1
|
Zheng M, Li R, Wang J, Huang Y, Han M, Li Z. Application of metal–organic frameworks in stomatology. AIP ADVANCES 2024; 14. [DOI: 10.1063/5.0206476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Metal–organic frameworks (MOFs), a new class of porous organic–organic hybrid materials controlled by self-assembly of metal atoms and organic pillars, are attracting considerable interest because of their specific properties. More recently, the advantages of different types of nanoscale metal–organic frameworks for the use of MOF nanoparticles in stomatology have been reported in the literature. This article covers the treatment of oral cancer, surface modification of implants, antibacterial dressings, and treatment of periodontitis and periodontal regeneration. It presents recent applications, future challenges, and prospects for MOFs in stomatology in four areas. It provides an overview of recent advances in the design and application of MOFs in stomatology from their intrinsic properties to different syntheses and their use as smart drug delivery systems or a combination of these.
Collapse
Affiliation(s)
- Minghe Zheng
- Stomatology Center of Hangzhou Normal University Affiliated Hospital, The Chinese Hospital of China 1 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
- Hangzhou Normal University, The Chinese University of China 2 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
| | - Ru Li
- Stomatology Center of Hangzhou Normal University Affiliated Hospital, The Chinese Hospital of China 1 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
- Hangzhou Normal University, The Chinese University of China 2 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
| | - Jiaye Wang
- Stomatology Center of Hangzhou Normal University Affiliated Hospital, The Chinese Hospital of China 1 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
- Hangzhou Normal University, The Chinese University of China 2 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
| | - Yanlin Huang
- Stomatology Center of Hangzhou Normal University Affiliated Hospital, The Chinese Hospital of China 1 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
- Hangzhou Normal University, The Chinese University of China 2 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
| | - Mingfang Han
- Stomatology Center of Hangzhou Normal University Affiliated Hospital, The Chinese Hospital of China 1 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
- Hangzhou Normal University, The Chinese University of China 2 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
| | - Zehui Li
- Stomatology Center of Hangzhou Normal University Affiliated Hospital, The Chinese Hospital of China 1 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
- Hangzhou Normal University, The Chinese University of China 2 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
| |
Collapse
|
2
|
Dong QQ, Wu Q, Lu Y, Shi Y, Yang KD, Xu XL, Chen W. Exploring β-glucan as a micro-nano system for oral delivery targeted the colon. Int J Biol Macromol 2023; 253:127360. [PMID: 37827417 DOI: 10.1016/j.ijbiomac.2023.127360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
The critical role of oral colon-specific delivery systems (OCDDS) is important for delivering active agents to the colon and rectum specifically via the oral route. The use of micro/nanostructured OCDDS further improves drug stability, bioavailability, and retention time, leading to enhanced therapeutic effects. However, designing micro/nanoscale OCDDSs is challenging due to pH changes, enzymatic degradation, and systemic absorption and metabolism. Biodegradable natural polysaccharides are a promising solution to these problems, and β-glucan is one of the most promising natural polysaccharides due to its unique structural features, conformational flexibility, and specific processing properties. This review covers the diverse chemical structures of β-glucan, its benefits (biocompatibility, easy modification, and colon-specific degradation), and various β-glucan-based micro/nanosized OCDDSs, as well as their drawbacks. The potential of β-glucan offers exciting new opportunities for colon-specific drug delivery.
Collapse
Affiliation(s)
- Qing-Qing Dong
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, PR China; Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Qian Wu
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, PR China
| | - Yi Lu
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, PR China
| | - Yi Shi
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, PR China
| | - Ke-Da Yang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Xiao-Ling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China.
| | - Wei Chen
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, PR China.
| |
Collapse
|
3
|
Mukhopadhyay A, Gope A, Choudhury K, Chatterjee J, Mukherjee R. Modulation of Biophysical Cues in Nature Inspired Patterning of Porous Silk Fibroin Scaffold for Replenishable Controlled Drug Delivery. Macromol Biosci 2023; 23:e2300119. [PMID: 37269219 DOI: 10.1002/mabi.202300119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/24/2023] [Indexed: 06/04/2023]
Abstract
While a sticking plasteris enough for healing of most of the minor cuts they may get routinely, critical situations like surgical, gunshot, accidental or diabetic wounds;lacarations and other cutaneous deep cuts may require implants and simultaneous medications for healing. From the biophysical standpoint, an internal force-based physical surface stimulusis crucial for cellular sensing during wound repair. In this paper, the authors report the fabrication of a porous, biomimmetically patterned silk fibroin scaffold loaded with ampicillin, which exhibits controlled release of the drug along with possible replenishment of the same. In vitro swelling study reveals that the scaffolds with hierarchical surface patterns exhibit lower swelling and degradation than other types of scaffolds. The scaffolds, that show remarkable broad-spectrum antibacterial efficacy, exhibit Korsemeyer-Peppas model for the ampicillin release patterns due to the structural hydrophobicity imparted by the patterns. Four distinct cell-matrix adhesion regimes are investigated for the fibroblasts to eventually form cell sheets all over the hierarchical surface structures. 4',6-diamidino-2-phenylindole (DAPI) and Fluorescein Diacetate (FDA) fluorescent staining clearly demonstrate the superiority of patterned surface over its other variants. A comparative immunofluorescence study among collagen I, vinculin, and vimentin expressions substantiated the patterned surface to be superior to others.
