1
|
Somarajan S, Muszynski ND, Olson JD, Bradshaw LA, Richards WO. Magnetoenterography for the Detection of Partial Mesenteric Ischemia. J Surg Res 2019; 239:31-37. [PMID: 30782544 DOI: 10.1016/j.jss.2019.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/03/2018] [Accepted: 01/10/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Acute mesenteric ischemia represents a life-threatening gastrointestinal condition. A noninvasive diagnostic modality that identifies mesenteric ischemia patients early in the disease process will enable early surgical intervention. Previous studies have identified significant changes in the small-bowel electrical slow-wave parameters during intestinal ischemia caused by total occlusion of the superior mesenteric artery. The purpose of this study was to use noninvasive biomagnetic techniques to assess functional physiological changes in intestinal slow waves in response to partial mesenteric ischemia. METHODS We induced progressive intestinal ischemia in normal porcine subjects (n = 10) by slowly increasing the occlusion of the superior mesenteric artery at the following percentages of baseline flow: 50%, 75%, 90%, and 100% while simultaneous transabdominal magnetoenterogram (MENG) and serosal electromyogram (EMG) recordings were being obtained. RESULTS A statistically significant serosal EMG amplitude decrease was observed at 100% occlusion compared with baseline, whereas no significant change was observed for MENG amplitude at any progressive occlusion levels. MENG recordings showed significant changes in the frequency and percentage of power distributed in bradyenteric and normoenteric frequency ranges at 50%, 75%, 90%, and 100% vessel occlusions. In serosal EMG recordings, a similar percent power distribution (PPD) effect was observed at 75%, 90%, and 100% occlusion levels. Serosal EMG showed a statistically significant increase in tachyenteric PPD at 90% and 100% occlusion. We observed significant increase in tachyenteric PPD only at the 100% occlusion level in MENG recordings. CONCLUSIONS Ischemic changes in the intestinal slow wave can be detected early and noninvasively even with partial vascular occlusion. Our results suggest that noninvasive MENG may be useful for clinical diagnosis of partial mesenteric ischemia.
Collapse
Affiliation(s)
- Suseela Somarajan
- Department of General Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Physics & Astronomy, Vanderbilt University, Tennessee.
| | - Nicole D Muszynski
- Department of General Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Physics & Astronomy, Vanderbilt University, Tennessee
| | - Joseph D Olson
- Department of General Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Leonard A Bradshaw
- Department of General Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Physics & Astronomy, Vanderbilt University, Tennessee; Department of Physics, Lipscomb University, Nashville, Tennessee
| | | |
Collapse
|
2
|
Tse G, Lai ETH, Yeo JM, Tse V, Wong SH. Mechanisms of Electrical Activation and Conduction in the Gastrointestinal System: Lessons from Cardiac Electrophysiology. Front Physiol 2016; 7:182. [PMID: 27303305 PMCID: PMC4885840 DOI: 10.3389/fphys.2016.00182] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/06/2016] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal (GI) tract is an electrically excitable organ system containing multiple cell types, which coordinate electrical activity propagating through this tract. Disruption in its normal electrophysiology is observed in a number of GI motility disorders. However, this is not well characterized and the field of GI electrophysiology is much less developed compared to the cardiac field. The aim of this article is to use the established knowledge of cardiac electrophysiology to shed light on the mechanisms of electrical activation and propagation along the GI tract, and how abnormalities in these processes lead to motility disorders and suggest better treatment options based on this improved understanding. In the first part of the article, the ionic contributions to the generation of GI slow wave and the cardiac action potential (AP) are reviewed. Propagation of these electrical signals can be described by the core conductor theory in both systems. However, specifically for the GI tract, the following unique properties are observed: changes in slow wave frequency along its length, periods of quiescence, synchronization in short distances and desynchronization over long distances. These are best described by a coupled oscillator theory. Other differences include the diminished role of gap junctions in mediating this conduction in the GI tract compared to the heart. The electrophysiology of conditions such as gastroesophageal reflux disease and gastroparesis, and functional problems such as irritable bowel syndrome are discussed in detail, with reference to ion channel abnormalities and potential therapeutic targets. A deeper understanding of the molecular basis and physiological mechanisms underlying GI motility disorders will enable the development of better diagnostic and therapeutic tools and the advancement of this field.
