1
|
The unique carnation stunt-associated pararetroviroid. Virus Res 2022; 312:198709. [DOI: 10.1016/j.virusres.2022.198709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/07/2022] [Accepted: 02/12/2022] [Indexed: 12/12/2022]
|
2
|
Badar U, Venkataraman S, AbouHaidar M, Hefferon K. Molecular interactions of plant viral satellites. Virus Genes 2020; 57:1-22. [PMID: 33226576 DOI: 10.1007/s11262-020-01806-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/24/2020] [Indexed: 12/18/2022]
Abstract
Plant viral satellites fall under the category of subviral agents. Their genomes are composed of small RNA or DNA molecules a few hundred nucleotides in length and contain an assortment of highly complex and overlapping functions. Each lacks the ability to either replicate or undergo encapsidation or both in the absence of a helper virus (HV). As the number of known satellites increases steadily, our knowledge regarding their sequence conservation strategies, means of replication and specific interactions with host and helper viruses is improving. This review demonstrates that the molecular interactions of these satellites are unique and highly complex, largely influenced by the highly specific host plants and helper viruses that they associate with. Circularized forms of single-stranded RNA are of particular interest, as they have recently been found to play a variety of novel cellular functions. Linear forms of satRNA are also of great significance as they may complement the helper virus genome in exacerbating symptoms, or in certain instances, actively compete against it, thus reducing symptom severity. This review serves to describe the current literature with respect to these molecular mechanisms in detail as well as to discuss recent insights into this emerging field in terms of evolution, classification and symptom development. The review concludes with a discussion of future steps in plant viral satellite research and development.
Collapse
Affiliation(s)
- Uzma Badar
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | | | - Mounir AbouHaidar
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Kathleen Hefferon
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Hongjaisee S, Khamduang W, Sripan P, Choyrum S, Thepbundit V, Ngo-Giang-Huong N, Tangmunkongvorakul A. Prevalence and factors associated with hepatitis B and D virus infections among migrant sex workers in Chiangmai, Thailand: A cross-sectional study in 2019. Int J Infect Dis 2020; 100:247-254. [PMID: 32898671 DOI: 10.1016/j.ijid.2020.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES To determine the prevalence of hepatitis B surface antigen (HBsAg) and antibody to hepatitis delta virus (anti-HDV) and associated factors among migrant sex workers in Chiangmai, Thailand. METHODS This cross-sectional study was conducted at various sexual entertainment venues in Chiangmai, Thailand, in 2019. Consenting participants were interviewed using a questionnaire, and plasma was tested for hepatitis B virus (HBV) markers (DiaSorin, Italy) and anti-HDV antibody (DIA.PRO Diagnostic Bioprobes, Italy), if HBsAg-positive. Associations between HBsAg positivity or HDV antibody and potential factors were examined using univariable and multivariable logistic regression analysis. RESULTS A total of 396 migrant sex workers, half of them female, were recruited between February and September 2019. Their median age was 25 years (interquartile range 22-30 years) and 95% were Burmese. Overall, HBsAg prevalence was 11.4%; 8.1% in females and 14.7% in males (Chi-square, p = 0.040). One-third were still susceptible to HBV. No HBsAg-positive participants had anti-HDV antibodies. HBsAg positivity was associated with being male (adjusted odds ratio (aOR) 3.01, 95% confidence interval (CI) 1.25-7.68, p = 0.014), having attended school (aOR 4.50, 95% CI 1.26-15.98, p = 0.020), being separated/divorced/widowed (aOR 5.77, 95% CI 1.48-22.52, p = 0.012), and having unprotected sex (aOR 3.38, 95% CI 1.31-8.71, p = 0.012). CONCLUSIONS In this young population, higher HBsAg prevalence in males may be related to sexual transmission, indicating the need for HBV screening programs linked with HBV prevention and care.
Collapse
Affiliation(s)
- Sayamon Hongjaisee
- Research Institute for Health Sciences, Chiang Mai University, Chiangmai, Thailand
| | - Woottichai Khamduang
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiangmai, Thailand; Infectious Diseases Research Unit, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiangmai, Thailand
| | - Patumrat Sripan
- Research Institute for Health Sciences, Chiang Mai University, Chiangmai, Thailand
| | - Sirinath Choyrum
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiangmai, Thailand
| | - Viraporn Thepbundit
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiangmai, Thailand
| | - Nicole Ngo-Giang-Huong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiangmai, Thailand; Institut de Recherche pour le Développement (IRD), Chiangmai, Thailand; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | |
Collapse
|
4
|
Statin inhibits large hepatitis delta antigen-Smad3 -twist-mediated epithelial-to-mesenchymal transition and hepatitis D virus secretion. J Biomed Sci 2020; 27:65. [PMID: 32434501 PMCID: PMC7240974 DOI: 10.1186/s12929-020-00659-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 05/14/2020] [Indexed: 01/01/2023] Open
Abstract
Background Hepatitis D virus (HDV) infection may induce fulminant hepatitis in chronic hepatitis B patients (CHB) or rapid progression of CHB to cirrhosis or hepatocellular carcinoma. There is no effective treatment for HDV infection. HDV encodes small delta antigens (S-HDAg) and large delta antigens (L-HDAg). S-HDAg is essential for HDV replication. Prenylated L-HDAg plays a key role in HDV assembly. Previous studies indicate that L-HDAg transactivates transforming growth factor beta (TGF-β) and induces epithelial-mesenchymal transition (EMT), possibly leading to liver fibrosis. However, the mechanism is unclear. Methods The mechanisms of the activation of Twist promoter by L-HDAg were investigated by luciferase reporter assay, chromatin immunoprecipitation, and co-immunoprecipitation analysis. ELISA and Western blotting were used to analyze L-HDAg prenylation, TGF-β secretion, expression of EMT markers, and to evaluate efficacy of statins for HDV treatment. Results We found that L-HDAg activated Twist expression, TGF-β expression and consequently induced EMT, based on its interaction with Smad3 on Twist promoter. The treatment of statin, a prenylation inhibitor, resulted in reduction of Twist promoter activity, TGF-β expression, and EMT, and reduces the release of HDV virions into the culture medium. Conclusions We demonstrate that L-HDAg activates EMT via Twist and TGF-β activation. Treatment with statins suppressed Twist expression, and TGF-β secretion, leading to downregulation of EMT. Our findings clarify the mechanism of HDV-induced EMT, and provide a basis for possible novel therapeutic strategies against HDV infection.
Collapse
|
5
|
Volloch V, Olsen BR, Rits S. AD "Statin": Alzheimer's Disorder is a "Fast" Disease Preventable by Therapeutic Intervention Initiated Even Late in Life and Reversible at the Early Stages. ANNALS OF INTEGRATIVE MOLECULAR MEDICINE 2020; 2:75-89. [PMID: 32201863 PMCID: PMC7083596 DOI: 10.33597/aimm.02-1006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The present study posits that Alzheimer's disorder is a "fast" disease. This is in sharp contrast to a view, prevailing until now, that Alzheimer's Disease (AD) is a quintessential "slow" disease that develops throughout the life as one prolonged process. According to this view, beta-amyloid (Aβ) is produced and secreted solely by the beta-amyloid precursor protein (βAPP) proteolytic/secretory pathway. As its extracellular levels increase, it triggers neurodegeneration starting relatively early in life. Damages accumulate and manifest, late in life in sporadic Alzheimer's Disease (SAD) cases, as AD symptoms. In familial AD (FAD) cases, where mutations in βAPP gene or in presenilins increase production of either common Aβ isoform or of its more toxic isoforms, neurodegeneration reaches critical threshold sooner and AD symptoms occur earlier in life, mostly in late 40s and 50s. There are currently no preventive AD therapies but if they were available, according to this viewpoint it would be largely futile to intervene late in life in case of potential SAD or at mid-age in cases of FAD because, although AD symptoms have not yet manifested, the damage has already occurred during the preceding decades. In this paradigm, to be effective, preventive therapeutic intervention should be initiated early in life. The outlook suggested by the present study is radically different. According to it, Alzheimer's disease evolves in two stages. The first stage is a slow process of intracellular beta-amyloid accumulation. It occurs via βAPP proteolytic/secretory pathway and cellular uptake of secreted Aβ common to Homo sapiens, including healthy humans, and to non-human mammals, and results neither in significant damage, nor in manifestation of the disease. The second stage occurs exclusively in humans, commences shortly before symptomatic onset of the disease, sharply accelerates the production and increases intracellular levels of Aβ that is not secreted but is retained intracellularly, generates significant damages, triggers AD symptoms, and is fast. It is driven by an Aβ generation pathway qualitatively and quantitatively different from βAPP proteolytic process and entirely independent of beta-amyloid precursor protein, and results in rapid and substantial intracellular accumulation of Aβ, consequent significant neurodegeneration, and symptomatic AD. In this paradigm, a preventive therapy for AD, an AD "statin", would be effective when initiated at any time prior to commencement of the second stage. Moreover, there are good reasons to believe that with a drug blocking βAPP-independent Aβ production pathway in the second stage, it would be possible not only to preempt the disease but also to stop and to reverse it even when early AD symptoms have already manifested. The present study posits a notion of AD as a Fast Disease, offers evidence for the occurrence of the AD-specific Aβ production pathway, describes cellular and molecular processes constituting an engine that drives Alzheimer's disease, and explains why non-human mammals are not susceptible to AD and why only a subset of humans develop the disease. It establishes that Alzheimer's disease is preventable by therapeutic intervention initiated even late in life, details a powerful mechanism underlying the disease, suggests that Aβ produced in the βAPP-independent pathway is retained intracellularly, elaborates why neither BACE inhibition nor Aβ immunotherapy are effective in treatment of AD and why intracellularly retained beta-amyloid could be the primary agent of neuronal death in Alzheimer's disease, necessitates generation of a novel animal AD model capable of producing Aβ via βAPP-independent pathway, proposes therapeutic targets profoundly different from previously pursued components of the βAPP proteolytic pathway, and provides conceptual rationale for design of drugs that could be used not only preemptively but also for treatment and reversal of the early stages of the disease.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, USA
| | - Bjorn R Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, USA
| | - Sophia Rits
- Division of Molecular Medicine, Children’s Hospital, Boston, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, USA
| |
Collapse
|
6
|