Collapse
Affiliation(s)
- Anurup Mukhopadhyay
- Multimodal Imaging and Theranostics Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Ayan Gope
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Kabita Choudhury
- Department of Microbiology, Nil Ratan Sircar Medical College and Hospital, Kolkata, West Bengal, 700014, India
| | - Jyotirmoy Chatterjee
- Dr.B.C.Roy Multi-Specialty Medical Research Centre, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Rabibrata Mukherjee
- Instability and Soft Patterning Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
4
|
Liu X, Zhang M, Tian Y, Liu R, Wang Y, Guo F, Gong Y, Yan M. Development, Characterization, and Investigation of In Vivo Targeted Delivery Efficacy of Luteolin-Loaded, Eudragit S100-Coated mPEG-PLGA Nanoparticles. AAPS PharmSciTech 2022; 23:100. [PMID: 35348949 DOI: 10.1208/s12249-022-02255-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/14/2022] [Indexed: 02/08/2023] Open
Abstract
Luteolin (Lu) is a kind of flavonoid that has been proved to treat non-alcoholic fatty liver disease by alleviating intestinal microbiota disorder. In this study, luteolin was coated with methoxy poly(ethylene glycol)-poly(dl-lactide-co-glycolic acid) (mPEG-PLGA) using an emulsion solvent evaporation method, and the optimum preparation process was determined by a single-factor experiment combined with response surface methodology (RSM). Methacrylic acid-methyl methacrylate (1:2) copolymer (Eudragit S100) was then used to coat the surface of Lu/mPEG-PLGA nanoparticles. The physical parameters of Eudragit S100-coated Lu/mPEG-PLGA nanoparticles (Lu-NPs), such as appearance, particle size, potential, particle size distribution and drug release, and stability in vitro, were evaluated. In addition, its cytotoxicity in vitro, pharmacokinetics, tissue distribution, and toxicity in vivo were also studied. The results showed that the prepared Lu-NPs had uniform particle size distribution, high encapsulation efficiency, and good stability. Normal colonic epithelial cells showed good tolerance to Lu-NPs. After oral administration, the blood concentration of luteolin peaked at 8 h, and the main tissue distribution was within the colon, confirming its colon-targeted profile. Safety assessments also indicated that no significant changes were observed in main organs after administration of Lu-NPs. The use of Eudragit S100-coated Lu/mPEG-PLGA nanoparticles is a new strategy for colon-targeted delivery of luteolin that encourages luteolin to fulfill its role in the colon.
Collapse
|
5
|
Waris TS, Shah STA, Mehmood A, Iqbal Z, Zehra M, Chaudhry AA, Rehman IU, Yar M. Design and development of thyroxine/heparin releasing affordable cotton dressings to treat chronic wounds. J Tissue Eng Regen Med 2022; 16:460-471. [PMID: 35246945 DOI: 10.1002/term.3295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/06/2022] [Accepted: 02/17/2022] [Indexed: 11/09/2022]
Abstract
This research on a thyroxine/heparin-based cotton wound dressing tests angiogenic and wound healing ability of thyroxine/heparin in a chick chorionic allantoic membrane bioassay and in skin wounds in healthy rats. Commercially available cotton dressings were simply loaded with thyroxine/heparin solutions and coated with wax. Prior to undertaking the animal study, we assessed in vitro release of thyroxine/heparin from coated and uncoated cotton dressings. Both showed more than 85% release of drug over 14 days, though the lesser release was observed in wax-coated thyroxine/heparin dressing as compared to uncoated thyroxine/heparin dressing. Testing of angiogenesis through CAM assay proved good angiogenic potential of heparin and thyroxin, but the thyroxine found more angiogenic than heparin. In animal study, full-thickness skin wounds of 20 mm diameter showed good healing in both heparin and thyroxine-treated groups. But the most striking result was seen in the thyroxine-treated group where thyroxine showed significant difference with heparin-treated group and completely healed the wounds in 23 days. Thus, the study suggest that thyroxine possesses greater angiogenic and wound healing potential than heparin, and the use of thyroxine/heparin-loaded wax-coated cotton dressing could be a cost-effective option for the management of chronic wounds.
Collapse
Affiliation(s)
- Tayyba Sher Waris
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad, Lahore, Pakistan
| | | | - Azra Mehmood
- Centre for Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Zohaib Iqbal
- Centre for Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Mubashra Zehra
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad, Lahore, Pakistan
| | - Aqif Anwar Chaudhry
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad, Lahore, Pakistan
| | - Ihtesham Ur Rehman
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad, Lahore, Pakistan.,Engineering Department, Lancaster University, Lancaster, UK
| | - Muhammad Yar
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad, Lahore, Pakistan
| |
Collapse
|
6
|
Lechner K, Zeeshana M, Noack M, Ali H, Neurath M, Weigmanna B. Small but powerful: Will nanoparticles be the future state‐of‐the‐art therapy for IBD? Expert Opin Drug Deliv 2022; 19:235-245. [DOI: 10.1080/17425247.2022.2043847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kristina Lechner
- Medical Clinic I, University Hospital Erlangen, Research Campus, Hartmannstr.14, 91052, Erlangen, 91052 Erlangen, Germany
| | - Mahira Zeeshana
- Department of Pharmacy, Faculty of Biological Sciences, Quaid‐i‐Azam University, Islamabad, 45320, Pakistan
| | - Maxi Noack
- Medical Clinic I, University Hospital Erlangen, Research Campus, Hartmannstr.14, 91052, Erlangen, 91052 Erlangen, Germany
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid‐i‐Azam University, Islamabad, 45320, Pakistan
| | - Markus Neurath
- Medical Clinic I, University Hospital Erlangen, Ulmenweg 14, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
| | - Benno Weigmanna
- Medical Immunology Campus Erlangen, Medical Clinic 1, Friedrich‐Alexander University, Erlangen‐Nürnberg, Erlangen, Germany
| |
Collapse
|
7
|
Enteric-coated Ca-alginate hydrogel beads: a promising tool for colon targeted drug delivery system. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03359-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Rehman S, Ranjha NM, Shoukat H, Madni A, Ahmad F, Raza MR, Jameel QA, Majeed A, Ramzan N. Fabrication, Evaluation, In Vivo Pharmacokinetic and Toxicological Analysis of pH-Sensitive Eudragit S-100-Coated Hydrogel Beads: a Promising Strategy for Colon Targeting. AAPS PharmSciTech 2021; 22:209. [PMID: 34312763 DOI: 10.1208/s12249-021-02082-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/28/2021] [Indexed: 11/30/2022] Open
Abstract
The aim of present research aims to fabricate a system of enteric coating of hydrogel beads with pH-sensitive polymer, which shows solubility at pH > 7, and explore their potential to target the colon for drug delivery. Hydrogel beads were fabricated through the extrusion-dripping technique followed by ion gelation crosslinking. Moreover, freeze-thaw cycle was implemented for crosslinking of polyvinyl alcohol (PVA)/Ca-alginate blend beads. The oil-in-oil solvent evaporation method was adopted for the Eudragit coating of hydrogel beads using different coat: core ratios (4:1 or 8:1). Coated and uncoated hydrogel beads were evaluated by in vitro physicochemical properties, swelling and drug release behaviours, and in vivo pharmacokinetics, swelling, and toxicity evaluation. Diclofenac sodium was loaded as an experimental drug. Drug entrapment efficiency for the PVA/Ca-alginate beads was calculated as 98%, and for Ca-alginate beads, it came out to a maximum of 74%. Drug release study at various pH suggested that, unlike uncoated hydrogel beads, the coated beads delay the release of diclofenac sodium in low pH of the gastric and intestinal environment, thus targeting the colon for the drug release. It was concluded that Eudragit S-100-coated hydrogel beads could serve as a more promising and reliable way to target the colon for drug delivery.Graphical abstract.
