1
|
Two Novel Dimorphism-Related Virulence Factors of Zymoseptoria tritici Identified Using Agrobacterium-Mediated Insertional Mutagenesis. Int J Mol Sci 2021; 23:ijms23010400. [PMID: 35008825 PMCID: PMC8745584 DOI: 10.3390/ijms23010400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 11/17/2022] Open
Abstract
Diseases caused by dimorphic phytopathogenic and systemic dimorphic fungi have markedly increased in prevalence in the last decades, and understanding the morphogenic transition to the virulent state might yield novel means of controlling dimorphic fungi. The dimorphic fungus Z. tritici causes significant economic impact on wheat production, and yet the regulation of the dimorphic switch, a key first step in successful plant colonization, is still largely unexplored in this fungus. The fungus is amenable to suppression by fungicides at this switch point, and the identification of the factors controlling the dimorphic switch provides a potential source of novel targets to control Septoria tritici blotch (STB). Inhibition of the dimorphic switch can potentially prevent penetration and avoid any damage to the host plant. The aim of the current work was to unveil genetic determinants of the dimorphic transition in Z. tritici by using a forward genetics strategy. Using this approach, we unveiled two novel factors involved in the switch to the pathogenic state and used reverse genetics and complementation to confirm the role of the novel virulence factors and further gained insight into the role of these genes, using transcriptome analysis via RNA-Seq. The transcriptomes generated potentially contain key determinants of the dimorphic transition.
Collapse
|
2
|
High-throughput insertional mutagenesis reveals novel targets for enhancing lipid accumulation in Nannochloropsis oceanica. Metab Eng 2021; 66:239-258. [PMID: 33971293 DOI: 10.1016/j.ymben.2021.04.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/07/2021] [Accepted: 04/18/2021] [Indexed: 12/17/2022]
Abstract
The microalga Nannochloropsis oceanica is considered a promising platform for the sustainable production of high-value lipids and biofuel feedstocks. However, current lipid yields of N. oceanica are too low for economic feasibility. Gaining fundamental insights into the lipid metabolism of N. oceanica could open up various possibilities for the optimization of this species through genetic engineering. Therefore, the aim of this study was to discover novel genes associated with an elevated neutral lipid content. We constructed an insertional mutagenesis library of N. oceanica, selected high lipid mutants by five rounds of fluorescence-activated cell sorting, and identified disrupted genes using a novel implementation of a rapid genotyping procedure. One particularly promising mutant (HLM23) was disrupted in a putative APETALA2-like transcription factor gene. HLM23 showed a 40%-increased neutral lipid content, increased photosynthetic performance, and no growth impairment. Furthermore, transcriptome analysis revealed an upregulation of genes related to plastidial fatty acid biosynthesis, glycolysis and the Calvin-Benson-Bassham cycle in HLM23. Insights gained in this work can be used in future genetic engineering strategies for increased lipid productivity of Nannochloropsis.
Collapse
|
3
|
Simple innovative adaptor to improve genome walking with convenient PCR. J Genet Eng Biotechnol 2020; 18:64. [PMID: 33083895 PMCID: PMC7575660 DOI: 10.1186/s43141-020-00082-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 09/30/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Various polymerase chain reaction (PCR)-based methods have been applied for the development of genome walking (GW) technique. These methods which could be based on the application of restriction enzymes or primers have various efficiencies to identify the unknown nucleotide sequences. The present study was conducted to design a new innovative double-strand adaptor using MAP30 gene sequence of Momordica charantia plant as a model to improve genome walking with convenient PCR. RESULTS The adaptor was designed using multiple restriction sites of Hind III, BamH I, EcoR I, and Bgl II enzymes with no restriction site in a known sequence of the MAP30 gene. In addition, no modification was required to add phosphate, amine, or other groups to the adaptor, since restriction enzyme digestion of double-strand adaptor provided the 5' phosphate group. Here, preparation of the phosphate group in the genomic DNA of the plant digestion with restriction enzymes was performed followed by ligation with digested adaptor containing 5' phosphate group. CONCLUSION PCR was done to amplify the unknown sequence using MAP30 gene-specific primer and adaptor primer. Results confirmed the ability of the technique for successful identification of the sequence. Consequently, a newly designed adaptor in the developed technique reduced the time and cost of the method compared to the conventional genome walking; also, cloning and culturing of bacterial steps could be eliminated.
Collapse
|
4
|
Yemelin A, Brauchler A, Jacob S, Laufer J, Heck L, Foster AJ, Antelo L, Andresen K, Thines E. Identification of factors involved in dimorphism and pathogenicity of Zymoseptoria tritici. PLoS One 2017; 12:e0183065. [PMID: 28829795 PMCID: PMC5568738 DOI: 10.1371/journal.pone.0183065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/28/2017] [Indexed: 01/20/2023] Open
Abstract
A forward genetics approach was applied in order to investigate the molecular basis of morphological transition in the wheat pathogenic fungus Zymoseptoria tritici. Z. tritici is a dimorphic plant pathogen displaying environmentally regulated morphogenetic transition between yeast-like and hyphal growth. Considering the infection mode of Z. tritici, the switching to hyphal growth is essential for pathogenicity allowing the fungus the host invasion through natural openings like stomata. We exploited a previously developed Agrobacterium tumefaciens-mediated transformation (ATMT) to generate a mutant library by insertional mutagenesis including more than 10,000 random mutants. To identify genes involved in dimorphic switch, a plate-based screening system was established. With this approach eleven dimorphic switch deficient random mutants were recovered, ten of which exhibited a yeast-like mode of growth and one mutant predominantly growing filamentously, producing high amount of mycelium under different incubation conditions. Using genome walking approach previously established, the T-DNA integration sites were recovered and the disrupted genomic loci of corresponding mutants were identified and validated within reverse genetics approach. As prove of concept, two of the random mutants obtained were selected for further investigation using targeted gene inactivation. Both genes deduced were found to encode known factors, previously characterized in other fungi: Ssk1p being constituent of HOG pathway and Ade5,7p involved in de novo purine biosynthesis. The targeted mutant strains defective in these genes exhibit a drastically impaired virulence within infection assays on whole wheat plants. Moreover exploiting further physiological assays the predicted function for both gene products could be confirmed in concordance with conserved biological role of homologous proteins previously described in other fungal organisms.
Collapse
Affiliation(s)
- Alexander Yemelin
- Institute for Biotechnology and Drug Research (IBWF gGmbH), Kaiserslautern, Germany
| | - Annamaria Brauchler
- Institute of Molecular Physiology, Microbiology and Wine Research, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stefan Jacob
- Institute for Biotechnology and Drug Research (IBWF gGmbH), Kaiserslautern, Germany
| | - Julian Laufer
- Institute for Biotechnology and Drug Research (IBWF gGmbH), Kaiserslautern, Germany
| | - Larissa Heck
- Institute for Biotechnology and Drug Research (IBWF gGmbH), Kaiserslautern, Germany
| | - Andrew J. Foster
- Institute for Biotechnology and Drug Research (IBWF gGmbH), Kaiserslautern, Germany
| | - Luis Antelo
- Institute of Molecular Physiology, Microbiology and Wine Research, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Karsten Andresen
- Institute of Molecular Physiology, Microbiology and Wine Research, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Eckhard Thines
- Institute for Biotechnology and Drug Research (IBWF gGmbH), Kaiserslautern, Germany
- Institute of Molecular Physiology, Microbiology and Wine Research, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
5
|
Hu G, Caza M, Bakkeren E, Kretschmer M, Bairwa G, Reiner E, Kronstad J. A P4-ATPase subunit of the Cdc50 family plays a role in iron acquisition and virulence in Cryptococcus neoformans. Cell Microbiol 2017; 19. [PMID: 28061020 DOI: 10.1111/cmi.12718] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/01/2016] [Accepted: 01/03/2017] [Indexed: 12/29/2022]
Abstract
The pathogenic fungus Cryptococcus neoformans delivers virulence factors such as capsule polysaccharide to the cell surface to cause disease in vertebrate hosts. In this study, we screened for mutants sensitive to the secretion inhibitor brefeldin A to identify secretory pathway components that contribute to virulence. We identified an ortholog of the cell division control protein 50 (Cdc50) family of the noncatalytic subunit of type IV P-type ATPases (flippases) that establish phospholipid asymmetry in membranes and function in vesicle-mediated trafficking. We found that a cdc50 mutant in C. neoformans was defective for survival in macrophages, attenuated for virulence in mice and impaired in iron acquisition. The mutant also showed increased sensitivity to drugs associated with phospholipid metabolism (cinnamycin and miltefosine), the antifungal drug fluconazole and curcumin, an iron chelator that accumulates in the endoplasmic reticulum. Cdc50 is expected to function with catalytic subunits of flippases, and we previously documented the involvement of the flippase aminophospholipid translocases (Apt1) in virulence factor delivery. A comparison of phenotypes with mutants defective in genes encoding candidate flippases (designated APT1, APT2, APT3, and APT4) revealed similarities primarily between cdc50 and apt1 suggesting a potential functional interaction. Overall, these results highlight the importance of membrane composition and homeostasis for the ability of C. neoformans to cause disease.
