1
|
Zhou S, Liu B, Liu J, Yi B, Wang X. Spatiotemporal dissection of collective cell migration and tissue morphogenesis during development by optogenetics. Semin Cell Dev Biol 2025; 166:36-51. [PMID: 39729778 DOI: 10.1016/j.semcdb.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/29/2024]
Abstract
Collective cell migration and tissue morphogenesis play a variety of important roles in the development of many species. Tissue morphogenesis often generates mechanical forces that alter cell shapes and arrangements, resembling collective cell migration-like behaviors. Genetic methods have been widely used to study collective cell migration and its like behavior, advancing our understanding of these processes during development. However, a growing body of research shows that collective cell migration during development is not a simple behavior but is often combined with other cellular and tissue processes. In addition, different surrounding environments can also influence migrating cells, further complicating collective cell migration during development. Due to the complexity of developmental processes and tissues, traditional genetic approaches often encounter challenges and limitations. Thus, some methods with spatiotemporal control become urgent in dissecting collective cell migration and tissue morphogenesis during development. Optogenetics is a method that combines optics and genetics, providing a perfect strategy for spatiotemporally controlling corresponding protein activity in subcellular, cellular or tissue levels. In this review, we introduce the basic mechanisms underlying different optogenetic tools. Then, we demonstrate how optogenetic methods have been applied in vivo to dissect collective cell migration and tissue morphogenesis during development. Additionally, we describe some promising optogenetic approaches for advancing this field. Together, this review will guide and facilitate future studies of collective cell migration in vivo and tissue morphogenesis by optogenetics.
Collapse
Affiliation(s)
- Sijia Zhou
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China; Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France.
| | - Bing Liu
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France.
| | - Jiaying Liu
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Bin Yi
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China.
| | - Xiaobo Wang
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
2
|
Marikawa Y, Alarcon VB. Regulation of trophectoderm morphogenesis by small GTPase RHOA through HIPPO signaling-dependent and -independent mechanisms in mouse preimplantation development. Differentiation 2025; 141:100835. [PMID: 39874642 PMCID: PMC11790356 DOI: 10.1016/j.diff.2025.100835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/27/2024] [Accepted: 01/02/2025] [Indexed: 01/30/2025]
Abstract
The trophectoderm (TE) is the first tissue to differentiate during the preimplantation development of the mammalian embryo. It forms the outer layer of the blastocyst and is responsible for generating the blastocoel, a fluid-filled cavity whose expansion is essential for successful hatching and implantation. Here, we investigated the role of the small GTPase RHOA in the morphogenesis of the TE, particularly its relationship with HIPPO signaling, using mouse embryos as a model. Inhibition of RHOA resulted in the failure to form a blastocoel and significantly altered the expression of numerous genes. Transcriptomic analysis revealed that 330 genes were down-regulated and 168 genes were up-regulated by more than two-fold. Notably, 98.4% of these transcriptional changes were reversed by simultaneous inhibition of LATS kinases, indicating that the transcriptional influence of RHOA is primarily mediated through HIPPO signaling. Many of the down-regulated genes are involved in critical processes of TE morphogenesis, such as apical-basal cell polarization, tight junction formation, and sodium and water transport, suggesting that RHOA supports TE development by enhancing the expression of morphogenesis-related genes through HIPPO signaling, specifically via TEAD transcription factors. However, RHOA inhibition also disrupted apical-basal polarity and tight junctions, effects that were not restored by LATS inhibition, pointing to additional HIPPO signaling-independent mechanisms by which RHOA controls TE morphogenesis. Furthermore, RHOA inhibition impaired cell viability at the late blastocyst stage, with partial rescue observed upon LATS inhibition, suggesting that RHOA maintains cell survival through both HIPPO signaling-dependent and -independent pathways. A deeper knowledge of the molecular mechanisms governing TE morphogenesis, including blastocoel expansion and cell viability, could significantly advance assisted reproductive technologies aimed at producing healthy blastocysts.
Collapse
Affiliation(s)
- Yusuke Marikawa
- Yanagimachi Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, University of Hawaii John A. Burns School of Medicine, Honolulu, HI, 96813, USA
| | - Vernadeth B Alarcon
- Yanagimachi Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, University of Hawaii John A. Burns School of Medicine, Honolulu, HI, 96813, USA.
| |
Collapse
|
3
|
Areti A, Komirishetty P, Zochodne DW. Collaborative Roles for RAC1, ERM Proteins and PTEN During Adult Sensory Axon Regeneration. Mol Neurobiol 2025; 62:786-805. [PMID: 38904854 DOI: 10.1007/s12035-024-04273-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/29/2024] [Indexed: 06/22/2024]
Abstract
The role of local of growth cone (GC) manipulation in adult regenerative systems is largely unexplored despite substantial translational importance. Here we investigated collaboration among Rac1 GTPase, its partnering ERM proteins and PTEN in adult sensory neurons and adult nerve regeneration. We confirmed expression of both Rac1 and ERM in adults and noted substantial impacts on neurite outgrowth in naïve and pre-injured adult sensory neurons. PTEN inhibition added to this outgrowth. Rac1 activation acted directly on adult GCs facilitating both attractive turning and advancement. In vivo regeneration indices including electrophysiological recovery, return of sensation, walking, repopulation of myelinated axons and reinnervation of the target epidermis indicated benefits of local Rac1 activation. These indices suggested maximal GC activation whereas local PTEN inhibition offered only limited added improvement. Our findings provide support for the concept of manipulating adult GCs, by emphasizing local Rac1 activation in directing therapy for nerve repair.
Collapse
Affiliation(s)
- Aparna Areti
- Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, 7-132 Clinical Sciences Building 11350-83 Ave, T6G 2G3, Edmonton, AB, Canada
| | - Prashanth Komirishetty
- Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, 7-132 Clinical Sciences Building 11350-83 Ave, T6G 2G3, Edmonton, AB, Canada
| | - Douglas W Zochodne
- Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, 7-132 Clinical Sciences Building 11350-83 Ave, T6G 2G3, Edmonton, AB, Canada.
| |
Collapse
|
4
|
Al-Mashhadani S, Sallemi M, Namsi A, Hamdi Y, Cherif A, Abidi F, Leprince J, Sami Z, Vaudry D, Olfa MK. Octadecaneuropeptide promotes the migration of astrocyte via ODN metabotropic receptor and calcium signaling pathway. Peptides 2025; 183:171338. [PMID: 39755258 DOI: 10.1016/j.peptides.2024.171338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/19/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
Migration is an essential characteristic of cells that occurs during many physiological and pathological processes. Astrocytes represent the most abundant cell type in the adult central nervous system (CNS), that play a crucial role in various functions such as guiding and supporting neuronal migration during development and maintaining brain homeostasis at adulthood. Astrocytes specifically synthesize and release endozepines, a family of regulatory peptides, including the octadecaneuropeptide (ODN). ODN is an endogenous ligand for both central-type benzodiazepine receptors and a metabotropic receptor. ODN promotes proliferation and prevents oxidative damage induced apoptosis on both neurons and astrocytes. However, little is known regarding the effect of ODN on cell migration. The purpose of the present study was to investigate the potential effect of ODN on astrocytes migration. Our results show that ODN stimulates astrocytes proliferation and migration at very low concentrations in wound healing assays, that was mimicked by the metabotropic ODN receptor agonist cyclo1-8 octapeptide (cyclo1-8OP, 10-14 M to 10-10 M). The effect of ODN on astrocyte migration was abrogated by the metabotropic receptor antagonist, cyclo1-8[DLeu5] OP. Moreover, we have shown that ODN activates the calcium signaling pathway and increases the mammalian target of rapamycin (mTOR) gene transcription, which are both known to promote astrocyte migration. Therefore, the present results suggest that ODN regulates astroglial cell migration through the calcium/mTOR signaling pathway and provide new insight regarding the role of ODN on brain remodling after injury.
Collapse
Affiliation(s)
- Sada Al-Mashhadani
- University of Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03 Laboratory of Neurophysiology, Cellular Physiopathology and Biomolecules Valorisation, Tunis 2092, Tunisia.
| | - Mariem Sallemi
- University of Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03 Laboratory of Neurophysiology, Cellular Physiopathology and Biomolecules Valorisation, Tunis 2092, Tunisia.
| | - Amira Namsi
- University of Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03 Laboratory of Neurophysiology, Cellular Physiopathology and Biomolecules Valorisation, Tunis 2092, Tunisia.
| | - Yosra Hamdi
- University of Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03 Laboratory of Neurophysiology, Cellular Physiopathology and Biomolecules Valorisation, Tunis 2092, Tunisia.
| | - Amine Cherif
- University of Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03 Laboratory of Neurophysiology, Cellular Physiopathology and Biomolecules Valorisation, Tunis 2092, Tunisia.
| | - Fethia Abidi
- University of Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03 Laboratory of Neurophysiology, Cellular Physiopathology and Biomolecules Valorisation, Tunis 2092, Tunisia.
| | - Jérôme Leprince
- Laboratory of Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Inserm UMR 1239, University Rouen Normandie, Rouen 76000, France.
| | - Zekri Sami
- University of Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03 Laboratory of Neurophysiology, Cellular Physiopathology and Biomolecules Valorisation, Tunis 2092, Tunisia; Confocal Microscopy Unit. Faculty of Medicine of Tunis, University Tunis El Manar, Tunis, Tunisia.
| | - David Vaudry
- Laboratory of Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Inserm UMR 1239, University Rouen Normandie, Rouen 76000, France.
| | - Masmoudi-Kouki Olfa
- University of Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03 Laboratory of Neurophysiology, Cellular Physiopathology and Biomolecules Valorisation, Tunis 2092, Tunisia.
| |
Collapse
|
5
|
Qiao Z, Liao M, Xiao M, Luo S, Wang K, Niu M, Jiang H, Sun S, Xu G, Xu N, Xu Q, Liu Y. Ephrin B3 exacerbates colitis and colitis-associated colorectal cancer. Biochem Pharmacol 2024; 220:116004. [PMID: 38142837 DOI: 10.1016/j.bcp.2023.116004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Ephrin B3, a member of Eph/ephrin family, contributes to embryogenesis and carcinogenesis, but few studies have suggested whether this ligand has regulatory effect on colitis. This study was to determine whether ephrin B3 played a role in colitis and colonic carcinogenesis. Dextran sodium sulfate (DSS)-induced colitis and azoxymethane (AOM)/DSS-induced colitis-associated carcinogenesis model was established in Efnb3-deficient (Efnb3-/-) mice. Label-free quantitative proteomics were performed to identify the Efnb3-regulated proteins. Our results showed that Efnb3 knock out reduced the symptoms of DSS-induced colitis, such as disease activity index (DAI), inflammatory factors release, and dysfunction of the intestinal barrier. Quantitative proteomics revealed that Efnb3 regulated 95 proteins which clustered in the platelet degranulation, response to elevated platelet cytosolic Ca2+, MAPK signaling for integrins such as ITGB4. Furthermore, ephrin B3 inactived ITGB4/AKT signal pathway and then promoted epithelial barrier dysfunction. Simultaneously, ephrin B3 promoted Gremlin-1/NF-κB signal pathway and thereby increased inflammatory factors release. In addition, the higher level of Efnb3 in colon cancer patients is correlated with worse survival. Efnb3-/- mice exhibited susceptibility to AOM/DSS-induced colorectal cancer. Our finding discovered that Efnb3 played an important role in the development of colitis and colitis-associated colorectal cancer. Efnb3 deficiency improved the intestinal barrier by ITGB4 and suppressed inflammation via Gremlin-1/NF-κB signal pathway, which may provide a novel therapeutic strategy for the treatment of colitis and colitis-associated colorectal cancer.
Collapse
Affiliation(s)
- Zhen Qiao
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Min Liao
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Mingyue Xiao
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Saiyan Luo
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Kexin Wang
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Mengxin Niu
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Honglv Jiang
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Suya Sun
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Anatomy, Histology and Embryology, Neuroscience Division, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guoqiang Xu
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - NanJie Xu
- Department of Anatomy, Histology and Embryology, Neuroscience Division, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qiongming Xu
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yanli Liu
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
6
|
Pan X, Pérez-Henríquez P, Van Norman JM, Yang Z. Membrane nanodomains: Dynamic nanobuilding blocks of polarized cell growth. PLANT PHYSIOLOGY 2023; 193:83-97. [PMID: 37194569 DOI: 10.1093/plphys/kiad288] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/18/2023]
Abstract
Cell polarity is intimately linked to numerous biological processes, such as oriented plant cell division, particular asymmetric division, cell differentiation, cell and tissue morphogenesis, and transport of hormones and nutrients. Cell polarity is typically initiated by a polarizing cue that regulates the spatiotemporal dynamic of polarity molecules, leading to the establishment and maintenance of polar domains at the plasma membrane. Despite considerable progress in identifying key polarity regulators in plants, the molecular and cellular mechanisms underlying cell polarity formation have yet to be fully elucidated. Recent work suggests a critical role for membrane protein/lipid nanodomains in polarized morphogenesis in plants. One outstanding question is how the spatiotemporal dynamics of signaling nanodomains are controlled to achieve robust cell polarization. In this review, we first summarize the current state of knowledge on potential regulatory mechanisms of nanodomain dynamics, with a special focus on Rho-like GTPases from plants. We then discuss the pavement cell system as an example of how cells may integrate multiple signals and nanodomain-involved feedback mechanisms to achieve robust polarity. A mechanistic understanding of nanodomains' roles in plant cell polarity is still in the early stages and will remain an exciting area for future investigations.