Collapse
|
9
|
Das S. Pectin based multi-particulate carriers for colon-specific delivery of therapeutic agents. Int J Pharm 2021; 605:120814. [PMID: 34147609 DOI: 10.1016/j.ijpharm.2021.120814] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022]
Abstract
In case of colon-specific delivery of therapeutic agents through oral route, microbial/enzyme-triggered release approach has several advantages over other approaches due to unique microbial ecosystem in the colon. Multiple-unit carriers have an edge over single-unit carriers for this purpose. Among different materials/polymers explored, pectin appears as a promising biopolymer to construct microbial-triggered colon-specific carriers. Pectin is specifically degraded by colonic enzymes but insusceptible to upper gastro-intestinal enzymes. In this article, utilization of pectin solely or in combination with other polymers and/or colonic-delivery approaches is critically discussed in detail in the context of multi-particulate systems. Several studies showed that pectin-based carriers can prevent the release of payload in the stomach but start to release in the intestine. Hence, pectin alone may construct delayed release formulation but may not be sufficient for effective colon-targeting. On the other hand, combination of pectin with other materials/polymers (e.g., chitosan and Eudragit® S-100) has demonstrated huge promise for colon-specific release of payload. Hence, smartly designed pectin-based multi-particulate carriers, especially in combination with other polymers and/or colon-targeting approaches (e.g., microbial-triggered + pH-triggered or microbial-triggered + pH-triggered + time-release or microbial-triggered + pH-triggered + pressure-based), can be successful colon-specific delivery systems. However, more clinical trials are necessary to bring this idea from bench to bedside.
Collapse
Affiliation(s)
- Surajit Das
- Takasago International Corporation, 5 Sunview Road, Singapore 627616, Singapore.
| |
Collapse
|
10
|
Priya Dharshini K, Fang H, Ramya Devi D, Yang JX, Luo RH, Zheng YT, Brzeziński M, Vedha Hari BN. pH-sensitive chitosan nanoparticles loaded with dolutegravir as milk and food admixture for paediatric anti-HIV therapy. Carbohydr Polym 2020; 256:117440. [PMID: 33483020 DOI: 10.1016/j.carbpol.2020.117440] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/28/2020] [Accepted: 11/19/2020] [Indexed: 11/17/2022]
Abstract
The present study aims to develop Chitosan-based polymeric nanoparticles of anti-HIV drug Dolutegravir, to aid appropriate dose adjustment and ease of oral administration as milk and food admixture for children. The isolated Chitosan from the crab shell species Portunus Sanguinolentus has been characterized for their physicochemical properties. Nanoparticles were developed with varying ratio of drug: Chitosan and assessed for particle size (140-548 nm), zeta potential (+26.1 mV) with a maximum of 75 % drug content. Nanoparticles exhibited improved stability and drug release in the 0.1 N HCl medium compared to pure drug. The MTT assay and the Syncytia inhibition assay in C8166 (T-lymphatic cell line) infected with HIVIIIB viral strain, which showed better therapeutic efficiency and lesser cytotoxicity compared to the pure drug. In consonance with the data obtained, the use of chitosan from a novel source for drug delivery carrier has opened exceptional prospects for delivering drugs efficiently to paediatrics.
Collapse
Affiliation(s)
- K Priya Dharshini
- Pharmaceutical Technology Laboratory, ASK-II, Lab No: 214, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India
| | - Hao Fang
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - D Ramya Devi
- Pharmaceutical Technology Laboratory, ASK-II, Lab No: 214, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India
| | - Jin-Xuan Yang
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Rong-Hua Luo
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yong-Tang Zheng
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| | - Marek Brzeziński
- Centre of Molecular and Macromolecular Studies in Łódź, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - B N Vedha Hari
- Pharmaceutical Technology Laboratory, ASK-II, Lab No: 214, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India.
| |
Collapse
|
11
|
Naeem M, Lee J, Oshi MA, Cao J, Hlaing SP, Im E, Jung Y, Yoo JW. Colitis-targeted hybrid nanoparticles-in-microparticles system for the treatment of ulcerative colitis. Acta Biomater 2020; 116:368-382. [PMID: 32937207 DOI: 10.1016/j.actbio.2020.09.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/26/2022]
Abstract
Nanoparticle (NP)-based drug delivery systems accumulate in the disrupted epithelium of inflamed colon tissue in ulcerative colitis. However, premature early drug release and uptake or degradation of NPs during their passage through the harsh gastric or intestinal environment compromise their therapeutic outcomes. This study aimed to develop an advanced colitis-targeted hybrid nanoparticles-in-microparticles (NPsinMPs) drug delivery system to overcome the aforementioned challenges. First, sustained drug releasing poly(lactic-co-glycolic acid) NPs were generated and further encapsulated in pH-sensitive Eudragit FS30D MPs to ensure complete drug protection in a gastric-like pH and for selective delivery of NPs to the colon. SEM and confocal microscopy for the NPsinMPs revealed successful NP encapsulation. NPsinMPs prevented drug release in an acidic gastric-like and intestinal-like pH and presented a sustained release thereafter at an ileal and colonic pH, indicating the degradation of the outer pH-sensitive MPs and release of NPs. Furthermore, in vivo imaging of gastrointestinal tract of a colitis mouse orally administered with fluorescent NPsinMPs revealed higher fluorescence intensities selectively in the colon, demonstrating the release of loaded NPs and their concomitant accumulation at the site of colon inflammation. NPsinMPs markedly mitigated experimental colitis in mice indicated by improved histopathological analysis, decreased myeloperoxidase activity, neutrophils and macrophage infiltration, and expression of proinflammatory cytokines in colonic tissues compared with NP-treated mice. The present results show the successful formulation of an NPsinMP-based drug delivery system and provide a platform to improve NP-based colon-targeted drug delivery through improved protection of encapsulated NPs and their payload in the early small intestine.