Collapse
Affiliation(s)
- Guanggan Hu
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Mélissa Caza
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Erik Bakkeren
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Institute of Microbiology, Zurich, Switzerland
| | - Matthias Kretschmer
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Gaurav Bairwa
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Ethan Reiner
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - James Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Busby ER, Mommsen TP. Proglucagons in vertebrates: Expression and processing of multiple genes in a bony fish. Comp Biochem Physiol B Biochem Mol Biol 2016; 199:58-66. [PMID: 26927880 DOI: 10.1016/j.cbpb.2016.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/17/2016] [Accepted: 02/17/2016] [Indexed: 11/16/2022]
Abstract
In contrast to mammals, where a single proglucagon (PG) gene encodes three peptides: glucagon, glucagon-like peptide 1 and glucagon-like peptide 2 (GLP-1; GLP-2), many non-mammalian vertebrates carry multiple PG genes. Here, we investigate proglucagon mRNA sequences, their tissue expression and processing in a diploid bony fish. Copper rockfish (Sebastes caurinus) express two independent genes coding for distinct proglucagon sequences (PG I, PG II), with PG II lacking the GLP-2 sequence. These genes are differentially transcribed in the endocrine pancreas, the brain, and the gastrointestinal tract. Alternative splicing identified in rockfish is only one part of this complex regulation of the PG transcripts: the system has the potential to produce two glucagons, four GLP-1s and a single GLP-2, or any combination of these peptides. Mass spectrometric analysis of partially purified PG-derived peptides in endocrine pancreas confirms translation of both PG transcripts and differential processing of the resulting peptides. The complex differential regulation of the two PG genes and their continued presence in this extant teleostean fish strongly suggests unique and, as yet largely unidentified, roles for the peptide products encoded in each gene.
Collapse
Affiliation(s)
- Ellen R Busby
- Department of Biochemistry and Microbiology, and Department of Biology, University of Victoria, Victoria, BC, Canada.
| | - Thomas P Mommsen
- Department of Biochemistry and Microbiology, and Department of Biology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
7
|
Myosin Motor-Like Domain of the Class VI Chitin Synthase CsmB Is Essential to Its Functions inAspergillus nidulans. Biosci Biotechnol Biochem 2014; 73:1163-7. [DOI: 10.1271/bbb.90074] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Vela-Corcía D, Bellón-Gómez D, López-Ruiz F, Torés JA, Pérez-García A. The Podosphaera fusca TUB2 gene, a molecular “Swiss Army knife” with multiple applications in powdery mildew research. Fungal Biol 2014; 118:228-41. [DOI: 10.1016/j.funbio.2013.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 11/28/2013] [Accepted: 12/04/2013] [Indexed: 10/25/2022]
|
9
|
Cryptococcus neoformans requires the ESCRT protein Vps23 for iron acquisition from heme, for capsule formation, and for virulence. Infect Immun 2012; 81:292-302. [PMID: 23132495 DOI: 10.1128/iai.01037-12] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iron availability is a key regulator of virulence factor elaboration in Cryptococcus neoformans, the causative agent of fungal meningoencephalitis in HIV/AIDS patients. In addition, iron is an essential nutrient for pathogen proliferation in mammalian hosts but little is known about the mechanisms of iron sensing and uptake in fungal pathogens that attack humans. In this study, we mutagenized C. neoformans by Agrobacterium-mediated T-DNA insertion and screened for mutants with reduced growth on heme as the sole iron source. Among 34 mutants, we identified a subset with insertions in the gene for the ESCRT-I (endosomal sorting complex required for transport) protein Vps23 that resulted in a growth defect on heme, presumably due to a defect in uptake via endocytosis or misregulation of iron acquisition from heme. Remarkably, vps23 mutants were also defective in the elaboration of the cell-associated capsular polysaccharide that is a major virulence factor, while overexpression of Vps23 resulted in cells with a slightly enlarged capsule. These phenotypes were mirrored by a virulence defect in the vps23 mutant in a mouse model of cryptococcosis and by hypervirulence of the overexpression strain. Overall, these results reveal an important role for trafficking via ESCRT functions in both heme uptake and capsule formation, and they further reinforce the connection between iron and virulence factor deployment in C. neoformans.
Collapse
|
10
|
Abstract
Genome walking is a molecular procedure for the direct identification of nucleotide sequences from purified genomes. The only requirement is the availability of a known nucleotide sequence from which to start. Several genome walking methods have been developed in the last 20 years, with continuous improvements added to the first basic strategies, including the recent coupling with next generation sequencing technologies. This review focuses on the use of genome walking strategies in several aspects of the study of eukaryotic genomes. In a first part, the analysis of the numerous strategies available is reported. The technical aspects involved in genome walking are particularly intriguing, also because they represent the synthesis of the talent, the fantasy and the intelligence of several scientists. Applications in which genome walking can be employed are systematically examined in the second part of the review, showing the large potentiality of this technique, including not only the simple identification of nucleotide sequences but also the analysis of large collections of mutants obtained from the insertion of DNA of viral origin, transposons and transfer DNA (T-DNA) constructs. The enormous amount of data obtained indicates that genome walking, with its large range of applicability, multiplicity of strategies and recent developments, will continue to have much to offer for the rapid identification of unknown sequences in several fields of genomic research.
Collapse
Affiliation(s)
- Claudia Leoni
- Department of Biochemistry and Molecular Biology, University of Bari, Bari, Italy
| | | | | | | | | |
Collapse
|
11
|
Treitschke S, Doehlemann G, Schuster M, Steinberg G. The myosin motor domain of fungal chitin synthase V is dispensable for vesicle motility but required for virulence of the maize pathogen Ustilago maydis. THE PLANT CELL 2010; 22:2476-94. [PMID: 20663961 PMCID: PMC2929105 DOI: 10.1105/tpc.110.075028] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 06/26/2010] [Accepted: 07/08/2010] [Indexed: 05/23/2023]
Abstract
Class V chitin synthases are fungal virulence factors required for plant infection. They consist of a myosin motor domain fused to a membrane-spanning chitin synthase region that participates in fungal cell wall formation. The function of the motor domain is unknown, but it might deliver the myosin chitin synthase-attached vesicles to the growth region. Here, we analyze the importance of both domains in Mcs1, the chitin synthase V of the maize smut fungus Ustilago maydis. By quantitative analysis of disease symptoms, tissue colonization, and single-cell morphogenic parameters, we demonstrate that both domains are required for fungal virulence. Fungi carrying mutations in the chitin synthase domain are rapidly recognized and killed by the plant, whereas fungi carrying a deletion of the motor domain show alterations in cell wall composition but can invade host tissue and cause a moderate plant response. We also show that Mcs1-bound vesicles exhibit long-range movement for up to 20 microm at a velocity of approximately 1.75 microm/s. Apical Mcs1 localization depends on F-actin and the motor domain, whereas Mcs1 motility requires microtubules and persists when the Mcs1 motor domain is deleted. Our results suggest that the myosin motor domain of ChsV supports exocytosis but not long-range delivery of transport vesicles.
Collapse
Affiliation(s)
- Steffi Treitschke
- School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
- Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| | - Gunther Doehlemann
- Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| | - Martin Schuster
- School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Gero Steinberg
- School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| |
Collapse
|
12
|
Heisey DM, Mickelsen NA, Schneider JR, Johnson CJ, Johnson CJ, Langenberg JA, Bochsler PN, Keane DP, Barr DJ. Chronic wasting disease (CWD) susceptibility of several North American rodents that are sympatric with cervid CWD epidemics. J Virol 2010; 84:210-5. [PMID: 19828611 PMCID: PMC2798418 DOI: 10.1128/jvi.00560-09] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 10/06/2009] [Indexed: 11/20/2022] Open
Abstract
Chronic wasting disease (CWD) is a highly contagious always fatal neurodegenerative disease that is currently known to naturally infect only species of the deer family, Cervidae. CWD epidemics are occurring in free-ranging cervids at several locations in North America, and other wildlife species are certainly being exposed to infectious material. To assess the potential for transmission, we intracerebrally inoculated four species of epidemic-sympatric rodents with CWD. Transmission was efficient in all species; the onset of disease was faster in the two vole species than the two Peromyscus spp. The results for inocula prepared from CWD-positive deer with or without CWD-resistant genotypes were similar. Survival times were substantially shortened upon second passage, demonstrating adaptation. Unlike all other known prion protein sequences for cricetid rodents that possess asparagine at position 170, our red-backed voles expressed serine and refute previous suggestions that a serine in this position substantially reduces susceptibility to CWD. Given the scavenging habits of these rodent species, the apparent persistence of CWD prions in the environment, and the inevitable exposure of these rodents to CWD prions, our intracerebral challenge results indicate that further investigation of the possibility of natural transmission is warranted.