Collapse
Affiliation(s)
- Gary Tse
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, University of Hong KongHong Kong, China
| | - Eric Tsz Him Lai
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, University of Hong KongHong Kong, China
| | - Jie Ming Yeo
- School of Medicine, Imperial College LondonLondon, UK
| | - Vivian Tse
- Department of Physiology, McGill UniversityMontreal, QC, Canada
| | - Sunny Hei Wong
- Department of Medicine and Therapeutics, Institute of Digestive Disease, LKS Institute of Health Sciences, Chinese University of Hong KongHong Kong, China
| |
Collapse
|
3
|
Somarajan S, Muszynski ND, Cheng LK, Bradshaw LA, Naslund TC, Richards WO. Noninvasive biomagnetic detection of intestinal slow wave dysrhythmias in chronic mesenteric ischemia. Am J Physiol Gastrointest Liver Physiol 2015; 309:G52-8. [PMID: 25930082 PMCID: PMC4491509 DOI: 10.1152/ajpgi.00466.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 04/16/2015] [Indexed: 01/31/2023]
Abstract
Chronic mesenteric ischemia (CMI) is a challenging clinical problem that is difficult to diagnose noninvasively. Diagnosis early in the disease process would enable life-saving early surgical intervention. Previous studies established that superconducting quantum interference device (SQUID) magnetometers detect the slow wave changes in the magnetoenterogram (MENG) noninvasively following induction of mesenteric ischemia in animal models. The purpose of this study was to assess functional physiological changes in the intestinal slow wave MENG of patients with chronic mesenteric ischemia. Pre- and postoperative studies were conducted on CMI patients using MENG and intraoperative recordings using invasive serosal electromyograms (EMG). Our preoperative MENG recordings showed that patients with CMI exhibited a significant decrease in intestinal slow wave frequency from 8.9 ± 0.3 cpm preprandial to 7.4 ± 0.1 cpm postprandial (P < 0.01) that was not observed in postoperative recordings (9.3 ± 0.2 cpm preprandial and 9.4 ± 0.4 cpm postprandial, P = 0.86). Intraoperative recording detected multiple frequencies from the ischemic portion of jejunum before revascularization, whereas normal serosal intestinal slow wave frequencies were observed after revascularization. The preoperative MENG data also showed signals with multiple frequencies suggestive of uncoupling and intestinal ischemia similar to intraoperative serosal EMG. Our results showed that multichannel MENG can identify intestinal slow wave dysrhythmias in CMI patients.
Collapse
Affiliation(s)
- S. Somarajan
- 1Department of Surgery, Vanderbilt University, Nashville, Tennessee; ,2Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee;
| | - N. D. Muszynski
- 1Department of Surgery, Vanderbilt University, Nashville, Tennessee; ,2Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee;
| | - L. K. Cheng
- 1Department of Surgery, Vanderbilt University, Nashville, Tennessee; ,3Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand;
| | - L. A. Bradshaw
- 1Department of Surgery, Vanderbilt University, Nashville, Tennessee; ,2Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee; ,4Department of Physics, Lipscomb University, Nashville, Tennessee;
| | - T. C. Naslund
- 5Division of Vascular Surgery, Vanderbilt University, Nashville, Tennessee; and
| | - W. O. Richards
- 6Department of Surgery, University of South Alabama College of Medicine, Mobile, Alabama
| |
Collapse
|
4
|
Automated algorithm for GI spike burst detection and demonstration of efficacy in ischemic small intestine. Ann Biomed Eng 2013; 41:2215-28. [PMID: 23612912 DOI: 10.1007/s10439-013-0812-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 04/15/2013] [Indexed: 01/09/2023]
Abstract
We present a novel, fully-automated gastrointestinal spike burst detection algorithm. Following pre-processing with SALPA (Wagenaar and Potter, J. Neurosci. Methods 120:113-120, 2002) and a Savitzky-Golay filter to remove unwanted low and high frequency components, candidate spike waveforms are detected utilizing the non-linear energy operator. Candidate waveforms are classified as spikes or artifact by a support vector machine. The new method achieves highly satisfactory performance with >90% sensitivity and positive prediction value. We also demonstrate an application of the new method to detect changes in spike rate and spatial propagation patterns upon induction of mesenteric ischemia in the small intestine. Spike rates were observed to transiently increase 10-20 fold for a duration of ≈600 s, relative to baseline conditions. In ischemic conditions, spike activity propagation patterns included retrograde-longitudinal wavefronts with occasional spontaneous conduction blocks, as well as self-terminating concentric-circumferential wavefronts. Longitudinal and circumferential velocities were 6.8-8.0 cm/s and 18.7 cm/s, respectively.
