1
|
Guerrini A, Salaroli R, Zannoni A, Avallone G, Leone F, Serra V, Quaglia G, Del Zozzo F, Chabrillat T, Carlu C, Lupini C, Tedesco DEA. Immunomodulatory and anti-inflammatory potential of botanicals bioactive product (PHYTO AX'CELL™) for an improvement of the well-being of laying hens at the peak of production. Poult Sci 2025; 104:104882. [PMID: 39919558 PMCID: PMC11851228 DOI: 10.1016/j.psj.2025.104882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/29/2025] [Accepted: 02/03/2025] [Indexed: 02/09/2025] Open
Abstract
This study was designed to assess the effectiveness of an authorized commercial standardized mixture of Artepillin-C, methyl-salicylates, flavonoids and curcuminoids (PHYTO AX'CELL™) provided intermittently during 8 weeks (wk) of trial to laying hens raised in enriched cages during the peak of the production, in the reduction of inflammation status, improving the immune response, and egg quality. In this study, 764 Lohmann LSL-White hens on the first day (d) of the 26th wk of age (T0), were randomly assigned to 2 replicated experimental groups, control and treated (n=382 each). The treatment was supplied in drinking water, as follows: 26th to 27th wk (T1, 14 d) first treatment administration at a dose of 1 mL/L (0.5 mL/L only the first d of the treatment); 28th to the 31st wk (T2, 4 wk of withdrawal period); 32nd to 33rd wk (T3, 14 d) second treatment at a dose of 1 mL/L, until the end of the trial (T4). At T0, mid-T3 and T4, 13 hens per group were sampled for serum biochemical analyses (metabolic profile, H/L ratio) and weighed, and 60 eggs per group were analyzed for quality parameters. At T4, 13 hens per group were sacrificed for histological investigations and gut IgA quantification. The treatment reduced the mortality rate in the treated group (0.00%) compared to the control (2.61%). An improvement in intestinal IgA production and immune reactivity in the treated hens was observed with a significant fluctuating trend of the heterophil, lymphocyte and their ratio (P < 0.05). The egg quality was improved by the treatment, with positive effects in the Haugh unit, shell weight and thickness (P < 0.05). A T4, significant reduction in duodenal and rectal pH was observed in the treated group (P < 0.05), without intestinal inflammation score changes, body weight, serum biochemistry, interleukin levels, and infectious bronchitis virus titers (P > 0.05). From the results, PHYTO AX'CELL™ improved the well-being and physical condition of laying hens raised in cages, modulating the immune system with a positive production of intestinal IgA, and egg quality parameters important for commercial purposes.
Collapse
Affiliation(s)
- Alessandro Guerrini
- Department of Environmental Science and Policy, University of Milan, Via Celoria 10, 20133, Milan (MI), Italy.
| | - Roberta Salaroli
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano dell'Emilia (BO), Italy
| | - Augusta Zannoni
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano dell'Emilia (BO), Italy
| | - Giancarlo Avallone
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano dell'Emilia (BO), Italy
| | - Francesca Leone
- Department of Environmental Science and Policy, University of Milan, Via Celoria 10, 20133, Milan (MI), Italy
| | - Valentina Serra
- Department of Veterinary Medicine and Animal Science, University of Milan, Via dell' Università 6, 26900, Lodi, Italy
| | - Giulia Quaglia
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano dell'Emilia (BO), Italy
| | - Francesca Del Zozzo
- Chemifarma S.p.a, Via Don Eugenio Servadei, 16, 47122, Forlì-Cesena (FC), Italy
| | | | - Claire Carlu
- Phytosynthese, Avenue Jean Jaurès, 57, 63200, Mozac, France
| | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano dell'Emilia (BO), Italy
| | | |
Collapse
|
2
|
Abdelsalam M, Fathi M. Improving productivity in rabbits by using some natural feed additives under hot environmental conditions - A review. Anim Biosci 2023; 36:540-554. [PMID: 36634656 PMCID: PMC9996268 DOI: 10.5713/ab.22.0354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/24/2022] [Indexed: 01/12/2023] Open
Abstract
Heat stress is a major challenge to animal production in tropical and subtropical climates. Rabbits suffer from heat stress more than farm animals because they have few sweat glands, and their bodies are covered with thick fur. Intensive farming relies on antibiotics as antimicrobials or growth promoters to increase animals' productivity and health. However, the European Union and many countries have banned or restricted the use of antibiotics in animal feed for human health concerns. Several studies have found that replacing antibiotics in rabbit feed with natural plants or feed additives increases productivity and improves immune capacity, especially under heat stress conditions. Growth performance, immune response, gut microflora, and carcass yield may be increased in rabbits fed a diet supplemented with some natural plants and/or propolis. In this review article, we discuss and summarize the effects of some herbs and plant extracts as alternative feed additives on rabbit productivity, especially for those raised under hot ambient temperatures.
Collapse
Affiliation(s)
- Magdy Abdelsalam
- Department of Animal Production and Breeding, College of Agriculture and Veterinary Medicine, Qassim University, Al-Qassim 51452, Saudi Arabia.,Department of Animal Production, Faculty of Agriculture, Alexandria University, El-Shatby, Alexandria 21545, Egypt
| | - Moataz Fathi
- Department of Animal Production and Breeding, College of Agriculture and Veterinary Medicine, Qassim University, Al-Qassim 51452, Saudi Arabia.,Department of Poultry Production, Faculty of Agriculture, Ain Shams University, Hadayek Shoubra 11241, Cairo, Egypt
| |
Collapse
|
3
|
Santiago KB, Conti BJ, Cardoso EDO, Conte FL, Tasca KI, Romagnoli GG, Golim MDA, Cruz MT, Sforcin JM. Propolis anti-inflammatory effects on MAGE-1 and retinoic acid-treated dendritic cells and on Th1 and T regulatory cells. J Venom Anim Toxins Incl Trop Dis 2023; 29:e20220044. [PMID: 36721426 PMCID: PMC9851646 DOI: 10.1590/1678-9199-jvatitd-2022-0044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/13/2022] [Indexed: 01/15/2023] Open
Abstract
Background Propolis exhibits huge potential in the pharmaceutical industry. In the present study, its effects were investigated on dendritic cells (DCs) stimulated with a tumor antigen (MAGE-1) and retinoic acid (RA) and on T lymphocytes to observe a possible differential activation of T lymphocytes, driving preferentially to Th1 or Treg cells. Methods Cell viability, lymphocyte proliferation, gene expression (T-bet and FoxP3), and cytokine production by DCs (TNF-α, IL-10, IL-6 and IL-1β) and lymphocytes (IFN-γ and TGF-β) were analyzed. Results MAGE-1 and RA alone or in combination with propolis inhibited TNF-α production and induced a higher lymphoproliferation compared to control, while MAGE-1 + propolis induced IL-6 production. Propolis in combination with RA induced FoxP3 expression. MAGE-1 induced IFN-γ production while propolis inhibited it, returning to basal levels. RA inhibited TGF-β production, what was counteracted by propolis. Conclusion Propolis affected immunological parameters inhibiting pro-inflammatory cytokines and favoring the regulatory profile, opening perspectives for the control of inflammatory conditions.
Collapse
Affiliation(s)
| | - Bruno José Conti
- Institute of Biosciences, São Paulo State University (UNESP),
Botucatu, SP, Brazil
| | | | - Fernanda Lopes Conte
- Institute of Biosciences, São Paulo State University (UNESP),
Botucatu, SP, Brazil
| | - Karen Ingrid Tasca
- Institute of Biosciences, São Paulo State University (UNESP),
Botucatu, SP, Brazil
| | | | | | - Maria Tereza Cruz
- Faculty of Pharmacy, Center for Neurosciences and Cellular Biology,
University of Coimbra, Coimbra, Portugal
| | - José Maurício Sforcin
- Institute of Biosciences, São Paulo State University (UNESP),
Botucatu, SP, Brazil.,Correspondence:
| |
Collapse
|
4
|
FİDAN M, PINAR SM, EREZ ME, İNAL B, EROĞLU H. Determination of Botanical Origin and Mineral Content of Propolis Samples from Balveren (Şırnak) Beekeepers Accommodation Areas. COMMAGENE JOURNAL OF BIOLOGY 2022. [DOI: 10.31594/commagene.1178654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Researches on bee products have become popular in recent years. In fact, the content and component of bee products varies depending on many ecological and floristic factors and its nutritional and therapeutic properties are directly related to its content. Balveren (Şırnak province) beekeepers place their hives in locations with different geographical structure, floristic and topographic characteristics. This variability not only affects the quality of honey but also changes the properties of propolis. Studies on propolis, known as bee glue, have gained importance in recent years. As with other bee products, the propolis content also depends on the floristic characteristics of the region. In this study, propolis samples were collected from the regions where Balveren beekeepers stayed and their botanical origins, wax ratios, phenolic content, and mineral substance contents were analyzed. In the microscopic analysis, pollen grains belonging to 14 different families used by bees were determined. It was determined that the total phenolic and mineral contents of propolis vary completely depending on the location. With this study, the propolis properties of the hives in the region were tried to be revealed and it was aimed that this study would help the region's propolis to be used for technological and therapeutic purposes.
Collapse
|
5
|
Allergic Inflammation: Effect of Propolis and Its Flavonoids. Molecules 2022; 27:molecules27196694. [PMID: 36235230 PMCID: PMC9570745 DOI: 10.3390/molecules27196694] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
The incidence of allergic diseases and their complications are increasing worldwide. Today, people increasingly use natural products, which has been termed a "return to nature". Natural products with healing properties, especially those obtained from plants and bees, have been used in the prevention and treatment of numerous chronic diseases, including allergy and/or inflammation. Propolis is a multi-component resin rich in flavonoids, collected and transformed by honeybees from buds and plant wounds for the construction and adaptation of their nests. This article describes the current views regarding the possible mechanisms and multiple benefits of flavonoids in combating allergy and allergy-related complications. These benefits arise from flavonoid anti-allergic, anti-inflammatory, antioxidative, and wound healing activities and their effects on microbe-immune system interactions in developing host responses to different allergens. Finally, this article presents various aspects of allergy pathobiology and possible molecular approaches in their treatment. Possible mechanisms regarding the antiallergic action of propolis on the microbiota of the digestive and respiratory tracts and skin diseases as a method to selectively remove allergenic molecules by the process of bacterial biotransformation are also reported.
Collapse
|
6
|
Al-Homidan I, Fathi M, Abdelsalam M, Ebeid T, Abou-Emera O, Mostafa M, El-Razik MA, Shehab-El-Deen M. Effect of propolis supplementation and breed on growth performance, immunity, blood parameters and cecal microbiota in growing rabbits. Anim Biosci 2022; 35:1606-1615. [PMID: 35507863 PMCID: PMC9449377 DOI: 10.5713/ab.21.0535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/09/2022] [Indexed: 11/27/2022] Open
Abstract
Objective: The present study was conducted to investigate the potential effects of dietary supplemented propolis in two growing rabbit breeds on growth performance, immune response, blood parameters, carcass characteristics, and cecal microflora composition.Methods: A total of 90 growing rabbits aged 6 weeks from two breeds (V-line and Jabali) were randomly allocated to 3 dietary propolis experimental treatments. The experimental treatments consisted of a 2×3 factorial arrangement with two rabbit breeds and three levels of dietary propolis supplementation (0, 250 mg/kg, and 500 mg/kg). Each sub-treatment has 15 rabbits. The experimental period lasted six weeks.Results: There were no significant differences in growth performance and carcass characteristics due to propolis administration. Propolis supplementation at a high level significantly increased (linear; p<0.05) cellular-mediated immunity compared with the unsupplemented group. Furthermore, the rabbits receiving propolis exhibited a significant increase (linear and quadratic; p<0.03) in IgM immunoglobulins compared to the control. The current study provides further evidence that the dietary inclusion of propolis can significantly reduce pathogenic bacterial colonization in growing rabbits. The total count of microflora, E. coli, and Salmonella spp. was significantly lower (linear; p<0.01) in supplemented rabbit groups compared to the control group according to the microbiological analysis of cecal digesta. Based on breed effect, the results indicated that Jabali rabbits (local) performed better than V-line rabbits (foreign) in the majority of the studied traits.Conclusion: Dietary propolis is promising for further investigation into improving intestinal health and enhancing immunity in growing rabbits.