Collapse
Affiliation(s)
- Muhammad Naeem
- College of Pharmacy, Pusan National University, Busan609-735, South Korea; Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Punjab, Pakistan
| | - Juho Lee
- College of Pharmacy, Pusan National University, Busan609-735, South Korea
| | - Murtada A Oshi
- College of Pharmacy, Pusan National University, Busan609-735, South Korea
| | - Jiafu Cao
- College of Pharmacy, Pusan National University, Busan609-735, South Korea
| | - Shwe Phyu Hlaing
- College of Pharmacy, Pusan National University, Busan609-735, South Korea
| | - Eunok Im
- College of Pharmacy, Pusan National University, Busan609-735, South Korea
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan609-735, South Korea
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busan609-735, South Korea.
| |
Collapse
|
12
|
Ammar HO, Tadros MI, Salama NM, Ghoneim AM. Ethosome-Derived Invasomes as a Potential Transdermal Delivery System for Vardenafil Hydrochloride: Development, Optimization and Application of Physiologically Based Pharmacokinetic Modeling in Adults and Geriatrics. Int J Nanomedicine 2020; 15:5671-5685. [PMID: 32821096 PMCID: PMC7418156 DOI: 10.2147/ijn.s261764] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/08/2020] [Indexed: 01/15/2023] Open
Abstract
Aim The aim of the current work was to develop vardenafil hydrochloride (VRD)-loaded ethosome-derived invasomes as a possible transdermal system which could be used for patients suffering from pulmonary arterial hypertension. Methods VRD-loaded ethosomes were developed at three concentrations of phosphatidylcholine (5, 10 and 15 mg/mL) and three percentages of ethanol (20%, 30% and 40%, v/v). The best achieved VRD-loaded ethosomes (ETH9) were optimized to invasomes via incorporation of terpenes (limonene, cineole and a 1:1 mixture) at three concentrations (0.5%, 1% and 2%, v/v). All systems were evaluated for vesicle size, zeta potential, drug entrapment efficiency (EE%), cumulative drug permeated percentages after 0.5hrs (Q0.5h) and 12hrs (Q12h) and steady-state flux (Jss). The optimized system (ETH9-INV8) was further characterized for morphology, histopathology and confocal laser scanning microscopy (CLSM). Physiologically based pharmacokinetic (PBPK) modeling was employed to estimate VRD pharmacokinetic parameters from the optimized transdermal system and an oral aqueous drug dispersion, in adults and geriatrics. Results The optimized invasomal system (ETH9-INV8) was characterized with spherical vesicles (159.9 nm) possessing negative zeta potential (-20.3 mV), promising EE% (81.3%), low Q0.5h (25.4%), high Q12h (85.3%) and the largest steady-state flux (6.4 µg.cm-2h-1). Following a leave-on period of 12hrs in rats, it showed minor histopathologic changes. CLSM studies proved its ability to deeply permeate rat skin. Lower Cmax values, delayed Tmax estimates and greater AUC0-24h folds in adults and geriatrics (≈ 2.18 and 1.69, respectively) were estimated following the transdermal application of ETH9-INV8 system. Conclusion ETH9-INV8 is a promising transdermal system for VRD.
Collapse
Affiliation(s)
- Hussein O Ammar
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt (FUE), New Cairo, Egypt
| | - Mina Ibrahim Tadros
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nahla M Salama
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt (FUE), New Cairo, Egypt
| | - Amira Mohsen Ghoneim
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt (FUE), New Cairo, Egypt
| |
Collapse
|
13
|
Sarangi MK, Rao MB, Parcha V, Upadhyay A. Tailoring of Colon Targeting with Sodium Alginate‐Assam Bora Rice Starch Based Multi Particulate System Containing Naproxen. STARCH-STARKE 2020. [DOI: 10.1002/star.201900307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Manoj Kumar Sarangi
- Sardar Bhagwan Singh Postgraduate Institute of Biomedical Sciences and Research Balawala Dehradun Uttarakhand 248001 India
- Ph.D. Research ScholarBijupatnaik University of Technology Rourkela Odisha 769004 India
| | - M.E. Bhanoji Rao
- Roland Institute of Pharmaceutical Sciences Berhampur Odisha 760010 India
- Calcutta Institute of Pharmaceutical Technology & Allied Health sciences Howrah West Bengal 711316 India
| | - Versha Parcha
- Sardar Bhagwan Singh Postgraduate Institute of Biomedical Sciences and Research Balawala Dehradun Uttarakhand 248001 India
- Dolphin (PG) Institute of Biomedical & Natural Sciences Dehradun Uttarakhand 248007 India
| | - Aadesh Upadhyay
- Sardar Bhagwan Singh Postgraduate Institute of Biomedical Sciences and Research Balawala Dehradun Uttarakhand 248001 India
| |
Collapse
|
14
|
Gadalla HH, Mohammed FA, El-Sayed AM, Soliman GM. Colon-targeting of progesterone using hybrid polymeric microspheres improves its bioavailability and in vivo biological efficacy. Int J Pharm 2020; 577:119070. [PMID: 31981708 DOI: 10.1016/j.ijpharm.2020.119070] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/13/2020] [Accepted: 01/18/2020] [Indexed: 01/20/2023]
Abstract
This study aims to enhance progesterone (PG) oral bioavailability via its incorporation into hybrid colon-targeted pectin/NaCMC microspheres (MS) cross-linked with Zn2+ and Al3+. The MS were characterized for particle morphology, encapsulation efficiency, swelling behavior, drug release, mucoadhesivity and colon-specific degradability. Response-surface methodology was adopted to optimize the fabrication conditions. Enhancement of in vivo drug performance was evaluated through pharmacokinetic and pharmacodynamic studies. The optimized formulation was typically spherical with a mean diameter of 1031 µm and drug entrapment efficiency of 88.8%. This formulation exhibited pH-dependent swelling, negligible drug release in simulated gastric fluid and sustained-release pattern in simulated small intestinal fluid with a mean t50% of 26.5 h. It also showed prolonged and preferential adhesion to rat colonic mucosa, as well as expedited degradation in presence of rat caecal contents. The MS significantly increased the area under the curve and mean residence time by 1.8 and 2.3-fold, respectively compared to the free drug. Orally administered MS showed ~10 times increase in myometrial thickness compared with the drug suspension and elicited uterine responses very similar to that obtained parenterally. These results confirm the ability of this new carrier system to improve the oral bioavailability of PG and attain adequate clinical efficacy.
