostate cancer with an International Society of Urological Pathology (ISUP) grade group of 2 or more, who were scheduled to undergo robot-assisted radical prostatectomy with or without extended pelvic lymph node dissection were eligible. All patients had a robot-assisted radical prostatectomy using OTL78. Based on timing and dose, patients received a single intravenous infusion of OTL78 (0·06 mg/kg 1-2 h before surgery [dose cohort 1], 0·03 mg/kg 1-2 h before surgery [dose cohort 2], or 0·03 mg/kg 24 h before surgery [dose cohort 3]). The primary outcomes, assessed in all enrolled patients, were safety and pharmacokinetics of OTL78. This study is completed and is registered in the European Trial Database, 2019-002393-31, and the International Clinical Trials Registry Platform, NL8552, and is completed. FINDINGS Between June 29, 2020, and April 1, 2021, 19 patients were screened for eligibility, 18 of whom were enrolled. The median age was 69 years (IQR 64-70) and median prostate-specific antigen concentration was 15 ng/mL (IQR 9·3-22·0). In 16 (89%) of 18 patients, robot-assisted radical prostatectomy was accompanied by an extended pelvic lymph node dissection. Three serious adverse events occurred in one (6%) patient: an infected lymphocele, a urosepsis, and an intraperitoneal haemorrhage. These adverse events were considered unrelated to the administration of OTL78 or intraoperative fluorescence imaging. No patient died, required a dose reduction, or required discontinuation due to drug-related toxicity. The dose-normalised maximum serum concentration (Cmax/dose) in patients was 84·1 ng/mL/mg for the 0·03 mg/kg dose and 79·6 ng/mL/mg for the 0·06 mg/kg dose, the half-life was 5·1 h for the 0·03 mg/kg dose and 4·7 h for the 0·06 mg/kg dose, the volume of distribution was 22·9 L for the 0·03 mg/kg dose and 19·5 L for the 0·06 mg/kg dose, and the clearance was 3·1 L/h for the 0·03 mg/kg dose and 3·0 L/h for the 0·06 mg/kg dose. INTERPRETATION This first-in-patient study showed that OTL78 was well tolerated and had the potential to improve prostate cancer detection. Optimal dosing was 0·03 mg/kg, 24 h preoperatively. PSMA-directed fluorescence imaging allowed real-time identification of visually occult prostate cancer and might help to achieve complete oncological resections. FUNDING On Target Laboratories.
Collapse
Affiliation(s)
- Judith A Stibbe
- Department of Surgery, Leiden University Medical Center, Leiden University, Leiden, Netherlands
| | - Hilda A de Barros
- Department of Urology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, Netherlands
| | - Daan G J Linders
- Department of Surgery, Leiden University Medical Center, Leiden University, Leiden, Netherlands
| | - Shadhvi S Bhairosingh
- Department of Surgery, Leiden University Medical Center, Leiden University, Leiden, Netherlands
| | - Elise M Bekers
- Department of Pathology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, Netherlands
| | - Pim J van Leeuwen
- Department of Urology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, Netherlands
| | | | | | - Alexander L Vahrmeijer
- Department of Surgery, Leiden University Medical Center, Leiden University, Leiden, Netherlands
| | - Jacobus Burggraaf
- Department of Surgery, Leiden University Medical Center, Leiden University, Leiden, Netherlands; Centre for Human Drug Research, Leiden, Netherlands
| | - Henk G van der Poel
- Department of Urology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, Netherlands; Department of Urology, Amsterdam University Medical Center, Amsterdam, Netherlands.
| |
Collapse
|
34
|
Turner MA, Cox KE, Liu S, Neel N, Amirfakhri S, Nishino H, Hosseini M, Alcantara JA, Abd El-Hafeez AA, Lwin TM, Mallya K, Pisegna JR, Singh SK, Ghosh P, Hoffman RM, Batra SK, Bouvet M. Specific Targeting and Labeling of Colonic Polyps in CPC-APC Mice with Mucin 5AC Fluorescent Antibodies: A Model for Detection of Early Colon Cancer. Curr Issues Mol Biol 2023; 45:3347-3358. [PMID: 37185743 PMCID: PMC10136452 DOI: 10.3390/cimb45040219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Poor visualization of polyps can limit colorectal cancer screening. Fluorescent antibodies to mucin5AC (MUC5AC), a glycoprotein upregulated in adenomas and colorectal cancer, could improve screening colonoscopy polyp detection rate. Adenomatous polyposis coli flox mice with a Cdx2-Cre transgene (CPC-APC) develop colonic polyps that contain both dysplastic and malignant tissue. Mice received MUC5AC-IR800 or IRdye800 as a control IV and were sacrificed after 48 h for near-infrared imaging of their colons. A polyp-to-background ratio (PBR) was calculated for each polyp by dividing the mean fluorescence intensity of the polyp by the mean fluorescence intensity of the background tissue. The mean 25 μg PBR was 1.70 (±0.56); the mean 50 μg PBR was 2.64 (±0.97); the mean 100 μg PBR was 3.32 (±1.33); and the mean 150 μg PBR was 3.38 (±0.87). The mean PBR of the dye-only control was 2.22 (±1.02), significantly less than the 150 μg arm (p-value 0.008). The present study demonstrates the ability of fluorescent anti-MUC5AC antibodies to specifically target and label colonic polyps containing high-grade dysplasia and intramucosal adenocarcinoma in CPC-APC mice. This technology can potentially improve the detection rate and decrease the miss rate of advanced colonic neoplasia and early cancer at colonoscopy.
