1
|
Hyperthermia Treatment as a Promising Anti-Cancer Strategy: Therapeutic Targets, Perspective Mechanisms and Synergistic Combinations in Experimental Approaches. Antioxidants (Basel) 2022; 11:antiox11040625. [PMID: 35453310 PMCID: PMC9030926 DOI: 10.3390/antiox11040625] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 02/04/2023] Open
Abstract
Despite recent developments in diagnosis and treatment options, cancer remains one of the most critical threats to health. Several anti-cancer therapies have been identified, but further research is needed to provide more treatment options that are safe and effective for cancer. Hyperthermia (HT) is a promising treatment strategy for cancer because of its safety and cost-effectiveness. This review summarizes studies on the anti-cancer effects of HT and the detailed mechanisms. In addition, combination therapies with anti-cancer drugs or natural products that can effectively overcome the limitations of HT are reviewed because HT may trigger protective events, such as an increase of heat shock proteins (HSPs). In the 115 reports included, the mechanisms related to apoptosis, cell cycle, reactive oxygen species, mitochondrial membrane potential, DNA damage, transcription factors and HSPs were considered important. This review shows that HT is an effective inducer of apoptosis. Moreover, the limitations of HT may be overcome using combined therapy with anti-cancer drugs or natural products. Therefore, appropriate combinations of such agents with HT will exert maximal effects to treat cancer.
Collapse
|
2
|
Wismeth C, Dudel C, Pascher C, Ramm P, Pietsch T, Hirschmann B, Reinert C, Proescholdt M, Rümmele P, Schuierer G, Bogdahn U, Hau P. Transcranial electro-hyperthermia combined with alkylating chemotherapy in patients with relapsed high-grade gliomas: phase I clinical results. J Neurooncol 2009; 98:395-405. [PMID: 20033471 DOI: 10.1007/s11060-009-0093-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2009] [Accepted: 12/07/2009] [Indexed: 10/20/2022]
Abstract
Non-invasive loco-regional electro-hyperthermia (EHT) plus alkylating chemotherapy is occasionally used as salvage treatment in the relapse of patients with high-grade gliomas. Experimental data and retrospective studies suggest potential effects. However, no prospective clinical results are available. We performed a single-center prospective non-controlled single-arm Phase I trial. Main inclusion criteria were recurrent high-grade glioma WHO Grade III or IV, age 18-70, and Karnofsky performance score > or = 70. Primary endpoints were dose-limiting toxicities (DLT) and maximum tolerated dose (MTD) with the combined regimen. Groups of 3 or 4 patients were treated 2-5 times a week in a dose-escalation scheme with EHT. Alkylating chemotherapy (ACNU, nimustin) was administered at a dose of 90 mg/m(2) on day 1 of 42 days for up to six cycles or until tumor progression (PD) or DLT occurred. Fifteen patients with high-grade gliomas were included. Relevant toxicities were local pain and increased focal neurological signs or intracranial pressure. No DLT occurred. In some patients, the administration of mannitol during EHT or long-term use of corticosteroids was necessary to resolve symptoms. Although some patients showed responses in their primarily treated sites, the pattern of response was not well defined. EHT plus alkylating chemotherapy is tolerable in patients with relapse of high-grade gliomas. Episodes of intracranial pressure were, at least, possibly attributed to EHT but did not cause DLTs. A Phase II trial targeting treatment effects is warranted on the basis of the results raised in this trial.
Collapse
Affiliation(s)
- Caecilia Wismeth
- Department of Neurology, University of Regensburg Medical School (UKR), Universitätsstrasse 84, 93053, Regensburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Horsman MR. Angiogenesis and vascular targeting: Relevance for hyperthermia. Int J Hyperthermia 2009; 24:57-65. [DOI: 10.1080/02656730701829710] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
4
|
Eikesdal HP, Kalluri R. Drug resistance associated with antiangiogenesis therapy. Semin Cancer Biol 2009; 19:310-7. [PMID: 19524042 DOI: 10.1016/j.semcancer.2009.05.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 05/20/2009] [Indexed: 12/31/2022]
Abstract
Neovascularization is one of the hallmarks associated with tumor growth. In the recent years, a number of angiogenesis inhibitors have been approved for clinical use in cancer patients. However, the efficacy of antiangiogenic therapy is in most cases short-lasting, with likely drug resistance developing within a few months. It is becoming clear also that there are a subset of malignant tumors that are inherently resistant to angiogenesis inhibition. The knowledge regarding resistance mechanisms towards angiogenesis inhibitors is still evolving and here we propose some theories and in some cases provide experimental evidence.