Collapse
Affiliation(s)
- Dennis M Heisey
- USGS National Wildlife Health Center, Madison, WI 53711, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bae JH, Sohn JH. Template-blocking PCR: an advanced PCR technique for genome walking. Anal Biochem 2009; 398:112-6. [PMID: 19903447 DOI: 10.1016/j.ab.2009.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 11/03/2009] [Accepted: 11/03/2009] [Indexed: 12/12/2022]
Abstract
This article describes the development of an improved method for the isolation of genomic fragments adjacent to a known DNA sequence based on a cassette ligation-mediated polymerase chain reaction (PCR) technique. To reduce the nonspecific amplification of PCR-based genome walking, the 3' ends of the restriction enzyme-digested genomic DNA fragments were blocked with dideoxynucleoside triphosphate (ddNTP) and ligated with properly designed cassettes. The modified genomic DNA fragments flanked with cassettes were used as a template for the amplification of a target gene with a gene-specific primer (GSP) and a cassette primer (CP). The ddNTP blocking of the genomic DNA ends significantly reduced the nonspecific amplification and resulted in a simple and rapid walking along the genome. The efficiency of the template-blocking PCR method was confirmed by a carefully designed control experiment. The method was successfully applied for the cloning of the PGK1 promoter from Pichia ciferrii and two novel cellulase genes from Penicillium sp.
Collapse
Affiliation(s)
- Jung-Hoon Bae
- Industrial Biotechnology and Bioenergy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yusong, Daejeon 305-333, Republic of Korea
| | | |
Collapse
|
14
|
Comparison and critical evaluation of PCR-mediated methods to walk along the sequence of genomic DNA. Appl Microbiol Biotechnol 2009; 85:37-43. [DOI: 10.1007/s00253-009-2211-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 08/17/2009] [Accepted: 08/17/2009] [Indexed: 10/20/2022]
|
15
|
Novel genes retrieved from environmental DNA by polymerase chain reaction: current genome-walking techniques for future metagenome applications. J Biotechnol 2009; 144:75-82. [PMID: 19712711 DOI: 10.1016/j.jbiotec.2009.08.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 08/11/2009] [Accepted: 08/17/2009] [Indexed: 11/24/2022]
Abstract
Environmental DNA is an extremely rich source of genes encoding enzymes with novel biocatalytic activities. To tap this source, function-based and sequence-based strategies have been established to isolate, clone, and express these novel metagenome-derived genes. Sequence-based strategies, which rely on PCR with consensus primers and genome walking, represent an efficient and inexpensive alternative to activity-based screening of recombinant strains harbouring fragments of environmental DNA. This review covers the diverse array of genome-walking techniques, which were originally developed for genomic DNA and currently are also used for PCR-based recovery of entire genes from the metagenome. These sequence-based gene mining methods appear to offer a powerful tool for retrieving from the metagenome novel genes encoding biocatalysts with potential applications in biotechnology.
Collapse
|
16
|
Transcription levels of CHS5 and CHS4 genes in Paracoccidioides brasiliensis mycelial phase, respond to alterations in external osmolarity, oxidative stress and glucose concentration. ACTA ACUST UNITED AC 2009; 113:1091-6. [PMID: 19616626 DOI: 10.1016/j.mycres.2009.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 07/07/2009] [Accepted: 07/09/2009] [Indexed: 01/12/2023]
Abstract
The complete sequence of Paracoccidioides brasiliensis CHS5 gene, encoding a putative chitin synthase revealed a 5583nt open reading frame, interrupted by three introns of 82, 87 and 97bp (GenBank Accession No EF654132). The deduced protein contains 1861 amino acids with a predicted molecular weight of 206.9kDa. Both its large size and the presence of a N-terminal region of approx. 800 residues with a characteristic putative myosin motor-like domain, allow us to include PbrChs5 into class V fungal chitin synthases. Sequence analysis of over 4kb from the 5' UTR region in CHS5, revealed the presence of a previously reported CHS4 gene in P. brasiliensis, arranged in a head-to-head configuration with CHS5. A motif search in this shared region showed the presence of stress response elements (STREs), three binding sites for the transcription activators Rlm1p (known to be stimulated by hypo-osmotic stress) and clusters of Adr1 (related to glucose repression). A quantitative RT-PCR analysis pointed to changes in transcription levels for both genes following oxidative stress, alteration of external osmolarity and under glucose-repressible conditions, suggesting a common regulatory mechanism of transcription.
Collapse
|
17
|
An W, Davis ES, Thompson TL, O'Donnell KA, Lee CY, Boeke JD. Plug and play modular strategies for synthetic retrotransposons. Methods 2009; 49:227-35. [PMID: 19481606 DOI: 10.1016/j.ymeth.2009.05.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 05/08/2009] [Accepted: 05/22/2009] [Indexed: 01/17/2023] Open
Abstract
Recent progress in L1 biology highlights its role as a major driving force in the evolution of mammalian genome structure and function. This coincides with direct confirmation of the preponderance of long interspersed elements in mammalian genomes at the nucleotide level by large scale sequencing efforts. Two assay systems have been prominently featured in L1 studies over the past decade, which are used to assess L1 activities in cultured cells and transgenic mice respectively. However, constructing retrotransposon assay vectors and subsequent mapping of integration sites remain technically challenging aspects of the field. Synthetic biology approaches have changed the playing field with regard to the strategic design of retrotransposons. To streamline the construction and optimization of synthetic retrotransposons, we have implemented a highly efficient modular design for L1 vectors allowing "plug and play" swapping of individual modules as new knowledge is gained and optimization of constructs proceeds. Seven functional modules are divided by strategically placed unique restriction sites. These are utilized to facilitate module exchange and construction of L1 vectors for gene targeting, transgenesis and cell culture assays. A "double SfiI" strategy utilizing two non-complementary overhangs allows insert swapping to be carried out with a single, robust restriction/ligation cycle. The double-SfiI strategy is generic and can be applied to many other problems in synthetic biology or genetic engineering. To facilitate genomic mapping of L1 insertions, we have developed an optimized inverse PCR protocol using 4-base cutters and step-down cycling conditions. Using this protocol, de novo L1 insertions can be efficiently recovered after a single round of PCR. The proposed modular design also incorporates features allowing streamlined insertion mapping without repeated optimization. Furthermore, we have presented evidence that efficient L1 retrotransposition is not dependent on pCEP4 conferred autonomous replication capabilities when a shortened puromycin selection protocol is used, providing a great opportunity for further optimization of L1 cell culture assay vectors by using alternative vector backbones.
Collapse
Affiliation(s)
- Wenfeng An
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Jones MO, Manning K, Andrews J, Wright C, Taylor IB, Thompson AJ. The promoter from SlREO, a highly-expressed, root-specific Solanum lycopersicum gene, directs expression to cortex of mature roots. FUNCTIONAL PLANT BIOLOGY : FPB 2008; 35:1224-1233. [PMID: 32688869 DOI: 10.1071/fp08139] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2008] [Accepted: 09/08/2008] [Indexed: 06/11/2023]
Abstract
Root-specific promoters are valuable tools for targeting transgene expression, but many of those already described have limitations to their general applicability. We present the expression characteristics of SlREO, a novel gene isolated from tomato (Solanum lycopersicum L.). This gene was highly expressed in roots but had a very low level of expression in aerial plant organs. A 2.4-kb region representing the SlREO promoter sequence was cloned upstream of the uidA GUS reporter gene and shown to direct expression in the root cortex. In mature, glasshouse-grown plants this strict root specificity was maintained. Furthermore, promoter activity was unaffected by dehydration or wounding stress but was somewhat suppressed by exposure to NaCl, salicylic acid and jasmonic acid. The predicted protein sequence of SlREO contains a domain found in enzymes of the 2-oxoglutarate and Fe(II)-dependent dioxygenase superfamily. The novel SlREO promoter has properties ideal for applications requiring strong and specific gene expression in the bulk of tomato root tissue growing in soil, and is also likely to be useful in other Solanaceous crops.