Collapse
Affiliation(s)
- Michael A. Turner
- Division of Surgical Oncology, Department of Surgery, University of California San Diego, La Jolla, CA 92037, USA
- Department of Surgery, VA San Diego Healthcare System, La Jolla, CA 92161, USA
| | - Kristin E. Cox
- Division of Surgical Oncology, Department of Surgery, University of California San Diego, La Jolla, CA 92037, USA
- Department of Surgery, VA San Diego Healthcare System, La Jolla, CA 92161, USA
| | - Shanglei Liu
- Division of Surgical Oncology, Department of Surgery, University of California San Diego, La Jolla, CA 92037, USA
| | - Nicholas Neel
- Division of Surgical Oncology, Department of Surgery, University of California San Diego, La Jolla, CA 92037, USA
- Department of Surgery, VA San Diego Healthcare System, La Jolla, CA 92161, USA
| | - Siamak Amirfakhri
- Division of Surgical Oncology, Department of Surgery, University of California San Diego, La Jolla, CA 92037, USA
- Department of Surgery, VA San Diego Healthcare System, La Jolla, CA 92161, USA
| | - Hiroto Nishino
- Division of Surgical Oncology, Department of Surgery, University of California San Diego, La Jolla, CA 92037, USA
- Department of Surgery, VA San Diego Healthcare System, La Jolla, CA 92161, USA
| | - Mojgan Hosseini
- Department of Pathology, University of California San Diego, La Jolla, CA 92037, USA
| | - Joshua A. Alcantara
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Amer Ali Abd El-Hafeez
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Thinzar M. Lwin
- Department of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Kavita Mallya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Joseph R. Pisegna
- Department of Gastroenterology, VA Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Satish K. Singh
- Medical Service, Section of Gastroenterology, VA Boston Healthcare System, Boston, MA 02130, USA
- Department of Medicine, Section of Gastroenterology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92037, USA
- Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Robert M. Hoffman
- Division of Surgical Oncology, Department of Surgery, University of California San Diego, La Jolla, CA 92037, USA
- Department of Surgery, VA San Diego Healthcare System, La Jolla, CA 92161, USA
- AntiCancer, Inc., San Diego, CA 92111, USA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Michael Bouvet
- Division of Surgical Oncology, Department of Surgery, University of California San Diego, La Jolla, CA 92037, USA
- Department of Surgery, VA San Diego Healthcare System, La Jolla, CA 92161, USA
| |
Collapse
|
35
|
Yudhistira T, Da Silva EC, Combes A, Lehmann M, Reisch A, Klymchenko AS. Biotinylated Fluorescent Polymeric Nanoparticles for Enhanced Immunostaining. SMALL METHODS 2023; 7:e2201452. [PMID: 36808832 DOI: 10.1002/smtd.202201452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/29/2022] [Indexed: 06/18/2023]
Abstract
The performance of fluorescence immunostaining is physically limited by the brightness of organic dyes, whereas fluorescence labeling with multiple dyes per antibody can lead to dye self-quenching. The present work reports a methodology of antibody labeling by biotinylated zwitterionic dye-loaded polymeric nanoparticles (NPs). A rationally designed hydrophobic polymer, poly(ethyl methacrylate) bearing charged, zwitterionic and biotin groups (PEMA-ZI-biotin), enables preparation of small (14 nm) and bright fluorescent biotinylated NPs loaded with large quantities of cationic rhodamine dye with bulky hydrophobic counterion (fluorinated tetraphenylborate). The biotin exposure at the particle surface is confirmed by Förster resonance energy transfer with dye-streptavidin conjugate. Single-particle microscopy validates specific binding to biotinylated surfaces, with particle brightness 21-fold higher than quantum dot-585 (QD-585) at 550 nm excitation. The nanoimmunostaining method, which couples biotinylated antibody (cetuximab) with bright biotinylated zwitterionic NPs through streptavidin, significantly improves fluorescence imaging of target epidermal growth factor receptors (EGFR) on the cell surface compared to a dye-based labeling. Importantly, cetuximab labeled with PEMA-ZI-biotin NPs can differentiate cells with distinct expression levels of EGFR cancer marker. The developed nanoprobes can greatly amplify the signal from labeled antibodies, and thus become a useful tool in the high-sensitivity detection of disease biomarkers.
Collapse
Affiliation(s)
- Tesla Yudhistira
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, Illkirch, 67401, France
| | - Elisabete Cruz Da Silva
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, Illkirch, 67401, France
| | - Antoine Combes
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, Illkirch, 67401, France
| | - Maxime Lehmann
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, Illkirch, 67401, France
| | - Andreas Reisch
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, Illkirch, 67401, France
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, Illkirch, 67401, France
| |
Collapse
|
36
|
van Manen L, de Muynck LDAN, Baart VM, Bhairosingh S, Debie P, Vahrmeijer AL, Hernot S, Mieog JSD. Near-Infrared Fluorescence Imaging of Pancreatic Cancer Using a Fluorescently Labelled Anti-CEA Nanobody Probe: A Preclinical Study. Biomolecules 2023; 13:biom13040618. [PMID: 37189366 DOI: 10.3390/biom13040618] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/18/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Molecular fluorescence-guided surgery using near-infrared light has the potential to improve the rate of complete resection of cancer. Typically, monoclonal antibodies are being used as targeting moieties, however smaller fragments, such as single-domain antibodies (i.e., Nanobodies®) improve tumor specificity and enable tracer injection on the same day as surgery. In this study, the feasibility of a carcinoembryonic antigen-targeting Nanobody (NbCEA5) conjugated to two zwitterionic dyes (ZW800-1 Forte [ZW800F] and ZW800-1) for visualization of pancreatic ductal adenocarcinoma (PDAC) was investigated. After site-specific conjugation of NbCEA5 to the zwitterionic dyes, binding specificity was evaluated on human PDAC cell lines with flow cytometry. A dose escalation study was performed for both NbCEA5-ZW800F and NbCEA5-ZW800-1 in mice with subcutaneously implanted pancreatic tumors. Fluorescence imaging was performed up to 24 h after intravenous injection. Furthermore, the optimal dose for NbCEA5-ZW800-1 was injected in mice with orthotopically implanted pancreatic tumors. A dose-escalation study showed superior mean fluorescence intensities for NbCEA5-ZW800-1 compared to NbCEA5-ZW800F. In the orthotopic tumor models, NbCEA5-ZW800-1 accumulated specifically in pancreatic tumors with a mean in vivo tumor-to-background ratio of 2.4 (SD = 0.23). This study demonstrated the feasibility and potential advantages of using a CEA-targeted Nanobody conjugated to ZW800-1 for intraoperative PDAC imaging.