Collapse
Affiliation(s)
- Hans Petter Eikesdal
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
5
|
van der Zee J, Vujaskovic Z, Kondo M, Sugahara T. The Kadota Fund International Forum 2004--clinical group consensus. Int J Hyperthermia 2008; 24:111-22. [PMID: 18283588 PMCID: PMC2759185 DOI: 10.1080/02656730801895058] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The results from experimental studies indicate that hyperthermia is both an effective complementary treatment to, and a strong sensitiser of, radiotherapy and many cytotoxic drugs. Since the first international hyperthermia conference in 1975, Washington DC, techniques to increase tumour temperature have been developed and tested clinically. Hyperthermia can be applied by several methods: local hyperthermia by external or internal energy sources, perfusion hyperthermia of organs, limbs, or body cavities, and whole body hyperthermia. The clinical value of hyperthermia in combination with other treatment modalities has been shown by randomised trials. Significant improvement in clinical outcome has been demonstrated for tumours of the head and neck, breast, brain, bladder, cervix, rectum, lung, oesophagus, for melanoma and sarcoma. The addition of hyperthermia resulted in remarkably higher (complete) response rates, accompanied by improved local tumour control rates, better palliative effects, and/or better overall survival rates. Toxicity from hyperthermia cannot always be avoided, but is usually of limited clinical relevance. In spite of these good clinical results, hyperthermia has received little attention. Problems with acceptance concern the limited availability of equipment, the lack of awareness concerning clinical results, and the lack of financial resources. In this paper the most relevant literature describing the clinical effects of hyperthermia is reviewed and discussed, and means to overcome the lack of awareness and use of this modality is described.
Collapse
Affiliation(s)
- J van der Zee
- Erasmus MC-Daniel den Hoed Cancer Center, Rotterdam, the Netherlands.
| | | | | | | |
Collapse
|
6
|
Dahl O, Borkamo ED, Fluge O. Current status of antivascular therapy and targeted treatment in the clinic. Int J Hyperthermia 2008; 24:97-110. [PMID: 18214773 DOI: 10.1080/02656730701824406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Antivascular and targeted therapy are now an integrated part of the treatment of myelogenous leukemias, GIST tumours, B-cell lymphomas and breast cancer. In various malignancies improved responses and prolongation of survival for several months is regularly reported. The progress in this field is relevant for hyperthermia. Heat has among other effects documented antivascular effects, and can be considered as one of the established methods in the field based on several randomised phase III studies. Hyperthermia should be considered for combination with other antiangiogenic agents.
Collapse
Affiliation(s)
- Olav Dahl
- Institute of Medicine, University of Bergen Section of Oncology, Bergen, Norway.
| | | | | |
Collapse
|
7
|
Yang X, Du J, Liu Y. Advances in hyperthermia technology. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2007; 2005:6766-9. [PMID: 17281827 DOI: 10.1109/iembs.2005.1616058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Hyperthermia is a type of cancer treatment in which body tissue is exposed to high temperatures. Research has shown that high temperatures can damage and kill cancer cells, usually with minimal injury to normal tissues. In the clinical application of hyperthermia, three methods can be distinguished: local, regional and whole-body hyperthermia. Hyperthermia is under study in clinical trials and is not widely available. So further technological improvements will need to contribute to an easier and better controlled adequate application of hyperthermia.
Collapse
Affiliation(s)
- Xiaoyong Yang
- Biomedical Engineering Center, Beijing, University of Technology, Beijing, China
| | | | | |
Collapse
|
8
|
Horsman MR, Siemann DW. Pathophysiologic Effects of Vascular-Targeting Agents and the Implications for Combination with Conventional Therapies. Cancer Res 2006; 66:11520-39. [PMID: 17178843 DOI: 10.1158/0008-5472.can-06-2848] [Citation(s) in RCA: 198] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A functional vascular supply is critical for the continued growth and development of solid tumors. It also plays a major role in metastatic spread of tumor cells. This importance has led to the concept of targeting the vasculature of the tumor as a form of cancer therapy. Two major types of vascular-targeting agent (VTA) have now emerged: those that prevent the angiogenic development of the neovasculature of the tumor and those that specifically damage the already established tumor vascular supply. When used alone neither approach readily leads to tumor control, and so, for VTAs to be most successful in the clinic they will need to be combined with more conventional therapies. However, by affecting the tumor vascular supply, these VTAs should induce pathophysiologic changes in variables, such as blood flow, pH, and oxygenation. Such changes could have negative or positive influences on the tumor response to more conventional therapies. This review aims to discuss the pathophysiologic changes induced by VTAs and the implications of these effects on the potential use of VTAs in combined modality therapy.