Collapse
|
7
|
Molecular and Cellular Mechanisms of Propolis and Its Polyphenolic Compounds against Cancer. Int J Mol Sci 2022; 23:ijms231810479. [PMID: 36142391 PMCID: PMC9499605 DOI: 10.3390/ijms231810479] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 12/12/2022] Open
Abstract
In recent years, interest in natural products such as alternative sources of pharmaceuticals for numerous chronic diseases, including tumors, has been renewed. Propolis, a natural product collected by honeybees, and polyphenolic/flavonoid propolis-related components modulate all steps of the cancer progression process. Anticancer activity of propolis and its compounds relies on various mechanisms: cell-cycle arrest and attenuation of cancer cells proliferation, reduction in the number of cancer stem cells, induction of apoptosis, modulation of oncogene signaling pathways, inhibition of matrix metalloproteinases, prevention of metastasis, anti-angiogenesis, anti-inflammatory effects accompanied by the modulation of the tumor microenvironment (by modifying macrophage activation and polarization), epigenetic regulation, antiviral and bactericidal activities, modulation of gut microbiota, and attenuation of chemotherapy-induced deleterious side effects. Ingredients from propolis also "sensitize" cancer cells to chemotherapeutic agents, likely by blocking the activation of the transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). In this review, we summarize the current knowledge related to the the effects of flavonoids and other polyphenolic compounds from propolis on tumor growth and metastasizing ability, and discuss possible molecular and cellular mechanisms involved in the modulation of inflammatory pathways and cellular processes that affect survival, proliferation, invasion, angiogenesis, and metastasis of the tumor.
Collapse
|
8
|
AL-Kahtani SN, Alaqil AA, Abbas AO. Modulation of Antioxidant Defense, Immune Response, and Growth Performance by Inclusion of Propolis and Bee Pollen into Broiler Diets. Animals (Basel) 2022; 12:ani12131658. [PMID: 35804557 PMCID: PMC9264778 DOI: 10.3390/ani12131658] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 11/24/2022] Open
Abstract
(1) Background: Propolis and bee pollen have natural bioactive compounds that may support the performance and immunological response of broilers. (2) Methods: The study included 300 1 d old Cobb-500 broiler chicks. Starting from 22−42 d of age, chicks were divided according to a 2 × 2 factorial design into one of the four treatment groups (5 replicates × 15 chicks per replicate); a basal diet without supplementation (CONT) or supplemented with 1 g/kg of propolis (PR) or bee pollen (BP) separately or in an even combination (PR + BP). (3) Results: A significant (p < 0.05) increase was obtained in the body-weight gain of broilers treated with PR, BP, and PR + BP compared to the CONT. The total antioxidant capacity and superoxide dismutase were highly (p < 0.05) activated in all treated groups compared to the CONT. Immunological parameters, especially the leukocyte cell viability, T- and B-lymphocyte proliferation, immunoglobulins (IgA and IgM), antibody titers, and wattle-swelling test were significantly (p < 0.05) enhanced in the treated broilers with PR and/or BP compared to the CONT. (4) Conclusions: The dietary supplementation of PR and/or BP could be beneficial for broiler growth through maximizing the antioxidant- and immune-system defenses.
Collapse
Affiliation(s)
- Saad N. AL-Kahtani
- Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia;
| | - Abdulaziz A. Alaqil
- Department of Animal and Fish Production, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Correspondence: (A.A.A.); (A.O.A.)
| | - Ahmed O. Abbas
- Department of Animal and Fish Production, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Department of Animal Production, Faculty of Agriculture, Cairo University, 7 Gamma St., Giza 12613, Egypt
- Correspondence: (A.A.A.); (A.O.A.)
| |
Collapse
|
9
|
Nuzzo G, Senese G, Gallo C, Albiani F, Romano L, d’Ippolito G, Manzo E, Fontana A. Antitumor Potential of Immunomodulatory Natural Products. Mar Drugs 2022; 20:md20060386. [PMID: 35736189 PMCID: PMC9229642 DOI: 10.3390/md20060386] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/11/2022] Open
Abstract
Cancer is one of the leading causes of death globally. Anticancer drugs aim to block tumor growth by killing cancerous cells in order to prevent tumor progression and metastasis. Efficient anticancer drugs should also minimize general toxicity towards organs and healthy cells. Tumor growth can also be successfully restrained by targeting and modulating immune response. Cancer immunotherapy is assuming a growing relevance in the fight against cancer and has recently aroused much interest for its wider safety and the capability to complement conventional chemotherapeutic approaches. Natural products are a traditional source of molecules with relevant potential in the pharmacological field. The huge structural diversity of metabolites with low molecular weight (small molecules) from terrestrial and marine organisms has provided lead compounds for the discovery of many modern anticancer drugs. Many natural products combine chemo-protective and immunomodulant activity, thus offering the potential to be used alone or in association with conventional cancer therapy. In this review, we report the natural products known to possess antitumor properties by interaction with immune system, as well as discuss the possible immunomodulatory mechanisms of these molecules.
Collapse
Affiliation(s)
- Genoveffa Nuzzo
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.S.); (C.G.); (F.A.); (L.R.); (G.d.); (A.F.)
- Correspondence: (G.N.); (E.M.); Tel.: +39-081-8675104 (G.N.); +39-081-8675177 (E.M.)
| | - Giuseppina Senese
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.S.); (C.G.); (F.A.); (L.R.); (G.d.); (A.F.)
| | - Carmela Gallo
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.S.); (C.G.); (F.A.); (L.R.); (G.d.); (A.F.)
| | - Federica Albiani
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.S.); (C.G.); (F.A.); (L.R.); (G.d.); (A.F.)
| | - Lucia Romano
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.S.); (C.G.); (F.A.); (L.R.); (G.d.); (A.F.)
| | - Giuliana d’Ippolito
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.S.); (C.G.); (F.A.); (L.R.); (G.d.); (A.F.)
| | - Emiliano Manzo
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.S.); (C.G.); (F.A.); (L.R.); (G.d.); (A.F.)
- Correspondence: (G.N.); (E.M.); Tel.: +39-081-8675104 (G.N.); +39-081-8675177 (E.M.)
| | - Angelo Fontana
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.S.); (C.G.); (F.A.); (L.R.); (G.d.); (A.F.)
- Department of Biology, University of Naples Federico II, Via Cinthia–Bld. 7, 80126 Napoli, Italy
| |
Collapse
|
10
|
Zulhendri F, Perera CO, Tandean S, Abdulah R, Herman H, Christoper A, Chandrasekaran K, Putra A, Lesmana R. The Potential Use of Propolis as a Primary or an Adjunctive Therapy in Respiratory Tract-Related Diseases and Disorders: A Systematic Scoping Review. Biomed Pharmacother 2022; 146:112595. [PMID: 35062065 DOI: 10.1016/j.biopha.2021.112595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/09/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022] Open
Abstract
Propolis is a resinous beehive product that is collected by the bees from plant resin and exudates, to protect and maintain hive homeostasis. Propolis has been used by humans therapeutically to treat many ailments including respiratory tract-related diseases and disorders. The aim of the present systematic scoping review is to evaluate the experimental evidence to support the use of propolis as a primary or an adjunctive therapy in respiratory tract-related diseases and disorders. After applying the exclusion criteria, 158 research publications were retrieved and identified from Scopus, Web of Science, Pubmed, and Google Scholar. The key themes of the included studies were pathogenic infection-related diseases and disorders, inflammation-related disorders, lung cancers, and adverse effects. Furthermore, the potential molecular and biochemical mechanisms of action of propolis in alleviating respiratory tract-related diseases and disorders are discussed. In conclusion, the therapeutic benefits of propolis have been demonstrated by various in vitro studies, in silico studies, animal models, and human clinical trials. Based on the weight and robustness of the available experimental and clinical evidence, propolis is effective, either as a primary or an adjunctive therapy, in treating respiratory tract-related diseases.
Collapse
Affiliation(s)
- Felix Zulhendri
- Kebun Efi, Kabanjahe 22171, North Sumatra, Indonesia; Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Indonesia; Research Fellow, Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Indonesia.
| | - Conrad O Perera
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland CBD, Auckland 1010, New Zealand.
| | - Steven Tandean
- Department of Neurosurgery, Faculty of Medicine, Universitas Sumatera Utara, Medan 20222, Sumatera Utara, Indonesia.
| | - Rizky Abdulah
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Indonesia; Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Indonesia.
| | - Herry Herman
- Department of Orthopaedics, Faculty of Medicine, Universitas Padjadjaran, Indonesia.
| | - Andreas Christoper
- Postgraduate Program of Medical Science, Faculty of Medicine, Universitas Padjadjaran, Indonesia.
| | | | - Arfiza Putra
- Department of Otolaryngology, Head and Neck Surgery, Faculty of Medicine, Universitas Sumatera Utara Medan 20222, Sumatera Utara, Indonesia.
| | - Ronny Lesmana
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Indonesia; Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Indonesia; Biological Activity Division, Central Laboratory, Universitas Padjadjaran, Indonesia.
| |
Collapse
|
11
|
Wahyuni EA, Chen CY, Wu HN, Chien CC, Chen SC. Propolis alleviates 4-aminobiphenyl-induced oxidative DNA damage by inhibition of CYP2E1 expression in human liver cells. ENVIRONMENTAL TOXICOLOGY 2021; 36:1504-1513. [PMID: 33847444 DOI: 10.1002/tox.23147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
4-Aminobiphenyl (4-ABP) may cause DNA damage in human liver cells (HepG2 and L-02). Propolis exhibits antioxidant properties through reactive oxygen species (ROS) scavenging. We determined the effects of propolis in alleviating 4-ABP -induced DNA damage using the comet assay. Results revealed that propolis could significantly alleviated oxidative damaged DNA by 4-ABP. Furthermore, we proved that inhibition of cytochrome P450 2E1 (CYP2E1) expression by propolis could contribute to the decreased oxidative DNA damage in the treated cells, as the conversion of 4-ABP into its metabolite, N-hydroxy-ABP (HOABP), was blocked; after all, HOABP showed more genotoxic than its parent chemical, 4-ABP. With the homologous recombination assay, propolis failed to induce DNA repair enzymes. Furthermore, the expression of RAD51, Ku70/Ku80, and OGG1 in treated cells were determined with the western blot, revealing that the expression of these protein were unchanged in comparison with those in nontreated cells. However, propolis could protect the treated cells from DNA damage. In conclusion, propolis could antagonize 4-ABP-induced oxidative DNA damage though the removal of ROS and inhibition of CYP2E1 expression in the treated cells.