Volloch V, Olsen B, Rits S. Alzheimer's Disease is Driven by Intraneuronally Retained Beta-Amyloid Produced in the AD-Specific, βAPP-Independent Pathway: Current Perspective and Experimental Models for Tomorrow. ANNALS OF INTEGRATIVE MOLECULAR MEDICINE 2020; 2:90-114. [PMID: 32617536 PMCID: PMC7331974 DOI: 10.33597/aimm.02-1007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A view of the origin and progression of Alzheimer's disease, AD, prevailing until now and formalized as the Amyloid Cascade Hypothesis theory, maintains that the disease is initiated by overproduction of beta-amyloid, Aβ, which is generated solely by the Aβ precursor protein, βAPP, proteolytic pathway and secreted from the cell. Consequent extracellular accumulation of Aβ triggers a cascade of molecular and cellular events leading to neurodegeneration that starts early in life, progresses as one prolonged process, builds up for decades, and culminates in symptomatic manifestations of the disease late in life. In this paradigm, a time window for commencement of therapeutic intervention is small and accessible only early in life. The outlook introduced in the present study is fundamentally different. It posits that the βAPP proteolytic/secretory pathway of Aβ production causes AD in humans no more than it does in either short- or long-lived non-human mammals that share this pathway with humans, accumulate beta-amyloid as they age, but do not develop the disease. Alzheimer's disease, according to this outlook, is driven by an additional powerful AD-specific pathway of Aβ production that operates in affected humans, is completely independent of the βAPP precursor, and is not available in non-human mammals. The role of the βAPP proteolytic pathway in the disease in humans is activation of this additional AD-specific Aβ production pathway. This occurs through accumulation of intracellular Aβ, primarily via ApoE-assisted cellular uptake of secreted beta-amyloid, but also through retention of a fraction of Aβ produced in the βAPP proteolytic pathway. With time, accumulated intracellular Aβ triggers mitochondrial dysfunction. In turn, cellular stresses associated with mitochondrial dysfunction, including ER stress, activate a second, AD-specific, Aβ production pathway: Asymmetric RNA-dependent βAPP mRNA amplification; animal βAPP mRNA is ineligible for this process. In this pathway, every conventionally produced βAPP mRNA molecule serves potentially as a template for production of severely 5'-truncated mRNA encoding not the βAPP but its C99 fragment (hence "asymmetric"), the immediate precursor of Aβ. Thus produced, N-terminal signal peptide-lacking C99 is processed not in the secretory pathway on the plasma membrane, but at the intracellular membrane sites, apparently in a neuron-specific manner. The resulting Aβ is, therefore, not secreted but is retained intraneuronally and accumulates rapidly within the cell. Increased levels of intracellular Aβ augment mitochondrial dysfunction, which, in turn, sustains the activity of the βAPP mRNA amplification pathway. These self-propagating mutual Aβ overproduction/mitochondrial dysfunction feedback cycles constitute a formidable two-stroke engine, an engine that drives Alzheimer's disease. The present outlook envisions Alzheimer's disorder as a two-stage disease. The first stage is a slow process of intracellular beta-amyloid accumulation. It results neither in significant neurodegenerative damage, nor in manifestation of the disease. The second stage commences with the activation of the βAPP mRNA amplification pathway shortly before symptomatic onset of the disease, sharply increases the rate of Aβ generation and the extent of its intraneuronal accumulation, produces significant damages, triggers AD symptoms, and is fast. In this paradigm, the time window of therapeutic intervention is wide open, and preventive treatment can be initiated any time, even late in life, prior to commencement of the second stage of the disease. Moreover, there are good reasons to believe that with a drug blocking the βAPP mRNA amplification pathway, it would be possible not only to preempt the disease but also to stop and to reverse it even when early AD symptoms have already manifested. There are numerous experimental models of AD, all based on a notion of the exceptionality of βAPP proteolytic/secretory pathway in Aβ production in the disease. However, with no drug even remotely effective in Alzheimer's disease, a long list of candidate drugs that succeeded remarkably in animal models, yet failed utterly in human clinical trials of potential AD drugs, attests to the inadequacy of currently employed AD models. The concept of a renewable supply of beta-amyloid, produced in the βAPP mRNA amplification pathway and retained intraneuronally in Alzheimer's disease, explains spectacular failures of both BACE inhibition and Aβ-immunotherapy in human clinical trials. This concept also forms the basis of a new generation of animal and cell-based experimental models of AD, described in the present study. These models incorporate Aβ- or C99-encoding mRNA amplification pathways of Aβ production, as well as intracellular retention of their product, and can support not only further investigation of molecular mechanisms of AD but also screening for and testing of candidate drugs aimed at therapeutic targets suggested by the present study.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, USA
| | - Bjorn Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, USA
| | - Sophia Rits
- Division of Molecular Medicine, Children’s Hospital, Boston, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, USA
| |
Collapse
|
7
|
Makhlouf NA, Morsy KH, Mahmoud AA. Hepatitis D virus infection among hepatitis B virus surface antigen positive individuals in Upper Egypt: Prevalence and clinical features. J Infect Public Health 2019; 12:350-356. [PMID: 30833193 DOI: 10.1016/j.jiph.2018.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/25/2018] [Accepted: 12/03/2018] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND/PURPOSE About 248 million people are chronic HBV surface antigen carriers in the world. Hepatitis D virus (HDV) infection present in more than 15 million people worldwide. HDV needs hepatitis B surface antigen (HBsAg) to help its replication. We aimed to estimate the prevalence of HDV infection among HBsAg positive individuals and to determine the clinical, laboratory and virological characters of HDV infected patients. METHODS This study was prospective cross-sectional analytic one including 186 HBsAg positive cases. Anti-HBc total, IgM and HBV PCR were done for all of these cases. Anti-HDV ELISA analysis was done for all cases. Positive samples for Anti-HDV by ELISA were then tested by HDV PCR. RESULTS Of the 186 HBsAg positive cases, 80 were reactive for anti-HDV antibodies, resulting in an overall anti-HDV seropositivity of 43%. Higher prevalence of liver cirrhosis (43.8%), HCC on top of cirrhosis (8.8%) were found in anti-HDV positive compared to anti-HDV negative cases (17.9%) and (3.8%) respectively (p value<0.001). Portal hypertension and Child-Pugh grade B, C were significantly higher in anti-HDV-positive cases as compared to the anti-HDV-negative ones (47.5% versus 18.9%) and (11.3% versus 6.6%); (16.3% versus 3.8%) respectively (p value<0.001 for each). HDV RNA was positive in 25 out of 80 anti-HDV-positive cases (31.3%). CONCLUSION Anti-HDV was seropositive in 43% among HBsAg positive cases in Upper Egypt. HDV RNA was positive by PCR in 25 out of 80 anti-HDV-positive cases (31.3%). HDV prevalence using PCR was 25/186 (13.4%) in Upper Egypt.
Collapse
Affiliation(s)
- Nahed A Makhlouf
- Department of Tropical Medicine and Gastroenterology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.
| | - Khairy H Morsy
- Department of Tropical Medicine and Gastroenterology, Faculty of Medicine, Sohag University, Sohag 82524, Egypt.
| | - Amal A Mahmoud
- Department of Clinical Pathology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt.
| |
Collapse
|
8
|
Volloch V, Rits-Volloch S. News from Mars: Two-Tier Paradox, Intracellular PCR, Chimeric Junction Shift, Dark Matter mRNA and Other Remarkable Features of Mammalian RNA-Dependent mRNA Amplification. Implications for Alzheimer's Disease, RNA-Based Vaccines and mRNA Therapeutics. ACTA ACUST UNITED AC 2019; 2:131-173. [PMID: 33942036 DOI: 10.33597/aimm.02-1009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Molecular Biology, a branch of science established to examine the flow of information from "letters" encrypted into DNA structure to functional proteins, was initially defined by a concept of DNA-to-RNA-to-Protein information movement, a notion termed the Central Dogma of Molecular Biology. RNA-dependent mRNA amplification, a novel mode of eukaryotic protein-encoding RNA-to-RNA-to-Protein genomic information transfer, constitutes the extension of the Central Dogma in the context of mammalian cells. It was shown to occur in cellular circumstances requiring exceptionally high levels of production of specific polypeptides, e.g. globin chains during erythroid differentiation or defined secreted proteins in the context of extracellular matrix deposition. Its potency is reflected in the observed cellular levels of the resulting amplified mRNA product: At the peak of the erythroid differentiation, for example, the amount of globin mRNA produced in the amplification pathway is about 1500-fold higher than the amount of its conventionally generated counterpart in the same cells. The cellular enzymatic machinery at the core of this process, RNA-dependent RNA polymerase activity (RdRp), albeit in a non-conventional form, was shown to be constitutively and ubiquitously present, and RNA-dependent RNA synthesis (RdRs) appeared to regularly occur, in mammalian cells. Under most circumstances, the mammalian RdRp activity produces only short antisense RNA transcripts. Generation of complete antisense RNA transcripts and amplification of mRNA molecules require the activation of inducible components of the mammalian RdRp complex. The mechanism of such activation is not clear. The present article suggests that it is triggered by a variety of cellular stresses and occurs in the context of stress responses in general and within the framework of the integrated stress response (ISR) in particular. In this process, various cellular stresses activate, in a stress type-specific manner, defined members of the mammalian translation initiation factor 2α, eIF2α, kinase family: PKR, GCN2, PERK and HRI. Any of these kinases, in an activated form, phosphorylates eIF2α. This results in suppression of global cellular protein synthesis but also in activation of expression of select group of transcription factors including ATF4, ATF5 and CHOP. These transcription factors either function as inducible components of the RdRp complex or enable their expression. The assembly of the competent RdRp complex activates mammalian RNA-dependent mRNA amplification, which appears to be a two-tier process. Tier One is a "chimeric" pathway, named so because it results in an amplified chimeric mRNA molecule containing a fragment of the antisense RNA strand at its 5' terminus. Tier Two further amplifies one of the two RNA end products of the chimeric pathway and constitutes the physiologically occurring intracellular polymerase chain reaction, iPCR. Depending on the structure of the initial mRNA amplification progenitor, the chimeric pathway, Tier One, may result in multiple outcomes including chimeric mRNA that produces either a polypeptide identical to the original, conventional mRNA progenitor-encoded protein or only its C-terminal fragment, CTF. The chimeric RNA end product of Tier One may also produce a polypeptide that is non-contiguously encoded in the genome, activate translation from an open reading frame, which is "silent" in a conventionally transcribed mRNA, or initiate an abortive translation. In sharp contrast, regardless of the outcome of Tier One, the mRNA end product of Tier Two of mammalian mRNA amplification, the iPCR pathway, always produces a polypeptide identical to a conventional mRNA progenitor-encoded protein. This discordance is referred to as the Two-Tier Paradox and discussed in detail in the present article. On the other hand, both Tiers are similar in that they result in heavily modified mRNA molecules resistant to reverse transcription, undetectable by reverse transcription-based methods of sequencing and therefore constituting a proverbial "Dark Matter" mRNA, despite being highly ubiquitous. It appears that in addition to their other functions, the modifications of the amplified mRNA render it compatible, unlike the bulk of cellular mRNA, with phosphorylated eIF2α in translation, implying that in addition to being extraordinarily abundant due to the method of its generation, amplified mRNA is also preferentially translated under the ISR conditions, thus augmenting the efficiency of the amplification process. The vital importance of powerful mechanisms of amplification of protein-encoding genomic information in normal physiology is self-evident. Their malfunctions or misuse appear to be associated with two types of abnormalities, the deficiency of a protein normally produced by these mechanisms and the mRNA amplification-mediated overproduction of a protein normally not generated by such a process. Certain classes of beta-thalassemia exemplify the first type, whereas the second type is represented by overproduction of beta-amyloid in Alzheimer's disease. Moreover, the proposed mechanism of Alzheimer's disease allows a crucial and verifiable prediction, namely that the disease-causing intraneuronally retained variant of beta-amyloid differs from that produced conventionally by βAPP proteolysis in that it contains the additional methionine or acetylated methionine at its N-terminus. Because of its extraordinary evidential value as a natural reporter of the mRNA amplification pathway, this feature, if proven, would, arguably, constitute the proverbial Holy Grail not only for Alzheimer's disease but also for the mammalian RNA-dependent mRNA amplification field in general. Both examples are discussed in detail in the present article, which summarizes and systematizes our current understanding of the field and describes two categories of reporter constructs, one for the chimeric Tier of mRNA amplification, another for the iPCR pathway; both reporter types are essential for elucidating underlying molecular mechanisms. It also suggests, in light of the recently demonstrated feasibility of RNA-based vaccines, that the targeted intracellular amplification of exogenously introduced amplification-eligible antigen-encoding mRNAs via the induced or naturally occurring RNA-dependent mRNA amplification pathway could be of substantial benefit in triggering a fast and potent immune response and instrumental in the development of future vaccines. Similar approaches can also be effective in achieving efficient and sustained expression of exogenous mRNA in mRNA therapeutics.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children's Hospital, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, USA
| |
Collapse
|
9
|
Thio CL, Hawkins C. Hepatitis B Virus and Hepatitis Delta Virus. MANDELL, DOUGLAS, AND BENNETT'S PRINCIPLES AND PRACTICE OF INFECTIOUS DISEASES 2015:1815-1839.e7. [DOI: 10.1016/b978-1-4557-4801-3.00148-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
10
|
Persistent hepatitis D virus mono-infection in humanized mice is efficiently converted by hepatitis B virus to a productive co-infection. J Hepatol 2014; 60:538-44. [PMID: 24280293 DOI: 10.1016/j.jhep.2013.11.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 11/01/2013] [Accepted: 11/17/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Clinical studies have shown that hepatitis delta virus (HDV) infection can persist for years and intrahepatic latency of the large delta antigen (HDAg) has been detected following liver transplantation. However, large HDAg arising via RNA-editing is associated with increasing amounts of non-infectious HDV quasi-species. This study investigated whether HDV could persist intrahepatically in the absence of HBV in vivo and whether infectious HDV could subsequently be released following HBV super-infection. METHODS Humanized mice were infected with HDV particles lacking HBV. To test for rescue of latent HDV infection 3 and 6 weeks HDV mono-infected mice were super-infected with HBV. Viral loads and cell toxicity were determined by qRT-PCR and immunohistochemistry. RESULTS The presence of HDAg-positive human hepatocytes determined after 2, 3, and 6 weeks of HDV inoculation demonstrated establishment and maintenance of intrahepatic HDV mono-infection. Although intrahepatic amounts of large HDAg and edited HDV RNA forms increased over time in HDV mono-infected livers, HBV super-infection led to prompt viremia development (up to 10(8) HDV RNA and 10(7) HBV-DNA copies/ml) even after 6 weeks of latent mono-infection. Concurrently, the number of HDAg-positive human hepatocytes increased, demonstrating intrahepatic HDV spreading. The infectivity of the rescued HDV virions was verified by serial passage in naive chimeric mice. CONCLUSIONS HDV mono-infection can persist intrahepatically for at least 6 weeks before being rescued by HBV. Conversion of a latent HDV infection to a productive HBV/HDV co-infection may contribute to HDV persistence even in patients with low HBV replication and in the setting of liver transplantation.
Collapse
|
11
|
Ma W, Yu C, Zhang W. Circularity and self-cleavage as a strategy for the emergence of a chromosome in the RNA-based protocell. Biol Direct 2013; 8:21. [PMID: 23971788 PMCID: PMC3765326 DOI: 10.1186/1745-6150-8-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 08/21/2013] [Indexed: 12/23/2022] Open
Abstract
Background It is now popularly accepted that an “RNA world” existed in early evolution. During division of RNA-based protocells, random distribution of individual genes (simultaneously as ribozymes) between offspring might have resulted in gene loss, especially when the number of gene types increased. Therefore, the emergence of a chromosome carrying linked genes was critical for the prosperity of the RNA world. However, there were quite a few immediate difficulties for this event to occur. For example, a chromosome would be much longer than individual genes, and thus more likely to degrade and less likely to replicate completely; the copying of the chromosome might start at middle sites and be only partial; and, without a complex transcription mechanism, the synthesis of distinct ribozymes would become problematic. Results Inspired by features of viroids, which have been suggested as “living fossils” of the RNA world, we supposed that these difficulties could have been overcome if the chromosome adopted a circular form and small, self-cleaving ribozymes (e.g. the hammer head ribozymes) resided at the sites between genes. Computer simulation using a Monte-Carlo method was conducted to investigate this hypothesis. The simulation shows that an RNA chromosome can spread (increase in quantity and be sustained) in the system if it is a circular one and its linear “transcripts” are readily broken at the sites between genes; the chromosome works as genetic material and ribozymes “coded” by it serve as functional molecules; and both circularity and self-cleavage are important for the spread of the chromosome. Conclusions In the RNA world, circularity and self-cleavage may have been adopted as a strategy to overcome the immediate difficulties for the emergence of a chromosome (with linked genes). The strategy suggested here is very simple and likely to have been used in this early stage of evolution. By demonstrating the possibility of the emergence of an RNA chromosome, this study opens on the prospect of a prosperous RNA world, populated by RNA-based protocells with a number of genes, showing complicated functions. Reviewers This article was reviewed by Sergei Kazakov (nominated by Laura Landweber), Nobuto Takeuchi (nominated by Anthony Poole), and Eugene Koonin.
Collapse
Affiliation(s)
- Wentao Ma
- College of Life Sciences, Wuhan University, Wuhan 430072, P,R, China.
| | | | | |
Collapse
|
12
|
Freitas N, Cunha C. Searching for nuclear export elements in hepatitis D virus RNA. World J Virol 2013; 2:123-135. [PMID: 24255883 PMCID: PMC3832856 DOI: 10.5501/wjv.v2.i3.123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/26/2013] [Accepted: 08/09/2013] [Indexed: 02/05/2023] Open
Abstract
AIM: To search for the presence of cis elements in hepatitis D virus (HDV) genomic and antigenomic RNA capable of promoting nuclear export.
METHODS: We made use of a well characterized chloramphenicol acetyl-transferase reporter system based on plasmid pDM138. Twenty cDNA fragments corresponding to different HDV genomic and antigenomic RNA sequences were inserted in plasmid pDM138, and used in transfection experiments in Huh7 cells. The relative amounts of HDV RNA in nuclear and cytoplasmic fractions were then determined by real-time polymerase chain reaction and Northern blotting. The secondary structure of the RNA sequences that displayed nuclear export ability was further predicted using a web interface. Finally, the sensitivity to leptomycin B was assessed in order to investigate possible cellular pathways involved in HDV RNA nuclear export.
RESULTS: Analysis of genomic RNA sequences did not allow identifying an unequivocal nuclear export element. However, two regions were found to promote the export of reporter mRNAs with efficiency higher than the negative controls albeit lower than the positive control. These regions correspond to nucleotides 266-489 and 584-920, respectively. In addition, when analyzing antigenomic RNA sequences a nuclear export element was found in positions 214-417. Export mediated by the nuclear export element of HDV antigenomic RNA is sensitive to leptomycin B suggesting a possible role of CRM1 in this transport pathway.
CONCLUSION: A cis-acting nuclear export element is present in nucleotides 214-417 of HDV antigenomic RNA.
Collapse
|
13
|
Bishal AK, Mukherjee R, Chakraborty C. Synonymous codon usage pattern analysis of Hepatitis D virus. Virus Res 2013; 173:350-3. [DOI: 10.1016/j.virusres.2013.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 01/15/2013] [Accepted: 01/15/2013] [Indexed: 11/24/2022]
|
14
|
RNA polymerase II acts as an RNA-dependent RNA polymerase to extend and destabilize a non-coding RNA. EMBO J 2013; 32:781-90. [PMID: 23395899 DOI: 10.1038/emboj.2013.18] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 01/03/2013] [Indexed: 11/09/2022] Open
Abstract
RNA polymerase II (Pol II) is a well-characterized DNA-dependent RNA polymerase, which has also been reported to have RNA-dependent RNA polymerase (RdRP) activity. Natural cellular RNA substrates of mammalian Pol II, however, have not been identified and the cellular function of the Pol II RdRP activity is unknown. We found that Pol II can use a non-coding RNA, B2 RNA, as both a substrate and a template for its RdRP activity. Pol II extends B2 RNA by 18 nt on its 3'-end in an internally templated reaction. The RNA product resulting from extension of B2 RNA by the Pol II RdRP can be removed from Pol II by a factor present in nuclear extracts. Treatment of cells with α-amanitin or actinomycin D revealed that extension of B2 RNA by Pol II destabilizes the RNA. Our studies provide compelling evidence that mammalian Pol II acts as an RdRP to control the stability of a cellular RNA by extending its 3'-end.