Collapse
Affiliation(s)
- Matthew O Jones
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, LE12 5RD, UK
| | - Kenneth Manning
- Warwick HRI, University of Warwick, Wellesbourne, Warwick, CV35 9EF, UK
| | - John Andrews
- Warwick HRI, University of Warwick, Wellesbourne, Warwick, CV35 9EF, UK
| | - Carole Wright
- Warwick HRI, University of Warwick, Wellesbourne, Warwick, CV35 9EF, UK
| | - Ian B Taylor
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, LE12 5RD, UK
| | - Andrew J Thompson
- Warwick HRI, University of Warwick, Wellesbourne, Warwick, CV35 9EF, UK
| |
Collapse
|
19
|
Lee S, Gustafson G, Skamnioti P, Baloch R, Gurr S. Host perception and signal transduction studies in wild-type Blumeria graminis f. sp. hordei and a quinoxyfen-resistant mutant implicate quinoxyfen in the inhibition of serine esterase activity. PEST MANAGEMENT SCIENCE 2008; 64:544-555. [PMID: 18229890 DOI: 10.1002/ps.1538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
BACKGROUND Quinoxyfen is a potent and effective fungicide, hitherto considered to control powdery mildew disease by perturbing signal transduction during early germling differentiation. The aim of this paper is to understand the mode of action of quinoxyfen by comparing the perception of host-derived signals and signal relay in a wild-type Blumeria graminis f. sp. hordei EM Marchal (Bgh) (WT/IM82) and a quinoxyfen-resistant field isolate (QR/2B11). RESULTS QR/2B11 germinates more promiscuously on host-like and artificial surfaces than the quinoxyfen-sensitive WT/IM82. The pivotal role of host cuticle deprivation in the formation of hooked appressorial germ tubes (hAGTs) in WT/IM82 and a dramatic drop in germling differentiation in the presence of the mildewicide are demonstrated. QR/2B11 strain shows a dependence on host cuticle-like features for hAGT formation but no significant difference between germling differentiation in the presence or absence of quinoxyfen. PKC-inhibitor Ro 318220 induces morphological changes similar to those seen in quinoxyfen-treated germlings. PKC1 transcript accumulation is equivalently upregulated by quinoxyfen in QR/2B11 and WT/IM82 strains, but Bgh cutinase CUT1 transcript is 8 times more abundant in QR/2B11 conidia than in WT/IM82 conidia. Quinoxyfen inhibits serine esterase activity in WT/IM82, but not in QR/2B11. CONCLUSION Collectively, these data suggest that quinoxyfen interferes with the perception of host-derived signals required for full germling differentiation, and that QR/2B11 bypasses the need for such signals. Moreover, quinoxyfen appears to target serine esterase activity, with a downstream perturbation in signal transduction; this represents the first demonstrable biochemical difference between the quinoxyfen-resistant and -sensitive isolates.
Collapse
Affiliation(s)
- Susannah Lee
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | | | | | | | |
Collapse
|
20
|
One-base excess adaptor ligation method for walking uncloned genomic DNA. Appl Microbiol Biotechnol 2007; 78:173-80. [PMID: 18071644 DOI: 10.1007/s00253-007-1289-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 11/14/2007] [Accepted: 11/15/2007] [Indexed: 10/22/2022]
Abstract
This report describes a novel and efficient method for walking the sequence of a genomic deoxyribonucleic acid (DNA) from a known region to an unknown region based on an oligodeoxynucleotide (oligo) cassette-mediated polymerase chain reaction technique. In this method, genomic DNA is digested by a restriction enzyme that generates a sticky 5'-end, followed by ligation of a one-base excess oligo-adaptor using T4 DNA ligase. The adaptor consists of two complementary oligos that form the same sticky end as the digested genomic DNA fragments, except that the 5'-overhang base overlaps the corresponding 3'-end base of the restriction site. This overhanging terminal base prevents ligation between the adaptors, and the appropriate molar ratio of adaptor to genomic DNA enables specific amplification of the target sequence. T4 DNA ligase catalyzes both the ligation of the phosphorylated overhang base of the adaptor to genomic DNA and the excision of the corresponding 3'-terminal base of the genomic DNA. This sequence-specific exonuclease activity of T4 DNA ligase was confirmed by ligation of an alternative adaptor in which the 5'-terminal base was not consistent with the corresponding 3'-terminal base. Using this technique, the 3'- and 5'-flanking sequences of the catalase gene of the ciliate Paramecium bursaria were determined.
Collapse
|
21
|
Scebba F, De Bastiani M, Bernacchia G, Andreucci A, Galli A, Pitto L. PRMT11: a new Arabidopsis MBD7 protein partner with arginine methyltransferase activity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:210-22. [PMID: 17711414 DOI: 10.1111/j.1365-313x.2007.03238.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Plant methyl-DNA-binding proteins (MBDs), discovered by sequence homology to their animal counterparts, have not been well characterized at the physiological and functional levels. In order better to characterize the Arabidopsis AtMBD7 protein, unique in bearing three MBD domains, we used a yeast two-hybrid system to identify its partners. One of the interacting proteins we cloned is the Arabidopsis arginine methyltransferase 11 (AtPRMT11). Glutathione S-transferase pull-down and co-immunoprecipitation assays confirmed that the two proteins interact with each other and can be co-isolated. Using GFP fluorescence, we show that both AtMBD7 and AtPRMT11 are present in the nucleus. Further analyses revealed that AtPRMT11 acts as an arginine methyltransferase active on both histones and proteins of cellular extracts. The analysis of a T-DNA mutant line lacking AtPRMT11 mRNA revealed reduced levels of proteins with asymmetrically dimethylated arginines, suggesting that AtPRMT11, which is highly similar to mammalian PRMT1, is indeed a type I arginine methyltransferase. Further, AtMBD7 is a substrate for AtPRMT11, which post-translationally modifies the portion of the protein-containing C-terminal methylated DNA-binding domain. These results suggest the existence of a link between DNA methylation and arginine methylation.
Collapse
Affiliation(s)
- Francesca Scebba
- Laboratorio di Terapia Genica e Molecolare, Istituto di Fisiologia Clinica, Area della Ricerca CNR, via Moruzzi 1, 56100 Pisa, Italy
| | | | | | | | | | | |
Collapse
|
22
|
Odenbach D, Breth B, Thines E, Weber RWS, Anke H, Foster AJ. The transcription factor Con7p is a central regulator of infection-related morphogenesis in the rice blast fungus Magnaporthe grisea. Mol Microbiol 2007; 64:293-307. [PMID: 17378924 DOI: 10.1111/j.1365-2958.2007.05643.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A strain harbouring an insertion within the promoter of the CON7 gene of Magnaporthe grisea was isolated. This gene was previously shown to be essential for appressorium formation and growth in planta and is predicted to encode a transcription factor. Microarray-based gene expression analysis was used to identify several genes whose transcription during germination depends on Con7p. These include the pathogenicity factor-encoding gene PTH11 and several other genes which like PTH11 are predicted to encode G protein-coupled receptors. Microarray analysis also revealed several Con7p-dependent genes which may encode factors determining cell wall structure or function, either through the synthesis/degradation of cell wall components or by association with the cell exterior. One Con7p-dependent gene predicted to encode a class VII chitin synthase was deleted, leading to dramatic consequences on the pathogenic development of the resultant strain. Within the con7(-) mutant, a 29% reduction in chitin content of germinated spores was found and the mutant was hypersensitive to the chitin synthase inhibitor nikkomycin Z. A green fluorescent protein-tagged Con7p was found to have nuclear localization within spores. Taken together, these observations suggest that Con7p encodes a transcription factor required for the transcription of several genes which participate in disease-related morphogenesis in M. grisea.
Collapse
Affiliation(s)
- Dominik Odenbach
- IBWF e.V., Institute for Biotechnology and Drug Research, Erwin-Schrödinger-Str. 56, 67663 Kaiserslautern, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Niño-Vega G, Pérez-Silva C, San-Blas G. The actin gene in Paracoccidioides brasiliensis: organization, expression and phylogenetic analyses. ACTA ACUST UNITED AC 2007; 111:363-9. [PMID: 17363236 DOI: 10.1016/j.mycres.2006.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 10/30/2006] [Accepted: 12/03/2006] [Indexed: 11/16/2022]
Abstract
PbrACT1, the gene responsible for the synthesis of actin in Paracoccidioides brasiliensis, was found as a single copy, organized into six exons and five introns. Its open reading frame (ORF) codes for a putative protein of 375 amino acids, with a molecular mass of 41.5 kDa and an isoelectric point of 5.6. Analysis of the nucleotide sequence revealed a high homology to other fungal actins, the presence of characteristic fungal actin sequences, and heat shock elements at the 5' untranslated region (UTR). Phylogenetic analyses with deduced amino acid sequences of fungal actins grouped P. brasiliensis within the phylum Ascomycota, order Onygenales, in concordance with a few previous reports. Patterns of expression through the temperature-induced morphological transitions from mycelial to yeast-like shapes and reverse, suggests that PbrACT1 is regulated in this process. The PbrACT1 gene sequence is available at the GenBank database under accession number AY383732.
Collapse
Affiliation(s)
- Gustavo Niño-Vega
- Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Microbiología y Biología Celular, Apartado 21827, Caracas 1020A, Venezuela.
| | | | | |
Collapse
|
24
|
Johnson C, Johnson J, Vanderloo JP, Keane D, Aiken JM, McKenzie D. Prion protein polymorphisms in white-tailed deer influence susceptibility to chronic wasting disease. J Gen Virol 2006; 87:2109-2114. [PMID: 16760415 DOI: 10.1099/vir.0.81615-0] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The primary sequence of the prion protein affects susceptibility to transmissible spongiform encephalopathies, or prion diseases, in mice, sheep and humans. The Prnp gene sequence of free-ranging, Wisconsin white-tailed deer was determined and the Prnp genotypes of chronic wasting disease (CWD)-positive and CWD-negative deer were compared. Six amino acid changes were identified, two of which were located in pseudogenes. Two alleles, a Q-->K polymorphism at codon 226 and a single octapeptide repeat insertion into the pseudogene, have not been reported previously. The predominant alleles--wild-type (Q95, G96 and Q226) and a G96S polymorphism--comprised almost 98% of the Prnp alleles in the Wisconsin white-tailed deer population. Comparison of the allelic frequencies in the CWD-positive and CWD-negative deer suggested that G96S and a Q95H polymorphism were linked to a reduced susceptibility to CWD. The G96S allele did not, however, provide complete resistance, as a CWD-positive G96S/G96S deer was identified. The G96S allele was also linked to slower progression of the disease in CWD-positive deer based on the deposition of PrP(CWD) in the obex region of the medulla oblongata. Although the reduced susceptibility of deer with at least one copy of the Q95H or G96S allele is insufficient to serve as a genetic barrier, the presence of these alleles may modulate the impact of CWD on white-tailed deer populations.