Collapse
|
5
|
Somarajan S, Cassilly S, Obioha C, Bradshaw LA, Richards WO. Noninvasive biomagnetic detection of isolated ischemic bowel segments. IEEE Trans Biomed Eng 2013; 60:1677-84. [PMID: 23335661 DOI: 10.1109/tbme.2013.2240454] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The slow wave activity was measured in the magnetoenterogram (MENG) of normal porcine subjects (N = 5) with segmental intestinal ischemia. The correlation changes in enteric slow wave activity were determined in MENG and serosal electromyograms (EMG). MENG recordings show significant changes in the frequency and power distribution of enteric slow-wave signals during segmental ischemia, and these changes agree with changes observed in the serosal EMG. There was a high degree of correlation between the frequency of the electrical activity recorded in MENG and in serosal EMG (r = 0.97). The percentage of power distributed in brady- and normoenteric frequency ranges exhibited significant segmental ischemic changes. Our results suggest that noninvasive MENG detects ischemic changes in isolated small bowel segments.
Collapse
Affiliation(s)
- Suseela Somarajan
- Department of General Surgery and Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, USA.
| | | | | | | | | |
Collapse
|
6
|
Active concentric ring electrode for non-invasive detection of intestinal myoelectric signals. Med Eng Phys 2010; 33:446-55. [PMID: 21163682 DOI: 10.1016/j.medengphy.2010.11.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 11/10/2010] [Accepted: 11/15/2010] [Indexed: 01/14/2023]
Abstract
Although the surface electroenterogram (EEnG) is a weak signal contaminated by strong physiological interference, such as ECG and respiration, abdominal surface recordings of the EEnG could provide a non-invasive method of studying intestinal activity. The goal of this work was to develop a modular, active, low-cost and easy-to-use sensor to obtain a direct estimation of the Laplacian of the EEnG on the abdominal surface in order to enhance the quality of bipolar surface monitoring of intestinal activity. The sensor is made up of a set of 3 concentric dry Ag/AgCl ring electrodes and a battery-powered signal-conditioning circuit. Each section is etched on a different printed circuit board (PCB) and the sections are joined to each other by surface mount technology connectors. This means the sensing electrodes can be treated independently for purposes of maintenance and replacement and the signal conditioning circuit can be re-used. A total of ten recording sessions were carried out on humans. The results show that the surface recordings of the EEnG obtained by the active sensor present significantly less ECG and respiration interference than those obtained by bipolar recordings. In addition, bioelectrical sources whose frequency fitted with the slow wave component of the EEnG (SW) were identified by parametric spectral analysis in the surface signals picked up by the active sensors.
Collapse
|
7
|
Gizzi A, Cherubini C, Migliori S, Alloni R, Portuesi R, Filippi S. On the electrical intestine turbulence induced by temperature changes. Phys Biol 2010; 7:16011. [DOI: 10.1088/1478-3975/7/1/016011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Ye-Lin Y, Garcia-Casado J, Martinez-de-Juan JL, Prats-Boluda G, Ponce JL. The detection of intestinal spike activity on surface electroenterograms. Phys Med Biol 2010; 55:663-80. [PMID: 20071756 DOI: 10.1088/0031-9155/55/3/008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Myoelectrical recording could provide an alternative technique for assessing intestinal motility, which is a topic of great interest in gastroenterology since many gastrointestinal disorders are associated with intestinal dysmotility. The pacemaker activity (slow wave, SW) of the electroenterogram (EEnG) has been detected in abdominal surface recordings, although the activity related to bowel contractions (spike bursts, SB) has to date only been detected in experimental models with artificially favored electrical conductivity. The aim of the present work was to assess the possibility of detecting SB activity in abdominal surface recordings under physiological conditions. For this purpose, 11 recording sessions of simultaneous internal and external myolectrical signals were conducted on conscious dogs. Signal analysis was carried out in the spectral domain. The results show that in periods of intestinal contractile activity, high-frequency components of EEnG signals can be detected on the abdominal surface in addition to SW activity. The energy between 2 and 20 Hz of the surface myoelectrical recording presented good correlation with the internal intestinal motility index (0.64 +/- 0.10 for channel 1 and 0.57 +/- 0.11 for channel 2). This suggests that SB activity can also be detected in canine surface EEnG recording.