Collapse
Affiliation(s)
- Xue Pan
- Department of Biological Sciences, University of Toronto-Scarborough, Toronto, ON M1C 1A4, Canada
| | - Patricio Pérez-Henríquez
- Center for Plant Cell Biology, Institute of Integrative Genome Biology and Department of Botany and Plant Sciences, University of California at Riverside, Riverside, CA 92521, USA
| | - Jaimie M Van Norman
- Center for Plant Cell Biology, Institute of Integrative Genome Biology and Department of Botany and Plant Sciences, University of California at Riverside, Riverside, CA 92521, USA
| | - Zhenbiao Yang
- Center for Plant Cell Biology, Institute of Integrative Genome Biology and Department of Botany and Plant Sciences, University of California at Riverside, Riverside, CA 92521, USA
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province 518055, China
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, China
| |
Collapse
|
7
|
Chen J, Chen J, Tan J, Li J, Cheng W, Ke L, Wang Q, Wang A, Lin S, Li G, Zhang P, Wang B. HIF-1α dependent RhoA as a novel therapeutic target to regulate rheumatoid arthritis fibroblast-like synoviocytes migration in vitro and in vivo. J Orthop Translat 2023; 40:49-57. [PMID: 37346290 PMCID: PMC10279694 DOI: 10.1016/j.jot.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/22/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023] Open
Abstract
Objective The purpose of this work is to investigate how the Rho family of GTPases A (RhoA) mediates the pathogenesis of rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS). Methods The expression of RhoA in the synovial tissues of RA and Healthy people (Control) was detected using immunohistochemistry methods. The expression of RhoA and hypoxia-inducible factor-1α (HIF-1α) is inhibited by small interfering RNAs (siRNAs). The inhibition effect on RA-FLS migration was further investigated. The protein expression level of HIF-1α, RhoA, focal adhesion kinase (FAK), and myosin light chain (MLC) was also analysed using western blotting (WB). DBA1 mice were immunised with the mixture of bovine type II collagen and Freund's adjuvant to establish collagen induced arthritis (CIA) mouse model. Lip-siRhoA is administered through joint injection every two days. Micro-computed tomography (micro-CT) was used to detect mouse ankle joint destruction and evaluate the bone loss of the periarticular side. Destruction of the ankle articular cartilage was tested by histology. Expressions of P-RhoA, P-FAK and P-MLC in the ankle joint was detected by immunohistochemistry assay. Results The expression level of RhoA in the synovial tissues of RA patients was significantly higher than that in control group. Hypoxia was able to up-regulate the expression of RhoA. Whereas, HIF-1α siRNA (siHIF-1α) could down-regulate the expression of RhoA. Additionally, both of siHIF-1α and RhoA siRNA (siRhoA) delivered by liposome (Lip-siHIF-1α and Lip-siRhoA) were found to suppress FAK and MLC phosphorylation in vitro. In CIA mouse model, Lip-siRhoA was demonstrated to ameliorate the destruction of ankle joint and reduce the severity of ankle joint cartilage damage by micro-CT and histological staining, respectively. Therefore, inhibition of FLS cell migration can protect articular bone from destruction. Furthermore, the expression of P-RhoA, P-FAK and P-MLC was evaluated and found to be down-regulated by Lip-siRhoA in vivo. Conclusion The results demonstrated that under hypoxic environment, HIF-1α dependent RhoA pathway played an important role on cytoskeleton remodelling and RA-FLS migration. Through down-regulating RhoA expression, it could effectively treat RA in vitro and in vivo. The translational potential of this article Our study provides new evidence for the potential clinical application of RhoA as a candidate for the treatment of RA.
Collapse
Affiliation(s)
- Jianhai Chen
- Rehabilitation Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong, 518172, China
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Research Center for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jingqin Chen
- Research Center for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jianwei Tan
- Research Center for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jian Li
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wenxiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Liqing Ke
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qijing Wang
- Rehabilitation Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong, 518172, China
| | - Anqiao Wang
- Rehabilitation Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong, 518172, China
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Gang Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Benguo Wang
- Rehabilitation Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
8
|
Liu A, Yu L, Li X, Zhang K, Zhang W, So KF, Tissir F, Qu Y, Zhou L. Celsr2-mediated morphological polarization and functional phenotype of reactive astrocytes in neural repair. Glia 2023. [PMID: 37186402 DOI: 10.1002/glia.24378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/09/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023]
Abstract
Neural repair is highly influenced by reactive astrocytes. Atypical cadherin Celsr2 regulates neuron development and axon regeneration, while its role in glial cells remains unexplored. In this study, we show that Celsr2 is highly expressed in spinal astrocytes of adult mice, and knockout of Celsr2 results in reactive astrocytes with longer protrusions preferentially orientated towards lesion borders in culture scratch assay and injured spinal cord, and elevation of total and active Cdc42 and Rac1 protein in western blots. Inactivation of Celsr2 enhances calcium influx in reactive astrocytes in time-lapse imaging. Morphological phenotypes of cultured Celsr2-/- astrocytes are rescued by Cdc42 or Rac1 inhibitors. Following spinal cord injury (SCI), Celsr2-/- mice exhibit smaller lesion cavity and glial scar, enhanced fiber regeneration, weaker microglial response, and improved functional recovery than control animals. Similar phenotypes are found in mice with conditional knockout of Celsr2 in astrocytes. In Celsr2-/- mice, astrocyte phenotype is changed and neuroinflammation is alleviated after injury. Inhibiting Cdc42/Rac1 activities compromises astrocyte polarization and the improvement of neural repair and functional recovery in Celsr2-/- mice with SCI. In conclusion, Celsr2 regulates morphological polarization and functional phenotype of reactive astrocytes and inactivating Celsr2 is a potential therapeutic strategy for neural repair.
Collapse
Affiliation(s)
- Aimei Liu
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, People's Republic of China
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, Shandong, People's Republic of China
| | - Lingtai Yu
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, People's Republic of China
| | - Xuejun Li
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, People's Republic of China
| | - Kejiao Zhang
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, People's Republic of China
| | - Wei Zhang
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, People's Republic of China
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, People's Republic of China
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, Shandong, People's Republic of China
- Department of Neurology and Stroke Center, The First Affiliated Hospital & Clinical Neuroscience Institute of Jinan University, Guangzhou, People's Republic of China
- Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu, People's Republic of China
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Fadel Tissir
- Institute of Neuroscience, Developmental Neurobiology, Université catholique de Louvain, Brussels, Belgium
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Yibo Qu
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, People's Republic of China
- Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu, People's Republic of China
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Libing Zhou
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, People's Republic of China
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, Shandong, People's Republic of China
- Department of Neurology and Stroke Center, The First Affiliated Hospital & Clinical Neuroscience Institute of Jinan University, Guangzhou, People's Republic of China
- Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu, People's Republic of China
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, People's Republic of China
| |
Collapse
|
9
|
Krauss RS, Kann AP. Muscle stem cells get a new look: Dynamic cellular projections as sensors of the stem cell niche. Bioessays 2023; 45:e2200249. [PMID: 36916774 PMCID: PMC10170654 DOI: 10.1002/bies.202200249] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/15/2023]
Abstract
Cellular mechanisms whereby quiescent stem cells sense tissue injury and transition to an activated state are largely unknown. Quiescent skeletal muscle stem cells (MuSCs, also called satellite cells) have elaborate, heterogeneous projections that rapidly retract in response to muscle injury. They may therefore act as direct sensors of their niche environment. Retraction is driven by a Rac-to-Rho GTPase activity switch that promotes downstream MuSC activation events. These and other observations lead to several hypotheses: (1) projections are morphologically dynamic at quiescence, providing a surveillance function for muscle damage; (2) quiescent projection dynamics are regulated by the relative balance of Rac and Rho activities promoted by niche-derived cues; (3) projections, particularly their associated filopodia, sense tissue damage via changes to the biomechanical properties of the niche and/or detection of signaling cues released by damaged myofibers; and (4) the dynamic nature of projections result in a population of MuSCs with heterogeneous functional properties. These concepts may extend to other types of quiescent stem cells, as well as prove useful in translational research settings.
Collapse
Affiliation(s)
- Robert S Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Allison P Kann
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
10
|
Zhang N, Cui Y, Li Y, Mi Y. A Novel Role of Nogo Proteins: Regulating Macrophages in Inflammatory Disease. Cell Mol Neurobiol 2022; 42:2439-2448. [PMID: 34224050 PMCID: PMC11421643 DOI: 10.1007/s10571-021-01124-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 06/27/2021] [Indexed: 12/11/2022]
Abstract
Nogo proteins, also known as Reticulon-4, have been identified as myelin-derived inhibitors of neurite outgrowth in the central nervous system (CNS). There are three Nogo variants, Nogo-A, Nogo-B and Nogo-C. Recent studies have shown that Nogo-A/B is abundant in macrophages and may have a wider effect on inflammation. In this review, we focus mainly on the possible roles of Nogo-A/B on polarization and recruitment of macrophages and their involvement in a variety of inflammatory diseases. We then discuss the Nogo receptor1 (NgR1), a common receptor for Nogo proteins that is also abundant in microglia/macrophage in the CNS. Interaction of Nogo and NgR1 in microglia/macrophage may affect the adhesion and polarization of macrophages that are involved in multiple neurodegenerative diseases, including Alzheimer's disease and multiple sclerosis. Overall, this review provides insights into the roles of Nogo proteins in regulating macrophage functions and suggests that, potentially, Nogo proteins maybe a new target in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Ni Zhang
- Department of Basic Medicine, Xi'an Medical University, Xin-Wang Street #1, Xi'an, 710021, Shaanxi, China
| | - Yuanyuan Cui
- Department of Basic Medicine, Xi'an Medical University, Xin-Wang Street #1, Xi'an, 710021, Shaanxi, China
| | - Yuan Li
- Department of Basic Medicine, Xi'an Medical University, Xin-Wang Street #1, Xi'an, 710021, Shaanxi, China
| | - Yajing Mi
- Department of Basic Medicine, Xi'an Medical University, Xin-Wang Street #1, Xi'an, 710021, Shaanxi, China.
| |
Collapse
|
11
|
Bioelectronic medicines: Therapeutic potential and advancements in next-generation cancer therapy. Biochim Biophys Acta Rev Cancer 2022; 1877:188808. [DOI: 10.1016/j.bbcan.2022.188808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/07/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
|
12
|
Zanin JP, Friedman WJ. p75NTR prevents the onset of cerebellar granule cell migration via RhoA activation. eLife 2022; 11:e79934. [PMID: 36040414 PMCID: PMC9427104 DOI: 10.7554/elife.79934] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/07/2022] [Indexed: 12/20/2022] Open
Abstract
Neuronal migration is one of the fundamental processes during brain development. Several neurodevelopmental disorders can be traced back to dysregulated migration. Although substantial efforts have been placed in identifying molecular signals that stimulate migration, little is known about potential mechanisms that restrict migration. These restrictive mechanisms are essential for proper development since it helps coordinate the timing for each neuronal population to arrive and establish proper connections. Moreover, preventing migration away from a proliferative niche is necessary in maintaining a pool of proliferating cells until the proper number of neuronal progenitors is attained. Here, using mice and rats, we identify an anti-migratory role for the p75 neurotrophin receptor (p75NTR) in cerebellar development. Our results show that granule cell precursors (GCPs) robustly express p75NTR in the external granule layer (EGL) when they are proliferating during postnatal development, however, they do not express p75NTR when they migrate either from the rhombic lip during embryonic development or from the EGL during postnatal development. We show that p75NTR prevented GCP migration by maintaining elevated levels of active RhoA. The expression of p75NTR was sufficient to prevent the migration of the granule cells even in the presence of BDNF (brain-derived neurotrophic factor), a well-established chemotactic signal for this cell population. Our findings suggest that the expression of p75NTR might be a critical signal that stops and maintains the GCPs in the proliferative niche of the EGL, by promoting the clonal expansion of cerebellar granule neurons.
Collapse
Affiliation(s)
- Juan P Zanin
- Department of Biological Sciences, Rutgers UniversityNewarkUnited States
| | - Wilma J Friedman
- Department of Biological Sciences, Rutgers UniversityNewarkUnited States
| |
Collapse
|
13
|
Mutant p53 Depletion by Novel Inhibitors for HSP40/J-Domain Proteins Derived from the Natural Compound Plumbagin. Cancers (Basel) 2022; 14:cancers14174187. [PMID: 36077724 PMCID: PMC9454493 DOI: 10.3390/cancers14174187] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 12/05/2022] Open
Abstract
Simple Summary The tumor suppressor p53 is frequently mutated in human cancer. Accumulation of missense mutant p53 (mutp53) in tumors is crucial for malignant progression, and cancers are often addicted to oncogenic mutp53. However, strategies to deplete mutp53 have not yet been established. Recent studies have shown that misfolded or conformational mutp53 is stabilized by DNAJA1, a member of HSP40, also known as J-domain proteins (JDPs). However, no selective DNAJA1 inhibitor is clinically available. Through a molecular docking study, we identified a potential DNAJA1 inhibitor, called PLTFBH, derived from the natural compound plumbagin, as a compound that bound to and reduced protein levels of DNAJA1 and several other HSP40/JDPs. PLTFBH reduced the levels of conformational mutp53 and inhibited cancer cell migration in a manner dependent on DNAJA1 and mutp53. Abstract Accumulation of missense mutant p53 (mutp53) in cancers promotes malignant progression. DNAJA1, a member of HSP40 (also known as J-domain proteins: JDPs), is shown to prevent misfolded or conformational mutp53 from proteasomal degradation. Given frequent addiction of cancers to oncogenic mutp53, depleting mutp53 by DNAJA1 inhibition is a promising approach for cancer therapy. However, there is no clinically available inhibitor for DNAJA1. Our in silico molecular docking study with a natural compound-derived small molecule library identified a plumbagin derivative, PLIHZ (plumbagin–isoniazid analog), as a potential compound binding to the J domain of DNAJA1. PLIHZ efficiently reduced the levels of DNAJA1 and several conformational mutp53 with minimal impact on DNA contact mutp53 and wild-type p53 (wtp53). An analog, called PLTFBH, which showed a similar activity to PLIHZ in reducing DNAJA1 and mutp53 levels, inhibited migration of cancer cells specifically carrying conformational mutp53, but not DNA contact mutp53, p53 null, and wtp53, which was attenuated by depletion of DNAJA1 or mutp53. Moreover, PLTFBH reduced levels of multiple other HSP40/JDPs with tyrosine 7 (Y7) and/or tyrosine 8 (Y8) but failed to deplete DNAJA1 mutants with alanine substitution of these amino acids. Our study suggests PLTFBH as a potential inhibitor for multiple HSP40/JDPs.