Collapse
Affiliation(s)
- Eva Ari Wahyuni
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
- Department of Natural Science Education, University of Trunojoyo Madura, East Java, Indonesia
| | - Chien Yi Chen
- Department of Applied Physics and Chemistry, University of Taipei, Taipei, Taiwan
| | - Huery Nuo Wu
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan
| | - Chih-Ching Chien
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan
| | - Ssu-Ching Chen
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| |
Collapse
|
12
|
Yosri N, Abd El-Wahed AA, Ghonaim R, Khattab OM, Sabry A, Ibrahim MAA, Moustafa MF, Guo Z, Zou X, Algethami AFM, Masry SHD, AlAjmi MF, Afifi HS, Khalifa SAM, El-Seedi HR. Anti-Viral and Immunomodulatory Properties of Propolis: Chemical Diversity, Pharmacological Properties, Preclinical and Clinical Applications, and In Silico Potential against SARS-CoV-2. Foods 2021; 10:1776. [PMID: 34441553 PMCID: PMC8391193 DOI: 10.3390/foods10081776] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 12/24/2022] Open
Abstract
Propolis, a resin produced by honeybees, has long been used as a dietary supplement and folk remedy, and more recent preclinical investigations have demonstrated a large spectrum of potential therapeutic bioactivities, including antioxidant, antibacterial, anti-inflammatory, neuroprotective, immunomodulatory, anticancer, and antiviral properties. As an antiviral agent, propolis and various constituents have shown promising preclinical efficacy against adenoviruses, influenza viruses, respiratory tract viruses, herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2), human immunodeficiency virus (HIV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Over 300 chemical components have been identified in propolis, including terpenes, flavonoids, and phenolic acids, with the specific constituent profile varying widely according to geographic origin and regional flora. Propolis and its constituents have demonstrated potential efficacy against SARS-CoV-2 by modulating multiple pathogenic and antiviral pathways. Molecular docking studies have demonstrated high binding affinities of propolis derivatives to multiple SARS-CoV-2 proteins, including 3C-like protease (3CLpro), papain-like protease (PLpro), RNA-dependent RNA polymerase (RdRp), the receptor-binding domain (RBD) of the spike protein (S-protein), and helicase (NSP13), as well as to the viral target angiotensin-converting enzyme 2 (ACE2). Among these compounds, retusapurpurin A has shown high affinity to 3CLpro (ΔG = -9.4 kcal/mol), RdRp (-7.5), RBD (-7.2), NSP13 (-9.4), and ACE2 (-10.4) and potent inhibition of viral entry by forming hydrogen bonds with amino acid residues within viral and human target proteins. In addition, propolis-derived baccharin demonstrated even higher binding affinity towards PLpro (-8.2 kcal/mol). Measures of drug-likeness parameters, including metabolism, distribution, absorption, excretion, and toxicity (ADMET) characteristics, also support the potential of propolis as an effective agent to combat COVID-19.
Collapse
Affiliation(s)
- Nermeen Yosri
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (N.Y.); (Z.G.); (X.Z.)
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt; (R.G.); (O.M.K.); (A.S.)
| | - Aida A. Abd El-Wahed
- Department of Bee Research, Plant Protection Research Institute, Agricultural Research Centre, Giza 12627, Egypt;
| | - Reem Ghonaim
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt; (R.G.); (O.M.K.); (A.S.)
| | - Omar M. Khattab
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt; (R.G.); (O.M.K.); (A.S.)
| | - Aya Sabry
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt; (R.G.); (O.M.K.); (A.S.)
| | - Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt;
| | - Mahmoud F. Moustafa
- Department of Biology, College of Science, King Khalid University, Abha 9004, Saudi Arabia;
- Department of Botany & Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (N.Y.); (Z.G.); (X.Z.)
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (N.Y.); (Z.G.); (X.Z.)
| | | | - Saad H. D. Masry
- Department of Plant Protection and Biomolecular Diagnosis, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications, New Borg El-Arab City, Alexandria 21934, Egypt;
- Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Al Ain 52150, United Arab Emirates
| | - Mohamed F. AlAjmi
- Pharmacognosy Group, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Hanan S. Afifi
- Food Research Section, R&D Division, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi P.O. Box 52150, United Arab Emirates;
| | - Shaden A. M. Khalifa
- Department of Molecular Biosciences, Stockholm University, The Wenner-Gren Institute, SE-106 91 Stockholm, Sweden
| | - Hesham R. El-Seedi
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt; (R.G.); (O.M.K.); (A.S.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Division of Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, P.O. Box 591, SE 751 24 Uppsala, Sweden
| |
Collapse
|
13
|
Bhargava P, Mahanta D, Kaul A, Ishida Y, Terao K, Wadhwa R, Kaul SC. Experimental Evidence for Therapeutic Potentials of Propolis. Nutrients 2021; 13:2528. [PMID: 34444688 PMCID: PMC8397973 DOI: 10.3390/nu13082528] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/07/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022] Open
Abstract
Propolis is produced by honeybees from materials collected from plants they visit. It is a resinous material having mixtures of wax and bee enzymes. Propolis is also known as bee glue and used by bees as a building material in their hives, for blocking holes and cracks, repairing the combs and strengthening their thin borders. It has been extensively used since ancient times for different purposes in traditional human healthcare practices. The quality and composition of propolis depend on its geographic location, climatic zone and local flora. The New Zealand and Brazilian green propolis are the two main kinds that have been extensively studied in recent years. Their bioactive components have been found to possess a variety of therapeutic potentials. It was found that Brazilian green propolis improves the cognitive functions of mild cognitive impairments in patients living at high altitude and protects them from neurodegenerative damage through its antioxidant properties. It possesses artepillin C (ARC) as the key component, also known to possess anticancer potential. The New Zealand propolis contains caffeic acid phenethyl ester (CAPE) as the main bioactive with multiple therapeutic potentials. Our lab performed in vitro and in vivo assays on the extracts prepared from New Zealand and Brazilian propolis and their active ingredients. We provided experimental evidence that these extracts possess anticancer, antistress and hypoxia-modulating activities. Furthermore, their conjugation with γCD proved to be more effective. In the present review, we portray the experimental evidence showing that propolis has the potential to be a candidate drug for different ailments and improve the quality of life.
Collapse
Affiliation(s)
- Priyanshu Bhargava
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan; (P.B.); (D.M.); (A.K.); (R.W.)
| | - Debajit Mahanta
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan; (P.B.); (D.M.); (A.K.); (R.W.)
- DBT-APSCS&T Centre of Excellence for Bioresources and Sustainable Development, Kimin 791121, India
| | - Ashish Kaul
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan; (P.B.); (D.M.); (A.K.); (R.W.)
| | - Yoshiyuki Ishida
- CycloChem Co., Ltd., 7-4-5 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan; (Y.I.); (K.T.)
| | - Keiji Terao
- CycloChem Co., Ltd., 7-4-5 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan; (Y.I.); (K.T.)
| | - Renu Wadhwa
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan; (P.B.); (D.M.); (A.K.); (R.W.)
| | - Sunil C. Kaul
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan; (P.B.); (D.M.); (A.K.); (R.W.)
- Kaul-Tech Co., Ltd., Nagakunidai 3-24, Tsuchiura 300-0810, Japan
| |
Collapse
|
14
|
Ribeiro VP, Arruda C, Aldana-Mejia JA, Bastos JK, Tripathi SK, Khan SI, Khan IA, Ali Z. Phytochemical, Antiplasmodial, Cytotoxic and Antimicrobial Evaluation of a Southeast Brazilian Brown Propolis Produced by Apis mellifera Bees. Chem Biodivers 2021; 18:e2100288. [PMID: 34227213 DOI: 10.1002/cbdv.202100288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022]
Abstract
Seven phenolic compounds (ferulic acid, caffeic acid, 4-methoxycinnamic acid, 3,4-dimethoxycinnamic acid, 3-hydroxy-4-methoxybenzaldehyde, 3-methoxy-4-hydroxypropiophenone and 1-O,2-O-digalloyl-6-O-trans-p-coumaroyl-β-D-glucopyranoside), a flavanonol (7-O-methylaromadendrin), two lignans (pinoresinol and matairesinol) and six diterpenic acids/alcohol (19-acetoxy-13-hydroxyabda-8(17),14-diene, totarol, 7-oxodehydroabietic acid, dehydroabietic acid, communic acid and isopimaric acid) were isolated from the hydroalcoholic extract of a Brazilian Brown Propolis and characterized by NMR spectral data analysis. The volatile fraction of brown propolis was characterized by CG-MS, composed mainly of monoterpenes and sesquiterpenes, being the major α-pinene (18.4 %) and β-pinene (10.3 %). This propolis chemical profile indicates that Pinus spp., Eucalyptus spp. and Araucaria angustifolia might be its primary plants source. The brown propolis displayed significant activity against Plasmodium falciparum D6 and W2 strains with IC50 of 5.3 and 9.7 μg/mL, respectively. The volatile fraction was also active with IC50 of 22.5 and 41.8 μg/mL, respectively. Among the compounds, 1-O,2-O-digalloyl-6-O-trans-p-coumaroyl-β-D-glucopyranoside showed IC50 of 3.1 and 1.0 μg/mL against D6 and W2 strains, respectively, while communic acid showed an IC50 of 4.0 μg/mL against W2 strain. Cytotoxicity was determined on four tumor cell lines (SK-MEL, KB, BT-549, and SK-OV-3) and two normal renal cell lines (LLC-PK1 and VERO). Matairesinol, 7-O-methylaromadendrin, and isopimaric acid showed an IC50 range of 1.8-0.78 μg/mL, 7.3-100 μg/mL, and 17-18 μg/mL, respectively, against the tumor cell lines but they were not cytotoxic against normal cell lines. The crude extract of brown propolis displayed antimicrobial activity against C. neoformans, methicillin-resistant Staphylococcus aureus, and P. aeruginosa at 29.9 μg/mL, 178.9 μg/mL, and 160.7 μg/mL, respectively. The volatile fraction inhibited the growth of C. neoformans at 53.0 μg/mL. The compounds 3-hydroxy-4-methoxybenzaldehyde, 3-methoxy-4-hydroxypropiophenone and 7-oxodehydroabietic acid were active against C. neoformans, and caffeic and communic acids were active against methicillin-resistant Staphylococcus aureus.
Collapse
Affiliation(s)
- Victor Pena Ribeiro
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, Ribeirão Preto, 14040-930, Brazil
| | - Caroline Arruda
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, Ribeirão Preto, 14040-930, Brazil
| | - Jennyfer Andrea Aldana-Mejia
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, Ribeirão Preto, 14040-930, Brazil
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, Ribeirão Preto, 14040-930, Brazil
| | - Siddharth K Tripathi
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Mississippi, 38677, USA
| | - Shabana I Khan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Mississippi, 38677, USA
| | - Ikhlas A Khan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Mississippi, 38677, USA
| | - Zulfiqar Ali
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Mississippi, 38677, USA
| |
Collapse
|
15
|
Royal Jelly Improves the Morphology of the Reproductive Tract, Internal Egg Quality, and Blood Biochemical Parameters in Laying Hens at the Late Stage of Production. Animals (Basel) 2021; 11:ani11071861. [PMID: 34201427 PMCID: PMC8300208 DOI: 10.3390/ani11071861] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 02/03/2023] Open
Abstract
The purpose of this study was to evaluate the effects of royal jelly (RJ) on the morphology of the reproductive tract, egg production, and blood biochemical indices of aged laying hens. In total, 120 Lohman Brown laying hens at week 58 of age were randomly assigned into three equal groups. Pure RJ was dissolved in distilled water and injected subcutaneously as follows: the first treatment (R1; 100 mg RJ kg-1); the second treatment (R2; 200 mg RJ kg-1); the control treatment (CON; 1 mL distilled water). Both RJ-treated groups exhibited a significantly higher number of large yellow follicles (LYFs), small yellow follicles (SYFs), and large white follicles (LWFs) (p ˂ 0.05). Furthermore, RJ treatment significantly increased the diameter and weight of the F1 follicles. However, only the R2 group exhibited significantly greater ovary and uterus weights. RJ treatment did not affect the percentage of oviduct and weight of ovarian stroma. In addition, RJ increased the hen-day egg production rate compared with the CON group; however, only the R2 group showed greater egg weight (p = 0.032). RJ treatment also improved the albumen height, Haugh units, and yolk index. The administration of RJ significantly decreased the serum glucose, but increased the levels of serum albumen and cholesterol. In conclusion, RJ treatment may improve the morphology of the reproductive tract (including follicular growth and oviduct morphology), egg production rate, and internal egg quality traits of aged laying hens.