Collapse
|
37
|
Prediction of Biomarker Expression on Primary Pancreatic Ductal Adenocarcinoma Tissues Using Fine-Needle Biopsies: Paving the Way for a Patient-Tailored Molecular Imaging Approach. Mol Diagn Ther 2023; 27:261-273. [PMID: 36656512 PMCID: PMC10008234 DOI: 10.1007/s40291-022-00635-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND Targeted molecular imaging may improve tumor cell identification during diagnosis and resection of pancreatic ductal adenocarcinoma (PDAC). Although many molecular imaging biomarkers are (over)expressed in PDAC, intertumoral heterogeneity of biomarker expression hampers universal tracer administration. Preoperative, patient-specific screening and selection of the most optimal biomarker could therefore improve tumor delineation. OBJECTIVE This study evaluated whether fine-needle biopsy (FNB) specimens could be used to preoperatively predict biomarker expression in the corresponding primary PDAC specimen. METHODS Expression of previously identified PDAC biomarkers αvβ6, CEACAM5, EGFR, mesothelin, Lea/c/x, and sdi-Lea on FNB and corresponding primary tumor (PT) specimens (n = 45) was evaluated using immunohistochemistry and quantified using a semi-automated image analysis workflow. RESULTS Biomarker expression on FNB and PT tissues showed high concordance (∆H-score ≤ 50), i.e. was present in 62% of cases for αvβ6, 61% for CEACAM5, 85% for EGFR, 69% for mesothelin, 76% for Lea/c/x, and 79% for sdi-Lea, indicating high concordance. Except for αvβ6, biomarker expression on FNB tissues was positively correlated with PT expression for all biomarkers. Subgroup analyses showed that neoadjuvant therapy (NAT) had no major and/or significant effect on concordance, expression difference and, except for mesothelin, correlation of biomarker expression between FNB and PT tissues. CONCLUSION This study demonstrated that biomarker expression in FNB tissues is predictive for PT expression, irrespective of the application of NAT. These findings thereby provide the foundation for the clinical application of an FNB-based biomarker-screening workflow, eventually facilitating a patient-specific approach of molecular imaging tracer administration in PDAC.
Collapse
|
38
|
Guo X, Li C, Jia X, Qu Y, Li M, Cao C, Zhang Z, Qu Q, Luo S, Tang J, Liu H, Hu Z, Tian J. NIR-II fluorescence imaging-guided colorectal cancer surgery targeting CEACAM5 by a nanobody. EBioMedicine 2023; 89:104476. [PMID: 36801616 PMCID: PMC9972495 DOI: 10.1016/j.ebiom.2023.104476] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/12/2023] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Surgery is the cornerstone of colorectal cancer (CRC) treatment, yet complete removal of the tumour remains a challenge. The second near-infrared window (NIR-II, 1000-1700 nm) fluorescent molecular imaging is a novel technique, which has broad application prospects in tumour surgical navigation. We aimed to evaluate the ability of CEACAM5-targeted probe for CRC recognition and the value of NIR-II imaging-guided CRC resection. METHODS We constructed the probe 2D5-IRDye800CW by conjugated anti-CEACAM5 nanobody (2D5) with near-infrared fluorescent dye IRDye800CW. The performance and benefits of 2D5-IRDye800CW at NIR-II were confirmed by imaging experiments in mouse vascular and capillary phantom. Then mouse colorectal cancer subcutaneous tumour model (n = 15), orthotopic model (n = 15), and peritoneal metastasis model (n = 10) were constructed to investigate biodistribution of probe and imaging differences between NIR-I and NIR-II in vivo, and then tumour resection was guided by NIR-II fluorescence. Fresh human colorectal cancer specimens were incubated with 2D5-IRDye800CW to verify its specific targeting ability. FINDINGS 2D5-IRDye800CW had an NIR-II fluorescence signal extending to 1600 nm and bound specifically to CEACAM5 with an affinity of 2.29 nM. In vivo imaging, 2D5-IRDye800CW accumulated rapidly in tumour (15 min) and could specifically identify orthotopic colorectal cancer and peritoneal metastases. All tumours were resected under NIR-II fluorescence guidance, even smaller than 2 mm tumours were detected, and NIR-II had a higher tumour-to-background ratio than NIR-I (2.55 ± 0.38, 1.94 ± 0.20, respectively). 2D5-IRDye800CW could precisely identify CEACAM5-positive human colorectal cancer tissue. INTERPRETATION 2D5-IRDye800CW combined with NIR-II fluorescence has translational potential as an aid to improve R0 surgery of colorectal cancer. FUNDINGS This study was supported by Beijing Natural Science Foundation (JQ19027), the National Key Research and Development Program of China (2017YFA0205200), National Natural Science Foundation of China (NSFC) (61971442, 62027901, 81930053, 92059207, 81227901, 82102236), Beijing Natural Science Foundation (L222054), CAS Youth Interdisciplinary Team (JCTD-2021-08), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA16021200), the Zhuhai High-level Health Personnel Team Project (Zhuhai HLHPTP201703), the Fundamental Research Funds for the Central Universities (JKF-YG-22-B005) and Capital Clinical Characteristic Application Research (Z181100001718178). The authors would like to acknowledge the instrumental and technical support of the multi-modal biomedical imaging experimental platform, Institute of Automation, Chinese Academy of Sciences.
Collapse
Affiliation(s)
- Xiaoyong Guo
- Clinical College of Armed Police General Hospital of Anhui Medical University, Department of Gastroenterology of The Third Medical Center of Chinese PLA General Hospital, Beijing, 100039, China; CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Changjian Li
- School of Engineering Medicine, Beihang University, Beijing, 100191, China; Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, 100191, China
| | - Xiaohua Jia
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yawei Qu
- Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China; Beijing Mentougou District Hospital, Beijing, 102300, China
| | - Miaomiao Li
- Clinical College of Armed Police General Hospital of Anhui Medical University, Department of Gastroenterology of The Third Medical Center of Chinese PLA General Hospital, Beijing, 100039, China; CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Caiguang Cao
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zeyu Zhang
- School of Engineering Medicine, Beihang University, Beijing, 100191, China; Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, 100191, China
| | - Qiaojun Qu
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, China
| | - Shuangling Luo
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, China
| | - Jianqiang Tang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Haifeng Liu
- Clinical College of Armed Police General Hospital of Anhui Medical University, Department of Gastroenterology of The Third Medical Center of Chinese PLA General Hospital, Beijing, 100039, China; Beijing Mentougou District Hospital, Beijing, 102300, China.