Collapse
Affiliation(s)
- Y Ye-Lin
- Instituto interuniversitario de investigación en bioingeniería y tecnología orientada al ser humano (I3BH),Universidad Politécnica de Valencia, Camino de Vera, s/n, Ed. 8E, Acceso N, 2a, planta 46022 Valencia, Spain.
| | | | | | | | | |
Collapse
|
9
|
Ye-Lin Y, Garcia-Casado J, Prats-Boluda G, Ponce JL, Martinez-de-Juan JL. Enhancement of the non-invasive electroenterogram to identify intestinal pacemaker activity. Physiol Meas 2009; 30:885-902. [DOI: 10.1088/0967-3334/30/9/002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Erickson JC, Obioha C, Goodale A, Bradshaw LA, Richards WO. Detection of small bowel slow-wave frequencies from noninvasive biomagnetic measurements. IEEE Trans Biomed Eng 2009; 56:2181-9. [PMID: 19497806 DOI: 10.1109/tbme.2009.2024087] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We report a novel method for identifying the small intestine electrical activity slow-wave frequencies (SWFs) from noninvasive biomagnetic measurements. Superconducting quantum interference device magnetometer measurements are preprocessed to remove baseline drift and high-frequency noise. Subsequently, the underlying source signals are separated using the well-known second-order blind identification (SOBI) algorithm. A simple classification scheme identifies and assigns some of the SOBI components to a section of small bowel. SWFs were clearly identified in 10 out of 12 test subjects to within 0.09-0.25 cycles per minute. The method is sensitive at the 40.3 %-55.9 % level, while false positive rates were 0 %-8.6 %. This technique could potentially be used to help diagnose gastrointestinal ailments and obviate some exploratory surgeries.
Collapse
|
11
|
Erickson J, Obioha C, Goodale A, Bradshaw A, Richards W. Noninvasive detection of small bowel electrical activity from SQUID magnetometer measurements using SOBI. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2009; 2008:1871-4. [PMID: 19163053 DOI: 10.1109/iembs.2008.4649550] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We report a robust method for noninvasive biomagnetic detection of small bowel electrical activity. Simultaneous Superconducting QUantum Interference Device (SQUID) magnetometer (MENG) and serosal electrode recordings were made on pig small bowel. The SOBI blind-source separation algorithm was used to separate the underlying source signals of the MENG. Comparison of identified SOBI components to the serosal recordings validated the underlying MENG sources as being enteric in origin. Non-invasive detection of small bowel electrical activity could have significant implications in a clinical setting.
Collapse
Affiliation(s)
- Jon Erickson
- Living State Physics Group, Vanderbilt University, Box 1807 Station B, Nashville, TN 37235, USA.
| | | | | | | | | |
Collapse
|
12
|
Stamatakos M, Stefanaki C, Mastrokalos D, Arampatzi H, Safioleas P, Chatziconstantinou C, Xiromeritis C, Safioleas M. Mesenteric ischemia: still a deadly puzzle for the medical community. TOHOKU J EXP MED 2009; 216:197-204. [PMID: 18987453 DOI: 10.1620/tjem.216.197] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The main goal of this article is to update etiology, epidemiology, diagnosis, treatment and outcome of the various causes of mesenteric ischemia in order to elucidate its labyrinthine clinical riddle, by reviewing the current English medical literature. Mesenteric ischemia is a quite uncommon disorder, observed in the emergency department. It is a life-threatening vascular emergency that requires early diagnosis and intervention to restore mesenteric blood flow and to prevent bowel necrosis and patient death. Consequently, it is a vital diagnosis to make because of its high mortality rate and its thorny complications. The underlying causes vary, and the prognosis depends on the specific findings during clinical examination. Vague and nonspecific clinical findings and limitations of diagnostic studies make the diagnosis a significant challenge. The prognosis of acute mesenteric ischemia of any type is grave. The complications following this medical jigsaw puzzle are also severe. Patients in whom the diagnosis is missed until infarction occurs have a mortality rate of 90%. Even with good treatment, up to 50-80% of patients die. Survivors of extensive bowel resection face lifelong disability. Despite the progress in understanding the pathogenesis of mesenteric ischemia and the development of treatment modalities, the entity remains a diagnostic challenge for clinicians. Delay in diagnosis contributes to a high mortality rate. Early diagnosis and adequate treatment can improve the clinical outcome. Even if diagnostic modalities have improved since the first successful attempts to confront effectively this clinical entity, mesenteric ischemia still remains a lethal diagnostic enigma for the medical community.