Collapse
|
16
|
Dezmirean DS, Paşca C, Moise AR, Bobiş O. Plant Sources Responsible for the Chemical Composition and Main Bioactive Properties of Poplar-Type Propolis. PLANTS 2020; 10:plants10010022. [PMID: 33374275 PMCID: PMC7823854 DOI: 10.3390/plants10010022] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Propolis is a resinous mixture, made by the honeybees from substances collected from tree or other plant buds, plant exudates, or resins found in the stem, branches, or leaves of different plants. The geographical origin of propolis is given by plant sources from respective areas. Different studies have classified this bee product according to the vegetal material from the same areas. Poplar-type propolis has the widest spread in the world, in the temperate zones from Europe, Asia, or North America. The name is given by the main plant source from where the bees are collecting the resins, although other vegetal sources are present in the mentioned areas. Different Pinus spp., Prunus spp., Acacia spp. and also Betula pendula, Aesculus hippocastanum, and Salix alba are important sources of resins for "poplar-type" propolis. The aim of this review is to identify the vegetal material's chemical composition and activities of plant resins and balms used by the bees to produce poplar-type propolis and to compare it with the final product from similar geographical regions. The relevance of this review is to find the similarities between the chemical composition and properties of plant sources and propolis. The latest determination methods of bioactive compounds from plants and propolis are also reviewed.
Collapse
Affiliation(s)
- Daniel Severus Dezmirean
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (D.S.D.); (C.P.); (A.R.M.)
| | - Claudia Paşca
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (D.S.D.); (C.P.); (A.R.M.)
| | - Adela Ramona Moise
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (D.S.D.); (C.P.); (A.R.M.)
| | - Otilia Bobiş
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Correspondence: ; Tel.: +40-746-027-940
| |
Collapse
|
17
|
Moise AR, Bobiş O. Baccharis dracunculifolia and Dalbergia ecastophyllum, Main Plant Sources for Bioactive Properties in Green and Red Brazilian Propolis. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1619. [PMID: 33233429 PMCID: PMC7700410 DOI: 10.3390/plants9111619] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023]
Abstract
Nowadays, propolis is used as a highly valuable product in alternative medicine for improving health or treating a large spectrum of pathologies, an ingredient in pharmaceutical products, and also as a food additive. Different vegetal materials are collected by honeybees and mixed with wax and other own substances in order to obtain the final product, called propolis. It is known as the bee product with the widest chemical composition due to the raw material collected by the bees. Different types are known worldwide: green Brazilian propolis (having Baccharis dracunculifolia as the major plant source), red Brazilian propolis (from Dalbergia ecastophyllum), European propolis (Populus nigra L.), Russian propolis (Betula verrucosa Ehrh), Cuban and Venezuelan red propolis (Clusia spp.), etc. An impressive number of scientific papers already demonstrate the pharmacological potential of different types of propolis, the most important activities being the antimicrobial, anti-inflammatory, antitumor, immunomodulatory, and antioxidant activities. However, the bioactive compounds responsible for each activity have not been fully elucidated. This review aims to collect important data about the chemical composition and bioactive properties of the vegetal sources and to compare with the chemical composition of respective propolis types, in order to determine the connection between the floral source and the propolis properties.
Collapse
Affiliation(s)
- Adela Ramona Moise
- Department of Apiculture and Sericulture, Faculty of Animal Breeding and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Otilia Bobiş
- Life Science Institute “King Michael I of Romania”, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| |
Collapse
|
18
|
Al-Hariri MT, Abualait TS. Effects of Green Brazilian Propolis Alcohol Extract on Nociceptive Pain Models in Rats. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1102. [PMID: 32867097 PMCID: PMC7570148 DOI: 10.3390/plants9091102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022]
Abstract
Pain is one of the most common symptoms encountered in the medical practice. None of the management procedures used currently offer a complete relief for patients suffering from nociceptive pain. New treatment strategies for pain management are needed. Propolis has been used in traditional medicine to relieve various types of pain. The aim of the current study was to investigate the potential effects of the green Brazilian propolis alcohol extract in vivo on the nociceptive and inflammatory pain models in rats. Rats were distributed into three random groups (n = 6); Group I: control group received normal saline intraperitoneally (i.p.); Group II: treated with green Brazilian propolis alcohol extract (P50 mg/kg i.p.); Group III: treated with P100 mg/kg i.p. After sixty minutes, 50 μL of 5% formalin was injected subcutaneously into the dorsal surface of the right hind paw. The nociceptive response was identified by counting the number of flinches of the injected paw. The number of flinches was counted for the period of 0-5 min (early phase; neurogenic) and 10-60 min (late phase; inflammatory). Thermal hyperalgesia was assessed using three-paw withdrawal latency measurement with ten minutes intervals using a planter analgesic meter. Abdominal writhe (contraction) was induced by i.p. injection of acetic acid (1 mL of 2%). The results showed that green Brazilian propolis alcohol extract caused a significant inhibition of acetic acid-induced pain and significantly increased the pain threshold against infrared and formalin tests. The promising antinociceptive and anti-inflammatory properties of propolis and/or its active constituents as natural compounds in the present study indicates that it merits further studies in pain.
Collapse
Affiliation(s)
- Mohammed T. Al-Hariri
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box 2114, Dammam 31541, Saudi Arabia
| | - Turki S. Abualait
- Department of Physical Therapy, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia;
| |
Collapse
|
19
|
Medicinal plants used by traditional medicine practitioners to boost the immune system in people living with HIV/AIDS in Uganda. Eur J Integr Med 2020. [DOI: 10.1016/j.eujim.2019.101011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Mojarab S, Shahbazzadeh D, Moghbeli M, Eshraghi Y, Bagheri KP, Rahimi R, Savoji MA, Mahdavi M. Immune responses to HIV-1 polytope vaccine candidate formulated in aqueous and alcoholic extracts of Propolis: Comparable immune responses to Alum and Freund adjuvants. Microb Pathog 2019; 140:103932. [PMID: 31857237 DOI: 10.1016/j.micpath.2019.103932] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 11/24/2019] [Accepted: 12/15/2019] [Indexed: 11/25/2022]
Abstract
Today's, vaccination is the most cost-effective approaches for preventing infectious diseases. In this strategy, adjuvants play an important role. Propolis from honey bee can stimulate the immune system and several studies have shown the modulating effects of Propolis on the immune responses. Here, the adjuvant effects of aqueous and alcoholic extracts of Propolis were studied on the multi-epitope vaccines against HIV-1. A recombinant vaccine against HIV-1 was prepared and BALB/c mice were immunized. subcutaneously on day 0 with 100 μl of candidate vaccine (10 μg) formulated in an alcoholic extract of Propolis. The second group of mice was immunized with the vaccine (10 μg) formulated in aqueous extract of Propolis. Also, candidate vaccine was formulated in Freund's and Alum adjuvants in the third and fourth groups. Experimental mice were immunized three times with two week intervals under the same conditions and suitable control groups. After final injection, lymphocyte proliferation was measured by BrdU method, IL-4 and IFN-γ cytokines, specific total IgG antibodies, IgG1 and IgG2a isotypes were evaluated using ELISA. The results show that the aqueous and alcoholic extracts were able to enhance lymphocyte proliferation, IL-4 and IFN-γ cytokines and antibody responses with dominant IgG1 pattern and comparable to Freund's and Alum adjuvants. It seems that aqueous and alcoholic extracts of Propolis show adjuvant activity and may be useful for vaccine formulation.
Collapse
Affiliation(s)
- Sanaz Mojarab
- Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Biology, Islamic Azad University, Damghan Branch, Damghan, Iran
| | - Delavar Shahbazzadeh
- Biotechnology Research Center, Venom and Biotherapeutic Molecules Lab., Pasteur Institute of Iran, Tehran, Iran.
| | - Majid Moghbeli
- Department of Biology, Islamic Azad University, Damghan Branch, Damghan, Iran
| | - Yasaman Eshraghi
- Department of Microbiology, Faculty of Advanced Sciences & Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kamran Pooshang Bagheri
- Biotechnology Research Center, Venom and Biotherapeutic Molecules Lab., Pasteur Institute of Iran, Tehran, Iran
| | - Roghieh Rahimi
- Blood Transfusion Research Center, High Institute for Education and Research in Transfusion Medicine, Tehran, Iran
| | - Mohammad Ali Savoji
- Department of Microbiology, Faculty of Advanced Sciences & Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehdi Mahdavi
- Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Immunotherapy Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
21
|
Fikri AM, Sulaeman A, Handharyani E, Marliyati SA, Fahrudin M. The effect of propolis administration on fetal development. Heliyon 2019; 5:e02672. [PMID: 31687508 PMCID: PMC6820270 DOI: 10.1016/j.heliyon.2019.e02672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/26/2019] [Accepted: 10/14/2019] [Indexed: 01/21/2023] Open
Abstract
Propolis is one of the bee products that widely used in health therapy. However, there has no study evaluating the developmental toxicity of propolis. This study was aimed to analyze the effect of propolis administration during pregnancy on fetal development. The pregnant mice were divided into five groups including control group (Tween 80 1%), low-dose (380 mg/kg b.wt.) and high-dose (1400 mg/kg b.wt.) of water extract of propolis from Banten (WEB), and low-dose (380 mg/kg b.wt.) and high-dose (1400 mg/kg b.wt.) of ethanol extract of propolis from South Sulawesi (EES). Propolis was administered for 18 days of gestation and then sacrificed to analyze the fetal development by examining external and skeletal abnormalities. The histopathological examination of placenta was also conducted. The result showed both low-dose groups did not inhibit fetal development. However, the high-dose of EES significantly reduced the weight, crown-rump of fetuses and increased the number of resorption (p < 0.05). Fetal weight was the only significantly reduced parameter of fetal growth in the highdose group of WEB (p < 0.05). The histopathological examination of placenta showed a reduction of labyrinth development in both high-dose groups. Dose of 380 mg/kg dose of Indonesian propolis is relatively safe for consumption during pregnancy.
Collapse
Affiliation(s)
- Al Mukhlas Fikri
- Department of Community Nutrition, Faculty of Human Ecology, Bogor Agricultural University, Bogor, Indonesia
| | - Ahmad Sulaeman
- Department of Community Nutrition, Faculty of Human Ecology, Bogor Agricultural University, Bogor, Indonesia
| | - Ekowati Handharyani
- Department of Veterinary Clinic Reproduction and Pathology, Faculty of Veterinary Medicine, Bogor Agricultural University, Bogor, Indonesia
| | - Sri Anna Marliyati
- Department of Community Nutrition, Faculty of Human Ecology, Bogor Agricultural University, Bogor, Indonesia
| | - Mokhamad Fahrudin
- Department of Anatomy, Physiology, and Pharmacology, Faculty of Veterinary Medicine, Bogor Agricultural University, Bogor, Indonesia
| |
Collapse
|
22
|
Sepúlveda C, Núñez O, Torres A, Guzmán L, Wehinger S. Antitumor Activity of Propolis: Recent Advances in Cellular Perspectives, Animal Models and Possible Applications. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1649692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- César Sepúlveda
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Olinda Núñez
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Alejandra Torres
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Luis Guzmán
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Sergio Wehinger
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile
- Laboratory of Cellular Communication, Center for Molecular Studies of the Cell (CEMC), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
23
|
Xing Y, Wu Y, Mao C, Sun D, Guo S, Xu Y, Jin X, Yan S, Shi B. Water extract of Artemisia ordosica enhances antioxidant capability and immune response without affecting growth performance in weanling piglets. J Anim Physiol Anim Nutr (Berl) 2019; 103:1848-1856. [PMID: 31410913 DOI: 10.1111/jpn.13171] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/15/2019] [Accepted: 07/06/2019] [Indexed: 01/05/2023]
Abstract
The present experiment was conducted to investigate the effects of water extract of Artemisia ordosica (WEAO) on growth performance, antioxidant capability and immune response in weanling piglets. Seventy-two 28-day-old weanling piglets were randomly allocated into four treatments with six replicate pens per treatment and three piglets per pen (n = 18). These four treatment diets were formulated by adding 0, 250, 500 and 750 mg/kg WEAO to the basal diet. The experiment lasted for 28 days. Body weight and feed intake were measured. Blood samples were collected to determine immune and antioxidative parameters. The experimental results showed that WEAO supplementation improved the apparent nutrient digestibility of piglets in a linear or quadratic dose-dependent manner. In addition, dietary WEAO quadratically increased serum concentrations of cytokines interleukin (IL)-1, IL-4, tumour necrosis factor (TNF)-α, soluble surface antigen CD8 (sCD8), immunoglobulins (Ig)-A and linearly increased serum concentrations of IL-2, IL-6, IgG, IgM. Furthermore, dietary WEAO linearly or quadratically decreased serum concentrations of malondialdehyde but quadratically increased activities of antioxidant enzymes and total antioxidative capacity. These results suggested that WEAO may prove useful as a natural phytogenic feed additive with antioxidative potential and could be incorporated into diets of piglets.