| | - Zhenhua Hu
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; School of Engineering Medicine, Beihang University, Beijing, 100191, China; Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, 100191, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
39
|
Azari F, Kennedy G, Bernstein E, Delikatny J, Lee JYK, Kucharczuk J, Low PS, Singhal S. Evaluation of OTL38-Generated Tumor-to-Background Ratio in Intraoperative Molecular Imaging-Guided Lung Cancer Resections. Mol Imaging Biol 2023; 25:85-96. [PMID: 34101106 PMCID: PMC8651846 DOI: 10.1007/s11307-021-01618-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/19/2021] [Accepted: 05/23/2021] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Cancer surgery has multiple challenges including localizing small lesions, ensuring negative margins, and identifying synchronous cancers. One of the tools proposed to address these issues is intraoperative molecular imaging (IMI). An important consideration in IMI is the quantification of the tumor fluorescence during the procedure and using that data to add clinical value. Currently, the most commonly cited measure of quantification is the tumor-to-background ratio (TBR). Our goal was to evaluate the clinical value of TBR measured with OTL38 NIR tracer during a lung cancer resection. METHODS Intraoperative data was retrospectively reviewed from a prospectively collected 5-year database. Between 2015 and 2020, 279 patients were included in the study. For standardization, all patients underwent infusion of the same targeted molecular optical contrast agent (OTL38) for lung cancer resections; then, the mean fluorescence intensity of the tumors and background tissues were calculated. To evaluate the clinical efficacy of the TBR calculation, the results were correlated with patient, biologic, tumor, and technological factors. RESULTS For pulmonary surgery, patient factors such as gender, age, smoking history, and time from infusion of OTL38 to surgery did not have any statistical significance in predicting the TBR during surgery. In addition, TBR measurements did not correlate with location of the tumor in the lung (p = 0.123). There was no statistical correlation of preoperative positron emission tomography measurements (standardized uptake value) with intraoperative TBR. However, there was statistically significant negative correlation of in situ TBR measurement and the distance of the lesion from the surface of the organ (p < 0.001). Adenocarcinoma spectrum lesions overall had statistically significant correlation with in situ fluorescence compared to other NSCLC malignancies (p < 0.01) but TBR measurements could not identify histopathologic subtype on univariate analysis (p = 0.089). There was a tendency for in situ fluorescence for moderately and well-differentiated adenocarcinoma spectrum lesions, but this was not statistically significant. When comparing the in situ TBR of benign to malignant nodules in the lung, there was no statistically significant association (p = 0.145). In subset analysis, adenocarcinoma spectrum lesions tend to fluoresce at brighter with OTL38 compared to other histologic subtypes. CONCLUSION In our various iterations, the results of our retrospective analysis did not show that TBR measurements during OTL38-guided surgery provide clinically useful information about the nature of the nodule or cancer. The true value of IMI is in the ability for the surgeon to use the fluorescence to guide the surgeon to the tumor and margins, but that sophisticated quantification of the amount of fluorescence may not have clinical utility.
Collapse
Affiliation(s)
- Feredun Azari
- Department of Thoracic Surgery, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, 6 White Building, Philadelphia, PA, 19104, USA
| | - Gregory Kennedy
- Department of Thoracic Surgery, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, 6 White Building, Philadelphia, PA, 19104, USA
| | - Elizabeth Bernstein
- Department of Thoracic Surgery, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, 6 White Building, Philadelphia, PA, 19104, USA
| | - James Delikatny
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - John Y K Lee
- Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - John Kucharczuk
- Department of Thoracic Surgery, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, 6 White Building, Philadelphia, PA, 19104, USA
| | - Phil S Low
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Sunil Singhal
- Department of Thoracic Surgery, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, 6 White Building, Philadelphia, PA, 19104, USA.
| |
Collapse
|
40
|
Stibbe JA, Hoogland P, Achterberg FB, Holman DR, Sojwal RS, Burggraaf J, Vahrmeijer AL, Nagengast WB, Rogalla S. Highlighting the Undetectable - Fluorescence Molecular Imaging in Gastrointestinal Endoscopy. Mol Imaging Biol 2023; 25:18-35. [PMID: 35764908 PMCID: PMC9971088 DOI: 10.1007/s11307-022-01741-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/27/2022]
Abstract
Flexible high-definition white-light endoscopy is the current gold standard in screening for cancer and its precursor lesions in the gastrointestinal tract. However, miss rates are high, especially in populations at high risk for developing gastrointestinal cancer (e.g., inflammatory bowel disease, Lynch syndrome, or Barrett's esophagus) where lesions tend to be flat and subtle. Fluorescence molecular endoscopy (FME) enables intraluminal visualization of (pre)malignant lesions based on specific biomolecular features rather than morphology by using fluorescently labeled molecular probes that bind to specific molecular targets. This strategy has the potential to serve as a valuable tool for the clinician to improve endoscopic lesion detection and real-time clinical decision-making. This narrative review presents an overview of recent advances in FME, focusing on probe development, techniques, and clinical evidence. Future perspectives will also be addressed, such as the use of FME in patient stratification for targeted therapies and potential alliances with artificial intelligence. KEY MESSAGES: • Fluorescence molecular endoscopy is a relatively new technology that enables safe and real-time endoscopic lesion visualization based on specific molecular features rather than on morphology, thereby adding a layer of information to endoscopy, like in PET-CT imaging. • Recently the transition from preclinical to clinical studies has been made, with promising results regarding enhancing detection of flat and subtle lesions in the colon and esophagus. However, clinical evidence needs to be strengthened by larger patient studies with stratified study designs. • In the future fluorescence molecular endoscopy could serve as a valuable tool in clinical workflows to improve detection in high-risk populations like patients with Barrett's esophagus, Lynch syndrome, and inflammatory bowel syndrome, where flat and subtle lesions tend to be malignant up to five times more often. • Fluorescence molecular endoscopy has the potential to assess therapy responsiveness in vivo for targeted therapies, thereby playing a role in personalizing medicine. • To further reduce high miss rates due to human and technical factors, joint application of artificial intelligence and fluorescence molecular endoscopy are likely to generate added value.