Collapse
Affiliation(s)
- Michael Stamatakos
- Second Department of Propaedeutic Surgery, Medical School, University of Athens, Laiko General Hospital, Athens, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Mabotuwana TDS, Cheng LK, Pullan AJ. A model of blood flow in the mesenteric arterial system. Biomed Eng Online 2007; 6:17. [PMID: 17484787 PMCID: PMC1885434 DOI: 10.1186/1475-925x-6-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Accepted: 05/08/2007] [Indexed: 12/16/2022] Open
Abstract
Background There are some early clinical indicators of cardiac ischemia, most notably a change in a person's electrocardiogram. Less well understood, but potentially just as dangerous, is ischemia that develops in the gastrointestinal system. Such ischemia is difficult to diagnose without angiography (an invasive and time-consuming procedure) mainly due to the highly unspecific nature of the disease. Understanding how perfusion is affected during ischemic conditions can be a useful clinical tool which can help clinicians during the diagnosis process. As a first step towards this final goal, a computational model of the gastrointestinal system has been developed and used to simulate realistic blood flow during normal conditions. Methods An anatomically and biophysically based model of the major mesenteric arteries has been developed to be used to simulate normal blood flows. The computational mesh used for the simulations has been generated using data from the Visible Human project. The 3D Navier-Stokes equations that govern flow within this mesh have been simplified to an efficient 1D scheme. This scheme, together with a constitutive pressure-radius relationship, has been solved numerically for pressure, vessel radius and velocity for the entire mesenteric arterial network. Results The computational model developed shows close agreement with physiologically realistic geometries other researchers have recorded in vivo. Using this model as a framework, results were analyzed for the four distinct phases of the cardiac cycle – diastole, isovolumic contraction, ejection and isovolumic relaxation. Profiles showing the temporally varying pressure and velocity for a periodic input varying between 10.2 kPa (77 mmHg) and 14.6 kPa (110 mmHg) at the abdominal aorta are presented. An analytical solution has been developed to model blood flow in tapering vessels and when compared with the numerical solution, showed excellent agreement. Conclusion An anatomically and physiologically realistic computational model of the major mesenteric arteries has been developed for the gastrointestinal system. Using this model, blood flow has been simulated which show physiologically realistic flow profiles.
Collapse
Affiliation(s)
- Thusitha DS Mabotuwana
- Bioengineering Institute, The University of Auckland, Private Bad 92019, Auckland 1142, New Zealand
| | - Leo K Cheng
- Bioengineering Institute, The University of Auckland, Private Bad 92019, Auckland 1142, New Zealand
| | - Andrew J Pullan
- Bioengineering Institute, The University of Auckland, Private Bad 92019, Auckland 1142, New Zealand
- Department of Engineering Science, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
14
|
Qi H, Liu S, Chen JDZ. Dual pulse intestinal electrical stimulation normalizes intestinal dysrhythmia and improves symptoms induced by vasopressin in fed state in dogs. Neurogastroenterol Motil 2007; 19:411-8. [PMID: 17509023 DOI: 10.1111/j.1365-2982.2006.00889.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To assess effects of dual pulse intestinal electrical stimulation (DPIES) on intestinal dysrhythmia and motility, and symptoms induced by vasopressin in conscious dogs. The study was performed in three postprandial sessions (control; vasopressin; DPIES) in six dogs with two pairs of electrodes chronically implanted on the serosal surface of the proximal jejunum and with a chronic duodenal fistula. A manometric catheter was advanced into the small intestine via the intestinal cannula. Motility and intestinal slow waves were recorded. Symptoms were assessed. During vasopressin infusion, the percentage of normal intestinal slow wave frequency was decreased (P < 0.01), reflected as a significant increase in the percentage of both bradygastria and tachygastria; the motility index decreased (P < 0.01) and the symptom score increased (P < 0.01). In the session of DPIES, the percentage of normal slow wave frequency was recovered (P < 0.05 vs vasopressin), attributed to a reduction in both bradyarrhythmia and tachyarrhythmia; the symptom score was reduced (P < 0.05 vs vasopressin); the motility index was not significantly increased. These results suggest that vasopressin induces intestinal dysrhythmia and emetic symptoms and inhibits intestinal motility. Dual pulse intestinal electrical stimulation is capable of improving intestinal dysrhythmia and emetic symptoms but not impaired intestinal motility induced by vasopressin.
