1
|
Schallmoser A, Emrich N, Einenkel R, Sänger N. Explorative 3-D culture of early secondary follicles in a time lapse system for up to 36 days gives valuable, but limited insights in follicular development. Placenta 2025; 164:50-63. [PMID: 40127611 DOI: 10.1016/j.placenta.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 02/10/2025] [Accepted: 03/10/2025] [Indexed: 03/26/2025]
Abstract
BACKGROUND Cryopreservation of ovarian cortical tissue is an important option for female fertility preservation. This is particularly valuable for cancer patients who need to be treated urgently with chemotherapy, leaving no time for hormonal stimulation. The transfer of malignant cells in certain cancers remains as a potential risk after freezing, thawing and transplantation of ovarian tissue while isolation and in vitro growth (IVG) of follicles could be a safe alternate approach of female fertility protection. METHODS Ovarian cortex tissue was frozen, thawed and cultured for 8 days prior to isolating and embedding of early secondary follicles in a 3D matrix, suitable for time lapse monitoring for up to 36 days. Continuous growth of a theca-like cell layer and extrafollicular protrusions were visually evaluated with a permanent monitoring system facilitating real-time follicular development without deviations in the culture conditions. Occurrence of theca cell growth was visually characterized by extrafollicular formation of cells, beyond the outer follicle boundaries. To validate the results observed by time-lapse monitoring, live cell imaging was conducted and determined with immunofluorescence staining. RESULTS Individual follicles significantly increased in size over time. Time-lapse video monitoring revealed extending and retracting of filopodia-like structures in the outer follicular region adjacent to the 3D environment. Theca-like cells and actin components of filopodia-like structures were identified based on immunofluorescence staining. CONCLUSIONS Time lapse monitoring of 3-D cultured follicles is a promising explorative approach to obtain valuable visual insights regarding the many facets of follicular growth and to optimize follicular culture conditions towards a clinical application. As the study is limited by a lack of mechanistic insights into theca cell differentiation and filopodia function, additional studies are necessary to validate the preliminary results of this approach.
Collapse
Affiliation(s)
- Andreas Schallmoser
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital of Bonn, Germany.
| | - Norah Emrich
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital of Bonn, Germany
| | - Rebekka Einenkel
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital of Bonn, Germany.
| | - Nicole Sänger
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital of Bonn, Germany.
| |
Collapse
|
2
|
Hudacova E, Abaffy P, Kaplan MM, Krausova M, Kubista M, Machon O. Single-cell transcriptomic resolution of osteogenesis during craniofacial morphogenesis. Bone 2025; 190:117297. [PMID: 39461490 DOI: 10.1016/j.bone.2024.117297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024]
Abstract
Craniofacial morphogenesis depends on complex cell fate decisions during the differentiation of post-migratory cranial neural crest cells. Molecular mechanisms of cell differentiation of mesenchymal cells to developing bones, cartilage, teeth, tongue, and other craniofacial tissues are still poorly understood. We performed single-cell transcriptomic analysis of craniofacial mesenchymal cells derived from cranial NCCs in mouse embryo. Using FACS sorting of Wnt1-Cre2 progeny, we carefully mapped the cell heterogeneity in the craniofacial region during the initial stages of cartilage and bone formation. Transcriptomic data and in vivo validations identified molecular determinants of major cell populations involved in the development of lower and upper jaw, teeth, tongue, dermis, or periocular mesenchyme. Single-cell transcriptomic analysis of Meis2-deficient mice revealed critical gene expression differences, including increased osteogenic and cell adhesion markers. This leads to affected mesenchymal cell differentiation and increased ossification, resulting in impaired bone, cartilage, and tongue formation.
Collapse
Affiliation(s)
- Erika Hudacova
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, 12000 Prague, Czech Republic.
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences, Prumyslova 595, 25200 Vestec, Czech Republic.
| | - Mehmet Mahsum Kaplan
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic.
| | - Michaela Krausova
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic
| | - Mikael Kubista
- Laboratory of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences, Prumyslova 595, 25200 Vestec, Czech Republic.
| | - Ondrej Machon
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic.
| |
Collapse
|
3
|
Ndinyanka Fabrice T, Buczak K, Schmidt A, Pieters J. T cell population size control by coronin 1 uncovered: from a spot identified by two-dimensional gel electrophoresis to quantitative proteomics. Expert Rev Proteomics 2025; 22:35-44. [PMID: 39849824 DOI: 10.1080/14789450.2025.2450812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/28/2024] [Accepted: 12/19/2024] [Indexed: 01/25/2025]
Abstract
INTRODUCTION Recent work identified members of the evolutionarily conserved coronin protein family as key regulators of cell population size. This work originated ~25 years ago through the identification, by two-dimensional gel electrophoresis, of coronin 1 as a host protein involved in the virulence of Mycobacterium tuberculosis. We here describe the journey from a spot on a 2D gel to the recent realization that coronin proteins represent key controllers of eukaryotic cell population sizes, using ever more sophisticated proteomic techniques. AREAS COVERED We discuss the value of 'old school' proteomics using relatively simple and cost-effective technologies that allowed to gain insights into subcellular proteomes and describe how label-free quantitative (phospho)proteomics using mass spectrometry allowed to disentangle the role for coronin 1 in eukaryotic cell population size control. Finally, we mention potential implications of coronin-mediated cell population size control for health and disease. EXPERT OPINION Proteome analysis has been revolutionized by the advent of modern-day mass spectrometers and is indispensable for a better understanding of biology. Here, we discuss how careful dissection of physio-pathological processes by a combination of proteomics, genomics, biochemistry and cell biology may allow to zoom in on the unexplored, thereby possibly tackling hitherto unasked questions and defining novel mechanisms.
Collapse
|
4
|
Wang Z, Xie D, Li J, Zhai Z, Lu Z, Tian X, Niu Y, Zhao Q, Zheng P, Dong L, Wang C. Molecular force-induced liberation of transforming growth factor-beta remodels the spleen for ectopic liver regeneration. J Hepatol 2024; 80:753-763. [PMID: 38244845 DOI: 10.1016/j.jhep.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/08/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND & AIMS Ectopic liver regeneration in the spleen is a promising alternative to organ transplantation for treating liver failure. To accommodate transplanted liver cells, the splenic tissue must undergo structural changes to increase extracellular matrix content, demanding a safe and efficient approach for tissue remodelling. METHODS We synthesised sulphated hyaluronic acid (sHA) with an affinity for the latent complex of transforming growth factor-β (TGF-β) and cross-linked it into a gel network (sHA-X) via click chemistry. We injected this glycan into the spleens of mice to induce splenic tissue remodelling via supraphysiological activation of endogenous TGF-β. RESULTS sHA-X efficiently bound to the abundant latent TGF-β in the spleen. It provided the molecular force to liberate the active TGF-β dimers from their latent complex, mimicking the 'bind-and-pull' mechanism required for physiological activation of TGF-β and reshaping the splenic tissue to support liver cell growth. Hepatocytes transplanted into the remodelled spleen developed into liver tissue with sufficient volume to rescue animals with a metabolic liver disorder (Fah-/- transgenic model) or following 90% hepatectomy, with no adverse effects observed and no additional drugs required. CONCLUSION Our findings highlight the efficacy and translational potential of using sHA-X to remodel a specific organ by mechanically activating one single cytokine, representing a novel strategy for the design of biomaterials-based therapies for organ regeneration. IMPACT AND IMPLICATIONS Cell transplantation may provide a lifeline to millions of patients with end-stage liver diseases, but their severely damaged livers being unable to accommodate the transplanted cells is a crucial hurdle. Herein, we report an approach to restore liver functions in another organ - the spleen - by activating one single growth factor in situ. This approach, based on a chemically designed polysaccharide that can mechanically liberate the active transforming growth factor-β to an unusually high level, promotes the function of abundant allogenic liver cells in the spleen, rescuing animals from lethal models of liver diseases and showing a high potential for clinical translation.
Collapse
Affiliation(s)
- Zhenzhen Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Daping Xie
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Jiayi Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Ziyu Zhai
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zhuojian Lu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Xuejiao Tian
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yiming Niu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Qi Zhao
- Department of Biomedical Sciences, Faculty of Health Science, University of Macau, Taipa, Macau SAR, China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China; Chemistry and Biomedicine Innovative Center, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China; National Resource Center for Mutant Mice, Nanjing, Jiangsu, 210023, China; Chemistry and Biomedicine Innovative Center, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China; Department of Pharmaceutical Sciences, Faculty of Health Science, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
5
|
Brandhorst H, Krishtul S, Brandhorst D, Baruch L, Machluf M, Johnson PRV. Solubilized Pancreatic Extracellular Matrix from Juvenile Pigs Protects Isolated Human Islets from Hypoxia-Induced Damage: A Viable Option for Clinical Islet Transplantation. J Tissue Eng Regen Med 2023; 2023:7452682. [PMID: 40226393 PMCID: PMC11918917 DOI: 10.1155/2023/7452682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/26/2023] [Accepted: 06/07/2023] [Indexed: 04/15/2025]
Abstract
The pancreatic extracellular matrix (ECM) is an enormously complex construct. Previous studies underline the challenges to identify the optimal combinations and ratios of individual ECM proteins for promoting survival and function of isolated and transplanted islets. This study aimed on assessing the efficiency of solubilized natural ECM extracted from juvenile pigs, an unlimited donor source. Isolated human islets were cultured under a hypoxic atmosphere (2% oxygen) in media supplemented with either solubilized porcine pancreatic ECM (ppECM) or a mixture of human ECM proteins composed of collagen-IV, laminin-521, and nidogen-1 (hEPM). Control islets were cultured under identical conditions without ECM-compounds. Reactive oxygen species production increased three-fold in controls but was reduced by hEPM or ppECM. Early apoptosis remained on preculture levels when islets were treated with hEPM or ppECM. Preculture viability was preserved when hEPM or ppECM was administered. Whilst controls failed to respond to glucose challenge, treatment with hEPM or ppECM preserved the physiological insulin response. In summary, overall survival was significantly highest in ppECM-treated islets. This study presents a new approach to protect human islets from hypoxia-induced damage by supplementing media with ppECM extracted from an unlimited donor source. The findings may also serve as starting point for a novel encapsulation technique to protect isolated human islets.
