1
|
Marček P, Kadlic P, Adamová LM, Tóthova Ľ, Pastorek M, Kovalčíkova AG, Valkovič P, Minár M, Slezáková D. Extracellular DNA and Deoxyribonuclease Activity as Potential Biomarkers of Inflammation in Multiple Sclerosis. Mol Neurobiol 2025:10.1007/s12035-025-04907-4. [PMID: 40198446 DOI: 10.1007/s12035-025-04907-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 03/31/2025] [Indexed: 04/10/2025]
Abstract
Neuroinflammation plays a critical role in the pathophysiology of multiple sclerosis (MS), involving complex interactions between reactive oxygen species (ROS), cytokines, chemokines, and immune cells. Among these, neutrophils contribute to sustained inflammation through degranulation, ROS production, and the release of neutrophil extracellular traps (NETs). Extracellular DNA (ecDNA), a key component of NETs, may act as an autoantigen, promoting chronic inflammation and tissue damage. Additionally, impaired NETs and ecDNA degradation by deoxyribonucleases (DNases) may contribute to persistence of inflammation. The aim of the present study was to determine the levels of ecDNA and DNase activity in both blood plasma and cerebrospinal fluid (CSF) in newly diagnosed, treatment-naïve adult patients with relapsing-remitting MS and whether it correlates with disease severity and inflammatory activity in MS. Fifty-one treatment-naïve relapsing-remitting MS patients without disease-modifying therapy and 16 healthy controls (HC) were included in our study. Blood and CSF samples were analyzed for ecDNA, mitochondrial DNA (mtDNA) levels, and DNase activity. Correlations with inflammatory cytokines, oxidative stress, MRI lesion burden, and the expanded disability status scale (EDSS) were analyzed. MS patients exhibited significantly elevated ecDNA levels and reduced DNase activity in blood plasma compared to HC. EcDNA levels positively correlated with inflammatory cytokines, oxidative stress, and disease severity (EDSS). Furthermore, ecDNA and mtDNA levels in CSF positively correlated with inflammatory gadolinium-enhancing MRI lesions. Interestingly, no DNase activity was detected in CSF in both MS patients and HC. Our findings demonstrate that MS patients exhibit significantly elevated ecDNA levels and reduced DNase activity in blood plasma, which correlate with inflammatory cytokines, oxidative stress, and disease severity (EDSS). Additionally, increased ecDNA and mtDNA levels in CSF are associated with higher inflammatory activity, as reflected by gadolinium-enhancing MRI lesions. Considering the pro-inflammatory nature of ecDNA in perpetuating sterile inflammation, these results suggest a potential role of circulating nucleic acids in MS pathogenesis. Furthermore, impaired DNase activity may contribute to the persistence of ecDNA, potentially sustaining pro-inflammatory state in MS. Nevertheless, it remains unclear whether elevated ecDNA actively contributes to neuroinflammation or simply reflects ongoing immune activation. Further research is needed to elucidate the mechanisms underlying ecDNA release and degradation and its implications in MS progression.
Collapse
Affiliation(s)
- Peter Marček
- Second Department of Neurology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Pavol Kadlic
- Second Department of Neurology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Louise-Mária Adamová
- Second Department of Neurology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Ľubomíra Tóthova
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Michal Pastorek
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Alexandra Gaál Kovalčíkova
- Department of Pediatrics, National Institute of Children's Diseases and Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Peter Valkovič
- Second Department of Neurology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michal Minár
- Second Department of Neurology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia.
| | - Darina Slezáková
- Second Department of Neurology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
2
|
Shahi A, Kidane D. Decoding mitochondrial DNA damage and repair associated with H. pylori infection. Front Cell Infect Microbiol 2025; 14:1529441. [PMID: 39906209 PMCID: PMC11790445 DOI: 10.3389/fcimb.2024.1529441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 12/19/2024] [Indexed: 02/06/2025] Open
Abstract
Mitochondrial genomic stability is critical to prevent various human inflammatory diseases. Bacterial infection significantly increases oxidative stress, driving mitochondrial genomic instability and initiating inflammatory human disease. Oxidative DNA base damage is predominantly repaired by base excision repair (BER) in the nucleus (nBER) as well as in the mitochondria (mtBER). In this review, we summarize the molecular mechanisms of spontaneous and H. pylori infection-associated oxidative mtDNA damage, mtDNA replication stress, and its impact on innate immune signaling. Additionally, we discuss how mutations located on mitochondria targeting sequence (MTS) of BER genes may contribute to mtDNA genome instability and innate immune signaling activation. Overall, the review summarizes evidence to understand the dynamics of mitochondria genome and the impact of mtBER in innate immune response during H. pylori-associated pathological outcomes.
Collapse
Affiliation(s)
| | - Dawit Kidane
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC, United States
| |
Collapse
|
3
|
Kujawowicz K, Mirończuk-Chodakowska I, Witkowska AM. Sirtuin 1 as a potential biomarker of undernutrition in the elderly: a narrative review. Crit Rev Food Sci Nutr 2024; 64:9532-9553. [PMID: 37229564 DOI: 10.1080/10408398.2023.2214208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Undernutrition and inflammatory processes are predictors of early mortality in the elderly and require a rapid and accurate diagnosis. Currently, there are laboratory markers for assessing nutritional status, but new markers are still being sought. Recent studies suggest that sirtuin 1 (SIRT1) has the potential to be a marker for undernutrition. This article summarizes available studies on the association of SIRT1 and undernutrition in older people. Possible associations between SIRT1 and the aging process, inflammation, and undernutrition in the elderly have been described. The literature suggests that low SIRT1 levels in the blood of older people may not be associated with physiological aging processes, but with an increased risk of severe undernutrition associated with inflammation and systemic metabolic changes.
Collapse
Affiliation(s)
- Karolina Kujawowicz
- Department of Food Biotechnology, Medical University of Bialystok, Bialystok, Poland
| | | | - Anna Maria Witkowska
- Department of Food Biotechnology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
4
|
Xie B, Chen Q, Dai Z, Jiang C, Chen X. Progesterone (P4) ameliorates cigarette smoke-induced chronic obstructive pulmonary disease (COPD). Mol Med 2024; 30:123. [PMID: 39138434 PMCID: PMC11323532 DOI: 10.1186/s10020-024-00883-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 07/19/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory lung disease associated with high morbidity and mortality worldwide. Oxidative injury and mitochondrial dysfunction in the airway epithelium are major events in COPD progression. METHODS AND RESULTS The therapeutic effects of Progesterone (P4) were investigated in vivo and in vitro in this study. In vivo, in a cigarette smoke (CS) exposure-induced COPD mouse model, P4 treatment significantly ameliorated CS exposure-induced physiological and pathological characteristics, including inflammatory cell infiltration and oxidative injury, in a dose-dependent manner. The c-MYC/SIRT1/PGC-1α pathway is involved in the protective function of P4 against CS-induced COPD. In vitro, P4 co-treatment significantly ameliorated H2O2-induced oxidative injury and mitochondrial dysfunctions by promoting cell proliferation, increasing mitochondrial membrane potential, decreasing ROS levels and apoptosis, and increasing ATP content. Moreover, P4 co-treatment partially attenuated H2O2-caused inhibition in Nrf1, Tfam, Mfn1, PGR-B, c-MYC, SIRT1, and PGC-1α levels. In BEAS-2B and ASM cells, the c-MYC/SIRT1 axis regulated P4's protective effects against H2O2-induced oxidative injury and mitochondrial dysfunctions. CONCLUSION P4 activates the c-MYC/SIRT1 axis, ameliorating CS-induced COPD and protecting both airway epithelial cells and smooth muscle cells against H2O2-induced oxidative damage. PGC-1α and downstream mitochondrial signaling pathways might be involved.
Collapse
Affiliation(s)
- Bin Xie
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Departement of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiong Chen
- Departement of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ziyu Dai
- Departement of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Chen Jiang
- Departement of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xi Chen
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
5
|
Khadka P, Young CKJ, Sachidanandam R, Brard L, Young MJ. Our current understanding of the biological impact of endometrial cancer mtDNA genome mutations and their potential use as a biomarker. Front Oncol 2024; 14:1394699. [PMID: 38993645 PMCID: PMC11236604 DOI: 10.3389/fonc.2024.1394699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/10/2024] [Indexed: 07/13/2024] Open
Abstract
Endometrial cancer (EC) is a devastating and common disease affecting women's health. The NCI Surveillance, Epidemiology, and End Results Program predicted that there would be >66,000 new cases in the United States and >13,000 deaths from EC in 2023, and EC is the sixth most common cancer among women worldwide. Regulation of mitochondrial metabolism plays a role in tumorigenesis. In proliferating cancer cells, mitochondria provide the necessary building blocks for biosynthesis of amino acids, lipids, nucleotides, and glucose. One mechanism causing altered mitochondrial activity is mitochondrial DNA (mtDNA) mutation. The polyploid human mtDNA genome is a circular double-stranded molecule essential to vertebrate life that harbors genes critical for oxidative phosphorylation plus mitochondrial-derived peptide genes. Cancer cells display aerobic glycolysis, known as the Warburg effect, which arises from the needs of fast-dividing cells and is characterized by increased glucose uptake and conversion of glucose to lactate. Solid tumors often contain at least one mtDNA substitution. Furthermore, it is common for cancer cells to harbor mixtures of wild-type and mutant mtDNA genotypes, known as heteroplasmy. Considering the increase in cancer cell energy demand, the presence of functionally relevant carcinogenesis-inducing or environment-adapting mtDNA mutations in cancer seems plausible. We review 279 EC tumor-specific mtDNA single nucleotide variants from 111 individuals from different studies. Many transition mutations indicative of error-prone DNA polymerase γ replication and C to U deamination events were present. We examine the spectrum of mutations and their heteroplasmy and discuss the potential biological impact of recurrent, non-synonymous, insertion, and deletion mutations. Lastly, we explore current EC treatments, exploiting cancer cell mitochondria for therapy and the prospect of using mtDNA variants as an EC biomarker.
Collapse
Affiliation(s)
- Pabitra Khadka
- Department of Biomedical Sciences, Division of Biochemistry & Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL, United States
| | - Carolyn K J Young
- Department of Biomedical Sciences, Division of Biochemistry & Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL, United States
| | | | - Laurent Brard
- Obstetrics & Gynecology, Southern Illinois University School of Medicine, Springfield, IL, United States
- Simmons Cancer Institute, Springfield, IL, United States
| | - Matthew J Young
- Department of Biomedical Sciences, Division of Biochemistry & Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL, United States
- Simmons Cancer Institute, Springfield, IL, United States
| |
Collapse
|
6
|
Ruprecht NA, Singhal S, Schaefer K, Panda O, Sens D, Singhal SK. A Review: Multi-Omics Approach to Studying the Association between Ionizing Radiation Effects on Biological Aging. BIOLOGY 2024; 13:98. [PMID: 38392316 PMCID: PMC10886797 DOI: 10.3390/biology13020098] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/20/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
Multi-omics studies have emerged as powerful tools for tailoring individualized responses to various conditions, capitalizing on genome sequencing technologies' increasing affordability and efficiency. This paper delves into the potential of multi-omics in deepening our understanding of biological age, examining the techniques available in light of evolving technology and computational models. The primary objective is to review the relationship between ionizing radiation and biological age, exploring a wide array of functional, physiological, and psychological parameters. This comprehensive review draws upon an extensive range of sources, including peer-reviewed journal articles, government documents, and reputable websites. The literature review spans from fundamental insights into radiation effects to the latest developments in aging research. Ionizing radiation exerts its influence through direct mechanisms, notably single- and double-strand DNA breaks and cross links, along with other critical cellular events. The cumulative impact of DNA damage forms the foundation for the intricate process of natural aging, intersecting with numerous diseases and pivotal biomarkers. Furthermore, there is a resurgence of interest in ionizing radiation research from various organizations and countries, reinvigorating its importance as a key contributor to the study of biological age. Biological age serves as a vital reference point for the monitoring and mitigation of the effects of various stressors, including ionizing radiation. Ionizing radiation emerges as a potent candidate for modeling the separation of biological age from chronological age, offering a promising avenue for tailoring protocols across diverse fields, including the rigorous demands of space exploration.