Collapse
Affiliation(s)
- H Qi
- Division of Gastroenterology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | |
Collapse
|
15
|
O'Mahony GD, Gallucci MR, Córdova-Fraga T, Berch B, Richards WO, Bradshaw LA. Biomagnetic investigation of injury currents in rabbit intestinal smooth muscle during mesenteric ischemia and reperfusion. Dig Dis Sci 2007; 52:292-301. [PMID: 17160467 DOI: 10.1007/s10620-006-9559-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Accepted: 08/03/2006] [Indexed: 12/29/2022]
Abstract
A noninvasive, sensitive, and specific method of detecting mesenteric ischemia would be of great use in reducing the morbidity and mortality with which it is associated. Acute lesions in polarized electrically coupled tissues lead to injury currents driven by the transmembrane resting potential gradient. These injury currents are an effective indicator of pathophysiology. The presence of near-DC injury currents in rabbit intestinal smooth muscle has already been demonstrated using a Superconducting quantum interference device (SQUID), and the aim of this study was to evaluate the effect of arterial reperfusion upon these currents. We exteriorized the small bowel of 14 New Zealand white rabbits and placed a remotely operated vascular occluder around the distal most artery supplying a 3-in segment of the jejunum. Experiments were conducted in three groups, i.e., control (n=3), ischemia (n=6), and reperfusion following ischemia (n=5). The subject's position was modulated in and out of the biological field detection range of a SQUID magnetometer using a lift constructed of nonmagnetic material. The changes in magnetic field amplitude were 9.3 and 31.01% for the control and ischemia groups, respectively. The reperfusion group first exhibited a decrease of 17.35% from the pre-ischemic to the ischemic period, followed by an increase of 13.88% of the ischemic value after reestablishing perfusion. In conclusion, injury currents in GI smooth muscle that appear during ischemia are reduced to near-pre-ischemic levels during reperfusion.
Collapse
Affiliation(s)
- Gavin D O'Mahony
- Department of Surgery, Vanderbilt University School of Medicine, D 5219 MCN, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
16
|
Bradshaw LA, Irimia A, Sims JA, Gallucci MR, Palmer RL, Richards WO. Biomagnetic characterization of spatiotemporal parameters of the gastric slow wave. Neurogastroenterol Motil 2006; 18:619-31. [PMID: 16918726 DOI: 10.1111/j.1365-2982.2006.00794.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Certain gastric disorders affect spatiotemporal parameters of the gastric slow wave. Whereas the electrogastrogram (EGG) evaluates electric potentials to determine primarily temporal parameters, fundamental physical limitations imposed by the volume conduction properties of the abdomen suggest the evaluation of gastric magnetic fields. We used a multichannel superconducting quantum interference device magnetometer to study the magnetogastrogram (MGG) in 20 normal human subjects before and after a test meal. We computed the frequency and amplitude parameters of the gastric slow wave from MGG. We identified normal gastric slow wave activity with a frequency of 2.6 +/- 0.5 cycles per minute (cpm) preprandial and 2.8 +/- 0.3 cpm postprandial. In addition to frequency and amplitude, the use of surface current density mapping applied to the multichannel MGG allowed us to visualize the propagating slow wave and compute its propagation velocity (6.6 +/- 1.0 mm s(-1) preprandial and 7.4 +/- 0.4 mm s(-1) postprandial). Whereas MGG and EGG signals exhibited strong correlation, there was very little correlation between the MGG and manometry. The MGG not only records frequency dynamics of the gastric slow wave, but also characterizes gastric propagation. The MGG primarily reflects the underlying gastric electrical activity, but not its mechanical activity.
Collapse
Affiliation(s)
- L A Bradshaw
- Department of Surgery, Vanderbilt University, Nashville, TN 37235, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Mesenteric ischemia disorders are precipitated by a circulation insufficiency event that deprives one or several abdominal organs of adequate respiration to meet metabolic demands. Although mesenteric ischemia occurs infrequently, the mortality rate is from 60% to 100%, depending on the source of obstruction. The successful outcome is dependent upon a high index of suspicion and prompt management. We briefly review the pathophysiology and presentation of the various ischemic entities and review the current state of the art in diagnosis and treatment. Despite advances in both diagnosis and treatment, prompt diagnosis and supportive care remain critical for successful outcome. New imaging techniques, endovascular therapy and emerging research may improve our approach to this deadly condition.
