1
|
Wani SI, Mir TA, Nakamura M, Tsuchiya T, Alzhrani A, Iwanaga S, Arai K, Alshehri EA, Shamma T, Obeid DA, Chinnappan R, Assiri AM, Yaqinuddin A, Vashist YK, Broering DC. A review of current state-of-the-art materiobiology and technological approaches for liver tissue engineering. BIOPRINTING 2024; 42:e00355. [DOI: 10.1016/j.bprint.2024.e00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
|
2
|
Overexpression of miR-125a-5p Inhibits Hepatocyte Proliferation through the STAT3 Regulation In Vivo and In Vitro. Int J Mol Sci 2022; 23:ijms23158661. [PMID: 35955794 PMCID: PMC9369155 DOI: 10.3390/ijms23158661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 02/05/2023] Open
Abstract
microRNAs (miRNAs) are critically involved in liver regeneration (LR). miR-125a-5p (miR-125a) is a tumor-suppressing miRNA, but its role in LR has not been studied. Our previous studies have proved that miR-125a was related to LR at the initiation phase, while the mechanism hepatocyte proliferation triggered by miR-125a in LR has been rarely evaluated. Herein, we mainly studied the molecular mechanism of miR-125a in triggering hepatocyte proliferation and the proliferation stage of LR. Firstly, a striking reduction of miR-125a was found at 24 h as well as 30 h following partial hepatectomy (PH) in rat liver tissue by miRNAs expression profiles as well as qRT-PCR analysis. Furthermore, in vitro, upregulation of miR-125a decreased proliferation as well as G1/S conversion, which promoted hepatocytes apoptosis. STAT3 was the target of miR-125a. In vivo, upregulation of miR-125a by tail vein injection of agomir inhibited LR index. Upregulation of miR-125a inhibited LR index and hepatocytes proliferation by STAT3/p-STAT3/JUN/BCL2 axis. In summary, these current discoveries indicated that miR-125a inhibited hepatocytes proliferation as well as LR by targeting STAT3 and via acting on the STAT3/p-STAT3/JUN/BCL2 axis.
Collapse
|
3
|
Park ES, Dezhbord M, Lee AR, Park BB, Kim KH. Dysregulation of Liver Regeneration by Hepatitis B Virus Infection: Impact on Development of Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14153566. [PMID: 35892823 PMCID: PMC9329784 DOI: 10.3390/cancers14153566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
The liver is unique in its ability to regenerate in response to damage. The complex process of liver regeneration consists of multiple interactive pathways. About 2 billion people worldwide have been infected with hepatitis B virus (HBV), and HBV causes 686,000 deaths each year due to its complications. Long-term infection with HBV, which causes chronic inflammation, leads to serious liver-related diseases, including cirrhosis and hepatocellular carcinoma. HBV infection has been reported to interfere with the critical mechanisms required for liver regeneration. In this review, the studies on liver tissue characteristics and liver regeneration mechanisms are summarized. Moreover, the inhibitory mechanisms of HBV infection in liver regeneration are investigated. Finally, the association between interrupted liver regeneration and hepatocarcinogenesis, which are both triggered by HBV infection, is outlined. Understanding the fundamental and complex liver regeneration process is expected to provide significant therapeutic advantages for HBV-associated hepatocellular carcinoma.
Collapse
Affiliation(s)
- Eun-Sook Park
- Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Seoul 05029, Korea; (E.-S.P.); (B.B.P.)
| | - Mehrangiz Dezhbord
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea; (M.D.); (A.R.L.)
| | - Ah Ram Lee
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea; (M.D.); (A.R.L.)
| | - Bo Bae Park
- Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Seoul 05029, Korea; (E.-S.P.); (B.B.P.)
| | - Kyun-Hwan Kim
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea; (M.D.); (A.R.L.)
- Correspondence: ; Tel.: +82-31-299-6126
| |
Collapse
|
4
|
Macchi F, Sadler KC. Unraveling the Epigenetic Basis of Liver Development, Regeneration and Disease. Trends Genet 2020; 36:587-597. [PMID: 32487496 DOI: 10.1016/j.tig.2020.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/17/2022]
Abstract
A wealth of studies over several decades has revealed an epigenetic prepattern that determines the competence of cellular differentiation in the developing liver. More recently, studies focused on the impact of epigenetic factors during liver regeneration suggest that an epigenetic code in the quiescent liver may establish its regenerative potential. We review work on the pioneer factors and other chromatin remodelers that impact the gene expression patterns instructing hepatocyte and biliary cell specification and differentiation, along with the requirement of epigenetic regulatory factors for hepatic outgrowth. We then explore recent studies involving the role of epigenetic regulators, Arid1a and Uhrf1, in efficient activation of proregenerative genes during liver regeneration, thus highlighting the epigenetic mechanisms of liver disease and tumor development.
Collapse
Affiliation(s)
- Filippo Macchi
- Program in Biology, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Kirsten C Sadler
- Program in Biology, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
5
|
RNA-Seq transcriptome profiling in three liver regeneration models in rats: comparative analysis of partial hepatectomy, ALLPS, and PVL. Sci Rep 2020; 10:5213. [PMID: 32251301 PMCID: PMC7089998 DOI: 10.1038/s41598-020-61826-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/28/2020] [Indexed: 12/13/2022] Open
Abstract
The liver is a unique organ that has a phenomenal capacity to regenerate after injury. Different surgical procedures, including partial hepatectomy (PH), intraoperative portal vein ligation (PVL), and associated liver partition and portal vein ligation for staged hepatectomy (ALPPS) show clinically distinct recovery patterns and regeneration. The observable clinical differences likely mirror some underlying variations in the patterns of gene activation and regeneration pathways. In this study, we provided a comprehensive comparative transcriptomic analysis of gene regulation in regenerating rat livers temporally spaced at 24 h and 96 h after PH, PVL, and ALPPS. The time-dependent factors appear to be the most important determinant of post-injury alterations of gene expression in liver regeneration. Gene expression profile after ALPPS showed more similar expression pattern to the PH than the PVL at the early phase of the regeneration. Early transcriptomic changes and predicted upstream regulators that were found in all three procedures included cell cycle associated genes (E2F1, CCND1, FOXM1, TP53, and RB1), transcription factors (Myc, E2F1, TBX2, FOXM1), DNA replication regulators (CDKN1A, EZH2, RRM2), G1/S-transition regulators (CCNB1, CCND1, RABL6), cytokines and growth factors (CSF2, IL-6, TNF, HGF, VEGF, and EGF), ATM and p53 signaling pathways. The functional pathway, upstream, and network analyses revealed both unique and overlapping molecular mechanisms and pathways for each surgical procedure. Identification of molecular signatures and regenerative signaling pathways for each surgical procedure further our understanding of key regulators of liver regeneration as well as patient populations that are likely to benefit from each procedure.
Collapse
|
6
|
Adipose-Derived Stem Cell Transplantation Attenuates Inflammation and Promotes Liver Regeneration after Ischemia-Reperfusion and Hemihepatectomy in Swine. Stem Cells Int 2019; 2019:2489584. [PMID: 31827526 PMCID: PMC6885808 DOI: 10.1155/2019/2489584] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/17/2019] [Accepted: 10/23/2019] [Indexed: 02/07/2023] Open
Abstract
Aim To study the anti-inflammatory and liver regenerative effects of adipose-derived mesenchymal stem cells (ADSCs) on a porcine model of ischemia-reperfusion (IR) and hemihepatectomy. Methods Eighteen healthy Bama miniature pigs were randomly divided into the sham-operated (sham), untreated IR injury (IRI), and ADSC-transplanted (ADSC) groups. Hepatic IR was established by laparoscopic hemihepatectomy. ADSCs were transplanted directly into the liver parenchyma after the surgery. Hepatic inflammation and liver regeneration were evaluated by histopathological examination and assessment of relevant cytokines and other factors. Results ADSC transplantation successfully ameliorated the IRI-induced histopathological damage and the high levels of pro-inflammatory cytokines like IL-1β, IL-6, and TNF-α. In addition, the ADSCs enhanced the expression of the anti-inflammatory IL-10, regenerative factors including HGF, Cyclin D1, and proliferating cell nuclear antigen (PCNA), and angiogenic factors like VEGF, ANG-1, and ANG-2. Conclusions ADSCs attenuated the hepatic IRI-induced inflammatory response and promoted liver regeneration.
Collapse
|
7
|
Lee TH, Park DS, Jang JY, Lee I, Kim JM, Choi GS, Oh CT, Kim JY, Han HJ, Han BS, Joh JW. Human Placenta Hydrolysate Promotes Liver Regeneration via Activation of the Cytokine/Growth Factor-Mediated Pathway and Anti-oxidative Effect. Biol Pharm Bull 2019; 42:607-616. [PMID: 30930420 DOI: 10.1248/bpb.b18-00712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Liver regeneration is a very complex process and is regulated by several cytokines and growth factors. It is also known that liver transplantation and the regeneration process cause massive oxidative stress, which interferes with liver regeneration. The placenta is known to contain various physiologically active ingredients such as cytokines, growth factors, and amino acids. In particular, human placenta hydrolysate (hPH) has been found to contain many amino acids. Most of the growth factors found in the placenta are known to be closely related to liver regeneration. Therefore, in this study, we investigated whether hPH is effective in promoting liver regeneration in rats undergoing partial hepatectomy. We confirmed that cell proliferation was significantly increased in HepG2 and human primary cells. Hepatocyte proliferation was also promoted in partial hepatectomized rats by hPH treatment. hPH increased liver regeneration rate, double nucleic cell ratio, mitotic cell ratio, proliferating cell nuclear antigen (PCNA), and Ki-67 positive cells in vivo as well as interleukin (IL)-6, tumor necrosis factor alpha (TNF-α), and hepatocyte growth factor (HGF). Moreover, Kupffer cells secreting IL-6 and TNF-α were activated by hPH treatment. In addition, hPH reduced thiobarbituric acid reactive substances (TBARs) and significantly increased glutathione (GSH), glutathione peroxidase (GPx), and superoxide dismutase (SOD). Taken together, these results suggest that hPH promotes liver regeneration by activating cytokines and growth factors associated with liver regeneration and eliminating oxidative stress.