Collapse
|
15
|
Sartakhti JS, Zangooei MH, Mozafari K. Hepatitis disease diagnosis using a novel hybrid method based on support vector machine and simulated annealing (SVM-SA). COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2012; 108:570-579. [PMID: 21968203 DOI: 10.1016/j.cmpb.2011.08.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Revised: 07/15/2011] [Accepted: 08/20/2011] [Indexed: 05/31/2023]
Abstract
In this study, diagnosis of hepatitis disease, which is a very common and important disease, is conducted with a machine learning method. We have proposed a novel machine learning method that hybridizes support vector machine (SVM) and simulated annealing (SA). Simulated annealing is a stochastic method currently in wide use for difficult optimization problems. Intensively explored support vector machine due to its several unique advantages is successfully verified as a predicting method in recent years. We take the dataset used in our study from the UCI machine learning database. The classification accuracy is obtained via 10-fold cross validation. The obtained classification accuracy of our method is 96.25% and it is very promising with regard to the other classification methods in the literature for this problem.
Collapse
Affiliation(s)
- Javad Salimi Sartakhti
- SCS Lab, Electrical and Computer Engineering Department, Tarbiat Modares University, Terhran, Iran.
| | | | | |
Collapse
|
16
|
Hepatitis D virus isolates with low replication and epithelial-mesenchymal transition-inducing activity are associated with disease remission. J Virol 2012; 86:9044-54. [PMID: 22674995 DOI: 10.1128/jvi.00130-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Clearance of hepatitis D virus (HDV) viremia leads to disease remission. Large hepatitis delta antigen (L-HDAg) has been reported to activate transforming growth factor β, which may induce epithelial-mesenchymal transition (EMT) and fibrogenesis. This study analyzed serum HDV RNA "quasispecies" in HDV-infected patients at two stages of infection: before and after alanine aminotransferase (ALT) elevations. Included in the study were four patients who went into remission after ALT elevation and three patients who did not go into remission and progressed to cirrhosis or hepatocellular carcinoma. Full-length HDV cDNA clones were obtained from the most abundant HDV RNA species at the pre- and post-ALT elevation stages. Using an in vitro model consisting of Huh-7 cells transfected with cloned HDV cDNAs, the pre- or post-ALT elevation dominant HDV RNA species were characterized for (i) their replication capacity by measuring HDV RNA and HDAg levels in transfected cells and (ii) their capacity to induce EMT by measuring the levels of the mesenchymal-cell-specific protein vimentin, the EMT regulators twist and snail, and the epithelial-cell-specific protein E-cadherin. Results show that in patients in remission, the post-ALT elevation dominant HDV RNA species had a lower replication capacity in vitro and lower EMT activity than their pre-ALT elevation counterparts. This was not true of patients who did not go into remission. The expression of L-HDAg, but not small HDAg, increased the expression of the EMT-related proteins. It is concluded that in chronically infected patients, HDV quasispecies with a low replication capacity and low EMT activity are associated with disease remission.
Collapse
|
17
|
Shen L, Gu Y, Sun L, Yang Y, Wang F, Li Y, Bi S. Development of a hepatitis delta virus antibody assay for study of the prevalence of HDV among individuals infected with hepatitis B virus in China. J Med Virol 2012; 84:445-9. [DOI: 10.1002/jmv.23212] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Abstract
Double-stranded RNA (dsRNA) functions both as a substrate of ADARs and also as a molecular trigger of innate immune responses. ADARs, adenosine deaminases that act on RNA, catalyze the deamination of adenosine (A) to produce inosine (I) in dsRNA. ADARs thereby can destablize RNA structures, because the generated I:U mismatch pairs are less stable than A:U base pairs. Additionally, I is read as G instead of A by ribosomes during translation and by viral RNA-dependent RNA polymerases during RNA replication. Members of several virus families have the capacity to produce dsRNA during viral genome transcription and replication. Sequence changes (A-G, and U-C) characteristic of A-I editing can occur during virus growth and persistence. Foreign viral dsRNA also mediates both the induction and the action of interferons. In this chapter our current understanding of the role and significance of ADARs in the context of innate immunity, and as determinants of the outcome of viral infection, will be considered.
Collapse
Affiliation(s)
- Charles E Samuel
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
19
|
Theise ND, Bodenheimer HC, Ferrell LD. Acute and chronic viral hepatitis. MACSWEEN'S PATHOLOGY OF THE LIVER 2012:361-401. [DOI: 10.1016/b978-0-7020-3398-8.00007-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
20
|
Host response to polyomavirus infection is modulated by RNA adenosine deaminase ADAR1 but not by ADAR2. J Virol 2011; 85:8338-47. [PMID: 21632755 DOI: 10.1128/jvi.02666-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Adenosine deaminases acting on RNA (ADARs) catalyze the C-6 deamination of adenosine (A) to produce inosine (I), which behaves as guanine (G), thereby altering base pairing in RNAs with double-stranded character. Two genes, adar1 and adar2, are known to encode enzymatically active ADARs in mammalian cells. Furthermore, two size forms of ADAR1 are expressed by alternative promoter usage, a short (p110) nuclear form that is constitutively made and a long (p150) form that is interferon inducible and present in both the cytoplasm and nucleus. ADAR2 is also a constitutively expressed nuclear protein. Extensive A-to-G substitution has been described in mouse polyomavirus (PyV) RNA isolated late times after infection, suggesting modification by ADAR. To test the role of ADAR in PyV infection, we used genetically null mouse embryo fibroblast cells deficient in either ADAR1 or ADAR2. The single-cycle yields and growth kinetics of PyV were comparable between adar1(-/-) and adar2(-/-) genetic null fibroblast cells. While large T antigen was expressed to higher levels in adar1(-/-) cells than adar2(-/-) cells, less difference was seen in VP1 protein expression levels between the two knockout MEFs. However, virus-induced cell killing was greatly enhanced in PyV-infected adar1(-/-) cells compared to that of adar2(-/-) cells. Complementation with p110 protected cells from PyV-induced cytotoxicity. UV-irradiated PyV did not display any enhanced cytopathic effect in adar1(-/-) cells. Reovirus and vesicular stomatitis virus single-cycle yields were comparable between adar1(-/-) and adar2(-/-) cells, and neither reovirus nor VSV showed enhanced cytotoxicity in adar1(-/-)-infected cells. These results suggest that ADAR1 plays a virus-selective role in the host response to infection.
Collapse
|
21
|
Samuel CE. Adenosine deaminases acting on RNA (ADARs) are both antiviral and proviral. Virology 2011; 411:180-93. [PMID: 21211811 PMCID: PMC3057271 DOI: 10.1016/j.virol.2010.12.004] [Citation(s) in RCA: 248] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 12/04/2010] [Indexed: 12/18/2022]
Abstract
A-to-I RNA editing, the deamination of adenosine (A) to inosine (I) that occurs in regions of RNA with double-stranded character, is catalyzed by a family of Adenosine Deaminases Acting on RNA (ADARs). In mammals there are three ADAR genes. Two encode proteins that possess demonstrated deaminase activity: ADAR1, which is interferon-inducible, and ADAR2 which is constitutively expressed. ADAR3, by contrast, has not yet been shown to be an active enzyme. The specificity of the ADAR1 and ADAR2 deaminases ranges from highly site-selective to non-selective, dependent on the duplex structure of the substrate RNA. A-to-I editing is a form of nucleotide substitution editing, because I is decoded as guanosine (G) instead of A by ribosomes during translation and by polymerases during RNA-dependent RNA replication. Additionally, A-to-I editing can alter RNA structure stability as I:U mismatches are less stable than A:U base pairs. Both viral and cellular RNAs are edited by ADARs. A-to-I editing is of broad physiologic significance. Among the outcomes of A-to-I editing are biochemical changes that affect how viruses interact with their hosts, changes that can lead to either enhanced or reduced virus growth and persistence depending upon the specific virus.
Collapse
Affiliation(s)
- Charles E Samuel
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
22
|
Gellatly D, Mirhadi K, Venkataraman S, AbouHaidar MG. Structural and sequence integrity are essential for the replication of the viroid-like satellite RNA of lucerne transient streak virus. J Gen Virol 2011; 92:1475-1481. [PMID: 21346030 DOI: 10.1099/vir.0.029801-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lucerne transient streak virus (LTSV, genus Sobemovirus) supports the replication and encapsidation of a 322 nt untranslated small-circular RNA (scLTSV). Since scLTSV does not code for any proteins or share sequence similarity with its helper virus (LTSV), it is presumed that it uses structural and sequence motifs to signal the helper virus (and host) machinery for its replication and encapsidation. Insertion and deletion mutations were introduced at various locations within the scLTSV molecule. Our results showed that most mutants were not infectious, with only two exceptions, a (-1) nucleotide deletion and a 9 nt, palindromic insertion mutant which preserved the overall rod-like structure of the scLTSV. Sequence analysis of cDNA clones revealed that the palindromic sequence was replicated for up to 12 days of infection, before the sequence reverted back to its wild-type form. Our results indicate that scLTSV has an optimal sequence and secondary structure for replication, movement and/or packaging within the LTSV helper virus.
Collapse
Affiliation(s)
- Duncan Gellatly
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Kayvan Mirhadi
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Srividhya Venkataraman
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Mounir G AbouHaidar
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| |
Collapse
|
23
|
George CX, Gan Z, Liu Y, Samuel CE. Adenosine deaminases acting on RNA, RNA editing, and interferon action. J Interferon Cytokine Res 2010; 31:99-117. [PMID: 21182352 DOI: 10.1089/jir.2010.0097] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Adenosine deaminases acting on RNA (ADARs) catalyze adenosine (A) to inosine (I) editing of RNA that possesses double-stranded (ds) structure. A-to-I RNA editing results in nucleotide substitution, because I is recognized as G instead of A both by ribosomes and by RNA polymerases. A-to-I substitution can also cause dsRNA destabilization, as I:U mismatch base pairs are less stable than A:U base pairs. Three mammalian ADAR genes are known, of which two encode active deaminases (ADAR1 and ADAR2). Alternative promoters together with alternative splicing give rise to two protein size forms of ADAR1: an interferon-inducible ADAR1-p150 deaminase that binds dsRNA and Z-DNA, and a constitutively expressed ADAR1-p110 deaminase. ADAR2, like ADAR1-p110, is constitutively expressed and binds dsRNA. A-to-I editing occurs with both viral and cellular RNAs, and affects a broad range of biological processes. These include virus growth and persistence, apoptosis and embryogenesis, neurotransmitter receptor and ion channel function, pancreatic cell function, and post-transcriptional gene regulation by microRNAs. Biochemical processes that provide a framework for understanding the physiologic changes following ADAR-catalyzed A-to-I ( = G) editing events include mRNA translation by changing codons and hence the amino acid sequence of proteins; pre-mRNA splicing by altering splice site recognition sequences; RNA stability by changing sequences involved in nuclease recognition; genetic stability in the case of RNA virus genomes by changing sequences during viral RNA replication; and RNA-structure-dependent activities such as microRNA production or targeting or protein-RNA interactions.