Collapse
Affiliation(s)
- Heide Brandhorst
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford No. 3 9DU, UK
| | - Stasia Krishtul
- Laboratory for Cancer Drug Delivery and Cell Based Technologies, Faculty of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Haifa, Israel
| | - Daniel Brandhorst
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford No. 3 9DU, UK
| | - Limor Baruch
- Laboratory for Cancer Drug Delivery and Cell Based Technologies, Faculty of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Haifa, Israel
| | - Marcelle Machluf
- Laboratory for Cancer Drug Delivery and Cell Based Technologies, Faculty of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Haifa, Israel
| | - Paul R. V. Johnson
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford No. 3 9DU, UK
- Oxford Biomedical Research Centre (OxBRC), Oxford No. 3 9DU, UK
| |
Collapse
|
6
|
Halawi A, El Kurdi AB, Vernon KA, Solhjou Z, Choi JY, Saad AJ, Younis NK, Elfekih R, Mohammed MT, Deban CA, Weins A, Abdi R, Riella LV, De Serres SA, Cravedi P, Greka A, Khoueiry P, Azzi JR. Uncovering a novel role of focal adhesion and interferon-gamma in cellular rejection of kidney allografts at single cell resolution. Front Immunol 2023; 14:1139358. [PMID: 37063857 PMCID: PMC10102512 DOI: 10.3389/fimmu.2023.1139358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/23/2023] [Indexed: 04/03/2023] Open
Abstract
BackgroundKidney transplant recipients are currently treated with nonspecific immunosuppressants that cause severe systemic side effects. Current immunosuppressants were developed based on their effect on T-cell activation rather than the underlying mechanisms driving alloimmune responses. Thus, understanding the role of the intragraft microenvironment will help us identify more directed therapies with lower side effects.MethodsTo understand the role of the alloimmune response and the intragraft microenvironment in cellular rejection progression, we conducted a Single nucleus RNA sequencing (snRNA-seq) on one human non-rejecting kidney allograft sample, one borderline sample, and T-cell mediated rejection (TCMR) sample (Banff IIa). We studied the differential gene expression and enriched pathways in different conditions, in addition to ligand-receptor (L-R) interactions.ResultsPathway analysis of T-cells in borderline sample showed enrichment for allograft rejection pathway, suggesting that the borderline sample reflects an early rejection. Hence, this allows for studying the early stages of cellular rejection. Moreover, we showed that focal adhesion (FA), IFNg pathways, and endomucin (EMCN) were significantly upregulated in endothelial cell clusters (ECs) of borderline compared to ECs TCMR. Furthermore, we found that pericytes in TCMR seem to favor endothelial permeability compared to borderline. Similarly, T-cells interaction with ECs in borderline differs from TCMR by involving DAMPS-TLRs interactions.ConclusionOur data revealed novel roles of T-cells, ECs, and pericytes in cellular rejection progression, providing new clues on the pathophysiology of allograft rejection.
Collapse
Affiliation(s)
- Ahmad Halawi
- Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Abdullah B. El Kurdi
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | - Zhabiz Solhjou
- Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Scripps Clinic Medical Group, San Diego, CA, United States
| | - John Y. Choi
- Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Anis J. Saad
- Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Nour K. Younis
- Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Rania Elfekih
- Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Mostafa Tawfeek Mohammed
- Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Clinical Pathology Department, Faculty of Medicine, Minia University, Minia, Egypt
| | - Christa A. Deban
- Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Astrid Weins
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Reza Abdi
- Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Leonardo V. Riella
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| | - Sasha A. De Serres
- Transplantation Unit, Renal Division, Department of Medicine, University Health Center of Quebec, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Paolo Cravedi
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Anna Greka
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Pierre Khoueiry
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Jamil R. Azzi
- Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- *Correspondence: Jamil R. Azzi,
| |
Collapse
|
7
|
Ndinyanka Fabrice T, Bianda C, Zhang H, Jayachandran R, Ruer-Laventie J, Mori M, Moshous D, Fucile G, Schmidt A, Pieters J. An evolutionarily conserved coronin-dependent pathway defines cell population size. Sci Signal 2022; 15:eabo5363. [DOI: 10.1126/scisignal.abo5363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Maintenance of cell population size is fundamental to the proper functioning of multicellular organisms. Here, we describe a cell-intrinsic cell density–sensing pathway that enabled T cells to reach and maintain an appropriate population size. This pathway operated “kin-to-kin” or between identical or similar T cell populations occupying a niche within a tissue or organ, such as the lymph nodes, spleen, and blood. We showed that this pathway depended on the cell density–dependent abundance of the evolutionarily conserved protein coronin 1, which coordinated prosurvival signaling with the inhibition of cell death until the cell population reached threshold densities. At or above threshold densities, coronin 1 expression peaked and remained stable, thereby resulting in the initiation of apoptosis through kin-to-kin intercellular signaling to return the cell population to the appropriate cell density. This cell population size-controlling pathway was conserved from amoeba to humans, thus providing evidence for the existence of a coronin-regulated, evolutionarily conserved mechanism by which cells are informed of and coordinate their relative population size.
Collapse
Affiliation(s)
| | | | - Haiyan Zhang
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | | | - Mayumi Mori
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Despina Moshous
- Pediatric Immunology, Hematology and Rheumatology Unit, Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris and Imagine Institute, INSERM UMR1163, Université de Paris, 75015 Paris, France
| | - Geoffrey Fucile
- SIB Swiss Institute of Bioinformatics, sciCORE Computing Center, University of Basel, 4056 Basel, Switzerland
| | | | - Jean Pieters
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
8
|
Hunter EJ, Hamaia SW, Gullberg D, Malcor JD, Farndale RW. Selectivity of the collagen-binding integrin inhibitors, TC-I-15 and obtustatin. Toxicol Appl Pharmacol 2021; 428:115669. [PMID: 34363821 PMCID: PMC8444087 DOI: 10.1016/j.taap.2021.115669] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 11/22/2022]
Abstract
Integrins are a family of 24 adhesion receptors which are both widely-expressed and important in many pathophysiological cellular processes, from embryonic development to cancer metastasis. Hence, integrin inhibitors are valuable research tools which may have promising therapeutic uses. Here, we focus on the four collagen-binding integrins α1β1, α2β1, α10β1 and α11β1. TC-I-15 is a small molecule inhibitor of α2β1 that inhibits platelet adhesion to collagen and thrombus deposition, and obtustatin is an α1β1-specific disintegrin that inhibits angiogenesis. Both inhibitors were applied in cellular adhesion studies, using synthetic collagen peptide coatings with selective affinity for the different collagen-binding integrins and testing the adhesion of C2C12 cells transfected with each. Obtustatin was found to be specific for α1β1, as described, whereas TC-I-15 is shown to be non-specific, since it inhibits both α1β1 and α11β1 as well as α2β1. TC-I-15 was 100-fold more potent against α2β1 binding to a lower-affinity collagen peptide, suggestive of a competitive mechanism. These results caution against the use of integrin inhibitors in a therapeutic or research setting without testing for cross-reactivity.
Collapse
Affiliation(s)
- Emma J Hunter
- Department of Biochemistry, University of Cambridge, Downing Site, Cambridge CB2 1QW, UK
| | - Samir W Hamaia
- Department of Biochemistry, University of Cambridge, Downing Site, Cambridge CB2 1QW, UK
| | - Donald Gullberg
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway
| | - Jean-Daniel Malcor
- Department of Biochemistry, University of Cambridge, Downing Site, Cambridge CB2 1QW, UK
| | - Richard W Farndale
- Department of Biochemistry, University of Cambridge, Downing Site, Cambridge CB2 1QW, UK.
| |
Collapse
|
9
|
Pouw AE, Greiner MA, Coussa RG, Jiao C, Han IC, Skeie JM, Fingert JH, Mullins RF, Sohn EH. Cell-Matrix Interactions in the Eye: From Cornea to Choroid. Cells 2021; 10:687. [PMID: 33804633 PMCID: PMC8003714 DOI: 10.3390/cells10030687] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
The extracellular matrix (ECM) plays a crucial role in all parts of the eye, from maintaining clarity and hydration of the cornea and vitreous to regulating angiogenesis, intraocular pressure maintenance, and vascular signaling. This review focuses on the interactions of the ECM for homeostasis of normal physiologic functions of the cornea, vitreous, retina, retinal pigment epithelium, Bruch's membrane, and choroid as well as trabecular meshwork, optic nerve, conjunctiva and tenon's layer as it relates to glaucoma. A variety of pathways and key factors related to ECM in the eye are discussed, including but not limited to those related to transforming growth factor-β, vascular endothelial growth factor, basic-fibroblastic growth factor, connective tissue growth factor, matrix metalloproteinases (including MMP-2 and MMP-9, and MMP-14), collagen IV, fibronectin, elastin, canonical signaling, integrins, and endothelial morphogenesis consistent of cellular activation-tubulogenesis and cellular differentiation-stabilization. Alterations contributing to disease states such as wound healing, diabetes-related complications, Fuchs endothelial corneal dystrophy, angiogenesis, fibrosis, age-related macular degeneration, retinal detachment, and posteriorly inserted vitreous base are also reviewed.
Collapse
Affiliation(s)
- Andrew E. Pouw
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Mark A. Greiner
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Razek G. Coussa
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Chunhua Jiao
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Ian C. Han
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Jessica M. Skeie
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
| | - John H. Fingert
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Robert F. Mullins
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Elliott H. Sohn
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
10
|
Real-time and wide-field mapping of cell-substrate adhesion gap and its evolution via surface plasmon resonance holographic microscopy. Biosens Bioelectron 2021; 174:112826. [PMID: 33262060 DOI: 10.1016/j.bios.2020.112826] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/17/2020] [Accepted: 11/14/2020] [Indexed: 12/11/2022]
Abstract
As one of the most common biological phenomena, cell adhesion plays a vital role in the cellular activities such as the growth and apoptosis, attracting tremendous research interests over the past decades. Taking the cell evolution under drug injection as an example, the dynamics of cell-substrate adhesion gap can provide valuable information in the fundamental research of cell contacts. A robust technique of monitoring the cell adhesion gap and its evolution in real time is highly desired. Herein, we develop a surface plasmon resonance holographic microscopy to achieve the novel functionality of real-time and wide-field mapping of the cell-substrate adhesion gap and its evolution in situ. The cell adhesion gap images of mouse osteoblast cells and human breast cancer cells have been effectively extracted in a dynamic and label-free manner. The proposed technique opens up a new avenue of revealing the cell-substrate interaction mechanism and renders the wide applications in the biosensing area.