Collapse
Affiliation(s)
- Nathan A Ruprecht
- Department of Biomedical Engineering, University of North Dakota, Grand Forks, ND 58202, USA
| | - Sonalika Singhal
- Department of Pathology, University of North Dakota, Grand Forks, ND 58202, USA
| | - Kalli Schaefer
- Department of Biomedical Engineering, University of North Dakota, Grand Forks, ND 58202, USA
| | - Om Panda
- Department of Public Health, University of California Irvine, Irvine, CA 92697, USA
| | - Donald Sens
- Department of Pathology, University of North Dakota, Grand Forks, ND 58202, USA
| | - Sandeep K Singhal
- Department of Biomedical Engineering, University of North Dakota, Grand Forks, ND 58202, USA
- Department of Pathology, University of North Dakota, Grand Forks, ND 58202, USA
| |
Collapse
|
7
|
Jung KW, Kwon S, Jung JH, Lim S, Bahn YS. Functional Characterization of DNA N-Glycosylase Ogg1 and Ntg1 in DNA Damage Stress of Cryptococcus neoformans. J Microbiol 2023; 61:981-992. [PMID: 38055144 DOI: 10.1007/s12275-023-00092-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023]
Abstract
Reactive oxygen species induce DNA strand breaks and DNA oxidation. DNA oxidation leads to DNA mismatches, resulting in mutations in the genome if not properly repaired. Homologous recombination (HR) and non-homologous end-joining (NHEJ) are required for DNA strand breaks, whereas the base excision repair system mainly repairs oxidized DNAs, such as 8-oxoguanine and thymine glycol, by cleaving the glycosidic bond, inserting correct nucleotides, and sealing the gap. Our previous studies revealed that the Rad53-Bdr1 pathway mainly controls DNA strand breaks through the regulation of HR- and NHEJ-related genes. However, the functional roles of genes involved in the base excision repair system remain elusive in Cryptococcus neoformans. In the present study, we identified OGG1 and NTG1 genes in the base excision repair system of C. neoformans, which are involved in DNA oxidation repair. The expression of OGG1 was induced in a Hog1-dependent manner under oxidative stress. On the other hand, the expression of NTG1 was strongly induced by DNA damage stress in a Rad53-independent manner. We demonstrated that the deletion of NTG1, but not OGG1, resulted in elevated susceptibility to DNA damage agents and oxidative stress inducers. Notably, the ntg1Δ mutant showed growth defects upon antifungal drug treatment. Although deletion of OGG1 or NTG1 did not increase mutation rates, the mutation profile of each ogg1Δ and ntg1Δ mutant was different from that of the wild-type strain. Taken together, we found that DNA N-glycosylase Ntg1 is required for oxidative DNA damage stress and antifungal drug resistance in C. neoformans.
Collapse
Affiliation(s)
- Kwang-Woo Jung
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea.
| | - Sunhak Kwon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jong-Hyun Jung
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Sangyong Lim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
- Department of Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
8
|
Seike T, Chen CH, Mochly-Rosen D. Impact of common ALDH2 inactivating mutation and alcohol consumption on Alzheimer's disease. Front Aging Neurosci 2023; 15:1223977. [PMID: 37693648 PMCID: PMC10483235 DOI: 10.3389/fnagi.2023.1223977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Aldehyde dehydrogenase 2 (ALDH2) is an enzyme found in the mitochondrial matrix that plays a central role in alcohol and aldehyde metabolism. A common ALDH2 polymorphism in East Asians descent (called ALDH2*2 or E504K missense variant, SNP ID: rs671), present in approximately 8% of the world's population, has been associated with a variety of diseases. Recent meta-analyses support the relationship between this ALDH2 polymorphism and Alzheimer's disease (AD). And AD-like pathology observed in ALDH2-/- null mice and ALDH2*2 overexpressing transgenic mice indicate that ALDH2 deficiency plays an important role in the pathogenesis of AD. Recently, the worldwide increase in alcohol consumption has drawn attention to the relationship between heavy alcohol consumption and AD. Of potential clinical significance, chronic administration of alcohol in ALDH2*2/*2 knock-in mice exacerbates the pathogenesis of AD-like symptoms. Therefore, ALDH2 polymorphism and alcohol consumption likely play an important role in the onset and progression of AD. Here, we review the data on the relationship between ALDH2 polymorphism, alcohol, and AD, and summarize what is currently known about the role of the common ALDH2 inactivating mutation, ALDH2*2, and alcohol in the onset and progression of AD.
Collapse
Affiliation(s)
| | | | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
9
|
Dong Y, Vipin VA, Blesson CS, Yallampalli C. Impact of adrenomedullin on mitochondrial respiratory capacity in human adipocyte. Sci Rep 2023; 13:9578. [PMID: 37311963 DOI: 10.1038/s41598-023-36622-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023] Open
Abstract
Mitochondrial function in adipocyte is an important aspect in maintaining metabolic homeostasis. Our previous observation showed that circulating levels of adrenomedullin (ADM) and mRNA and protein for ADM in omental adipose tissue were higher in patients with gestational diabetes mellitus (GDM), and these alterations are accompanied by glucose and lipid metabolic dysregulation, but the impact of ADM on mitochondrial biogenesis and respiration in human adipocyte remain elusive. The present study demonstrated that: (1) Increasing doses of glucose and ADM inhibit human adipocyte mRNA expressions of mitochondrial DNA (mtDNA)-encoded subunits of electron transport chain, including nicotinamide adenine dinucleotide dehydrogenase (ND) 1 and 2, cytochrome (CYT) b, as well as ATPase 6; (2) ADM significantly increases human adipocyte mitochondrial reactive oxygen species generation and this increase is reversed by ADM antagonist, ADM22-52, but treatment with ADM does not significantly affect mitochondrial contents in the adipocytes; (3) Adipocyte basal and maximal oxygen consumption rate are dose-dependently suppressed by ADM, thus results in impaired mitochondrial respiratory capacity. We conclude that elevated ADM observed in diabetic pregnancy may be involved in glucose and lipid dysregulation through compromising adipocyte mitochondrial function, and blockade of ADM action may improve GDM-related glucose and adipose tissue dysfunction.
Collapse
Affiliation(s)
- Yuanlin Dong
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine/Texas Children's Hospital, 1102 Bates Street, Room #1850.34, Houston, TX, 77030, USA
| | - Vidyadharan Alukkal Vipin
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine/Texas Children's Hospital, 1102 Bates Street, Room #1850.34, Houston, TX, 77030, USA
| | - Chellakkan Selvanesan Blesson
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine/Texas Children's Hospital, 1102 Bates Street, Room #1850.34, Houston, TX, 77030, USA
| | - Chandrasekhar Yallampalli
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine/Texas Children's Hospital, 1102 Bates Street, Room #1850.34, Houston, TX, 77030, USA.
| |
Collapse
|
10
|
Ma Y, Meng X, Sowanou A, Wang J, Li H, Li A, Zhong N, Yao Y, Pei J. Effect of Fluoride on the Expression of 8-Hydroxy-2'-Deoxyguanosine in the Blood, Kidney, Liver, and Brain of Rats. Biol Trace Elem Res 2023; 201:2904-2916. [PMID: 35984601 DOI: 10.1007/s12011-022-03394-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/14/2022] [Indexed: 11/02/2022]
Abstract
Excessive exposure of fluoride not only leads to damage on bone, but also has an adverse effect on soft tissues. Oxidative DNA damage induced by fluoride is thought to be one of the toxic mechanisms of fluoride effect. However, the dose-response of fluoride on oxidative DNA damage is barely studied in organisms. This study investigated the concentration of fluoride in rat blood, kidney, liver, and brain as well as the dose-time effect of fluoride on the expression of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in the above tissues. Rats were exposed to 0 mg/L, 25 mg/L, 50 mg/L, and 100 mg/L of fluorine ion and treated for one and three months. The results showed that the accumulation of fluoride in soft tissues was very different. At the first month, blood fluoride was increased, liver and brain fluoride showed a U-shaped change, and kidney fluoride was not significant. At the third month, blood fluoride was altered with an inverted U-shaped change, kidney and brain fluoride increased, but liver fluoride decreased. Both the exposure concentration and the time of exposure had a significant effect on the expression of 8-OHdG in the above tissues. However, the effect patterns of fluoride on these tissues were notably different at different times. At the first month of fluoride treatment, blood, kidney, and liver 8-OHdG decreased with the increasing fluoride concentration. At the third month, blood 8-OHdG showed a U-shaped change, but kidney 8-OHdG altered with an inverted U-shaped change. Liver 8-OHdG increased, while brain 8-OHdG decreased at the third month. Correlation analysis showed that only blood 8-OHdG was significantly inversely correlated with blood fluoride and dental fluorosis grade in both the first and third months. Liver 8-OHdG was negatively and significantly correlated with liver fluoride. There was a weak but nonsignificant correlation between kidney and brain 8-OHdG and fluoride in both tissues. Additionally, blood 8-OHdG was positively correlated with kidney and liver 8-OHdG at the first month and positively correlated with brain 8-OHdG at the third month. Taken together, our data suggests that concentration and time of fluoride exposure had a significant effect on 8-OHdG, but the effect patterns of fluoride on 8-OHdG were different in the tissues, which suggests that the impact of fluoride on 8-OHdG may be a tissue-specific, as well as a non-monotonic positive correlation.
Collapse
Affiliation(s)
- Yongzheng Ma
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province (23618504), Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Xinyue Meng
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province (23618504), Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Alphonse Sowanou
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province (23618504), Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Jian Wang
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province (23618504), Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Hanying Li
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province (23618504), Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Ailin Li
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province (23618504), Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Nan Zhong
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province (23618504), Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Yingjie Yao
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province (23618504), Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Junrui Pei
- Key Laboratory of Etiology and Epidemiology, National Health Commission & Education Bureau of Heilongjiang Province (23618504), Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.
| |
Collapse
|
11
|
Dong Y, Vipin VA, Blesson CS, Yallampalli C. Impact of Adrenomedullin on Mitochondrial Respiratory Capacity in Human Adipocyte. RESEARCH SQUARE 2023:rs.3.rs-2600140. [PMID: 36945563 PMCID: PMC10029071 DOI: 10.21203/rs.3.rs-2600140/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
For metabolic homeostasis adequate mitochondrial function in adipocytes is essential. Our previous observation showed that circulating levels of adrenomedullin (ADM) and mRNA and protein for ADM in omental adipose tissue were higher in patients with gestational diabetes mellitus (GDM) compared with normal pregnancy, and these alterations are accompanied by glucose and lipid metabolic dysregulation, but the impact of ADM on mitochondrial biogenesis and respiration in human adipocyte remain elusive. In this study we demonstrated that: (1) Increasing doses of glucose and ADM inhibit human adipocyte mRNA expressions of mitochondrial DNA (mtDNA)-encoded subunits of electron transport chain (ETC), including nicotinamide adenine dinucleotide dehydrogenase (ND) 1 and 2, cytochrome (CYT) b, as well as ATPase 6; (2) ADM significantly increases human adipocyte mitochondrial reactive oxygen species (ROS) generation and this increase is reversed by ADM antagonist, ADM22-52, but does not significantly affect adipocyte mitochondrial contents; (3) Adipocyte basal and maximal oxygen consumption rate (OCR) are dose-dependently suppressed by ADM, and results in impaired mitochondrial respiratory capacity. We conclude that elevatedADM observed in diabetic pregnancy may be involved in glucose and lipid dysregulation through compromising adipocyte mitochondrial function, and blockade of ADM actions in adipocytes may improve GDM-related metabolic complications.
Collapse
|
12
|
Almikhlafi MA, Karami MM, Jana A, Alqurashi TM, Majrashi M, Alghamdi BS, Ashraf GM. Mitochondrial Medicine: A Promising Therapeutic Option Against Various Neurodegenerative Disorders. Curr Neuropharmacol 2023; 21:1165-1183. [PMID: 36043795 PMCID: PMC10286591 DOI: 10.2174/1570159x20666220830112408] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/05/2022] [Accepted: 07/14/2022] [Indexed: 11/22/2022] Open
Abstract
Abnormal mitochondrial morphology and metabolic dysfunction have been observed in many neurodegenerative disorders (NDDs). Mitochondrial dysfunction can be caused by aberrant mitochondrial DNA, mutant nuclear proteins that interact with mitochondria directly or indirectly, or for unknown reasons. Since mitochondria play a significant role in neurodegeneration, mitochondriatargeted therapies represent a prosperous direction for the development of novel drug compounds that can be used to treat NDDs. This review gives a brief description of how mitochondrial abnormalities lead to various NDDs such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. We further explore the promising therapeutic effectiveness of mitochondria- directed antioxidants, MitoQ, MitoVitE, MitoPBN, and dimebon. We have also discussed the possibility of mitochondrial gene therapy as a therapeutic option for these NDDs.