Collapse
Affiliation(s)
- Michael R Horsman
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark.
| | | |
Collapse
|
9
|
Abstract
The most important physiological parameter influencing tissue response to heat is blood flow. At mild hyperthermia temperatures blood perfusion increases in many tumours and this effect is heating time-, temperature- and tumour-dependent. These flow increases can improve tumour oxygenation. When heating is terminated, perfusion and oxygenation commonly recover, although how quickly this occurs appears to be tumour-specific. While these effects are unlikely to have any anti-tumour activity they can be exploited to improve the combination of heat with other therapies. However, since similar physiological effects should occur in normal tissues, such combination therapies must be carefully applied. Heating tumours to higher temperatures typically causes a transient increase in perfusion during heating, followed by vascular collapse which if sufficient will increase tumour necrosis. The speed and degree of vascular collapse is dependent on heating time, temperature and tumour model used. Such vascular collapse generally occurs at temperatures that cause a substantial blood flow increase in certain normal tissues, thus preferential anti-tumour effects can be achieved. The tumour vascular supply can also be exploited to improve the response to heat. Decreasing blood flow, using transient physiological modifiers or longer acting vascular disrupting agents prior to the initiation of heating, can both increase the accumulation of physical heat in the tumour, as well as increase heat sensitivity by changing the tumour micro-environmental parameters, primarily an increase in tumour acidity. Such changes are generally not seen in normal tissues, thus resulting in a therapeutic benefit.
Collapse
Affiliation(s)
- Michael R Horsman
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus C, Denmark.
| |
Collapse
|
10
|
Bunte RM, Ansaloni S, Sehgal CM, Lee WMF, Wood AKW. Histopathological observations of the antivascular effects of physiotherapy ultrasound on a murine neoplasm. ULTRASOUND IN MEDICINE & BIOLOGY 2006; 32:453-61. [PMID: 16530105 DOI: 10.1016/j.ultrasmedbio.2005.12.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2004] [Revised: 11/25/2005] [Accepted: 12/08/2005] [Indexed: 05/07/2023]
Abstract
This study evaluates the histopathological changes that follow insonation of a neoplasm with physiotherapy ultrasound. In 27 mice (C3HV/HeN strain), a subcutaneous melanoma (K1735(22)) was insonated with continuous physiotherapy ultrasound (1 MHz; spatial-average-temporal-average = 2.3 W cm(-2)). Analyses of contrast enhanced (0.1 mL Optison) power Doppler observations showed that insonation significantly (p < 0.05) increased the avascular area in the neoplasm. The predominant acute effect of insonating the neoplasm was an apparently irreparable dilation of the tumor capillaries with associated intercellular oedema; other immediate effects were haemorrage and increased intercellular fluid. Liquefactive necrosis of neoplastic cells was a delayed effect. There was a high correlation (R2 = 0.91) between the percent area affected on histologic examination and the percent increase in avascularity of the neoplasm in the Doppler study. In conclusion, physiotherapy ultrasound produced histologic changes in the tumor vasculature that were consistent with observations made by contrast enhanced power Doppler ultrasound.
Collapse
Affiliation(s)
- Ralph M Bunte
- University Laboratory Animal Resources, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
11
|
Lafay-Cousin L, Holm S, Qaddoumi I, Nicolin G, Bartels U, Tabori U, Huang A, Bouffet E. Weekly vinblastine in pediatric low-grade glioma patients with carboplatin allergic reaction. Cancer 2005; 103:2636-42. [PMID: 15861409 DOI: 10.1002/cncr.21091] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Carboplatin-based regimens have demonstrated activity in unresectable low-grade glioma (LGG) in children. Despite an interesting toxicity profile, the use of these regimens has been limited by the development of carboplatin hypersensitivity reaction (HSR) in up to 30% of patients. Desensitization has been the recommended approach for HSR. However, no guidelines have existed to aid physicians when carboplatin desensitization techniques fail. METHODS A pilot study of monotherapy with weekly vinblastine for LGG in 9 children who developed carboplatin HSR on a carboplatin and vincristine regimen was performed. RESULTS Vinblastine toxicity was moderate and readily manageable. None of the 9 patients had disease progression on therapy. Magnetic resonance imaging evaluation of tumor size from diagnosis to the end of vinblastine treatment showed 1 complete response (CR), 1 partial response (PR), 5 objective effects (OE), and 2 stable diseases (SD). CONCLUSIONS This experience suggested that weekly vinblastine has a good efficacy to toxicity ratio in the treatment of LGG and can be a valuable option for children who develop severe HSR.