Collapse
Affiliation(s)
- Yuanyuan Xing
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yingzhao Wu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Chenyu Mao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Dengsheng Sun
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Shiwei Guo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yuanqing Xu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiao Jin
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Sumei Yan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Binlin Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
24
|
El‐Guendouz S, Lyoussi B, Miguel MG. Insight on Propolis from Mediterranean Countries: Chemical Composition, Biological Activities and Application Fields. Chem Biodivers 2019; 16:e1900094. [DOI: 10.1002/cbdv.201900094] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/09/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Soukaina El‐Guendouz
- Laboratory of Physiology-Pharmacology-Environmental HealthFaculty of Sciences Dhar El MehrazUniversity Sidi Mohamed Ben Abdallah Fez, BP 1796 Atlas 30000 Morocco
- Department of Chemistry and PharmacyFaculty of Science and TechnologyMeditBioUniversity of Algarve Campus de Gambelas, MeditBio Faro 8005-139 Portugal
| | - Badiaa Lyoussi
- Laboratory of Physiology-Pharmacology-Environmental HealthFaculty of Sciences Dhar El MehrazUniversity Sidi Mohamed Ben Abdallah Fez, BP 1796 Atlas 30000 Morocco
| | - Maria G. Miguel
- Department of Chemistry and PharmacyFaculty of Science and TechnologyMeditBioUniversity of Algarve Campus de Gambelas, MeditBio Faro 8005-139 Portugal
| |
Collapse
|
25
|
Karapetsas A, Voulgaridou GP, Konialis M, Tsochantaridis I, Kynigopoulos S, Lambropoulou M, Stavropoulou MI, Stathopoulou K, Aligiannis N, Bozidis P, Goussia A, Gardikis K, Panayiotidis MI, Pappa A. Propolis Extracts Inhibit UV-Induced Photodamage in Human Experimental In Vitro Skin Models. Antioxidants (Basel) 2019; 8:antiox8050125. [PMID: 31075866 PMCID: PMC6562595 DOI: 10.3390/antiox8050125] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/01/2019] [Accepted: 05/05/2019] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to assess the antioxidant, photoprotective, and antiaging effects of Greek propolis. Propolis was subjected to n-heptane or methanol extraction. Total phenolic/flavonoid content and antioxidant potential were determined in the extracts. Promising extracts were evaluated for their cytoprotective properties using human immortalized keratinocyte (HaCaT) or reconstituted human skin tissue following exposure to UVB. Assessment of cytotoxicity, DNA damage, oxidative status, and gene/protein expression levels of various matrix metalloproteinases (MMPs) were performed. The propolis methanolic fractions exhibited higher total phenolic and flavonoid contents and significant in vitro antioxidant activity. Incubation of HaCaT cells with certain methanolic extracts significantly decreased the formation of DNA strand breaks following exposure to UVB and attenuated UVB-induced decrease in cell viability. The extracts had no remarkable effect on the total antioxidant status, but significantly lowered total protein carbonyl content used as a marker for protein oxidation in HaCaT cells. MMP-1, -3, -7, and -9, monitored as endpoints of antiaging efficacy, were significantly reduced by propolis following UVB exposure in a model of reconstituted skin tissue. In conclusion, propolis protects against the oxidative and photodamaging effects of UVB and could be further explored as a promising agent for developing natural antiaging strategies.
Collapse
Affiliation(s)
- Athanasios Karapetsas
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | | | - Manolis Konialis
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Ilias Tsochantaridis
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Spyridon Kynigopoulos
- Laboratory of Histology & Embryology, School of Medicine, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Maria Lambropoulou
- Laboratory of Histology & Embryology, School of Medicine, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Maria-Ioanna Stavropoulou
- Department of Pharmacy, Division of Pharmocognosy & Natural Products Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece.
| | - Konstantina Stathopoulou
- Department of Pharmacy, Division of Pharmocognosy & Natural Products Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece.
| | - Nektarios Aligiannis
- Department of Pharmacy, Division of Pharmocognosy & Natural Products Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece.
| | - Petros Bozidis
- Department of Pathology, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece.
| | - Anna Goussia
- Department of Pathology, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece.
| | | | - Mihalis I Panayiotidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| |
Collapse
|
26
|
Juanes CDC, Souza SMD, Braga VNL, Barreto FS, Aguiar GR, Pimentel KDG, Fechine FV, Dornelas CA. Red propolis and L-lysine on angiogenesis and tumor growth in a new model of hamster cheek pouch inoculated with Walker 256 tumor cells. EINSTEIN-SAO PAULO 2019; 17:eAO4576. [PMID: 31066794 PMCID: PMC6497124 DOI: 10.31744/einstein_journal/2019ao4576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 12/03/2018] [Indexed: 11/07/2022] Open
Abstract
Objective: To evaluate the effect of red propolis and L-lysine on angiogenesis and tumor growth in a new model of hamster cheek pouch inoculated with Walker 256 tumor cells. Methods: The study consisted of two experiments with four groups each (total: 57 hamsters). In the experiment 1, the animals were inoculated with Walker tumor cells, followed by administration of test substances (red propolis 200mg/5mL/kg or L-lysine 150mg/kg) or control substances (gum arabic 5mL/kg or water 5mL/kg) for 10 days. The animals in the experiment 2 received red propolis, L-lysine, gum arabic or water at the same doses, for 33 days prior to inoculation of Walker tumor cells, followed by 10 days of treatment with the same substances. Based on single-plane images, angiogenesis was quantified (mean vascular area), in percentage, and tumor area (mm2) and perimeter (mm). Results: In the experiment 1, compared to animals receiving water, the mean vascular area expressed in percentage was significantly smaller in animal treated with propolis (p<0.05) and L-lysine (p<0.001). Conclusion: Both red propolis and L-lysine inhibited tumor angiogenesis in the new hamster cheek pouch model when administered after tumor inoculation.
Collapse
|
27
|
Abstract
With a concomitant increase in immune-related diseases such as allergic diseases, Type 1 diabetes mellitus, rheumatoid arthritis, multiple sclerosis, psoriasis, inflammatory bowel disease and other immune-related responses such as immunodeficiency, various infectious, diseases, vaccines, and malignancies, it has become very important to have a well-balanced and properly functioning immune system for the maintenance of human health. Recent scientific research has strongly suggested propolis as one of the most promising immunomodulation agents. This review describes recent findings with respect to propolis and its ingredients that show potential in this respect and evaluate their potential mechanisms. The author believes that propolis or/and its ingredients alone and in combination could be promising in manipulating the immune response and inducing immunomodulation. Further exploratory studies are needed to support large clinical trials toward further development of propolis.
Collapse
Affiliation(s)
- Mohammed Al-Hariri
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
28
|
de Miranda MB, Lanna MF, Nascimento ALB, de Paula CA, de Souza ME, Felipetto M, da Silva Barcelos L, de Moura SAL. Hydroalcoholic extract of Brazilian green propolis modulates inflammatory process in mice submitted to a low protein diet. Biomed Pharmacother 2018; 109:610-620. [PMID: 30399598 DOI: 10.1016/j.biopha.2018.10.116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 01/12/2023] Open
Abstract
The occurrence of inflammation and protein malnutrition is an aggravating risk factor for morbidity and mortality in the clinical setting. The green propolis, a natural product made by Apis mellifera bees from Baccharis dracunculifolia resin, has therapeutic potential to modulate chronic inflammation. However, its effect on inflammation in an impaired nutritional status is not known. The aim of this study was to characterize the effects of the administration of the hydroalcoholic extract of the green propolis in the chronic inflammatory process of mice submitted to a low-protein diet. For this, we used the subcutaneous implantation of sponge disks as an inflammatory model and the animals were distributed in the following groups: standard protein diet (12% protein content), control treatment; standard protein diet, propolis treatment; low-protein diet (3% protein content), control treatment; low-protein diet, propolis treatment. Propolis was given daily at a dose of 500 mg/kg (p.o.) during a period of 7 or 15 days. Our main findings show that animals fed with standard protein diet and treated with propolis had low levels of red blood cells, hemoglobin, and hematocrit, with the subsequent reestablishment of these levels, in addition to monocyte count elevation and higher TNF levels after one week of treatment. In the low-protein diet group, the propolis treatment provided a significant recovery in weight and maintenance of total serum protein levels at the end of two weeks of treatment. Histological analysis showed propolis reduced the inflammatory infiltrate in the sponges of both standard and low-protein diet groups. In addition, the propolis extract presented antiangiogenic effect in both groups. Therefore, our data suggests that the hydroalcoholic extract of the green propolis promotes weight recovery and avoid the reduction of protein levels, in addition to inhibit inflammation and angiogenesis in animals fed with a low-protein diet.
Collapse
Affiliation(s)
- Marina Barcelos de Miranda
- Biomaterials and Experimental Pathology Laboratory, Biological Sciences Department, Federal University of Ouro Preto (UFOP) - Morro do Cruzeiro Campus, 35.400-000, Minas Gerais, Brazil
| | - Mariana Ferreira Lanna
- Biomaterials and Experimental Pathology Laboratory, Biological Sciences Department, Federal University of Ouro Preto (UFOP) - Morro do Cruzeiro Campus, 35.400-000, Minas Gerais, Brazil
| | - Ana Luiza Barros Nascimento
- Biomaterials and Experimental Pathology Laboratory, Biological Sciences Department, Federal University of Ouro Preto (UFOP) - Morro do Cruzeiro Campus, 35.400-000, Minas Gerais, Brazil
| | - Carmen Aparecida de Paula
- Clinical Analysis Department, Pharmacy School, Federal University of Ouro Preto (UFOP) - Morro do Cruzeiro Campus, 35.400-000, Minas Gerais, Brazil
| | - Marcelo Eustáquio de Souza
- Experimental Nutrition Laboratory, Nutrition School, Federal University of Ouro Preto (UFOP) - Morro do Cruzeiro Campus, 35.400-000, Minas Gerais, Brazil
| | - Mariane Felipetto
- Angiogenesis and Stem Cell Laboratory, Physiology and Biophysics Department, Biological Sciences Institute, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos 6627, 31.270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Lucíola da Silva Barcelos
- Angiogenesis and Stem Cell Laboratory, Physiology and Biophysics Department, Biological Sciences Institute, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos 6627, 31.270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Sandra Aparecida Lima de Moura
- Biomaterials and Experimental Pathology Laboratory, Biological Sciences Department, Federal University of Ouro Preto (UFOP) - Morro do Cruzeiro Campus, 35.400-000, Minas Gerais, Brazil.