Collapse
Affiliation(s)
- Judith A Stibbe
- Department of Surgery, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
| | - Petra Hoogland
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Friso B Achterberg
- Department of Surgery, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
| | - Derek R Holman
- Department of Medicine, Division of Gastroenterology, Stanford University School of Medicine, Stanford, CA, USA
| | - Raoul S Sojwal
- Department of Medicine, Division of Gastroenterology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jacobus Burggraaf
- Department of Surgery, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
- Centre for Human Drug Research, Leiden, The Netherlands
| | - Alexander L Vahrmeijer
- Department of Surgery, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
| | - Wouter B Nagengast
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Stephan Rogalla
- Department of Medicine, Division of Gastroenterology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
41
|
Azari F, Meijer RPJ, Kennedy GT, Hanna A, Chang A, Nadeem B, Din A, Pèlegrin A, Framery B, Cailler F, Sullivan NT, Kucharczuk J, Martin LW, Vahrmeijer AL, Singhal S. Carcinoembryonic Antigen-Related Cell Adhesion Molecule Type 5 Receptor-Targeted Fluorescent Intraoperative Molecular Imaging Tracer for Lung Cancer: A Nonrandomized Controlled Trial. JAMA Netw Open 2023; 6:e2252885. [PMID: 36705924 PMCID: PMC10292762 DOI: 10.1001/jamanetworkopen.2022.52885] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Importance Localization of subcentimeter ground glass opacities during minimally invasive thoracoscopic lung cancer resections is a significant challenge in thoracic oncology. Intraoperative molecular imaging has emerged as a potential solution, but the availability of suitable fluorescence agents is a limiting factor. Objective To evaluate the suitability of SGM-101, a carcinoembryonic antigen-related cell adhesion molecule type 5 (CEACAM5) receptor-targeted near-infrared fluorochrome, for molecular imaging-guided lung cancer resections, because glycoprotein is expressed in more than 80% of adenocarcinomas. Design, Setting, and Participants For this nonrandomized, proof-of-principal, phase 1 controlled trial, patients were divided into 2 groups between August 1, 2020, and January 31, 2022. Patients with known CEACAM5-positive gastrointestinal tumors suggestive of lung metastasis were selected as proof-of-principle positive controls. The investigative group included patients with lung nodules suggestive of primary lung malignant neoplasms. Patients 18 years or older without significant comorbidities that precluded surgical exploration with suspicious pulmonary nodules requiring surgical biopsy were included in the study. Interventions SGM-101 (10 mg) was infused up to 5 days before index operation, and pulmonary nodules were imaged using a near-infrared camera system with a dedicated thoracoscope. Main Outcomes and Measures SGM-101 localization to pulmonary nodules and its correlation with CEACAM5 glycoprotein expression by the tumor as quantified by tumor and normal pulmonary parenchymal fluorescence. Results Ten patients (5 per group; 5 male and 5 female; median [IQR] age, 66 [58-69] years) with 14 total lesions (median [range] lesion size, 0.91 [0.90-2.00] cm) were enrolled in the study. In the control group of 4 patients (1 patient did not undergo surgical resection because of abnormal preoperative cardiac clearance findings that were not deemed related to SGM-101 infusion), the mean (SD) lesion size was 1.33 (0.48) cm, 2 patients had elevated serum CEA markers, and 2 patients had normal serum CEA levels. Of the 4 patients who underwent surgical intervention, those with 2+ and 3+ tissue CEACAM5 expression had excellent tumor fluorescence, with a mean (SD) tumor to background ratio of 3.11 (0.45). In the patient cohort, the mean (SD) lesion size was 0.68 (0.22) cm, and no elevations in serum CEA levels were found. Lack of SGM-101 fluorescence was associated with benign lesions and with lack of CEACAM5 staining. Conclusions and Relevance This in-human proof-of-principle nonrandomized controlled trial demonstrated SGM-101 localization to CEACAM5-positive tumors with the detection of real-time near-infrared fluorescence in situ, ex vivo, and by immunofluorescence microscopy. These findings suggest that SGM-101 is a safe, receptor-specific, and feasible intraoperative molecular imaging fluorochrome that should be further evaluated in randomized clinical trials. Trial Registration ClinicalTrials.gov identifier: NCT04315467.
Collapse
Affiliation(s)
- Feredun Azari
- Department of Thoracic Surgery, University of Pennsylvania, Philadelphia
| | - Ruben P J Meijer
- Centre for Human Drug Research, Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Gregory T Kennedy
- Department of Thoracic Surgery, University of Pennsylvania, Philadelphia
| | - Andrew Hanna
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Ashley Chang
- Department of Thoracic Surgery, University of Pennsylvania, Philadelphia
| | - Bilal Nadeem
- Department of Thoracic Surgery, University of Pennsylvania, Philadelphia
| | - Azra Din
- Department of Thoracic Surgery, University of Pennsylvania, Philadelphia
| | - André Pèlegrin
- SurgiMab, Montpellier, France
- Institute of Cancer Research of Montpellier, University of Montpellier, Montpellier, France
| | | | | | - Neil T Sullivan
- Department of Thoracic Surgery, University of Pennsylvania, Philadelphia
| | - John Kucharczuk
- Department of Thoracic Surgery, University of Pennsylvania, Philadelphia
| | - Linda W Martin
- Department of Thoracic Surgery, University of Virginia School of Medicine, Charlottesville
| | - Alexander L Vahrmeijer
- Centre for Human Drug Research, Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Sunil Singhal
- Department of Thoracic Surgery, University of Pennsylvania, Philadelphia
| |
Collapse
|
42
|
Hanzawa S, Teraishi F, Matsumi Y, Tachibana K, Fujiwara T. Precision laparoscopic sentinel node navigation surgery for femoral skin cancer. Asian J Endosc Surg 2022. [PMID: 36581610 DOI: 10.1111/ases.13159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/30/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022]
Abstract
Navigation surgery using indocyanine green (ICG) fluorescence imaging has been used in thoracoabdominal surgery, and its usefulness has been reported in many cases. In this study, laparoscopic lateral lymph node dissection was performed using ICG fluorescence imaging in a patient with left femoral spinous cell carcinoma with inguinal and external iliac lymph node metastases. Spinous cell carcinoma is classified as a rare cancer in Japan, and there is a scarcity of evidence for pelvic lymph node dissection, as well as a lack of studies that mention the dissection area. We hypothesized that visualization of lymph nodes and lymph flow using intraoperative ICG fluorescence imaging would indicate the area of dissection and lead to more efficient dissection. In conclusion, intraoperative ICG fluorescence imaging may be useful in this area where there is limited evidence, although there are some limitations.