Collapse
Affiliation(s)
- Tae Hee Lee
- Hoseo Toxicological Research Center, Hoseo University
| | - Dong Sun Park
- Department of Biology Education, Korea National University of Education
| | - Ja Young Jang
- Hoseo Toxicological Research Center, Hoseo University
| | - Isaac Lee
- Hoseo Toxicological Research Center, Hoseo University
| | - Jong Man Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine
| | - Gyu Seong Choi
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine
| | - Chang Taek Oh
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine
| | - Jeom Yong Kim
- Research & Development center, Green Cross WellBeing Corporation
| | - Hae Jung Han
- Research & Development center, Green Cross WellBeing Corporation
| | - Beom Seok Han
- Hoseo Toxicological Research Center, Hoseo University
| | - Jae Won Joh
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine
| |
Collapse
|
8
|
Wang S, Zhang C, Hasson D, Desai A, SenBanerjee S, Magnani E, Ukomadu C, Lujambio A, Bernstein E, Sadler KC. Epigenetic Compensation Promotes Liver Regeneration. Dev Cell 2019; 50:43-56.e6. [PMID: 31231040 PMCID: PMC6615735 DOI: 10.1016/j.devcel.2019.05.034] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/02/2019] [Accepted: 05/16/2019] [Indexed: 12/19/2022]
Abstract
Two major functions of the epigenome are to regulate gene expression and to suppress transposons. It is unclear how these functions are balanced during physiological challenges requiring tissue regeneration, where exquisite coordination of gene expression is essential. Transcriptomic analysis of seven time points following partial hepatectomy identified the epigenetic regulator UHRF1, which is essential for DNA methylation, as dynamically expressed during liver regeneration in mice. UHRF1 deletion in hepatocytes (Uhrf1HepKO) caused genome-wide DNA hypomethylation but, surprisingly, had no measurable effect on gene or transposon expression or liver homeostasis. Partial hepatectomy of Uhrf1HepKO livers resulted in early and sustained activation of proregenerative genes and enhanced liver regeneration. This was attributed to redistribution of H3K27me3 from promoters to transposons, effectively silencing them and, consequently, alleviating repression of liver regeneration genes, priming them for expression in Uhrf1HepKO livers. Thus, epigenetic compensation safeguards the genome against transposon activation, indirectly affecting gene regulation.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Medicine/Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chi Zhang
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, United Arab Emirates
| | - Dan Hasson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anal Desai
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Sucharita SenBanerjee
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; College of Arts and Sciences, Wentworth Institute of Technology, 504 Parker St., Boston, MA 02115, USA
| | - Elena Magnani
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, United Arab Emirates
| | - Chinweike Ukomadu
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Amaia Lujambio
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Emily Bernstein
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kirsten C Sadler
- Department of Medicine/Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Program in Biology, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, United Arab Emirates.
| |
Collapse
|
9
|
Li J, Wang Y, Xiao H, Xu C. Gene selection of rat hepatocyte proliferation using adaptive sparse group lasso with weighted gene co-expression network analysis. Comput Biol Chem 2019; 80:364-373. [PMID: 31103917 DOI: 10.1016/j.compbiolchem.2019.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 11/30/2018] [Accepted: 04/23/2019] [Indexed: 11/29/2022]
Abstract
Grouped gene selection is the most important task for analyzing the microarray data of rat liver regeneration. Many existing gene selection methods cannot outstand the interactions among the selected genes. In the process of rat liver regeneration, one of the most important events involved in many biological processes is the proliferation of rat hepatocytes, so it can be used as a measure of the effectiveness of the method. Here we proposed an adaptive sparse group lasso to select genes in groups for rat hepatocyte proliferation. The weighted gene co-expression networks analysis was used to identify modules corresponding to gene pathways, based on which a strategy of dividing genes into groups was proposed. A strategy of adaptive gene selection was also presented by assessing the gene significance and introducing the adaptive lasso penalty. Moreover, an improved blockwise descent algorithm was proposed. Experimental results demonstrated that the proposed method can improve the classification accuracy, and select less number of significant genes which act jointly in groups and have direct or indirect effects on rat hepatocyte proliferation. The effectiveness of the method was verified by the method of rat hepatocyte proliferation.
Collapse
Affiliation(s)
- Juntao Li
- School of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, PR China
| | - Yadi Wang
- School of Computer Science and Engineering, Southeast University, Nanjing, 211189, PR China.
| | - Huimin Xiao
- Department of Mathematics and Information Science, Henan University of Economics and Law, Zhengzhou 450002, PR China
| | - Cunshuan Xu
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, PR China
| |
Collapse
|
10
|
Undifferentiated Adipose Tissue Stem Cell Transplantation Promotes Hepatic Regeneration, Ameliorates Histopathologic Damage of the Liver, and Upregulates the Expression of Liver Regeneration- and Liver-Specific Genes in a Rat Model of Partial Hepatectomy. Stem Cells Int 2018; 2018:1393607. [PMID: 29731771 PMCID: PMC5872619 DOI: 10.1155/2018/1393607] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 12/06/2017] [Indexed: 02/01/2023] Open
Abstract
Objective Adipose tissue stem cells (ADSCs) present a promising therapeutic method to alleviate liver failure (LF). The purpose of this prospective study was to evaluate the efficacy of undifferentiated ADSC transplantation on liver regeneration and on the expression of liver regeneration- and liver-specific genes, following 60% partial hepatectomy (PHx). Methods Sixty female rats were subjected to PHx and were transplanted with 106 or 2 × 106 ADSCs, either into the portal vein (PV) or into the hepatic parenchyma. Animals of the control group were not transplanted and served as controls. Animals were sacrificed on the 4th, the 7th, or the 15th postoperative day (POD). Results The transplanted ADSCs were successfully engrafted into the liver parenchyma and ameliorated the histopathologic damage on the 7th and 15th POD. All transplanted animals demonstrated a significantly higher liver regeneration rate on the 4th and 7th POD, compared with the control group. The expression of hepatocyte growth factor, α-fetoprotein, tyrosine aminotransferase, hepatocyte nuclear factor 4a, and cytochrome P450 1A2 was significantly upregulated, compared with the control group. Conclusions Although undifferentiated, ADSC transplantation significantly enhanced the liver regeneration process. These findings may be proven clinically valuable, especially in cases of acute LF.
Collapse
|
11
|
Chen X, Lv Q, Ma J, Liu Y. PLCγ2 promotes apoptosis while inhibits proliferation in rat hepatocytes through PKCD/JNK MAPK and PKCD/p38 MAPK signalling. Cell Prolif 2018; 51:e12437. [PMID: 29430764 DOI: 10.1111/cpr.12437] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 12/27/2017] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVES The PLCG2 (PLCγ2) gene is a member of PLC gene family encoding transmembrane signalling enzymes involved in various biological processes including cell proliferation and apoptosis. Our earlier study indicated that PLCγ2 may be involved in the termination of regeneration of the liver which is mainly composed of hepatocytes, but its exact biological function and molecular mechanism in liver regeneration termination remains unclear. This study aims to examine the role of PLCγ2 in the growth of hepatocytes. MATERIALS AND METHODS A recombinant adenovirus expressing PLCγ2 was used to infect primary rat hepatocytes. PLCγ2 mRNA and protein levels were detected by qRT-PCR and Western blot. The subcellular location of PLCγ2 protein was tested by an immunofluorescence assay. The proliferation of hepatocytes was measured by MTT assay. The cell cycle and apoptosis were analysed by flow cytometry. Caspase-3, -8 and -9 activities were measured by a spectrophotometry method. Phosphorylation levels of PKCD, JNK and p38 in the infected cells were detected by Western blot. The possible mechanism underlying the role of PLCγ2 in hepatocyte growth was also explored by adding a signalling pathway inhibitor. RESULTS Hepatocyte proliferation was dramatically reduced, while cell apoptosis was remarkably increased. The results demonstrated that PLCγ2 increased the phosphorylation of PKCD, p38 and JNK in rat hepatocytes. After PKCD activity was inhibited by the inhibitor Go 6983, the levels of both p-p38 and p-JNK MAPKs significantly decreased, and PLCγ2-induced cell proliferation inhibition and cell apoptosis were obviously reversed. CONCLUSIONS This study showed that PLCγ2 regulates hepatocyte growth through PKCD-dependently activating p38 MAPK and JNK MAPK pathways; this result was experimentally based on the further exploration of the effect of PLCγ2 on hepatocyte growth in vivo.
Collapse
Affiliation(s)
- Xiaoguang Chen
- Animal Science and Technology School, Henan University of Science and Technology, Luoyang, China
| | - Qiongxia Lv
- Animal Science and Technology School, Henan University of Science and Technology, Luoyang, China
| | - Jun Ma
- Animal Science and Technology School, Henan University of Science and Technology, Luoyang, China
| | - Yumei Liu
- Animal Science and Technology School, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
12
|
Canbek M, Uyanoglu M, Canbek S, Ceyhan E, Ozen A, Durmus B, Turgak O. The Effect of Geraniol on Liver Regeneration After Hepatectomy in Rats. ACTA ACUST UNITED AC 2017; 31:209-213. [PMID: 28358702 DOI: 10.21873/invivo.11047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/31/2017] [Accepted: 02/07/2017] [Indexed: 02/05/2023]
Abstract
Geraniol is a monoterpenoid alcohol that has a hepatoprotective effect. We investigated the regenerative effects of geraniol in rats after a 70% partial hepatectomy (PH). Using Wistar albino rats, nine groups were created: Group I was the control group, while the remaining groups received a single intraperitoneal dose of saline, Silymarin, or geraniol after PH. A 70% PH was performed on all groups except for groups II and III. Blood serum samples were obtained for alanine amino transferase (ALT) analysis. Then liver tissues were harvested for histological and real-time polymerase chain reaction (PCR) analyses. Tumor necrosis factor-α (TNFα) and interleukin 6 (IL6) gene expression were examined 24 and 48 h after PH. ALT levels were found to be statistically significantly increased in all PH-treated groups. TNFα and IL6 gene expression levels were elevated in geraniol-treated groups. Histological evaluation revealed a hepatoprotective effect for geraniol-treated groups. Our results suggest that geraniol plays a significant role during liver regeneration, which involves the elevated expression of TNFα and IL6 48 h after PH.
Collapse
Affiliation(s)
- Mediha Canbek
- Department of Biology, Faculty of Science, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Mustafa Uyanoglu
- Department of Biology, Faculty of Science, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Selcuk Canbek
- Department of Computer Engineering, Faculty of Engineering and Architecture, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Emre Ceyhan
- Department of Biology, Faculty of Science, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Ahmet Ozen
- Department of Biology, Faculty of Science, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Basak Durmus
- Department of Biology, Faculty of Science, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Ozge Turgak
- Department of Biology, Faculty of Science, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
13
|
Chronological Profiling of Plasma Native Peptides after Hepatectomy in Pigs: Toward the Discovery of Human Biomarkers for Liver Regeneration. PLoS One 2017; 12:e0167647. [PMID: 28060824 PMCID: PMC5218562 DOI: 10.1371/journal.pone.0167647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/17/2016] [Indexed: 01/17/2023] Open
Abstract
Liver regeneration after partial hepatectomy (PHx) is a time-dependent process, which is tightly regulated by multiple signaling cascades. Failure of this complex process leads to posthepatectomy liver failure (PHLF), which is associated with a high rate of mortality. Thus, it is extremely important to establish a useful biomarker of liver regeneration to help prevent PHLF. Here, we hypothesized that alterations in the plasma peptide profile may predict liver regeneration following PHx and hence we set up a diagnostic platform for monitoring posthepatectomy outcome. We chronologically analyzed plasma peptidomic profiles of 5 partially hepatectomized microminipigs using the ClinProtTM system, which consists of magnetic beads and MALDI-TOF/TOF MS. We identified endogenous circulating peptides specific to each phase of the postoperative course after PHx in pigs. Notably, peptide fragments of histones were detected immediately after PHx; the presence of these fragments may trigger liver regeneration in the very acute phase after PHx. An N-terminal fragment of hemoglobin subunit α (3627 m/z) was detected as an acute-phase-specific peptide. In the recovery phase, the short N-terminal fragments of albumin (3028, 3042 m/z) were decreased, whereas the long N-terminal fragment of the protein (8926 m/z) was increased. To further validate and extract phase-specific biomarkers using plasma peptidome after PHx, plasma specimens of 4 patients who underwent PHx were analyzed using the same method as we applied to pigs. It revealed that there was also phase-specificity in peptide profiles, one of which was represented by a fragment of complement C4b (2378 m/z). The strategy described herein is highly efficient for the identification and characterization of peptide biomarkers of liver regeneration in a swine PHx model. This strategy is feasible for application to human biomarker studies and will yield clues for understanding liver regeneration in human clinical trials.