| |
Collapse
|
29
|
Takeda K, Nagamatsu K, Okumura K. A water-soluble derivative of propolis augments the cytotoxic activity of natural killer cells. JOURNAL OF ETHNOPHARMACOLOGY 2018; 218:51-58. [PMID: 29496576 DOI: 10.1016/j.jep.2018.02.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/20/2018] [Accepted: 02/22/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Propolis, a resinous material collected from numerous plants by honeybees, has historically been used as a health-promoting food. Recently, due to its potential anti-tumor effects, use of propolis has been proposed as an adjuvant therapy to chemotherapy; however, the effects of propolis on immune responses remain unclear. AIM OF THE STUDY In this study, we examined the effects of the oral ingestion of propolis on natural killer (NK) cell activity, which is important in immune surveillance against cancer and viral infections. In addition, we assessed the effects of the major components of the water-soluble powder derivative of propolis (WPP). MATERIALS AND METHODS C57BL/6 (B6) wild-type (WT) and RAG 2-deficient (RAG-/-) mice and BALB/c WT, interferon (IFN)-γ-deficient (IFN-γ-/-), IFN-γ receptor-deficient (IFN-γR-/-) and RAG-/- mice were orally administered WPP or its major components. NK cell populations and cytotoxic activity were then examined by flow cytometry and 51Cr release assay, respectively. RESULTS While the cytotoxic activity of NK cells was increased following administration of 100 mg/kg/day of WPP for 7 days or 200 or 500 mg/kg/day of WPP for 4 days in WT mice, the proportions of NK cell populations were unaltered. Similar activation of NK cell cytotoxicity was observed when RAG-/-, but not IFN-γ-/- or IFN-γR-/-, mice were orally administered 200 mg/kg/day of WPP for 4 days. Oral ingestion of artepillin C or p-coumaric acid, but not drupanin, augmented NK cell cytotoxicity in a manner similar to WPP and to the mixture of these three components. CONCLUSION These results suggest that oral ingestion of WPP enhances NK cell cytotoxic activity, but not proliferation, in a manner dependent on IFN-γ and without the contribution of acquired immune responses. Further, artepillin C or p-coumaric acid, but not drupanin, may be the components responsible for this augmentation of NK cell cytotoxicity. These findings suggest the possible utility of WPP as a therapeutic for prevention of cancer development and against viral infection through NK cell activation.
Collapse
Affiliation(s)
- Kazuyoshi Takeda
- Division of Cell Biology, Biomedical Research Center, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Katashi Nagamatsu
- Morikawa Kenkodo Co., Ltd., 2170 Taguchi, Kousa-machi, Kamimashiki-gun, Kumamoto 861-4616, Japan.
| | - Ko Okumura
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan; Atopy (Allergy) Research Center, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan.
| |
Collapse
|
30
|
Shapla UM, Raihan J, Islam A, Alam F, Solayman N, Gan SH, Hossen S, Khalil I. Propolis: The future therapy against Helicobacter pylori-mediated gastrointestinal diseases. J Appl Biomed 2018. [DOI: 10.1016/j.jab.2017.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
31
|
Sassi A, Maatouk M, El gueder D, Bzéouich IM, Abdelkefi-Ben Hatira S, Jemni-Yacoub S, Ghedira K, Chekir-Ghedira L. Chrysin, a natural and biologically active flavonoid suppresses tumor growth of mouse B16F10 melanoma cells: In vitro and In vivo study. Chem Biol Interact 2018; 283:10-19. [DOI: 10.1016/j.cbi.2017.11.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/15/2017] [Accepted: 11/26/2017] [Indexed: 01/22/2023]
|
32
|
Alves de Lima NC, Ratti BA, Souza Bonfim Mendonça PD, Murata G, Araujo Pereira RR, Nakamura CV, Lopes Consolaro ME, Estivalet Svidzinski TI, Hatanaka E, Bruschi ML, Oliveira Silva SD. Propolis increases neutrophils response against Candida albicans through the increase of reactive oxygen species. Future Microbiol 2018; 13:221-230. [PMID: 29302986 DOI: 10.2217/fmb-2017-0112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To investigate whether Brazilian green propolis improves the immune response against recurrent form isolate recurrent vulvovaginal candidiasis (RVVC) caused by Candida albicans by increasing neutrophil oxidative burst. MATERIALS & METHODS We evaluated oxidant species production, oxygen consumption, microbicidal activity and myeloperoxidase activity in neutrophils previously treated with propolis and activated with different isolates of C. albicans (RVVC), vulvovaginal candidiasis, asymptomatic isolates and the reference strain. RESULTS Propolis significantly increased oxidant species production, oxygen consumption, microbicidal activity and myeloperoxidase activity of neutrophils against different isolates of C. albicans including RVVC isolate that are considered resistant to the microbicidal activity of neutrophils. CONCLUSION Brazilian green propolis may increase neutrophil burst oxidative response to RVVC leading to an efficient removal of C. albicans.
Collapse
Affiliation(s)
- Nayara Cristina Alves de Lima
- Bioscience & Physiopathology Graduate Program, Universidade Estadual de Maringá (UEM), Av Colombo 5790, 87025-210 Maringá, PR, Brazil
| | - Bianca Altrao Ratti
- Bioscience & Physiopathology Graduate Program, Universidade Estadual de Maringá (UEM), Av Colombo 5790, 87025-210 Maringá, PR, Brazil
| | | | - Gilson Murata
- Institute of Physical Activity & Sport Sciences, Universidade Cruzeiro do Sul, São Paulo, SP, Brazil
| | - Raphaela Regina Araujo Pereira
- Pharmaceutical Science Graduate Program, Universidade Estadual de Maringá (UEM), Av Colombo 5790, 87025-210 Maringá, PR, Brazil
| | - Celso Vataru Nakamura
- Pharmaceutical Science Graduate Program, Universidade Estadual de Maringá (UEM), Av Colombo 5790, 87025-210 Maringá, PR, Brazil
| | - Marcia Edilaine Lopes Consolaro
- Bioscience & Physiopathology Graduate Program, Universidade Estadual de Maringá (UEM), Av Colombo 5790, 87025-210 Maringá, PR, Brazil
| | | | - Elaine Hatanaka
- Institute of Physical Activity & Sport Sciences, Universidade Cruzeiro do Sul, São Paulo, SP, Brazil
| | - Marcos Luciano Bruschi
- Pharmaceutical Science Graduate Program, Universidade Estadual de Maringá (UEM), Av Colombo 5790, 87025-210 Maringá, PR, Brazil
| | - Sueli de Oliveira Silva
- Bioscience & Physiopathology Graduate Program, Universidade Estadual de Maringá (UEM), Av Colombo 5790, 87025-210 Maringá, PR, Brazil.,Pharmaceutical Science Graduate Program, Universidade Estadual de Maringá (UEM), Av Colombo 5790, 87025-210 Maringá, PR, Brazil
| |
Collapse
|
33
|
Somsanith N, Kim YK, Jang YS, Lee YH, Yi HK, Jang JH, Kim KA, Bae TS, Lee MH. Enhancing of Osseointegration with Propolis-Loaded TiO₂ Nanotubes in Rat Mandible for Dental Implants. MATERIALS 2018; 11:ma11010061. [PMID: 29301269 PMCID: PMC5793559 DOI: 10.3390/ma11010061] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/26/2017] [Accepted: 12/30/2017] [Indexed: 01/04/2023]
Abstract
TiO2 nanotubes (TNT) formation is beneficial for improving bone cell–material interaction and drug delivery for Ti dental implants. Among the natural drugs to be installed in TNT, selected propolis has antibacterial and anti-inflammatory properties. It is a resinous natural product which is collected by the honeybees from the various types of plants with their salivary enzymes. This study concludes that TNT loaded with a propolis (PL-TNT-Ti) dental implant has the ability to improve osseointegration. The propolis particles were embedded within the TNT or adhered to the top. In a cytotoxicity test using osteoblast, PL-TNT-Ti group exhibited an increased cell proliferation and differentiation. A Sprague Dawley rat mandibular model was used to evaluate the osseointegration and bone bonding of TNT or PL-TNT-Ti. From the µ-CT and hematoxylin and eosin (HE) histological results after implantation at 1 and 4 weeks to rat mandibular, an increase in the extent of new bone formation and mineral density around the PL-TNT-Ti implant was confirmed. The Masson’s trichrome staining showed the expression of well-formed collagenous for bone formation on the PL-TNT-Ti. Immunohistochemistry staining indicate that bone morphogenetic proteins (BMP-2 and BMP-7) around the PL-TNT-Ti increased the expression of collagen fibers and of osteogenic differentiation whereas the expression of inflammatory cytokine such as interleukin-1 beta (IL-1ß) and tumor necrosis factor-alpha (TNF-α) is decreased.
Collapse
Affiliation(s)
- Nithideth Somsanith
- Department of Dental Biomaterials, Institute of Biodegradable Materials, BK21 plus Program, School of Dentistry, Chonbuk National University, JeonJu 54896, Korea.
- Department of Prosthodontics, University of Health Sciences, Vientiane 7444, Laos.
| | - Yu-Kyoung Kim
- Department of Dental Biomaterials, Institute of Biodegradable Materials, BK21 plus Program, School of Dentistry, Chonbuk National University, JeonJu 54896, Korea.
| | - Young-Seok Jang
- Department of Dental Biomaterials, Institute of Biodegradable Materials, BK21 plus Program, School of Dentistry, Chonbuk National University, JeonJu 54896, Korea.
| | - Young-Hee Lee
- Department of Molecular Biology and the Institute for Molecular biology and Gemetics, Chonbuk National University, JeonJu 54896, Korea.
| | - Ho-Keun Yi
- Department of Oral Biochemistry, Institute of Oral Bioscience, BK21 plus Program, School of Dentistry, Chonbuk National University, JeonJu 54896, Korea.
| | - Jong-Hwa Jang
- Department of Dental Hygiene, Hanseo University, Seosan 31962, Korea.
| | - Kyoung-A Kim
- Department of Oral and Maxillofacial Radiology, School of Dentistry and Institute of Oral Bio Science, Chonbuk National University, JeonJu 54896, Korea.
| | - Tae-Sung Bae
- Department of Dental Biomaterials, Institute of Biodegradable Materials, BK21 plus Program, School of Dentistry, Chonbuk National University, JeonJu 54896, Korea.
| | - Min-Ho Lee
- Department of Dental Biomaterials, Institute of Biodegradable Materials, BK21 plus Program, School of Dentistry, Chonbuk National University, JeonJu 54896, Korea.
| |
Collapse
|
34
|
El-Tarabany MS. Effect of Royal Jelly on behavioural patterns, feather quality, egg quality and some haematological parameters in laying hens at the late stage of production. J Anim Physiol Anim Nutr (Berl) 2017; 102:e599-e606. [DOI: 10.1111/jpn.12801] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 07/21/2017] [Indexed: 01/16/2023]
Affiliation(s)
- M. S. El-Tarabany
- Department of Animal Wealth Development; Faculty of Veterinary Medicine; Zagazig University; Zagazig Egypt
| |
Collapse
|
35
|
Petrov PD, Grancharov G, Gancheva V, Trusheva B, Bankova V, Tsvetanov CB. Development of propolis-loaded block copolymer micelles of superior structural stability and high loading capacity. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
36
|
Kim HB, Yoo BS. Propolis Inhibits UVA-Induced Apoptosis of Human Keratinocyte HaCaT Cells by Scavenging ROS. Toxicol Res 2016; 32:345-351. [PMID: 27818737 PMCID: PMC5080852 DOI: 10.5487/tr.2016.32.4.345] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 07/11/2016] [Accepted: 07/26/2016] [Indexed: 12/13/2022] Open
Abstract
Propolis is a resinous material collected by honeybees from several plant sources. This research aimed at showing its protective effect against UVA-induced apoptosis of human keratinocyte HaCaT cells. Using Hoechst staining, it was demonstrated that propolis (5 and 10 μg/mL) significantly inhibited the apoptosis of HaCaT cells induced by UVA-irradiation. Propolis also showed the protective effect against loss of mitochondrial membrane potential induced by UVA-irradiaiton in HaCaT cells. Propolis also inhibited the expression of activated caspase-3 induced by UVA-irradiation. To investigate the role of ROS in UVA-induced apoptosis and protection by propolis, the generation of ROS was determined in cells. The results showed that the generation of ROS was markedly reduced in cells pretreated with propolis. Consequently, propolis protected human keratinocyte HaCaT cells against UVA-induced apoptosis, which might be related to the reduction of ROS generation by UVA-irradiation.