Collapse
Affiliation(s)
- Cyril X George
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, USA
| | | | | | | |
Collapse
|
24
|
Zaidi G, Idrees M, Malik FA, Amin I, Shahid M, Younas S, Hussain R, Awan Z, Tariq A, Parveen K. Prevalence of hepatitis delta virus infection among hepatitis B virus surface antigen positive patients circulating in the largest province of Pakistan. Virol J 2010; 7:283. [PMID: 20977704 PMCID: PMC2988018 DOI: 10.1186/1743-422x-7-283] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 10/26/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Hepatitis delta virus (HDV) and Hepatitis B virus (HBV) co-infection is well known to induce a spectrum of acute and chronic liver diseases which further advance to cirrhosis, fulminant hepatitis and hepatocellular carcinoma (HCC). AIM The aim of the present study was to determine the prevalence of hepatitis D virus super-infection among hepatitis B surface antigen (HBsAg) positive individuals in the highly populated province of Pakistan which is not well known. METHODS Sera samples were subjected to HBsAg and anti-HDV screening and finally anti-HDV and HBsAg positive coinfected samples were used for HDV active RNA confirmation using nested polymerase chain reaction (PCR). RESULTS Out of total 200 HBsAg positive samples by rapid device, 96 (48%) were also found reactive for HBsAg using enzyme linked immunosorbant assay (ELISA). Out of these HBsAg ELISA positive samples, 80 (88.8%) were anti-HDV ELISA positive which were then subjected to PCR. The amplification results further confirmed 24 (30%) samples to be HDV RNA positive. HDV super-infection was more common in male patients than female patients (81% VS 19%). CONCLUSION The current study shows a high prevalence rate of HDV-HBV co-infection in Pakistan that tends to increase over time.
Collapse
Affiliation(s)
- Gulshan Zaidi
- Department of Biotechnology, University of The Lahore, 1-KM Raiwind Road, Lahore, Pakistan
| | - Muhammad Idrees
- Division of Molecular Virology, National Centre of Excellence in Molecular Biology, University of the Punjab 87-West Canal Bank Road Thokar Niaz Baig, Lahore, Pakistan
| | - Fayyaz Ahmed Malik
- Department of Pathology, Independent Medical College, Faisalabad, Pakistan
| | - Irum Amin
- Division of Molecular Virology, National Centre of Excellence in Molecular Biology, University of the Punjab 87-West Canal Bank Road Thokar Niaz Baig, Lahore, Pakistan
| | - Muhammad Shahid
- Division of Molecular Virology, National Centre of Excellence in Molecular Biology, University of the Punjab 87-West Canal Bank Road Thokar Niaz Baig, Lahore, Pakistan
| | - Saima Younas
- Division of Molecular Virology, National Centre of Excellence in Molecular Biology, University of the Punjab 87-West Canal Bank Road Thokar Niaz Baig, Lahore, Pakistan
| | - Rashid Hussain
- Department of Biotechnology, University of The Lahore, 1-KM Raiwind Road, Lahore, Pakistan
| | - Zunaira Awan
- Division of Molecular Virology, National Centre of Excellence in Molecular Biology, University of the Punjab 87-West Canal Bank Road Thokar Niaz Baig, Lahore, Pakistan
| | - Aaliyah Tariq
- Division of Molecular Virology, National Centre of Excellence in Molecular Biology, University of the Punjab 87-West Canal Bank Road Thokar Niaz Baig, Lahore, Pakistan
| | - Khalida Parveen
- Department of Biotechnology, University of The Lahore, 1-KM Raiwind Road, Lahore, Pakistan
| |
Collapse
|
25
|
de Sousa BC, Cunha C. Development of mathematical models for the analysis of hepatitis delta virus viral dynamics. PLoS One 2010; 5:e12512. [PMID: 20862328 PMCID: PMC2940762 DOI: 10.1371/journal.pone.0012512] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 08/09/2010] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mathematical models have shown to be extremely helpful in understanding the dynamics of different virus diseases, including hepatitis B. Hepatitis D virus (HDV) is a satellite virus of the hepatitis B virus (HBV). In the liver, production of new HDV virions depends on the presence of HBV. There are two ways in which HDV can occur in an individual: co-infection and super-infection. Co-infection occurs when an individual is simultaneously infected by HBV and HDV, while super-infection occurs in persons with an existing chronic HBV infection. METHODOLOGY/PRINCIPAL FINDINGS In this work a mathematical model based on differential equations is proposed for the viral dynamics of the hepatitis D virus (HDV) across different scenarios. This model takes into consideration the knowledge of the biology of the virus and its interaction with the host. In this work we will present the results of a simulation study where two scenarios were considered, co-infection and super-infection, together with different antiviral therapies. Although, in general the predicted course of HDV infection is similar to that observed for HBV, we observe a faster increase in the number of HBV infected cells and viral load. In most tested scenarios, the number of HDV infected cells and viral load values remain below corresponding predicted values for HBV. CONCLUSIONS/SIGNIFICANCE The simulation study shows that, under the most commonly used and generally accepted therapy approaches for HDV infection, such as lamivudine (LMV) or ribavirine, peggylated alpha-interferon (IFN) or a combination of both, LMV monotherapy and combination therapy of LMV and IFN were predicted to more effectively reduce the HBV and HDV viral loads in the case of super-infection scenarios when compared with the co-infection. In contrast, IFN monotherapy was found to reduce the HDV viral load more efficiently in the case of super-infection while the effect on the HBV viral load was more pronounced during co-infection. The results suggest that there is a need for development of high efficacy therapeutic approaches towards the specific inhibition of HDV replication. These approaches may additionally be directed to the reduction of the half-life of infected cells and life-span of newly produced circulating virions.
Collapse
Affiliation(s)
- Bruno C de Sousa
- Centre for Malaria and Tropical Diseases, Associated Laboratory, Unit of Epidemiology and Biostatistics, Instituto de Higiene e Medicina Tropical-Universidade Nova de Lisboa, Lisbon, Portugal.
| | | |
Collapse
|
26
|
Shih HH, Shih C, Wang HW, Su CW, Sheen IJ, Wu JC. Pro-205 of large hepatitis delta antigen and Pro-62 of major hepatitis B surface antigen influence the assembly of different genotypes of hepatitis D virus. J Gen Virol 2009; 91:1004-12. [PMID: 19940060 DOI: 10.1099/vir.0.017541-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatitis B surface antigen (HBsAg) is essential for the assembly and infection of hepatitis D virus (HDV). The assembly efficiency of genotype 1 HDV is higher than that of genotype 2, whilst the P62L substitution of major HBsAg further compromises the assembly of genotype 2 and 4 HDV. This study investigated the influence of proline residues in the carboxyl end of the large hepatitis delta antigen (HDAg-L) on the assembly of HDV of different genotypes. Expression vectors containing the HDAg-L gene or full-length HDV genome of genotype 1, 2 or 4 were co-transfected with plasmids expressing HBsAg proteins that bore either proline or leucine residues at position 62. Of the eight HDV genotypes, only genotype 1 has Pro-205 in HDAg-L, whereas genotypes 2 and 4 have Arg-205. The Arg-205 to Pro-205 substitution in HDV-2 and -4 markedly increased the assembly efficiencies of HDAg-L and whole HDV genomes, even in the presence of HBsAg with Leu-62. In contrast, secretion of genotype 1 HDV or HDAg-L was reduced significantly when arginine or alanine replaced Pro-205. When HBsAg contained Pro-62, the influence of Pro-205 on assembly decreased. In conclusion, both Pro-205 of the HDAg-L and Pro-62 of the major HBsAg play critical roles in the assembly of HDV of different genotypes. The presence of Pro-205 in genotype 1 HDV may account for its higher assembly efficiencies and wider distribution.
Collapse
Affiliation(s)
- Hsuan Hui Shih
- Department of Medical Research and Education, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
27
|
Mota S, Mendes M, Freitas N, Penque D, Coelho AV, Cunha C. Proteome analysis of a human liver carcinoma cell line stably expressing hepatitis delta virus ribonucleoproteins. J Proteomics 2008; 72:616-27. [PMID: 19136081 DOI: 10.1016/j.jprot.2008.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 12/03/2008] [Accepted: 12/04/2008] [Indexed: 01/26/2023]
Abstract
Hepatitis delta virus (HDV) infects human hepatocytes already infected with the hepatitis B virus increasing about ten fold the risk of cirrhosis and fulminant hepatitis. The lack of an appropriate cell culture system capable of supporting virus replication has so far impaired the detailed investigation of the HDV biology including the identification of host factors involved in pathogenesis. Here, we made use of a HDV cDNA stably transfected cell line, Huh7-D12, in a proteomic approach to identify the changes in the protein expression profiles in human liver cells that arise as a consequence of HDV replication. Total protein extracts from Huh7-D12 cells and of the corresponding non transfected human liver carcinoma cell line, Huh7, were separated by 2-DE. Differentially expressed spots were identified by MALDI-TOF followed by database searching. We identified 23 differentially expressed proteins of which 15 were down regulated and 8 up regulated in Huh7-D12 cells. These proteins were found to be involved in different cellular pathways. The down regulation of the histone H1-binding protein and of triosephosphate isomerase was confirmed by Real time PCR, and the up regulation of the La protein and lamin A/C was validated by western blot.