Collapse
Affiliation(s)
- Chad Johnson
- Department of Animal Health and Biomedical Sciences, University of Wisconsin, 1656 Linden Drive, Madison, WI 53706, USA
| | - Jody Johnson
- Department of Animal Health and Biomedical Sciences, University of Wisconsin, 1656 Linden Drive, Madison, WI 53706, USA
| | - Joshua P Vanderloo
- Department of Animal Health and Biomedical Sciences, University of Wisconsin, 1656 Linden Drive, Madison, WI 53706, USA
| | - Delwyn Keane
- Wisconsin Veterinary Diagnostic Laboratory, Madison, WI 53705, USA
| | - Judd M Aiken
- Department of Animal Health and Biomedical Sciences, University of Wisconsin, 1656 Linden Drive, Madison, WI 53706, USA
| | - Debbie McKenzie
- Department of Animal Health and Biomedical Sciences, University of Wisconsin, 1656 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
25
|
Manning K, Tör M, Poole M, Hong Y, Thompson AJ, King GJ, Giovannoni JJ, Seymour GB. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet 2006; 38:948-52. [PMID: 16832354 DOI: 10.1038/ng1841] [Citation(s) in RCA: 780] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Accepted: 06/07/2006] [Indexed: 11/09/2022]
Abstract
A major component in the regulatory network controlling fruit ripening is likely to be the gene at the tomato Colorless non-ripening (Cnr) locus. The Cnr mutation results in colorless fruits with a substantial loss of cell-to-cell adhesion. The nature of the mutation and the identity of the Cnr gene were previously unknown. Using positional cloning and virus-induced gene silencing, here we demonstrate that an SBP-box (SQUAMOSA promoter binding protein-like) gene resides at the Cnr locus. Furthermore, the Cnr phenotype results from a spontaneous epigenetic change in the SBP-box promoter. The discovery that Cnr is an epimutation was unexpected, as very few spontaneous epimutations have been described in plants. This study demonstrates that an SBP-box gene is critical for normal ripening and highlights the likely importance of epialleles in plant development and the generation of natural variation.
Collapse
Affiliation(s)
- Kenneth Manning
- Warwick Horticulture Research International (HRI), University of Warwick, Wellesbourne, Warwick CV35 9EF, UK
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Takeshita N, Yamashita S, Ohta A, Horiuchi H. Aspergillus nidulans class V and VI chitin synthases CsmA and CsmB, each with a myosin motor-like domain, perform compensatory functions that are essential for hyphal tip growth. Mol Microbiol 2006; 59:1380-94. [PMID: 16468983 DOI: 10.1111/j.1365-2958.2006.05030.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The polarized synthesis of cell wall components such as chitin is essential for the hyphal tip growth of filamentous fungi. The actin cytoskeleton is known to play important roles in the determination of hyphal polarity in Aspergillus nidulans. Previously, we suggested that CsmA, a chitin synthase with a myosin motor-like domain (MMD), was involved in polarized chitin synthesis in a manner dependent on the interaction between the MMD and the actin cytoskeleton. The genome database indicates that A. nidulans possesses another gene encoding another chitin synthase with an MMD. In this study, we characterized this gene, which we designated csmB. The csmB null mutants examined were viable, although they exhibited defective phenotypes, including the formation of balloons and intrahyphal hyphae and the lysis of subapical regions, which were similar to those obtained with csmA null mutants. Moreover, csmA csmB double null mutants were not viable. Mutants in which csmB was deleted and the expression of csmA was under the control of the alcA promoter were viable but severely impaired in terms of hyphal growth under alcA-repressing conditions. We revealed that CsmB with three copies of a FLAG epitope tag localized at the hyphal tips and forming septa, and that the MMD of CsmB was able to bind to actin filaments in vitro. These results suggest that CsmA and CsmB perform compensatory functions that are essential for hyphal tip growth.
Collapse
Affiliation(s)
- Norio Takeshita
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
27
|
Eirín-López JM, Lewis JD, Howe LA, Ausió J. Common phylogenetic origin of protamine-like (PL) proteins and histone H1: Evidence from bivalve PL genes. Mol Biol Evol 2006; 23:1304-17. [PMID: 16613862 DOI: 10.1093/molbev/msk021] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Sperm nuclear basic proteins (SNBPs) can be grouped into three main categories: histone (H) type, protamine (P) type, and protamine-like (PL) type. Protamine-like SNBPs represent the most structurally heterogeneous group, consisting of basic proteins which are rich in both lysine and arginine amino acids. The PL proteins replace most of the histones during spermiogenesis but to a lesser extent than the proteins of the P type. In most instances, PLs coexist in the mature sperm with a full histone complement. The replacement of histones by protamines in the mature sperm is a characteristic feature presented by those taxa located at the uppermost evolutionary branches of protostome and deuterostome evolution, while the histone type of SNBPs is predominantly found in the sperm of taxa which arose early in metazoan evolution; giving rise to the hypothesis that protamines may have evolved through a PL type intermediate from a primitive histone ancestor. The structural similarities observed between PL and H1 proteins, which were first described in bivalve molluscs, provide a unique insight into the evolutionary mechanisms underlying SNBP evolution. Although the evolution of SNBPs has been exhaustively analyzed in the last 10 years, the origin of PLs in relation to the evolution of the histone H1 family still remains obscure. In this work, we present the first complete gene sequence for two of these genes (PL-III and PL-II/PL-IV) in the mussel Mytilus and analyze the protein evolution of histone H1 and SNBPs, and we provide evidence that indicates that H1 histones and PLs are the direct descendants of an ancient group of "orphon" H1 replication-dependent histones which were excluded to solitary genomic regions as early in metazoan evolution as before the differentiation of bilaterians. While the replication-independent H1 lineage evolved following a birth-and-death process, the SNBP lineage has been subject to a purifying process that shifted toward adaptive selection at the time of the differentiation of arginine-rich Ps.
Collapse
Affiliation(s)
- José M Eirín-López
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | | | | | | |
Collapse
|
28
|
Yu XP, Zhu JL, Yao XP, He SC, Huang HN, Chen WL, Hu YH, Li DB. Identification of anrF gene, a homology of admM of andrimid biosynthetic gene cluster related to the antagonistic activity of Enterobacter cloacae B8. World J Gastroenterol 2005; 11:6152-8. [PMID: 16273642 PMCID: PMC4436632 DOI: 10.3748/wjg.v11.i39.6152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 04/08/2005] [Accepted: 04/11/2005] [Indexed: 02/06/2023] Open
Abstract
AIM To identify the gene (s) related to the antagonistic activity of Enterobacter cloacae B8 and to elucidate its antagonistic mechanism. METHODS Transposon-mediated mutagenesis and tagging method and cassette PCR-based chromosomal walking method were adopted to isolate the mutant strain(s) of B8 that lost the antagonistic activity and to clone DNA fragments around Tn5 insertion site. Sequence compiling and open reading frame (ORF) finding were done with DNAStar program and homologous sequence and conserved domain searches were performed with BlastN or BlastP programs at www.ncbi.nlm.nih.gov. To verify the gene involved in the antagonistic activity, complementation of a full-length clone of the anrF gene to the mutant B8F strain was used. RESULTS A 3 321 bp contig around the Tn5 insertion site was obtained and an ORF of 2 634 bp in length designated as anrF gene encoding for a 877 aa polyketide synthase-like protein was identified. It had a homology of 83% at the nucleotide level and 79% ID/87% SIM at the protein level, to the admM gene of Pantoea agglomerans andrimid biosynthetic gene cluster (AY192157). The Tn5 was inserted at 2 420 bp of the gene corresponding to the COG3319 (the thioesterase domain of type I polyketide synthase) coding region on B8F. The antagonistic activity against Xanthomonas oryzae pv. oryzae was resumed with complementation of the full-length anrF gene to the mutant B8F. CONCLUSION The anrF gene obtained is related to the antagonistic activity of B8, and the antagonistic substances produced by B8 are andrimid and/or its analogs.