Collapse
|
14
|
de Jonge J, Olthoff KM. Liver regeneration. BLUMGART'S SURGERY OF THE LIVER, BILIARY TRACT AND PANCREAS, 2-VOLUME SET 2017:93-109.e7. [DOI: 10.1016/b978-0-323-34062-5.00006-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
15
|
Bell CC, Hendriks DFG, Moro SML, Ellis E, Walsh J, Renblom A, Fredriksson Puigvert L, Dankers ACA, Jacobs F, Snoeys J, Sison-Young RL, Jenkins RE, Nordling Å, Mkrtchian S, Park BK, Kitteringham NR, Goldring CEP, Lauschke VM, Ingelman-Sundberg M. Characterization of primary human hepatocyte spheroids as a model system for drug-induced liver injury, liver function and disease. Sci Rep 2016; 6:25187. [PMID: 27143246 PMCID: PMC4855186 DOI: 10.1038/srep25187] [Citation(s) in RCA: 473] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/12/2016] [Indexed: 12/11/2022] Open
Abstract
Liver biology and function, drug-induced liver injury (DILI) and liver diseases are difficult to study using current in vitro models such as primary human hepatocyte (PHH) monolayer cultures, as their rapid de-differentiation restricts their usefulness substantially. Thus, we have developed and extensively characterized an easily scalable 3D PHH spheroid system in chemically-defined, serum-free conditions. Using whole proteome analyses, we found that PHH spheroids cultured this way were similar to the liver in vivo and even retained their inter-individual variability. Furthermore, PHH spheroids remained phenotypically stable and retained morphology, viability, and hepatocyte-specific functions for culture periods of at least 5 weeks. We show that under chronic exposure, the sensitivity of the hepatocytes drastically increased and toxicity of a set of hepatotoxins was detected at clinically relevant concentrations. An interesting example was the chronic toxicity of fialuridine for which hepatotoxicity was mimicked after repeated-dosing in the PHH spheroid model, not possible to detect using previous in vitro systems. Additionally, we provide proof-of-principle that PHH spheroids can reflect liver pathologies such as cholestasis, steatosis and viral hepatitis. Combined, our results demonstrate that the PHH spheroid system presented here constitutes a versatile and promising in vitro system to study liver function, liver diseases, drug targets and long-term DILI.
Collapse
Affiliation(s)
- Catherine C Bell
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | - Delilah F G Hendriks
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | - Sabrina M L Moro
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | - Ewa Ellis
- Department of Clinical Science, Intervention and Technology, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Joanne Walsh
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Sherrington Buildings, Ashton Street, University of Liverpool, UK
| | - Anna Renblom
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | - Lisa Fredriksson Puigvert
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | - Anita C A Dankers
- Janssen Pharmaceutical Companies of Johnson &Johnson, Department of Pharmacokinetics, Dynamics and Metabolism, Beerse, Belgium
| | - Frank Jacobs
- Janssen Pharmaceutical Companies of Johnson &Johnson, Department of Pharmacokinetics, Dynamics and Metabolism, Beerse, Belgium
| | - Jan Snoeys
- Janssen Pharmaceutical Companies of Johnson &Johnson, Department of Pharmacokinetics, Dynamics and Metabolism, Beerse, Belgium
| | - Rowena L Sison-Young
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Sherrington Buildings, Ashton Street, University of Liverpool, UK
| | - Rosalind E Jenkins
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Sherrington Buildings, Ashton Street, University of Liverpool, UK
| | - Åsa Nordling
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | - Souren Mkrtchian
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | - B Kevin Park
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Sherrington Buildings, Ashton Street, University of Liverpool, UK
| | - Neil R Kitteringham
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Sherrington Buildings, Ashton Street, University of Liverpool, UK
| | - Christopher E P Goldring
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Sherrington Buildings, Ashton Street, University of Liverpool, UK
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Chan KM, Wu TH, Wu TJ, Chou HS, Yu MC, Lee WC. Bioinformatics microarray analysis and identification of gene expression profiles associated with cirrhotic liver. Kaohsiung J Med Sci 2016; 32:165-76. [PMID: 27185598 DOI: 10.1016/j.kjms.2016.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/22/2016] [Accepted: 02/25/2016] [Indexed: 01/15/2023] Open
Abstract
Cirrhosis is the endpoint of liver fibrosis that is accompanied by limited regeneration capacity and complications and is the ultimate cause of death in many patients. Despite this, few studies have thoroughly looked at the gene expression profiles in the cirrhotic liver. Hence, this study aims to identify the genes that were differentially expressed in the cirrhotic liver and to explore the putative related signaling pathway and interaction networks. The gene expression profiles of cirrhotic livers and noncirrhotic livers were examined and compared using microarray gene analysis. Proteins encoded by the differentially expressed genes were analyzed for functional clustering and signaling pathway involvement using MetaCore bioinformatics analyses. The Gene Ontology analysis as well as the Kyoto encyclopedia of Genes and Genomes pathway analysis were also performed. A total of 213 significant genes were differentially expressed at more than a two-fold change in cirrhotic livers as compared to noncirrhotic livers. Of these, 105 upregulated genes and 63 downregulated genes were validated through MetaCore bioinformatics analyses. The signaling pathways and major functions of proteins encoded by these differentially expressed genes were further analyzed; results showed that the cirrhotic liver has a unique gene expression pattern related to inflammatory reaction, immune response, and cell growth, and is potentially cancer related. Our findings suggest that the microarray analysis may provide clues to the molecular mechanisms of liver cirrhosis for future experimental studies. However, further exploration of areas regarding therapeutic strategy might be possible to support metabolic activity, decrease inflammation, or enhance regeneration for liver cirrhosis.
Collapse
Affiliation(s)
- Kun-Ming Chan
- Department of General Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Tsung-Han Wu
- Department of General Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ting-Jung Wu
- Department of General Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hong-Shiue Chou
- Department of General Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Chin Yu
- Department of General Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wei-Chen Lee
- Department of General Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
17
|
Kuttippurathu L, Juskeviciute E, Dippold RP, Hoek JB, Vadigepalli R. A novel comparative pattern analysis approach identifies chronic alcohol mediated dysregulation of transcriptomic dynamics during liver regeneration. BMC Genomics 2016; 17:260. [PMID: 27012785 PMCID: PMC4807561 DOI: 10.1186/s12864-016-2492-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/17/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Liver regeneration is inhibited by chronic ethanol consumption and this impaired repair response may contribute to the risk for alcoholic liver disease. We developed and applied a novel data analysis approach to assess the effect of chronic ethanol intake in the mechanisms responsible for liver regeneration. We performed a time series transcriptomic profiling study of the regeneration response after 2/3rd partial hepatectomy (PHx) in ethanol-fed and isocaloric control rats. RESULTS We developed a novel data analysis approach focusing on comparative pattern counts (COMPACT) to exhaustively identify the dominant and subtle differential expression patterns. Approximately 6500 genes were differentially regulated in Ethanol or Control groups within 24 h after PHx. Adaptation to chronic ethanol intake significantly altered the immediate early gene expression patterns and nearly completely abrogated the cell cycle induction in hepatocytes post PHx. The patterns highlighted by COMPACT analysis contained several non-parenchymal cell specific markers indicating their aberrant transcriptional response as a novel mechanism through which chronic ethanol intake deregulates the integrated liver tissue response. CONCLUSIONS Our novel comparative pattern analysis revealed new insights into ethanol-mediated molecular changes in non-parenchymal liver cells as a possible contribution to the defective liver regeneration phenotype. The results revealed for the first time an ethanol-induced shift of hepatic stellate cells from a pro-regenerative phenotype to that of an anti-regenerative state after PHx. Our results can form the basis for novel interventions targeting the non-parenchymal cells in normalizing the dysfunctional repair response process in alcoholic liver disease. Our approach is illustrated online at http://compact.jefferson.edu .
Collapse
Affiliation(s)
- Lakshmi Kuttippurathu
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Egle Juskeviciute
- MitoCare Center for Mitochondrial Research, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Rachael P Dippold
- MitoCare Center for Mitochondrial Research, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Jan B Hoek
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA.,MitoCare Center for Mitochondrial Research, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA. .,MitoCare Center for Mitochondrial Research, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
18
|
Kuttippurathu L, Patra B, Hoek JB, Vadigepalli R. A novel comparative pattern count analysis reveals a chronic ethanol-induced dynamic shift in immediate early NF-κB genome-wide promoter binding during liver regeneration. MOLECULAR BIOSYSTEMS 2016; 12:1037-56. [PMID: 26847025 PMCID: PMC4891188 DOI: 10.1039/c5mb00740b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Liver regeneration after partial hepatectomy is a clinically important process that is impaired by adaptation to chronic alcohol intake. We focused on the initial time points following partial hepatectomy (PHx) to analyze the genome-wide binding activity of NF-κB, a key immediate early regulator. We investigated the effect of chronic alcohol intake on immediate early NF-κB genome-wide localization, in the adapted state as well as in response to partial hepatectomy, using chromatin immunoprecipitation followed by promoter microarray analysis. We found many ethanol-specific NF-κB binding target promoters in the ethanol-adapted state, corresponding to the regulation of biosynthetic processes, oxidation-reduction and apoptosis. Partial hepatectomy induced a diet-independent shift in NF-κB binding loci relative to the transcription start sites. We employed a novel pattern count analysis to exhaustively enumerate and compare the number of promoters corresponding to the temporal binding patterns in ethanol and pair-fed control groups. The highest pattern count corresponded to promoters with NF-κB binding exclusively in the ethanol group at 1 h post PHx. This set was associated with the regulation of cell death, response to oxidative stress, histone modification, mitochondrial function, and metabolic processes. Integration with the global gene expression profiles to identify putative transcriptional consequences of NF-κB binding patterns revealed that several of ethanol-specific 1 h binding targets showed ethanol-specific differential expression through 6 h post PHx. Motif analysis yielded co-incident binding loci for STAT3, AP-1, CREB, C/EBP-β, PPAR-γ and C/EBP-α, likely participating in co-regulatory modules with NF-κB in shaping the immediate early response to PHx. We conclude that adaptation to chronic ethanol intake disrupts the NF-κB promoter binding landscape with consequences for the immediate early gene regulatory response to the acute challenge of PHx.