Collapse
Affiliation(s)
- Sérgio Mota
- Unidade de Biologia Molecular, Centro de Malária e outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Rua da Junqueira 96, Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Motard J, Bolduc F, Thompson D, Perreault JP. The peach latent mosaic viroid replication initiation site is located at a universal position that appears to be defined by a conserved sequence. Virology 2008; 373:362-75. [PMID: 18190946 DOI: 10.1016/j.virol.2007.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 11/18/2007] [Accepted: 12/10/2007] [Indexed: 10/22/2022]
Abstract
Viroids replicate through a rolling circle mechanism that is exclusively RNA dependent. In this study, we initially revisited the determination of the replication initiation sites of peach latent mosaic viroid (PLMVd). A universal initiation site for each of the PLMVd polarities (position A50/C51 and U284 for the plus and minus strands, respectively) that is shared by a relatively wide repertoire of viroid variants was identified, in agreement with a previous report based on a different methodology. Subsequently, an in vitro selection procedure based on a model rolling circle replication assay was developed. This latter experiment led to the identification of a highly conserved CAGACG box which is reminiscent of the sequence found in the vicinity of the PLMVd initiation sites. The conserved sequence contributes to delineating the initiation site and provides an explanation for the presence of a specific universal initiation site on the PLMVd molecule.
Collapse
Affiliation(s)
- Julie Motard
- RNA group/Groupe ARN, Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Quebec, Canada J1H 5N4.
| | | | | | | |
Collapse
|
30
|
Changes in the proteome of Huh7 cells induced by transient expression of hepatitis D virus RNA and antigens. J Proteomics 2008; 71:71-9. [PMID: 18541475 DOI: 10.1016/j.jprot.2007.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 12/13/2007] [Accepted: 12/14/2007] [Indexed: 02/06/2023]
Abstract
Hepatitis delta virus (HDV) infection of human hepatocytes infected with the hepatitis B virus (HBV) is associated with increased liver damage and risk of fulminant disease. Although considerable progress has been made towards the elucidation of the mechanisms of HDV replication and pathogenesis, little is still known about the host factors involved in the different steps of the replication cycle. Here, we made use of a proteomic approach to analyse the global alterations in protein expression that arise in human hepatocytes separately transfected with each of the HDV components. Huh7 cells were transiently transfected with plasmids that code for the small delta antigen (S-HDAg), large delta antigen (L-HDAg), genomic RNA (gRNA), and antigenomic RNA (agRNA), respectively. Total protein extracts were separated by 2-DE and differentially expressed spots were identified by MALDI-TOF followed by database searching. We identified 32 proteins known to be involved in different pathways namely nucleic acid metabolism, protein metabolism, transport, signal transduction, apoptosis, and cell growth. Moreover, the down regulation of hnRNP D, HSP105, and triosephosphate isomerase was further confirmed by Real time PCR.
Collapse
|
31
|
Quer J, Martell M, Rodriguez F, Bosch A, Jardi R, Buti M, Esteban J. The Impact of Rapid Evolution of Hepatitis Viruses. ORIGIN AND EVOLUTION OF VIRUSES 2008:303-349. [DOI: 10.1016/b978-0-12-374153-0.00015-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
32
|
Molecular basis of RNA-dependent RNA polymerase II activity. Nature 2007; 450:445-9. [PMID: 18004386 DOI: 10.1038/nature06290] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 09/21/2007] [Indexed: 12/28/2022]
Abstract
RNA polymerase (Pol) II catalyses DNA-dependent RNA synthesis during gene transcription. There is, however, evidence that Pol II also possesses RNA-dependent RNA polymerase (RdRP) activity. Pol II can use a homopolymeric RNA template, can extend RNA by several nucleotides in the absence of DNA, and has been implicated in the replication of the RNA genomes of hepatitis delta virus (HDV) and plant viroids. Here we show the intrinsic RdRP activity of Pol II with only pure polymerase, an RNA template-product scaffold and nucleoside triphosphates (NTPs). Crystallography reveals the template-product duplex in the site occupied by the DNA-RNA hybrid during transcription. RdRP activity resides at the active site used during transcription, but it is slower and less processive than DNA-dependent activity. RdRP activity is also obtained with part of the HDV antigenome. The complex of transcription factor IIS (TFIIS) with Pol II can cleave one HDV strand, create a reactive stem-loop in the hybrid site, and extend the new RNA 3' end. Short RNA stem-loops with a 5' extension suffice for activity, but their growth to a critical length apparently impairs processivity. The RdRP activity of Pol II provides a missing link in molecular evolution, because it suggests that Pol II evolved from an ancient replicase that duplicated RNA genomes.
Collapse
|
33
|
Behzadian F, Sabahi F, Sadeghizadeh M, Maghsoudi N, Fotouhi F, Chahooki FF, Karimi M. In vitro replication of hepatitis D virus using a new construct containing a cDNA dimer of HDV genome. Intervirology 2007; 50:387-93. [PMID: 17975319 DOI: 10.1159/000110650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Accepted: 08/02/2007] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND There is no cell line susceptible to hepatitis D virus (HDV) infection and capable of stable replication of its genome. Different genetic-based approaches have been introduced to initiate HDV replication events so far. METHODS In order to construct a replicative model for HDV made from a unique genome sequence, two monomeric units of HDV full-length cDNA were joined together through a four-step cloning scheme. The resulting vector (pcDNA3.1-D2) containing two tandem repeats of HDV cDNA under CMV promoter control was then used in transfection experiments into COS7 and HuH7 cell lines. RESULTS HDV replication markers including expression of hepatitis delta antigen (HDAg), the only HDV-specific antigen, and synthesis of antigenomic RNA were shown in both transfected cell lines, indicating initiation of HDV genome replication. CONCLUSIONS Our results suggested that pcDNA3.1-D2, a vector containing a cDNA dimer of the HDV genome, originated from a unique full-length HDV molecule that is capable of replicating in cultured cells. This vector can be used conveniently for transfection experiments to study HDV molecular biology.
Collapse
Affiliation(s)
- Farida Behzadian
- Department of Virology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
34
|
Alves C, Freitas N, Cunha C. Characterization of the nuclear localization signal of the hepatitis delta virus antigen. Virology 2007; 370:12-21. [PMID: 17897693 DOI: 10.1016/j.virol.2007.07.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 06/05/2007] [Accepted: 07/31/2007] [Indexed: 12/18/2022]
Abstract
The delta antigen (HDAg) is the only protein encoded by the hepatitis delta virus (HDV) RNA genome. The HDAg contains an RNA binding domain, a dimerization domain, and a nuclear localization signal (NLS). The nuclear import of HDV RNPs is thought to be one of the first tasks of the HDAg during the HDV replication cycle. Using c-myc-PK fusions with several regions of the HDAg in transfection assays in Huh7 cells, we found that the HDAg NLS consists of a single stretch of 10 amino acids, EGAPPAKRAR, located in positions 66-75. Deletion and mutation analysis of this region showed that both the acidic glutamic acid residue at position 66 and the basic arginine residue at position 75 are essential for promoting nuclear import.
Collapse
Affiliation(s)
- Carolina Alves
- Unidade de Biologia Molecular, Centro de Malária e Outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira, 96 1349-008 Lisboa, Portugal
| | | | | |
Collapse
|
35
|
Abstract
The hammerhead ribozyme from Schistosoma mansoni is the best characterized of the natural hammerhead ribozymes. Biophysical, biochemical, and structural studies have shown that the formation of the loop-loop tertiary interaction between stems I and II alters the global folding, cleavage kinetics, and conformation of the catalytic core of this hammerhead, leading to a ribozyme that is readily cleaved under physiological conditions. This study investigates the ligation kinetics and the internal equilibrium between cleavage and ligation for the Schistosoma hammerhead. Single turnover kinetic studies on a construct where the ribozyme cleaves and ligates substrate(s) in trans showed up to 23% ligation when starting from fully cleaved products. This was achieved by an approximately 2000-fold increase in the rate of ligation compared to a minimal hammerhead without the loop-loop tertiary interaction, yielding an internal equilibrium that ranges from 2 to 3 at physiological Mg2+ ion concentrations (0.1-1 mM). Thus, the natural Schistosoma hammerhead ribozyme is almost as efficient at ligation as it is at cleavage. The results here are consistent with a model where formation of the loop-loop tertiary interaction leads to a higher population of catalytically active molecules and where formation of this tertiary interaction has a much larger effect on the ligation than the cleavage activity of the Schistosoma hammerhead ribozyme.
Collapse
Affiliation(s)
| | | | - Arthur Pardi
- To whom correspondence should be addressed. , Department of Chemistry and Biochemistry, 215 UCB, University of Colorado, Boulder, CO, 80309. Phone (303) 492-6263. Fax (303) 492-2439
| |
Collapse
|
36
|
Wang SY, Wu JC, Chiang TY, Huang YH, Su CW, Sheen IJ. Positive selection of hepatitis delta antigen in chronic hepatitis D patients. J Virol 2007; 81:4438-44. [PMID: 17301143 PMCID: PMC1900184 DOI: 10.1128/jvi.02847-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Liver disease may become ameliorated in some patients with chronic hepatitis D virus (HDV) infection. We present here a study based on longitudinal sampling to investigate the viral dynamics in chronic HDV infection. We examined the HDV variants from different time points, especially those before and after the elevation of serum aminotransferase levels. The datasets from each patient were tested for positive selection by using maximum-likelihood methods with heterogeneous selective pressures along the nucleotide sequence. An average of 4.9%, ranging from 3.1 to 6.8%, of the entire delta antigen sites was regulated by a diversifying selection. Most of the positively selected sites were associated with immunogenic domains. Likelihood ratio tests revealed a significant fitness of positive selection over neutrality of the hepatitis delta antigen gene in all patients. We further adapted a neural network method to predict potential cytotoxic T ligand epitopes. Among the HLA-A*0201 cytotoxic T ligand epitopes, three consistent epitopes across all three genotypes were identified: amino acids (aa) 43 to 51, 50 to 58, and 114 to 122. Three patients (60%) had sites evolving under positive selection in the epitope from aa 43 to 51, and four patients (80%) had sites evolving under positive selection in the epitope from aa 114 to 122. The discovery of immunogenic epitopes, especially cytotoxic-T-lymphocyte ligands, associated with chronic HDV infection may be crucial for further development of novel treatments or designs in vaccine for HDV superinfection.