Collapse
Affiliation(s)
- Mohannad A. Almikhlafi
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Madinah, Saudi Arabia
| | - Mohammed M. Karami
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ankit Jana
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India
| | - Thamer M. Alqurashi
- Department of Pharmacology, Faculty of Medicine, Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Majrashi
- Department of Pharmacology, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Badrah S. Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- The Neuroscience Research Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghulam Md. Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, University City, Sharjah 27272, United Arab Emirates
| |
Collapse
|
13
|
Kong M, Guo L, Xu W, He C, Jia X, Zhao Z, Gu Z. Aging-associated accumulation of mitochondrial DNA mutations in tumor origin. LIFE MEDICINE 2022; 1:149-167. [PMID: 39871923 PMCID: PMC11749795 DOI: 10.1093/lifemedi/lnac014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/27/2022] [Indexed: 01/29/2025]
Abstract
The majority of cancer patients are among aged population, suggesting an urgent need to advance our knowledge on complicated relationship between aging and cancer. It has been hypothesized that metabolic changes during aging could act as a driver for tumorigenesis. Given the fact that mitochondrial DNA (mtDNA) mutations are common in both tumors and aged tissues, it is interesting to contemplate possible role of age-related mtDNA mutations in tumorigenesis. MtDNA encodes genes essential for mitochondrial metabolism, and mtDNA mutates at a much higher rate than nuclear genome. Random drifting of somatic mtDNA mutations, as a result of cell division or mitochondrial turnover during aging, may lead to more and more cells harboring high-frequency pathogenic mtDNA mutations, albeit at different loci, in single-cells. Such mutations can induce metabolic reprogramming, nuclear genome instability and immune response, which might increase the likelihood of tumorigenesis. In this review, we summarize current understanding of how mtDNA mutations accumulate with aging and how these mutations could mechanistically contribute to tumor origin. We also discuss potential prevention strategies for mtDNA mutation-induced tumorigenesis, and future works needed in this direction.
Collapse
Affiliation(s)
- Minghua Kong
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
- School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Lishu Guo
- Center for Mitochondrial Genetics and Health, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou 511400, China
| | - Weilin Xu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Chengpeng He
- Center for Mitochondrial Genetics and Health, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou 511400, China
| | - Xiaoyan Jia
- Center for Genomic Technologies, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou 511400, China
| | - Zhiyao Zhao
- Center for Mitochondrial Genetics and Health, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou 511400, China
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
- Center for Mitochondrial Genetics and Health, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou 511400, China
| |
Collapse
|
14
|
Iakovou E, Kourti M. A Comprehensive Overview of the Complex Role of Oxidative Stress in Aging, The Contributing Environmental Stressors and Emerging Antioxidant Therapeutic Interventions. Front Aging Neurosci 2022; 14:827900. [PMID: 35769600 PMCID: PMC9234325 DOI: 10.3389/fnagi.2022.827900] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/10/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Aging is a normal, inevitable, irreversible, and progressive process which is driven by internal and external factors. Oxidative stress, that is the imbalance between prooxidant and antioxidant molecules favoring the first, plays a key role in the pathophysiology of aging and comprises one of the molecular mechanisms underlying age-related diseases. However, the oxidative stress theory of aging has not been successfully proven in all animal models studying lifespan, meaning that altering oxidative stress/antioxidant defense systems did not always lead to a prolonged lifespan, as expected. On the other hand, animal models of age-related pathological phenotypes showed a well-correlated relationship with the levels of prooxidant molecules. Therefore, it seems that oxidative stress plays a more complicated role than the one once believed and this role might be affected by the environment of each organism. Environmental factors such as UV radiation, air pollution, and an unbalanced diet, have also been implicated in the pathophysiology of aging and seem to initiate this process more rapidly and even at younger ages. Aim The purpose of this review is to elucidate the role of oxidative stress in the physiology of aging and the effect of certain environmental factors in initiating and sustaining this process. Understanding the pathophysiology of aging will contribute to the development of strategies to postpone this phenomenon. In addition, recent studies investigating ways to alter the antioxidant defense mechanisms in order to prevent aging will be presented. Conclusions Careful exposure to harmful environmental factors and the use of antioxidant supplements could potentially affect the biological processes driving aging and slow down the development of age-related diseases. Maybe a prolonged lifespan could not be achieved by this strategy alone, but a longer healthspan could also be a favorable target.
Collapse
Affiliation(s)
- Evripides Iakovou
- Department of Life Sciences, European University Cyprus, Nicosia, Cyprus
| | - Malamati Kourti
- Department of Life Sciences, European University Cyprus, Nicosia, Cyprus
- Angiogenesis and Cancer Drug Discovery Group, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia, Cyprus
- *Correspondence: Malamati Kourti
| |
Collapse
|
15
|
Roy A, Kandettu A, Ray S, Chakrabarty S. Mitochondrial DNA replication and repair defects: Clinical phenotypes and therapeutic interventions. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148554. [PMID: 35341749 DOI: 10.1016/j.bbabio.2022.148554] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/06/2022] [Accepted: 03/16/2022] [Indexed: 12/15/2022]
Abstract
Mitochondria is a unique cellular organelle involved in multiple cellular processes and is critical for maintaining cellular homeostasis. This semi-autonomous organelle contains its circular genome - mtDNA (mitochondrial DNA), that undergoes continuous cycles of replication and repair to maintain the mitochondrial genome integrity. The majority of the mitochondrial genes, including mitochondrial replisome and repair genes, are nuclear-encoded. Although the repair machinery of mitochondria is quite efficient, the mitochondrial genome is highly susceptible to oxidative damage and other types of exogenous and endogenous agent-induced DNA damage, due to the absence of protective histones and their proximity to the main ROS production sites. Mutations in replication and repair genes of mitochondria can result in mtDNA depletion and deletions subsequently leading to mitochondrial genome instability. The combined action of mutations and deletions can result in compromised mitochondrial genome maintenance and lead to various mitochondrial disorders. Here, we review the mechanism of mitochondrial DNA replication and repair process, key proteins involved, and their altered function in mitochondrial disorders. The focus of this review will be on the key genes of mitochondrial DNA replication and repair machinery and the clinical phenotypes associated with mutations in these genes.
Collapse
Affiliation(s)
- Abhipsa Roy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Amoolya Kandettu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Swagat Ray
- Department of Life Sciences, School of Life and Environmental Sciences, University of Lincoln, Lincoln LN6 7TS, United Kingdom
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
16
|
Saha D, Mehndiratta M, Aaradhana, Shah D, Gupta P. Oxidative Stress, Mitochondrial Dysfunction, and Premature Ageing in Severe Acute Malnutrition in Under-Five Children. Indian J Pediatr 2022; 89:558-562. [PMID: 35044618 DOI: 10.1007/s12098-021-03981-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/31/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To assess oxidative stress, mitochondrial dysfunction, and premature ageing in children with severe acute malnutrition (SAM). METHODS This cross-sectional study was conducted in children (1 mo-5 y) with SAM (defined as per WHO criteria) presenting to Pediatrics inpatient department. Oxidative stress, mitochondrial dysfunction, and premature ageing were assessed by measuring and comparing total antioxidant status (TAOS), mitochondrial DNA (mtDNA) content, and telomere length (TL), respectively in 40 under-five children with SAM and 40 age- and sex-matched non-malnourished controls. RESULTS Oxidative stress was significantly increased in children with SAM, reflected by lower median (IQR) TAOS in cases as compared to controls [10.78 (9.08, 12.3) vs. 16.63 (15.20, 18.03) mM Trolox, p < 0.001]. Median (IQR) mtDNA content was significantly increased in children with SAM [188.7 (105.2, 398.9) vs. 116.2 (67.2, 154.6), p < 0.001]. There was no significant difference in telomere length between cases and controls [1184.5 (894, 1408) vs.1082.6 (823.3, 1479), p = 0.747]. CONCLUSION Children with SAM had significantly increased oxidative stress that possibly caused mitochondrial dysfunction but no premature ageing.
Collapse
Affiliation(s)
- Dipanwita Saha
- Department of Pediatrics, University College of Medical Sciences and Guru Teg Bahadur Hospital, Delhi, 110095, India
| | - Mohit Mehndiratta
- Department of Biochemistry, University College of Medical Sciences and Guru Teg Bahadur Hospital, Delhi, India
| | - Aaradhana
- Department of Pediatrics, University College of Medical Sciences and Guru Teg Bahadur Hospital, Delhi, 110095, India
| | - Dheeraj Shah
- Department of Pediatrics, University College of Medical Sciences and Guru Teg Bahadur Hospital, Delhi, 110095, India
| | - Piyush Gupta
- Department of Pediatrics, University College of Medical Sciences and Guru Teg Bahadur Hospital, Delhi, 110095, India.
| |
Collapse
|
17
|
A model to predict a risk of allergic rhinitis based on mitochondrial DNA copy number. Eur Arch Otorhinolaryngol 2022; 279:4997-5008. [DOI: 10.1007/s00405-022-07341-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/07/2022] [Indexed: 11/26/2022]
|
18
|
Zhang Q, Zhao S, Tian X, Qiu JG, Zhang CY. Development of a CRISPR-Cas-Based Biosensor for Rapid and Sensitive Detection of 8-Oxoguanine DNA Glycosylase. Anal Chem 2022; 94:2119-2125. [PMID: 35050578 DOI: 10.1021/acs.analchem.1c04453] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
8-Oxoguanine DNA glycosylase is essential for maintaining genomic integrity and stability, while its abnormal activity may lead to the disturbance in the normal DNA damage repair and the occurrence of carcinogenicity and teratogenicity. Herein, we construct a CRISPR-Cas-based biosensor for rapid and sensitive measurement of 8-oxoguanine DNA glycosylases. This biosensor involves a hairpin probe and integrates quadratic strand displacement amplification (SDA) with a CRISPR/Cas12a effector with the characteristics of rapidity (within 40 min) and isothermal assay. The presence of 8-oxoguanine DNA glycosylase can initiate the quadratic SDA to produce large amounts of activators with the assistance of polynucleotide kinase (PNK). Subsequently, the activators can bind with crRNA to activate Cas12a, cleaving signal probes and recovering Cy5 fluorescence, which can be accurately quantified by single-molecule imaging. Notably, the designed hairpin probes can effectively block the hybridization of the generated activators with free hairpin probes, endowing this biosensor with high sensitivity. In addition, the utilization of PNK instead of apurinic/apyrimidinic endonuclease (APE1) greatly simplifies the experimental procedure to only a one-step reaction. The introduction of a single-molecule detection further reduces the sample consumption and improves the sensitivity. This biosensor displays a detection limit of 4.24 × 10-9 U μL-1, and it can accurately quantify cellular human 8-oxoguanine DNA glycosylase at a single-cell level. Furthermore, this biosensor can be applied for the screening of inhibitors, the analysis of kinetic parameters, and the discrimination of cancer cells from normal cells, with potential applications in molecular diagnostic and point-of-care testing.
Collapse
Affiliation(s)
- Qian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Shuangnan Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Xiaorui Tian
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Jian-Ge Qiu
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
19
|
Ding Q, Qi Y, Tsang SY. Mitochondrial Biogenesis, Mitochondrial Dynamics, and Mitophagy in the Maturation of Cardiomyocytes. Cells 2021; 10:cells10092463. [PMID: 34572112 PMCID: PMC8466139 DOI: 10.3390/cells10092463] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/09/2021] [Accepted: 09/15/2021] [Indexed: 01/01/2023] Open
Abstract
Pluripotent stem cells (PSCs) can undergo unlimited self-renewal and can differentiate into all the cell types present in our body, including cardiomyocytes. Therefore, PSCs can be an excellent source of cardiomyocytes for future regenerative medicine and medical research studies. However, cardiomyocytes obtained from PSC differentiation culture are regarded as immature structurally, electrophysiologically, metabolically, and functionally. Mitochondria are organelles responsible for various cellular functions such as energy metabolism, different catabolic and anabolic processes, calcium fluxes, and various signaling pathways. Cells can respond to cellular needs to increase the mitochondrial mass by mitochondrial biogenesis. On the other hand, cells can also degrade mitochondria through mitophagy. Mitochondria are also dynamic organelles that undergo continuous fusion and fission events. In this review, we aim to summarize previous findings on the changes of mitochondrial biogenesis, mitophagy, and mitochondrial dynamics during the maturation of cardiomyocytes. In addition, we intend to summarize whether changes in these processes would affect the maturation of cardiomyocytes. Lastly, we aim to discuss unanswered questions in the field and to provide insights for the possible strategies of enhancing the maturation of PSC-derived cardiomyocytes.