Collapse
Affiliation(s)
- Lakshmi Kuttippurathu
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Biswanath Patra
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Jan B Hoek
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA. and Mitocare Center for Mitochondrial Research, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA. and Mitocare Center for Mitochondrial Research, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
19
|
Wangensteen KJ, Zhang S, Greenbaum LE, Kaestner KH. A genetic screen reveals Foxa3 and TNFR1 as key regulators of liver repopulation. Genes Dev 2015; 29:904-9. [PMID: 25934503 PMCID: PMC4421979 DOI: 10.1101/gad.258855.115] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Wangensteen et al. employed a parallel screen to test the impact of 43 selected genes on liver repopulation in the Fah−/− mouse model of hereditary tyrosinemia. The transcription factor Foxa3 was a strong promoter of liver regeneration, while tumor necrosis factor receptor 1 (TNFR1) was the most significant suppressor of repopulation among all of the genes tested. The fundamental question of which genes are most important in controlling liver regeneration remains unanswered. We employed a parallel screen to test the impact of 43 selected genes on liver repopulation in the Fah−/− mouse model of hereditary tyrosinemia. We discovered that the transcription factor Foxa3 was a strong promoter of liver regeneration, while tumor necrosis factor receptor 1 (TNFR1) was the most significant suppressor of repopulation among all of the genes tested. Our approach enabled the identification of these factors as important regulators of liver repopulation and potential drug targets for the promotion of liver repopulation.
Collapse
Affiliation(s)
- Kirk J Wangensteen
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; Center for Molecular Studies in Digestive and Liver Diseases, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Sophia Zhang
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Linda E Greenbaum
- Janssen Research and Development, Spring House, Pennsylvania 19477, USA
| | - Klaus H Kaestner
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; Center for Molecular Studies in Digestive and Liver Diseases, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
20
|
Zhang J, Yang Y, He T, Liu Y, Zhou Y, Chen Y, Xu C. Expression profiles uncover the relationship between erythropoietin and cell proliferation in rat hepatocytes after a partial hepatectomy. Cell Mol Biol Lett 2014; 19:331-46. [PMID: 24928528 PMCID: PMC6275805 DOI: 10.2478/s11658-014-0198-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 05/28/2014] [Indexed: 02/06/2023] Open
Abstract
Erythropoietin (EPO) has a beneficial effect on hepatic cell proliferation during liver regeneration. However, the underlying mechanism has not yet been elucidated. To uncover the proliferation response of EPO in rat liver regeneration after partial hepatectomy (PH) at the cellular level, hepatocytes (HCs) were isolated using Percoll density gradient centrifugation. The genes of the EPO-mediated signaling pathway and the target genes of the transcription factor (TF) in the pathway were identified in a pathway and TF database search. Their expression profiles were then detected using Rat Genome 230 2.0 Microarray. The results indicated that the EPO-mediated signaling pathway is involved in 19 paths and that 124 genes participate, of which 32 showed significant changes and could be identified as liver regeneration-related genes. In addition, 443 targets regulated by the TFs of the pathway and 60 genes associated with cell proliferation were contained in the array. Subsequently, the synergetic effect of these genes in liver regeneration was analyzed using the E(t) mathematical model based on their expression profiles. The results demonstrated that the E(t) values of paths 3, 8, 12 and 14-17 were significantly strengthened in the progressing phase of liver regeneration through the RAS/MEK/ERK or PI3K/AκT pathways. The synergetic effect of the target genes, in parallel with target-related cell proliferation, was also enhanced 12-72 h after PH, suggesting a potential positive effect of EPO on HC proliferation during rat liver regeneration. These data imply that the EPO receptor may allow EPO to promote HC proliferation through paths 3, 8, 12 and 14-17, mediating the RAS/MEK/ERK and PI3K/AκT pathways in rat liver regeneration after PH.
Collapse
Affiliation(s)
- Jihong Zhang
- College of Life Science, Henan Normal University, Xinxiang, 453007 P.R. China
| | - Yajuan Yang
- College of Life Science, Henan Normal University, Xinxiang, 453007 P.R. China
| | - Tingting He
- College of Life Science, Henan Normal University, Xinxiang, 453007 P.R. China
| | - Yunqing Liu
- College of Life Science, Henan Normal University, Xinxiang, 453007 P.R. China
| | - Yun Zhou
- College of Life Science, Henan Normal University, Xinxiang, 453007 P.R. China
| | - Yongkang Chen
- College of Life Science and Technology, Jinan University, Guangzhou, 510632 P.R. China
| | - Cunshuan Xu
- College of Life Science, Henan Normal University, Xinxiang, 453007 P.R. China
- Key Laboratory for Cell Differentiation Regulation, Xinxiang, 453007 P.R. China
| |
Collapse
|
21
|
Arakawa Y, Shimada M, Utsunomiya T, Imura S, Morine Y, Ikemoto T, Mori H, Kanamoto M, Iwahashi S, Saito Y, Takasu C. Gene profile in the spleen under massive partial hepatectomy using complementary DNA microarray and pathway analysis. J Gastroenterol Hepatol 2014; 29:1645-53. [PMID: 24628570 DOI: 10.1111/jgh.12573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/24/2014] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIM In general, the spleen is one of the abdominal organs connected by the portal system, and a splenectomy improves hepatic functions in the settings of partial hepatectomy (Hx) for portal hypertensive cases or living donor liver transplantation with excessive portal vein flow. Those precise mechanisms remain still unclear; therefore, we investigated the DNA expression profile in the spleen after 90% Hx in rats using complementary DNA microarray and pathway analysis. METHODS Messenger RNAs (mRNAs) were prepared from three rat spleens at each time point (0, 3, and 6 h after 90% Hx). Using the gene chip, mRNA was hybridized to Affymetrix GeneChip Rat Genome 230 2.0 Array (Affymetrix®) and pathway analysis was done with Ingenuity Pathway Analysis (IPA®). RESULTS We determined the 3-h or 6-h/0-h ratio to assess the influence of Hx, and cut-off values were set at more than 2.0-fold or less than 1/2 (0.5)-fold. Chemokine activity-related genes including Cxcl1 (GRO1) and Cxcl2 (MIP-2) related pathway were upregulated in the spleen. Also, immediate early response genes including early growth response-1 (EGR1), FBJ murine osteosarcoma (FOS) and activating transcription factor 3 (ATF3) related pathway were upregulated in the spleen. CONCLUSIONS We concluded that in the spleen the expression of numerous inflammatory-related genes would occur after 90% Hx. The spleen could take a harmful role and provide a negative impact during post Hx phase due to the induction of chemokine and transcription factors including GRO1 and EGR1.
Collapse
Affiliation(s)
- Yusuke Arakawa
- Department of Surgery, Institute of Health Biosciences, The University of Tokushima, Tokushima, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhou Y, Xu J, Liu Y, Li J, Chang C, Xu C. Rat hepatocytes weighted gene co-expression network analysis identifies specific modules and hub genes related to liver regeneration after partial hepatectomy. PLoS One 2014; 9:e94868. [PMID: 24743545 PMCID: PMC3990548 DOI: 10.1371/journal.pone.0094868] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 03/19/2014] [Indexed: 11/20/2022] Open
Abstract
The recovery of liver mass is mainly mediated by proliferation of hepatocytes after 2/3 partial hepatectomy (PH) in rats. Studying the gene expression profiles of hepatocytes after 2/3 PH will be helpful to investigate the molecular mechanisms of liver regeneration (LR). We report here the first application of weighted gene co-expression network analysis (WGCNA) to analyze the biological implications of gene expression changes associated with LR. WGCNA identifies 12 specific gene modules and some hub genes from hepatocytes genome-scale microarray data in rat LR. The results suggest that upregulated MCM5 may promote hepatocytes proliferation during LR; BCL3 may play an important role by activating or inhibiting NF-kB pathway; MAPK9 may play a permissible role in DNA replication by p38 MAPK inactivation in hepatocytes proliferation stage. Thus, WGCNA can provide novel insight into understanding the molecular mechanisms of LR.
Collapse
Affiliation(s)
- Yun Zhou
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
- Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang, Henan, China
- College of Computer and Information Engineering, Henan Normal University, Xinxiang, Henan, China
- * E-mail: (YZ); (CSX)
| | - Jiucheng Xu
- College of Computer and Information Engineering, Henan Normal University, Xinxiang, Henan, China
| | - Yunqing Liu
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
- Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang, Henan, China
| | - Juntao Li
- College of Mathematics and Information Science, Henan Normal University, Xinxiang, Henan, China
| | - Cuifang Chang
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
- Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang, Henan, China
| | - Cunshuan Xu
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
- Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang, Henan, China
- * E-mail: (YZ); (CSX)
| |
Collapse
|
23
|
Zhang J, Ma C, Liu Y, Yang G, Jiang Y, Xu C. Interleukin 18 accelerates the hepatic cell proliferation in rat liver regeneration after partial hepatectomy. Gene 2014; 537:230-7. [DOI: 10.1016/j.gene.2013.12.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/27/2013] [Accepted: 12/30/2013] [Indexed: 12/11/2022]
|
24
|
Arakawa Y, Shimada M, Utsunomya T, Imura S, Morine Y, Ikemoto T, Takasu C. Effects of splenectomy on hepatic gene expression profiles after massive hepatectomy in rats. J Gastroenterol Hepatol 2013; 28:1669-77. [PMID: 23808869 DOI: 10.1111/jgh.12316] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/21/2013] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIM Possible spleno-hepatic relationships affected by hepatectomy still remained unclear. We have previously reported that splenectomy may ameliorate liver injuries and promote appropriate liver regeneration after massive hepatectomy. Therefore, we investigated the effects of splenectomy on the DNA expression profile in the liver after massive hepatectomy in rats. METHODS Rats were divided into the following two groups: 90% hepatectomy (Hx group) and 90% hepatectomy with splenectomy (Hx + Sp group). Rats were sacrificed 3 and 6 h after surgery, and mRNA from liver tissue was isolated and hybridized to Affymetrix GeneChip Rat Genome 230 2.0 Array (Affymetrix, Santa Clara, CA, USA) and a pathway analysis was done with Ingenuity Pathway Analysis (Ingenuity Systems, Mountain View, CA, USA). RESULTS We determined the Hx + Sp/Hx ratio to assess the influence of splenectomy, and cut-off values were set at more than 2.0-fold or less than 1/2 (0.5)-fold. Immediate early response gene including early growth response-1 and FBJ murine osteosarcoma-related pathways were markedly downregulated by splenectomy. In contrast, heme oxygenase-1 gene-related pathway was upregulated by splenectomy. CONCLUSIONS Splenectomy provided the protective effects for liver failure and promoted liver regeneration, possibly owing to the downregulation of immediate early response genes and upregulation of the heat shock protein, heme oxygenase-1.
Collapse
Affiliation(s)
- Yusuke Arakawa
- The Department of Surgery, Institute of Health Biosciences, The University of Tokushima, Tokushima, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Zhang Y, Kong HL, Zheng SJ, Liu M, Chen Y, Liu S, Duan ZP. Lentiviral-mediated delivery of shRNA targeting the SMAD3 gene promotes liver regeneration in rats. Shijie Huaren Xiaohua Zazhi 2012; 20:3431-3438. [DOI: 10.11569/wcjd.v20.i35.3431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of lentiviral-mediated delivery of shRNA targeting the SMAD3 gene on liver regeneration in rats.