Collapse
|
14
|
Zhou L, Feng S, Li L, Lü S, Zhang Y, Long M. Two Complementary Signaling Pathways Depict Eukaryotic Chemotaxis: A Mechanochemical Coupling Model. Front Cell Dev Biol 2021; 9:786254. [PMID: 34869388 PMCID: PMC8635958 DOI: 10.3389/fcell.2021.786254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/21/2021] [Indexed: 01/16/2023] Open
Abstract
Many eukaryotic cells, including neutrophils and Dictyostelium cells, are able to undergo correlated random migration in the absence of directional cues while reacting to shallow gradients of chemoattractants with exquisite precision. Although progress has been made with regard to molecular identities, it remains elusive how molecular mechanics are integrated with cell mechanics to initiate and manipulate cell motility. Here, we propose a two dimensional (2D) cell migration model wherein a multilayered dynamic seesaw mechanism is accompanied by a mechanical strain-based inhibition mechanism. In biology, these two mechanisms can be mapped onto the biochemical feedback between phosphoinositides (PIs) and Rho GTPase and the mechanical interplay between filamin A (FLNa) and FilGAP. Cell migration and the accompanying morphological changes are demonstrated in numerical simulations using a particle-spring model, and the diffusion in the cell membrane are simulations using a one dimensional (1D) finite differences method (FDM). The fine balance established between endogenous signaling and a mechanically governed inactivation scheme ensures the endogenous cycle of self-organizing pseudopods, accounting for the correlated random migration. Furthermore, this model cell manifests directional and adaptable responses to shallow graded signaling, depending on the overwhelming effect of the graded stimuli guidance on strain-based inhibition. Finally, the model cell becomes trapped within an obstacle-ridden spatial region, manifesting a shuttle run for local explorations and can chemotactically “escape”, illustrating again the balance required in the complementary signaling pathways.
Collapse
Affiliation(s)
- Lüwen Zhou
- Smart Materials and Advanced Structure Laboratory, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo Zhejiang, China.,Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Center for Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Shiliang Feng
- Smart Materials and Advanced Structure Laboratory, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo Zhejiang, China.,Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Center for Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Long Li
- State Key Laboratory of Nonlinear Mechanics (LNM) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Shouqin Lü
- Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Center for Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yan Zhang
- Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Center for Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Mian Long
- Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Center for Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Faria M, Domingues R, Bugalho MJ, Silva AL, Matos P. Analysis of NIS Plasma Membrane Interactors Discloses Key Regulation by a SRC/RAC1/PAK1/PIP5K/EZRIN Pathway with Potential Implications for Radioiodine Re-Sensitization Therapy in Thyroid Cancer. Cancers (Basel) 2021; 13:5460. [PMID: 34771624 PMCID: PMC8582450 DOI: 10.3390/cancers13215460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/14/2021] [Accepted: 10/27/2021] [Indexed: 12/25/2022] Open
Abstract
The functional expression of the sodium-iodide symporter (NIS) at the membrane of differentiated thyroid cancer (DTC) cells is the cornerstone for the use of radioiodine (RAI) therapy in these malignancies. However, NIS gene expression is frequently downregulated in malignant thyroid tissue, and 30% to 50% of metastatic DTCs become refractory to RAI treatment, which dramatically decreases patient survival. Several strategies have been attempted to increase the NIS mRNA levels in refractory DTC cells, so as to re-sensitize refractory tumors to RAI. However, there are many RAI-refractory DTCs in which the NIS mRNA and protein levels are relatively abundant but only reduced levels of iodide uptake are detected, suggesting a posttranslational failure in the delivery of NIS to the plasma membrane (PM), or an impaired residency at the PM. Because little is known about the molecules and pathways regulating NIS delivery to, and residency at, the PM of thyroid cells, we here employed an intact-cell labeling/immunoprecipitation methodology to selectively purify NIS-containing macromolecular complexes from the PM. Using mass spectrometry, we characterized and compared the composition of NIS PM complexes to that of NIS complexes isolated from whole cell (WC) lysates. Applying gene ontology analysis to the obtained MS data, we found that while both the PM-NIS and WC-NIS datasets had in common a considerable number of proteins involved in vesicle transport and protein trafficking, the NIS PM complexes were particularly enriched in proteins associated with the regulation of the actin cytoskeleton. Through a systematic validation of the detected interactions by co-immunoprecipitation and Western blot, followed by the biochemical and functional characterization of the contribution of each interactor to NIS PM residency and iodide uptake, we were able to identify a pathway by which the PM localization and function of NIS depends on its binding to SRC kinase, which leads to the recruitment and activation of the small GTPase RAC1. RAC1 signals through PAK1 and PIP5K to promote ARP2/3-mediated actin polymerization, and the recruitment and binding of the actin anchoring protein EZRIN to NIS, promoting its residency and function at the PM of normal and TC cells. Besides providing novel insights into the regulation of NIS localization and function at the PM of TC cells, our results open new venues for therapeutic intervention in TC, namely the possibility of modulating abnormal SRC signaling in refractory TC from a proliferative/invasive effect to the re-sensitization of these tumors to RAI therapy by inducing NIS retention at the PM.
Collapse
Affiliation(s)
- Márcia Faria
- Serviço de Endocrinologia, Diabetes e Metabolismo do CHULN-Hospital Santa Maria, 1649-028 Lisboa, Portugal; (M.F.); (R.D.); (M.J.B.); (A.L.S.)
- BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
| | - Rita Domingues
- Serviço de Endocrinologia, Diabetes e Metabolismo do CHULN-Hospital Santa Maria, 1649-028 Lisboa, Portugal; (M.F.); (R.D.); (M.J.B.); (A.L.S.)
- ISAMB-Instituto de Saúde Ambiental, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Maria João Bugalho
- Serviço de Endocrinologia, Diabetes e Metabolismo do CHULN-Hospital Santa Maria, 1649-028 Lisboa, Portugal; (M.F.); (R.D.); (M.J.B.); (A.L.S.)
- Serviço de Endocrinologia, Diabetes e Metabolismo, CHULN and Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Ana Luísa Silva
- Serviço de Endocrinologia, Diabetes e Metabolismo do CHULN-Hospital Santa Maria, 1649-028 Lisboa, Portugal; (M.F.); (R.D.); (M.J.B.); (A.L.S.)
- ISAMB-Instituto de Saúde Ambiental, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Serviço de Endocrinologia, Diabetes e Metabolismo, CHULN and Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Paulo Matos
- BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
| |
Collapse
|
16
|
Chia S, Leung T, Tan I. Cyclical phosphorylation of LRAP35a and CLASP2 by GSK3β and CK1δ regulates EB1-dependent MT dynamics in cell migration. Cell Rep 2021; 36:109687. [PMID: 34525355 DOI: 10.1016/j.celrep.2021.109687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 07/02/2021] [Accepted: 08/19/2021] [Indexed: 11/30/2022] Open
Abstract
Mammalian cell cytoskeletal reorganization for efficient directional movement requires tight coordination of actomyosin and microtubule networks. In this study, we show that LRAP35a potentiates microtubule stabilization by promoting CLASP2/EB1 interaction besides its complex formation with MRCK/MYO18A for retrograde actin flow. The alternate regulation of these two networks by LRAP35a is tightly regulated by a series of phosphorylation events that dictated its specificity. Sequential phosphorylation of LRAP35a by Protein Kinase A (PKA) and Glycogen Synthase Kinase-3β (GSK3β) initiates the association of LRAP35a with CLASP2, while subsequent binding and further phosphorylation by Casein Kinase 1δ (CK1δ) induce their dissociation, which facilitates LRAP35a/MRCK association in driving lamellar actomyosin flow. Importantly, microtubule dynamics is directly moderated by CK1δ activity on CLASP2 to regulate GSK3β phosphorylation of the SxIP motifs that blocks EB1 binding, an event countered by LRAP35a interaction and its competition for CK1δ activity. Overall this study reveals an essential role for LRAP35a in coordinating lamellar contractility and microtubule polarization in cell migration.
Collapse
Affiliation(s)
- Shumei Chia
- Institute of Molecular and Cell Biology, A(∗)STAR, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Genome Institute of Singapore, A(∗)STAR, 60 Biopolis Street, #02-01 Genome, Singapore 138672, Singapore; Department of Anatomy, Yong Loo Lin School of Medicine, MD10, 4 Medical Drive, Singapore 117594, Singapore.
| | - Thomas Leung
- Institute of Molecular and Cell Biology, A(∗)STAR, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Department of Anatomy, Yong Loo Lin School of Medicine, MD10, 4 Medical Drive, Singapore 117594, Singapore
| | - Ivan Tan
- Institute of Molecular and Cell Biology, A(∗)STAR, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Bioprocessing Technology Institute, A(∗)STAR, 20 Biopolis Way, #06-01, Centros, Singapore 138668, Singapore.
| |
Collapse
|
17
|
Liu H, Liu Y, Zhang X, Wang X. Current Study of RhoA and Associated Signaling Pathways in Gastric Cancer. Curr Stem Cell Res Ther 2021; 15:607-613. [PMID: 32223738 DOI: 10.2174/1574888x15666200330143958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/20/2019] [Accepted: 01/16/2020] [Indexed: 01/08/2023]
Abstract
Gastric cancer (GC) is the fourth-most common cancer in the world, with an estimated 1.034 million new cases in 2015, and the third-highest cause of cancer deaths, estimated at 785,558, in 2014. Early diagnosis and treatment greatly affect the survival rate in patients with GC: the 5-year survival rate of early GC reaches 90%-95%, while the mortality rate significantly increases if GC develops to the late stage. Recently, studies for the role of RhoA in the diseases have become a hot topic, especially in the development of tumors. A study found that RhoA can regulate actin polymerization, cell adhesion, motor-myosin, cell transformation, and the ability to participate in the activities of cell movement, proliferation, migration, which are closely related to the invasion and metastasis of tumor cells. However, the specific role of RhoA in tumor cells remains to be studied. Therefore, our current study aimed to briefly review the role of RhoA in GC, especially for its associated signaling pathways involved in the GC progression.
Collapse
Affiliation(s)
- Haiping Liu
- Department of Spine Surgery, Honghui Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| | - Yiqian Liu
- Department of pathology, Johns Hopkins University, Baltimore, Maryland, United States
| | - Xiaochuan Zhang
- Department of pathology, Johns Hopkins University, Baltimore, Maryland, United States
| | - Xiaodong Wang
- Department of Spine Surgery, Honghui Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
18
|
Ramshekar A, Wang H, Kunz E, Pappas C, Hageman GS, Chaqour B, Sacks DB, Hartnett ME. Active Rap1-mediated inhibition of choroidal neovascularization requires interactions with IQGAP1 in choroidal endothelial cells. FASEB J 2021; 35:e21642. [PMID: 34166557 PMCID: PMC8238370 DOI: 10.1096/fj.202100112r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/08/2021] [Accepted: 04/19/2021] [Indexed: 01/13/2023]
Abstract
Neovascular age-related macular degeneration (nAMD) is a leading cause of blindness. The pathophysiology involves activation of choroidal endothelial cells (CECs) to transmigrate the retinal pigment epithelial (RPE) monolayer and form choroidal neovascularization (CNV) in the neural retina. The multidomain GTPase binding protein, IQGAP1, binds active Rac1 and sustains activation of CECs, thereby enabling migration associated with vision-threatening CNV. IQGAP1 also binds the GTPase, Rap1, which when activated reduces Rac1 activation in CECs and CNV. In this study, we tested the hypothesis that active Rap1 binding to IQGAP1 is necessary and sufficient to reduce Rac1 activation in CECs, and CNV. We found that pharmacologic activation of Rap1 or adenoviral transduction of constitutively active Rap1a reduced VEGF-mediated Rac1 activation, migration, and tube formation in CECs. Following pharmacologic activation of Rap1, VEGF-mediated Rac1 activation was reduced in CECs transfected with an IQGAP1 construct that increased active Rap1-IQGAP1 binding but not in CECs transfected with an IQGAP1 construct lacking the Rap1 binding domain. Specific knockout of IQGAP1 in endothelial cells reduced laser-induced CNV and Rac1 activation in CNV lesions, but pharmacologic activation of Rap1 did not further reduce CNV compared to littermate controls. Taken together, our findings provide evidence that active Rap1 binding to the IQ domain of IQGAP1 is sufficient to interfere with active Rac1-mediated CEC activation and CNV formation.