Collapse
Affiliation(s)
- Xu-Ping Yu
- Veterinary Medicine Department, Animal Science College, Zhejiang University, Hangzhou 310029, Zhejiang Province, China.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhang Z, Henderson C, Perfect E, Carver TLW, Thomas BJ, Skamnioti P, Gurr SJ. Of genes and genomes, needles and haystacks: Blumeria graminis and functionality. MOLECULAR PLANT PATHOLOGY 2005; 6:561-75. [PMID: 20565680 DOI: 10.1111/j.1364-3703.2005.00303.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
SUMMARY Here, we consider the barley powdery mildew fungus, Blumeria graminis (DC Speer) f.sp. hordei (Marchal), and review recent research which has added to our understanding of the biology and molecular biology which underpins the asexual life cycle of this potentially devastating pathogen. We focus on the early stages of the host-pathogen interaction and report current understanding in the areas of leaf perception, fungal signal transduction and host-imposed oxidative stress management. Through this, it is becoming increasingly clear how closely and subtly both sides of the relationship are regulated. Collectively, however, this review highlights the high degree of complexity in working with an obligate parasite. Our experiences suggest that we would make more efficient progress towards understanding the basis of susceptibility and resistance to this true obligate biotroph if its genome sequence was available.
Collapse
Affiliation(s)
- Z Zhang
- Plant Sciences Department, South Parks Road, University of Oxford, Oxford OX1 3RB, UK
| | | | | | | | | | | | | |
Collapse
|
30
|
Cooper SJB, Wheeler D, Hope RM, Dolman G, Saint KM, Gooley AA, Holland RAB. The alpha-globin gene family of an Australian marsupial, Macropus eugenii: the long evolutionary history of the theta-globin gene and its functional status in mammals. J Mol Evol 2005; 60:653-64. [PMID: 15983873 DOI: 10.1007/s00239-004-0247-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2004] [Accepted: 11/07/2004] [Indexed: 10/25/2022]
Abstract
Comparative evolutionary analyses of gene families among divergent lineages can provide information on the order and timing of major gene duplication events and evolution of gene function. Here we investigate the evolutionary history of the alpha-globin gene family in mammals by isolating and characterizing alpha-like globin genes from an Australian marsupial, the tammar wallaby, Macropus eugenii. Sequence and phylogenetic analyses indicate that the tammar alpha-globin family consists of at least four genes including a single adult-expressed gene (alpha), two embryonic/neonatally expressed genes (zeta and zeta'), and theta-globin, each orthologous to the respective alpha-, zeta-, and theta-globin genes of eutherian mammals. The results suggest that the theta-globin lineage arose by duplication of an ancestral adult alpha-globin gene and had already evolved an unusual promoter region, atypical of all known alpha-globin gene promoters, prior to the divergence of the marsupial and eutherian lineages. Evolutionary analyses, using a maximum likelihood approach, indicate that theta-globin, has evolved under strong selective constraints in both marsupials and the lineage leading to human theta-globin, suggesting a long-term functional status. Overall, our results indicate that at least a four-gene cluster consisting of three alpha-like and one beta-like globin genes linked in the order 5'-zeta-alpha-theta-omega-3' existed in the common ancestor of marsupials and eutherians. However, results are inconclusive as to whether the two tammar zeta-globin genes arose by duplication prior to the radiation of the marsupial and eutherian lineages, with maintenance of exon sequences by gene conversion, or more recently within marsupials.
Collapse
|
31
|
Nthangeni MB, Ramagoma F, Tlou MG, Litthauer D. Development of a versatile cassette for directional genome walking using cassette ligation-mediated PCR and its application in the cloning of complete lipolytic genes from Bacillus species. J Microbiol Methods 2005; 61:225-34. [PMID: 15722149 DOI: 10.1016/j.mimet.2004.11.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Revised: 11/29/2004] [Accepted: 11/29/2004] [Indexed: 11/29/2022]
Abstract
Since the invention of the PCR technology, adaptation techniques to clone DNA fragments flanking the known sequence continue to be developed. We describe a perfectly annealed cassette available in almost unlimited quantities with variable sticky-and blunt-end restriction enzyme recognition sites for efficient restriction and ligation with the restricted target genomic DNA. The cassette provides a 200-bp sequence, which is used to design a variety of cassette-specific primers. The dephosphorylation prevents cassette self-ligation and creates a nick at the cassette: target genome DNA ligation site suppressing unspecific PCR amplifications. We introduce the single-strand amplification PCR (SSA-PCR) technique where a lone known locus-specific primer is firstly used to enrich the targeted template DNA strand resulting in significant PCR product specificity during the second round conventional nested PCR. The distance between the known locus-specific primer and the nearest location of the restriction enzyme used determined the length of the obtained PCR product. We used this technique to walk downstream into the isochorismatase and upstream into the hypothetical conserved genes flanking the mature extracellular lipase gene from Bacillus licheniformis. We further demonstrated the potential of the technique as a cost-effective method during PCR-based prospecting for novel genes by designing "universal" degenerate primers that detected homologues of Family VII bacterial lipolytic genes in Bacillus species. The cassette ligation-mediated PCR was used to clone complete nucleotide sequences encoding functional lipolytic genes from B. licheniformis and Bacillus pumilus.
Collapse
Affiliation(s)
- Mulalo B Nthangeni
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa.
| | | | | | | |
Collapse
|
32
|
Takeshita N, Ohta A, Horiuchi H. CsmA, a class V chitin synthase with a myosin motor-like domain, is localized through direct interaction with the actin cytoskeleton in Aspergillus nidulans. Mol Biol Cell 2005; 16:1961-70. [PMID: 15703213 PMCID: PMC1073675 DOI: 10.1091/mbc.e04-09-0761] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
One of the essential features of fungal morphogenesis is the polarized synthesis of cell wall components such as chitin. The actin cytoskeleton provides the structural basis for cell polarity in Aspergillus nidulans, as well as in most other eukaryotes. A class V chitin synthase, CsmA, which contains a myosin motor-like domain (MMD), is conserved among most filamentous fungi. The DeltacsmA null mutant showed remarkable abnormalities with respect to cell wall integrity and the establishment of polarity. In this study, we demonstrated that CsmA tagged with 9x HA epitopes localized near actin structures at the hyphal tips and septation sites and that its MMD was able to bind to actin. Characterization of mutants bearing a point mutation or deletion in the MMD suggests that the interaction between the MMD and actin is not only necessary for the proper localization of CsmA, but also for CsmA function. Thus, the finding of a direct interaction between the chitin synthase and the actin cytoskeleton provides new insight into the mechanisms of polarized cell wall synthesis and fungal morphogenesis.
Collapse
|
33
|
Hu ZL, Glenn K, Ramos AM, Otieno CJ, Reecy JM, Rothschild MF. Expeditor: a pipeline for designing primers using human gene structure and livestock animal EST information. ACTA ACUST UNITED AC 2004; 96:80-2. [PMID: 15598711 DOI: 10.1093/jhered/esi015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
We have developed software, called Expeditor, that can be used to combine known gene structure information from human and coding sequence information from farm animal species for a streamlined primer design in target farm animal species. This software has many utilities, which include PCR-based SNP discovery for identification of genes/markers associated with economically important traits in farm animals, comparative mapping analysis, and evolution studies. The use of this software helps minimize tedious manual operations and reduces the chance of errors by more conventional approaches.
Collapse
Affiliation(s)
- Z-L Hu
- Department of Animal Science, 2255 Kildee Hall, Center for Integrated Animal Genomics, Iowa State University, Ames, IA 50011, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Lewis JD, de Jong ME, Bagha SM, Tang A, Gilly WF, Ausió J. All roads lead to arginine: the squid protamine gene. J Mol Evol 2004; 58:673-80. [PMID: 15461424 DOI: 10.1007/s00239-004-2589-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The protamine of squid is one of the most arginine-rich protamines (77%, mol/mol). It possesses a leading sequence that is posttranslationally removed during spermatogenesis in a manner that is analogous to that observed in some of its vertebrate protamine counterparts. In this paper we describe the gene sequence of the protamine of the squid Loligo opalescens. This represents the first complete gene sequence ever reported for an invertebrate protamine. Like those of vertebrate protamines, the messenger RNA is polyadenylated but the gene does not contain an intron. The promoter region contains the major transcriptional regulatory elements (CRE, TATA box, and CAP) that are also characteristic of the vertebrate protamine genes. It is unclear whether the similarities of protamines in species from both the deuterostome and the protostome branches represent the result of phylogenetic conservation or evolutionary convergence.
Collapse
Affiliation(s)
- John D Lewis
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055, Petch Building Room 220, Victoria, B.C., V8W 3P6, Canada
| | | | | | | | | | | |
Collapse
|
35
|
Zhang Z, Henderson C, Gurr SJ. Blumeria graminis secretes an extracellular catalase during infection of barley: potential role in suppression of host defence. MOLECULAR PLANT PATHOLOGY 2004; 5:537-547. [PMID: 20565628 DOI: 10.1111/j.1364-3703.2004.00251.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
SUMMARY The obligate biotrophic fungal pathogen of barley, Blumeria graminis f.sp. hordei (Bgh), elicits a burst of H(2)O(2) in its host barley at sites of germ tube invasion. To evaluate whether this specialized pathogen has any antioxidant response to this oxidative burst, the Bgh catB gene was characterized and transcript-profiled together with other genes implicated in the management of oxidative stress (catalase-peroxidase, cpx; glutathione peroxidase, gpx; superoxide dismutase, sod1) and in comparison with the constitutively expressed Bghbeta-tubulin and elongation factor1 (ef1) genes. Gel-based and real-time RT-PCR revealed enhanced numbers of catB transcripts at mature primary germ tube and appressorium germ tube (AGT) stages in a susceptible host. Moreover, an anti-CATB polyclonal antibody, from Aspergillus fumigatus, which recognizes both native and recombinant Bgh CATB, revealed an intense circle of immunofluorescence at the host-pathogen interface at the AGT tip and within the halo area surrounding the host papilla. A new diaminobenzidine-based 'scavenger' assay revealed areas of H(2)O(2) clearing at sites of fungal invasion, provoking speculation that Bgh catalase activity may contribute to pathogenicity in Bgh.