METHODS: Sixty male rats were randomly divided into three groups: SMAD3 shRNA group (n = 20), shRNA control group (n = 20), and normal saline group (n = 20). Intrasplenic injection of lentivirus carrying the SMAD3 shRNA or control shRNA at a dose of 1.0 × 108 TU per rat was performed in rats of the SMAD3 shRNA group and shRNA control group, respectively, while the normal saline group was given equal volume of normal saline. After 96 h, 2/3 partial hepatectomy was performed to develop a rat model of liver regeneration. Seven rats of each group were sacrificed at 96 h, and the rest were sacrificed at 144 h after hepatectomy. Liver tissue specimens were collected. SMAD3 expression was detected using real-time PCR and immunohistochemistry. Proliferation of hepatocytes was evaluated by detecting Ki67 by immunohistochemistry. The ratio of liver weight to body weight was determined to observe its role in liver regeneration in vivo.
RESULTS: At 96 h and 144 h after hepatectomy, SMAD3 mRNA expression decreased by 73% and 63% in the SMAD3 shRNA group compared to the shRNA control group. The expression of SMAD3 protein also decreased obviously. More active proliferation of hepatocytes was observed after SMAD3 down-regulation. The liver weight/body weight in the SMAD3 shRNA group was higher than those in the normal saline control group and shRNA control group (96 h: 4.50 ± 0.43 vs 3.97 ± 0.55 vs 3.98 ± 0.40, 144 h: 4.66 ± 0.54 vs 4.15 ± 0.51 vs 4.20 ± 0.34), but there was no statistically significance between them (all P > 0.05).
CONCLUSION: Down-regulation of SMAD3 expression could moderately promote liver regeneration in rats.
Collapse
|
26
|
Nygård IE, Mortensen KE, Hedegaard J, Conley LN, Kalstad T, Bendixen C, Revhaug A. The genetic regulation of the terminating phase of liver regeneration. COMPARATIVE HEPATOLOGY 2012; 11:3. [PMID: 23164283 PMCID: PMC3558440 DOI: 10.1186/1476-5926-11-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 11/08/2012] [Indexed: 02/06/2023]
Abstract
UNLABELLED BACKGROUND After partial hepatectomy (PHx), the liver regeneration process terminates when the normal liver-mass/body-weight ratio of 2.5% has been re-established. To investigate the genetic regulation of the terminating phase of liver regeneration, we performed a 60% PHx in a porcine model. Liver biopsies were taken at the time of resection, after three weeks and upon termination the sixth week. Gene expression profiles were obtained using porcine oligonucleotide microarrays. Our study reveals the interactions between genes regulating the cell cycle, apoptosis and angiogenesis, and the role of Transforming Growth Factor-β (TGF-β) signalling towards the end of liver regeneration. RESULTS Microarray analysis revealed a dominance of genes regulating apoptosis towards the end of regeneration. Caspase Recruitment Domain-Containing Protein 11 (CARD11) was up-regulated six weeks after PHx, suggesting the involvement of the caspase system at this time. Zinc Finger Protein (ZNF490) gene, with a potential negative effect on cell cycle progression, was only up-regulated at three and six weeks after PHx indicating a central role at this time. TGF-β regulation was not found to be significantly affected in the terminating phase of liver regeneration. Vasohibin 2 (VASH2) was down-regulated towards the end of regeneration, and may indicate a role in preventing a continued vascularization process. CONCLUSIONS CARD11, ZNF490 and VASH2 are differentially expressed in the termination phase of liver regeneration. The lack of TGF-β up-regulation suggests that signalling by TGF-β is not required for termination of liver regeneration.
Collapse
Affiliation(s)
- Ingvild E Nygård
- Department of Digestive Surgery, University Hospital of Northern-Norway, Tromsø 9038, Norway.
| | | | | | | | | | | | | |
Collapse
|
27
|
Dippold RP, Vadigepalli R, Gonye GE, Hoek JB. Chronic ethanol feeding enhances miR-21 induction during liver regeneration while inhibiting proliferation in rats. Am J Physiol Gastrointest Liver Physiol 2012; 303:G733-43. [PMID: 22790595 PMCID: PMC3468539 DOI: 10.1152/ajpgi.00019.2012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Liver regeneration is an important repair response to liver injury. Chronic ethanol consumption inhibits and delays liver regeneration in experimental animals. We studied the effects of chronic ethanol treatment on messenger RNA (mRNA) and microRNA (miRNA) expression profiles during the first 24 h after two-thirds partial hepatectomy (PHx) and found an increase in hepatic miR-21 expression in both ethanol-fed and pair-fed control rats after PHx. We demonstrate that the increase of miR-21 expression during liver regeneration is more robust in ethanol-fed rats. Peak miR-21 expression occurs at 24 h after PHx in both ethanol-fed and control rats, corresponding to the peak of hepatocyte S phase in control rats, but not in ethanol-exposed livers in which cell cycle is delayed. The induction of miR-21 24 h after PHx in control rats is not greater than the increase in expression of miR-21 due to sham surgery. However, in the ethanol-fed rat, miR-21 is induced to a greater extent by PHx than by sham surgery. To elucidate the implications of increased miR-21 expression during liver regeneration, we employed unbiased global target analysis using gene expression data compiled by our group. Our analyses suggest that miR-21 may play a greater role in regulating gene expression during regeneration in the ethanol-fed rat than in the control rat. Our analysis of potential targets of miR-21 suggests that miR-21 affects a broad range of target processes and may have a widespread regulatory role under conditions of suppressed liver regeneration in ethanol-treated animals.
Collapse
Affiliation(s)
- Rachael P. Dippold
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Rajanikanth Vadigepalli
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Gregory E. Gonye
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jan B. Hoek
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
28
|
Dippold RP, Vadigepalli R, Gonye GE, Patra B, Hoek JB. Chronic ethanol feeding alters miRNA expression dynamics during liver regeneration. Alcohol Clin Exp Res 2012; 37 Suppl 1:E59-69. [PMID: 22823254 DOI: 10.1111/j.1530-0277.2012.01852.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 04/09/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND Adaptation to chronic ethanol (EtOH) treatment of rats results in a changed functional state of the liver and greatly inhibits its regenerative ability, which may contribute to the progression of alcoholic liver disease. METHODS In this study, we investigated the effect of chronic EtOH intake on hepatic microRNA (miRNA) expression in male Sprague-Dawley rats during the initial 24 hours of liver regeneration following 70% partial hepatectomy (PHx) using miRNA microarrays. miRNA expression during adaptation to EtOH was investigated using RT-qPCR. Nuclear factor kappa B (NFκB) binding at target miRNA promoters was investigated with chromatin immunoprecipitation. RESULTS Unsupervised clustering of miRNA expression profiles suggested that miRNA expression was more affected by chronic EtOH feeding than by the acute challenge of liver regeneration after PHx. Several miRNAs that were significantly altered by chronic EtOH feeding, including miR-34a, miR-103, miR-107, and miR-122 have been reported to play a role in regulating hepatic metabolism and the onset of these miRNA changes occurred gradually during the time course of EtOH feeding. Chronic EtOH feeding also altered the dynamic miRNA profile during liver regeneration. Promoter analysis predicted a role for NFκB in the immediate-early miRNA response to PHx. NFκB binding at target miRNA promoters in the chronic EtOH-fed group was significantly altered and these changes directly correlated with the observed expression dynamics of the target miRNA. CONCLUSIONS Chronic EtOH consumption alters the hepatic miRNA expression profile such that the response of the metabolism-associated miRNAs occurs during long-term adaptation to EtOH rather than as an acute transient response to EtOH metabolism. Additionally, the dynamic miRNA program during liver regeneration in response to PHx is altered in the chronically EtOH-fed liver and these differences reflect, in part, differences in miRNA expression between the EtOH-adapted and control livers at the baseline state prior to PHx.
Collapse
Affiliation(s)
- Rachael P Dippold
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
29
|
Xu CS, Jiang Y, Zhang LX, Chang CF, Wang GP, Shi RJ, Yang YJ. The role of Kupffer cells in rat liver regeneration revealed by cell-specific microarray analysis. J Cell Biochem 2012; 113:229-37. [PMID: 21898544 DOI: 10.1002/jcb.23348] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Liver regeneration after partial hepatectomy is a process with various types of cells involved. The role of Kupffer cells (KCs) in liver regeneration is still controversial. In this study we isolated KCs from regenerating liver and conducted cell-specific microarray analysis. The results demonstrated that the controversial role of KCs in liver regeneration could be explained with the expression patterns of TGF-α, IL-6, TNF, and possibly IL-18 during liver regeneration. IL-18 may play an important role in negative regulation of liver regeneration. The functional profiles of gene expression in KCs also indicated that KC signaling might play a negative role in cell proliferation: signaling genes were down regulated before cell division. Immune response genes in KCs were also down regulated during liver regeneration, demonstrating similar expression profiles to that of hepatocytes. The expression patterns of key genes in these functional categories were consistent with the temporal functional profiles.
Collapse
Affiliation(s)
- Cun-Shuan Xu
- Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China.
| | | | | | | | | | | | | |
Collapse
|
30
|
Xu C, Yang Y, Yang J, Chen X, Wang G. Analysis of the role of the integrin signaling pathway in hepatocytes during rat liver regeneration. Cell Mol Biol Lett 2012; 17:274-88. [PMID: 22396140 PMCID: PMC6275568 DOI: 10.2478/s11658-012-0011-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 02/22/2012] [Indexed: 12/22/2022] Open
Abstract
To explore the role of the integrin signaling pathway in hepatocytes during rat liver regeneration, the integrin signaling pathway-related gene expression profile in hepatocytes of regenerative liver was detected using Rat Genome 230 2.0 array. The chip data showed that 265 genes of the integrin signaling pathway were included by Rat Genome 230 2.0 array and 132 genes showed significant expression changes in hepatocytes of regenerative liver. The numbers of up-, down- and up/down-regulated genes were 110, 15 and 7 respectively. In addition, bioinformatics and systems biology methods were used to analyze the role of the integrin signaling pathway in hepatocytes. The analysis of gene synergy value indicated that paths 1, 8, 12, and 15 promoted hepatocyte proliferation at the priming phase of liver regeneration; paths 1, 3, 8, and 12-15 enhanced hepatocyte proliferation at the progressing phase; paths 11 and 14 promoted hepatocyte proliferation, while paths 12 and 13 reduced hepatocyte proliferation at the terminal phase. Additionally, the other 8 paths (2, 4, 5-7, 9-10, and 16) were not found to be related to liver regeneration. In conclusion, 132 genes and 8 cascades of the integrin signaling pathway participated in regulating hepatocyte proliferation during rat liver regeneration.