Collapse
Affiliation(s)
- Aniket Ramshekar
- The John A Moran Eye Center, University of Utah, Salt Lake
City, UT, USA
| | - Haibo Wang
- The John A Moran Eye Center, University of Utah, Salt Lake
City, UT, USA
| | - Eric Kunz
- The John A Moran Eye Center, University of Utah, Salt Lake
City, UT, USA
| | - Christian Pappas
- The John A Moran Eye Center, University of Utah, Salt Lake
City, UT, USA,Steele Center for Translational Medicine, John A. Moran Eye
Center, University of Utah, Salt Lake City, UT, USA
| | - Gregory S. Hageman
- The John A Moran Eye Center, University of Utah, Salt Lake
City, UT, USA,Steele Center for Translational Medicine, John A. Moran Eye
Center, University of Utah, Salt Lake City, UT, USA
| | - Brahim Chaqour
- Department of Ophthalmology, Downstate Medical Center,
Brooklyn, NY, USA
| | - David B. Sacks
- Department of Laboratory Medicine, National Institutes of
Health, Bethesda, MD, USA
| | - M. Elizabeth Hartnett
- The John A Moran Eye Center, University of Utah, Salt Lake
City, UT, USA,Correspondence to: M. Elizabeth Hartnett,
MD, Address: 65 Mario Capecchi Drive, Salt Lake City, UT 84132. Tel:
801-213-4110; Fax: 801-581-3357,
| |
Collapse
|
19
|
On the influence of cell shape on dynamic reaction-diffusion polarization patterns. PLoS One 2021; 16:e0248293. [PMID: 33735291 PMCID: PMC7971540 DOI: 10.1371/journal.pone.0248293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
The distribution of signaling molecules following mechanical or chemical stimulation of a cell defines cell polarization, with regions of high active Cdc42 at the front and low active Cdc42 at the rear. As reaction-diffusion phenomena between signaling molecules, such as Rho GTPases, define the gradient dynamics, we hypothesize that the cell shape influences the maintenance of the “front-to-back” cell polarization patterns. We investigated the influence of cell shape on the Cdc42 patterns using an established computational polarization model. Our simulation results showed that not only cell shape but also Cdc42 and Rho-related (in)activation parameter values affected the distribution of active Cdc42. Despite an initial Cdc42 gradient, the in silico results showed that the maximal Cdc42 concentration shifts in the opposite direction, a phenomenon we propose to call “reverse polarization”. Additional in silico analyses indicated that “reverse polarization” only occurred in a particular parameter value space that resulted in a balance between inactivation and activation of Rho GTPases. Future work should focus on a mathematical description of the underpinnings of reverse polarization, in combination with experimental validation using, for example, dedicated FRET-probes to spatiotemporally track Rho GTPase patterns in migrating cells. In summary, the findings of this study enhance our understanding of the role of cell shape in intracellular signaling.
Collapse
|
20
|
CDC42EP3 promotes colorectal cancer through regulating cell proliferation, cell apoptosis and cell migration. Cancer Cell Int 2021; 21:169. [PMID: 33726765 PMCID: PMC7962261 DOI: 10.1186/s12935-021-01845-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/20/2021] [Indexed: 12/24/2022] Open
Abstract
Background Nowadays, colorectal cancer (CRC) is one of the most commonly diagnosed malignant tumors worldwide, the incidence rate of which is still increasing year by year. Herein, the objective of this study is to investigate whether CDC42EP3 has regulatory effects in CRC. Methods First, CDC42EP3 knockdown cell model based on HCT116 and RKO cell lines was successfully constructed, which was further used for constructing mouse xenotransplantation models. Importantly, effects of CDC42EP3 knockdown on proliferation, colony formation, apoptosis, and migration of CRC were accessed by MTT assay, EdU staining assay, colony formation assay, Flow cytometry, and Transwell assay. Results As the results, we showed that CDC42EP3 was significantly upregulated in CRC, and its high expression was associated with tumor progression. Furthermore, knockdown of CDC42EP3 could inhibit proliferation, colony formation and migration, and promote apoptosis of CRC cells in vitro. In vivo results further confirmed knockdown of CDC42EP3 attenuated tumor growth in CRC. Interestingly, the regulation of CRC by CDC42EP3 involved not only the change of a variety of apoptosis-related proteins, but also the regulation of downstream signaling pathway. Conclusion In conclusion, the role of CDC42EP3 in CRC was clarified and showed its potential as a target of innovative therapeutic approaches for CRC.
Collapse
|
21
|
Nerve growth factor regulates liver cancer cell polarity and motility. Mol Med Rep 2021; 23:288. [PMID: 33649819 PMCID: PMC7905331 DOI: 10.3892/mmr.2021.11927] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
Nerve growth factor (NGF), a prototypical neurotrophic factor essential for neuronal cell proliferation and survival, has been implicated as a marker of tumor progression, as well as a potential target for novel therapeutic approaches in cancer. To investigate the functional potential of NGF in liver cancer in the present study, a stable NGF-overexpressing HepG2 cell line was generated. The scratch-wound assay was used to investigate cell motility and polarity. Western blotting was performed to evaluate the expression levels of epithelial-mesenchymal transition (EMT)-related proteins, including E-cadherin, N-cadherin and vimentin. Moreover, immunofluorescence was performed to investigate the arrangement of the actin cytoskeleton. Cell anoikis resistance was examined using a suspension culture model and cell apoptosis was examined via flow cytometry. The present results indicated that NGF overexpression in HepG2 cells disrupted HepG2 cell polarity and promoted cell motility. Furthermore, NGF overexpression induced EMT and actin cytoskeleton rearrangement in HepG2 cells, as well as enhanced anoikis resistance and prevented cellular apoptosis. Notably, a tropomyosin receptor kinase A receptor inhibitor blocked NGF-induced cell motility and apoptosis. Therefore, it was suggested that NGF serves a critical role in the invasion and metastasis of liver cancer. The use of NGF as a biomarker or potential new target could lead to the development of novel factors for diagnosis or for improving therapeutic strategies in liver cancer.
Collapse
|
22
|
Asiri A, Alwadaani D, Umair M, Alhamoudi KM, Almuhanna MH, Nasir A, Alrfaei BM, Al Tuwaijri A, Barhoumi T, Alyafee Y, Almuzzaini B, Aldrees M, Ballow M, Alayyar L, Al Abdulrahman A, Alhaidan Y, Al Ghasham N, Al-Ajaji S, Alsalamah M, Al Suwairi W, Alfadhel M. Pancytopenia, Recurrent Infection, Poor Wound Healing, Heterotopia of the Brain Probably Associated with A Candidate Novel de Novo CDC42 Gene Defect: Expanding the Molecular and Phenotypic Spectrum. Genes (Basel) 2021; 12:genes12020294. [PMID: 33672558 PMCID: PMC7923796 DOI: 10.3390/genes12020294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 01/17/2023] Open
Abstract
CDC42 (cell division cycle protein 42) belongs to the Rho GTPase family that is known to control the signaling axis that regulates several cellular functions, including cell cycle progression, migration, and proliferation. However, the functional characterization of the CDC42 gene in mammalian physiology remains largely unclear. Here, we report the genetic and functional characterization of a non-consanguineous Saudi family with a single affected individual. Clinical examinations revealed poor wound healing, heterotopia of the brain, pancytopenia, and recurrent infections. Whole exome sequencing revealed a de novo missense variant (c.101C > A, p.Pro34Gln) in the CDC42 gene. The functional assays revealed a substantial reduction in the growth and motility of the patient cells as compared to the normal cells control. Homology three-dimensional (3-D) modeling of CDC42 revealed that the Pro34 is important for the proper protein secondary structure. In conclusion, we report a candidate disease-causing variant, which requires further confirmation for the etiology of CDC42 pathogenesis. This represents the first case from the Saudi population. The current study adds to the spectrum of mutations in the CDC42 gene that might help in genetic counseling and contributes to the CDC42-related genetic and functional characterization. However, further studies into the molecular mechanisms that are involved are needed in order to determine the role of the CDC42 gene associated with aberrant cell migration and immune response.
Collapse
Affiliation(s)
- Abdulaziz Asiri
- Faculty of Applied Medical Sciences, University of Bisha, 255, Al Nakhil, Bisha 67714, Saudi Arabia;
| | - Deemah Alwadaani
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King AbdulAziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11426, Saudi Arabia; (D.A.); (M.U.); (K.M.A.); (A.A.T.); (Y.A.); (B.A.); (M.A.); (M.B.); (L.A.); (A.A.A.); (Y.A.)
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King AbdulAziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11426, Saudi Arabia; (D.A.); (M.U.); (K.M.A.); (A.A.T.); (Y.A.); (B.A.); (M.A.); (M.B.); (L.A.); (A.A.A.); (Y.A.)
| | - Kheloud M. Alhamoudi
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King AbdulAziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11426, Saudi Arabia; (D.A.); (M.U.); (K.M.A.); (A.A.T.); (Y.A.); (B.A.); (M.A.); (M.B.); (L.A.); (A.A.A.); (Y.A.)
| | - Mohammed H. Almuhanna
- Cellular Therapy and Cancer Research Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11426, Saudi Arabia;
| | - Abdul Nasir
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea;
| | - Bahauddeen M. Alrfaei
- Stem Cells Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11426, Saudi Arabia;
| | - Abeer Al Tuwaijri
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King AbdulAziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11426, Saudi Arabia; (D.A.); (M.U.); (K.M.A.); (A.A.T.); (Y.A.); (B.A.); (M.A.); (M.B.); (L.A.); (A.A.A.); (Y.A.)
| | - Tlili Barhoumi
- Medical Core Facility and Research Platforms, King Abdullah International Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia;
| | - Yusra Alyafee
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King AbdulAziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11426, Saudi Arabia; (D.A.); (M.U.); (K.M.A.); (A.A.T.); (Y.A.); (B.A.); (M.A.); (M.B.); (L.A.); (A.A.A.); (Y.A.)
| | - Bader Almuzzaini
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King AbdulAziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11426, Saudi Arabia; (D.A.); (M.U.); (K.M.A.); (A.A.T.); (Y.A.); (B.A.); (M.A.); (M.B.); (L.A.); (A.A.A.); (Y.A.)
| | - Mohammed Aldrees
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King AbdulAziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11426, Saudi Arabia; (D.A.); (M.U.); (K.M.A.); (A.A.T.); (Y.A.); (B.A.); (M.A.); (M.B.); (L.A.); (A.A.A.); (Y.A.)
| | - Mariam Ballow
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King AbdulAziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11426, Saudi Arabia; (D.A.); (M.U.); (K.M.A.); (A.A.T.); (Y.A.); (B.A.); (M.A.); (M.B.); (L.A.); (A.A.A.); (Y.A.)
| | - Latifah Alayyar
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King AbdulAziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11426, Saudi Arabia; (D.A.); (M.U.); (K.M.A.); (A.A.T.); (Y.A.); (B.A.); (M.A.); (M.B.); (L.A.); (A.A.A.); (Y.A.)
| | - Abdulkareem Al Abdulrahman
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King AbdulAziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11426, Saudi Arabia; (D.A.); (M.U.); (K.M.A.); (A.A.T.); (Y.A.); (B.A.); (M.A.); (M.B.); (L.A.); (A.A.A.); (Y.A.)
| | - Yazeid Alhaidan
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King AbdulAziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11426, Saudi Arabia; (D.A.); (M.U.); (K.M.A.); (A.A.T.); (Y.A.); (B.A.); (M.A.); (M.B.); (L.A.); (A.A.A.); (Y.A.)
| | - Nahlah Al Ghasham
- Hematology Division, Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, Riyadh 11426, Saudi Arabia;
| | - Sulaiman Al-Ajaji
- Allergy and Immunology Division, Department of Pediatrics, King Abdullah Specialist Children’s Hospital, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11426, Saudi Arabia; (S.A.-A.); (M.A.)
| | - Mohammad Alsalamah
- Allergy and Immunology Division, Department of Pediatrics, King Abdullah Specialist Children’s Hospital, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11426, Saudi Arabia; (S.A.-A.); (M.A.)
| | - Wafa Al Suwairi
- Rheumatology Division, Department of Pediatrics, King Abdullah Specialist Children’s Hospital, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11426, Saudi Arabia;
| | - Majid Alfadhel
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King AbdulAziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11426, Saudi Arabia; (D.A.); (M.U.); (K.M.A.); (A.A.T.); (Y.A.); (B.A.); (M.A.); (M.B.); (L.A.); (A.A.A.); (Y.A.)
- Genetics and Precision Medicine Department (GPM), King Abdullah Specialized Children’s Hospital, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11426, Saudi Arabia
- Correspondence: ; Tel.: +966-11-805-3560; Fax: +966-11-805-5555
| |
Collapse
|
23
|
Luo G, Sun Y, Zhang J, Xu Z, Lu W, Wang H, Zhang Y, Li H, Mao Z, Ye S, Cheng B, Fang X. Nanodefensin-encased hydrogel with dual bactericidal and pro-regenerative functions for advanced wound therapy. Am J Cancer Res 2021; 11:3642-3660. [PMID: 33664853 PMCID: PMC7914350 DOI: 10.7150/thno.53089] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/31/2020] [Indexed: 12/25/2022] Open
Abstract
Background: Host defense peptides (HDPs) have emerged as a novel therapeutic paradigm for wound management; however, their clinical applications remain a challenge owing to their poor pharmacological properties and lack of suitable pharmaceutical formulations. Nanodefensin (ND), a nanoengineered human α-defensin 5 (HD5), has shown improved pharmacological properties relative to the parent compound. In this study, we engineered a nanodefensin-encased hydrogel (NDEFgel), investigated the effects of NDEFgel on wound healing, and elucidated underlying mechanisms. Method: ND was chemically synthesized and tested functions by in vitro antimicrobial and scratch assays and western blotting. Different NDEFgels were evaluated by in vitro characterizations including degradation, drug release and antimicrobial activity. In full-thickness excisional murine models, the optimal NDEFgel was directly applied onto wound sites, and the efficacy was assessed. Moreover, the underlying mechanisms of pro-regenerative effect developed by NDEFgel were also explored. Results: Apart from bactericidal effects, ND modulated fibroblast behaviors by promoting migration and differentiation. Among the tested hydrogels, the Pluronic F127 (Plu) hydrogel represented the most desirable carrier for ND delivery owing to its favorable controlled release and compatibility with ND. Local treatment of NDEFgel on the wound bed resulted in accelerated wound regeneration and attenuated bacterial burden. We further demonstrated that NDEFgel therapy significantly upregulated genes related to collagen deposition and fibroblasts, and increased the expression of myofibroblasts and Rac1. We therefore found that Rac1 is a critical factor in the ND-induced modulation of fibroblast behaviors in vitro through a Rac1-dependent cytoskeletal rearrangement. Conclusion: Our results indicate that NDEFgel may be a promising dual-action therapeutic option for advanced wound management in the future.