Collapse
Affiliation(s)
- Shen-Yung Wang
- Department of Medical Research and Education, Taipei Veterans General Hospital, 201 Shih-Pai Road, Sec. 2, Taipei 11217, Taiwan
| | | | | | | | | | | |
Collapse
|
37
|
Toth AM, Zhang P, Das S, George CX, Samuel CE. Interferon action and the double-stranded RNA-dependent enzymes ADAR1 adenosine deaminase and PKR protein kinase. ACTA ACUST UNITED AC 2007; 81:369-434. [PMID: 16891177 DOI: 10.1016/s0079-6603(06)81010-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ann M Toth
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106, USA
| | | | | | | | | |
Collapse
|
38
|
Ding B, Itaya A. Viroid: a useful model for studying the basic principles of infection and RNA biology. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:7-20. [PMID: 17249418 DOI: 10.1094/mpmi-20-0007] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Viroids are small, circular, noncoding RNAs that currently are known to infect only plants. They also are the smallest self-replicating genetic units known. Without encoding proteins and requirement for helper viruses, these small RNAs contain all the information necessary to mediate intracellular trafficking and localization, replication, systemic trafficking, and pathogenicity. All or most of these functions likely result from direct interactions between distinct viroid RNA structural motifs and their cognate cellular factors. In this review, we discuss current knowledge of these RNA motifs and cellular factors. An emerging theme is that the structural simplicity, functional versatility, and experimental tractability of viroid RNAs make viroid-host interactions an excellent model to investigate the basic principles of infection and further the general mechanisms of RNA-templated replication, intracellular and intercellular RNA trafficking, and RNA-based regulation of gene expression. We anticipate that significant advances in understanding viroid-host interactions will be achieved through multifaceted secondary and tertiary RNA structural analyses in conjunction with genetic, biochemical, cellular, and molecular tools to characterize the RNA motifs and cellular factors associated with the processes leading to systemic infection.
Collapse
Affiliation(s)
- Biao Ding
- Department of Plant Cellular and Molecular Biology, Plant Biotechnology Center, Ohio State University, 207 Rightmire Hall, 1060 Carmack Road, Columbus 43210, USA.
| | | |
Collapse
|
39
|
Coupling of transcription termination to RNAi. J Theor Biol 2006; 245:278-89. [PMID: 17157879 DOI: 10.1016/j.jtbi.2006.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2006] [Revised: 10/21/2006] [Accepted: 10/25/2006] [Indexed: 11/28/2022]
Abstract
In metazoans, the mechanisms of transcriptional termination by RNA polymerase II (Pol II) and accelerated decay of messenger RNA (mRNA) following transcription shutdown are linked by sharing the same sequence elements and mRNA elongation, processing and termination factors. This begs the question, how could one process have two opposite outcomes, making or degrading mRNA? An integrated "allosteric-GENEi-torpedo" model that could explain this paradox predicts participation of two novel factors: (1) An allosteric factor, regulated by a physiological repressor, binds to a unique sequence element of a gene near the site of cleavage and polyadenylation, poly(A) site, and acts on the homologous site on the nascent transcript to cause its cleavage. The conformational changes of this factor determine the fate of nascent RNA, either to get cleaved and processed to mature mRNA for directing protein synthesis, or not to get cleaved and become template for double-stranded (ds) RNA synthesis. (2) A general transcription termination factor, recruited by transcribing Pol II at the poly(A) site, allostrically alters and induces Pol II to switch template from DNA to nascent RNA several hundred nucleotides downstream of the poly(A) site. The template switch disengages Pol II from DNA and effectively terminates transcription. The Pol II with newly acquired RNA-dependent RNA polymerase activity retraces its path, back along the nascent RNA, so generating dsRNA. The extent to which it can retrace this path is determined by the factors influencing the cleavage of the pre-mRNA at the site of polyA addition. If cleavage and polyadenylation occur, the retracing is cut short, the 3' RNA is degraded by an exonuclease and the polymerase is liberated to reinitiate transcription. If the cleavage is inhibited, then a full-length dsRNA can be produced. This can then be subject to cleavage by "Dicer", which generates fragments of approximately 22bp that guide degradation of the cognate mRNA via the RNA interference (RNAi) pathway. This model complements the current "allosteric-torpedo" model of transcription termination, and could explain the apparent paradox of the divergent results of a common biological process.
Collapse
|
40
|
Protein Prenylation: An (Almost) Comprehensive Overview on Discovery History, Enzymology, and Significance in Physiology and Disease. MONATSHEFTE FUR CHEMIE 2006. [DOI: 10.1007/s00706-006-0534-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
41
|
Wu JC. Functional and clinical significance of hepatitis D virus genotype II infection. Curr Top Microbiol Immunol 2006; 307:173-86. [PMID: 16903226 DOI: 10.1007/3-540-29802-9_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hepatitis D virus (HDV) infection is one of the important etiologies of fulminant hepatitis and may aggravate the clinical course of chronic HBV infection to cirrhosis and liver failure. HDV was classified into three genotypes. Recent molecular phylogenetic analysis of HDV suggests at least seven major clades. The genotype I HDV is widely spread, genotype II is found in East Asia and genotype III HDV is prevalent in South America. The genomic size is 1682-1685 nucleotides (nt) for genotype II, and 1676 nt for genotype IV (IIb). The divergence in HDV nucleic acid sequences between genotype II and other genotypes varies from 13.8% to 35.3%. The divergences in the HDAg-coding region may range from 17.8% to 29.8% between genotype II and other genotypes. There is no genotypic or size restriction on the interactions of either the small or the large hepatitis delta antigens (HDAgs) between genotypes I and II, and there is also no genotypic incompatibility during co-package of HDAgs of different genotypes into virus like particles. There appears no apparent universal genotypic restriction of the transactivation of genotype I HDV RNA replication by small HDAg of genotype II. In contrast, there appears more genotypic restriction for genotype I small HDAgs to transactivate genotype II HDV RNA replication. Of the functional domains of HDAg, the 19 amino acids at the carboxyl-end of the large HDAg show the greatest divergences (70%-80%) between genotypes I and II. The viral packaging efficiencies of genotype I HDV isolates are usually higher than those of genotype II. The 19 amino acids at the carboxyl-end seem to be the most important determinant for viral packaging efficiencies. The editing efficiencies of the genotype I HDV are also higher than those of the genotype II. Genotype II HDV infection is relatively less frequently associated with fulminant hepatitis at the acute stage and less unfavorable outcomes [cirrhosis or hepatocellular carcinoma (HCC)] at the chronic stage as compared to genotype I. It appears that the clinical manifestations and outcomes of patients with genotype IV (IIb) HDV infection are more like those of patients with genotype II HDV infection. Persistent replication of HBV or HDV was associated with higher adverse outcomes (cirrhosis, HCC or mortality) compared to those who cleared both viruses from the sera. HBV of the genotype C is also a significant factor associated with adverse outcomes (cirrhosis, HCC or mortality) in patients with chronic hepatitis D in addition to genotype I HDV and age. However, most patients with chronic HDV infection have low or undetectable hepatitis B virus DNA levels. During longitudinal follow-up, genotype I HDV is the most important determinant associated with survival.
Collapse
Affiliation(s)
- J C Wu
- Department of Medical Research and Education, Institute of Clinical Medicine, Taipei Veterans General Hospital, National Yang-Ming University, Taiwan.
| |
Collapse
|
42
|
Abstract
While this volume covers many different aspects of hepatitis delta virus (HDV) replication, the focus in this chapter is on studies of the structure and replication of the HDV RNA genome. An evaluation of such studies is not only an integral part of our understanding of HDV infections but it also sheds new light on some important aspects of cell biology, such as the fidelity of RNA transcription by a host RNA polymerase and on various forms of post-transcriptional RNA processing. Representations of the replication of the RNA genome are frequently simplified to a form of rolling-circle model, analogous to what have been described for plant viroids. One theme of this review is that such models, even after some revision, deceptively simplify the complexity of HDV replication and can fail to make clear major questions yet to be solved.
Collapse
Affiliation(s)
- J M Taylor
- Fox Chase Cancer Center, Philadelphia, PA 19111-2497, USA.
| |
Collapse
|
43
|
Zhong X, Leontis N, Qian S, Itaya A, Qi Y, Boris-Lawrie K, Ding B. Tertiary structural and functional analyses of a viroid RNA motif by isostericity matrix and mutagenesis reveal its essential role in replication. J Virol 2006; 80:8566-81. [PMID: 16912306 PMCID: PMC1563885 DOI: 10.1128/jvi.00837-06] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2006] [Accepted: 06/19/2006] [Indexed: 02/07/2023] Open
Abstract
RNA-templated RNA replication is essential for viral or viroid infection, as well as for regulation of cellular gene expression. Specific RNA motifs likely regulate various aspects of this replication. Viroids of the Pospiviroidae family, as represented by the Potato spindle tuber viroid (PSTVd), replicate in the nucleus by utilizing DNA-dependent RNA polymerase II. We investigated the role of the loop E (sarcin/ricin) motif of the PSTVd genomic RNA in replication. A tertiary-structural model of this motif, inferred by comparative sequence analysis and comparison with nuclear magnetic resonance and X-ray crystal structures of loop E motifs in other RNAs, is presented in which core non-Watson-Crick base pairs are precisely specified. Isostericity matrix analysis of these base pairs showed that the model accounts for the reported natural sequence variations and viable experimental mutations in loop E motifs of PSTVd and other viroids. Furthermore, isostericity matrix analysis allowed us to design disruptive, as well as compensatory, mutations of PSTVd loop E. Functional analyses of such mutants by in vitro and in vivo experiments demonstrated that loop E structural integrity is crucial for replication, specifically during transcription. Our results suggest that the PSTVd loop E motif exists and functions in vivo and provide loss-of-function genetic evidence for the essential role of a viroid RNA three-dimensional motif in rolling-circle replication. The use of isostericity matrix analysis of non-Watson-Crick base pairing to rationalize mutagenesis of tertiary motifs and systematic in vitro and in vivo functional assays of mutants offers a novel, comprehensive approach to elucidate the tertiary-structure-function relationships for RNA motifs of general biological significance.