Collapse
Affiliation(s)
- Hytham H Gadalla
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Fergany A Mohammed
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Ahmed M El-Sayed
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Ghareb M Soliman
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
| |
Collapse
|
15
|
Jung YS, Hong MG, Park SH, Lee BH, Yoo SH. Biocatalytic Fabrication of α-Glucan-Coated Porous Starch Granules by Amylolytic and Glucan-Synthesizing Enzymes as a Target-Specific Delivery Carrier. Biomacromolecules 2019; 20:4143-4149. [PMID: 31556605 DOI: 10.1021/acs.biomac.9b00978] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, we created biocatalytically coated porous starch granules (PSGs) using amylosucrase from Neisseria polysaccharea to apply them as an encapsulant for target-specific delivery. Field-emission scanning electron and confocal laser scanning microscopic images showed that the PSGs were completely concealed by the α-glucan coating layer. This carbohydrate-based encapsulant displayed higher amount of resistant glucan contents due to the elongated chains of the glucan coating, resulting in lower digestibility of these PSGs in simulated digestive fluid systems. Among the various PSGs evaluated, the highest loading efficiency for the bioactive molecule crocin was observed with the β-amylase-induced PSGs (β-PSGs) that had the smallest nanosize pores. Furthermore, α-glucan-coated β-PSGs showed the highest capacity to preserve the loaded crocin when incubated in simulated digestive fluids. This suggests that the α-glucan-coated β-PSGs can potentially be used for the delayed release of the core material in the upper region of the gastrointestinal tract. Therefore, this system can be potentially utilized as an effective carrier for colon-specific delivery, and the release of the bioactive compound can be triggered by beneficial intestinal microbiota.
Collapse
Affiliation(s)
- Yi-Seul Jung
- Department of Food Science & Biotechnology and Carbohydrate Bioproduct Research Center , Sejong University , Seoul 05006 , Republic of Korea
| | - Moon-Gi Hong
- Department of Food Science & Biotechnology , Gachon University , Seongnam 13120 , Republic of Korea
| | - Se-Hee Park
- Department of Food Science & Biotechnology and Carbohydrate Bioproduct Research Center , Sejong University , Seoul 05006 , Republic of Korea
| | - Byung-Hoo Lee
- Department of Food Science & Biotechnology , Gachon University , Seongnam 13120 , Republic of Korea
| | - Sang-Ho Yoo
- Department of Food Science & Biotechnology and Carbohydrate Bioproduct Research Center , Sejong University , Seoul 05006 , Republic of Korea
| |
Collapse
|
16
|
Nakagawa Y, Yano Y, Lee J, Anraku Y, Nakakido M, Tsumoto K, Cabral H, Ebara M. Apoptotic Cell-Inspired Polymeric Particles for Controlling Microglial Inflammation toward Neurodegenerative Disease Treatment. ACS Biomater Sci Eng 2019; 5:5705-5713. [PMID: 33405702 DOI: 10.1021/acsbiomaterials.8b01510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Apoptotic cells are known to suppress microglial inflammation in the brain by presenting phosphatidylserine. In this study, we newly designed polymeric particles that expose the anti-inflammatory site of phosphatidylserine to serve as an apoptotic cell-mimetic anti-inflammatory platform. The prepared anti-inflammatory particles showed no cytotoxicity and significantly inhibited the production of the inflammatory cytokine interleukin-6 against lipopolysaccharide stimulation in the microglia cell line MG6. This novel polymeric particle has potential for establishing a "cell-free" apoptotic cell-mimetic treatment for intracerebral inflammation.
Collapse
Affiliation(s)
- Yasuhiro Nakagawa
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kanagawa 210-0821, Japan
| | - Yuto Yano
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1, Namiki, Tsukuba, Ibaraki 305-0044, Japan.,Graduate School of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Jeonggyu Lee
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1, Namiki, Tsukuba, Ibaraki 305-0044, Japan.,Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Yasutaka Anraku
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kanagawa 210-0821, Japan
| | - Makoto Nakakido
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kouhei Tsumoto
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Horacio Cabral
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kanagawa 210-0821, Japan
| | - Mitsuhiro Ebara
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1, Namiki, Tsukuba, Ibaraki 305-0044, Japan.,Graduate School of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.,Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
17
|
Gioumouxouzis CI, Chatzitaki AT, Karavasili C, Katsamenis OL, Tzetzis D, Mystiridou E, Bouropoulos N, Fatouros DG. Controlled Release of 5-Fluorouracil from Alginate Beads Encapsulated in 3D Printed pH-Responsive Solid Dosage Forms. AAPS PharmSciTech 2018; 19:3362-3375. [PMID: 29948989 DOI: 10.1208/s12249-018-1084-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/24/2018] [Indexed: 11/30/2022] Open
Abstract
Three-dimensional printing is being steadily deployed as manufacturing technology for the development of personalized pharmaceutical dosage forms. In the present study, we developed a hollow pH-responsive 3D printed tablet encapsulating drug loaded non-coated and chitosan-coated alginate beads for the targeted colonic delivery of 5-fluorouracil (5-FU). A mixture of Eudragit® L100-55 and Eudragit® S100 was fabricated by means of hot-melt extrusion (HME) and the produced filaments were printed utilizing a fused deposition modeling (FDM) 3D printer to form the pH-responsive layer of the tablet with the rest comprising of a water-insoluble poly-lactic acid (PLA) layer. The filaments and alginate particles were characterized for their physicochemical properties (thermogravimetric analysis, differential scanning calorimetry, X-ray diffraction), their surface topography was visualized by scanning electron microscopy and the filaments' mechanical properties were assessed by instrumented indentation testing and tensile testing. The optimized filament formulation was 3D printed and the structural integrity of the hollow tablet in increasing pH media (pH 1.2 to pH 7.4) was assessed by means of time-lapsed microfocus computed tomography (μCT). In vitro release studies demonstrated controlled release of 5-FU from the alginate beads encapsulated within the hollow pH-sensitive tablet matrix at pH values corresponding to the colonic environment (pH 7.4). The present study highlights the potential of additive manufacturing in fabricating controlled-release dosage forms rendering them pertinent formulations for further in vivo evaluation.