Collapse
|
24
|
Robinson AJ, Jain A, Sherman HG, Hague RJM, Rahman R, Sanjuan‐Alberte P, Rawson FJ. Toward Hijacking Bioelectricity in Cancer to Develop New Bioelectronic Medicine. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Andie J. Robinson
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| | - Akhil Jain
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| | - Harry G. Sherman
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| | - Richard J. M. Hague
- Centre for Additive Manufacturing, Faculty of Engineering University of Nottingham Nottingham NG8 1BB UK
| | - Ruman Rahman
- Children's Brain Tumour Research Centre, Biodiscovery Institute, School of Medicine University of Nottingham Nottingham NG7 2RD UK
| | - Paola Sanjuan‐Alberte
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
- Department of Bioengineering and iBB‐Institute for Bioengineering and Biosciences, Instituto Superior Técnico Universidade de Lisboa Lisbon 1049‐001 Portugal
| | - Frankie J. Rawson
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| |
Collapse
|
25
|
Iyer M, Subramaniam MD, Venkatesan D, Cho SG, Ryding M, Meyer M, Vellingiri B. Role of RhoA-ROCK signaling in Parkinson's disease. Eur J Pharmacol 2020; 894:173815. [PMID: 33345850 DOI: 10.1016/j.ejphar.2020.173815] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD) is a complex and widespread neurodegenerative disease characterized by depletion of midbrain dopaminergic (DA) neurons. Key issues are the development of therapies that can stop or reverse the disease progression, identification of dependable biomarkers, and better understanding of the pathophysiological mechanisms of PD. RhoA-ROCK signals appear to have an important role in PD symptoms, making it a possible approach for PD treatment strategies. Activation of RhoA-ROCK (Rho-associated coiled-coil containing protein kinase) appears to stimulate various PD risk factors including aggregation of alpha-synuclein (αSyn), dysregulation of autophagy, and activation of apoptosis. This manuscript reviews current updates about the biology and function of the RhoA-ROCK pathway and discusses the possible role of this signaling pathway in causing the pathogenesis of PD. We conclude that inhibition of the RhoA-ROCK signaling pathway may have high translational potential and could be a promising therapeutic target in PD.
Collapse
Affiliation(s)
- Mahalaxmi Iyer
- Department of Genetics and Molecular Biology, Sankara Nethralaya, Chennai, 600 006, Tamil Nadu, India
| | - Mohana Devi Subramaniam
- Department of Genetics and Molecular Biology, Sankara Nethralaya, Chennai, 600 006, Tamil Nadu, India
| | - Dhivya Venkatesan
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Ssang-Goo Cho
- Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Matias Ryding
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Neurology, Odense University Hospital, Odense, Denmark; Brain Research - Inter Disciplinary Guided Excellence (BRIDGE), Odense, Denmark
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| |
Collapse
|
26
|
Boolean model of anchorage dependence and contact inhibition points to coordinated inhibition but semi-independent induction of proliferation and migration. Comput Struct Biotechnol J 2020; 18:2145-2165. [PMID: 32913583 PMCID: PMC7451872 DOI: 10.1016/j.csbj.2020.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 06/23/2020] [Accepted: 07/22/2020] [Indexed: 12/16/2022] Open
Abstract
Epithelial cells respond to their physical neighborhood with mechano-sensitive behaviors required for development and tissue maintenance. These include anchorage dependence, matrix stiffness-dependent proliferation, contact inhibition of proliferation and migration, and collective migration that balances cell crawling with the maintenance of cell junctions. While required for development and tissue repair, these coordinated responses to the microenvironment also contribute to cancer metastasis. Predictive models of the signaling networks that coordinate these behaviors are critical in controlling cell behavior to halt disease. Here we propose a Boolean regulatory network model that synthesizes mechanosensitive signaling that links anchorage to a matrix of varying stiffness and cell density sensing to contact inhibition, proliferation, migration, and apoptosis. Our model can reproduce anchorage dependence and anoikis, detachment-induced cytokinesis errors, the effect of matrix stiffness on proliferation, and contact inhibition of proliferation and migration by two mechanisms that converge on the YAP transcription factor. In addition, we offer testable predictions related to cell cycle-dependent anoikis sensitivity, the molecular requirements for abolishing contact inhibition, and substrate stiffness dependent expression of the catalytic subunit of PI3K. Moreover, our model predicts heterogeneity in migratory vs. non-migratory phenotypes in sub-confluent monolayers, and co-inhibition but semi-independent induction of proliferation vs. migration as a function of cell density and mitogenic stimulation. Our model serves as a stepping-stone towards modeling mechanosensitive routes to the epithelial to mesenchymal transition, capturing the effects of the mesenchymal state on anoikis resistance, and understanding the balance between migration versus proliferation at each stage of the epithelial to mesenchymal transition.
Collapse
|
27
|
Zhang W, Gu J, Li Y, Shan W, Xu Y, Chen Y. Single-vesicle tracking reveals the potential correlation of the movement of cell-bound membrane vesicles (CBMVs) with cell migration. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118804. [PMID: 32738252 DOI: 10.1016/j.bbamcr.2020.118804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/02/2020] [Accepted: 07/24/2020] [Indexed: 10/23/2022]
Abstract
The movement of cell-bound membrane vesicles (CBMVs) on migrating cells is poorly understood. We hypothesized that the movement of CBMVs on migrating cells is different from that on non-migrating cells and can be interfered by external stimuli. To test it, single-vesicle tracking was performed to analyze motion type, speed, displacement, and direction of CBMVs on migrating cells treated with different reagents (Ang-1, TNF-α, LPS, VEGFα, endostatin, Cytochalasin D, and nocodazole) among which the former four promoted cell migration whereas the others inhibited cell migration. We found that cell migration changed CBMVs from non-directed to directed motion and that most CBMVs on untreated migrating cells moved along the migration axis. Interestingly, the migration-promoting reagents played positive roles in CBMV movement (improving directed motion, speed and/or maximal displacement, upregulating the amount of vesicles moving in migration direction) whereas the migration-inhibiting reagents played negative roles (impairing/abolishing directed motion, speed and/or maximal displacement, downregulating the vesicles moving forward or causing an even distribution of motion direction). The cytoskeleton (particularly microtubules) probably played vital roles in CBMV movement on migrating cells and mediated the effects of stimuli on vesicle movement. The data may provide important information for understanding the properties, behaviors, and functions of CBMVs.
Collapse
Affiliation(s)
- Wendiao Zhang
- Jiangxi Key Laboratory for Microscale interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi, PR China
| | - Jiaxuan Gu
- Jiangxi Key Laboratory for Microscale interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi, PR China; School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi, PR China.
| | - Yuanfang Li
- Jiangxi Key Laboratory for Microscale interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi, PR China; School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi, PR China
| | - Wenzhe Shan
- Jiangxi Key Laboratory for Microscale interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi, PR China
| | - Yingxuan Xu
- Jiangxi Key Laboratory for Microscale interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi, PR China
| | - Yong Chen
- Jiangxi Key Laboratory for Microscale interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi, PR China.
| |
Collapse
|
28
|
Zanin JP, Verpeut JL, Li Y, Shiflett MW, Wang SSH, Santhakumar V, Friedman WJ. The p75NTR Influences Cerebellar Circuit Development and Adult Behavior via Regulation of Cell Cycle Duration of Granule Cell Progenitors. J Neurosci 2019; 39:9119-9129. [PMID: 31582529 PMCID: PMC6855675 DOI: 10.1523/jneurosci.0990-19.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/21/2019] [Accepted: 09/10/2019] [Indexed: 01/24/2023] Open
Abstract
Development of brain circuitry requires precise regulation and timing of proliferation and differentiation of neural progenitor cells. The p75 neurotrophin receptor (p75NTR) is highly expressed in the proliferating granule cell precursors (GCPs) during development of the cerebellum. In a previous paper, we showed that proNT3 promoted GCP cell cycle exit via p75NTR. Here we used genetically modified rats and mice of both sexes to show that p75NTR regulates the duration of the GCP cell cycle, requiring activation of RhoA. Rats and mice lacking p75NTR have dysregulated GCP proliferation, with deleterious effects on cerebellar circuit development and behavioral consequences persisting into adulthood. In the absence of p75NTR, the GCP cell cycle is accelerated, leading to delayed cell cycle exit, prolonged GCP proliferation, increased glutamatergic input to Purkinje cells, and a deficit in delay eyeblink conditioning, a cerebellum-dependent form of learning. These results demonstrate the necessity of appropriate developmental timing of the cell cycle for establishment of proper connectivity and associated behavior.SIGNIFICANCE STATEMENT The cerebellum has been shown to be involved in numerous behaviors in addition to its classic association with motor function. Cerebellar function is disrupted in a variety of psychiatric disorders, including those on the autism spectrum. Here we show that the p75 neurotrophin receptor, which is abundantly expressed in the proliferating cerebellar granule cell progenitors, regulates the cell cycle of these progenitors. In the absence of this receptor, the cell cycle is dysregulated, leading to excessive progenitor proliferation, which alters the balance of inputs to Purkinje cells, disrupting the circuitry and leading to functional deficits that persist into adulthood.
Collapse
Affiliation(s)
- Juan P Zanin
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102
| | | | - Ying Li
- Department of Physiology, Pharmacology and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey 07103
| | - Michael W Shiflett
- Department of Psychology, Rutgers University, Newark, New Jersey 07102, and
| | - Samuel S-H Wang
- Princeton Neuroscience Institute, Princeton, New Jersey 08544
| | - Viji Santhakumar
- Department of Physiology, Pharmacology and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey 07103
- Department of Molecular, Cell and Systems Biology, University of California at Riverside, Riverside, California 92521
| | - Wilma J Friedman
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102,
| |
Collapse
|
29
|
Wang Y, Zhang B, Gao G, Zhang Y, Xia Q. GEFT protein expression in digestive tract malignant tumors and its clinical significance. Oncol Lett 2019; 18:5577-5590. [PMID: 31620201 DOI: 10.3892/ol.2019.10915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/13/2019] [Indexed: 01/23/2023] Open
Abstract
Guanine nucleotide exchange factor T (GEFT), a member of the Rho guanine nucleotide exchange factor family, is expressed in a variety of tumors. In the present study, the expression and clinical significance of GEFT in malignant digestive tract tumors was assessed. Tumor and adjacent control samples from 180 patients were tested. Positive GEFT expression rates were 80, 83.33 and 86.67% in esophageal squamous carcinoma (ESCC), gastric carcinoma (GC) and colorectal cancer (CRC), respectively. GEFT expression was associated with diffuse type carcinoma according to the Lauren classification (χ2=12.525, P=0.002) and tumor-node-metastasis (TNM) stages III/IV (χ2=4.033, P=0.045) in GC, and with vessel carcinoma embolus (χ2=7.890, P=0.005) and lymph node metastasis (χ2=5.455, P=0.020) in CRC, but was not associated with other clinicopathological parameters. Patients with high levels of GEFT protein expression had a less favorable outcome compared with patients with low levels of GEFT expression in patients with CRC (χ2=3.876, P=0.049). However, a significant association was not found between GEFT expression and overall survival in patients with ESCC (χ2=0.040, P=0.842) or GC (χ2=0.501, P=0.479). The rate of human epidermal growth factor receptor 2 upregulation in patients with GC was 13.33% and it was associated with nerve invasion (χ2=4.005, P=0.045) and TNM stages III/IV (χ2=5.600, P=0.018). Mismatch repair protein (MMRP) defect was observed in six cases, and the KRAS mutation rate was 26.67% in patients with CRC. GEFT expression was significantly correlated with MMRP (r=-0.285, P=0.027) and KRAS mutation in patients with CRC (r=0.697, P<0.001). These findings revealed frequent GEFT upregulation in malignant digestive tract tumors, which may have promoted tumor development. GEFT expression in CRC may be associated with microsatellite instability and KRAS mutation status, suggesting that GEFT may be a potential therapeutic target for patients with CRC.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan 450008, P.R. China
| | - Bing Zhang
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan 450008, P.R. China
| | - Ge Gao
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan 450008, P.R. China
| | - Yinping Zhang
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan 450008, P.R. China
| | - Qingxin Xia
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan 450008, P.R. China
| |
Collapse
|
30
|
Modulation of LPA1 receptor-mediated neuronal apoptosis by Saikosaponin-d: A target involved in depression. Neuropharmacology 2019; 155:150-161. [DOI: 10.1016/j.neuropharm.2019.05.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/13/2019] [Accepted: 05/20/2019] [Indexed: 12/13/2022]
|
31
|
Lu FI, Wang YT, Wang YS, Wu CY, Li CC. Involvement of BIG1 and BIG2 in regulating VEGF expression and angiogenesis. FASEB J 2019; 33:9959-9973. [PMID: 31199673 DOI: 10.1096/fj.201900342rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
VEGF stimulates the formation of new blood vessels by inducing endothelial cell (EC) proliferation and migration. Brefeldin A (BFA)-inhibited guanine nucleotide-exchange protein (BIG)1 and 2 accelerate the replacement of bound GDP with GTP to activate ADP-ribosylation factor (Arf)1, which regulates vesicular transport between the Golgi and plasma membrane. Although it has been reported that treating cells with BFA interferes with Arf1 activation to inhibit VEGF secretion, the role of BIG1 and BIG2 in VEGF trafficking and expression, EC migration and proliferation, and vascular development remains unknown. Here, we found that inactivation of Arf1 reduced VEGF secretion but did not affect the levels of VEGF protein. Interestingly, however, BIG1 and BIG2 knockdown significantly decreased the levels of VEGF mRNA and protein in glioblastoma U251 cells and HUVECs. Furthermore, depletion of BIG1 and BIG2 inhibited HUVEC angiogenesis by diminishing cell migration. Angioblast migration and intersegmental vessel sprouting were also impaired when the BIG2 homolog, Arf guanine nucleotide exchange factor (arfgef)2, was knocked down in zebrafish with endothelial expression of green fluorescent protein (GFP). Depletion of arfgef2 by clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) also caused defects in vascular development of zebrafish embryos. Taken together, these data reveal that BIG1 and BIG2 participate in endothelial cell angiogenesis.-Lu, F.-I., Wang, Y.-T., Wang, Y.-S., Wu, C.-Y., Li, C.-C. Involvement of BIG1 and BIG2 in regulating VEGF expression and angiogenesis.