Collapse
Affiliation(s)
- Qianqian Ding
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China;
| | - Yanxiang Qi
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China;
| | - Suk-Ying Tsang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China;
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China;
- Key Laboratory for Regenerative Medicine, Ministry of Education, The Chinese University of Hong Kong, Hong Kong, China
- The Institute for Tissue Engineering and Regenerative Medicine (iTERM), The Chinese University of Hong Kong, Hong Kong, China
- Correspondence: ; Tel.: +852-39431020
| |
Collapse
|
20
|
Qiu Y, Yu Y, Qin XM, Jiang T, Tan YF, Ouyang WX, Xiao ZH, Li SJ. CircTLK1 modulates sepsis-induced cardiomyocyte apoptosis via enhancing PARP1/HMGB1 axis-mediated mitochondrial DNA damage by sponging miR-17-5p. J Cell Mol Med 2021; 25:8244-8260. [PMID: 34410682 PMCID: PMC8419196 DOI: 10.1111/jcmm.16738] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/10/2021] [Accepted: 06/05/2021] [Indexed: 02/06/2023] Open
Abstract
Introduction Septic cardiomyopathy is a common complication of sepsis with high morbidity and mortality, but lacks specific therapy. This study aimed to reveal the role of circTLK1 and its potential mechanisms in septic cardiomyopathy. Materials and Methods The in vitro and in vivo models of septic cardiomyopathy were established. Cell viability and apoptosis were detected by CCK8, TUNEL and flow cytometry, respectively. LDH, CK, SOD, MDA, ATP, 8‐OHdG, NAD+/NADH ratio, ROS level, mitochondrial membrane potential and cytochrome C distribution were evaluated using commercial kits. qRT‐PCR and western blotting were performed to detect RNA and protein levels. Mitochondrial DNA (mtDNA) copy number and transcription were assessed by quantitative PCR. Dual‐luciferase assay, RNA immunoprecipitation and co‐immunoprecipitation were performed to verify the interaction between circTLK1/PARP1 and miR‐17‐5p. Results CircTLK1, PARP1 and HMGB1 were up‐regulated in the in vitro and in vivo models of septic cardiomyopathy. CircTLK1 inhibition restrained LPS‐induced up‐regulation of PARP1 and HMGB1. Moreover, circTLK1 knockdown repressed sepsis‐induced mtDNA oxidative damage, mitochondrial dysfunction and consequent cardiomyocyte apoptosis by inhibiting PARP1/HMGB1 axis in vitro and in vivo. In addition, circTLK1 enhanced PARP1 expression via sponging miR‐17‐5p. Inhibition of miR‐17‐5p abolished the protective effects of circTLK1 silencing on oxidative mtDNA damage and cardiomyocyte apoptosis. Conclusion CircTLK1 sponged miR‐17‐5p to aggravate mtDNA oxidative damage, mitochondrial dysfunction and cardiomyocyte apoptosis via activating PARP1/HMGB1 axis during sepsis, indicating that circTLK1 may be a putative therapeutic target for septic cardiomyopathy.
Collapse
Affiliation(s)
- Yu Qiu
- Emergency Center, Hunan Children's Hospital, Changsha, China
| | - Ying Yu
- Department of Hepatopathy, Hunan Children's Hospital, Changsha, China
| | - Xiao-Mei Qin
- Department of Hepatopathy, Hunan Children's Hospital, Changsha, China
| | - Tao Jiang
- Department of Hepatopathy, Hunan Children's Hospital, Changsha, China
| | - Yan-Fang Tan
- Department of Hepatopathy, Hunan Children's Hospital, Changsha, China
| | - Wen-Xian Ouyang
- Department of Hepatopathy, Hunan Children's Hospital, Changsha, China
| | - Zheng-Hui Xiao
- Emergency Center, Hunan Children's Hospital, Changsha, China
| | - Shuang-Jie Li
- Department of Hepatopathy, Hunan Children's Hospital, Changsha, China
| |
Collapse
|
21
|
Arora A, Behl T, Sehgal A, Singh S, Sharma N, Mathew B, Bungau S. Targeting cellular batteries for the therapy of neurological diseases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41517-41532. [PMID: 34080116 DOI: 10.1007/s11356-021-14665-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
The mitochondria, apart from being known as the cell's "powerhouse," are crucial in the viability of nerve cells. Any damage to these cellular organelles can result in their cellular level dysfunction which includes rapidly multiplying reactive oxygen species (ROS) from the mitochondrial membrane, impaired calcium ion homeostasis, and disturbed mitochondrial dynamics by the formation of permeability transition pore in mitochondria. All these impaired biochemical changes lead to various neurological disorders such as progressive supranuclear palsy (PSP), Parkinson's disease (PD), and Alzheimer's disease (AD). Moreover, impaired mitochondrial functions are particularly prone to damage owing to prolonged lifespan and stretched length of the neurons. At the same time, neurons are highly dependent on ATP, and thus, the mitochondria play a central role in the pathogenesis pertaining to neuronal disorders. Dysfunction in the mitochondria is an early pathological hallmark of neurological disorders, and its early detection with the help of suitable biomarkers can lead to promising treatment in this area. Thus, the drugs which are targeting mitochondrial dysfunctions are the emerging area of research in connection with neurological disorders. This can be evidenced by the great opportunities for mitigation, diagnosis, and treatment of numerous human disorders that entail mitochondrial dysfunction at the nexus of their pathogenesis. Here, we throw light at the mitochondrial pathologies and indications of dysfunctional mitochondria in PD, AD, and PSP. There is also an insight into the possible therapeutic strategies highlighting the need for mitochondria-based medicine and made an attempt for claiming the prerequisite for the therapy of neurological diseases.
Collapse
Affiliation(s)
- Arpita Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
22
|
Breton S, Ghiselli F, Milani L. Mitochondrial Short-Term Plastic Responses and Long-Term Evolutionary Dynamics in Animal Species. Genome Biol Evol 2021; 13:6248094. [PMID: 33892508 PMCID: PMC8290114 DOI: 10.1093/gbe/evab084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/13/2021] [Accepted: 04/20/2021] [Indexed: 12/15/2022] Open
Abstract
How do species respond or adapt to environmental changes? The answer to this depends partly on mitochondrial epigenetics and genetics, new players in promoting adaptation to both short- and long-term environmental changes. In this review, we explore how mitochondrial epigenetics and genetics mechanisms, such as mtDNA methylation, mtDNA-derived noncoding RNAs, micropeptides, mtDNA mutations, and adaptations, can contribute to animal plasticity and adaptation. We also briefly discuss the challenges in assessing mtDNA adaptive evolution. In sum, this review covers new advances in the field of mitochondrial genomics, many of which are still controversial, and discusses processes still somewhat obscure, and some of which are still quite speculative and require further robust experimentation.
Collapse
Affiliation(s)
- Sophie Breton
- Department of Biological Sciences, University of Montreal, Quebec, Canada
| | - Fabrizio Ghiselli
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Liliana Milani
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| |
Collapse
|
23
|
Role of Oxidative DNA Damage and Repair in Atrial Fibrillation and Ischemic Heart Disease. Int J Mol Sci 2021; 22:ijms22083838. [PMID: 33917194 PMCID: PMC8068079 DOI: 10.3390/ijms22083838] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023] Open
Abstract
Atrial fibrillation (AF) and ischemic heart disease (IHD) represent the two most common clinical cardiac diseases, characterized by angina, arrhythmia, myocardial damage, and cardiac dysfunction, significantly contributing to cardiovascular morbidity and mortality and posing a heavy socio-economic burden on society worldwide. Current treatments of these two diseases are mainly symptomatic and lack efficacy. There is thus an urgent need to develop novel therapies based on the underlying pathophysiological mechanisms. Emerging evidence indicates that oxidative DNA damage might be a major underlying mechanism that promotes a variety of cardiac diseases, including AF and IHD. Antioxidants, nicotinamide adenine dinucleotide (NAD+) boosters, and enzymes involved in oxidative DNA repair processes have been shown to attenuate oxidative damage to DNA, making them potential therapeutic targets for AF and IHD. In this review, we first summarize the main molecular mechanisms responsible for oxidative DNA damage and repair both in nuclei and mitochondria, then describe the effects of oxidative DNA damage on the development of AF and IHD, and finally discuss potential targets for oxidative DNA repair-based therapeutic approaches for these two cardiac diseases.
Collapse
|
24
|
Alwehaidah MS, Al-Kafaji G, Bakhiet M, Alfadhli S. Next-generation sequencing of the whole mitochondrial genome identifies novel and common variants in patients with psoriasis, type 2 diabetes mellitus and psoriasis with comorbid type 2 diabetes mellitus. Biomed Rep 2021; 14:41. [PMID: 33728047 PMCID: PMC7953201 DOI: 10.3892/br.2021.1417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/15/2021] [Indexed: 12/16/2022] Open
Abstract
Recent studies have shown the role of mitochondrial DNA (mtDNA) variants in the pathogenesis of both psoriasis (Ps) and type 2 diabetes (T2D) amongst different ethnicities. However, no studies have investigated the mtDNA variants present in patients with Ps, T2D, and both Ps and T2D (Ps-T2D) in the Arab population. The entire mitochondrial genomes of Kuwaiti subjects with Ps, T2D, Ps-T2D and healthy controls were sequenced using Ion Torrent next-generation sequencing. A total of 36 novel mutations and 51 previously reported mutations were identified in the patient groups that were absent in the controls. Amongst the novel mutations, eight were non-synonymous and exhibited amino acid changes. Of these, two missense mutations (G5262A and A12397G) in the ND genes were detected in the Ps group and a C15735T missense mutation in the CYB gene was detected in Ps-T2D. Other known sequence variations were seen more frequently in all or certain patient groups compared with the controls (P<0.05). Additionally, the A8701G missense mutation in the ATPase 6 gene missense mutation was also observed in a higher frequency in the Ps group compared with the control. The present study is the first to perform a complete mitochondrial genome sequence analysis of Kuwaiti subjects with Ps, T2D and Ps-T2D, and both novel and known mtDNA variants were discovered. The patient-specific novel non-synonymous mutations may be co-responsible in the determination of these diseases. The higher frequency of certain mtDNA variants in the patients compared with the controls may suggest a role in predisposing patients to these diseases. Further functional analyses are required to reveal the role of the identified mutations in these disease conditions.
Collapse
Affiliation(s)
- Materah Salem Alwehaidah
- Department of Medical Laboratory, Faculty of Allied Health, Kuwait University, Sulaibekhat 90805, State of Kuwait
| | - Ghada Al-Kafaji
- Department of Molecular Medicine, College of Medical and Medical Sciences, Arabian Gulf University, Manama 26671, Kingdom of Bahrain
| | - Moiz Bakhiet
- Department of Molecular Medicine, College of Medical and Medical Sciences, Arabian Gulf University, Manama 26671, Kingdom of Bahrain
| | - Suad Alfadhli
- Department of Medical Laboratory, Faculty of Allied Health, Kuwait University, Sulaibekhat 90805, State of Kuwait
| |
Collapse
|
25
|
Pan G, Deshpande M, Pang H, Stemmer PM, Carruthers NJ, Shearn CT, Backos DS, Palaniyandi SS. 4-Hydroxy-2-nonenal attenuates 8-oxoguanine DNA glycosylase 1 activity. J Cell Biochem 2020; 121:4887-4897. [PMID: 32628320 PMCID: PMC7935017 DOI: 10.1002/jcb.29814] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/18/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
Elevated cellular oxidative stress and oxidative DNA damage are key contributors to impaired cardiac function in diabetes. During chronic inflammation, reactive oxygen species (ROS)-induced lipid peroxidation results in the formation of reactive aldehydes, foremost of which is 4-hydroxy-2-nonenal (4HNE). 4HNE forms covalent adducts with proteins, negatively impacting cellular protein function. During conditions of elevated oxidative stress, oxidative DNA damage such as modification by 8-hydroxydeoxyguanosine (8OHdG) is repaired by 8-oxoguanine glycosylase-1 (OGG-1). Based on these facts, we hypothesized that 4HNE forms adducts with OGG-1 inhibiting its activity, and thus, increases the levels of 8OHG in diabetic heart tissues. To test our hypothesis, we evaluated OGG-1 activity, 8OHG and 4HNE in the hearts of leptin receptor deficient db/db mice, a type-2 diabetic model. We also treated the recombinant OGG-1 with 4HNE to measure direct adduction. We found decreased OGG-1 activity (P > .05), increased 8OHG (P > .05) and increased 4HNE adducts (P > .05) along with low aldehyde dehydrogenase-2 activity (P > .05). The increased colocalization of OGG-1 and 4HNE in cardiomyocytes suggest 4HNE adduction on OGG-1. Furthermore, colocalization of 8OHG and OGG-1 with mitochondrial markers TOM 20 and aconitase, respectively, indicated significant levels of oxidatively-induced mtDNA damage and implicated a role for mitochondrial OGG-1 function. In vitro exposure of recombinant OGG-1 (rOGG-1) with increasing concentrations of 4HNE resulted in a concentration-dependent decrease in OGG-1 activity. Mass spectral analysis of trypsin digests of 4HNE-treated rOGG-1 identified 4HNE adducts on C28, C75, C163, H179, H237, C241, K249, H270, and H282. In silico molecular modeling of 4HNE-K249 OGG-1 and 4HNE-H270 OGG-1 mechanistically supported 4HNE-mediated enzymatic inhibition of OGG-1. In conclusion, these data support the hypothesis that inhibition of OGG-1 by direct modification by 4HNE contributes to decreased OGG-1 activity and increased 8OHG-modified DNA that are present in the diabetic heart.