Collapse
Affiliation(s)
- Ziguo Zhang
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | | | |
Collapse
|
36
|
Liu H, Kauffman S, Becker JM, Szaniszlo PJ. Wangiella (Exophiala) dermatitidis WdChs5p, a class V chitin synthase, is essential for sustained cell growth at temperature of infection. EUKARYOTIC CELL 2004; 3:40-51. [PMID: 14871935 PMCID: PMC329517 DOI: 10.1128/ec.3.1.40-51.2004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The chitin synthase structural gene WdCHS5 was isolated from the black fungal pathogen of humans Wangiella dermatitidis. Sequence analysis revealed that the gene has a myosin motor-like-encoding region at its 5' end and a chitin synthase (class V)-encoding region at its 3' end. Northern blotting showed that WdCHS5 is expressed at high levels under conditions of stress. Analysis of the 5' upstream region of WdCHS5 fused to a reporter gene indicated that one or more of the potential regulatory elements present may have contributed to the high expression levels. Disruption of WdCHS5 produced mutants that grow normally at 25 degrees C but have severe growth and cellular abnormalities at 37 degrees C. Osmotic stabilizers, such as sorbitol and sucrose, rescued the wild-type phenotype, which indicated that the loss of WdChs5p causes cell wall integrity defects. Animal survival tests with a mouse model of acute infection showed that all wdchs5Delta mutants are less virulent than the parental strain. Reintroduction of the WdCHS5 gene into the wdchs5Delta mutants abolished the temperature-sensitive phenotype and reestablished their virulence. We conclude that the product of WdCHS5 is required for the sustained growth of W. dermatitidis at 37 degrees C and is of critical importance to its virulence.
Collapse
Affiliation(s)
- Hongbo Liu
- Section of Molecular Genetics and Microbiology, School of Biological Science and Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | |
Collapse
|
37
|
Niño-Vega GA, Carrero L, San-Blas G. Isolation of the CHS4 gene of Paracoccidioides brasiliensis and its accommodation in a new class of chitin synthases. Med Mycol 2004; 42:51-7. [PMID: 14982114 DOI: 10.1080/1369378031000153811] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The nucleotide sequence of a chitin synthase gene (PbrCHS4) of the dimorphic fungal human pathogen Paracoccidioides brasiliensis has been determined. A homology search with the deduced amino acid sequence of PbrChs4 (1744 aa) reveals the presence of two distinct domains, an N-terminal domain showing up to 30% homology to myosin motor-like domains and a C-terminal domain with up to 68% homology to chitin synthases, as has been reported for some class V chitin synthases. However, unlike class V chitin synthases with myosin motor-like domains, PbrChs4 does not present characteristic signatures of myosin motor-like domains. Also, although the Chs domain presents the closest homology to other fungal class V enzymes, it is low enough to consider PbrChs4 as belonging to a new class, which we propose as class VII.
Collapse
Affiliation(s)
- G A Niño-Vega
- Instituto Venezolano de Investigaciones Científicas, Centro de Microbiología y Biología Celular Apartado 21827, Caracas 1020A, Venezuela.
| | | | | |
Collapse
|
38
|
Wang CN, Möller M, Cronk QCB. Altered expression of GFLO, the Gesneriaceae homologue of FLORICAULA/LEAFY, is associated with the transition to bulbil formation in Titanotrichum oldhamii. Dev Genes Evol 2004; 214:122-7. [PMID: 14963704 DOI: 10.1007/s00427-004-0388-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Accepted: 01/21/2004] [Indexed: 11/24/2022]
Abstract
Titanotrichum oldhamii inflorescences switch from flower to bulbil production at the end of the flowering season. The structure of the bulbiliferous shoots resembles the abnormal meristematic organization of the Antirrhinum mutant, floricaula. Gesneriaceae- FLORICAULA (GFLO) is thus a candidate gene in the regulation of bulbil formation. To investigate this hypothesis, part of the GFLO gene (between the second and third exon) was isolated using degenerate primers designed in regions conserved between Antirrhinum, Nicotiana and Arabidopsis, followed by genome walking to obtain the complete gene and flanking sequences. RT-PCR results showed that the GFLO homologue is strongly expressed in inflorescence apical meristems and young flowers. However, in meristems that had switched to bulbil formation, GFLO transcription was greatly reduced. The down-regulation of GFLO in bulbil primordia indicates that this gene is connected to, or part of, the bulbil-flower regulatory pathway. Phylogenetic analysis confirms the orthology of GFLO and FLO, and indicates that the gene may be useful for phylogenetic reconstruction at the genus or family level.
Collapse
Affiliation(s)
- Chun-Neng Wang
- Royal Botanic Garden, 20A Inverleith Row, Edinburgh, EH3 5LR, UK.
| | | | | |
Collapse
|
39
|
Foster SJ, Fitt BDL. Isolation and characterisation of the mating-type (MAT) locus from Rhynchosporium secalis. Curr Genet 2003; 44:277-86. [PMID: 14517690 DOI: 10.1007/s00294-003-0445-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2003] [Revised: 08/29/2003] [Accepted: 09/01/2003] [Indexed: 10/26/2022]
Abstract
The mating-type ( MAT) genes from Rhynchosporium secalis were isolated using PCR-based methods. Characterisation of the MAT idiomorphs suggests that R. secalis is closely related to the discomycetes Pyrenopeziza brassicae and Tapesia yallundae in terms of sequence and MAT locus gene composition. The MAT1-2 idiomorph contains a single gene encoding a protein with a high-mobility group (HMG) DNA-binding domain. The MAT1-1 idiomorph contains two genes, one encoding a protein with a HMG domain and the other encoding an alpha box domain. A second, previously undescribed, intron was identified within the P. brassicae MAT1-2-1 gene. Two introns were also present in the corresponding gene in R. secalis and this showed the similarity between these genes at the discomycete MAT1-2 locus. Using PCR, we identified isolates of both mating types from barley crops in different parts of the UK and showed that the composition of the MAT idiomorphs is conserved in these isolates. These findings support the hypothesis that R. secalis is a heterothallic discomycete which has an as yet unidentified teleomorph.
Collapse
Affiliation(s)
- Simon J Foster
- Plant-Pathogen Interactions Division, Rothamsted Research, AL5 2JQ, Harpenden, Hertfordshire, UK.
| | | |
Collapse
|
40
|
Iwase M, Satta Y, Hirai Y, Hirai H, Imai H, Takahata N. The amelogenin loci span an ancient pseudoautosomal boundary in diverse mammalian species. Proc Natl Acad Sci U S A 2003; 100:5258-63. [PMID: 12672962 PMCID: PMC154332 DOI: 10.1073/pnas.0635848100] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The mammalian amelogenin (AMEL) genes are found on both the X and Y chromosomes (gametologous). Comparison of the genomic AMEL sequences in five primates and three other mammals reveals that the 5' portion of the gametologous AMEL loci began to differentiate in the common ancestor of extant mammals, whereas the 3' portion differentiated independently within species of different mammals. The boundary is marked by a transposon insertion in intron 2 and is shared by all species examined. In addition, 540-kb DNA sequences from the short arm of the human X chromosome are aligned with their Y gametologous sequences. The pattern and extent of sequence differences in the 5' portion of the AMEL loci extend to a proximal region that contains the ZFX locus, and those in the 3' portion extend all the way down to the pseudoautosomal boundary (PAB)1. We concluded that the AMEL locus spans an ancient PAB, and that both the ancient and present PABs were determined by chance events during the evolution of mammals and primates. Sex chromosome differentiation likely took place in a region that contains the male-determining loci by suppressing homologous recombination.