Collapse
|
18
|
Pandey S, Swamy SMV, Gupta A, Koli A, Patel S, Maulvi F, Vyas B. Multiple response optimisation of processing and formulation parameters of pH sensitive sustained release pellets of capecitabine for targeting colon. J Microencapsul 2018; 35:259-271. [DOI: 10.1080/02652048.2018.1465138] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Sonia Pandey
- Maliba Pharmacy College, Uka Tarsadia University, Surat, India
| | | | - Arti Gupta
- Maliba Pharmacy College, Uka Tarsadia University, Surat, India
| | - Akshay Koli
- Maliba Pharmacy College, Uka Tarsadia University, Surat, India
| | - Swagat Patel
- Maliba Pharmacy College, Uka Tarsadia University, Surat, India
| | - Furqan Maulvi
- Maliba Pharmacy College, Uka Tarsadia University, Surat, India
| | - Bhavin Vyas
- Maliba Pharmacy College, Uka Tarsadia University, Surat, India
| |
Collapse
|
19
|
Moghimipour E, Dorkoosh FA, Rezaei M, Kouchak M, Fatahiasl J, Angali KA, Ramezani Z, Amini M, Handali S. In vivo evaluation of pH and time-dependent polymers as coating agent for colonic delivery using central composite design. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2017.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
20
|
Kierys A, Sienkiewicz A, Grochowicz M, Kasperek R. Polymer-amino-functionalized silica composites for the sustained-release multiparticulate system. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 85:114-122. [PMID: 29407139 DOI: 10.1016/j.msec.2017.12.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/07/2017] [Accepted: 12/19/2017] [Indexed: 12/22/2022]
Abstract
This study presents an interesting and promising strategy for producing an oral multiparticulate formulation of the sustained-release of diclofenac sodium (DS) consisting of subunits closed inside hard gelatin capsules (each capsule contains ~50mg of diclofenac sodium). The subunits in the form of beads were produced through the encapsulation of diclofenac sodium dispersed within a nondisintegrating polymer carrier by a silica gel functionalized with the 3-aminopropyl groups. The hybrid silica gel, which plays the role of enteric coating, was fabricated by the gelation of the liquid silica precursors mixture (i.e. tetraethoxysilane (TEOS) and (3-aminopropyl)triethoxysilane (APTES)) in the vapor phase of ammonia. The conducted studies reveal that the introduction of the hybrid silica gel into the solid DS dispersion facilitates prolonged release in the neutral environment of the intestine. Since the ability of the multiparticulate formulation to control the release of the drug depends on the properties of its subunits, studies involving the low temperature N2 sorption, DSC analysis together with spectroscopic techniques (XRD, SEM, 29Si MAS NMR) were conducted.
Collapse
Affiliation(s)
- Agnieszka Kierys
- Maria Curie-Sklodowska University, Faculty of Chemistry, Department of Adsorption, 3 M. Curie-Sklodowska Sq., Lublin 20-031, Poland.
| | - Andrzej Sienkiewicz
- Maria Curie-Sklodowska University, Faculty of Chemistry, Department of Adsorption, 3 M. Curie-Sklodowska Sq., Lublin 20-031, Poland
| | - Marta Grochowicz
- Maria Curie-Skłodowska University, Faculty of Chemistry, Department of Polymer Chemistry, 33 Gliniana Str., 20-614 Lublin, Poland
| | - Regina Kasperek
- Medical University of Lublin, Faculty of Pharmacy, Department of Applied Pharmacy, 1 Chodzki Str., Lublin 20-093, Poland
| |
Collapse
|
21
|
Kierys A, Krasucka P, Grochowicz M. Vapour-phase method in the synthesis of polymer-ibuprofen sodium-silica gel composites. Saudi Pharm J 2017; 25:972-980. [PMID: 29158703 PMCID: PMC5681307 DOI: 10.1016/j.jsps.2017.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/16/2017] [Indexed: 12/03/2022] Open
Abstract
The study discusses the synthesis of polymer-silica composites comprising water soluble drug (ibuprofen sodium, IBS). The polymers selected for this study were poly(TRIM) and poly(HEMA-co-TRIM) produced in the form of permanently porous beads via the suspension-emulsion polymerization method. The acid and base set ternary composites were prepared by the saturation of the solid dispersions of drug (poly(TRIM)-IBS and/or poly(HEMA-co-TRIM)-IBS) with TEOS, and followed by their exposition to the vapour mixture of water and ammonia, or water and hydrochloric acid, at autogenous pressure. The conducted analyses reveal that the internal structure and total porosity of the resulting composites strongly depend on the catalyst which was used for silica precursor gelation. The parameters characterizing the porosity of both of the acid set composites are much lower than the parameters of the base set composites. Moreover, the basic catalyst supplied in the vapour phase does not affect the ibuprofen sodium molecules, whereas the acid one causes transformation of the ibuprofen sodium into the sodium chloride and a derivative of propanoic acid, which is poorly water soluble. The release profiles of ibuprofen sodium from composites demonstrate that there are differences in the rate and efficiency of drug desorption from them. They are mainly affected by the chemical character of the polymeric carrier but are also associated with the restricted swelling of the composites in the buffer solution after precipitation of silica gel.