Collapse
Affiliation(s)
- Cunshuan Xu
- College of Life Science, Henan Normal University, Xinxiang, 453007, P.R. China.
| | | | | | | | | |
Collapse
|
31
|
Jonge JD, Olthoff KM. Liver regeneration. BLUMGART'S SURGERY OF THE LIVER, PANCREAS AND BILIARY TRACT 2012:87-101.e6. [DOI: 10.1016/b978-1-4377-1454-8.00005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
32
|
Jiang Y, Zhang LX, Chang CF, Wang GP, Shi RJ, Yang YJ, Xu CS. The number of the genes in a functional category matters during rat liver regeneration after partial hepatectomy. J Cell Biochem 2011; 112:3194-205. [DOI: 10.1002/jcb.23246] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Regulation of coagulation factors during liver regeneration in mice: Mechanism of factor VIII elevation in plasma. Thromb Res 2011; 128:54-61. [DOI: 10.1016/j.thromres.2011.01.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 12/09/2010] [Accepted: 01/13/2011] [Indexed: 11/18/2022]
|
34
|
Severino V, Locker J, Ledda-Columbano GM, Columbano A, Parente A, Chambery A. Proteomic characterization of early changes induced by triiodothyronine in rat liver. J Proteome Res 2011; 10:3212-24. [PMID: 21563808 DOI: 10.1021/pr200244f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
High doses of T3 are mitogenic in liver, causing hyperplasia that has numerous differences from the compensatory regeneration induced by partial hepatectomy (PH). T3 binds to the thyroid hormone receptor (TR), which directly regulates transcription, while PH acts indirectly through signal transduction pathways. We therefore carried out a proteomic analysis to compare early effects of the two treatments. Transcriptome analysis by DNA microarray also confirmed the observed proteomic changes, demonstrating that they were caused by transcriptional regulation. Among the differentially expressed proteins, many are directly or indirectly involved in energy metabolism and response to oxidative stress. Several enzymes of lipid metabolism (e.g., Acaa2, Acads, Hadh, and Echs1) were differentially regulated by T3. In addition, altered expression levels of several mitochondrial proteins (e.g., Hspa9, Atp5b, Cps1, Glud1, Aldh2, Ak2, Acads) demonstrated the known increase of mitochondrial biogenesis mediated by T3. The present results provide insights in changes in metabolic balance occurring following T3-stimulation and define a basis for dissecting the molecular pathways of hepatocyte hyperplasia.
Collapse
Affiliation(s)
- Valeria Severino
- Department of Life Science, Second University of Naples, Via Vivaldi 43, I-81100 Caserta, Italy
| | | | | | | | | | | |
Collapse
|
35
|
Xu C, Zhang X, Wang G, Chang C, Zhang L, Cheng Q, Lu A. Role of the autonomic nervous system in rat liver regeneration. Cell Mol Neurobiol 2011; 31:527-40. [PMID: 21264506 PMCID: PMC11498377 DOI: 10.1007/s10571-011-9646-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Accepted: 01/04/2011] [Indexed: 01/12/2023]
Abstract
To study the regulatory role of autonomic nervous system in rat regenerating liver, surgical operations of rat partial hepatectomy (PH) and its operation control (OC), sympathectomy combining partial hepatectomy (SPH), vagotomy combining partial hepatectomy (VPH), and total liver denervation combining partial hepatectomy (TDPH) were performed, then expression profiles of regenerating livers at 2 h after operation were detected using Rat Genome 230 2.0 array. It was shown that the expressions of 97 genes in OC, 230 genes in PH, 253 genes in SPH, 187 genes in VPH, and 177 genes in TDPH were significantly changed in biology. The relevance analysis showed that in SPH, genes involved in stimulus response, immunity response, amino acids and K(+) transport, amino acid catabolism, cell adhesion, cell proliferation mediated by JAK-STAT, Ca(+), and platelet-derived growth factor receptor, cell growth and differentiation through JAK-STAT were up-regulated, while the genes involved in chromatin assembly and disassembly, and cell apoptosis mediated by MAPK were down-regulated. In VPH, the genes associated with chromosome modification-related transcription factor, oxygen transport, and cell apoptosis mediated by MAPK pathway were up-regulated, but the genes associated with amino acid catabolism, histone acetylation-related transcription factor, and cell differentiation mediated by Wnt pathway were down-regulated. In TDPH, the genes related to immunity response, growth and development of regenerating liver, cell growth by MAPK pathway were up-regulated. Our data suggested that splanchnic and vagal nerves could regulate the expressions of liver regeneration-related genes.
Collapse
Affiliation(s)
- Cunshuan Xu
- College of Life Science, Henan Normal University, No. 46, Construction East Road, Xinxiang, 453007, Henan, China.
| | | | | | | | | | | | | |
Collapse
|
36
|
miRNA regulation of liver growth after 50% partial hepatectomy and small size grafts in rats. Transplantation 2011; 91:293-9. [PMID: 21183868 DOI: 10.1097/tp.0b013e318204756c] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The molecular mechanisms underlying the growth of small size grafts and the remaining livers are poorly understood. MicroRNAs (miRNAs) negatively modulate expression of genes that are involved in cellular function and metabolism. The aim of this study is to identify critical miRNA species that modulate the growth of small grafts and the remaining livers after partial hepatectomy (PH). METHODS Small size graft liver transplantation was performed in rats. Liver tissue was harvested after transplant or PH for the determination of miRNA expression profile, and the data were confirmed by quantitative reverse-transcriptase polymerase chain reaction. The genes involved in cell cycle and proliferation were analyzed by quantitative reverse-transcriptase polymerase chain reaction and immunohistochemical staining. RESULTS Compared with control liver, miR_122a, Let_7b, and miR_26a were reduced by more than 90% in 45% volume grafts. In the remaining livers after 50% PH, 30 miRNAs were down-regulated by more than 50%, and among them, miR_22a, miR_26a, miR_30b, Let_7f, and Let_7g were markedly decreased. A negative correlation existed between down-regulated miRNAs and highly up-regulated genes involved in cell cycle and proliferation in the remaining livers. Moreover, overexpression of miR_26a markedly down-regulated cyclin E2 protein levels and significantly decreased proliferation of HepG2 cells. CONCLUSION Down-regulated miRNAs play a pivotal role in promoting the growth of small size grafts and the remaining livers. The negative correlation between down-regulated miRNAs and up-regulated genes suggests that these specific miRNAs participate in the modulation of a growth response in both living donors and small size graft recipients.
Collapse
|
37
|
Xu C, Chen X, Chang C, Wang G, Wang W, Zhang L, Zhu Q, Wang L, Zhang F. Transcriptome analysis of hepatocytes after partial hepatectomy in rats. Dev Genes Evol 2010; 220:263-74. [PMID: 21082200 DOI: 10.1007/s00427-010-0345-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 10/28/2010] [Indexed: 11/29/2022]
Abstract
After partial hepatectomy (PH), the recovery of liver mass is mainly mediated by proliferation and enlargement of hepatocytes. Therefore, measuring the transcriptional profiling of hepatocytes after PH will be helpful in exploring the mechanism of liver regeneration (LR). Firstly, hepatocytes were isolated from rat regenerating liver at different time points following PH, and then global gene expression analysis of hepatocytes was performed using Rat Genome 230 2.0 Array. The results demonstrated that 1,417 genes in the array (including 767 known genes) were identified to be LR-related. Clustering analysis demonstrated that 767 known genes fell into six classes with distinct expression kinetics. When gene expression patterns were combined with gene functions, genes involved in acute-phase response and defense response were rapidly elevated in early phases; those in cell proliferation and DNA replication were significantly up-expressed in middle phase; a growing number of cell adhesion-involved genes were up-regulated as regeneration progressed; those in amino acid and lipid metabolism showed persistent down-regulation during LR. Based on the above analyses, it was suggested that hepatocyte defense mechanism was quickly triggered after PH; cell proliferation became active in middle phase; cell adhesion was strengthened in late phase; amino acid and lipid metabolism were attenuated during LR. Additionally, comparative analysis between transcriptional profiling of hepatocytes and regenerating liver indicated a major contribution of hepatocytes to LR.
Collapse
Affiliation(s)
- Cunshuan Xu
- Key Laboratory for Cell Differentiation Regulation, Henan Normal University, 46# East of Construction Road, Xinxiang, 453007, China,
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
McNeilly AD, Macfarlane DP, O'Flaherty E, Livingstone DE, Mitić T, McConnell KM, McKenzie SM, Davies E, Reynolds RM, Thiesson HC, Skøtt O, Walker BR, Andrew R. Bile acids modulate glucocorticoid metabolism and the hypothalamic-pituitary-adrenal axis in obstructive jaundice. J Hepatol 2010; 52:705-11. [PMID: 20347173 PMCID: PMC2877801 DOI: 10.1016/j.jhep.2009.10.037] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2009] [Revised: 09/30/2009] [Accepted: 10/15/2009] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS Suppression of the hypothalamic-pituitary-adrenal axis occurs in cirrhosis and cholestasis and is associated with increased concentrations of bile acids. We investigated whether this was mediated through bile acids acting to impair steroid clearance by inhibiting glucocorticoid metabolism by 5beta-reductase. METHODS The effect of bile acids on glucocorticoid metabolism was studied in vitro in hepatic subcellular fractions and hepatoma cells, allowing quantitation of the kinetics and transcript abundance of 5beta-reductase. Metabolism was subsequently examined in vivo in rats following dietary manipulation or bile duct ligation. Finally, glucocorticoid metabolism was assessed in humans with obstructive jaundice. RESULTS In rat hepatic cytosol, chenodeoxycholic acid competitively inhibited 5beta-reductase (K(i) 9.19+/-0.40 microM) and reduced its transcript abundance (in H4iiE cells) and promoter activity (reporter system, HepG2 cells). In Wistar rats, dietary chenodeoxycholic acid (1% w/w chow) inhibited hepatic 5beta-reductase activity, reduced urinary excretion of 3alpha,5beta-tetrahydrocorticosterone and reduced adrenal weight. Conversely, a fat-free diet suppressed bile acid levels and increased hepatic 5beta-reductase activity, supplementation of the fat-free diet with CDCA reduced 5beta-reductase activity, and urinary 3alpha,5beta-reduced corticosterone. Cholestasis in rats suppressed hepatic 5beta-reductase activity and transcript abundance. In eight women with obstructive jaundice, relative urinary excretion of 3alpha,5beta-tetrahydrocortisol was significantly lower than in healthy controls. CONCLUSION These data suggest a novel role for bile acids in inhibiting hepatic glucocorticoid clearance, of sufficient magnitude to suppress hypothalamic-pituitary-adrenal axis activity. Elevated hepatic bile acids may account for adrenal insufficiency in liver disease.
Collapse
Key Words
- hpa, hypothalamic–pituitary–adrenal
- acth, adrenocorticotropic hormone
- 3αhsd, 3α-hydroxysteroid dehydrogenase
- fxr, farnesoid x receptor
- cyp7a1, cholesterol 7α-hydroxylase
- 11βhsd, 11β-hydroxysteroid dehydrogenase
- bdl, bile duct ligation
- thb, tetrahydrocorticosterone
- dhb, dihydrocorticosterone
- gcms, gas chromatography mass spectrometry
- cdca, chenodeoxycholic acid
- ca, cholic acid
- dca, deoxycholic acid
- gcdca, glyco-cdca
- ki, inhibitor constant
- tcdca, tauro-cdca
- dmem, dulbecco’s modified eagle’s medium
- pcr, polymerase chain reaction
- ff, fat-free
- ecrp, endoscopic retrograde cholangiopancreatography
- anova, analysis of variance
- alt, alanine transaminase
- alp, alkaline phosphatase
- cyp11b1, 11β-hydroxylase
- nefa, non-esterified fatty acids
- sem, standard error of mean
- bile acid
- glucocorticoid
- 5β-reductase
- adrenal
- jaundice
Collapse
Affiliation(s)
- Alison D McNeilly
- Endocrinology Unit, Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Rychtrmoc D, Libra A, Buncek M, Garnol T, Cervinková Z. Studying liver regeneration by means of molecular biology: how far we are in interpreting the findings? ACTA MEDICA (HRADEC KRÁLOVÉ) 2010; 52:91-9. [PMID: 20073420 DOI: 10.14712/18059694.2016.112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Liver regeneration in mammals is a unique phenomenon attracting scientific interest for decades. It is a valuable model for basic biology research of cell cycle control as well as for clinically oriented studies of wide and heterogeneous group of liver diseases. This article provides a concise review of current knowledge about the liver regeneration, focusing mainly on rat partial hepatectomy model. The three main recognized phases of the regenerative response are described. The article also summarizes history of molecular biology approaches to the topic and finally comments on obstacles in interpreting the data obtained from large scale microarray-based gene expression analyses.