Collapse
Affiliation(s)
- Fu-I Lu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan.,The Integrative Evolutionary Galliforms Genomics Research (iEGG) and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Ting Wang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Shan Wang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chang-Yi Wu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chun-Chun Li
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
32
|
Kim JW, Jeong JH. Molecular Characterization of Primary Human Astrocytes Using Digital Gene Expression Analysis. Korean J Neurotrauma 2019; 15:2-10. [PMID: 31098343 PMCID: PMC6495576 DOI: 10.13004/kjnt.2019.15.e2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/06/2018] [Accepted: 06/26/2018] [Indexed: 11/15/2022] Open
Abstract
Objective Astrocyte dysfunctions are related to several central nervous system (CNS) pathologies. Transcriptomic profiling of human mRNAs to investigate astrocyte functions may provide the basic molecular-biological data pertaining to the cellular activities of astrocytes. Methods Human Primary astrocytes (HPAs) and human neural stem cell line (HB1.F3) were used for differential digital gene analysis. In this study, a massively parallel sequencing platform, next-generation sequencing (NGS), was used to obtain the digital gene expression (DGE) data from HPAs. A comparative analysis of the DGE from HPA and HB1.F3 cells was performed. Sequencing was performed using NGS platform, and subsequently, bioinformatic analyses were implemented to reveal the identity of the pathways, relatively up- or down-regulated in HPA cells. Results The top, novel canonical pathways up-regulated in HPA cells than in the HB1.F3 cells were "Cyclins and cell cycle regulation," "Integrin signaling," "Regulation of eIF4 and p70S6K signaling," "Wnt/β-catenin signaling," "mTOR signaling," "Aryl hydrocarbon receptor signaling," "Hippo signaling," "RhoA signaling," "Signaling by Rho family GTPases," and "Glioma signaling" pathways. The down-regulated pathways were "Cell cycle: G1/S checkpoint regulation," "eIF2 signaling," "Cell cycle: G2/M DNA damage checkpoint regulation," "Telomerase signaling," "RhoGDI signaling," "NRF2-mediated oxidative stress response," "ERK/MAPK signaling," "ATM signaling," "Pancreatic adenocarcinoma signaling," "VEGF signaling," and "Role of CHK proteins in cell cycle checkpoint control" pathways. Conclusion This study would be a good reference to understand astrocyte functions at the molecular level, and to develop a diagnostic test, based on the DGE pattern of astrocytes, as a powerful, new clinical tool in many CNS diseases.
Collapse
Affiliation(s)
- Jin Wook Kim
- Department of Neurosurgery, Dongguk University Gyeongju Hospital, Dongguk University College of Medicine, Gyeongju, Korea
| | - Ju Ho Jeong
- Department of Neurosurgery, Dongguk University Gyeongju Hospital, Dongguk University College of Medicine, Gyeongju, Korea
| |
Collapse
|
33
|
Varennes J, Moon HR, Saha S, Mugler A, Han B. Physical constraints on accuracy and persistence during breast cancer cell chemotaxis. PLoS Comput Biol 2019; 15:e1006961. [PMID: 30970018 PMCID: PMC6476516 DOI: 10.1371/journal.pcbi.1006961] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 04/22/2019] [Accepted: 03/18/2019] [Indexed: 01/19/2023] Open
Abstract
Directed cell motion in response to an external chemical gradient occurs in many biological phenomena such as wound healing, angiogenesis, and cancer metastasis. Chemotaxis is often characterized by the accuracy, persistence, and speed of cell motion, but whether any of these quantities is physically constrained by the others is poorly understood. Using a combination of theory, simulations, and 3D chemotaxis assays on single metastatic breast cancer cells, we investigate the links among these different aspects of chemotactic performance. In particular, we observe in both experiments and simulations that the chemotactic accuracy, but not the persistence or speed, increases with the gradient strength. We use a random walk model to explain this result and to propose that cells’ chemotactic accuracy and persistence are mutually constrained. Our results suggest that key aspects of chemotactic performance are inherently limited regardless of how favorable the environmental conditions are. One of the most ubiquitous and important cell behaviors is chemotaxis: the ability to move in the direction of a chemical gradient. Due to its importance, key aspects of chemotaxis have been quantified for a variety of cells, including the accuracy, persistence, and speed of cell motion. However, whether these aspects are mutually constrained is poorly understood. Can a cell be accurate but not persistent, or vice versa? Here we use theory, simulations, and experiments on cancer cells to uncover mutual constraints on the properties of chemotaxis. Our results suggest that accuracy and persistence are mutually constrained.
Collapse
Affiliation(s)
- Julien Varennes
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana, United States of America
| | - Hye-ran Moon
- School of Mechanical Engineering, Purdue University, West Lafayette Indiana, United States of America
| | - Soutick Saha
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana, United States of America
| | - Andrew Mugler
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (AM); (BH)
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette Indiana, United States of America
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (AM); (BH)
| |
Collapse
|
34
|
Liu X, Liu S, Lyu H, Riker AI, Zhang Y, Liu B. Development of Effective Therapeutics Targeting HER3 for Cancer Treatment. Biol Proced Online 2019; 21:5. [PMID: 30930695 PMCID: PMC6425631 DOI: 10.1186/s12575-019-0093-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/05/2019] [Indexed: 02/08/2023] Open
Abstract
HER3 is the third member of the human epidermal growth factor receptor (HER/EGFR) family, and unlike its other family members, is unique due to its minimal intrinsic kinase activity. As a result, HER3 has to interact with another receptor tyrosine kinase (RTK), such as EGFR or HER2, in order to activate the PI-3 K/Akt, MEK/MAPK, Jak/Stat pathways, as well as Src kinase. Over-expression of HER3 in various human cancers promotes tumor progression by increasing metastatic potential and acting as a major cause of treatment failure. Effective inhibition of HER3, and/or the key downstream mediators of HER3 signaling, is thought to be required to overcome resistance and enhance therapeutic efficacy. To date, there is no known HER3-targeted therapy that is approved for breast cancer, with a number of anti-HER3 antibodies current in various stages of development and clinical testing. Recent data suggests that the epigenetic strategy of using a histone deacetylase (HDAC) inhibitor, or functional cooperative miRNAs, may be an effective way to abrogate HER3 signaling. Here, we summarize the latest advances in our understanding of the mechanism of HER3 signaling in tumor progression, with continuing research towards the identification of therapeutic anti-HER3 antibodies. We will also examine the potential to develop novel epigenetic approaches that specifically target the HER3 receptor, along with important key downstream mediators that are involved in cancer treatment.
Collapse
Affiliation(s)
- Xiaolong Liu
- 1Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Shuang Liu
- 2Department of Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA USA
| | - Hui Lyu
- 2Department of Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA USA
| | - Adam I Riker
- 3Department of Surgery, Section of Surgical Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA USA
| | - Yamin Zhang
- 1Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Bolin Liu
- 2Department of Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA USA
| |
Collapse
|
35
|
Yan J, Pan Y, Zheng X, Zhu C, Zhang Y, Shi G, Yao L, Chen Y, Xu N. Comparative Study of ROCK1 and ROCK2 in Hippocampal Spine Formation and Synaptic Function. Neurosci Bull 2019; 35:649-660. [PMID: 30826947 DOI: 10.1007/s12264-019-00351-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 11/23/2018] [Indexed: 01/14/2023] Open
Abstract
Rho-associated kinases (ROCKs) are serine-threonine protein kinases that act downstream of small Rho GTPases to regulate the dynamics of the actin cytoskeleton. Two ROCK isoforms (ROCK1 and ROCK2) are expressed in the mammalian central nervous system. Although ROCK activity has been implicated in synapse formation, whether the distinct ROCK isoforms have different roles in synapse formation and function in vivo is not clear. Here, we used a genetic approach to address this long-standing question. Both Rock1+/- and Rock2+/- mice had impaired glutamatergic transmission, reduced spine density, and fewer excitatory synapses in hippocampal CA1 pyramidal neurons. In addition, both Rock1+/- and Rock2+/- mice showed deficits in long-term potentiation at hippocampal CA1 synapses and were impaired in spatial learning and memory based on the water maze and contextual fear conditioning tests. However, the spine morphology of CA1 pyramidal neurons was altered only in Rock2+/- but not Rock1+/- mice. In this study we compared the roles of ROCK1 and ROCK2 in synapse formation and function in vivo for the first time. Our results provide a better understanding of the functions of distinct ROCK isoforms in synapse formation and function.
Collapse
Affiliation(s)
- Jinglan Yan
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Youcan Pan
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.,Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, China
| | - Xiaoyan Zheng
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chuanan Zhu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yu Zhang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Guoqi Shi
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Lin Yao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yongjun Chen
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China. .,Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, 510515, China.
| | - Nenggui Xu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
36
|
Reduction of Real-Time Imaging of M1 Macrophage Chemotaxis toward Damaged Muscle Cells is PI3K-Dependent. Antioxidants (Basel) 2018; 7:antiox7100138. [PMID: 30297636 PMCID: PMC6210562 DOI: 10.3390/antiox7100138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/25/2018] [Accepted: 10/04/2018] [Indexed: 11/16/2022] Open
Abstract
Macrophages migrate and invade into damaged muscle rapidly and are important for muscle repair and subsequent regeneration. The exact cellular and biological events that cause macrophage migration toward injured muscle are not completely understood. In this study, the effect of macrophage differentiation on the chemotactic capability to invade local damaged muscle was investigated using an in vitro model of muscle injury. We used C2C12 cell myoblasts and J774 cell macrophages, and the "killed-C2C12" cells were combined with live C2C12 cells as a partially damaged muscle model. The cultured J774 cells, with or without lipopolysaccharide (LPS), were treated with Ly294002 (Ly), which is an inhibitor of phosphoinositide 3-kinase (PI3K). In order to evaluate the polarization effect of LPS stimulation on J774 cells, expression of cell surface Toll-like receptor 4 (TLR4), CD11c and CCR2, and expression of F-actin intensity, were analyzed by flow cytometry. The real-time horizontal chemotaxis assay of J774 cells was tested using the TAXIScan device. The expressions of TLR4, CD11c, and F-actin intensity in LPS-treated cells were significantly higher than those in Ctrl cells. In LPS-treated cells, the chemotactic activity toward damaged muscle cells completely disappeared. Moreover, the reduced chemotaxis depended far more on directionality than velocity. However, Ly treatment reversed the reduced chemotactic activity of the LPS-treated cells. In addition, cell-adhesion and F-actin intensity, but not CCR2 expression, in LPS-treated cells, was significantly reduced by Ly treatment. Taken together, our results suggest that the PI3K/Akt activation state drives migration behavior towards damaged muscle cells.
Collapse
|
37
|
Understanding the biology of HER3 receptor as a therapeutic target in human cancer. Acta Pharm Sin B 2018; 8:503-510. [PMID: 30109175 PMCID: PMC6090011 DOI: 10.1016/j.apsb.2018.05.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/24/2018] [Accepted: 05/28/2018] [Indexed: 02/07/2023] Open
Abstract
HER3 belongs to the human epidermal growth factor receptor (HER) family which also includes HER1/EGFR/erbB1, HER2/erbB2, and HER4/erbB4. As a unique member of the HER family, HER3 lacks or has little intrinsic tyrosine kinase activity. It frequently co-expresses and forms heterodimers with other receptor tyrosine kinases (RTKs) in cancer cells to activate oncogenic signaling, especially the PI-3K/Akt pathway and Src kinase. Elevated expression of HER3 has been observed in a wide variety of human cancers and associates with a worse survival in cancer patients with solid tumors. Studies on the underlying mechanism implicate HER3 expression as a major cause of treatment failure in cancer therapy. Activation of HER3 signaling has also been shown to promote cancer metastasis. These data strongly support the notion that therapeutic inactivation of HER3 and/or its downstream signaling is required to overcome treatment resistance and improve the outcomes of cancer patients.