Collapse
Affiliation(s)
- Han Bit Kim
- Department of Life Science, Kyonggi University, Suwon, Korea
| | - Byung Sun Yoo
- Department of Life Science, Kyonggi University, Suwon, Korea
| |
Collapse
|
37
|
Yilmaz UC, Bagca BG, Karaca E, Durmaz A, Durmaz B, Aykut A, Kayalar H, Avci CB, Susluer SY, Gunduz C, Cogulu O. Evaluation of the miRNA profiling and effectiveness of the propolis on B-cell acute lymphoblastic leukemia cell line. Biomed Pharmacother 2016; 84:1266-1273. [PMID: 27810783 DOI: 10.1016/j.biopha.2016.10.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 10/17/2016] [Accepted: 10/17/2016] [Indexed: 01/28/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is one of the most frequent causes of death from cancer. Since the discovery of chemotherapeutic agents, ALL has become a model for improvement of survival. In parallel to this, serious side effects were observed and new natural therapeutic options has been discussed. One of these substances is called propolis which is a resinous substance gathered by honeybees. In the molecular era, miRNAs have been shown to play crucial roles in the development of many clinical conditions. The aim of this study is to evaluate the effect of Aydın propolis on 81 human miRNA activity in CCRF-SB leukemia cell line. Apoptotic effects of propolis on cell lines were also evaluated and apoptosis were found to be induced 1.5 fold in B-cell leukemia cells. The expression of 63 miRNAs (46 miRNAs were downregulated, 19 miRNAs were upregulated) in propolis treated leukemia cells have changed significantly (p<0.05). In conclusion propolis has changed expression of miRNAs which have epigenetic effects on leukemic cells. It is thought that it can be a promising agent for ALL treatment for future studies.
Collapse
Affiliation(s)
| | - Bakiye Goker Bagca
- Ege University, Faculty of Medicine, Department of Medical Biology, Izmir, Turkey.
| | - Emin Karaca
- Ege University, Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey
| | - Asude Durmaz
- Ege University, Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey
| | - Burak Durmaz
- Ege University, Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey
| | - Ayca Aykut
- Ege University, Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey
| | | | - Cigir Biray Avci
- Ege University, Faculty of Medicine, Department of Medical Biology, Izmir, Turkey
| | - Sunde Yilmaz Susluer
- Ege University, Faculty of Medicine, Department of Medical Biology, Izmir, Turkey
| | - Cumhur Gunduz
- Ege University, Faculty of Medicine, Department of Medical Biology, Izmir, Turkey
| | - Ozgur Cogulu
- Ege University, Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey
| |
Collapse
|
38
|
Borawska MH, Naliwajko SK, Moskwa J, Markiewicz-Żukowska R, Puścion-Jakubik A, Soroczyńska J. Anti-proliferative and anti-migration effects of Polish propolis combined with Hypericum perforatum L. on glioblastoma multiforme cell line U87MG. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:367. [PMID: 27647142 PMCID: PMC5029078 DOI: 10.1186/s12906-016-1351-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 09/14/2016] [Indexed: 02/01/2023]
Abstract
Background Propolis and Hypericum perforatum L. are natural products which contain many active compounds and have numerous beneficial effects, including an antitumor effect. Gliobmastoma multiforme (GBM) is a common primary brain tumor with poor prognosis and limited treatment options. In this study, the effect of propolis (EEP) combined with H. perforatum L. (HPE) on glioblastoma cell line U87MG was investigated for the first time. Methods Anti-proliferative activity of EEP, HPE and their combination (EEP + HPE) was determined by a cytotoxicity test, DNA binding by [3H]-thymidine incorporation and cell migration assay. Anti-metastatic properties in U87MG treated with EEP, HPE and EEP + HPE were estimated on cells migration test (scratch assay) and metalloproteinases (MMP2 and MMP9) secretion (gelatin zymography). Results Combination of HPE and EEP extracts was found to have a time- and dose-dependent inhibitory effect on the viability of U87MG cells. This effect was significantly higher (p < 0.05) when compared to these two extracts applied separately, which was confirmed by the significant reduction of DNA synthesis and significantly higher mitochondrial membrane permeabilization. A significant decreasing in migration cells and in pro-MMP9 and pro-MMP2 secretion in U87MG cells were demonstrated after exposure to combination of EEP (30 μg/ml) with HPE (6.25 μg/ml). Conclusions In this study, the combination of ethanolic extract from propolis and ethanolic extract of fresh-cut H. perforatum L. was proved the ability to reduce invasiveness of glioma cells through the inhibition of MMP2 and MMP9 secretion and suppression of cell migration. It has a more potent anti-proliferative effect on U87MG glioma cell line compared to using propolis and H. perforatum L. separately. Further studies are required to verify whether the examined extracts can activate apoptotic pathways. Electronic supplementary material The online version of this article (doi:10.1186/s12906-016-1351-2) contains supplementary material, which is available to authorized users.
Collapse
|
39
|
Darendelioglu E, Aykutoglu G, Tartik M, Baydas G. Turkish propolis protects human endothelial cells in vitro from homocysteine-induced apoptosis. Acta Histochem 2016; 118:369-76. [PMID: 27085254 DOI: 10.1016/j.acthis.2016.03.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 03/19/2016] [Accepted: 03/21/2016] [Indexed: 12/12/2022]
Abstract
Chronic cardiovascular and neurodegenerative complications induced by hyperhomocysteinemia have been most relatively associated with endothelial cell injury. Elevated homocysteine (Hcy) generates reactive oxygen species (ROS) accompanying with oxidative stress which is hallmarks of the molecular mechanisms responsible for cardiovascular disease. Propolis is a natural product, obtained by honeybee from various oils, pollens, special resins and wax materials, conventionally used with the purpose of treatment by folks Propolis has various biological activities and powerful antioxidant capacity. The flavonoids and phenolic acids, most bioactive components of propolis, have superior antioxidant ability to defend cell from free radicals. This study was designed to examine the protective effects of Turkish propolis (from east of country) on Hcy induced ROS production and apoptosis in human vascular endothelial cells (HUVECs). According to results, co-treatment of HUVECs with propolis decreased Hcy-induced ROS overproduction and lipid peroxidation (LPO) levels. Furthermore, overproductions of Bax, caspase-9 and caspase-3 protein, elevation of cytochrome c release in Hcy-treated HUVECs were significantly reduced by propolis. It was concluded that propolis has cytoprotective ability against cytotoxic effects of high Hcy in HUVECs.
Collapse
Affiliation(s)
- Ekrem Darendelioglu
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Bingol University, 12000 Bingol, Turkey.
| | - Gurkan Aykutoglu
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Bingol University, 12000 Bingol, Turkey.
| | - Musa Tartik
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Bingol University, 12000 Bingol, Turkey.
| | - Giyasettin Baydas
- Bingol University Rectorate, Bingol University, 12000 Bingol, Turkey.
| |
Collapse
|
40
|
Drigla F, Balacescu O, Visan S, Bisboaca SE, Berindan-Neagoe I, Marghitas LA. Synergistic Effects Induced by Combined Treatments of Aqueous Extract of Propolis and Venom. ACTA ACUST UNITED AC 2016; 89:104-9. [PMID: 27004032 PMCID: PMC4777451 DOI: 10.15386/cjmed-527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 08/15/2015] [Indexed: 12/31/2022]
Abstract
Background and aims Breast cancer is a heterogeneous disease and the leading cause of cancer mortality worldwide. Triple negative breast cancer (TNBC) is considered to be one of the most aggressive breast neoplasia due to failure of chemotherapy response. Thus, there is an urgent need of finding alternative therapies for TNBC. This study was designed to evaluate the synergistic effect induced by propolis and bee venom on luminal (MCF-7) and TNBC (Hs578T) cell lines. Methods In order to evaluate the synergistic effect of aqueous extract of propolis and bee venom, we treated in combination two breast cancer cell lines: MCF-7(luminal subtype) and Hs578T (TNBC subtype). Results Our results indicate that both cell lines exhibited similar sensitivity to the aqueous extract of propolis at a dilution of 0.072–0.09 mg/ml. The results concerning IC50 for bee venom on MCF-7 cells was 1 mg/ml, 20 times higher than 0.05 mg/ml in Hs578T cells. By combining the aqueous extract of propolis with bee venom, we obtained synergistic effects at a higher concentration, which was 5 and 2 times stronger than the two treatments alone. Conclusion Overall, the results from our study indicated that the combination of aqueous extract of propolis and bee venom treatments induced synergistic antiproliferative effects in a concentration-dependent manner in breast cancer cells. Thus we can hypothesize that the combination of honeybee propolis and venom might be involved in signaling pathways that could overcome cells resistance to therapy.
Collapse
Affiliation(s)
- Flaviu Drigla
- Department of Functional Genomics, Proteomics and Experimental Pathology, The Oncology Institute Prof. Dr. Ion Chiricuta, Cluj-Napoca, Romania; Department of Apiculture and Sericulture, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Ovidiu Balacescu
- Department of Functional Genomics, Proteomics and Experimental Pathology, The Oncology Institute Prof. Dr. Ion Chiricuta, Cluj-Napoca, Romania
| | - Simona Visan
- Department of Functional Genomics, Proteomics and Experimental Pathology, The Oncology Institute Prof. Dr. Ion Chiricuta, Cluj-Napoca, Romania; Department of Pathologic Anatomy, Necropsy and Veterinary Forensic Medicine, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Simona Elena Bisboaca
- Department of Veterinary Toxicology, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Department of Functional Genomics, Proteomics and Experimental Pathology, The Oncology Institute Prof. Dr. Ion Chiricuta, Cluj-Napoca, Romania; Department of Immunology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Department of Experimental Therapeutics, Houston, Texas, USA, MD Anderson Cancer Center
| | - Liviu Alexandru Marghitas
- Department of Apiculture and Sericulture, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| |
Collapse
|
41
|
Sforcin JM. Biological Properties and Therapeutic Applications of Propolis. Phytother Res 2016; 30:894-905. [DOI: 10.1002/ptr.5605] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/18/2016] [Accepted: 02/15/2016] [Indexed: 01/06/2023]
Affiliation(s)
- José M. Sforcin
- Department of Microbiology and Immunology; Institute of Biosciences of Botucatu, UNESP; 18618-970 Botucatu SP Brazil
| |
Collapse
|
42
|
Petrov PD, Tsvetanov CB, Mokreva P, Yoncheva K, Konstantinov S, Trusheva B, Popova M, Bankova V. Novel micellar form of poplar propolis with high cytotoxic activity. RSC Adv 2016. [DOI: 10.1039/c6ra03577a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Water soluble form of poplar propolis prepared with the aid of “pluronic” p85 copolymer.