Collapse
|
11
|
Beauséjour M, Boutin A, Vachon PH. Anoikis and the Human Gut Epithelium in Health and Disease. ANOIKIS 2021:95-126. [DOI: 10.1007/978-3-030-73856-3_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
12
|
Wippold JA, Wang H, Tingling J, Leibowitz J, de Figueiredo P, Han A. PRESCIENT: platform for the rapid evaluation of antibody success using integrated microfluidics enabled technology. LAB ON A CHIP 2020; 20:1628-1638. [PMID: 32196032 PMCID: PMC7269184 DOI: 10.1039/c9lc01165j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Identifying antibodies (Abs) that neutralize infectious agents is the first step for developing therapeutics, vaccines, and diagnostic tools for these infectious agents. However, current approaches for identifying neutralizing Abs (nAbs) typically rely on dilution-based assays that are costly, inefficient, and only survey a small subset of the entire repertoire. There are also intrinsic biases in many steps of conventional nAb identification processes. More importantly, conventional assays rely on simple Ab-antigen binding assays, which may not result in identifying the most potent nAbs, as the strongest binder may not be the most potent nAb. Droplet microfluidic systems have the capability to overcome such limitations by conducting complex multi-step assays with high reliability, resolution, and throughput in a pico-liter volume water-in-oil emulsion droplet format. Here, we describe the development of PRESCIENT (Platform for the Rapid Evaluation of antibody SucCess using Integrated microfluidics ENabled Technology), a droplet microfluidic system that can enable high-throughput single-cell resolution identification of nAb repertoires elicited in response to viral infection. We demonstrate PRESCIENT's ability to identify Abs that neutralize a model viral agent, Murine coronavirus (murine hepatitis virus), which causes high mortality rates in experimentally infected mice. In-droplet infection of host cells by the virus was first demonstrated, followed by demonstration of in-droplet neutralization by nAbs produced from a single Ab-producing hybridoma cell. Finally, fluorescence intensity analyses of two populations of hybridoma cell lines (nAb-producing and non-nAb-producing hybridoma cell lines) successfully discriminated between the two populations. The presented strategy and platform have the potential to identify and investigate neutralizing activities against a broad range of potential infectious agents for which nAbs have yet to be discovered, significantly advancing the nAb identification process as well as reinvigorating the field of Ab discovery, characterization, and development.
Collapse
Affiliation(s)
- Jose A. Wippold
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Han Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, CHINA
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Joseph Tingling
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Julian Leibowitz
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Paul de Figueiredo
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
- Norman Borlaug Center, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Medicine, Texas A&M University, College Station, TX 77843
| | - Arum Han
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, CHINA
| |
Collapse
|
13
|
Nygren P, Balashova N, Brown AC, Kieba I, Dhingra A, Boesze-Battaglia K, Lally ET. Aggregatibacter actinomycetemcomitans leukotoxin causes activation of lymphocyte function-associated antigen 1. Cell Microbiol 2018; 21:e12967. [PMID: 30329215 DOI: 10.1111/cmi.12967] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/20/2018] [Accepted: 10/05/2018] [Indexed: 11/29/2022]
Abstract
Repeats-in-toxin leukotoxin (LtxA) produced by the oral bacterium Aggregatibacter actinomycetemcomitans kills human leukocytes in a lymphocyte function-associated antigen 1 (LFA-1, integrin αL /β2 )-dependent manner, although the mechanism for this interaction has not been identified. The LtxA internalisation by LFA-1-expressing cells was explored with florescence resonance energy transfer (FRET) microscopy using a cell line that expresses LFA-1 with a cyan fluorescent protein-tagged cytosolic αL domain and a yellow fluorescent protein-tagged β2 domain. Phorbol 12-myristate 13-acetate activation of LFA-1 caused transient cytosolic domain separation. However, addition of LtxA resulted in an increase in FRET, indicating that LtxA brings the cytosolic domains closer together, compared with the inactive state. Unlike activation, this effect was not transient, lasting more than 30 min. Equilibrium constants of LtxA binding to the cytoplasmic domains of both αL and β2 were determined using surface plasmon resonance. LtxA has a strong affinity for the cytosolic domains of both the αL and β2 subunits (Kd = 15 and 4.2 nM, respectively) and a significantly lower affinity for the cytoplasmic domains of other integrin αM , αX , and β3 subunits (Kd = 400, 180, and 230 nM, respectively), used as controls. Peptide fragments of αL and β2 show that LtxA binds membrane-proximal domain of αL and intermediate domain of β2 .
Collapse
Affiliation(s)
- Patrik Nygren
- Departments of Biochemistry, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nataliya Balashova
- Departments of Pathology, School of Dental Medicine, and the Division of Hematology/Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Angela C Brown
- Departments of Pathology, School of Dental Medicine, and the Division of Hematology/Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Irene Kieba
- Departments of Pathology, School of Dental Medicine, and the Division of Hematology/Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anuradha Dhingra
- Departments of Biochemistry, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Edward T Lally
- Departments of Pathology, School of Dental Medicine, and the Division of Hematology/Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
14
|
Szekacs I, Farkas E, Gemes BL, Takacs E, Szekacs A, Horvath R. Integrin targeting of glyphosate and its cell adhesion modulation effects on osteoblastic MC3T3-E1 cells revealed by label-free optical biosensing. Sci Rep 2018; 8:17401. [PMID: 30479368 PMCID: PMC6258691 DOI: 10.1038/s41598-018-36081-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022] Open
Abstract
This study is a discovery of interesting and far reaching properties of the world leading herbicide active ingredient glyphosate. Here we demonstrate the cell adhesion-modifying characteristics of glyphosate affecting cellular interactions via Arg-Gly-Asp (RGD)-dependent integrins. This conclusion was supported by the observations that a glyphosate surface coating induced integrin-specific cell adhesion, while glyphosate in solution inhibited cell adhesion on an RGD-displaying surface. A sensitive, real-time, label-free, whole cell approach was used to monitor the cell adhesion kinetic processes with excellent data quality. The half maximal inhibitory concentration (IC50) for glyphosate was determined to be 0.47 ± 0.07% (20.6 mM) in serum-free conditions. A three-dimensional dissociation constant of 0.352 mM was calculated for the binding between RGD-specific integrins in intact MC3T3-E1 cells and soluble glyphosate by measuring its competition for RGD-motifs binding, while the affinity of those RGD-specific integrins to the RGD-motifs was 5.97 µM. The integrin-targeted affinity of glyphosate was proven using competitive binding assays to recombinant receptor αvβ3. The present study shows not only ligand-binding properties of glyphosate, but also illustrates its remarkable biomimetic power in the case of cell adhesion.
Collapse
Affiliation(s)
- Inna Szekacs
- Nanobiosensorics Momentum Group, Institute of Technical Physics and Materials Science, Centre for Energy Research, Hungarian Academy of Sciences, Konkoly-Thege M. út 29-33, H-1120, Budapest, Hungary
| | - Eniko Farkas
- Nanobiosensorics Momentum Group, Institute of Technical Physics and Materials Science, Centre for Energy Research, Hungarian Academy of Sciences, Konkoly-Thege M. út 29-33, H-1120, Budapest, Hungary
- Subdoctoral School of Molecular and Nanotechnologies, Chemical Engineering and Material Science Doctoral School, University of Pannonia, Egyetem u.10, H-8200, Veszprém, Hungary
| | - Borbala Leticia Gemes
- Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Herman Ottó u. 15, H-1022, Budapest, Hungary
| | - Eszter Takacs
- Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Herman Ottó u. 15, H-1022, Budapest, Hungary
| | - Andras Szekacs
- Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Herman Ottó u. 15, H-1022, Budapest, Hungary.
| | - Robert Horvath
- Nanobiosensorics Momentum Group, Institute of Technical Physics and Materials Science, Centre for Energy Research, Hungarian Academy of Sciences, Konkoly-Thege M. út 29-33, H-1120, Budapest, Hungary.
| |
Collapse
|
15
|
Wang Y, Zhang T, Guo L, Ren T, Yang Y. Stromal extracellular matrix is a microenvironmental cue promoting resistance to EGFR tyrosine kinase inhibitors in lung cancer cells. Int J Biochem Cell Biol 2018; 106:96-106. [PMID: 30471423 DOI: 10.1016/j.biocel.2018.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 02/07/2023]
Abstract
The acquisition of resistance to EGFR tyrosine kinase inhibitors (TKIs) remains a critical problem in lung cancer clinic, but the underlying mechanisms have remained incompletely understood. Although the TKI-induced or -selected genetic changes are known to drive resistance, resistance also occurs in tumor cells without genetic changes through poorly-characterized processes. Here, we show that the extracellular matrix (ECM) from various components of the tumor microenvironment, including neighboring tumor cells and fibroblasts, may be the driver of resistance in the absence of genetic changes. Unlike genetic changes, which may evolve during relatively long time of chronic EGFR TKI treatment to drive resistance, briefly culturing on de-cellularized ECM, or co-culturing with the ECM donor cells, immediately confers resistance to tumor cells that are otherwise sensitive to EGFR TKIs. We show evidence that collagen in the ECM may be its primary constituent driving resistance, at least partly through the collagen receptor Integrin-β1. Intriguingly, such effect of ECM and collagen is dose-dependent and reversible, suggesting a potential clinic-relevant application for targeting this effect. Collectively, our results reveal that the stromal ECM acts as a microenvironmental cue promoting EGFR TKI resistance in lung cancer cells, and targeting collagen and Integrin-β1 may be useful for treating resistance, especially the resistance without clearly-defined genetic changes, for which effective therapeutics are lacking.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Respiratory Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Ting Zhang
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Lixia Guo
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Tao Ren
- Department of Respiratory Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | - Yanan Yang
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; Developmental Therapeutics and Cell Biology Programs, Mayo Clinic Cancer Center, Rochester, MN 55905, USA.
| |
Collapse
|
16
|
Kim TH, Zhou H. Overexpression of Chicken IRF7 Increased Viral Replication and Programmed Cell Death to the Avian Influenza Virus Infection Through TGF-Beta/FoxO Signaling Axis in DF-1. Front Genet 2018; 9:415. [PMID: 30356848 PMCID: PMC6190866 DOI: 10.3389/fgene.2018.00415] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/06/2018] [Indexed: 12/17/2022] Open
Abstract
During mammalian viral infections, interferon regulatory factor 7 (IRF7) partners with IRF3 to regulate the type I interferon response. In chickens, however, it is still unclear how IRF7 functions in the host innate immune response, especially given that IRF3 is absent. To further elucidate the functional role of chicken IRF7 during avian influenza virus (AIV) infection, we generated inducible IRF7 overexpression DF-1 cell lines and performed in vitro infection using low pathogenic AIVs (LPAIVs). Overexpression of IRF7 resulted in higher viral replication of H6N2 and H10N7 LPAIVs compared to empty vector control cells regardless of IRF7 expression level. In addition, a high rate of induced cell death was observed due to elevated level of IRF7 upon viral infection. RNA-seq and subsequent transcriptome analysis of IRF7 overexpression and control cells discovered candidate genes possibly controlled by chicken IRF7. Functional annotation revealed potential pathways modulated by IRF7 such as TGF-beta signaling pathway, FoxO signaling pathway and cell structural integrity related pathways. Next, we analyzed the host response alteration due to the IRF7 overexpression and additionally discovered the possible connection of chicken IRF7 and JAK-STAT signaling pathway. These findings suggest that chicken IRF7 could modulate a wide range of cellular processes in the host innate immune response thus meticulous control of IRF7 expression is crucial to the host in response to AIV infection.