Collapse
|
12
|
Chen F, Wang T, Wu YF, Gu Y, Xu XL, Zheng S, Hu X. Honokiol: A potent chemotherapy candidate for human colorectal carcinoma. World J Gastroenterol 2004; 10:3459-63. [PMID: 15526365 PMCID: PMC4576227 DOI: 10.3748/wjg.v10.i23.3459] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: To investigate the anticancer activity of Honokiol on RKO, a human colorectal carcinoma cell line in vitro and in vivo, and to evaluate its possible use in clinic.
METHODS: in vitro anticancer activity of honokiol was demonstrated by its induction of apoptosis in tumor cells. We analyzed cell proliferation with MTT assay, cell cycle with flow cytosmeter, DNA fragment with electrophoresis on agarose gels. To test the mechanism of honokiol-induced apoptosis, Western blotting was used to investigate the factors involved in this process. The pharmacokinetics study of honokiol was tested by high phase liquid chromatography. In in vivo study, Balb/c nude mice were incubated with RKO cells. Honokiol was injected intraperitoneally every other day into tumor bearing Balb/c nude mice.
RESULTS: Our results showed that honokiol induced apoptosis of RKO cells in a time- and dose-dependent manner. At 5-10 ug/mL for 48 h, honokiol induced apoptosis through activating Caspase cascades. Pharmacokinetics study demonstrated that, honokiol could be absorbed quickly by intraperitoneal injection, and maintained in plasma for more than 10 h. In nude mice bearing RKO-incubated tumor, honokiol displayed anticancer activity by inhibiting tumor growth and prolonging the lifespan of tumor bearing mice.
CONCLUSION: With its few toxicity to normal cells and potent anticancer activity in vitro and in vivo, honokiol might be a potential chemotherapy candidate in treating human colorectal carcinoma.
Collapse
Affiliation(s)
- Fei Chen
- Cancer Institute, Second Affiliated Hospital of Zhejiang University, Hangzhou 310009, Zhejiang province, China
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
The majority of information on oncology therapies has been reported in humans, canine, and feline patients, and laboratory animals with experimentally induced tumors. A variety of treatments,including radiation therapy, chemotherapy, photodynamic therapy, and others have been used with exotic animals. There are many species of exotic pets, and anatomic differences, as well as husbandry and nutritional requirements, must be taken into account to provide optimal care. By providing a broad overview of therapies and considerations for treatment, this article is intended to provide the practitioner with an overview of approach and options when addressing oncology cases in exotic animals.
Collapse
Affiliation(s)
- Jennifer E Graham
- Department of Comparative Medicine, School of Medicine, University of Washington, Box 357190, Seattle, WA 98195-7190, USA.
| | | | | |
Collapse
|
14
|
Bayless KJ, Davis GE. Microtubule depolymerization rapidly collapses capillary tube networks in vitro and angiogenic vessels in vivo through the small GTPase Rho. J Biol Chem 2003; 279:11686-95. [PMID: 14699132 DOI: 10.1074/jbc.m308373200] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Maintenance of endothelial cell tube integrity is dependent on an intact cytoskeleton. We present data indicating that rapid collapse of endothelial tubular networks in vitro occurs in a dose-dependent manner after administration of microtubule-depolymerizing reagents but not after actin depolymerization. Pretreatment of endothelial cell networks with C3 exoenzyme or recombinant adenoviruses expressing dominant negative RhoA resulted in complete blockade of tube collapse, indicating a role for RhoA in these events. Microtubule depolymerization also resulted in activation of RhoA, whereas increased expression of constitutively active RhoA induced cell rounding and apoptosis of endothelial cells. Furthermore, following treatment with the chemotherapeutic agent vinblastine, rapid capillary tube network collapse occurred followed by endothelial cell apoptosis. Vinblastine, but not control agents, induced cleavage of procaspase-3, procaspase-9, and procaspase-8, along with the known caspase targets p21-activated kinase-2 and gelsolin, indicating that tube collapse caused a defined apoptotic response. Using a model of vascular endothelial growth factor-stimulated angiogenesis in vivo, vinblastine treatment also resulted in collapse and apoptosis of angiogenic blood vessels. Apoptotic endothelial cells stained strongly for cleaved caspase-3, and terminal dUTP nick-end labeling staining revealed fragmented nuclei in vinblastine-treated but not control angiogenic areas. Together, these findings indicate that microtubule-depolymerizing agents directly induce endothelial network collapse in vitro and in vivo leading to endothelial cell apoptosis in a manner dependent on the small GTPase, RhoA. In addition, these findings reveal a novel function for microtubule disrupting chemotherapeutic agents, namely their ability to rapidly collapse newly formed angiogenic vessels, which may contribute to their effectiveness in limiting angiogenesis and tumor growth.