Collapse
Affiliation(s)
- Mineyo Iwase
- Department of Biosystems Science, Graduate University for Advanced Studies (Sokendai), Hayama, Kanagawa 240-0193, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Hiscock SJ, McInnis SM, Tabah DA, Henderson CA, Brennan AC. Sporophytic self-incompatibility in Senecio squalidus L (Asteraceae)--the search for S. JOURNAL OF EXPERIMENTAL BOTANY 2003; 54:169-74. [PMID: 12456767 DOI: 10.1093/jxb/erg005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Senecio squalidus (Oxford Ragwort) is being used as a model species to study the genetics and molecular genetics of self-incompatibility (SI) in the Asteraceae. S. squalidus has a strong system of sporophytic SI (SSI) and populations within the UK contain very few S alleles probably due to a population bottleneck experienced on its introduction to the UK. The genetic control of SSI in S. squalidus is complex and may involve a second locus epistatic to S. Progress towards identifying the female determinant of SSI in S. squalidus is reviewed here. Research is focused on plants carrying two defined S alleles, S(1) and S(2). S(2) is dominant to S(1) in pollen and stigma. RT-PCR was used to amplify three SRK-like cDNAs from stigmas of S(1)S(2) heterozygotes, but the expression patterns of these cDNAs suggest that they are unlikely to be directly involved in SI or pollen-stigma interactions in contrast to SSI in the Brassicaceae. Stigma-specific proteins associated with the S(1) allele and the S(2) allele have been identified using isoelectric focusing and these proteins have been designated SSP1 (Stigma S-associated Protein 1) and SSP2. SSP1 and SSP2 cDNAs have been cloned by 3' and 5' RACE and shown to be allelic forms of the same gene, SSP. The expression of SSP and its linkage to the S locus are currently being investigated. Initial results show SSP to be expressed exclusively in stigmas and developmentally regulated, with maximal expression occurring at and just before anthesis when SI is fully functional, SSP expression being undetectable in immature buds. Together these data suggest that SSP is a strong candidate for a Senecio S-gene.
Collapse
Affiliation(s)
- Simon J Hiscock
- School of Biological Sciences, University of Bristol, Woodland Road, Clifton, Bristol BS8 1UG, UK.
| | | | | | | | | |
Collapse
|
42
|
Madrid MP, Di Pietro A, Roncero MIG. Class V chitin synthase determines pathogenesis in the vascular wilt fungus Fusarium oxysporum and mediates resistance to plant defence compounds. Mol Microbiol 2003; 47:257-66. [PMID: 12492869 DOI: 10.1046/j.1365-2958.2003.03299.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chitin, a beta-1,4-linked polysaccharide of N-acetylglucosamine, is a major structural component of fungal cell walls. Fungi have multiple classes of chitin synthases that catalyse N-acetylglucosamine polymerization. Here, we demonstrate the requirement for a class V chitin synthase during host infection by the vascular wilt pathogen Fusarium oxysporum. The chsV gene was identified in an insertional mutagenesis screen for pathogenicity mutants. ChsV has a putative myosin motor and a chitin synthase domain characteristic of class V chitin synthases. The chsV insertional mutant and a gene replacement mutant of F. oxysporum display morphological abnormalities such as hyphal swellings that are indicative of alterations in cell wall structure and can be partially restored by osmotic stabilizer. The mutants are unable to infect and colonize tomato plants or to grow invasively on tomato fruit tissue. They are also hypersensitive to plant antimicrobial defence compounds such as the tomato phytoanticipin alpha-tomatine or H2O2. Reintroduction of a functional chsV copy into the mutant restored the growth phenotype of the wild-type strain. These data suggest that F. oxysporum requires a specific class V chitin synthase for pathogenesis, most probably to protect itself against plant defence mechanisms.
Collapse
Affiliation(s)
- Martan P Madrid
- Departamento de Genética, Universidad de Córdoba, Campus Rabanales C5, 14071 Córdoba, Spain
| | | | | |
Collapse
|
43
|
Takeshita N, Ohta A, Horiuchi H. csmA, a gene encoding a class V chitin synthase with a myosin motor-like domain of Aspergillus nidulans, is translated as a single polypeptide and regulated in response to osmotic conditions. Biochem Biophys Res Commun 2002; 298:103-9. [PMID: 12379226 DOI: 10.1016/s0006-291x(02)02418-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The csmA gene of Aspergillus nidulans encodes a polypeptide that consists of an N-terminal myosin motor-like domain and a C-terminal chitin synthase domain. csmA null mutants showed marked abnormalities in polarized growth, hyphal wall integrity, and conidiophore development. Furthermore, the growth of the csmA null mutants was sensitive to low osmotic conditions. In an effort to investigate the intracellular behavior of the csmA product (CsmA) and the regulation of its production, we constructed strains that produced CsmA tagged with nine repeats of the hemagglutinin A (HA) epitope at its COOH terminus (CsmA-HA) instead of CsmA. Western blot analysis with anti-HA antibody showed that the entire coding region of csmA was translated as a single polypeptide with an approximate molecular mass of 210kDa. CsmA-HA was produced during vegetative growth; however, its yield was significantly reduced under high osmotic conditions, suggesting that the role of CsmA in growth and morphogenesis is particularly important under low osmotic conditions.
Collapse
Affiliation(s)
- Norio Takeshita
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | | | |
Collapse
|
44
|
Wang Q, Liu H, Szaniszlo PJ. Compensatory expression of five chitin synthase genes, a response to stress stimuli, in Wangiella (Exophiala) dermatitidis, a melanized fungal pathogen of humans. MICROBIOLOGY (READING, ENGLAND) 2002; 148:2811-2817. [PMID: 12213927 DOI: 10.1099/00221287-148-9-2811] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Numerous chitin synthase structural (CHS) genes have been identified in fungi, and usually there are several CHS genes per species. Compensatory expression of one CHS gene in response to defects in other CHS genes has not been reported. Five chitin synthase structural (WdCHS) genes have been identified in the melanized human pathogen Wangiella dermatitidis: WdCHS1, WdCHS2, WdCHS3, WdCHS4 and WdCHS5. This study showed that increased WdCHS expression existed as a compensatory mechanism in response to stress induced by chitin synthase gene disruptions, or by exposure of the wild-type or two temperature-sensitive morphological mutants, for short or long periods, to 37 degrees C. In general, the compensatory responses varied with each WdCHS gene, and in accordance with the hypothesized functions of the chitin synthase (WdChsp) encoded. It is suggested that these compensatory responses indicate that WdCHS gene transcription in W. dermatitidis functions as part of a cell-wall integrity pathway in a manner similar to that recently described for Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Qingfeng Wang
- Section of Molecular Genetics and Microbiology, School of Biological Sciences, The University of Texas at Austin, Austin, TX 78712, USA1
| | - Hongbo Liu
- Section of Molecular Genetics and Microbiology, School of Biological Sciences, The University of Texas at Austin, Austin, TX 78712, USA1
| | - Paul J Szaniszlo
- Section of Molecular Genetics and Microbiology, School of Biological Sciences, The University of Texas at Austin, Austin, TX 78712, USA1
| |
Collapse
|
45
|
Zhang Z, Priddey G, Gurr SJ. The barley powdery mildew protein kinase C gene, pkc1 and pkc-like gene, are differentially expressed during morphogenesis. MOLECULAR PLANT PATHOLOGY 2001; 2:327-337. [PMID: 20573022 DOI: 10.1046/j.1464-6722.2001.00081.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
summary Protein kinase C agonist assays revealed the phorbol ester, phorbol 12-myristate 13-acetate, invoked germling morphogenesis and enhanced PKC activity in Blumeria graminis. No antagonist of mildew PKC activity was found but the data fuelled a hunt for powdery mildew pkc genes. Oligonucleotides, designed on the basis of conserved ATP-binding and kinase domains within the catalytic core of eukaryotic protein kinase proteins, were used as primers to amplify chromosomal and cDNA fragments from the barley powdery mildew fungus graminis. Three kinase gene fragments were isolated (pkc1, pkc-like and cpka) and the full length genomic sequences of the mildew pkc and pkc-like genes were determined by 'step down' PCR. RT-PCR transcript profiles showed the three genes to be differentially regulated during germling morphogenesis.
Collapse
Affiliation(s)
- Z Zhang
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | | | |
Collapse
|
46
|
Zhang Z, Gurr SJ. Expression and sequence analysis of the Blumeria graminis mitogen-activated protein kinase genes, mpk1 and mpk2. Gene 2001; 266:57-65. [PMID: 11290419 DOI: 10.1016/s0378-1119(01)00381-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mitogen-activated protein (MAP) kinases represent a group of serine/threonine kinases which play a pivotal role in signal transduction processes in eukaryotic cells. Using degenerate PCR primer design based on published and aligned MAP kinase sequences we have cloned and characterised two MAP kinase genes from the barley powdery mildew fungus, Blumeria graminis. We have utilised 'step down' PCR to attain the full length mildew genomic clones. The single-copy genes, named mpk1 and mpk2, encode putative proteins of 356 and 410 amino acids and carry three and four introns, respectively. Expression studies, using RT-PCR, reveal a differing pattern of tissue gene expression with mpk1 and mpk2 during germling morphogenesis and this is compared with the constitutive expression of the 'control' beta-tubulin gene.
Collapse
MESH Headings
- Amino Acid Sequence
- Ascomycota/enzymology
- Ascomycota/genetics
- Blotting, Southern
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- DNA, Fungal/isolation & purification
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Fungal
- Genes, Fungal/genetics
- Mitogen-Activated Protein Kinases/genetics
- Molecular Sequence Data
- Phylogeny
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Transcription, Genetic
Collapse
Affiliation(s)
- Z Zhang
- Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB, Oxford, UK
| | | |
Collapse
|