Collapse
Affiliation(s)
- Tae Hyun Kim
- Department of Animal Science, University of California, Davis, Davis, CA, United States.,Integrative Genetics and Genomics Graduate Group, University of California, Davis, Davis, CA, United States
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, Davis, CA, United States.,Integrative Genetics and Genomics Graduate Group, University of California, Davis, Davis, CA, United States
| |
Collapse
|
17
|
Beauséjour M, Boutin A, Vachon PH. Anoikis Regulation: Complexities, Distinctions, and Cell Differentiation. APOPTOSIS AND BEYOND 2018:145-182. [DOI: 10.1002/9781119432463.ch8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
18
|
Singh V, Erady C, Balasubramanian N. Cell-matrix adhesion controls Golgi organization and function through Arf1 activation in anchorage-dependent cells. J Cell Sci 2018; 131:jcs.215855. [PMID: 30054383 PMCID: PMC6127727 DOI: 10.1242/jcs.215855] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/27/2018] [Indexed: 12/15/2022] Open
Abstract
Cell-matrix adhesion regulates membrane trafficking controlling anchorage-dependent signaling. While a dynamic Golgi complex can contribute to this pathway, its regulation by adhesion remains unclear. Here we report that loss of adhesion dramatically disorganized the Golgi in mouse and human fibroblast cells. Golgi integrity is restored rapidly upon integrin-mediated re-adhesion to FN and is disrupted by integrin blocking antibody. In suspended cells, the cis, cis-medial and trans-Golgi networks differentially disorganize along the microtubule network but show no overlap with the ER, making this disorganization distinct from known Golgi fragmentation. This pathway is regulated by an adhesion-dependent reduction and recovery of Arf1 activation. Constitutively active Arf1 disrupts this regulation and prevents Golgi disorganization due to loss of adhesion. Adhesion-dependent Arf1 activation regulates its binding to the microtubule minus-end motor protein dynein to control Golgi reorganization, which is blocked by ciliobrevin. Adhesion-dependent Golgi organization controls its function, regulating cell surface glycosylation due to loss of adhesion, which is blocked by constitutively active Arf1. This study, hence, identified integrin-dependent cell-matrix adhesion to be a novel regulator of Arf1 activation, controlling Golgi organization and function in anchorage-dependent cells.
This article has an associated First Person interview with the first author of the paper. Summary: Integrin-dependent cell-matrix adhesion activates Arf1, which then recruits dynein to regulate Golgi organization and function along the microtubule network.
Collapse
Affiliation(s)
- Vibha Singh
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Chaitanya Erady
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Nagaraj Balasubramanian
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| |
Collapse
|
19
|
Haque MR, Jeong JH, Lee KW, Shin DY, Kim GS, Kim SJ, Byun Y. Effects of Transplanted Islets Nano-Encapsulated with Hyperbranched Polyethylene Glycol and Heparin on Microenvironment Reconstruction and Glucose Control. Bioconjug Chem 2018; 29:2945-2953. [PMID: 29985588 DOI: 10.1021/acs.bioconjchem.8b00364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The microenvironment of pancreatic islets gets disrupted during enzyme digestion and causes islets to remain in a vulnerable state, leading to poor outcome in the initial days of transplantation. To avoid immune invasion while allowing the reconstruction of the microenvironment of the transplanted site, we propose immunoisolation polymers, which can nanoencapsulate islets quickly without cytotoxicity. Here, nonhuman primate (NHP) islets were nanoencapsulated with hyperbranched polyethylene glycol (hb-PEG) and heparin by layer-by-layer technology and transplanted into the kidney subcapsular space of diabetic C57BL/6 mice. An immunosuppressive drug protocol was applied to increase the survival time until the animals were sacrificed. The recipients of NHP islets exhibited high nonfasting blood glucose level (BGL) for 2-3 weeks, which was normalized afterward. Immunohistochemical (IHC) analysis revealed an immature vascular basement membrane and cell surface integrins directly associated with poor initial insulin production. The transplanted grafts regained their own microenvironment within a month without any outside stimuli. No lymphocyte infiltration was observed in the grafts at any time. Humoral and cell-mediated immune responses were prominently diminished by the hb-PEG/Heparin nanoencapsulated islets. Immunoisolation accompanied by an immunosuppressive drug protocol protects islets by helping them avoid immunogenesis while at the same time allowing them to reconstruct their microenvironment.
Collapse
Affiliation(s)
| | - Jee-Heon Jeong
- College of Pharmacy , Yeungnam University , Gyeongsan , Gyeongbuk 712-749 , Republic of Korea
| | - Kyo Won Lee
- Transplantation Research Center , Samsung Biomedical Research Institute , 81 Ilwon-ro , Gangnam-gu, Seoul 06351 , Republic of Korea.,Department of Surgery, Samsung Medical Center , Sungkyunkwan University School of Medicine , Seoul 06351 , Republic of Korea
| | - Du Yeon Shin
- Transplantation Research Center , Samsung Biomedical Research Institute , 81 Ilwon-ro , Gangnam-gu, Seoul 06351 , Republic of Korea.,Department of Surgery, Samsung Medical Center , Sungkyunkwan University School of Medicine , Seoul 06351 , Republic of Korea.,Stem Cell & Regenerative Medicine Institute , Samsung Medical Center , Seoul 06351 , Republic of Korea.,Department of Health Sciences & Technology, Samsung Advanced Institute for Health Sciences & Technology, Graduate School , Sungkyunkwan University , Seoul 06351 , Republic of Korea
| | - Geun-Soo Kim
- Transplantation Research Center , Samsung Biomedical Research Institute , 81 Ilwon-ro , Gangnam-gu, Seoul 06351 , Republic of Korea.,Department of Surgery, Samsung Medical Center , Sungkyunkwan University School of Medicine , Seoul 06351 , Republic of Korea.,Stem Cell & Regenerative Medicine Institute , Samsung Medical Center , Seoul 06351 , Republic of Korea.,Department of Health Sciences & Technology, Samsung Advanced Institute for Health Sciences & Technology, Graduate School , Sungkyunkwan University , Seoul 06351 , Republic of Korea
| | - Sung Joo Kim
- Transplantation Research Center , Samsung Biomedical Research Institute , 81 Ilwon-ro , Gangnam-gu, Seoul 06351 , Republic of Korea.,Department of Surgery, Samsung Medical Center , Sungkyunkwan University School of Medicine , Seoul 06351 , Republic of Korea.,Stem Cell & Regenerative Medicine Institute , Samsung Medical Center , Seoul 06351 , Republic of Korea.,Department of Health Sciences & Technology, Samsung Advanced Institute for Health Sciences & Technology, Graduate School , Sungkyunkwan University , Seoul 06351 , Republic of Korea
| | | |
Collapse
|
20
|
Jia J, Zhang T, Chi J, Liu X, Sun J, Xie Q, Peng S, Li C, Yi L. Neuroprotective Effect of CeO 2@PAA-LXW7 Against H 2O 2-Induced Cytotoxicity in NGF-Differentiated PC12 Cells. Neurochem Res 2018; 43:1439-1453. [PMID: 29882125 DOI: 10.1007/s11064-018-2559-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/19/2018] [Accepted: 05/23/2018] [Indexed: 01/12/2023]
Abstract
CeO2 nanoparticles (nanoceria) have been used in many studies as a powerful free radical scavenger, and LXW7, a small-molecule peptide, can specifically target the integrin αvβ3, whose neuroprotective effects have also been demonstrated. The objective of this study is to observe the neuroprotective effect and potential mechanism of CeO2@PAA-LXW7, a new compound that couples CeO2@PAA (nanoceria modified with the functional group of polyacrylic acid) with LXW7 via a series of chemical reactions, in H2O2-induced NGF-differentiated PC12 cells. We examined the effects of LXW7, CeO2@PAA, and CeO2@PAA-LXW7 on the viability of primary hippocampal neurons and found that there was no significant difference under control conditions, but increased cellular viability was observed in the case of H2O2-induced injury. We used H2O2-induced NGF-differentiated PC12 cells as the classical injury model to investigate the neuroprotective effect of CeO2@PAA-LXW7. In this study, LXW7, CeO2@PAA, and CeO2@PAA-LXW7 inhibit H2O2-induced oxidative stress by reducing the production of reactive oxygen species (ROS) and regulating Bax/Bcl-2, cleaved caspase-3 and mitochondrial cytochrome C (cyto C) in the apoptotic signaling pathways. We found that the levels of phosphorylation of focal adhesion kinase (FAK) and of signal transducer and activator of transcription 3 (STAT3) increased significantly in H2O2-induced NGF-differentiated PC12 cells, whereas LXW7, CeO2@PAA, and CeO2@PAA-LXW7 suppressed the increase to different degrees. Among the abovementioned changes, the inhibitory effect of CeO2@PAA-LXW7 on H2O2-induced changes, including the increases in the levels of p-FAK and p-STAT3, is more obvious than that of LXW7 or CeO2@PAA alone. In summary, these results suggest that integrin signaling participates in the regulation of apoptosis via the regulation of ROS and of the apoptosis pathway in H2O2-induced NGF-differentiated PC12 cells. LXW7, CeO2@PAA, and CeO2@PAA-LXW7 can play neuroprotective roles by counteracting the oxidative stress and apoptosis induced by H2O2 in NGF-differentiated PC12 cells. CeO2@PAA-LXW7 exerting a more powerful synergistic effect via the conjunction of LXW7 and CeO2@PAA.