Collapse
Affiliation(s)
- Agnieszka Kierys
- Maria Curie-Sklodowska University, Faculty of Chemistry, Department of Adsorption, 3 M. Curie-Sklodowska Sq., 20-031 Lublin, Poland
| | - Patrycja Krasucka
- Maria Curie-Sklodowska University, Faculty of Chemistry, Department of Adsorption, 3 M. Curie-Sklodowska Sq., 20-031 Lublin, Poland
| | - Marta Grochowicz
- Maria Curie-Sklodowska University, Faculty of Chemistry, Department of Polymer Chemistry, 33 Gliniana Str, 20-614 Lublin, Poland
| |
Collapse
|
22
|
Solid dispersion of berberine hydrochloride and Eudragit ® S100: Formulation, physicochemical characterization and cytotoxicity evaluation. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
23
|
Nidhi, Rashid M, Kaur V, Hallan SS, Sharma S, Mishra N. Microparticles as controlled drug delivery carrier for the treatment of ulcerative colitis: A brief review. Saudi Pharm J 2016; 24:458-72. [PMID: 27330377 PMCID: PMC4908146 DOI: 10.1016/j.jsps.2014.10.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/11/2014] [Indexed: 01/30/2023] Open
Abstract
Ulcerative colitis is the chronic relapsing multifactorial gastrointestinal inflammatory bowel disease, which is characterized by bloody or mucus diarrhea, tenesmus, bowel dystension, anemia. The annual incidence of ulcerative colitis in Asia, North America and Europe was found to be 6.3, 19.2 and 24.3 per 100,000 person-years. The major challenge in the treatment of ulcerative colitis is appropriate local targeting and drug related side-effects. To overcome these challenges, microparticulate systems seem to be a promising approach for controlled and sustained drug release after oral administration. The main goal of this article is to explore the role of microparticles in ulcerative colitis for the appropriate targeting of drugs to colon. There are different approaches which have been studied over the last decade, including prodrugs, polymeric approach, time released system, pH sensitive system, which show the site specific drug delivery to colon. Among these approaches, microparticulate drug delivery system has been gaining an immense importance for local targeting of drug to colon at a controlled and sustained rate. Combined approaches such as pH dependent and time dependent system provide the maximum release of drug into colon via oral route. This article embraces briefly about pathophysiology, challenges and polymeric approaches mainly multiparticulate systems for site specific drug delivery to colon in sustained and controlled manner so that drug related side-effects by reducing dosage frequency can be minimized.
Collapse
Affiliation(s)
- Nidhi
- Department of Pharmaceutics, ISF College of Pharmacy, Ghal Kalan, Ferozpur, G.T. Road, Moga 142001, Punjab, India
| | - Muzamil Rashid
- Department of Pharmaceutics, ISF College of Pharmacy, Ghal Kalan, Ferozpur, G.T. Road, Moga 142001, Punjab, India
| | - Veerpal Kaur
- Department of Pharmaceutics, ISF College of Pharmacy, Ghal Kalan, Ferozpur, G.T. Road, Moga 142001, Punjab, India
| | - Supandeep Singh Hallan
- Department of Pharmaceutics, ISF College of Pharmacy, Ghal Kalan, Ferozpur, G.T. Road, Moga 142001, Punjab, India
| | - Saurabh Sharma
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Ferozpur, G.T. Road, Moga 142001, Punjab, India
| | - Neeraj Mishra
- Department of Pharmaceutics, ISF College of Pharmacy, Ghal Kalan, Ferozpur, G.T. Road, Moga 142001, Punjab, India
| |
Collapse
|
24
|
Jain A, Jain A, Jain A, Jain A. Quasi emulsion spherical crystallization technique based environmentally responsive Tulsion ® (pH dependent) microspheres for colon specific delivery. J Appl Biomed 2016. [DOI: 10.1016/j.jab.2015.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
25
|
Arya A, Pathak DP, Majumdar DK, Manchanda S. Methacrylic acid-co-butylmethacrylate copolymers: design, characterization and evaluation as encapsulating material for colon targeted formulations. Des Monomers Polym 2015. [DOI: 10.1080/15685551.2015.1092011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
26
|
Bile J, Bolzinger MA, Vigne C, Boyron O, Valour JP, Fessi H, Chevalier Y. The parameters influencing the morphology of poly(ɛ-caprolactone) microspheres and the resulting release of encapsulated drugs. Int J Pharm 2015; 494:152-66. [DOI: 10.1016/j.ijpharm.2015.07.068] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/24/2015] [Accepted: 07/26/2015] [Indexed: 11/15/2022]
|
27
|
Sanka K, Pragada RR, Veerareddy PR. A pH-triggered delayed-release chronotherapeutic drug delivery system of aceclofenac for effective management of early morning symptoms of rheumatoid arthritis. J Microencapsul 2015; 32:794-803. [PMID: 26362349 DOI: 10.3109/02652048.2015.1081417] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Rheumatoid arthritis (RA) is differentiated as an early morning exacerbation of the core arthritis condition associated with increase in pain and stiffness in joints and necessitate for medication. OBJECTIVE The aim of the present work was to develop and optimise a pH-triggered delayed-release colon-specific aceclofenac microspheres and to accomplish chronotherapy of RA. METHODS A 3-factor, 3-level Box-Behnken design (BBD) was used to optimise selected variables. Developed formulation was evaluated for in vivo delayed response and anti-arthritis activity in rats. RESULTS The particle size and encapsulation efficacy of these microspheres were 117.36 ± 10.54 µm and 85.06 ± 5.85%, respectively. Optimised formulation was analysed by SEM, DSC, X-RPD and FTIR. The in vivo evaluation revealed delayed anti-inflammatory activity in carrageenan-induced rats and anti-arthritic activity in freund's adjuvant-induced arthritis rats. CONCLUSION The optimised aceclofenac microspheres formulation is potential for the chronotherapy of early morning symptoms of RA.