Collapse
Affiliation(s)
- David Rychtrmoc
- Department of Physiology, Charles University in Prague, Faculty of Medicine in Hradec Králové, Czech Republic.
| | | | | | | | | |
Collapse
|
40
|
Mortensen KE, Conley LN, Nygaard I, Sorenesen P, Mortensen E, Bendixen C, Revhaug A. Increased sinusoidal flow is not the primary stimulus to liver regeneration. COMPARATIVE HEPATOLOGY 2010. [PMID: 20148099 DOI: 10.1186/1476.5926-9-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Hemodynamic changes in the liver remnant following partial hepatectomy (PHx) have been suggested to be a primary stimulus in triggering liver regeneration. We hypothesized that it is the increased sinusoidal flow per se and hence the shear-stress stimulus on the endothelial surface within the liver remnant which is the main stimulus to regeneration. In order to test this hypothesis we wanted to increase the sinusoidal flow without performing a concomitant liver resection. Accordingly, we constructed an aorto-portal shunt to the left portal vein branch creating a standardized four-fold increase in flow to segments II, III and IV. The impact of this manipulation was studied in both an acute model (6 animals, 9 hours) using a global porcine cDNA microarray chip and in a chronic model observing weight and histological changes (7 animals, 3 weeks). RESULTS Gene expression profiling from the shunted segments does not suggest that increased sinusoidal flow per se results in activation of genes promoting mitosis. Hyperperfusion over three weeks results in the whole liver gaining a supranormal weight of 3.9% of the total body weight (versus the normal 2.5%). Contrary to our hypothesis, the weight gain was observed on the non-shunted side without an increase in sinusoidal flow. CONCLUSIONS An isolated increase in sinusoidal flow does not have the same genetic, microscopic or macroscopic impact on the liver as that seen in the liver remnant after partial hepatectomy, indicating that increased sinusoidal flow may not be a sufficient stimulus in itself for the initiation of liver regeneration.
Collapse
Affiliation(s)
- Kim E Mortensen
- Surgical Research Laboratory, Institute of Clinical Medicine, University of Tromsoe, Tromsoe, Norway
| | | | | | | | | | | | | |
Collapse
|
41
|
Mortensen KE, Conley LN, Nygaard I, Sorenesen P, Mortensen E, Bendixen C, Revhaug A. Increased sinusoidal flow is not the primary stimulus to liver regeneration. COMPARATIVE HEPATOLOGY 2010; 9:2. [PMID: 20148099 PMCID: PMC2819042 DOI: 10.1186/1476-5926-9-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2009] [Accepted: 01/20/2010] [Indexed: 02/08/2023]
Abstract
BACKGROUND Hemodynamic changes in the liver remnant following partial hepatectomy (PHx) have been suggested to be a primary stimulus in triggering liver regeneration. We hypothesized that it is the increased sinusoidal flow per se and hence the shear-stress stimulus on the endothelial surface within the liver remnant which is the main stimulus to regeneration. In order to test this hypothesis we wanted to increase the sinusoidal flow without performing a concomitant liver resection. Accordingly, we constructed an aorto-portal shunt to the left portal vein branch creating a standardized four-fold increase in flow to segments II, III and IV. The impact of this manipulation was studied in both an acute model (6 animals, 9 hours) using a global porcine cDNA microarray chip and in a chronic model observing weight and histological changes (7 animals, 3 weeks). RESULTS Gene expression profiling from the shunted segments does not suggest that increased sinusoidal flow per se results in activation of genes promoting mitosis. Hyperperfusion over three weeks results in the whole liver gaining a supranormal weight of 3.9% of the total body weight (versus the normal 2.5%). Contrary to our hypothesis, the weight gain was observed on the non-shunted side without an increase in sinusoidal flow. CONCLUSIONS An isolated increase in sinusoidal flow does not have the same genetic, microscopic or macroscopic impact on the liver as that seen in the liver remnant after partial hepatectomy, indicating that increased sinusoidal flow may not be a sufficient stimulus in itself for the initiation of liver regeneration.
Collapse
Affiliation(s)
- Kim E Mortensen
- Surgical Research Laboratory, Institute of Clinical Medicine, University of Tromsoe, Tromsoe, Norway
| | - Lene N Conley
- Faculty of Agricultural Sciences, Department of Genetics and Biotechnology, University of Aarhus, Aarhus, Denmark
| | - Ingvild Nygaard
- Surgical Research Laboratory, Institute of Clinical Medicine, University of Tromsoe, Tromsoe, Norway
| | - Peter Sorenesen
- Faculty of Agricultural Sciences, Department of Genetics and Biotechnology, University of Aarhus, Aarhus, Denmark
| | - Elin Mortensen
- Department of Pathology, University Hospital of Northern-Norway, Tromsoe, Norway
| | - Christian Bendixen
- Faculty of Agricultural Sciences, Department of Genetics and Biotechnology, University of Aarhus, Aarhus, Denmark
| | - Arthur Revhaug
- Department of Gastrointestinal Surgery, University Hospital of North-Norway, Tromsoe, Norway
| |
Collapse
|
42
|
Proteomic analysis of regenerating mouse liver following 50% partial hepatectomy. Proteome Sci 2009; 7:48. [PMID: 20040084 PMCID: PMC2813229 DOI: 10.1186/1477-5956-7-48] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 12/29/2009] [Indexed: 12/29/2022] Open
Abstract
Background Although 70% (or 2/3) partial hepatectomy (PH) is the most studied model for liver regeneration, the hepatic protein expression profile associated with lower volume liver resection (such as 50% PH) has not yet been reported. Therefore, the aim of this study was to determine the global protein expression profile of the regenerating mouse liver following 50% PH by differential proteomics, and thereby gaining some insights into the hepatic regeneration mechanism(s) under this milder but clinically more relevant condition. Results Proteins from sham-operated mouse livers and livers regenerating for 24 h after 50% PH were separated by SDS-PAGE and analyzed by nanoUPLC-Q-Tof mass spectrometry. Compared to sham-operated group, there were totally 87 differentially expressed proteins (with 50 up-regulated and 37 down-regulated ones) identified in the regenerating mouse livers, most of which have not been previously related to liver regeneration. Remarkably, over 25 differentially expressed proteins were located at mitochondria. Several of the mitochondria-resident proteins which play important roles in citric acid cycle, oxidative phosphorylation and ATP production were found to be down-regulated, consistent with the recently-proposed model in which the reduction of ATP content in the remnant liver gives rise to early stress signals that contribute to the onset of liver regeneration. Pathway analysis revealed a central role of c-Myc in the regulation of liver regeneration. Conclusions Our study provides novel evidence for mitochondria as a pivotal organelle that is connected to liver regeneration, and lays the foundation for further studies on key factors and pathways involved in liver regeneration following 50% PH, a condition frequently used for partial liver transplantation and conservative liver resection.
Collapse
|
43
|
Tatsumi K, Ohashi K, Taminishi S, Takagi S, Utoh R, Yoshioka A, Shima M, Okano T. Effects on coagulation factor production following primary hepatomitogen-induced direct hyperplasia. World J Gastroenterol 2009; 15:5307-15. [PMID: 19908339 PMCID: PMC2776858 DOI: 10.3748/wjg.15.5307] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the molecular mechanisms involved in coagulation factor expression and/or function during direct hyperplasia (DH)-mediated liver regeneration.
METHODS: Direct hyperplasia-mediated liver regeneration was induced in female C57BL/6 mice by administering 1,4-bis[2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP), a representative hepatomitogen. Mice were weighed and sacrificed at various time points [Day 0 (D0: prior to injection), 3 h, D1, D2, D3, and D10] after TCPOBOP administration to obtain liver and blood samples. Using the RNA samples extracted from the liver, a comprehensive analysis was performed on the hepatic gene expression profiling of coagulation-related factors by real-time RT-PCR (fibrinogen, prothrombin, factors V, VII, VIII, IX, X, XI, XII, XIIIβ, plasminogen, antithrombin, protein C, protein S, ADAMTS13, and VWF). The corresponding plasma levels of coagulation factors (fibrinogen, prothrombin, factors V, VII, VIII, IX, X, XI, XII, XIII, and VWF) were also analyzed and compared with their mRNA levels.
RESULTS: Gavage administration of TCPOBOP (3 mg/kg body weight) resulted in a marked and gradual increase in the weight of the mouse livers relative to the total body weight to 220% by D10 relative to the D0 (control) ratios. At the peak of liver regeneration (D1 and D2), the gene expression levels for most of the coagulation-related factors (fibrinogen, prothrombin, factors V, VII, VIII, IX, XI, XII, XIIIβ, plasminogen, antithrombin, protein C, ADAMTS13, VWF) were found to be down-regulated in a time-dependent manner, and gradually recovered by D10 to the basal levels. Only mRNA levels of factor X and protein S failed to show any decrease during the regenerative phase. As for the plasma levels, 5 clotting factors (prothrombin, factors VIII, IX, XI, and XII) demonstrated a significant decrease (P < 0.05) during the regeneration phase compared with D0. Among these 5 factors, factor IX and factor XI showed the most dramatic decline in their activities by about 50% at D2 compared to the basal levels, and these reductions in plasma activity for both factors were consistent with our RT-PCR findings. In contrast, the plasma activities of the other coagulation factors (fibrinogen, factors V, VII, XIII, and VWF) were not significantly reduced, despite the reduction in the liver mRNA levels. Unlike the other factors, FX showed a temporal increase in its plasma activity, with significant increases (P < 0.05) detected at D1.
CONCLUSION: Investigating the coagulation cascade protein profiles during liver regeneration by DH may help to better understand the basic biology of the liver under normal and pathological conditions.