Collapse
Affiliation(s)
- Shunya Hanzawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Fuminori Teraishi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan.,Department of Minimally Invasive Therapy Center, Okayama University Hospital, Okayama, Japan
| | - Yuki Matsumi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Kota Tachibana
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan.,Department of Minimally Invasive Therapy Center, Okayama University Hospital, Okayama, Japan
| |
Collapse
|
43
|
Zhou Q, van den Berg NS, Kang W, Pei J, Nishio N, van Keulen S, Engelen MA, Lee YJ, Hom M, Vega Leonel JCM, Hart Z, Vogel H, Cayrol R, Martin BA, Roesner M, Shields G, Lui N, Gephart MH, Raymundo RC, Yi G, Granucci M, Grant GA, Li G, Rosenthal EL. Factors for Differential Outcome Across Cancers in Clinical Molecule-Targeted Fluorescence Imaging. J Nucl Med 2022; 63:1693-1700. [PMID: 35332092 PMCID: PMC9635681 DOI: 10.2967/jnumed.121.263674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/22/2022] [Indexed: 11/16/2022] Open
Abstract
Clinical imaging performance using a fluorescent antibody was compared across 3 cancers to elucidate physical and biologic factors contributing to differential translation of epidermal growth factor receptor (EGFR) expression to macroscopic fluorescence in tumors. Methods: Thirty-one patients with high-grade glioma (HGG, n = 5), head-and-neck squamous cell carcinoma (HNSCC, n = 23), or lung adenocarcinoma (LAC, n = 3) were systemically infused with 50 mg of panitumumab-IRDye800 1-3 d before surgery. Intraoperative open-field fluorescent images of the surgical field were acquired, with imaging device settings and operating room lighting conditions being tested on tissue-mimicking phantoms. Fluorescence contrast and margin size were measured on resected specimen surfaces. Antibody distribution and EGFR immunoreactivity were characterized in macroscopic and microscopic histologic structures. The integrity of the blood-brain barrier was examined via tight junction protein (Claudin-5) expression with immunohistochemistry. Stepwise multivariate linear regression of biologic variables was performed to identify independent predictors of panitumumab-IRDye800 concentration in tissue. Results: Optimally acquired at the lowest gain for tumor detection with ambient light, intraoperative fluorescence imaging enhanced tissue-size dependent tumor contrast by 5.2-fold, 3.4-fold, and 1.4-fold in HGG, HNSCC, and LAC, respectively. Tissue surface fluorescence target-to-background ratio correlated with margin size and identified 78%-97% of at-risk resection margins ex vivo. In 4-μm-thick tissue sections, fluorescence detected tumor with 0.85-0.89 areas under the receiver-operating-characteristic curves. Preferential breakdown of blood-brain barrier in HGG improved tumor specificity of intratumoral antibody distribution relative to that of EGFR (96% vs. 80%) despite its reduced concentration (3.9 ng/mg of tissue) compared with HNSCC (8.1 ng/mg) and LAC (6.3 ng/mg). Cellular EGFR expression, tumor cell density, plasma antibody concentration, and delivery barrier were independently associated with local intratumoral panitumumab-IRDye800 concentration, with 0.62 goodness of fit of prediction. Conclusion: In multicancer clinical imaging of a receptor-ligand-based molecular probe, plasma antibody concentration, delivery barrier, and intratumoral EGFR expression driven by cellular biomarker expression and tumor cell density led to heterogeneous intratumoral antibody accumulation and spatial distribution whereas tumor size, resection margin, and intraoperative imaging settings substantially influenced macroscopic tumor contrast.
Collapse
Affiliation(s)
- Quan Zhou
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California;
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, California
| | - Nynke S van den Berg
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, California
| | - Wenying Kang
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, California
| | - Jacqueline Pei
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, California
| | - Naoki Nishio
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, California
- Department of Otorhinolaryngology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Stan van Keulen
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, California
- Department of Oral and Maxillofacial Surgery and Oral Pathology, Amsterdam UMC-location VUMC/Academic Centre for Dentistry Amsterdam, Amsterdam, The Netherlands
| | - Myrthe A Engelen
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, California
- Department of Mechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Yu-Jin Lee
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, California
| | - Marisa Hom
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, California
| | - Johana C M Vega Leonel
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Zachary Hart
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, California
| | - Hannes Vogel
- Department of Pathology, Stanford University, Stanford, California
| | - Romain Cayrol
- Department of Pathology, Stanford University, Stanford, California
| | - Brock A Martin
- Department of Pathology, Stanford University, Stanford, California
| | - Mark Roesner
- Stanford Health Care, Stanford University Medical Center, Stanford, California
| | - Glenn Shields
- Stanford Health Care, Stanford University Medical Center, Stanford, California
| | - Natalie Lui
- Department of Cardiothoracic Surgery, Stanford University Medical Center, Stanford, California; and
| | - Melanie Hayden Gephart
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Roan C Raymundo
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, California
- Cancer Clinical Trials Office, Stanford University School of Medicine, Stanford, California
| | - Grace Yi
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, California
- Cancer Clinical Trials Office, Stanford University School of Medicine, Stanford, California
| | - Monica Granucci
- Cancer Clinical Trials Office, Stanford University School of Medicine, Stanford, California
| | - Gerald A Grant
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Gordon Li
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Eben L Rosenthal
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, California;
- Stanford Health Care, Stanford University Medical Center, Stanford, California
| |
Collapse
|
44
|
Wei W, Jiang D, Evangelista L, Cai W. Antibody-Based Imaging and Therapy for Precision Medicine. Mol Pharm 2022; 19:3453-3455. [PMID: 36184938 DOI: 10.1021/acs.molpharmaceut.2c00606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, Hubei, China.,Key Laboratory of Biological Targeted Therapy, Ministry of Education, Wuhan 430022, China
| | - Laura Evangelista
- Nuclear Medicine Unit, Department of Medicine - DIMED, University of Padua, Padua 35122, Italy
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison Madison, Wisconsin 53705, United States
| |
Collapse
|
45
|
Olson MT, Aguilar EN, Brooks CL, Isder CC, Muilenburg KM, Talmon GA, Ly QP, Carlson MA, Hollingsworth MA, Mohs AM. Preclinical Evaluation of a Humanized, Near-Infrared Fluorescent Antibody for Fluorescence-Guided Surgery of MUC16-Expressing Pancreatic Cancer. Mol Pharm 2022; 19:3586-3599. [PMID: 35640060 PMCID: PMC9864431 DOI: 10.1021/acs.molpharmaceut.2c00203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Surgery remains the only potentially curative treatment option for pancreatic cancer, but resections are made more difficult by infiltrative disease, proximity of critical vasculature, peritumoral inflammation, and dense stroma. Surgeons are limited to tactile and visual cues to differentiate cancerous tissue from normal tissue. Furthermore, translating preoperative images to the intraoperative setting poses additional challenges for tumor detection, and can result in undetected and unresected lesions. Thus, pancreatic ductal adenocarcinoma (PDAC) has high rates of incomplete resections, and subsequently, disease recurrence. Fluorescence-guided surgery (FGS) has emerged as a method to improve intraoperative detection of cancer and ultimately improve surgical outcomes. Initial clinical trials have demonstrated feasibility of FGS for PDAC, but there are limited targeted probes under investigation for this disease, highlighting the need for development of additional novel biomarkers to reflect the PDAC heterogeneity. MUCIN16 (MUC16) is a glycoprotein that is overexpressed in 60-80% of PDAC. In our previous work, we developed a MUC16-targeted murine antibody near-infrared conjugate, termed AR9.6-IRDye800, that showed efficacy in detecting pancreatic cancer. To build on the translational potential of this imaging probe, a humanized variant of the AR9.6 fluorescent conjugate was developed and investigated herein. This conjugate, termed huAR9.6-IRDye800, showed equivalent binding properties to its murine counterpart. Using an optimized dye:protein ratio of 1:1, in vivo studies demonstrated high tumor to background ratios in MUC16-expressing tumor models, and delineation of tumors in a patient-derived xenograft model. Safety, biodistribution, and toxicity studies were conducted. These studies demonstrated that huAR9.6-IRDye800 was safe, did not yield evidence of histological toxicity, and was well tolerated in vivo. The results from this work suggest that AR9.6-IRDye800 is an efficacious and safe imaging agent for identifying pancreatic cancer intraoperatively through fluorescence-guided surgery.