Collapse
Affiliation(s)
- Jingjing Jia
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Ting Zhang
- Department of Phoenix international medical center, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jieshan Chi
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Xiaoma Liu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Jingjing Sun
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Qizhi Xie
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Sijia Peng
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Changyan Li
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, China.
| | - Li Yi
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China.
| |
Collapse
|
21
|
Farberov S, Meidan R. Fibroblast growth factor-2 and transforming growth factor-beta1 oppositely regulate miR-221 that targets thrombospondin-1 in bovine luteal endothelial cells. Biol Reprod 2017; 98:366-375. [DOI: 10.1093/biolre/iox167] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/05/2017] [Indexed: 12/20/2022] Open
Affiliation(s)
- Svetlana Farberov
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Rina Meidan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
22
|
Zhang K, Tan J, Su J, Liang H, Shen L, Li C, Pan G, Yang L, Cui H. Integrin β3 plays a novel role in innate immunity in silkworm, Bombyx mori. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 77:307-317. [PMID: 28826989 DOI: 10.1016/j.dci.2017.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 06/07/2023]
Abstract
Integrins are transmembrane receptors that play essential roles in many physiological and pathological processes through cell-to-cell and cell-to-extracellular matrix (ECM) interactions. In the current study, a 2653-bp full-length cDNA of a novel integrin β subunit (designated Bmintegrin β3) was obtained from silkworm hemocytes. Bmintegrin β3 has the typical conserved structure of the integrin β family. The qRT-PCR results showed that Bmintegrin β3 was specifically expressed in the hematological system and that its expression was significantly increased after challenge with different types of PAMPs and bacteria. The recombinant Bmintegrin β3 protein displayed increased aggregation with S. aureus, suggesting that Bmintegrin β3 might directly bind to PAMPs. Interestingly, Bmintegrin β3 knockdown promoted PPO1, PPO2, BAEE, SPH78, SPH125, and SPH127 expression and accelerated the melanization process. Unexpectedly, the expression of genes related to phagocytosis, the Toll pathway, and the IMD pathway was also up-regulated after Bmintegrin β3 knockdown. Thus, Bmintegrin β3 might be a pattern recognition protein (PRP) for PAMPs and might directly bind to bacteria and enhance the phagocytosis activity of hemocytes. Moreover, Bmintegrin β3 and its ligand might negatively regulate the expression of immune-related genes through an unknown mechanism. In summary, our studies provide new insights into the immune functions of Bmintegrin β3 from the silkworm, Bombyx mori.
Collapse
Affiliation(s)
- Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Juan Tan
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Jingjing Su
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Hanghua Liang
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Li Shen
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Chongyang Li
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Guangzhao Pan
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China.
| |
Collapse
|
23
|
Abstract
During vascular development, endothelial cells (ECs) and neighboring stromal cells interact and communicate through autocrine and paracrine signaling mechanisms involving extracellular matrix (ECM) proteins and their cell surface integrin adhesion receptors. Integrin-mediated adhesion and signaling pathways are crucial for normal vascular development and physiology, and alterations in integrin expression and/or function drive several vascular-related pathologies including thrombosis, autoimmune disorders, and cancer. The purpose of this chapter is to discuss integrin adhesion and signaling pathways important for EC growth, survival, and migration. Integrin-mediated paracrine links between ECs and surrounding stromal cells in the organ microenvironment will also be discussed. Lastly, we will review roles for integrins in vascular pathologies and discuss possible targets for therapeutic intervention.
Collapse
Affiliation(s)
- Paola A Guerrero
- University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Joseph H McCarty
- University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
24
|
A pH-dependent Antibacterial Peptide Release Nano-system Blocks Tumor Growth in vivo without Toxicity. Sci Rep 2017; 7:11242. [PMID: 28894233 PMCID: PMC5593885 DOI: 10.1038/s41598-017-11687-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/30/2017] [Indexed: 12/29/2022] Open
Abstract
In this study, we designed a nano-system where a novel antibacterial peptide RGD-hylin a1 with reduced hemolysis than the commonly studied melittin was loaded onto mesoporous silica (HMS). We found out that the designed nano-system, RGD-hylin a1-HMS, released RGD-hylin a1 in a pH-dependent manner. It caused apoptosis of cancer cells at low dosage of the antibacterial peptide at pH = 5.5, but was safe to the cells at pH = 7. The hemolytic activity of RGD-hylin a1 itself was reduced by 50~100% by the nano-system depending on the dosage. When this nano-system was administered to tumor-bearing mice at low dosage via intravenous injection, the growth of the solid tumor was blocked by the RGD-hylin a1-HMS nano-system with a 50–60% inhibition rate relative to the PBS-treated control group in terms of tumor volume and weight. Further, the hemolytic activity of RGD-hylin a1 was completely eliminated within the delivery system with no other side effects observed. This study demonstrates that this smart pH-dependent antibacterial peptide release nano-system has superior potential for solid tumor treatments through intravenous administration. This smart-releasing system has great potential in further clinical applications.
Collapse
|
25
|
Visavadiya NP, Keasey MP, Razskazovskiy V, Banerjee K, Jia C, Lovins C, Wright GL, Hagg T. Integrin-FAK signaling rapidly and potently promotes mitochondrial function through STAT3. Cell Commun Signal 2016; 14:32. [PMID: 27978828 PMCID: PMC5159999 DOI: 10.1186/s12964-016-0157-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/06/2016] [Indexed: 01/02/2023] Open
Abstract
Background STAT3 is increasingly becoming known for its non-transcriptional regulation of mitochondrial bioenergetic function upon activation of its S727 residue (S727-STAT3). Lengthy mitochondrial dysfunction can lead to cell death. We tested whether an integrin-FAK-STAT3 signaling pathway we recently discovered regulates mitochondrial function and cell survival, and treatments thereof. Methods Cultured mouse brain bEnd5 endothelial cells were treated with integrin, FAK or STAT3 inhibitors, FAK siRNA, as well as integrin and STAT3 activators. STAT3 null cells were transfected with mutant STAT3 plasmids. Outcome measures included oxygen consumption rate for mitochondrial bioenergetics, Western blotting for protein phosphorylation, mitochondrial membrane potential for mitochondrial integrity, ROS production, and cell counts. Results Vitronectin-dependent mitochondrial basal respiration, ATP production, and maximum reserve and respiratory capacities were suppressed within 4 h by RGD and αvβ3 integrin antagonist peptides. Conversely, integrin ligands vitronectin, laminin and fibronectin stimulated mitochondrial function. Pharmacological inhibition of FAK completely abolished mitochondrial function within 4 h while FAK siRNA treatments confirmed the specificity of FAK signaling. WT, but not S727A functionally dead mutant STAT3, rescued bioenergetics in cells made null for STAT3 using CRISPR-Cas9. STAT3 inhibition with stattic in whole cells rapidly reduced mitochondrial function and mitochondrial pS727-STAT3. Stattic treatment of isolated mitochondria did not reduce pS727 whereas more was detected upon phosphatase inhibition. This suggests that S727-STAT3 is activated in the cytoplasm and is short-lived upon translocation to the mitochondria. FAK inhibition reduced pS727-STAT3 within mitochondria and reduced mitochondrial function in a non-transcriptional manner, as shown by co-treatment with actinomycin. Treatment with the small molecule bryostatin-1 or hepatocyte growth factor (HGF), which indirectly activate S727-STAT3, preserved mitochondrial function during FAK inhibition, but failed in the presence of the STAT3 inhibitor. FAK inhibition induced loss of mitochondrial membrane potential, which was counteracted by bryostatin, and increased superoxide and hydrogen peroxide production. Bryostatin and HGF reduced the substantial cell death caused by FAK inhibition over a 24 h period. Conclusion These data suggest that extracellular matrix molecules promote STAT3-dependent mitochondrial function and cell survival through integrin-FAK signaling. We furthermore show a new treatment strategy for cell survival using S727-STAT3 activators.
Collapse
Affiliation(s)
- Nishant P Visavadiya
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Building 178, Maple Ave, PO Box 70582, Johnson City, TN37614, USA
| | - Matthew P Keasey
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Building 178, Maple Ave, PO Box 70582, Johnson City, TN37614, USA
| | - Vladislav Razskazovskiy
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Building 178, Maple Ave, PO Box 70582, Johnson City, TN37614, USA
| | - Kalpita Banerjee
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Building 178, Maple Ave, PO Box 70582, Johnson City, TN37614, USA
| | - Cuihong Jia
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Building 178, Maple Ave, PO Box 70582, Johnson City, TN37614, USA
| | - Chiharu Lovins
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Building 178, Maple Ave, PO Box 70582, Johnson City, TN37614, USA
| | - Gary L Wright
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Building 178, Maple Ave, PO Box 70582, Johnson City, TN37614, USA
| | - Theo Hagg
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Building 178, Maple Ave, PO Box 70582, Johnson City, TN37614, USA.
| |
Collapse
|
26
|
McKayed K, Prendergast PJ, Campbell VA. Aging enhances the vulnerability of mesenchymal stromal cells to uniaxial tensile strain-induced apoptosis. J Biomech 2016; 49:458-62. [DOI: 10.1016/j.jbiomech.2015.11.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 11/18/2015] [Accepted: 11/21/2015] [Indexed: 10/22/2022]
|
27
|
Chen H, Wang L, Zhou Z, Hou Z, Liu Z, Wang W, Gao D, Gao Q, Wang M, Song L. The comprehensive immunomodulation of NeurimmiRs in haemocytes of oyster Crassostrea gigas after acetylcholine and norepinephrine stimulation. BMC Genomics 2015; 16:942. [PMID: 26576764 PMCID: PMC4650145 DOI: 10.1186/s12864-015-2150-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 10/26/2015] [Indexed: 12/19/2022] Open
Abstract
Background Neural-endocrine-immune (NEI) system is a major modulation network among the nervous, endocrine and immune system and weights greatly in maintaining homeostasis of organisms during stress and infection. Some microRNAs are found interacting with NEI system (designated NeurimmiRs), addressing swift modulations on immune system. The oyster Crassostrea gigas, as an intertidal bivalve, has evolved a primary NEI system. However, the knowledge about NeurimmiRs in oysters remains largely unknown. Results Six small RNA libraries from haemocytes of oysters stimulated with acetylcholine (ACh) and norepinephrine (NE) were sequenced to identify neurotransmitter-responsive miRNAs and survey their immunomodulation roles. A total of 331 miRNAs (132 identified in the present study plus 199 identified previously) were subjected to expression analysis, and twenty-one and sixteen of them were found ACh- or NE-responsive, respectively (FDR < 0.05). Meanwhile, 21 miRNAs exhibited different expression pattern after ACh or NE stimulation. Consequently, 355 genes were predicted as putative targets of these neurotransmitter-responsive miRNAs in oyster. Through gene onthology analysis, multiple genes involved in death, immune system process and response to stimulus were annotated to be modulated by NeurimmiRs. Besides, a significant decrease in haemocyte phagocytosis and late-apoptosis or necrosis rate was observed after ACh and NE stimulation (p < 0.05) while early-apoptosis rate remained unchanged. Conclusions A comprehensive immune-related network involving PRRs, intracellular receptors, signaling transducers and immune effectors was proposed to be modulated by ACh- and NE-responsive NeurimmiRs, which would be indispensable for oyster haemocytes to respond against stress and infection. Characterization of the NeurimmiRs would be an essential step to understand the NEI system of invertebrate and the adaptation mechanism of oyster. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2150-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hao Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| | - Zhi Zhou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Zhanhui Hou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Zhaoqun Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Weilin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Dahai Gao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Qiang Gao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Linsheng Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China. .,Key Laboratory of Mariculture & Stock enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
28
|
Dynamic contact angle analysis of protein adsorption on polysaccharide multilayer's films for biomaterial reendothelialization. BIOMED RESEARCH INTERNATIONAL 2014; 2014:679031. [PMID: 25276808 PMCID: PMC4171065 DOI: 10.1155/2014/679031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 07/24/2014] [Indexed: 11/17/2022]
Abstract
Atherosclerosis is a major cardiovascular disease. One of the side effects is restenosis. The aim of this work was to study the coating of stents by dextran derivates based polyelectrolyte's multilayer (PEM) films in order to increase endothelialization of injured arterial wall after stent implantation. Films were composed with diethylaminoethyl dextran (DEAE) as polycation and dextran sulphate (DS) as polyanion. One film was composed with 4 bilayers of (DEAE-DS)4 and was labeled D-. The other film was the same as D- but with an added terminal layer of DEAE polycation: (DEAE-DS)4-DEAE (labeled D+). The dynamic adsorption/desorption of proteins on the films were characterized by dynamic contact angle (DCA) and atomic force microscopy (AFM). Human endothelial cell (HUVEC) adhesion and proliferation were quantified and correlated to protein adsorption analyzed by DCA for fibronectin, vitronectin, and bovine serum albumin (BSA). Our results showed that the endothelial cell response was optimal for films composed of DS as external layer. Fibronectin was found to be the only protein to exhibit a reversible change in conformation after desorption test. This behavior was only observed for (DEAE-DS)4 films. (DEAE-DS)4 films could enhance HUVEC proliferation in agreement with fibronectin ability to easily change from conformation.