Collapse
Affiliation(s)
- Robert-W Chang
- Department of Surgery, Yale University School of Medicine, 333 Cedar Street, New Haven 06510, USA
| | | | | |
Collapse
|
18
|
Bradshaw LA, Roy OP, O'Mahony GP, Myers AG, McDowell JG, Wikswo JP, Richards WO. Biomagnetic detection of injury currents in rabbit ischemic intestine. Dig Dis Sci 2005; 50:1561-8. [PMID: 16133952 DOI: 10.1007/s10620-005-2898-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Accepted: 12/13/2004] [Indexed: 12/09/2022]
Abstract
The presence of direct current (DC) injury currents in ischemic tissue is an important diagnostic indicator of pathophysiology in cortical spreading depression and particularly in myocardial infarction. To date, no measurements of DC injury currents in the alimentary tract have been reported. We used a SQUID magnetometer to measure changes in the baseline of the magnetic field of intestinal electrical activity during induced segmental ischemia. We computed the magnetic field DC baseline by subtracting sequential recordings made while the bowel segment was first directly beneath the SQUID and then pulled away. We observed a significant baseline decrease of 38% +/- 4% in experimental animals, while the control group decreased by only 1% +/- 6%. This magnetic field baseline decrease is consistent with the flow of injury currents between normally perfused and hypoxic tissue regions. This study is the first report of DC injury currents in ischemic smooth muscle of the alimentary tract.
Collapse
Affiliation(s)
- L Alan Bradshaw
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee 37235, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Bradshaw LA, Myers A, Richards WO, Drake W, Wikswo JP. Vector projection of biomagnetic fields. Med Biol Eng Comput 2005; 43:85-93. [PMID: 15742724 DOI: 10.1007/bf02345127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Biomagnetic measurements are increasingly popular as functional imaging techniques for the non-invasive assessment of electrically active tissue. Although most currently available magnetometers utilise only one component of the vector magnetic field, some studies have suggested the possibility of obtaining additional information from recordings of the full magnetic field vector. Three projection techniques were applied to different biomagnetic signals for analysis of the three orthogonal components of the vector magnetic field. Vector magnetic fields obtained from fetal cardiac activity were projected into evenly spaced directions around a unit sphere. The vector magnetic field recorded from multiple intestinal current sources with independent temporal frequencies was then projected. Finally, an external reference signal from an invasive electrode was used to project the recorded vector magnetic fields due to gastric electrical activity. In each case, it was found that the information obtained by examination of the projected magnetic field vectors gave superior clinical insight to that obtained by analysis of any single magnetic field component.
Collapse
Affiliation(s)
- L A Bradshaw
- Department of Physics & Astronomy, Vanderbilt University, Nashville, USA.
| | | | | | | | | |
Collapse
|
20
|
Kozuch PL, Brandt LJ. Review article: diagnosis and management of mesenteric ischaemia with an emphasis on pharmacotherapy. Aliment Pharmacol Ther 2005; 21:201-15. [PMID: 15691294 DOI: 10.1111/j.1365-2036.2005.02269.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mesenteric ischaemia results from decreased blood flow to the bowel, causing cellular injury from lack of oxygen and nutrients. Acute mesenteric ischaemia (AMI) is an uncommon disorder with high morbidity and mortality, but outcomes are improved with prompt recognition and aggressive treatment. Five subgroups of AMI have been identified, with superior mesenteric artery embolism (SMAE) the most common. Older age and cardiovascular disease are common risk factors for AMI, excepting acute mesenteric venous thrombosis (AMVT), which affects younger patients with hypercoaguable states. AMI is characterized by sudden onset of abdominal pain; a benign abdominal exam may be observed prior to bowel infarction. Conventional angiography and more recently, computed tomography angiography, are the cornerstones of diagnosis. Correction of predisposing conditions, volume resuscitation and antibiotic treatment are standard treatments for AMI, and surgery is mandated in the setting of peritoneal signs. Intra-arterial vasodilators are used routinely in the treatment of non-occlusive mesenteric ischaemia (NOMI) and also are advocated in the treatment of occlusive AMI to decrease associated vasospasm. Thrombolytics have been used on a limited basis to treat occlusive AMI. A variety of agents have been studied in animal models to treat reperfusion injury, which sometimes can be more harmful than ischaemic injury. Chronic mesenteric ischaemia (CMI) usually is caused by severe obstructive atherosclerotic disease of two or more splanchnic vessels, presents with post-prandial pain and weight loss, and is treated by either surgical revascularization or percutaneous angioplasty and stenting.