Collapse
Affiliation(s)
- Kayla J Bayless
- Department of Pathology and Laboratory Medicine, Texas A&M University System Health Science Center, College Station, Texas 77843-1114, USA
| | | |
Collapse
|
15
|
Abstract
There is a clear rationale for using hyperthermia in cancer treatment. Treatment at temperatures between 40 and 44 degrees C is cytotoxic for cells in an environment with a low pO(2) and low pH, conditions that are found specifically within tumour tissue, due to insufficient blood perfusion. Under such conditions radiotherapy is less effective, and systemically applied cytotoxic agents will reach such areas in lower concentrations than in well perfused areas. Therefore, the addition of hyperthermia to radiotherapy or chemotherapy will result in at least an additive effect. Furthermore, the effects of both radiotherapy and many drugs are enhanced at an increased temperature. Hyperthermia can be applied by several methods: local hyperthermia by external or internal energy sources, regional hyperthermia by perfusion of organs or limbs, or by irrigation of body cavities, and whole body hyperthermia. The use of hyperthermia alone has resulted in complete overall response rates of 13%. The clinical value of hyperthermia in addition to other treatment modalities has been shown in randomised trials. Significant improvement in clinical outcome has been demonstrated for tumours of the head and neck, breast, brain, bladder, cervix, rectum, lung, oesophagus, vulva and vagina, and also for melanoma. Additional hyperthermia resulted in remarkably higher (complete) response rates, accompanied by improved local tumour control rates, better palliative effects and/or better overall survival rates. Generally, when combined with radiotherapy, no increase in radiation toxicity could be demonstrated. Whether toxicity from chemotherapy is enhanced depends on sequence of the two modalities, and on which tissues are heated. Toxicity from hyperthermia cannot always be avoided, but is usually of limited clinical relevance. Recent developments include improvements in heating techniques and thermometry, development of hyperthermia treatment planning models, studies on heat shock proteins and an effect on anti-cancer immune responses, drug targeting to tumours, bone marrow purging, combination with drugs targeting tumour vasculature, and the role of hyperthermia in gene therapy. The clinical results achieved to date have confirmed the expectations raised by results from experimental studies. These findings justify using hyperthermia as part of standard treatment in tumour sites for which its efficacy has been proven and, furthermore, to initiate new studies with other tumours. Hyperthermia is certainly a promising approach and deserves more attention than it has received until now.
Collapse
Affiliation(s)
- J van der Zee
- Erasmus Medical Center-Daniel den Hoed Cancer Center, Department of Radiation Oncology, Hyperthermia Unit, Rotterdam, The Netherlands.
| |
Collapse
|
16
|
Eikesdal HP, Landuyt W, Dahl O. The influence of combretastatin A-4 and vinblastine on interstitial fluid pressure in BT4An rat gliomas. Cancer Lett 2002; 178:209-17. [PMID: 11867206 DOI: 10.1016/s0304-3835(01)00835-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The influence of combretastatin A-4 disodium phosphate (CA-4, 50mg/kg intraperitoneally (i.p.)) and vinblastine (2mg/kg i.p.) on interstitial fluid pressure (IFP) was assessed in BT4An rat gliomas implanted subcutaneously in the neck. Furthermore the growth inhibitory effect of vinblastine and the distribution of fluorescence-conjugated vinblastine (BODIPY-vinblastine) were investigated. Tumors at different volumes were compared. Whereas CA-4 had no major influence on IFP, independent of tumor size, vinblastine increased the IFP in neoplasms above 8 cm(3) (P=0.03). Vinblastine yielded a significant tumor response only in tumors below 2.1 cm(3) (P=0.03). The distribution of BODIPY-vinblastine was heterogeneous and comparable despite tumor volume differences. We conclude that the influence of vinblastine on IFP is more pronounced than that of CA-4 in BT4An neck tumors, and that vinblastine may reduce subsequent drug delivery to solid tumors by increasing the IFP.
Collapse
Affiliation(s)
- Hans Petter Eikesdal
- Department of Oncology, University of Bergen, Haukeland University Hospital, 5021 Bergen, Norway.
| | | | | |
Collapse
|