Collapse
|
29
|
Zhang K, Xu M, Su J, Yu S, Sun Z, Li Y, Zhang W, Hou J, Shang L, Cui H. Characterization and identification of the integrin family in silkworm, Bombyx mori. Gene 2014; 549:149-55. [DOI: 10.1016/j.gene.2014.07.060] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 07/13/2014] [Accepted: 07/23/2014] [Indexed: 11/29/2022]
|
30
|
Nagaraju GP, Dontula R, El-Rayes BF, Lakka SS. Molecular mechanisms underlying the divergent roles of SPARC in human carcinogenesis. Carcinogenesis 2014; 35:967-73. [PMID: 24675529 DOI: 10.1093/carcin/bgu072] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Communication between the cell and its surrounding environment, consisting of proteinaceous (non-living material) and extracellular matrix (ECM), is important for biophysiological and chemical signaling. This signaling results in a range of cellular activities, including cell division, adhesion, differentiation, invasion, migration and angiogenesis. The ECM non-structural secretory glycoprotein called secreted protein, acidic and rich in cysteine (SPARC), plays a significant role in altering cancer cell activity and the tumor's microenvironment (TME). However, the role of SPARC in cancer research has been the subject of controversy. This review mainly focuses on recent advances in understanding the contradictory nature of SPARC in relation to ECM assembly, cancer cell proliferation, adhesion, migration, apoptosis and tumor growth.
Collapse
Affiliation(s)
- Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA and
| | | | | | | |
Collapse
|
31
|
Banerjee P, Mehta A, Shanthi C. Investigation into the cyto-protective and wound healing properties of cryptic peptides from bovine Achilles tendon collagen. Chem Biol Interact 2014; 211:1-10. [DOI: 10.1016/j.cbi.2014.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/03/2013] [Accepted: 01/07/2014] [Indexed: 11/26/2022]
|
32
|
Fogh BS, Multhaupt HAB, Couchman JR. Protein kinase C, focal adhesions and the regulation of cell migration. J Histochem Cytochem 2014; 62:172-84. [PMID: 24309511 PMCID: PMC3935447 DOI: 10.1369/0022155413517701] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/21/2013] [Indexed: 12/18/2022] Open
Abstract
Cell adhesion to extracellular matrix is a complex process involving protrusive activity driven by the actin cytoskeleton, engagement of specific receptors, followed by signaling and cytoskeletal organization. Thereafter, contractile and endocytic/recycling activities may facilitate migration and adhesion turnover. Focal adhesions, or focal contacts, are widespread organelles at the cell-matrix interface. They arise as a result of receptor interactions with matrix ligands, together with clustering. Recent analysis shows that focal adhesions contain a very large number of protein components in their intracellular compartment. Among these are tyrosine kinases, which have received a great deal of attention, whereas the serine/threonine kinase protein kinase C has received much less. Here the status of protein kinase C in focal adhesions and cell migration is reviewed, together with discussion of its roles and potential substrates.
Collapse
Affiliation(s)
- Betina S Fogh
- Department of Biomedical Sciences, University of Copenhagen, Denmark
| | | | | |
Collapse
|
33
|
Waxmonsky NC, Conner SD. Αvβ3-integrin-mediated adhesion is regulated through an AAK1L- and EHD3-dependent rapid-recycling pathway. J Cell Sci 2013; 126:3593-601. [PMID: 23781025 DOI: 10.1242/jcs.122465] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein transport through the endosome is critical for maintaining proper integrin cell surface integrin distribution to support cell adhesion, motility and viability. Here we employ a live-cell imaging approach to evaluate the relationship between integrin function and transport through the early endosome. We discovered that two early endosome factors, AAK1L and EHD3, are critical for αvβ3-integrin-mediated cell adhesion in HeLa cells. siRNA-mediated depletion of either factor delays short-loop β3 integrin recycling from the early endosome back to the cell surface. Total internal reflection fluorescence-based colocalization analysis reveals that β3 integrin transits AAK1L- and EHD3-positive endosomes near the cell surface, a subcellular location consistent with a rapid-recycling role for both factors. Moreover, structure-function analysis reveals that AAK1L kinase activity, as well as its C-terminal domain, is essential for cell adhesion maintenance. Taken together, these data reveal an important role for AAK1L and EHD3 in maintaining cell viability and adhesion by promoting αvβ3 integrin rapid recycling from the early endosome.
Collapse
Affiliation(s)
- Nicole C Waxmonsky
- Department of Genetics, Cell Biology and Development, The University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
34
|
Faião-Flores F, Suarez JAQ, Soto-Cerrato V, Espona-Fiedler M, Pérez-Tomás R, Maria DA. Bcl-2 family proteins and cytoskeleton changes involved in DM-1 cytotoxic effect on melanoma cells. Tumour Biol 2013; 34:1235-43. [PMID: 23341182 DOI: 10.1007/s13277-013-0666-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/11/2013] [Indexed: 01/08/2023] Open
Abstract
Melanoma is one of the most aggressive types of skin cancer and its incidence rate is still increasing. All existing treatments are minimally effective. Consequently, new therapeutic agents for melanoma treatment should be developed. The DM-1 compound is a curcumin analog that possesses several curcumin characteristics, such as antiproliferative, antitumor, and anti-metastatic properties. The aim of this study was to evaluate the different signaling pathways involved in the cytotoxic effect of DM-1 on melanoma cells. The apoptotic process and cytoskeletal changes were evaluated by immunoblotting and immunofluorescence, respectively, in melanoma cells. After DM-1 treatment, SK-MEL-5 melanoma cells showed actin filament disorganization with spicule formation throughout the cytoskeleton and significant reduction of focal adhesion as well as they were present only at cell extremities, conferring a poor connection between the cell and the substrate. Besides this, there was significant filopodium retraction and loss of typical cytoskeleton scaffold. These modifications contributed to cell detachment followed by cell death. Furthermore, DM-1-induced apoptosis was triggered by multiple Bcl-2 proteins involved in both the extrinsic and the intrinsic apoptotic pathways. SK-MEL-5 cells showed a death mechanism mainly by Bcl-2/Bax ratio decrease, whereas A375 cells presented apoptosis induction by Mcl-1 and Bcl-xL downregulation. In SK-MEL-5 and A375 melanoma cells, there was a significant increase in the active form of caspase 9, and the inactive form of the effector caspase 3 was decreased in both cell lines. Expression of cleaved poly ADP ribose polymerase was increased after DM-1 treatment in these melanoma cell lines, demonstrating that the apoptotic process occurred. Altogether, these data elucidate the cellular and molecular mechanisms involved in the cytotoxicity induced by the antitumor agent DM-1 in melanoma cells.
Collapse
Affiliation(s)
- Fernanda Faião-Flores
- Laboratory of Biochemistry and Biophysics, Butantan Institute, 1500 Vital Brasil Avenue, São Paulo, 05503-900, Brazil.
| | | | | | | | | | | |
Collapse
|
35
|
Chauffert B, Dimanche-Boitrel MT, Garrido C, Ivarsson M, Martin M, Martin F, Solary E. New insights into the kinetic resistance to anticancer agents. Cytotechnology 2012; 27:225-35. [PMID: 19002794 DOI: 10.1023/a:1008025124242] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Kinetic resistance plays a major role in the failure of chemotherapy towards many solid tumors. Kinetic resistance to cytotoxic drugs can be reproduced in vitro by growing the cells as multicellular spheroids (Multicellular Resistance) or as hyperconfluent cultures (Confluence-Dependent Resistance). Recent findings on the cell cycle regulation have permitted a better understanding why cancer cells which arrest in long quiescent phases are poorly sensitive to cell-cycle specific anticancer drugs. Two cyclin-dependent kinase inhibitors (CDKI) seem particularly involved in the cell cycle arrest at the G1 to S transition checkpoint: the p53-dependent p21(cip1) protein which is activated by DNA damage and the p27(kip1) which is a mediator of the contact inhibition signal. Cell quiescence could alter drug-induced apoptosis which is partly dependent on an active progression in the cell cycle and which is facilitated by overexpression of oncogenes such as c-Myc or cyclins. Investigations are yet necessary to determine the influence of the cell cycle on the balance between antagonizing (bcl-2, bcl-X(L)...) or stimulating (Bax, Bcl-X(S), Fas...) factors in chemotherapy-induced apoptosis. Quiescent cells could also be protected from toxic agents by an enhanced expression of stress proteins, such as HSP27 which is induced by confluence. New strategies are required to circumvent kinetic resistance of solid tumors: adequate choice of anticancer agents whose activity is not altered by quiescence (radiation, cisplatin), recruitment from G1 to S/G2 phases by cell pretreatment with alkylating drugs or attenuation of CDKI activity by specific inhibitors.