Collapse
Affiliation(s)
- Madeline T. Olson
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
| | - Eric N. Aguilar
- Department of Chemistry and Biochemistry, California State University Fresno, Fresno, CA 93740
| | - Cory L. Brooks
- Department of Chemistry and Biochemistry, California State University Fresno, Fresno, CA 93740
| | - Carly C. Isder
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198
| | - Kathtyn M. Muilenburg
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198
| | - Geoffrey A. Talmon
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Quan P. Ly
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198
| | - Mark A. Carlson
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198
- Department of Surgery, VA Medical Center, Omaha, NE 68105
| | - Michael A. Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
| | - Aaron M. Mohs
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
46
|
Nishino H, Turner MA, Amirfakhri S, Hollandsworth HM, Lwin TM, Hosseini M, Framery B, Cailler F, Pèlegrin A, Hoffman RM, Bouvet M. Proof of concept of improved fluorescence-guided surgery of colon cancer liver metastasis using color-coded imaging of a tumor-labeling fluorescent antibody and indocyanine green restricted to the adjacent liver segment. Surgery 2022; 172:1156-1163. [PMID: 35927078 DOI: 10.1016/j.surg.2022.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Indocyanine green has been used for fluorescence-guided surgery of liver metastasis and labeling of liver segments. However, indocyanine green is nonspecific, and indocyanine green labeling does not always clearly outline tumor margins. In addition, it is difficult to distinguish between a tumor and its adjacent liver segment colored with indocyanine green alone. In the present study, we performed fluorescence-guided surgery in an orthotopic colon-cancer liver metastasis mouse model by labeling the metastatic liver tumor with an anti-carcinoembryonic antigen fluorescent antibody and with indocyanine green restricted to the adjacent liver segment. METHODS A liver metastasis model was established with human LS174T colon cancer tumor fragments. To label the tumor, mice received SGM-101, an anti-carcinoembryonic antigen antibody conjugated to a near-infrared fluorophore (700 nm), currently in clinical trials, 3 days before surgery. Indocyanine green (800 nm) was injected after ligation of the tumor-bearing Glissonean pedicle with fluorescence labeling restricted to the liver segment adjacent to the tumor. Bright-light surgery and fluorescence-guided surgery were performed to resect the liver metastasis. To assess recurrence, mice underwent necropsy 3 weeks after surgery and the tumor was weighed. RESULTS Fluorescence-guided anatomic left lateral lobectomy and fluorescence-guided partial liver resection were both performed with color-coded double labeled imaging. Tumor weight 3 weeks after surgery was significantly lower with fluorescence-guided surgery compared to bright-light surgery (38 ± 57 mg vs 836 ± 668 mg, P = .011) for partial liver resection. CONCLUSION The present study provides a proof-of-concept that color-coded and double labeling of the tumor and adjacent liver segment has the potential to improve liver metastasectomy.
Collapse
Affiliation(s)
- Hiroto Nishino
- Department of Surgery, University of California San Diego, CA; Department of Surgery, VA San Diego Healthcare System, San Diego, CA; Department of Surgery, Graduate School of Medicine, Kyoto University, Japan
| | - Michael A Turner
- Department of Surgery, University of California San Diego, CA; Department of Surgery, VA San Diego Healthcare System, San Diego, CA
| | - Siamak Amirfakhri
- Department of Surgery, University of California San Diego, CA; Department of Surgery, VA San Diego Healthcare System, San Diego, CA
| | - Hannah M Hollandsworth
- Department of Surgery, University of California San Diego, CA; Department of Surgery, VA San Diego Healthcare System, San Diego, CA
| | - Thinzar M Lwin
- Department of Surgery, University of California San Diego, CA; Department of Surgery, VA San Diego Healthcare System, San Diego, CA
| | - Mojgan Hosseini
- Department of Pathology, University of California San Diego, CA
| | | | | | - André Pèlegrin
- Surgimab, Montpellier, France; IRCM, Univ Montpellier, Inserm, ICM, Montpellier, France
| | - Robert M Hoffman
- Department of Surgery, University of California San Diego, CA; Department of Surgery, VA San Diego Healthcare System, San Diego, CA; AntiCancer, Inc., San Diego, CA
| | - Michael Bouvet
- Department of Surgery, University of California San Diego, CA; Department of Surgery, VA San Diego Healthcare System, San Diego, CA.
| |
Collapse
|
47
|
Reddy R, Mintz J, Golan R, Firdaus F, Ponce R, Van Booven D, Manoharan A, Issa I, Blomberg BB, Arora H. Antibody Diversity in Cancer: Translational Implications and Beyond. Vaccines (Basel) 2022; 10:vaccines10081165. [PMID: 35893814 PMCID: PMC9331493 DOI: 10.3390/vaccines10081165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 12/10/2022] Open
Abstract
Patients with cancer tend to develop antibodies to autologous proteins. This phenomenon has been observed across multiple cancer types, including bladder, lung, colon, prostate, and melanoma. These antibodies potentially arise due to induced inflammation or an increase in self-antigens. Studies focusing on antibody diversity are particularly attractive for their diagnostic value considering antibodies are present at an early diseased stage, serum samples are relatively easy to obtain, and the prevalence of antibodies is high even when the target antigen is minimally expressed. Conversely, the surveillance of serum proteins in cancer patients is relatively challenging because they often show variability in expression and are less abundant. Moreover, an antibody’s presence is also useful as it suggests the relative immunogenicity of a given antigen. For these reasons, profiling antibodies’ responses is actively considered to detect the spread of antigens following immunotherapy. The current review focuses on expanding the knowledge of antibodies and their diversity, and the impact of antibody diversity on cancer regression and progression.