Collapse
Affiliation(s)
- Guodong Pan
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202
| | - Mandar Deshpande
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202
| | - Haiyan Pang
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202
| | - Paul M. Stemmer
- Institute of Environmental Health Sciences & Proteomics Facility Core, Wayne State University, Detroit, MI, USA, 48201
| | - Nicholas J Carruthers
- Institute of Environmental Health Sciences & Proteomics Facility Core, Wayne State University, Detroit, MI, USA, 48201
| | - Colin T. Shearn
- Department of Pediatrics Division of Pediatric Gastroenterology, Hepatology and Nutrition, School of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO 80045
| | - Donald S. Backos
- School of Pharmacy, University of Colorado Anschutz Medical Center, Aurora, CO 80045
| | - Suresh Selvaraj Palaniyandi
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202
- Department of Physiology, Wayne State University, Detroit, MI, 48202
| |
Collapse
|
26
|
Chen W, Hu S, Mao S, Xu Y, Guo H, Li H, Paulsen MT, Chen X, Ljungman M, Neamati N. Discovery of Mitochondrial Transcription Inhibitors Active in Pancreatic Cancer Cells. ChemMedChem 2020; 15:2029-2039. [PMID: 32748543 DOI: 10.1002/cmdc.202000494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Indexed: 11/10/2022]
Abstract
Mitochondrial dysfunction is a hallmark of cancer cells and targeting cancer mitochondria has emerged as a promising anti-cancer therapy. Previously, we repurposed chlorambucil by conjugating it to a mitochondrial targeting triphenylphosphonium (TPP) group to design Mito-Chlor, a novel agent that acts on mitochondria DNA (mtDNA). Herein, we show that Mito-Chlor, but not chlorambucil, inhibits the nascent transcription of mtDNA. Clustering analysis of transcriptomic profile of our Bru-seq database led to the identification of another mitochondrial transcription inhibitor SQD1, which inhibits the proliferation of MIA PaCa-2 cells with an IC50 of 1.3 μM. Interestingly, Mito-Chlor reduces expression of mitochondrial proteins, interferes with mitochondria membrane potential, and impairs oxidative phosphorylation while SQD1 does not. Both compounds increased cellular and mitochondrial reactive oxygen species and stimulated similar signaling pathways in response to oxidative stress. As mitochondrial transcription inhibitors and redox modulators, SQD1 and Mito-Chlor are promising for the treatment of pancreatic cancer by blocking mitochondrial function.
Collapse
Affiliation(s)
- Wenmin Chen
- Departments of Medicinal Chemistry, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI 48109, USA
| | - Shuai Hu
- Departments of Medicinal Chemistry, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI 48109, USA.,Department of Computational Medicine and Bioinformatic, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI 48109, USA
| | - Shuai Mao
- Departments of Medicinal Chemistry, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI 48109, USA
| | - Yibin Xu
- Departments of Medicinal Chemistry, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI 48109, USA
| | - Hui Guo
- Departments of Medicinal Chemistry, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI 48109, USA
| | - Haoxi Li
- Departments of Medicinal Chemistry, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI 48109, USA
| | - Michelle T Paulsen
- Department of Radiation Oncology, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI 48109, USA
| | - Xinde Chen
- Departments of Medicinal Chemistry, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI 48109, USA
| | - Mats Ljungman
- Department of Radiation Oncology, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI 48109, USA.,Department of Environmental Health Sciences, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI 48109, USA
| | - Nouri Neamati
- Departments of Medicinal Chemistry, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI 48109, USA
| |
Collapse
|
27
|
Thakur S, Sarkar B, Dhiman M, Mantha AK. Organophosphate-pesticides induced survival mechanisms and APE1-mediated Nrf2 regulation in non-small-cell lung cancer cells. J Biochem Mol Toxicol 2020; 35:e22640. [PMID: 33078895 DOI: 10.1002/jbt.22640] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/11/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022]
Abstract
Epidemiological and molecular studies have indicated that environmental exposure to organophosphate pesticides (OPPs) is associated with increased cancer risk; however, the underlying molecular mechanisms still need to be explained. Increasing cancer incidence is linked to OPPs-induced oxidative stress (OS). Our study evaluates monocrotophos (MCP) and chlorpyrifos (CP)-induced OS responses and apurinic/apyrimidinic endonuclease 1 (APE1) role in human non-small-cell lung cancer (NSCLC) cells. Our prior study has implicated OPPs-induced base excision repair (BER)-pathway dysregulation and APE1-mediated regulation of transcription factor (TF) c-jun in A549 cells. We further investigated the effects of MCP and CP on apoptosis, proliferation, and APE1's redox-regulation of nuclear factor-like 2 (Nrf2). Data demonstrates that MCP and CP at subtoxic concentrations induced reactive oxygen species generation and oxidative DNA base damage 8-oxo-dG lesions in NCI-H1299 cells. CP moderately upregulated the apoptosis-inducing factor (AIF) in A549 cells, however, it did not trigger other pro-apoptotic factors viz. caspase-9 and caspase-3, suggesting early caspase-independent apoptosis. However, dose-dependent AIF-downregulation was observed for MCP treatment. Furthermore, CP and MCP treatments upregulated proliferating cell nuclear antigen levels. Immunofluorescent confocal imaging showed the colocalization of APE1 with Nrf2 in 10 µM CP- and MCP-treated NCI-H1299 cells. Immunoprecipitation confirmed that APE1 and Nrf2 physically interacted, indicating the role of APE1-mediated Nrf2 activation following OPPs treatment. This study suggests that low concentration MCP and CP exposure generates OS along with DNA damage, and modulates apoptosis, and APE1-mediated Nrf2 activation, which might be considered as the possible mechanism promoting lung cancer cell survival, suggesting that APE1 may have the potential to become a therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Shweta Thakur
- Department of Zoology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Bibekananda Sarkar
- Department of Zoology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
- Department of Zoology, B.S.S. College (affiliated to the B. N. Mandal University, Madhepura, Bihar), Supaul, Bihar, India
| | - Monisha Dhiman
- Department of Microbiology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Anil K Mantha
- Department of Zoology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
28
|
Shen Q, Liu Y, Li H, Zhang L. Effect of mitophagy in oocytes and granulosa cells on oocyte quality†. Biol Reprod 2020; 104:294-304. [PMID: 33079172 DOI: 10.1093/biolre/ioaa194] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 09/10/2020] [Accepted: 10/20/2020] [Indexed: 12/25/2022] Open
Abstract
Mitophagy is the process by which cells selectively remove supernumerary or damaged mitochondria through autophagy, and is crucial for mitochondrial homeostasis and cell survival. Mitochondria play vital roles in determining the developmental competence of oocytes. During the early stages of oogenesis, aberrant mitochondria can be removed by mitophagy. After oocyte formation, mitophagy is not actively initiated to clear damaged mitochondria despite the presence of mitophagy regulators in oocytes, which leads to the transmission of dysfunctional mitochondria from the oocyte to the embryo. However, granulosa cells around oocytes can improve mitochondrial function through mitophagy, thereby improving oocyte developmental capacity. Furthermore, this review discusses recent work on the substances and environmental conditions that affect mitophagy in oocytes and granulosa cells, thus providing new directions for improving oocyte quality during assisted reproductive technology treatment.
Collapse
Affiliation(s)
- Qiuzi Shen
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Yu Liu
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Honggang Li
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Ling Zhang
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| |
Collapse
|
29
|
Xu H, Jiang Y, Li S, Xie L, Tao YX, Li Y. Zebrafish Oxr1a Knockout Reveals Its Role in Regulating Antioxidant Defenses and Aging. Genes (Basel) 2020; 11:genes11101118. [PMID: 32987694 PMCID: PMC7598701 DOI: 10.3390/genes11101118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 01/16/2023] Open
Abstract
Oxidation resistance gene 1 (OXR1) is essential for protection against oxidative stress in mammals, but its functions in non-mammalian vertebrates, especially in fish, remain uncertain. Here, we created a homozygous oxr1a-knockout zebrafish via the CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated protein 9) system. Compared with wild-type (WT) zebrafish, oxr1a−/− mutants exhibited higher mortality and more apoptotic cells under oxidative stress, and multiple antioxidant genes (i.e., gpx1b, gpx4a, gpx7 and sod3a) involved in detoxifying cellular reactive oxygen species were downregulated significantly. Based on these observations, we conducted a comparative transcriptome analysis of early oxidative stress response. The results show that oxr1a mutation caused more extensive changes in transcriptional networks compared to WT zebrafish, and several stress response and pro-inflammatory pathways in oxr1a−/− mutant zebrafish were strongly induced. More importantly, we only observed the activation of the p53 signaling and apoptosis pathway in oxr1a−/− mutant zebrafish, revealing an important role of oxr1a in regulating apoptosis via the p53 signaling pathway. Additionally, we found that oxr1a mutation displayed a shortened lifespan and premature ovarian failure in prolonged observation, which may be caused by the loss of oxr1a impaired antioxidant defenses, thereby increasing pro-apoptotic events. Altogether, our findings demonstrate that oxr1a is vital for antioxidant defenses and anti-aging in zebrafish.
Collapse
Affiliation(s)
- Hao Xu
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing 400715, China; (H.X.); (L.X.); (Y.-X.T.)
| | - Yu Jiang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing 400715, China; (Y.J.); (S.L.)
| | - Sheng Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing 400715, China; (Y.J.); (S.L.)
| | - Lang Xie
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing 400715, China; (H.X.); (L.X.); (Y.-X.T.)
| | - Yi-Xi Tao
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing 400715, China; (H.X.); (L.X.); (Y.-X.T.)
| | - Yun Li
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing 400715, China; (H.X.); (L.X.); (Y.-X.T.)
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing 400715, China; (Y.J.); (S.L.)
- Correspondence: ; Tel.: +86-2368-2519-62
| |
Collapse
|
30
|
Zhao T, Zhang-Akiyama QM. Deficiency of Grx1 leads to high sensitivity of HeLaS3 cells to oxidative stress via excessive accumulation of intracellular oxidants including ROS. Free Radic Res 2020; 54:585-605. [PMID: 32892658 DOI: 10.1080/10715762.2020.1819994] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oxidative stress is often initiated by excess reactive oxygen species (ROS) production, resulting in macromolecular damage, which is implicated in many disease states. Glutaredoxin 1 (Grx1) is an antioxidant enzyme that plays an important role in redox signaling and redox homeostasis. In the present study, we generated HeLaS3 cell lines deficient in Grx1 by the CRISPR/CAS9 system to clarify how Grx1 affects the physiological activities of HeLaS3 cells to respond to oxidative stress. First, the survival assay revealed that Grx1-deficient HeLaS3 cells were more sensitive to γ-ray irradiation, heat shock and H2O2 exposure than HeLaS3 wild-type cells. Next, the intracellular redox state was investigated using a fluorescent probe (2'-7'dichlorofluorescin diacetate), and the oxidized state of total proteins and a peroxidase Prx2 were measured by Western blot analysis. Exposure to γ-ray irradiation, heat shock and H2O2 significantly induced more accumulation of intracellular oxidants including ROS and higher levels of oxidized proteins in Grx1-deficient HeLaS3 cells. Furthermore, MitoSox Red staining demonstrated that Grx1 deficiency causes a higher level of oxidants production in mitochondria. Moreover, Grx1-deficient HeLaS3 cells had a higher cytochrome c level and higher apoptosis rate (Annexin-V/FITC and EthD-III staining assay) upon oxidative stress. These results suggested that Grx1 deficiency lead to mitochondrial redox homeostasis disruption and apoptotic cell death upon oxidative stress. In addition, the results of proliferation assay and MitoTracker staining assay (multinuclear cell formation rate) suggested that oxidative stress exposure inhibits cell proliferation maybe by affecting cytoplasmic division in Grx1-deficient HeLaS3 cells.