Collapse
Affiliation(s)
- Xuehua Zhong
- Department of Plant Cellular and Molecular Biology, Ohio State University, Columbus, 43210, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Huang IC, Chien CY, Huang CR, Lo SJ. Induction of hepatitis D virus large antigen translocation to the cytoplasm by hepatitis B virus surface antigens correlates with endoplasmic reticulum stress and NF-kappaB activation. J Gen Virol 2006; 87:1715-1723. [PMID: 16690938 DOI: 10.1099/vir.0.81718-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
It is known that hepatitis D virus (HDV) requires hepatitis B virus (HBV) for supplying envelope proteins (HBsAgs) to produce mature virions, and the HDV large antigen (LDAg) is responsible for interacting with HBsAgs. However, the signal molecules involved in the cross-talk between HBsAgs and LDAg have never been reported. It has been previously demonstrated that the small form of HBsAg can facilitate the translocation of HDV large antigen green fluorescent protein (GFP) fusion protein (GFP-LD) from the nucleus to the cytoplasm. In this study, it was confirmed that the small form of HBsAg can facilitate both GFP-LD and authentic LDAg for nuclear export. It was also shown that the three forms of HBsAgs (large, middle and small) induced various rates (from 35.4 to 57.2%) of GFP-LD nuclear export. Since HBsAgs are localized inside the endoplasmic reticulum (ER), this suggests that ER stress possibly initiates the signal for inducing LDAg translocation. This supposition is supported by results that show that around 9% of cells appear with GFP-LD in the cytoplasm after treatment with the ER stress inducers, brefeldin A (BFA) and tunicamycin, in the absence of HBsAg. Western blot and immunofluorescence microscopy results further showed that the activation of NF-kappaB is linked to the ER stress that induces GFP-LD translocation. Combining this with results showing that tumour necrosis factor alpha (TNF-alpha) can also induce GFP-LD translocation, it was concluded that LDAg translocation correlates with ER stress and activation of NF-kappaB. Nevertheless, TNF-alpha-induced GFP-LD translocation was independent of new protein synthesis, suggesting that a post-translational event occurs to GFP-LD to allow translocation.
Collapse
Affiliation(s)
- I-Cheng Huang
- Department of Microbiology and Immunology, Chang Gung University, Tao-Yuan, Taiwan 333, Republic of China
| | - Chia-Ying Chien
- Department of Microbiology and Immunology, Chang Gung University, Tao-Yuan, Taiwan 333, Republic of China
| | - Chi-Ruei Huang
- Graduate Institute of Biomedical Sciences and Department of Life Science, Chang Gung University, Tao-Yuan, Taiwan 333, Republic of China
| | - Szecheng J Lo
- Graduate Institute of Biomedical Sciences and Department of Life Science, Chang Gung University, Tao-Yuan, Taiwan 333, Republic of China
- Department of Microbiology and Immunology, Chang Gung University, Tao-Yuan, Taiwan 333, Republic of China
| |
Collapse
|
45
|
Rocheleau L, Pelchat M. The Subviral RNA Database: a toolbox for viroids, the hepatitis delta virus and satellite RNAs research. BMC Microbiol 2006; 6:24. [PMID: 16519798 PMCID: PMC1413538 DOI: 10.1186/1471-2180-6-24] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Accepted: 03/06/2006] [Indexed: 12/11/2022] Open
Abstract
Background Viroids, satellite RNAs, satellites viruses and the human hepatitis delta virus form the 'brotherhood' of the smallest known infectious RNA agents, known as the subviral RNAs. For most of these species, it is generally accepted that characteristics such as cell movement, replication, host specificity and pathogenicity are encoded in their RNA sequences and their resulting RNA structures. Although many sequences are indexed in publicly available databases, these sequence annotation databases do not provide the advanced searches and data manipulation capability for identifying and characterizing subviral RNA motifs. Description The Subviral RNA database is a web-based environment that facilitates the research and analysis of viroids, satellite RNAs, satellites viruses, the human hepatitis delta virus, and related RNA sequences. It integrates a large number of Subviral RNA sequences, their respective RNA motifs, analysis tools, related publication links and additional pertinent information (ex. links, conferences, announcements), allowing users to efficiently retrieve and analyze relevant information about these small RNA agents. Conclusion With its design, the Subviral RNA Database could be considered as a fundamental building block for the study of these related RNAs. It is freely available via a web browser at the URL: .
Collapse
Affiliation(s)
- Lynda Rocheleau
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Martin Pelchat
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| |
Collapse
|
46
|
Bielawski KP, Zietkowski D, Charmuszko U, Sikorska K, Stalke P. Hepatitis delta virus infection in chronically HBV-infected patients from northern Poland. Arch Virol 2006; 151:1207-15. [PMID: 16385395 DOI: 10.1007/s00705-005-0700-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Accepted: 11/25/2005] [Indexed: 12/18/2022]
Abstract
The objective of this study was to estimate the presence of hepatitis delta virus RNA in chronically HBV-infected patients from northern Poland. Three out of 63 studied samples (4.8%) were positive in a qualitative test for total antibodies to HDV antigen. Five samples (7.9%) turned out to be HDV-RNA-positive by RT-PCR, four of them were sequenced in the region of L-HDAg, and phylogenetic analysis was performed. All four examined samples belonged to genotype I. Two RNA-positive/anti-HD-negative samples possessed a few uncommon nucleotide substitution sites within the L-HDAg sequence, which could suggest unique variants in the Polish population of HDV-infected patients.
Collapse
Affiliation(s)
- K P Bielawski
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland.
| | | | | | | | | |
Collapse
|
47
|
Rizzetto M. Hepatitis D. ZAKIM AND BOYER'S HEPATOLOGY 2006:687-692. [DOI: 10.1016/b978-1-4160-3258-8.50038-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
48
|
Abstract
Ever since the first outbreaks of hepatitis in hemodialysis units in the late 1960s, a number of hepatotropic viruses transmitted by blood and other body fluids have been identified. This review summarizes the current state of knowledge regarding these blood-borne agents from an epidemiologic and preventive perspective. Data source and study selection were obtained from research and review articles related to the epidemiology of viral hepatitis in hemodialysis and indexed on Medline and Embase from 1965 to 2004. Hepatitis B virus (HBV) was the first significant hepatotropic virus to be identified in hemodialysis centers. HBV infection has been effectively controlled by active vaccination, screening of blood donors, the use of erythropoietin, and segregation of HBV carriers. To date, HBV remains an important cause of morbidity in endemic areas. Hepatitis delta virus is a defective virus that can only infect HBV-positive individuals. Hepatitis C virus is the most significant cause of non-A, non-B hepatitis and is mainly transmitted by blood transfusion. The introduction in 1990 of routine screening of blood donors for HCV contributed significantly to the control of HCV transmission. An effective HCV vaccine remains an unsolved challenge, however. Pegylation of interferon-alpha has made it possible to treat HCV-positive dialysis patients. Unexplained sporadic outbreaks of hepatitis by the mid-1990s prompted the discovery of hepatitis G virus and hepatitis GB virus C in 1995 and the TT virus in 1997. Although epidemiologic analyses revealed high prevalence rates of both viruses in the hemodialysis population, their exact role in liver disease has yet to be determined. The vigilant observation of guidelines on universal precaution and regular virologic testing are the cornerstones of the effective control of chronic hepatitis in the setting of hemodialysis.
Collapse
MESH Headings
- Antiviral Agents/therapeutic use
- Chronic Disease
- Hepatitis, Viral, Human/epidemiology
- Hepatitis, Viral, Human/etiology
- Hepatitis, Viral, Human/prevention & control
- Hepatitis, Viral, Human/therapy
- Humans
- Kidney Failure, Chronic/complications
- Kidney Failure, Chronic/therapy
- Renal Dialysis/adverse effects
- Viral Hepatitis Vaccines/therapeutic use
Collapse
Affiliation(s)
- Sydney Tang
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong
| | | |
Collapse
|
49
|
Ivanovska I, Hardwick JM. Viruses activate a genetically conserved cell death pathway in a unicellular organism. ACTA ACUST UNITED AC 2005; 170:391-9. [PMID: 16061692 PMCID: PMC2171480 DOI: 10.1083/jcb.200503069] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Given the importance of apoptosis in the pathogenesis of virus infections in mammals, we investigated the possibility that unicellular organisms also respond to viral pathogens by activating programmed cell death. The M1 and M2 killer viruses of Saccharomyces cerevisiae encode pore-forming toxins that were assumed to kill uninfected yeast cells by a nonprogrammed assault. However, we found that yeast persistently infected with these killer viruses induce a programmed suicide pathway in uninfected (nonself) yeast. The M1 virus-encoded K1 toxin is primarily but not solely responsible for triggering the death pathway. Cell death is mediated by the mitochondrial fission factor Dnm1/Drp1, the K+ channel Tok1, and the yeast metacaspase Yca1/Mca1 encoded by the target cell and conserved in mammals. In contrast, cell death is inhibited by yeast Fis1, a pore-forming outer mitochondrial membrane protein. This virus-host relationship in yeast resembles that of pathogenic human viruses that persist in their infected host cells but trigger programmed death of uninfected cells.
Collapse
Affiliation(s)
- Iva Ivanovska
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
50
|
Chang J, Gudima SO, Tarn C, Nie X, Taylor JM. Development of a novel system to study hepatitis delta virus genome replication. J Virol 2005; 79:8182-8. [PMID: 15956563 PMCID: PMC1143748 DOI: 10.1128/jvi.79.13.8182-8188.2005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hepatitis delta virus (HDV) genome replication requires the virus-encoded small delta protein (deltaAg). During replication, nucleotide sequence changes accumulate on the HDV RNA, leading to the translation of deltaAg species that are nonfunctional or even inhibitory. A replication system was devised where all deltaAg was conditionally provided from a separate and unchanging source. A line of human embryonic kidney cells was stably transfected with a single copy of cDNA encoding small deltaAg, with expression under tetracycline (TET) control. Next, HDV genome replication was initiated in these cells by transfection with a mutated RNA unable to express deltaAg. Thus, replication of this RNA was under control of the TET-inducible deltaAg. In the absence of TET, there was sufficient deltaAg to allow a low level of HDV replication that could be maintained for at least 1 year. When TET was added, both deltaAg and genomic RNA increased dramatically within 2 days. With clones of such cells, designated 293-HDV, the burst of HDV RNA replication interfered with cell cycling. Within 2 days, there was a fivefold enhancement of G1/G0 cells relative to both S and G2/M cells, and by 6 days, there was extensive cell detachment and death. These findings and those of other studies that are under way demonstrate the potential applications of this experimental system.
Collapse
Affiliation(s)
- Jinhong Chang
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, Pennsylvania 19111-2497, USA
| | | | | | | | | |
Collapse
|