Collapse
Key Words
- ADCC, antibody-dependent cell-mediated cytotoxicity
- Ab, antibody
- Cell signaling
- Dimerization
- EGFR, epidermal growth factor receptor
- EMT, epithelial-mesenchymal transition
- FDA, Food and Drug Administration
- HER, Human epidermal growth factor receptor
- HER3
- HRG, heregulin
- IGF-1R, insulin-like growth factor-I receptor
- MAPK, mitogen-activated protein kinase
- MEK, MAPK kinase
- NSCLC, non-small cell lung cancer
- OS, overall survival
- PI-3K, phosphoinositide 3-kinase
- RTK, receptor tyrosine kinase
- TKI, tyrosine kinase inhibitor
- Targeted therapy
- Therapeutic resistance
- Tumor metastasis
- lncRNA, long ncRNA
- miRNA, microRNA
- ncRNA, noncoding RNA
Collapse
|
38
|
Zmurchok C, Bhaskar D, Edelstein-Keshet L. Coupling mechanical tension and GTPase signaling to generate cell and tissue dynamics. Phys Biol 2018; 15:046004. [DOI: 10.1088/1478-3975/aab1c0] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
39
|
Gao Z, Zhu W, Zhang H, Li Z, Cui T. The influence of fasudil on renal proximal tubular cell epithelial-mesenchymal transition induced by parathormone. Ren Fail 2018; 39:575-581. [PMID: 28741985 PMCID: PMC6446168 DOI: 10.1080/0886022x.2017.1349677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Renal fibrosis is a common pathway through which a variety of chronic kidney diseases progress to end-stage renal disease. Epithelial-mesenchymal transition (EMT) of renal proximal tubular cells is one of the most important factors in renal fibrosis. This study investigates if fasudil could influence EMT of renal proximal tubular cells. METHODS HK-2 cells in passage 3-4 were used for all experiments. The cells were divided into five groups and treated with different concentrations of PTH and then observe cellular morphological changes at 0, 24 and 48 h using an inverted microscope and investigate the expression of the epithelial cell marker E-cadherin and the renal fibroblast marker α-smooth muscle actin (α-SMA). RESULTS PTH significantly induced EMT, fasudil-inhibited EMT induced by PTH to different degrees, and the inhibitory effect of fasudil was most pronounced at 20 μmol/L. CONCLUSION Monitoring PTH levels, early prevention and control of hyperparathyroidism and reducing the concentration of PTH are important means to improve prognosis and delay the progression of chronic kidney disease. Fasudil can restrain EMT induced by PTH; this conclusion provides experimental data for the application of fasudil in the clinical prevention and treatment of renal fibrosis.
Collapse
Affiliation(s)
- Ziqing Gao
- a Department of Ultrasound , the Fifth Affiliated Hospital of Sun Yat-Sen University , Zhuhai , China
| | - Weiping Zhu
- b Department of Nephrology , the Fifth Affiliated Hospital of Sun Yat-Sen University , Zhuhai , China
| | - Hua Zhang
- b Department of Nephrology , the Fifth Affiliated Hospital of Sun Yat-Sen University , Zhuhai , China
| | - Zhonghe Li
- b Department of Nephrology , the Fifth Affiliated Hospital of Sun Yat-Sen University , Zhuhai , China
| | - Tongxia Cui
- b Department of Nephrology , the Fifth Affiliated Hospital of Sun Yat-Sen University , Zhuhai , China
| |
Collapse
|
40
|
Memmel S, Sisario D, Zöller C, Fiedler V, Katzer A, Heiden R, Becker N, Eing L, Ferreira FLR, Zimmermann H, Sauer M, Flentje M, Sukhorukov VL, Djuzenova CS. Migration pattern, actin cytoskeleton organization and response to PI3K-, mTOR-, and Hsp90-inhibition of glioblastoma cells with different invasive capacities. Oncotarget 2018; 8:45298-45310. [PMID: 28424411 PMCID: PMC5542187 DOI: 10.18632/oncotarget.16847] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/20/2017] [Indexed: 01/15/2023] Open
Abstract
High invasiveness and resistance to chemo- and radiotherapy of glioblastoma multiforme (GBM) make it the most lethal brain tumor. Therefore, new treatment strategies for preventing migration and invasion of GBM cells are needed. Using two different migration assays, Western blotting, conventional and super-resolution (dSTORM) fluorescence microscopy we examine the effects of the dual PI3K/mTOR-inhibitor PI-103 alone and in combination with the Hsp90 inhibitor NVP-AUY922 and/or irradiation on the migration, expression of marker proteins, focal adhesions and F-actin cytoskeleton in two GBM cell lines (DK-MG and SNB19) markedly differing in their invasive capacity. Both lines were found to be strikingly different in morphology and migration behavior. The less invasive DK-MG cells maintained a polarized morphology and migrated in a directionally persistent manner, whereas the highly invasive SNB19 cells showed a multipolar morphology and migrated randomly. Interestingly, a single dose of 2 Gy accelerated wound closure in both cell lines without affecting their migration measured by single-cell tracking. PI-103 inhibited migration of DK-MG (p53 wt, PTEN wt) but not of SNB19 (p53 mut, PTEN mut) cells probably due to aberrant reactivation of the PI3K pathway in SNB19 cells treated with PI-103. In contrast, NVP-AUY922 exerted strong anti-migratory effects in both cell lines. Inhibition of cell migration was associated with massive morphological changes and reorganization of the actin cytoskeleton. Our results showed a cell line-specific response to PI3K/mTOR inhibition in terms of GBM cell motility. We conclude that anti-migratory agents warrant further preclinical investigation as potential therapeutics for treatment of GBM.
Collapse
Affiliation(s)
- Simon Memmel
- Department of Radiation Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Dmitri Sisario
- Department of Radiation Oncology, University Hospital of Würzburg, Würzburg, Germany.,Department of Biotechnology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Caren Zöller
- Department of Radiation Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Vanessa Fiedler
- Department of Radiation Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Astrid Katzer
- Department of Radiation Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Robin Heiden
- Department of Radiation Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Nicholas Becker
- Department of Radiation Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Lorenz Eing
- Department of Biotechnology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Fábio L R Ferreira
- Department of Radiation Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Heiko Zimmermann
- Fraunhofer-Institut für Biomedizinische Technik, Sulzbach, Germany.,Molekulare und Zelluläre Biotechnologie/Nanotechnologie, Universität des Saarlandes, Saarbrücken, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Michael Flentje
- Department of Radiation Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Vladimir L Sukhorukov
- Department of Biotechnology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Cholpon S Djuzenova
- Department of Radiation Oncology, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
41
|
Lee MC, Shei W, Chan AS, Chua BT, Goh SR, Chong YF, Hilmy MH, Nongpiur ME, Baskaran M, Khor CC, Aung T, Hunziker W, Vithana EN. Primary angle closure glaucoma (PACG) susceptibility gene PLEKHA7 encodes a novel Rac1/Cdc42 GAP that modulates cell migration and blood-aqueous barrier function. Hum Mol Genet 2018; 26:4011-4027. [PMID: 29016860 DOI: 10.1093/hmg/ddx292] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/18/2017] [Indexed: 12/21/2022] Open
Abstract
PLEKHA7, a gene recently associated with primary angle closure glaucoma (PACG), encodes an apical junctional protein expressed in components of the blood aqueous barrier (BAB). We found that PLEKHA7 is down-regulated in lens epithelial cells and in iris tissue of PACG patients. PLEKHA7 expression also correlated with the C risk allele of the sentinel SNP rs11024102 with the risk allele carrier groups having significantly reduced PLEKHA7 levels compared to non-risk allele carriers. Silencing of PLEKHA7 in human immortalized non-pigmented ciliary epithelium (h-iNPCE) and primary trabecular meshwork cells, which are intimately linked to BAB and aqueous humor outflow respectively, affected actin cytoskeleton organization. PLEKHA7 specifically interacts with GTP-bound Rac1 and Cdc42, but not RhoA, and the activation status of the two small GTPases is linked to PLEKHA7 expression levels. PLEKHA7 stimulates Rac1 and Cdc42 GTP hydrolysis, without affecting nucleotide exchange, identifying PLEKHA7 as a novel Rac1/Cdc42 GAP. Consistent with the regulatory role of Rac1 and Cdc42 in maintaining the tight junction permeability, silencing of PLEKHA7 compromises the paracellular barrier between h-iNPCE cells. Thus, downregulation of PLEKHA7 in PACG may affect BAB integrity and aqueous humor outflow via its Rac1/Cdc42 GAP activity, thereby contributing to disease etiology.
Collapse
Affiliation(s)
- Mei-Chin Lee
- Ocular Genetics Research Group, Singapore Eye Research Institute, Singapore 169856, Singapore.,The Ophthalmology & Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - William Shei
- Ocular Genetics Research Group, Singapore Eye Research Institute, Singapore 169856, Singapore
| | - Anita S Chan
- The Ophthalmology & Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore.,Department of Glaucoma, Singapore National Eye Centre, Singapore 168751, Singapore
| | - Boon-Tin Chua
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore 138673, Singapore
| | - Shuang-Ru Goh
- The Ophthalmology & Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Yaan-Fun Chong
- The Ophthalmology & Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Maryam H Hilmy
- Department of Pathology, Singapore General Hospital, Singapore 169856, Singapore
| | - Monisha E Nongpiur
- Ocular Genetics Research Group, Singapore Eye Research Institute, Singapore 169856, Singapore.,The Ophthalmology & Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Mani Baskaran
- Ocular Genetics Research Group, Singapore Eye Research Institute, Singapore 169856, Singapore.,The Ophthalmology & Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore.,Department of Glaucoma, Singapore National Eye Centre, Singapore 168751, Singapore
| | - Chiea-Chuen Khor
- Ocular Genetics Research Group, Singapore Eye Research Institute, Singapore 169856, Singapore.,Department of Human Genetics, Genome Institute of Singapore, Agency for Science Technology and Research, Singapore 138672, Singapore.,Department of Biochemistry, National University of Singapore, Singapore 117596, Singapore
| | - Tin Aung
- Ocular Genetics Research Group, Singapore Eye Research Institute, Singapore 169856, Singapore.,The Ophthalmology & Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore.,Department of Glaucoma, Singapore National Eye Centre, Singapore 168751, Singapore.,Department of Ophthalmology, National University of Singapore, Singapore 119228, Singapore
| | - Walter Hunziker
- Ocular Genetics Research Group, Singapore Eye Research Institute, Singapore 169856, Singapore.,Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore 138673, Singapore.,Department of Physiology, National University of Singapore, Singapore 117593, Singapore
| | - Eranga N Vithana
- Ocular Genetics Research Group, Singapore Eye Research Institute, Singapore 169856, Singapore.,The Ophthalmology & Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore.,Department of Ophthalmology, National University of Singapore, Singapore 119228, Singapore
| |
Collapse
|
42
|
Derk J, MacLean M, Juranek J, Schmidt AM. The Receptor for Advanced Glycation Endproducts (RAGE) and Mediation of Inflammatory Neurodegeneration. JOURNAL OF ALZHEIMER'S DISEASE & PARKINSONISM 2018; 8:421. [PMID: 30560011 PMCID: PMC6293973 DOI: 10.4172/2161-0460.1000421] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Julia Derk
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, NYU School of Medicine, 550 First Avenue, Smilow 906, New York, NY, 10016, USA
| | - Michael MacLean
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, NYU School of Medicine, 550 First Avenue, Smilow 906, New York, NY, 10016, USA
| | - Judyta Juranek
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, NYU School of Medicine, 550 First Avenue, Smilow 906, New York, NY, 10016, USA
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, NYU School of Medicine, 550 First Avenue, Smilow 906, New York, NY, 10016, USA
| |
Collapse
|
43
|
Noh MR, Jang HS, Song DK, Lee SR, Lipschutz JH, Park KM, Kim JI. Downregulation of exocyst Sec10 accelerates kidney tubule cell recovery through enhanced cell migration. Biochem Biophys Res Commun 2018; 496:309-315. [PMID: 29326040 DOI: 10.1016/j.bbrc.2018.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 01/03/2018] [Indexed: 12/23/2022]
Abstract
Migration of surviving kidney tubule cells after sub-lethal injury, for example ischemia/reperfusion (I/R), plays a critical role in recovery. Exocytosis is known to be involved in cell migration, and a key component in exocytosis is the highly-conserved eight-protein exocyst complex. We investigated the expression of a central exocyst complex member, Sec10, in kidneys following I/R injury, as well as the role of Sec10 in wound healing following scratch injury of cultured Madin-Darby canine kidney (MDCK) cells. Sec10 overexpression and knockdown (KD) in MDCK cells were used to investigate the speed of wound healing and the mechanisms underlying recovery. In mice, Sec10 decreased after I/R injury, and increased during the recovery period. In cell culture, Sec10 OE inhibited ruffle formation and wound healing, while Sec10 KD accelerated it. Sec10 OE cells had higher amounts of diacylglycerol kinase (DGK) gamma at the leading edge than did control cells. A DGK inhibitor reversed the inhibition of wound healing and ruffle formation in Sec10 OE cells. Conclusively, downregulation of Sec10 following I/R injury appears to accelerate recovery of kidney tubule cells through activated ruffle formation and enhanced cell migration.