Collapse
Affiliation(s)
- Tingyi Zhao
- Laboratory of Stress Response Biology, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Qiu-Mei Zhang-Akiyama
- Laboratory of Stress Response Biology, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
31
|
A Multi-Endpoint Approach to Base Excision Repair Incision Activity Augmented by PARylation and DNA Damage Levels in Mice: Impact of Sex and Age. Int J Mol Sci 2020; 21:ijms21186600. [PMID: 32917005 PMCID: PMC7555950 DOI: 10.3390/ijms21186600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 01/22/2023] Open
Abstract
Investigation of processes that contribute to the maintenance of genomic stability is one crucial factor in the attempt to understand mechanisms that facilitate ageing. The DNA damage response (DDR) and DNA repair mechanisms are crucial to safeguard the integrity of DNA and to prevent accumulation of persistent DNA damage. Among them, base excision repair (BER) plays a decisive role. BER is the major repair pathway for small oxidative base modifications and apurinic/apyrimidinic (AP) sites. We established a highly sensitive non-radioactive assay to measure BER incision activity in murine liver samples. Incision activity can be assessed towards the three DNA lesions 8-oxo-2’-deoxyguanosine (8-oxodG), 5-hydroxy-2’-deoxyuracil (5-OHdU), and an AP site analogue. We applied the established assay to murine livers of adult and old mice of both sexes. Furthermore, poly(ADP-ribosyl)ation (PARylation) was assessed, which is an important determinant in DDR and BER. Additionally, DNA damage levels were measured to examine the overall damage levels. No impact of ageing on the investigated endpoints in liver tissue were found. However, animal sex seems to be a significant impact factor, as evident by sex-dependent alterations in all endpoints investigated. Moreover, our results revealed interrelationships between the investigated endpoints indicative for the synergetic mode of action of the cellular DNA integrity maintaining machinery.
Collapse
|
32
|
Lawless C, Greaves L, Reeve AK, Turnbull DM, Vincent AE. The rise and rise of mitochondrial DNA mutations. Open Biol 2020; 10:200061. [PMID: 32428418 PMCID: PMC7276526 DOI: 10.1098/rsob.200061] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/23/2020] [Indexed: 12/24/2022] Open
Abstract
How mitochondrial DNA mutations clonally expand in an individual cell is a question that has perplexed mitochondrial biologists for decades. A growing body of literature indicates that mitochondrial DNA mutations play a major role in ageing, metabolic diseases, neurodegenerative diseases, neuromuscular disorders and cancers. Importantly, this process of clonal expansion occurs for both inherited and somatic mitochondrial DNA mutations. To complicate matters further there are fundamental differences between mitochondrial DNA point mutations and deletions, and between mitotic and post-mitotic cells, that impact this pathogenic process. These differences, along with the challenges of investigating a longitudinal process occurring over decades in humans, have so far hindered progress towards understanding clonal expansion. Here we summarize our current understanding of the clonal expansion of mitochondrial DNA mutations in different tissues and highlight key unanswered questions. We then discuss the various existing biological models, along with their advantages and disadvantages. Finally, we explore what has been achieved with mathematical modelling so far and suggest future work to advance this important area of research.
Collapse
Affiliation(s)
| | | | | | - Doug M. Turnbull
- Wellcome Centre for Mitochondrial Research, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, UK
| | - Amy E. Vincent
- Wellcome Centre for Mitochondrial Research, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, UK
| |
Collapse
|
33
|
Babbar M, Basu S, Yang B, Croteau DL, Bohr VA. Mitophagy and DNA damage signaling in human aging. Mech Ageing Dev 2020; 186:111207. [PMID: 31923475 PMCID: PMC7047626 DOI: 10.1016/j.mad.2020.111207] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 12/27/2022]
Abstract
Aging is associated with multiple human pathologies. In the past few years mitochondrial homeostasis has been well correlated with age-related disorders and longevity. Mitochondrial homeostasis involves generation, biogenesis and removal of dysfunctional mitochondria via mitophagy. Mitophagy is regulated by various mitochondrial and extra-mitochondrial factors including morphology, oxidative stress and DNA damage. For decades, DNA damage and inefficient DNA repair have been considered as major determinants for age-related disorders. Although defects in DNA damage recognition and repair and mitophagy are well documented to be major factors in age-associated diseases, interactivity between these is poorly understood. Mitophagy efficiency decreases with age leading to accumulation of dysfunctional mitochondria enhancing the severity of age-related disorders including neurodegenerative diseases, inflammatory diseases, cancer, diabetes and many more. Therefore, mitophagy is being targeted for intervention in age-associated disorders. NAD+ supplementation has emerged as one intervention to target both defective DNA repair and mitophagy. In this review, we discuss the molecular signaling pathways involved in regulation of DNA damage and repair and of mitophagy, and we highlight the opportunities for clinical interventions targeting these processes to improve the quality of life during aging.
Collapse
Affiliation(s)
- Mansi Babbar
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Sambuddha Basu
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Beimeng Yang
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
34
|
Huang W, Cao Z, Yao Q, Ji Q, Zhang J, Li Y. Mitochondrial damage are involved in Aflatoxin B 1-induced testicular damage and spermatogenesis disorder in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 701:135077. [PMID: 31733399 DOI: 10.1016/j.scitotenv.2019.135077] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/14/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Aflatoxin B1 (AFB1) is an unavoidable environmental pollutants, which seriously endangers human and animal health. AFB1 has male reproductive toxicity, yet the underlying mechanisms remain inconclusive. Mitochondra are a kind of crucial organelle for maintaining spermatogenesis in testis. Thus, we hypothesized that AFB1 can impair mitochondria to aggravate testicular damage and spermatogenesis disorder. To verify this hypothesis, 48 male mice were intragastrically administered with 0, 0.375, 0.75 or 1.5 mg/kg body weight AFB1 for 30 days, respectively. In this study, we found AFB1 caused testicular histopathological lesions and spermatogenesis abnormalities, with the elevation of oxidative stress (increased H2O2, whereas decreased SOD and GSH). Significant mitochondria structure damage of germ cells and Leydig cells, MMP loss, ATP contents reduction, and inhibited activities of mitochondrial complexes I-IV in mice testis were found in AFB1 treatment groups. Besides, AFB1 inhibited mitochondrial biogenesis and mitochondrial dynamics, presenting as the decreased mRNA and protein expressions of PGC-1α, Nrf1, Tfam, Drp1, Fis1, Mfn1 and Opa1. The results revealed that the mitochondrial damage were involved in AFB1-induced testicular damage and spermatogenesis disorder, providing a considerable direction to clarify potential mechanisms of AFB1 reproductive toxicity.
Collapse
Affiliation(s)
- Wanyue Huang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zheng Cao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Qiucheng Yao
- College of Agriculture, Guangdong Ocean University, Zhanjiang 524000, China
| | - Qiang Ji
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jian Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
35
|
Wang LJ, Lu YY, Zhang CY. Construction of a self-directed replication system for label-free and real-time sensing of repair glycosylases with zero background. Chem Sci 2020; 11:587-595. [PMID: 32206275 PMCID: PMC7069502 DOI: 10.1039/c9sc04738g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022] Open
Abstract
Genomic DNA damage and repair are involved in multiple fundamental biological processes, including metabolism, disease, and aging. Inspired by the natural repair mechanism in vivo, we demonstrate for the first time the construction of a self-directed replication system for label-free and real-time sensing of repair glycosylases with zero background. The presence of DNA glycosylase can catalyze the excision repair of the damaged base, successively autostarting the self-directed replication through recycling polymerization extension and strand-displacement DNA synthesis for the generation of exponentially amplified dsDNAs. The resultant dsDNA products can be label-free and real-time monitored with SYBR Green I as the fluorescent indicator. Owing to the high efficiency of self-directed exponential replication and the absolute zero background resulting from the efficient inhibition of nonspecific amplification induced by multiple primer-dependent amplification, this strategy exhibits high sensitivity with a detection limit of 1 × 10-8 U μL-1 in vitro and 1 cell in vivo, and it can be further used to screen inhibitors, quantify DNA glycosylase from diverse cancer cells, and even monitor various repair enzymes by simply changing the specific damaged base in the DNA template. Importantly, this assay can be performed in a label-free, real-time and isothermal manner with the involvement of only a single type of polymerase, providing a simple, robust and universal platform for repair enzyme-related biomedical research and clinical therapeutics.
Collapse
Affiliation(s)
- Li-Juan Wang
- College of Chemistry , Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China . ; ; Tel: +86-531-86186033
| | - Ying-Ying Lu
- College of Chemistry , Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China . ; ; Tel: +86-531-86186033
| | - Chun-Yang Zhang
- College of Chemistry , Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China . ; ; Tel: +86-531-86186033
| |
Collapse
|
36
|
Mitochondrial DNA Copy Number in Peripheral Blood as a Potential Non-invasive Biomarker for Multiple Sclerosis. Neuromolecular Med 2020; 22:304-313. [PMID: 31902116 DOI: 10.1007/s12017-019-08588-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/25/2019] [Indexed: 12/11/2022]
Abstract
The impaired mitochondrial function has been implicated in the pathogenicity of multiple sclerosis (MS), a chronic inflammatory, demyelinating, and neurodegenerative disease of the CNS. Circulating mtDNA copy number in body fluids has been proposed as an indicator for several neurodegenerative diseases, and the altered cerebrospinal fluid mtDNA has been shown as a promising marker for MS. The aim of this study was to determine changes and biomarker potential of circulating mtDNA in peripheral blood in MS. The mtDNA copy number was quantified by real-time PCR in blood samples from 60 patients with relapsing-remitting MS (RRMS) and 64 healthy controls. The RRMS patients had significantly lower circulating mtDNA copy number compared to controls. Subgroup analysis with stratification of RRMS patients based on disease duration under or over 10 years revealed that the mtDNA copy number was significantly lower in the group with longer disease duration. A negative correlation was observed between mtDNA copy number and disease duration. The ROC curve analysis indicated a significant ability of mtDNA copy number to separate RRMS patients from controls with an AUC of 0.859. This is the first study to measure peripheral blood mtDNA copy number in MS patients. Current data suggest that the reduction in peripheral blood mtDNA copy number may be an early event in MS and correlate with the disease progression. The findings of this study indicate that circulating blood-based mtDNA copy number may be a potential non-invasive candidate biomarker for mitochondria-mediated neurodegeneration and MS. This can put forward the clinical applicability over other invasive markers.
Collapse
|
37
|
Alharbi MA, Al-Kafaji G, Khalaf NB, Messaoudi SA, Taha S, Daif A, Bakhiet M. Four novel mutations in the mitochondrial ND4 gene of complex I in patients with multiple sclerosis. Biomed Rep 2019; 11:257-268. [PMID: 31798871 PMCID: PMC6873451 DOI: 10.3892/br.2019.1250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/16/2019] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated neurological, inflammatory disease of the central nervous system. Recent studies have suggested that genetic variants in mitochondrial DNA (mtDNA)-encoded complexes of respiratory chain, particularly, complex I (NADH dehydrogenase), contribute to the pathogenicity of MS among different ethnicities, and targeting mitochondrial function may represent a novel approach for MS therapy. In this study, we sequenced ND genes (ND1, ND2, ND3, ND4, ND4L, ND5 and ND6) encoding subunits of complex I in 124 subjects, 60 patients with relapsing-remitting MS and 64 healthy individuals, in order to identify potential novel mutations in these patients. We found several variants in ND genes in both the patients and controls, and specific variants only in patients with MS. While the majority of these variants were synonymous, 4 variants in the ND4 gene were identified as missense mutations in patients with MS. Of these, m.11150G>A was observed in one patient, whereas m.11519A>C, m.11523A>C and m.11527C>T were observed in another patient. Functional analysis predicted the mutations, m.11519A>C, m.11523A>C and m.11150G>A, as deleterious with a direct impact on ND4 protein stability and complex I function, whereas m.11527C>T mutation had no effect on ND4 protein stability. However, the 3 mutations, m.11519A>C, m.11523A>C and m.11527C>T, which were observed in the same patient, were predicted to cause a cumulative destabilizing effect on ND4 protein, and could thus disrupt complex I function. On the whole, this study identified 4 novel mutations in the mtDNA-encoded ND4 gene in patients with MS, which could lead to complex I dysfunction, and further confirmed the implication of mtDNA mutations in the pathogenicity of MS. The identified novel mutations in patients with MS may be ethnic-related and may prove to be significant in personalized treatment.