Collapse
Affiliation(s)
- Petar D. Petrov
- Institute of Polymers
- Bulgarian Academy of Sciences
- 1113 Sofia
- Bulgaria
| | | | - Pavlina Mokreva
- Institute of Polymers
- Bulgarian Academy of Sciences
- 1113 Sofia
- Bulgaria
| | - Krassimira Yoncheva
- Department of Pharmaceutical Technology and Biopharmaceutics
- Faculty of Pharmacy
- Medical University of Sofia
- 1000 Sofia
- Bulgaria
| | - Spiro Konstantinov
- Department of Pharmacology
- Pharmacotherapy and Toxicology
- Faculty of Pharmacy
- Medical University of Sofia
- 1000 Sofia
| | - Boryana Trusheva
- Institute of Organic Chemistry with Centre of Phytochemistry
- Bulgarian Academy of Sciences
- 1113 Sofia
- Bulgaria
| | - Milena Popova
- Institute of Organic Chemistry with Centre of Phytochemistry
- Bulgarian Academy of Sciences
- 1113 Sofia
- Bulgaria
| | - Vassya Bankova
- Institute of Organic Chemistry with Centre of Phytochemistry
- Bulgarian Academy of Sciences
- 1113 Sofia
- Bulgaria
| |
Collapse
|
43
|
Akpinar G, Canogullari S, Baylan M, Alasahan S, Aygun A. The use of propolis extract for the storage of quail eggs. J APPL POULTRY RES 2015. [DOI: 10.3382/japr/pfv043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
44
|
Antioxidant, Hepatoprotective Potential and Chemical Profiling of Propolis Ethanolic Extract from Kashmir Himalaya Region Using UHPLC-DAD-QToF-MS. BIOMED RESEARCH INTERNATIONAL 2015; 2015:393462. [PMID: 26539487 PMCID: PMC4619790 DOI: 10.1155/2015/393462] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/15/2015] [Accepted: 07/16/2015] [Indexed: 11/27/2022]
Abstract
The aim of this study was to examine hepatoprotective effect of ethanolic extract of propolis (KPEt) from Kashmir Himalaya against isoniazid and rifampicin (INH-RIF) induced liver damage in rats. Hepatic cellular injury was initiated by administration of INH-RIF combination (100 mg/kg) intraperitoneal (i.p.) injection for 14 days. We report the protective effects of KPEt against INH-RIF induced liver oxidative stress, inflammation, and enzymatic and nonenzymatic antioxidants. Oral administration of KPEt at both doses (200 and 400 mg/kg body weight) distinctly restricted all modulating oxidative liver injury markers and resulted in the attenuation of INH-RIF arbitrated damage. The free radical scavenging activity of KPEt was evaluated by DPPH, nitric oxide, and superoxide radical scavenging assay. The components present in KPEt identified by ultra high performance liquid chromatography diode array detector time of flight-mass spectroscopy (UHPLC-DAD-QToF-MS) were found to be flavonoids and phenolic acids. The protective efficacy of KPEt is possibly because of free radical scavenging and antioxidant property resulting from the presence of flavonoids and phenolic acids.
Collapse
|
45
|
Martinotti S, Ranzato E. Propolis: a new frontier for wound healing? BURNS & TRAUMA 2015; 3:9. [PMID: 27574655 PMCID: PMC4964312 DOI: 10.1186/s41038-015-0010-z] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/12/2015] [Indexed: 12/25/2022]
Abstract
Propolis is a resin produced by honeybees by mixing wax, pollen, salivary secretions, and collected natural resins. The precise composition of propolis varies with the source, and over 300 chemical components belonging to the flavonoids, terpenes, and phenolic acids have been identified in propolis. Moreover, its chemical composition is subjected to the geographical location, botanical origin, and bee species. Propolis and its compounds have been the focus of many works due to their antimicrobial and anti-inflammatory activity; however, it is now recognized that propolis also possesses regenerative properties. There is an increasing interest in the healing potential of natural products, considering the availability and low cost of these products. Propolis contains a huge number of compounds that explicate some biological effects that speeds up the healing process and is widely used in folk remedies. This review aims to condense the results on the mechanism of activity of propolis and its compounds.
Collapse
Affiliation(s)
- Simona Martinotti
- DiSIT-Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, "Amedeo Avogadro", viale Teresa Michel, 11-15121 Alessandria, Italy
| | - Elia Ranzato
- DiSIT-Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, "Amedeo Avogadro", viale Teresa Michel, 11-15121 Alessandria, Italy
| |
Collapse
|
46
|
Ercan N, Erdemir EO, Ozkan SY, Hendek MK. The comparative effect of propolis in two different vehicles; mouthwash and chewing-gum on plaque accumulation and gingival inflammation. Eur J Dent 2015; 9:272-276. [PMID: 26038663 PMCID: PMC4439859 DOI: 10.4103/1305-7456.156851] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objective: In general, chemical plaque agents have been used in mouthwashes, gels, and dentifrices. In some situations, application of mouthwashes and dentifrices can be difficult. Therefore, different approaches for oral health-care have been needed. The aim of this study was to evaluate the effect of propolis chewing-gum compared to propolis-containing mouthwash on gingival inflammation and plaque accumulation on patients that refrained from daily oral hygiene procedures for 5 days. Materials and Methods: 10 college students with systemically healthy and very good oral hygiene and gingival health were included in this randomized, single-blind, crossover 5-day plaque regrowth with a 3-day washout period clinical study. After plaque scores were reduced to zero, participants were asked to refrain from oral hygiene procedures and allocated to either propolis mouthwash or chewing-gum group. Chewing-gum was performed after meals 3 times a day for 20 min mouthwash group was instructed to rinse mouthwash 2 times a day for 1 min. On day 5, the clinical periodontal measurements containing plaque and gingival indexes were taken from the participants. Results: The both plaque and gingival indexes of propolis mouthwash group were significantly lower than that of the propolis chewing-gum group (P = 0.005). Conclusion: It was demonstrated that the propolis mouthwash was more effective than the propolis chewing gum on the plaque inhibition and the gingival inflammation.
Collapse
Affiliation(s)
- Nuray Ercan
- Department of Periodontology, Faculty of Dentistry, Kirikkale University, Merkez, Kirikkale, Turkiye
| | - Ebru Olgun Erdemir
- Department of Periodontology, Faculty of Dentistry, Kirikkale University, Merkez, Kirikkale, Turkiye
| | - Serdar Yucel Ozkan
- Department of Periodontology, Faculty of Dentistry, Kirikkale University, Merkez, Kirikkale, Turkiye
| | - Meltem Karsiyaka Hendek
- Department of Periodontology, Faculty of Dentistry, Kirikkale University, Merkez, Kirikkale, Turkiye
| |
Collapse
|
47
|
Kubiliene L, Laugaliene V, Pavilonis A, Maruska A, Majiene D, Barcauskaite K, Kubilius R, Kasparaviciene G, Savickas A. Alternative preparation of propolis extracts: comparison of their composition and biological activities. Altern Ther Health Med 2015; 15:156. [PMID: 26012348 PMCID: PMC4443635 DOI: 10.1186/s12906-015-0677-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 05/15/2015] [Indexed: 11/10/2022]
Abstract
Background Propolis is the bee product noted for multiple biological effects, and therefore it is widely used for the prevention and treatment of a variety of diseases. The active substances of propolis are easily soluble in ethanol. However ethanolic extracts cannot be used in treatment of certain diseases encountered in ophthalmology, pediatrics, etc. Unfortunately, the main biologically active substances of propolis are scarcely soluble in water, oil and other solvents usually used in pharmaceutical industry. The aim of this study was to investigate chemical composition, radical scavenging and antimicrobial activity of propolis extracts differently made in nonethanolic solvents. Methods Total content of phenolic compounds in extracts was determined using Folin-Ciocalteu method. Chemical composition and radical scavenging activity of extracts were determined using HPLC system with free radical reaction detector. Antimicrobial activity of examined preparations was evaluated using the agar-well diffusion assay. Results Total amount of phenolic compounds in extracts made in polyethylene glycol 400 (PEG) and water mixture or in PEG, olive oil and water mixture at 70 °C was comparable to that of ethanolic extract. Predominantly identified compounds were phenolic acids, which contribute ca. 40 % of total radical scavenging activity. Investigated nonethanolic extracts inhibited the growth and reproduction of all tested microrganisms. Antimicrobial activity of some extracts was equal or exceeded the antimicrobial effect of ethanolic extract. Extracts made in pure water or oil only at room temperature, contained more than 5 – 10-fold lower amount of phenolic compounds, and demonstrated no antimicrobial activity. Conclusions Nonethanolic solvent complex and the effect of higher temperature allows more effective extraction of active compounds from propolis. Concentration of total phenolic compounds in these extracts does not differ significantly from the concentration found in ethanolic extract. Propolis nonethanolic extracts have radical scavenging and antimicrobial activity. Electronic supplementary material The online version of this article (doi:10.1186/s12906-015-0677-5) contains supplementary material, which is available to authorized users.
Collapse
|
48
|
Analysis of chemical composition and bioactive property evaluation of Indian propolis. Asian Pac J Trop Biomed 2015; 2:651-4. [PMID: 23569988 DOI: 10.1016/s2221-1691(12)60114-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 09/27/2011] [Accepted: 11/24/2011] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE To analyze the chemical composition and to evaluate the bioactive potential of hydroalocoholic extract of propolis. METHODS Ethanol extract of propolis was analyzed by GC-MS, HPTLC and HPLC methods and in vitro antioxidant, anticholinesterase and cytotoxicity assay were performed. RESULTS GC-MS analysis revealed the presence of fatty acids, alcohols, and quercetin. Quercetin was identified and quantified by HPTLC and HPLC methods. Dose dependent DPPH and hydroxyl radical scavenging activity of hydroalcoholic extract of propolis was calculated as 16.20 and 34.33 µg/mL respectively. Inhibition of lipid peroxidation was significant and the IC50 value was calculated as 55.56µg/mL. Anticholinesterase activity was less observed. The cytotoxic activity against both breast (MCF-7) and lung cancer (A543) cell lines were significant and the IC50 value was calculated as 10 and 13 µg/mL respectively. CONCLUSIONS These findings showed that bioactive compounds present in propolis will alleviate many diseases and can be used for better human health.
Collapse
|
49
|
Propolis: A Complex Natural Product with a Plethora of Biological Activities That Can Be Explored for Drug Development. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:206439. [PMID: 26106433 PMCID: PMC4461776 DOI: 10.1155/2015/206439] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/10/2015] [Accepted: 05/12/2015] [Indexed: 01/13/2023]
Abstract
The health industry has always used natural products as a rich, promising, and alternative source of drugs that are used in the health system. Propolis, a natural resinous product known for centuries, is a complex product obtained by honey bees from substances collected from parts of different plants, buds, and exudates in different geographic areas. Propolis has been attracting scientific attention since it has many biological and pharmacological properties, which are related to its chemical composition. Several in vitro and in vivo studies have been performed to characterize and understand the diverse bioactivities of propolis and its isolated compounds, as well as to evaluate and validate its potential. Yet, there is a lack of information concerning clinical effectiveness. The goal of this review is to discuss the potential of propolis for the development of new drugs by presenting published data concerning the chemical composition and the biological properties of this natural compound from different geographic origins.
Collapse
|
50
|
Brazilian red propolis induces apoptosis-like cell death and decreases migration potential in bladder cancer cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:639856. [PMID: 25530785 PMCID: PMC4235187 DOI: 10.1155/2014/639856] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/06/2014] [Indexed: 01/24/2023]
Abstract
Natural products continue to be an invaluable resource of anticancer drug discovery in recent years. Propolis is known for its biological activities such as antimicrobial and antitumor effects. This study assessed the effects of Brazilian red propolis (BRP) on apoptosis and migration potential in human bladder cancer cells. The effect of BRP ethanolic extract (25, 50, and 100 μg/mL) on 5637 cells was determined by MTT, LIVE/DEAD, and migration (scratch assay) assays. Apoptosis induction was investigated through flow cytometry and gene expression profile was investigated by qRT-PCR. Results showed cytotoxicity on MTT and LIVE/DEAD assays, with IC50 values of 95 μg/mL in 24 h of treatment. Cellular migration of 5637 cells was significantly inhibited through lower doses of BRP ethanolic extract (25 and 50 μg/mL). Flow cytometry analyses showed that BRP induced cytotoxicity through apoptosis-like mechanisms in 5637 cells and qRT-PCR revealed increased levels of Bax/Bcl-2 ratio, p53, AIF, and antioxidant enzymes genes. Data suggest that BRP may be a potential source of drugs to bladder cancer treatment.
Collapse
|