Collapse
Affiliation(s)
- P L Kozuch
- Division of Gastroenterology, Department of Medicine, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY 10467, USA
| | | |
Collapse
|
21
|
Buist ML, Cheng LK, Yassi R, Bradshaw LA, Richards WO, Pullan AJ. An anatomical model of the gastric system for producing bioelectric and biomagnetic fields. Physiol Meas 2004; 25:849-61. [PMID: 15382826 DOI: 10.1088/0967-3334/25/4/006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Between 60 and 70 million people in the United States are affected by gastrointestinal disorders. Many of these conditions are difficult to assess without surgical intervention and accurate noninvasive techniques to aid in clinical assessment are needed. Through the use of a superconducting quantum interference device (SQUID) gradiometer, the weak magnetic field generated as a result of muscular activity in the digestive system can be measured. However, the interpretation of these magnetic recordings remains a significant challenge. We have created an anatomically realistic biophysically based mathematical model of the human digestive system and using this model normal gastric electrical control activity (ECA) has been simulated. The external magnetic fields associated with this gastric ECA have also been computed and are shown to be in qualitative agreement with recordings taken from normal individuals. The model framework thus provides a rational basis from which to begin interpreting magnetic recordings from normal and diseased individuals.
Collapse
Affiliation(s)
- M L Buist
- Bioengineering Institute, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
MI remains a highly lethal entity. Improving survival requires an aggressive, multidisciplinary approach. High-risk patients with severe abdominal pain and a paucity of physical findings should be undergo emergent imaging in a search for this disease. Improvements in laboratory tests and advances in imaging techniques may improve the ability to diagnose MI earlier in its course, before irreversible damage has occurred. Many treatment modalities are available and should be tailored to each individual case. By recognizing and preventing ischemia-reperfusion injury,the cycle of protracted complications may be broken. A decrease in the mortality from MI finally is occurring. Early recognition and aggressive treatment finally may allow clinicians to have a marked impact on patient survival.
Collapse
Affiliation(s)
- Joseph P Martinez
- Department of Surgery, Division of Emergency Medicine, University of Maryland School of Medicine, 22 South Greene Street, Baltimore, MD 21201, USA.
| | | |
Collapse
|
23
|
Bradshaw LA, Myers A, Wikswo JP, Richards WO. A spatio-temporal dipole simulation of gastrointestinal magnetic fields. IEEE Trans Biomed Eng 2003; 50:836-47. [PMID: 12848351 DOI: 10.1109/tbme.2003.813549] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We have developed a simulation of magnetic fields from gastrointestinal (GI) smooth muscle. Current sources are modeled as depolarization dipoles at the leading edge of the isopotential ring of electrical control activity (ECA) that is driven by coupled cells in the GI musculature. The dipole moment resulting from the known transmembrane potential distribution varies in frequency and phase depending on location in the GI tract. Magnetic fields in a homogeneous volume conductor are computed using the law of Biot-Savart and characterized by their spatial and temporal variation. The model predicts that the natural ECA frequency gradient may be detected by magnetic field detectors outside the abdomen. It also shows that propagation of the ECA in the gastric musculature results in propagating magnetic field patterns. Uncoupling of gastric smooth muscle cells disrupts the normal magnetic field propagation pattern. Intestinal ischemia, which has been experimentally characterized by lower-than-normal ECA frequencies, also produces external magnetic fields with lower ECA frequencies.
Collapse
Affiliation(s)
- L Alan Bradshaw
- Department of Surgery, Vanderbilt University, Nashville, TN 37235, USA.
| | | | | | | |
Collapse
|
24
|
Chaikof EL. Developing a discriminant noninvasive test for early mesenteric ischemia: measuring the basic rhythms of life. J Vasc Surg 1999; 30:367-9. [PMID: 10436460 DOI: 10.1016/s0741-5214(99)70151-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|