Collapse
Affiliation(s)
- Maram Atallah Alharbi
- College of Forensic Sciences, Naif Arab University for Security Sciences, Riyadh 14812, Kingdom of Saudi Arabia
| | - Ghada Al-Kafaji
- Department of Molecular Medicine, Al-Jawhara Centre for Genetics and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Block 329, Manama, Kingdom of Bahrain
| | - Noureddine Ben Khalaf
- Department of Life Sciences, College of Graduate Studies, Arabian Gulf University, Block 329, Manama, Kingdom of Bahrain
| | - Safia Abdulsalam Messaoudi
- College of Forensic Sciences, Naif Arab University for Security Sciences, Riyadh 14812, Kingdom of Saudi Arabia
| | - Safa Taha
- Department of Molecular Medicine, Al-Jawhara Centre for Genetics and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Block 329, Manama, Kingdom of Bahrain
| | - Abdulqader Daif
- King Saud University Medical City, Riyadh 12372, Kingdom of Saudi Arabia
| | - Moiz Bakhiet
- Department of Molecular Medicine, Al-Jawhara Centre for Genetics and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Block 329, Manama, Kingdom of Bahrain
| |
Collapse
|
38
|
Whitehall JC, Greaves LC. Aberrant mitochondrial function in ageing and cancer. Biogerontology 2019; 21:445-459. [PMID: 31802313 PMCID: PMC7347693 DOI: 10.1007/s10522-019-09853-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/23/2019] [Indexed: 12/12/2022]
Abstract
Alterations in mitochondrial metabolism have been described as one of the major hallmarks of both ageing cells and cancer. Age is the biggest risk factor for the development of a significant number of cancer types and this therefore raises the question of whether there is a link between age-related mitochondrial dysfunction and the advantageous changes in mitochondrial metabolism prevalent in cancer cells. A common underlying feature of both ageing and cancer cells is the presence of somatic mutations of the mitochondrial genome (mtDNA) which we postulate may drive compensatory alterations in mitochondrial metabolism that are advantageous for tumour growth. In this review, we discuss basic mitochondrial functions, mechanisms of mtDNA mutagenesis and their metabolic consequences, and review the evidence for and against a role for mtDNA mutations in cancer development.
Collapse
Affiliation(s)
- Julia C Whitehall
- The Medical School, Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Laura C Greaves
- The Medical School, Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
39
|
Czarny P, Bialek K, Ziolkowska S, Strycharz J, Sliwinski T. DNA damage and repair in neuropsychiatric disorders. What do we know and what are the future perspectives? Mutagenesis 2019; 35:79-106. [DOI: 10.1093/mutage/gez035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022] Open
Abstract
AbstractOver the past two decades, extensive research has been done to elucidate the molecular etiology and pathophysiology of neuropsychiatric disorders. In majority of them, including Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), bipolar disorder (BD), schizophrenia and major depressive disorder, increased oxidative and nitrosative stress was found. This stress is known to induce oxidative damage to biomolecules, including DNA. Accordingly, increased mitochondrial and nuclear DNA, as well as RNA damage, were observed in patients suffering from these diseases. However, recent findings indicate that the patients are characterised by impaired DNA repair pathways, which may suggest that these DNA lesions could be also a result of their insufficient repair. In the current systematic, critical review, we aim to sum up, using available literature, the knowledge about the involvement of nuclear and mitochondrial DNA damage and repair, as well as about damage to RNA in pathoetiology of neuropsychiatric disorders, i.e., AD, PD, ALS, BD, schizophrenia and major depressive disorder, as well as the usefulness of the discussed factors as being diagnostic markers and targets for new therapies. Moreover, we also underline the new directions to which future studies should head to elucidate these phenomena.
Collapse
Affiliation(s)
- Piotr Czarny
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Katarzyna Bialek
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Sylwia Ziolkowska
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Justyna Strycharz
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Tomasz Sliwinski
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
40
|
Barbero Barcenilla B, Shippen DE. Back to the future: The intimate and evolving connection between telomere-related factors and genotoxic stress. J Biol Chem 2019; 294:14803-14813. [PMID: 31434740 DOI: 10.1074/jbc.aw119.008145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The conversion of circular genomes to linear chromosomes during molecular evolution required the invention of telomeres. This entailed the acquisition of factors necessary to fulfill two new requirements: the need to fully replicate terminal DNA sequences and the ability to distinguish chromosome ends from damaged DNA. Here we consider the multifaceted functions of factors recruited to perpetuate and stabilize telomeres. We discuss recent theories for how telomere factors evolved from existing cellular machineries and examine their engagement in nontelomeric functions such as DNA repair, replication, and transcriptional regulation. We highlight the remarkable versatility of protection of telomeres 1 (POT1) proteins that was fueled by gene duplication and divergence events that occurred independently across several eukaryotic lineages. Finally, we consider the relationship between oxidative stress and telomeres and the enigmatic role of telomere-associated proteins in mitochondria. These findings point to an evolving and intimate connection between telomeres and cellular physiology and the strong drive to maintain chromosome integrity.
Collapse
Affiliation(s)
- Borja Barbero Barcenilla
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128
| | - Dorothy E Shippen
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128
| |
Collapse
|
41
|
Dai XG, Li T, Huang WB, Zeng ZH, Li Q, Yang Y, Duan ZP, Wang YJ, Ai YH. Upregulation of Mitochondrial Transcription Factor A Promotes the Repairment of Renal Tubular Epithelial Cells in Sepsis by Inhibiting Reactive Oxygen Species-Mediated Toll-Like Receptor 4/p38MAPK Signaling. Pathobiology 2019; 86:263-273. [PMID: 31430762 DOI: 10.1159/000501789] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 06/09/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Mitochondrial transcription factor A (TFAM) plays multiple pathophysiologic roles in mitochondrial DNA (mtDNA) maintenance. However, the role of TFAM in sepsis-induced acute kidney injury (AKI) remains largely unknown. METHODS Lipopolysaccharide (LPS) treatment of HK-2 cells mimics the in vitro model of AKI inflammation. pcDNA3.1 plasmid was used to construct pcDNA3.1-TFAM. sh-TFAM-543, sh-TFAM-717, sh-TFAM-765, sh-TFAM-904 and pcDNA3.1-TFAM were transfected into HK-2 cells using Lipofectamine 2000. MtDNA transcriptional levels were detected by quantitative real-time polymerase chain reaction (qRT-PCR). 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay was performed to assess the cell viability. Changes in reactive oxygen species (ROS) and mitochondrial membrane potential in HK-2 cells were detected using the corresponding kits. Immunofluorescence experiment was used to investigate the displacement of TFAM. mRNA and protein expression levels of TFAM and its related genes were measured by qRT-PCR and western blot respectively. Mice in sepsis were administered cecal ligation and puncture surgery. RESULTS LPS treatment was a non-lethal influencing factor, leading to the upregulation of ROS levels and downregulation of mtDNA copy number and NADH dehydrogenase subunit-1 (ND1) expression, and caused damage to the mitochondria. As the LPS treatment time increased, TFAM was displaced from the periphery of the nucleus to cytoplasm. TFAM reduced ROS and P38MAPK levels by inhibiting toll-like receptor 4 (TLR4) expression, ultimately inhibiting inflammation and repairing mtDNA. CONCLUSIONS Our results indicate that TFAM repairs mtDNA by blocking the TLR4/ROS/P38MAPK signaling pathway in inflammatory cells, thereby repairing septic tubular epithelial cells, and TFAM may serve as a new target for sepsis therapy.
Collapse
Affiliation(s)
- Xin-Gui Dai
- Department of Intensive Care Unit, Xiangya Hospital, Central South University, Changsha, China.,Department of Critical Care Medicine, the First People's Hospital of Chenzhou, Chenzhou, China
| | - Tao Li
- Department of Critical Care Medicine, the First People's Hospital of Chenzhou, Chenzhou, China
| | - Wei-Bo Huang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhen-Hua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiong Li
- Department of Critical Care Medicine, the First People's Hospital of Chenzhou, Chenzhou, China
| | - Yang Yang
- Department of Critical Care Medicine, the First People's Hospital of Chenzhou, Chenzhou, China
| | - Ze-Peng Duan
- Department of Critical Care Medicine, the First People's Hospital of Chenzhou, Chenzhou, China
| | - Yu-Jing Wang
- Department of Critical Care Medicine, the First People's Hospital of Chenzhou, Chenzhou, China
| | - Yu-Hang Ai
- Department of Intensive Care Unit, Xiangya Hospital, Central South University, Changsha, China,
| |
Collapse
|
42
|
Multifunctional radical quenchers as potential therapeutic agents for the treatment of mitochondrial dysfunction. Future Med Chem 2019; 11:1605-1624. [DOI: 10.4155/fmc-2018-0481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial dysfunction is associated with a wide range of human diseases, including neurodegenerative diseases, and is believed to cause or contribute to the etiology of these diseases. These disorders are frequently associated with increased levels of reactive oxygen species. One of the design strategies for therapeutic intervention involves the development of novel small molecules containing redox cores, which can scavenge reactive oxygen radicals and selectively block oxidative damage to the mitochondria. Presently, we describe recent research dealing with multifunctional radical quenchers as antioxidants able to scavenge reactive oxygen radicals. The review encompasses ubiquinone and tocopherol analogs, as well as novel pyri(mi)dinol derivatives, and their ability to function as protective agents in cellular models of mitochondrial diseases.
Collapse
|
43
|
Prazdnova EV, Mazanko MS, Chistyakov VA, Denisenko YV, Makarenko MS, Usatov AV, Bren AB, Tutelyan AV, Komarova ZB, Gorlov IF, Weeks R, Chikindas ML. Effect of Bacillus subtilis KATMIRA1933 and Bacillus amyloliquefaciens B-1895 on the productivity, reproductive aging, and physiological characteristics of hens and roosters. Benef Microbes 2019; 10:395-412. [PMID: 30964325 DOI: 10.3920/bm2018.0149] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The study aims at investigating the effect of preparations of two bacilli strains on laying hens and roosters. Preparations were based on the strains Bacillus subtilis KATMIRA1933 and Bacillus amyloliquefaciens B-1895. Several groups of roosters and hens received a preparation based on either strain, or a mixture of both, from the first day to the last day of poultry in production. These preparations improved egg production, quality of sperm production, quality/hatchery of eggs, and slowed down the reproductive aging of hens. These observations were confirmed by the mathematical model proposed herein. At the molecular level, the slowing down of aging was confirmed by a decrease in the amount of mitochondrial DNA damage. Monitoring the physiological parameters of the experimental and control groups of birds showed that live weight gain in all experimental groups was higher than in the control group, and the reproductive organs of hens were more developed. There was also an improvement in the biochemical parameters of blood, the quality of the sperm of roosters, the laying of laying hens, and the morphological and biochemical parameters of the eggs. One of the most significant results is an increase in egg fertilization and a decrease in embryo death during the first 7 days of incubation.