Collapse
|
36
|
Dai W, Yang T, Wang Y, Wang X, Wang J, Zhang X, Zhang Q. Peptide PHSCNK as an integrin α5β1 antagonist targets stealth liposomes to integrin-overexpressing melanoma. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2012; 8:1152-61. [DOI: 10.1016/j.nano.2012.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 09/17/2011] [Accepted: 01/16/2012] [Indexed: 01/11/2023]
|
37
|
|
38
|
Qin Y, Stokman G, Yan K, Ramaiahgari S, Verbeek F, de Graauw M, van de Water B, Price LS. cAMP signalling protects proximal tubular epithelial cells from cisplatin-induced apoptosis via activation of Epac. Br J Pharmacol 2012; 165:1137-50. [PMID: 21745194 PMCID: PMC3346244 DOI: 10.1111/j.1476-5381.2011.01594.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 06/03/2011] [Accepted: 06/23/2011] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Nephrotoxicity is the principal dose-limiting factor for cisplatin chemotherapy and is primarily associated with proximal tubular epithelial cells, including disruption of cell adhesions and induction of apoptosis. Cell adhesion and survival is regulated by, amongst other factors, the small GTPase Rap and its activator, the exchange protein directly activated by cAMP (Epac). Epac is particularly enriched in renal tubule epithelium. This study investigates the cytoprotective effects of cAMP-Epac-Rap signalling in a model of cisplatin-induced renal cell injury. EXPERIMENTAL APPROACH The Epac-selective cAMP analogue 8-pCPT-2'-O-Me-cAMP was used to activate the Epac-Rap signalling pathway in proximal tubular epithelial cells. Cells were exposed to cisplatin, in the presence or absence of 8-pCPT-2'-O-Me-cAMP, and nephrotoxicity was determined by monitoring cell-cell junctions and cell apoptosis. KEY RESULTS Activation of Epac-Rap signalling preserves cell-cell junctions and protects against cell apoptosis of mouse proximal tubular cells during cisplatin treatment. Activation with the Epac-selective cAMP analogue 8-pCPT-2'-O-Me-cAMP or receptor-mediated induction of cAMP both induced cytoprotection against cisplatin, whereas a PKA-selective cAMP analogue was not cytoprotective. 8-pCPT-2'-O-Me-cAMP mediated cytoprotection was blocked by RNAi-mediated silencing of Epac-Rap signalling in these cells. In contrast, 8-pCPT-2'-O-Me-cAMP did not protect against cisplatin-induced cell death of cancer cells that lacked Epac1 expression. CONCLUSIONS AND IMPLICATIONS Our study identifies activation of Epac-Rap signalling as a potential strategy for reducing the nephrotoxicity associated with cisplatin treatments and, as a result, broadens the therapeutic window of this chemotherapeutic agent.
Collapse
Affiliation(s)
- Yu Qin
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden UniversityLeiden, the Netherlands
| | - Geurt Stokman
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden UniversityLeiden, the Netherlands
| | - Kuan Yan
- Section Imaging and Bioinformatics, Leiden Institute of Advanced Computer Science, Leiden UniversityLeiden, the Netherlands
| | - Sreenivasa Ramaiahgari
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden UniversityLeiden, the Netherlands
| | - Fons Verbeek
- Section Imaging and Bioinformatics, Leiden Institute of Advanced Computer Science, Leiden UniversityLeiden, the Netherlands
| | - Marjo de Graauw
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden UniversityLeiden, the Netherlands
| | - Bob van de Water
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden UniversityLeiden, the Netherlands
| | - Leo S Price
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden UniversityLeiden, the Netherlands
| |
Collapse
|
39
|
Efficient formation of cell spheroids using polymer nanofibers. Biotechnol Lett 2011; 34:795-803. [DOI: 10.1007/s10529-011-0836-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 12/19/2011] [Indexed: 10/14/2022]
|
40
|
Collagen VI ablation retards brain tumor progression due to deficits in assembly of the vascular basal lamina. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:1145-1158. [PMID: 22200614 DOI: 10.1016/j.ajpath.2011.11.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 10/25/2011] [Accepted: 11/08/2011] [Indexed: 12/27/2022]
Abstract
To investigate the importance of the vascular basal lamina in tumor blood vessel morphogenesis and function, we compared vessel development, vessel function, and progression of B16F10 melanoma tumors in the brains of wild-type and collagen VI-null mice. In 7-day tumors in the absence of collagen VI, the width of the vascular basal lamina was reduced twofold. Although the ablation of collagen VI did not alter the abundance of blood vessels, a detailed analysis of the number of either pericytes or endothelial cells (or pericyte coverage of endothelial cells) showed that collagen VI-dependent defects during the assembly of the basal lamina have negative effects on both pericyte maturation and the sprouting and survival of endothelial cells. As a result of these deficits, vessel patency was reduced by 25%, and vessel leakiness was increased threefold, resulting in a 10-fold increase in tumor hypoxia along with a fourfold increase in hypoxia-inducible factor-1α expression. In 12-day collagen VI-null tumors, vascular endothelial growth factor expression was increased throughout the tumor stroma, in contrast to the predominantly vascular pattern of vascular endothelial growth factor expression in wild-type tumors. Vessel size was correspondingly reduced in 12-day collagen VI-null tumors. Overall, these vascular deficits produced a twofold decrease in tumor volume in collagen VI-null mice, confirming that collagen VI-dependent basal lamina assembly is a critical aspect of vessel development.
Collapse
|
41
|
Yoo BH, Wang Y, Erdogan M, Sasazuki T, Shirasawa S, Corcos L, Sabapathy K, Rosen KV. Oncogenic ras-induced down-regulation of pro-apoptotic protease caspase-2 is required for malignant transformation of intestinal epithelial cells. J Biol Chem 2011; 286:38894-903. [PMID: 21903589 DOI: 10.1074/jbc.m111.290692] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Resistance of carcinoma cells to anoikis, apoptosis that is normally induced by loss of cell-to-extracellular matrix adhesion, is thought to be essential for the ability of these cells to form primary tumors, invade adjacent tissues, and metastasize to distant organs. Current knowledge about the mechanisms by which cancer cells evade anoikis is far from complete. In an effort to understand these mechanisms, we found that ras, a major oncogene, down-regulates protease caspase-2 (which initiates certain steps of the cellular apoptotic program) in malignant human and rat intestinal epithelial cells. This down-regulation could be reversed by inhibition of a protein kinase Mek, a mediator of Ras signaling. We also found that enforced down-regulation of caspase-2 in nonmalignant intestinal epithelial cells by RNA interference protected them from anoikis. Furthermore, the reversal of the effect of Ras on caspase-2 achieved by the expression of exogenous caspase-2 in detached ras-transformed intestinal epithelial cells promoted well established apoptotic events, such as the release of the pro-apoptotic mitochondrial factors cytochrome c and HtrA2/Omi into the cytoplasm of these cells, significantly enhanced their anoikis susceptibility, and blocked their long term growth in the absence of adhesion to the extracellular matrix. Finally, the blockade of the effect of Ras on caspase-2 substantially suppressed growth of tumors formed by the ras-transformed cells in mice. We conclude that ras-induced down-regulation of caspase-2 represents a novel mechanism by which oncogenic Ras protects malignant intestinal epithelial cells from anoikis, promotes their anchorage-independent growth, and allows them to form tumors in vivo.
Collapse
Affiliation(s)
- Byong Hoon Yoo
- Department of Pediatrics, Atlantic Research Centre, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Extracellular matrix (ECM) is essential for all stages of angiogenesis. In the adult, angiogenesis begins with endothelial cell (EC) activation, degradation of vascular basement membrane, and vascular sprouting within interstitial matrix. During this sprouting phase, ECM binding to integrins provides critical signaling support for EC proliferation, survival, and migration. ECM also signals the EC cytoskeleton to initiate blood vessel morphogenesis. Dynamic remodeling of ECM, particularly by membrane-type matrix metalloproteases (MT-MMPs), coordinates formation of vascular tubes with lumens and provides guidance tunnels for pericytes that assist ECs in the assembly of vascular basement membrane. ECM also provides a binding scaffold for a variety of cytokines that exert essential signaling functions during angiogenesis. In the embryo, ECM is equally critical for angiogenesis and vessel stabilization, although there are likely important distinctions from the adult because of differences in composition and abundance of specific ECM components.
Collapse
Affiliation(s)
- Donald R Senger
- Department of Pathology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
43
|
Tissue inhibitor of metalloproteinase 1 expression associated with gene demethylation confers anoikis resistance in early phases of melanocyte malignant transformation. Transl Oncol 2011; 2:329-40. [PMID: 19956395 DOI: 10.1593/tlo.09220] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 08/13/2009] [Accepted: 09/03/2009] [Indexed: 11/18/2022] Open
Abstract
Although anoikis resistance has been considered a hallmark of malignant phenotype, the causal relation between neoplastic transformation and anchorage-independent growth remains undefined. We developed an experimental model of murine melanocyte malignant transformation, where a melanocyte lineage (melan-a) was submitted to sequential cycles of anchorage blockade, resulting in progressive morphologic alterations, and malignant transformation. Throughout this process, cells corresponding to premalignant melanocytes and melanoma cell lines were established and show progressive anoikis resistance and increased expression of Timp1. In melan-a melanocytes, Timp1 expression is suppressed by DNA methylation as indicated by its reexpression after 5-aza-2'-deoxycytidine treatment. Methylation-sensitive single-nucleotide primer extension analysis showed increased demethylation in Timp1 in parallel with its expression along malignant transformation. Interestingly, TIMP1 expression has already been related with negative prognosis in some human cancers. Although described as a MMP inhibitor, this protein has been associated with apoptosis resistance in different cell types. Melan-a cells overexpressing Timp1 showed increased survival in suspension but were unable to form tumors in vivo, whereas Timp1-overexpressing melanoma cells showed reduced latency time for tumor appearance and increased metastatic potential. Here, we demonstrated for the first time an increment in Timp1 expression since the early phases of melanocyte malignant transformation, associated to a progressive gene demethylation, which confers anoikis resistance. In this way, Timp1 might be considered as a valued marker for melanocyte malignant transformation.