Collapse
Affiliation(s)
- Raghuram Reddy
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (R.R.); (F.F.); (A.M.)
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Joel Mintz
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, FL 33328, USA;
| | - Roei Golan
- College of Medicine, Florida State University, Tallahassee FL 32304, USA;
| | - Fakiha Firdaus
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (R.R.); (F.F.); (A.M.)
| | - Roxana Ponce
- Department of Biology, Florida International University, Miami, FL 33199, USA;
| | - Derek Van Booven
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33143, USA; (D.V.B.); (I.I.)
| | - Aysswarya Manoharan
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (R.R.); (F.F.); (A.M.)
| | - Isabelle Issa
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33143, USA; (D.V.B.); (I.I.)
| | - Bonnie B. Blomberg
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Himanshu Arora
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (R.R.); (F.F.); (A.M.)
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33143, USA; (D.V.B.); (I.I.)
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- The Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Correspondence:
| |
Collapse
|
48
|
Jin GQ, Chau CV, Arambula JF, Gao S, Sessler JL, Zhang JL. Lanthanide porphyrinoids as molecular theranostics. Chem Soc Rev 2022; 51:6177-6209. [PMID: 35792133 PMCID: PMC12005637 DOI: 10.1039/d2cs00275b] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In recent years, lanthanide (Ln) porphyrinoids have received increasing attention as theranostics. Broadly speaking, the term 'theranostics' refers to agents designed to allow both disease diagnosis and therapeutic intervention. This Review summarises the history and the 'state-of-the-art' development of Ln porphyrinoids as theranostic agents. The emphasis is on the progress made within the past decade. Applications of Ln porphyrinoids in near-infrared (NIR, 650-1700 nm) fluorescence imaging (FL), magnetic resonance imaging (MRI), radiotherapy, and chemotherapy will be discussed. The use of Ln porphyrinoids as photo-activated agents ('phototheranostics') will also be highlighted in the context of three promising strategies for regulation of porphyrinic triplet energy dissipation pathways, namely: regioisomeric effects, metal regulation, and the use of expanded porphyrinoids. The goal of this Review is to showcase some of the ongoing efforts being made to optimise Ln porphyrinoids as theranostics and as phototheranostics, in order to provide a platform for understanding likely future developments in the area, including those associated with structure-based innovations, functional improvements, and emerging biological activation strategies.
Collapse
Affiliation(s)
- Guo-Qing Jin
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.
| | - Calvin V Chau
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| | - Jonathan F Arambula
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
- InnovoTEX, Inc. 3800 N. Lamar Blvd, Austin, Texas 78756, USA.
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, P. R. China
- Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Spin-X Institute, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, P. R. China
| |
Collapse
|
49
|
Abstract
Indocyanine green (ICG) fluorescent imaging has been used in colorectal surgery to assess intraoperative blood flow to the colon. However, its use has expanded to allow imaging of the lymphatic drainage within the mesentery in cancer resections. This technique can been used for real-time visualization of lymph nodes, and the detection of sentinel lymph nodes, lateral sidewall nodes, metastatic lymph nodes, and peritoneal metastases. Ultimately, this provides a more informative map of the mesentery displaying lymphatics and blood flow. The technique is economical and easy to use by the surgeon intraoperatively. ICG lymphangiography has the potential to aid the surgeon to ensure complete lymphadenectomy is performed in cancer resections.
Collapse
Affiliation(s)
- Manish Chand
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, London, United Kingdom
| | - Meara Dean
- University College Hospital, University College London Hospitals, London, United Kingdom
| |
Collapse
|
50
|
Choi JH, Kang CM, Park JY. EGFR-targeted fluorescent imaging using the da Vinci® Firefly™ camera for gallbladder cancer. World J Surg Oncol 2022; 20:201. [PMID: 35701793 PMCID: PMC9199159 DOI: 10.1186/s12957-022-02675-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/05/2022] [Indexed: 11/29/2022] Open
Abstract
Background Fluorescent imaging may aid with the precise diagnosis and treatment of patients with gallbladder cancer. In this study, we sought to demonstrate whether the da Vinci® surgical system and Firefly™ camera could detect EGFR-targeted fluorescent images in orthotopic mouse models of gallbladder cancer. Methods An orthotopic mouse model of gallbladder cancer was created by injecting NOZ gallbladder cancer cells mixed with Matrigel into the gallbladder. In vivo imaging of subcutaneous and orthotopic gallbladder tumors was performed after the injection of DyLight 650- or 800-conjugated EGFR antibody. Results Western blotting, flow cytometry, and confocal microscopy showed the presence of EGFR in NOZ cells, but not in HEK293 cells. Subcutaneous NOZ cell tumors fluoresced after injection with fluorescent EGFR antibody, but subcutaneous HEK293 tumors did not. Fluorescent EGFR antibody made orthotopic NOZ tumors fluoresce, with an intensity stronger than that in the surrounding normal tissues. Histochemical examination confirmed the location of the tumors inside the gallbladder and adjacent liver parenchyma. Fluorescent signal was also detected in orthotopic gallbladder tumors with Firefly™ camera. Conclusion Our study showed that fluorescent EGFR antibodies and the Firefly camera in the da Vinci system can detect fluorescing gallbladder tumors, which demonstrates their potential use for molecular imaging-based prevision surgery in the near future.
Collapse
Affiliation(s)
- Jung Ha Choi
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Chang Moo Kang
- Division of HBP Surgery, Department of Surgery, Yonsei University College of Medicine, Seoul, South Korea.,Pancreatobiliary Cancer Center, Yonsei Cancer Center, and Yonsei Institute of Gastroenterology, Severance Hospital, Seoul, South Korea
| | - Jeong Youp Park
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea. .,Pancreatobiliary Cancer Center, Yonsei Cancer Center, and Yonsei Institute of Gastroenterology, Severance Hospital, Seoul, South Korea.
| |
Collapse
|