Collapse
Affiliation(s)
- E V Prazdnova
- 1 Laboratory of Experimental Mutagenesis, Academy of Biology and Biotechnology, Southern Federal University, Stachki av. 194/1, Rostov-on-Don 344090, Russia
| | - M S Mazanko
- 1 Laboratory of Experimental Mutagenesis, Academy of Biology and Biotechnology, Southern Federal University, Stachki av. 194/1, Rostov-on-Don 344090, Russia
| | - V A Chistyakov
- 1 Laboratory of Experimental Mutagenesis, Academy of Biology and Biotechnology, Southern Federal University, Stachki av. 194/1, Rostov-on-Don 344090, Russia
| | - Y V Denisenko
- 1 Laboratory of Experimental Mutagenesis, Academy of Biology and Biotechnology, Southern Federal University, Stachki av. 194/1, Rostov-on-Don 344090, Russia
| | - M S Makarenko
- 1 Laboratory of Experimental Mutagenesis, Academy of Biology and Biotechnology, Southern Federal University, Stachki av. 194/1, Rostov-on-Don 344090, Russia
| | - A V Usatov
- 1 Laboratory of Experimental Mutagenesis, Academy of Biology and Biotechnology, Southern Federal University, Stachki av. 194/1, Rostov-on-Don 344090, Russia
| | - A B Bren
- 1 Laboratory of Experimental Mutagenesis, Academy of Biology and Biotechnology, Southern Federal University, Stachki av. 194/1, Rostov-on-Don 344090, Russia
| | - A V Tutelyan
- 2 Federal Budget Institution of Science 'Central Research Institute of Epidemiology' of the Federal Service on Customers' Rights Protection and Human Well-being Surveillance, Novogireevskaya 3a, Moscow 111123, Russia
| | - Z B Komarova
- 3 State Scientific Institution Volga Research Institute of Production and Processing of Meat and Dairy Products of the Russian Academy of Agricultural Sciences, Volgograd, Russia
| | - I F Gorlov
- 3 State Scientific Institution Volga Research Institute of Production and Processing of Meat and Dairy Products of the Russian Academy of Agricultural Sciences, Volgograd, Russia
| | - R Weeks
- 4 Health Promoting Naturals Laboratory, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, 08901-8520 NJ, USA
| | - M L Chikindas
- 1 Laboratory of Experimental Mutagenesis, Academy of Biology and Biotechnology, Southern Federal University, Stachki av. 194/1, Rostov-on-Don 344090, Russia.,4 Health Promoting Naturals Laboratory, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, 08901-8520 NJ, USA
| |
Collapse
|
44
|
Duan M, Chen L, Ge Q, Lu N, Li J, Pan X, Qiao Y, Tu J, Lu Z. Evaluating heteroplasmic variations of the mitochondrial genome from whole genome sequencing data. Gene 2019; 699:145-154. [PMID: 30876822 DOI: 10.1016/j.gene.2019.03.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Detecting heteroplasmic variations in the mitochondrial genome can help identify potential pathogenic possibilities, which is significant for disease prevention. The development of next-generation sequencing changed the quantification of mitochondrial DNA (mtDNA) heteroplasmy from scanning limited recorded points to the entire mitochondrial genome. However, due to the presence of nuclear mtDNA homologous sequences (nuMTs), maximally retaining real variations while excluding falsest heteroplasmic variations from nuMTs and sequencing errors presents a dilemma. RESULTS Herein, we used an improved method for detecting low-frequency mtDNA heteroplasmic variations from whole genome sequencing data, including point variations and short-fragment length alterations, and evaluated the effect of this method. A two-step alignment was designed and performed to accelerate data processing, to obtain and retain the true mtDNA reads and to eliminate most nuMTs reads. After analyzing whole genome sequencing data of K562 and GM12878 cells, ~90% of heteroplasmic point variations were identified in MitoMap. The results were consistent with the results of an amplification refractory mutation system qPCR. Many linkages of the detected heteroplasmy variations were also discovered. CONCLUSIONS Our improved method is a simple, efficient and accurate way to mine mitochondrial low-frequency heteroplasmic variations from whole genome sequencing data. By evaluating the highest misalignment possibility caused by the remaining nuMTs-like reads and sequencing errors, our procedure can detect mtDNA heteroplasmic variations whose heteroplasmy frequencies are as low as 0.2%.
Collapse
Affiliation(s)
- Mengqin Duan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Liang Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qinyu Ge
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Na Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Junji Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xuan Pan
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China
| | - Yi Qiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jing Tu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
45
|
Zorov DB, Vorobjev IA, Popkov VA, Babenko VA, Zorova LD, Pevzner IB, Silachev DN, Zorov SD, Andrianova NV, Plotnikov EY. Lessons from the Discovery of Mitochondrial Fragmentation (Fission): A Review and Update. Cells 2019; 8:E175. [PMID: 30791381 PMCID: PMC6406845 DOI: 10.3390/cells8020175] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 01/12/2023] Open
Abstract
Thirty-five years ago, we described fragmentation of the mitochondrial population in a living cell into small vesicles (mitochondrial fission). Subsequently, this phenomenon has become an object of general interest due to its involvement in the process of oxidative stress-related cell death and having high relevance to the incidence of a pathological phenotype. Tentatively, the key component of mitochondrial fission process is segregation and further asymmetric separation of a mitochondrial body yielding healthy (normally functioning) and impaired (incapable to function in a normal way) organelles with subsequent decomposition and removal of impaired elements through autophagy (mitophagy). We speculate that mitochondria contain cytoskeletal elements, which maintain the mitochondrial shape, and also are involved in the process of intramitochondrial segregation of waste products. We suggest that perturbation of the mitochondrial fission/fusion machinery and slowdown of the removal process of nonfunctional mitochondrial structures led to the increase of the proportion of impaired mitochondrial elements. When the concentration of malfunctioning mitochondria reaches a certain threshold, this can lead to various pathologies, including aging. Overall, we suggest a process of mitochondrial fission to be an essential component of a complex system controlling a healthy cell phenotype. The role of reactive oxygen species in mitochondrial fission is discussed.
Collapse
Affiliation(s)
- Dmitry B Zorov
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia.
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia.
| | - Ivan A Vorobjev
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia.
- Department of Biology, School of Science and Technology, Nazarbayev University, Astana 010000, Kazakhstan.
| | - Vasily A Popkov
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia.
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia.
| | - Valentina A Babenko
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia.
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia.
| | - Ljubava D Zorova
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia.
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia.
| | - Irina B Pevzner
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia.
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia.
| | - Denis N Silachev
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia.
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia.
| | - Savva D Zorov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Nadezda V Andrianova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Egor Y Plotnikov
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia.
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia.
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119146, Russia.
| |
Collapse
|
46
|
Brayboy LM, Clark H, Knapik LO, Schnirman RE, Wessel GM. Nitrogen mustard exposure perturbs oocyte mitochondrial physiology and alters reproductive outcomes. Reprod Toxicol 2018; 82:80-87. [PMID: 30308227 DOI: 10.1016/j.reprotox.2018.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/28/2018] [Accepted: 10/04/2018] [Indexed: 12/18/2022]
Abstract
Nitrogen mustard (NM) is an alkylating chemical warfare agent, and its derivatives are used in chemotherapy. Alkylating agents can cause mitochondrial damage, so exposed females may transmit damaged genomes to their children, since mitochondria are maternally inherited and oocytes are not thought to undergo mitophagy (Boudoures et al. [1]). The objective of this study is to investigate NM's effects on oocyte mitochondria to understand risks facing female soldiers, cancer patients, and their children. Mice were injected intraperitoneally with NM, monitored for reproductive outcomes, and ovaries and oocytes were isolated for analysis. Escalating doses of NM increased oxidative stress in parental and F1 generation oocytes, suggesting that mitochondrial damage by NM is enhanced by mitochondrial superoxide. NM-treated ovaries in vitro exhibited smaller mitochondrial volume, more electron-dense and multivesicular structures, and lower birth weight litters. These results demonstrate that females must be protected from alkylating agents for their health, and the health of their offspring.
Collapse
Affiliation(s)
- Lynae M Brayboy
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI, 02905, USA; Alpert Medical School of Brown University, Providence, RI, 02903, USA; Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA.
| | - Haley Clark
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Laura O Knapik
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI, 02905, USA
| | - Ruby E Schnirman
- University of Chicago, 5801 South Ellis Avenue, Chicago, IL 60637, USA
| | - Gary M Wessel
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
47
|
Vlahopoulos S, Adamaki M, Khoury N, Zoumpourlis V, Boldogh I. Roles of DNA repair enzyme OGG1 in innate immunity and its significance for lung cancer. Pharmacol Ther 2018; 194:59-72. [PMID: 30240635 DOI: 10.1016/j.pharmthera.2018.09.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytokines are pivotal mediators of the immune response, and their coordinated expression protects host tissue from excessive damage and oxidant stress. Nevertheless, the development of lung pathology, including asthma, chronic obstructive pulmonary disease, and ozone-induced lung injury, is associated with oxidant stress; as evidence, there is a significant increase in levels of the modified guanine base 7,8-dihydro-8-oxoguanine (8-oxoG) in the genome. 8-OxoG is primarily recognized by 8-oxoguanine glycosylase 1 (OGG1), which catalyzes the first step in the DNA base excision repair pathway. However, oxidant stress in the cell transiently halts enzymatic activity of substrate-bound OGG1. The stalled OGG1 facilitates DNA binding of transactivators, including NF-κB, to their cognate sites to enable expression of cytokines and chemokines, with ensuing recruitments of inflammatory cells. Hence, defective OGG1 will modulate the coordination between innate and adaptive immunity through excessive oxidant stress and cytokine dysregulation. Both oxidant stress and cytokine dysregulation constitute key elements of oncogenesis by KRAS, which is mechanistically coupled to OGG1. Thus, analysis of the mechanism by which OGG1 modulates gene expression helps discern between beneficial and detrimental effects of oxidant stress, exposes a missing functional link as a marker, and yields a novel target for lung cancer.
Collapse
Affiliation(s)
- Spiros Vlahopoulos
- Ηoremeio Research Laboratory, First Department of Paediatrics, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Maria Adamaki
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Nikolas Khoury
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Istvan Boldogh
- Departments of Microbiology and Immunology and the Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555, United States
| |
Collapse
|
48
|
Makarenko MS, Chistyakov VA, Usatov AV, Mazanko MS, Prazdnova EV, Bren AB, Gorlov IF, Komarova ZB, Chikindas ML. The Impact of Bacillus subtilis KATMIRA1933 Supplementation on Telomere Length and Mitochondrial DNA Damage of Laying Hens. Probiotics Antimicrob Proteins 2018; 11:588-593. [DOI: 10.1007/s12602-018-9440-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Dahal S, Dubey S, Raghavan SC. Homologous recombination-mediated repair of DNA double-strand breaks operates in mammalian mitochondria. Cell Mol Life Sci 2018; 75:1641-1655. [PMID: 29116362 PMCID: PMC11105789 DOI: 10.1007/s00018-017-2702-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 10/23/2017] [Accepted: 10/30/2017] [Indexed: 10/18/2022]
Abstract
Mitochondrial DNA is frequently exposed to oxidative damage, as compared to nuclear DNA. Previously, we have shown that while microhomology-mediated end joining can account for DNA deletions in mitochondria, classical nonhomologous DNA end joining, the predominant double-strand break (DSB) repair pathway in nucleus, is undetectable. In the present study, we investigated the presence of homologous recombination (HR) in mitochondria to maintain its genomic integrity. Biochemical studies revealed that HR-mediated repair of DSBs is more efficient in the mitochondria of testes as compared to that of brain, kidney and spleen. Interestingly, a significant increase in the efficiency of HR was observed when a DSB was introduced. Analyses of the clones suggest that most of the recombinants were generated through reciprocal exchange, while ~ 30% of recombinants were due to gene conversion in testicular extracts. Colocalization and immunoblotting studies showed the presence of RAD51 and MRN complex proteins in the mitochondria and immunodepletion of MRE11, RAD51 or NIBRIN suppressed the HR-mediated repair. Thus, our results reveal importance of homologous recombination in the maintenance of mitochondrial genome stability.
Collapse
Affiliation(s)
- Sumedha Dahal
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Shubham Dubey
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India.
| |
Collapse
|
50
|
Zsurka G, Peeva V, Kotlyar A, Kunz WS. Is There Still Any Role for Oxidative Stress in Mitochondrial DNA-Dependent Aging? Genes (Basel) 2018; 9:genes9040175. [PMID: 29561808 PMCID: PMC5924517 DOI: 10.3390/genes9040175] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/09/2018] [Accepted: 03/16/2018] [Indexed: 11/21/2022] Open
Abstract
Recent deep sequencing data has provided compelling evidence that the spectrum of somatic point mutations in mitochondrial DNA (mtDNA) in aging tissues lacks G > T transversion mutations. This fact cannot, however, be used as an argument for the missing contribution of reactive oxygen species (ROS) to mitochondria-related aging because it is probably caused by the nucleotide selectivity of mitochondrial DNA polymerase γ (POLG). In contrast to point mutations, the age-dependent accumulation of mitochondrial DNA deletions is, in light of recent experimental data, still explainable by the segregation of mutant molecules generated by the direct mutagenic effects of ROS (in particular, of HO· radicals formed from H2O2 by a Fenton reaction). The source of ROS remains controversial, because the mitochondrial contribution to tissue ROS production is probably lower than previously thought. Importantly, in the discussion about the potential role of oxidative stress in mitochondria-dependent aging, ROS generated by inflammation-linked processes and the distribution of free iron also require careful consideration.
Collapse
Affiliation(s)
- Gábor Zsurka
- Institute of Experimental Epileptology and Neurocognition, University Bonn Medical Center, 53105 Bonn, Germany.
- Department of Epileptology, University Bonn Medical Center, 53105 Bonn, Germany.
| | - Viktoriya Peeva
- Institute of Experimental Epileptology and Neurocognition, University Bonn Medical Center, 53105 Bonn, Germany.
| | - Alexander Kotlyar
- Department of Biochemistry & Molecular Biology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Wolfram S Kunz
- Institute of Experimental Epileptology and Neurocognition, University Bonn Medical Center, 53105 Bonn, Germany.
- Department of Epileptology, University Bonn Medical Center, 53105 Bonn, Germany.
| |
Collapse
|