Collapse
|
44
|
Jager L, Ehrhardt A. Persistence of high-capacity adenoviral vectors as replication-defective monomeric genomes in vitro and in murine liver. Hum Gene Ther 2009; 20:883-96. [PMID: 19364285 DOI: 10.1089/hum.2009.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Liver-based gene therapy approaches demonstrated that high-capacity adenoviral vectors (HC-AdVs) can persist life-long in mice and for 2 years or longer in rats, dogs, and nonhuman primates. However, the molecular status of episomal HC-AdV DNA molecules and the mechanism of vector genome maintenance have not been analyzed. HC-AdV lacks all viral coding sequences including early gene region 4 (E4), which prevents concatemerization in wild-type adenovirus. Therefore, we addressed whether concatemerization or circularization of HC-AdV DNA occurs in transduced cells. We employed pulsed-field gel electrophoresis and a sensitive concatemer/circle-specific polymerase chain reaction (PCR). To test for replication as a potential mechanism for maintenance, we developed a methylase/restriction endonuclease-based system using methylation-marked HC-AdV. We found that unlike DeltaE4 mutant virus, only monomers of HC-AdV genomes were observable in vitro. Using our methylase/restriction endonuclease-based system, no replication of HC-AdV was sensed in various cell lines. However, concatemer formation of HC-AdV could be induced after coinfection with an E4-deleted helper virus, indicating that linkage of genomes may be supported by replication. To examine HC-AdV DNA molecules in vivo, C57BL/6 mice were injected and vector DNA in liver was analyzed. In concordance with our in vitro results, exclusively linear monomers were detected. To sense the replication status of HC-AdV genomes, we established a sensitive real-time PCR. Our results indicated that the input transduced DNA genomes were the persistent molecules in murine liver. In summary, we demonstrated that HC-AdV genomes persist predominantly as replication-defective monomeric genomes.
Collapse
Affiliation(s)
- Lorenz Jager
- Department of Virology, Max von Pettenkofer-Institute, Ludwig-Maximilian-University of Munich, Munich 80336, Germany
| | | |
Collapse
|
45
|
Li J, Campbell JS, Mitchell C, McMahan RS, Yu X, Riehle KJ, Bumgarner RE, Fausto N. Relationships between deficits in tissue mass and transcriptional programs after partial hepatectomy in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:947-57. [PMID: 19700759 DOI: 10.2353/ajpath.2009.090043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Liver regeneration after two-thirds partial hepatectomy (2/3 PH) results in synchronized proliferation of hepatocytes and rapid restoration of liver mass. Understanding the mechanisms that regulate this process has both biological and clinical importance. Using cDNA microarray analysis, we investigated whether gene activation after 2/3 PH is specifically related to liver growth and hepatocyte proliferation. We generated gene expression profiles at 4, 12, 20, and 30 hours after 2/3 PH and compared them with profiles obtained at the same time points after 1/3 PH, a procedure that causes minimal DNA replication. Surprisingly, a significant number of genes whose expression is altered after 2/3 PH are similarly up- or down-regulated after 1/3 PH, particularly at 4 hours. We identified a number of genes and transcription factors that are more highly expressed ("preferential expression") after 2/3 PH and show that a shift in transcriptional programs in the regenerating liver occurs between 4 and 12 hours after 2/3 PH, a time at which the decision to replicate appears to be made. These results show that the liver responds to PH with massive changes of gene expression, even in the absence of DNA replication. We suggest that the changes in gene expression during the first 4 to 6 hours after 2/3 PH may induce chromatin remodeling and facilitate the binding of new sets of transcription factors required for DNA replication.
Collapse
Affiliation(s)
- Jiangning Li
- Department of Pathology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Serial Expression Analysis of Liver Regeneration-Related Genes in Rat Regenerating Liver. Mol Biotechnol 2009; 43:221-31. [DOI: 10.1007/s12033-009-9199-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 07/14/2009] [Indexed: 10/20/2022]
|
47
|
Ortiz-Pineda PA, Ramírez-Gómez F, Pérez-Ortiz J, González-Díaz S, Santiago-De Jesús F, Hernández-Pasos J, Del Valle-Avila C, Rojas-Cartagena C, Suárez-Castillo EC, Tossas K, Méndez-Merced AT, Roig-López JL, Ortiz-Zuazaga H, García-Arrarás JE. Gene expression profiling of intestinal regeneration in the sea cucumber. BMC Genomics 2009; 10:262. [PMID: 19505337 PMCID: PMC2711116 DOI: 10.1186/1471-2164-10-262] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 06/08/2009] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Among deuterostomes, the regenerative potential is maximally expressed in echinoderms, animals that can quickly replace most injured organs. In particular, sea cucumbers are excellent models for studying organ regeneration since they regenerate their digestive tract after evisceration. However, echinoderms have been sidelined in modern regeneration studies partially because of the lack of genome-wide profiling approaches afforded by modern genomic tools.For the last decade, our laboratory has been using the sea cucumber Holothuria glaberrima to dissect the cellular and molecular events that allow for such amazing regenerative processes. We have already established an EST database obtained from cDNA libraries of normal and regenerating intestine at two different regeneration stages. This database now has over 7000 sequences. RESULTS In the present work we used a custom-made microchip from Agilent with 60-mer probes for these ESTs, to determine the gene expression profile during intestinal regeneration. Here we compared the expression profile of animals at three different intestinal regeneration stages (3-, 7- and 14-days post evisceration) against the profile from normal (uneviscerated) intestines. The number of differentially expressed probes ranged from 70% at p < 0.05 to 39% at p < 0.001. Clustering analyses show specific profiles of expression for early (first week) and late (second week) regeneration stages. We used semiquantitative reverse transcriptase polymerase chain reaction (RT-PCR) to validate the expression profile of fifteen microarray detected differentially expressed genes which resulted in over 86% concordance between both techniques. Most of the differentially expressed ESTs showed no clear similarity to sequences in the databases and might represent novel genes associated with regeneration. However, other ESTs were similar to genes known to be involved in regeneration-related processes, wound healing, cell proliferation, differentiation, morphological plasticity, cell survival, stress response, immune challenge, and neoplastic transformation. Among those that have been validated, cytoskeletal genes, such as actins, and developmental genes, such as Wnt and Hox genes, show interesting expression profiles during regeneration. CONCLUSION Our findings set the base for future studies into the molecular basis of intestinal regeneration. Moreover, it advances the use of echinoderms in regenerative biology, animals that because of their amazing properties and their key evolutionary position, might provide important clues to the genetic basis of regenerative processes.
Collapse
Affiliation(s)
- Pablo A Ortiz-Pineda
- University of Puerto Rico, Rio Piedras, Department of Biology, San Juan, PR, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
de Jonge J, Kurian S, Shaked A, Reddy KR, Hancock W, Salomon DR, Olthoff KM. Unique early gene expression patterns in human adult-to-adult living donor liver grafts compared to deceased donor grafts. Am J Transplant 2009; 9:758-72. [PMID: 19353763 PMCID: PMC2734955 DOI: 10.1111/j.1600-6143.2009.02557.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Because of inherent differences between deceased donor (DD) and living donor (LD) liver grafts, we hypothesize that the molecular signatures will be unique, correlating with specific biologic pathways and clinical patterns. Microarray profiles of 63 biopsies in 13 DD and 8 LD liver grafts done at serial time points (procurement, backbench and postreperfusion)were compared between groups using class comparisons, network and biological function analyses. Specific genes were validated by quantitative PCR and immunopathology. Clinical findings were also compared. Following reperfusion, 579 genes in DD grafts and 1324 genes in LDs were differentially expressed (p < 0.005). Many upregulated LD genes were related to regeneration, biosynthesis and cell cycle, and a large number of downregulated genes were linked to hepatic metabolism and energy pathways correlating with posttransplant clinical laboratory findings. There was significant upregulation of inflammatory/immune genes in both DD and LD, each with a distinct pattern. Gene expression patterns of select genes associated with inflammation and regeneration in LD and DD grafts correlated with protein expression. Unique patterns of early gene expression are seen in LD and DD liver grafts, correlating with protein expression and clinical results, demonstrating distinct inflammatory profiles and significant downregulation of metabolic pathways in LD grafts.
Collapse
Affiliation(s)
- Jeroen de Jonge
- Department of Surgery, Penn Transplant Institute, University of Pennsylvania, Philadelphia, PA
| | - Sunil Kurian
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA
| | - Abraham Shaked
- Department of Surgery, Penn Transplant Institute, University of Pennsylvania, Philadelphia, PA
| | - K. Rajendar Reddy
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA
| | - Wayne Hancock
- Department of Pathology and Laboratory Medicine, Joseph Stokes Jr. Research Institute, The Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA
| | - Daniel R. Salomon
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA
| | - Kim M. Olthoff
- Department of Surgery, Penn Transplant Institute, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
49
|
Yuan Y, Wu X, Ou Q, Gao J, Tennant BC, Han W, Yu Y. Differential expression of the genes involved in amino acids and nitrogen metabolisms during liver regeneration of mice. Hepatol Res 2009; 39:301-12. [PMID: 19067752 DOI: 10.1111/j.1872-034x.2008.00456.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AIM Liver regeneration is a highly coordinated response to hepatic injury or resection that is controlled by the body's overall requirement for liver function. The level of circulating amino acids in blood increases after acute liver injury and administration of amino acid mixtures induces hepatic DNA replication. These findings suggest a close connection between amino acid metabolism and hepatic proliferation. However, the underlying molecular mechanisms have not been completely elucidated. Here, we applied a cDNA micro-array technique to analyze expression profiles of the genes associated with nitrogen and amino acid metabolism during liver regeneration in mice following treatment with CCl(4). METHODS Seventy-nine genes were identified for their significantly altered expression patterns at different stages of liver damage and regeneration. RESULTS We observed that the numbers of down-regulated genes were remarkably higher than that of up-regulated genes at 1.5 days following carbon tetrachloride administration when hepatic DNA replication was most active, indicating the existence of a counter balance between cell proliferation and liver metabolism functions. CONCLUSIONS Our results suggest that suppression of amino acids metabolism after acute liver injury results in the accumulation of amino acids in plasma that serves as a driving force for liver regeneration.
Collapse
Affiliation(s)
- Yunsheng Yuan
- School of Agriculture and Biology, Shanghai Municipality Key Laboratory for Veterinary Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
50
|
Medina J, Yamada S, Kojima I. Identification of differentially expressed genes during proliferative response of the liver induced by follistatin. Endocr J 2009; 56:1067-77. [PMID: 19734694 DOI: 10.1507/endocrj.k09e-224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The liver mass is controlled strictly and maintained constant in normal and pathological situations. An exception is observed after an administration of follistatin, which induces proliferation in intact liver. In the present study, we identified genes differentially expressed in proliferating liver caused by overexpression of follistatin-288. Adenovirus vector encoding follistatin-288 (Ad-FS) or green fluorescent protein was injected intraperitoneally in rats. Changes in the liver weight, expression of follistatin and nuclear bromodeoxyuridine labeling were measured. Samples taken on day 5 and day 7 were used to prepare RNA for microarray analysis. The expression of the genes was confirmed by quantitative reverse transcriptase PCR. After the injection of Ad-FS follistatin mRNA peaked on day 3, which was followed by progressive increase in the protein expression. A peak in bromodeoxyuridine labeling was observed on day 7. Microarray data from day 5 and day 7 samples showed that follistatin modified the expression of 907 genes, of which 575 were overexpressed and 332 were downregulated taking into consideration a two fold change reference compared to control rats. In particular, significant increases and time related changes in gene expression after the Ad-FS injection were found in nine genes including growth differentiation factor 15 and fibroblast growth factor 21. This study confirmed that follistatin induced proliferation in intact liver, and identified candidate genes involved in follistatin-induced liver cell growth.
Collapse
Affiliation(s)
- Johan Medina
- Institute for Molecular and Cellular Regulation, Gunma University, Gunma, Japan.
| | | | | |
Collapse
|