Collapse
|
44
|
Integrin signaling, cell survival, and anoikis: distinctions, differences, and differentiation. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:738137. [PMID: 21785723 PMCID: PMC3139189 DOI: 10.1155/2011/738137] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Revised: 01/06/2011] [Accepted: 03/10/2011] [Indexed: 01/01/2023]
Abstract
Cell survival and apoptosis implicate an increasing complexity of players and signaling pathways which regulate not only the decision-making process of surviving (or dying), but as well the execution of cell death proper. The same complex nature applies to anoikis, a form of caspase-dependent apoptosis that is largely regulated by integrin-mediated, cell-extracellular matrix interactions. Not surprisingly, the regulation of cell survival, apoptosis, and anoikis furthermore implicates additional mechanistic distinctions according to the specific tissue, cell type, and species. Incidentally, studies in recent years have unearthed yet another layer of complexity in the regulation of these cell processes, namely, the implication of cell differentiation state-specific mechanisms. Further analyses of such differentiation state-distinct mechanisms, either under normal or physiopathological contexts, should increase our understanding of diseases which implicate a deregulation of integrin function, cell survival, and anoikis.
Collapse
|
45
|
Bcl-xL-inhibitory BH3 mimetics can induce a transient thrombocytopathy that undermines the hemostatic function of platelets. Blood 2011; 118:1663-74. [PMID: 21673344 DOI: 10.1182/blood-2011-04-347849] [Citation(s) in RCA: 253] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BH3 mimetics are a new class of proapo-ptotic anticancer agents that have shown considerable promise in preclinical animal models and early-stage human trials. These agents act by inhibiting the pro-survival function of one or more Bcl-2-related proteins. Agents that inhibit Bcl-x(L) induce rapid platelet death that leads to thrombocytopenia; however, their impact on the function of residual circulating platelets remains unclear. In this study, we demonstrate that the BH3 mimetics, ABT-737 or ABT-263, induce a time- and dose-dependent decrease in platelet adhesive function that correlates with ectodomain shedding of the major platelet adhesion receptors, glycoprotein Ibα and glycoprotein VI, and functional down-regulation of integrin α(IIb)β(3). Analysis of platelets from mice treated with higher doses of BH3 mimetics revealed the presence of a subpopulation of circulating platelets undergoing cell death that have impaired activation responses to soluble agonists. Functional analysis of platelets by intravital microscopy revealed a time-dependent defect in platelet aggregation at sites of vascular injury that correlated with an increase in tail bleeding time. Overall, these studies demonstrate that Bcl-x(L)-inhibitory BH3 mimetics not only induce thrombocytopenia but also a transient thrombocytopathy that can undermine the hemostatic function of platelets.
Collapse
|
46
|
Human liver sinusoidal endothelial cells respond to interaction with Entamoeba histolytica by changes in morphology, integrin signalling and cell death. Cell Microbiol 2011; 13:1091-106. [DOI: 10.1111/j.1462-5822.2011.01604.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Li B, Pozzi A, Young PP. TNFalpha accelerates monocyte to endothelial transdifferentiation in tumors by the induction of integrin alpha5 expression and adhesion to fibronectin. Mol Cancer Res 2011; 9:702-11. [PMID: 21536688 DOI: 10.1158/1541-7786.mcr-10-0484] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Tumor-associated myeloid cells are believed to promote tumor development by stimulating tumor growth, angiogenesis, invasion, and metastasis. Tumor-associated myeloid cells that coexpress endothelial and myeloid markers represent a proangiogenic subpopulation known as vascular leukocytes. Recently, we and others had shown that tumor-derived TNFα promotes local tumor growth and vascularity. Our data suggested that tumor growth is in part due to TNFα-mediated increased numbers of tumor-associated vascular leukocytes (i.e., myeloid-endothelial biphenotypic cells). The work detailed herein explored the mechanism by which TNFα mediates endothelial differentiation of myeloid cells. Our studies showed that fibronectin is a robust facilitator of endothelial differentiation of blood mononuclear cells in vitro. We have found that TNFα treatment of monocytes significantly increased expression of α(5)β(1) integrin, a major fibronectin receptor enriched on endothelial cells, leading to a consequent fourfold increase in fibronectin adhesion. Furthermore, TNFα-treated monocytes upregulated expression of endothelial markers, flk-1(VEGFR2/KDR) and VE-cadherin. Integrin α(5) subunit inhibitory antibodies blocked adhesion to fibronectin as well as consequent upregulation of flk-1 and VE-cadherin transcripts, implying a role for outside-in signaling by the α(5)β(1) integrin after binding fibronectin. Finally, treatment of mouse tumors with anti-α(5) antibodies reduced accumulation of tumor vascular leukocytes in vivo. Our studies suggest that tumor cell-derived TNFα constitutes a tumor microenvironment signal that promotes differentiation of tumor-associated monocytes toward a proangiogenic/provasculogenic myeloid-endothelial phenotype via upregulation of the fibronectin receptor α(5)β(1).
Collapse
Affiliation(s)
- Bin Li
- Vanderbilt University School of Medicine, Department of Pathology, 1161 21st Avenue South, C2217A MCN, Nashville, TN 37232, USA
| | | | | |
Collapse
|
48
|
Stokman G, Qin Y, Genieser HG, Schwede F, de Heer E, Bos JL, Bajema IM, van de Water B, Price LS. Epac-Rap signaling reduces cellular stress and ischemia-induced kidney failure. J Am Soc Nephrol 2011; 22:859-72. [PMID: 21493776 DOI: 10.1681/asn.2010040423] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Renal ischemia-reperfusion injury is associated with the loss of tubular epithelial cell-cell and cell-matrix interactions which contribute to renal failure. The Epac-Rap signaling pathway is a potent regulator of cell-cell and cell-matrix adhesion. The cyclic AMP analogue 8-pCPT-2'-O-Me-cAMP has been shown to selectively activate Epac, whereas the addition of an acetoxymethyl (AM) ester to 8-pCPT-2'-O-Me-cAMP enhanced in vitro cellular uptake. Here we demonstrate that pharmacological activation of Epac-Rap signaling using acetoxymethyl-8-pCPT-2'-O-Me-cAMP preserves cell adhesions during hypoxia in vitro, maintaining the barrier function of the epithelial monolayer. Intrarenal administration in vivo of 8-pCPT-2'-O-Me-cAMP also reduced renal failure in a mouse model for ischemia-reperfusion injury. This was accompanied by decreased expression of the tubular cell stress marker clusterin-α, and lateral expression of β-catenin after ischemia indicative of sustained tubular barrier function. Our study emphasizes the undervalued importance of maintaining tubular epithelial cell adhesion in renal ischemia and demonstrates the potential of pharmacological modulation of cell adhesion as a new therapeutic strategy to reduce the extent of injury in kidney disease and transplantation.
Collapse
Affiliation(s)
- Geurt Stokman
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Koch FP, Wunsch A, Merkel C, Ziebart T, Pabst A, Yekta SS, Blessmann M, Smeets R. The influence of bisphosphonates on human osteoblast migration and integrin aVb3/tenascin C gene expression in vitro. Head Face Med 2011; 7:4. [PMID: 21299894 PMCID: PMC3044099 DOI: 10.1186/1746-160x-7-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 02/07/2011] [Indexed: 12/27/2022] Open
Abstract
Background Bisphosphonates are therapeutics of bone diseases, such as Paget's disease, multiple myeloma or osteoclastic metastases. As a severe side effect the bisphosphonate induced osteonecrosis of the jaw (BONJ) often requires surgical treatment and is accompanied with a disturbed wound healing. Therefore, the influence on adhesion and migration of human osteoblasts (hOB) after bisphosphonate therapy has been investigated by morphologic as well as gene expression methods. Methods By a scratch wound experiment, which measures the reduction of defined cell layer gap, the morphology and migration ability of hOB was evaluated. A test group of hOB, which was stimulated by zoledronate 5 × 10-5M, and a control group of unstimulated hOB were applied. Furthermore the gene expression of integrin aVb3 and tenascin C was quantified by Real-Time rtPCR at 5data points over an experimental period of 14 days. The bisphosphonates zoledronate, ibandronate and clodronate have been compared with an unstimulated hOB control. Results After initially identical migration and adhesion characteristics, zoledronate inhibited hOB migration after 50 h of stimulation. The integrinavb3 and tenascin C gene expression was effected by bisphosphonates in a cell line dependent manner with decreased, respectively inconsistent gene expression levels over time. The non-nitrogen containing bisphosphonates clodronate led to decreased gene expression levels. Conclusion Bisphosphonates seem to inhibit hOB adhesion and migration. The integrin aVb3 and tenascin C gene expression seem to be dependent on the cell line. BONJ could be enhanced by an inhibition of osteoblast adhesion and migration. The gene expression results, however, suggest a cell line dependent effect of bisphosphonates, which could explain the interindividual differences of BONJ incidences.
Collapse
Affiliation(s)
- Felix P Koch
- Department of Oral and Maxillofacial Surgery, University medical centre of Johannes Gutenberg University Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Chen CJ, Tseng MC, Lin HJ, Lin TW, Chen YR. Visual indicator for surfactant abundance in MS-based membrane and general proteomics applications. Anal Chem 2011; 82:8283-90. [PMID: 20828166 DOI: 10.1021/ac1017937] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The existence of surfactants in proteomics samples can severely reduce enzymatic digestion efficiency, liquid chromatography (LC) separation efficiency, column lifetime, and mass spectrometry (MS) sensitivity. Although various techniques are able to remove surfactants, surfactants may occasionally be retained in samples due to variations in sample preparation method or personal skill. Evaluation of surfactant residue in a sample, however, usually requires an additional instrument and is time-consuming. In this study, a simple and rapid visual indicator for surfactant abundance (VISA) was developed. With the detection of a visible surfactant pellet in the solution, this assay was able to detect surfactant residue in aqueous solutions within 5 min. Without the need of additional equipment such as a mass spectrometer, every user can perform a quick test on their bench before sending the sample to the MS facility. The detection limit for the commonly used surfactants, Triton X-114 and SDS, was about 0.0005% and 0.0002%, respectively. The VISA was successfully applied to evaluate the efficiency of removal of surfactants in Triton X-114 extracted membrane proteins using tube-gel. With the combination of Triton X-114 extraction and tube-gel protocol, a study of spermatozoa membrane proteome identified about 252 proteins of which about 67.5% were classified as membrane proteins. The coexistence of protein and surfactant did not affect the VISA sensitivity, suggesting that this indicator is suitable for proteomics applications. The VISA also has potential for the detection of other surfactants and can be applied to other surfactant removing protocols.
Collapse
Affiliation(s)
- Chao-Jung Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan 11529
| | | | | | | | | |
Collapse
|