Collapse
Affiliation(s)
- Mi Ra Noh
- Department of Anatomy and BK21 Plus, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Hee-Seong Jang
- Department of Anatomy and BK21 Plus, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Dae-Kyu Song
- Department of Physiology, Keimyung University School of Medicine, Daegu, Republic of Korea; Medical Research Center, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Seong-Ryong Lee
- Medical Research Center, Keimyung University School of Medicine, Daegu, Republic of Korea; Department of Pharmacology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Joshua H Lipschutz
- Department of Medicine, Medical University of South Carolina and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA
| | - Kwon Moo Park
- Department of Anatomy and BK21 Plus, Kyungpook National University School of Medicine, Daegu, Republic of Korea.
| | - Jee In Kim
- Medical Research Center, Keimyung University School of Medicine, Daegu, Republic of Korea; Department of Molecular Medicine Keimyung University School of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
44
|
Chang X, Li H, Li Y, He Q, Yao J, Duan T, Wang K. RhoA/MLC signaling pathway is involved in Δ⁹-tetrahydrocannabinol-impaired placental angiogenesis. Toxicol Lett 2018; 285:148-155. [PMID: 29307655 DOI: 10.1016/j.toxlet.2017.12.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/28/2017] [Accepted: 12/31/2017] [Indexed: 01/26/2023]
Abstract
Cannabis is a widely used illicit drug and its abuse during pregnancy has been related to adverse reproductive outcomes. In addition, placental angiogenesis is considered to be responsible for the transport of nutrients critical for placental development and fetal growth. The purpose of this study is to determine the effects of Δ⁹-tetrahydrocannabinol (THC), the major component of cannabis, on placental angiogenesis, involving endothelial cell (EC) proliferation, migration and tube formation. Here, we observe dramatic alterations in placental vascular network of cannabis users correlated with an impaired HUVE cell proliferation, migration and tube formation after treated with THC. Mechanistically, the activity of RhoA/MLC is involved in the THC-impaired EC migration and angiogenesis. To further analyze the role of cannabis in mice placental and embryonic development, we inject pregnant mice with THC daily. This treatment results in an altered placental microvasculature, accompanied by the decreased expression of CD31 and activity of RhoA/MLC. Taken together, these findings identify THC plays a pivotal role in impairing placental angiogenesis potentially via RhoA/MLC signaling nexus.
Collapse
Affiliation(s)
- Xinwen Chang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, PR China
| | - Hua Li
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, PR China
| | - Yuhong Li
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, PR China
| | - Qizhi He
- Department of Pathology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, PR China
| | - Julei Yao
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, PR China
| | - Tao Duan
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, PR China; Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, PR China.
| | - Kai Wang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, PR China.
| |
Collapse
|
45
|
Pang L, Li JF, Su L, Zang M, Fan Z, Yu B, Wu X, Li C, Yan M, Zhu ZG, Liu B. ALEX1, a novel tumor suppressor gene, inhibits gastric cancer metastasis via the PAR-1/Rho GTPase signaling pathway. J Gastroenterol 2018; 53:71-83. [PMID: 28315004 DOI: 10.1007/s00535-017-1329-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/02/2017] [Indexed: 02/04/2023]
Abstract
BACKGROUND The ALEX is a novel member of the armadillo family and ALEX1 was reported to be reduced or even lost in multiple solid tumors. However, its expression profile and oncogenic role in gastric cancer (GC) remains largely unknown. METHODS ALEX1 expression was detected in 161 GC samples by immunohistochemistry staining. NCI-N87 cells transfected by ALEX1 lentivirus vectors and MKN28 cells transfected by ALEX1 shRNA were used for biological function investigation. Western blot was applied to explore the molecular mechanism and pull-down assays were applied to measure the activity of Rho GTPases. In vivo tumorigenicity, peritoneal and lung metastasis experiments were performed by tumor cell engraftment into nude mice. Bisulfite genomic sequencing and methylation-specific PCR were applied to check the methylation status of the ALEX1 gene. RESULTS The expression rate of ALEX1 was significantly reduced in gastric tumor samples compared to non-tumor samples (43.5 vs. 90.2%), and its expression was closely related to the tumor differentiation, TNM staging, and lymph nodes metastasis. ALEX1 overexpression in NCI-N87 cells significantly inhibited cell proliferation, migration, and invasion in vitro, and disrupted the structure of the cytoskeleton. ALEX1 overexpression attenuated xenografts growth, peritoneal, and lung metastasis in nude mice. Mechanistically, the overexpression of ALEX1 inhibits thrombin-induced metastasis and Rho GTPases activation. Bisulfite genomic sequencing and methylation-specific PCR revealed that the promoter of ALEX1 is highly methylated in GC cells and tissues. CONCLUSIONS ALEX1 expression is reduced in GC and is involved in diverse cellular functions. ALEX1 inhibits metastasis through the PAR-1/Rho GTPase signaling pathway.
Collapse
Affiliation(s)
- Li Pang
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Jian-Fang Li
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Liping Su
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Mingde Zang
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Zhiyuan Fan
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Beiqin Yu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Xiongyan Wu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Chen Li
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Min Yan
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Zheng-Gang Zhu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Bingya Liu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
46
|
Matijevic Glavan T, Mikulandra M. The in vitro effect of poly (I:C) on cell morphology of a metastatic pharyngeal cell line. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
47
|
Kim JY, Deglincerti A, Jaffrey SR. A Staufen1-mediated decay pathway influences the local transcriptome in axons. ACTA ACUST UNITED AC 2017; 5:e1414016. [PMID: 29416957 DOI: 10.1080/21690731.2017.1414016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 11/28/2017] [Indexed: 12/23/2022]
Abstract
Local translation is critical for diverse aspects of neuronal function, including mediating responses of elongating axons to guidance cues and other signaling molecules. A major determinant of the protein synthetic capacity of axons and growth cones is the specific set of mRNAs that are trafficked to these sites. However, recently it has become clear that the axonal transcriptome can also be shaped by local RNA degradation mechanisms, such as nonsense-mediated decay. Here we show that Staufen1-mediated decay can also occur within axons and mediate degradation of specific axonal transcripts. We show that Staufen1 and Upf1, which function together in Staufen1-mediated decay, are localized in growth cones. Selective depletion of Staufen1 from neurons results in a complex pattern of transcriptional alterations, with a subset of transcripts showing increased expression and increased RNA half-life consistent with their regulation by Staufen1-mediated decay. Additionally, we show certain transcripts, such as Rac1, are regulated by Staufen1 within axons and growth cones. The functional significance of Staufen1 in growth cones is supported by morphological alterations in growth cones following Staufen1 knockdown. Together these data point to Staufen1-mediated decay as a novel mechanism to control mRNA expression levels in axons and growth cones through local RNA degradation.
Collapse
Affiliation(s)
- Ju Youn Kim
- Department of Pharmacology, Weill-Cornell Medical College, Cornell University, New York, NY, USA
| | - Alessia Deglincerti
- Department of Pharmacology, Weill-Cornell Medical College, Cornell University, New York, NY, USA
| | - Samie R Jaffrey
- Department of Pharmacology, Weill-Cornell Medical College, Cornell University, New York, NY, USA
| |
Collapse
|
48
|
Tong H, Qi D, Guan X, Jiang G, Liao Z, Zhang X, Chen P, Li N, Wu M. c-Abl tyrosine kinase regulates neutrophil crawling behavior under fluid shear stress via Rac/PAK/LIMK/cofilin signaling axis. J Cell Biochem 2017; 119:2806-2817. [PMID: 29058761 DOI: 10.1002/jcb.26453] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/17/2017] [Indexed: 12/13/2022]
Abstract
The excessive recruitment and improper activation of polymorphonuclear neutrophils (PMNs) often induces serious injury of host tissues, leading to inflammatory disorders. Therefore, to understand the molecular mechanism on neutrophil recruitment possesses essential pathological and physiological importance. In this study, we found that physiological shear stress induces c-Abl kinase activation in neutrophils, and c-Abl kinase inhibitor impaired neutrophil crawling behavior on ICAM-1. We further identified Vav1 was a downstream effector phosphorylated at Y174 and Y267. Once activated, c-Abl kinase regulated the activity of Vav1, which further affected Rac1/PAK1/LIMK1/cofilin signaling pathway. Here, we demonstrate a novel signaling function and critical role of c-Abl kinase during neutrophil crawling under physiological shear by regulating Vav1. These findings provide a promising treatment strategy for inflammation-related disease by inactivation of c-Abl kinase to restrict neutrophil recruitment.
Collapse
Affiliation(s)
- Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China.,Jilin Provincial Key Laboratory of Molecular Geriatric Medicine, Life Science Research Center, Beihua University, Jilin, China
| | - Dake Qi
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Xingang Guan
- Jilin Provincial Key Laboratory of Molecular Geriatric Medicine, Life Science Research Center, Beihua University, Jilin, China
| | - Guiquan Jiang
- Jilin Provincial Key Laboratory of Molecular Geriatric Medicine, Life Science Research Center, Beihua University, Jilin, China
| | - Zhiyong Liao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Xu Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Peichao Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Nan Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Mingjiang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| |
Collapse
|
49
|
Rahman-Zaman A, Shan S, Reinhart-King CA. Cell Migration in Microfabricated 3D Collagen Microtracks is Mediated through the Prometastatic Protein Girdin. Cell Mol Bioeng 2017; 11:1-10. [PMID: 29403565 DOI: 10.1007/s12195-017-0511-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Introduction In vivo, cancer cells can utilize tube-like microtracks formed within the extracellular matrix (ECM) of the stroma as 'highways' to escape the primary tumor, however very little is known about the molecular mechanisms that govern cell migration through these microtracks. Cell polarization and actin organization are both essential for efficient cell migration and cells are known to migrate very unidirectionally in confined spaces. In this study, we focused on understanding the role of Girdin during unidirectional migration. Girdin is a prometastatic protein known to be involved in cell polarity by directly interacting with the cell polarity protein Par-3 (Partitioning defective-3) and also known as an actin binding protein. Methods We utilized a microfabricated platform to recreate these microtracks in vitro using collagen and used siRNA to knockdown Girdin in MDA-MB-231 cells. Results Our data indicate that knockdown of Girdin results in decreased cell speed during 3D collagen microtrack migration. Loss of Girdin also results in altered cell morphology and cell orientation. Moreover, Girdin-depletion impairs actin organization and stress fiber formation, which can be restored by upregulating the GTPase RhoA. Activation of RhoA induces actin stress fiber formation, restores elongated migratory cell shape and partial cell migration in 3D collagen microtracks in the absence of Girdin. Conclusions Our data suggest that Girdin helps directional migration in collagen microtracks by promoting actin cytoskeletal organization and maintaining morphological cell polarity.
Collapse
Affiliation(s)
- Aniqua Rahman-Zaman
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853 USA
| | - Shuo Shan
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853 USA
| | - Cynthia A Reinhart-King
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853 USA.,Department of Biomedical Engineering, Vanderbilt University, PMB 351631, Nashville, TN 37235 USA
| |
Collapse
|
50
|
Sato M, Shibata Y, Inoue S, Igarashi A, Tokairin Y, Yamauchi K, Kimura T, Nemoto T, Sato K, Nakano H, Abe S, Nishiwaki M, Kobayashi M, Yang S, Minegishi Y, Furuyama K, Kubota I. MafB enhances efferocytosis in RAW264.7 macrophages by regulating Axl expression. Immunobiology 2017; 223:94-100. [PMID: 29030012 DOI: 10.1016/j.imbio.2017.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/21/2017] [Accepted: 10/03/2017] [Indexed: 11/30/2022]
Abstract
The transcription factor MafB is involved in cellular differentiation and phagocytosis in macrophages. Macrophages phagocytose apoptotic cells in vivo; this process, which is known as efferocytosis, requires Axl receptor tyrosine kinase (Axl) activity. However, the association between MafB and efferocytosis, as well as that between MafB and Axl, in macrophages is unknown. We hypothesized that MafB modulates macrophage efferocytosis by regulating Axl expression. Fluorescent-labeled apoptotic thymocytes were added to RAW264.7-MafB-shRNA and control cells, and the proportion of phagocytosis-positivey fluorescence microscopy and flow cytometry. In addition, Axl mRNA and protein were quantified by real-time PCR and western blotting in each group. RAW264.7-MafB-shRNA cells were transfected with a plasmid expressing green fluorescent protein (GFP)-tagged Axl or a control empty plasmid expressing only GFP. The capacity for phagocytosis of apoptotic cells was assessed in GFP-positive cells gated based on fluorescence intensity. In RAW264.7-MafB-shRNA cells, capacity for phagocytosis of apoptotic thymocytes was significantly reduced compared with that of control cells, as determined by fluorescence microscope and flow cytometry. Axl mRNA and protein expression was significantly reduced in RAW264.7-MafB-shRNA cells relative to control cells. Furthermore, the capacity of RAW264.7-MafB-shRNA cells, transfected with an Axl-expressing plasmid, for phagocytosis of apoptotic thymocytes was significantly greater than that of cells transfected with the control plasmid. Collectively, the present findings indicate that MafB enhances efferocytosis by regulating Axl expression in RAW264.7 macrophages.
Collapse
Affiliation(s)
- Masamichi Sato
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Yoko Shibata
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan.
| | - Sumito Inoue
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Akira Igarashi
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Yoshikane Tokairin
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Keiko Yamauchi
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Tomomi Kimura
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Takako Nemoto
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Kento Sato
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Hiroshi Nakano
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Shuichi Abe
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Michiko Nishiwaki
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Maki Kobayashi
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Sujeong Yang
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Yukihiro Minegishi
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Kodai Furuyama
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Isao Kubota
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| |
Collapse
|