Collapse
Affiliation(s)
- Krishna Sanka
- a Department of Pharmaceutics , School of Pharmacy , AGI , Hyderabad , Telangana , India .,b School of Pharmaceutical Sciences and Technologies, JNTUK , Kakinada, Andhra Pradesh , India
| | - Rajeswara Rao Pragada
- c College of Pharmaceutical Sciences, Andhra University , Visakhapatnam, Andhra Pradesh , India , and
| | | |
Collapse
|
28
|
Coated chitosan nanoparticles encapsulating caspase 3 activator for effective treatment of colorectral cancer. Drug Deliv Transl Res 2015; 5:596-610. [DOI: 10.1007/s13346-015-0255-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Shahi P, Kumari N, Pathak K. Microspheres and tablet in capsule system: A novel chronotherapeutic system of ketorolac tromethamine for site and time specific delivery. Int J Pharm Investig 2015; 5:161-70. [PMID: 26258058 PMCID: PMC4522866 DOI: 10.4103/2230-973x.160854] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The objective of the present work was to develop a novel delivery system of ketorolac tromethamine (KT) for dual pulse release based on microspheres and tablet in capsule system (MATICS) as a treatment modality for rheumatoid arthritis. The design consisted of an impermeable hard gelatin capsule body, in which a core tablet was (second pulse) placed in the bottom and sealed with a hydrogel plug (HP2). The body was locked with enteric coated cap filled with KT microspheres (first pulse). The microspheres for first pulse were selected by screening the formulations (M1–M6), and M1 with least particle size of 96.38 ± 0.05 μm, highest drug loading of 25.10% ± 0.28% and maximum CDR of 89.32% ± 0.21% was adjudged as the best formulation. The HP2 tablet was selected based on its capability for maintaining a lag period of 6 h. The selection criterion of the second pulse (core tablet: T3) was its disintegration time of 4.02 ± 0.53 min and CDR of 99.10% ± 0.32% in 30 min. All the optimized formulations were assembled in accordance with the proposed design to form pulsatile MATICS and evaluated for in vitro release. MATICS displayed delayed sustained CDR of 80.15% in 8 h from the first pulse (microspheres) after a lag time of 2 h, followed by 97.05% KT release from second pulse (core tablet) in simulated colonic fluid within 10 h. Conclusively, in vitro pulsatile release was a rational combination of delayed sustained and immediate release of KT that has the potential to combat the pain at night and morning stiffness. Incorporation of two pulses in one system offers a reduction in dose frequency and better pain management.
Collapse
Affiliation(s)
- Priya Shahi
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, Mathura - 281 001, Uttar Pradesh, India
| | - Neeraj Kumari
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, Mathura - 281 001, Uttar Pradesh, India
| | - Kamla Pathak
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, Mathura - 281 001, Uttar Pradesh, India
| |
Collapse
|
30
|
Jain A, Jain SK. L-Valine appended PLGA nanoparticles for oral insulin delivery. Acta Diabetol 2015; 52:663-76. [PMID: 25655131 DOI: 10.1007/s00592-015-0714-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/16/2015] [Indexed: 10/24/2022]
Abstract
AIMS Oral insulin delivery has been the major research issue, since many decades, due to several obvious advantages over other routes. However, this route poses several constraints for the delivery of peptides and proteins which are to be worked upon. The small intestine has been shown to be able to transport the L-forms of amino acids against a concentration gradient and that they compete for the mechanism concerned. So, L-valine was used as a ligand for carrier-mediated transport of insulin-loaded polylactic-co-glycolic acid (PLGA) nanoparticles (NPs). METHODS L-Valine-conjugated PLGA nanoparticles were prepared using double emulsion solvent evaporation method. The NPs and conjugated NPs were characterized for their size, drug entrapment efficiency, zeta potential, polydispersity index and in vitro insulin release. RESULTS Ex vivo studies on intestine revealed that conjugated nanoparticles showed greater insulin uptake as compared to non-conjugated nanoparticles. In vivo studies were performed on streptozotocin-induced diabetic rabbits. Oral suspension of insulin-loaded PLGA nanoparticles reduced blood glucose level from 265.4 ± 8.5 to 246.6 ± 2.4 mg/dL within 4 h which further decreased to 198.7 ± 7.1 mg/dL value after 8 h. The ligand-conjugated formulation on oral administration produced hypoglycaemic effect (216.9 ± 1.9 mg/dL) within 4 h of administration, and the hypoglycaemic effect prolonged till 12 h of oral administration. Simultaneously, the insulin concentration in withdrawn samples was also assessed and found that profile of insulin level is in compliance with the blood glucose reduction profile. CONCLUSIONS Hence, it is concluded that the L-valine-conjugated NPs bearing insulin are the promising carrier for the transportation of insulin across the intestine on oral administration.
Collapse
Affiliation(s)
- Ashish Jain
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Vishwavidyalaya, Sagar, 470 003, M.P., India
| | | |
Collapse
|
31
|
Vaidya A, Jain S, Agrawal RK, Jain SK. Pectin–metronidazole prodrug bearing microspheres for colon targeting. JOURNAL OF SAUDI CHEMICAL SOCIETY 2015. [DOI: 10.1016/j.jscs.2012.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Abstract
The production of electrospun fibers of enteric polymer for controlled delivery of drugs represents a simple and low cost procedure with promising advantages relative to the longer therapeutic window provided by cylindrical geometry in association with intrinsic properties of pH-dependent drug carriers. In this work, we have explored the incorporation of additives (block copolymers of poly(ethylene)-b-poly(ethylene oxide)) into matrix of Eudragit L-100 and the effective action of hybrid composites on delivery of nifedipine, providing improvement in the overall process of controlled release of loaded drug.
Collapse
|
33
|
Li P, Yang Z, Wang Y, Peng Z, Li S, Kong L, Wang Q. Microencapsulation of coupled folate and chitosan nanoparticles for targeted delivery of combination drugs to colon. J Microencapsul 2014; 32:40-5. [DOI: 10.3109/02652048.2014.944947] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
34
|
Agüero L, Zaldivar D, Peña L, Solís Y, Ramón J, Dias ML. Preparation and characterization of pH-sensitive microparticles based on polyelectrolyte complexes for antibiotic delivery. POLYM ENG SCI 2014. [DOI: 10.1002/pen.23962] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- L. Agüero
- Departamento de Química Macromolecular, Centro de Biomateriales; Universidad de La Habana, Ave. Universidad % G y Ronda; CP 10400 Ciudad de La Habana Cuba
| | - D. Zaldivar
- Departamento de Química Macromolecular, Centro de Biomateriales; Universidad de La Habana, Ave. Universidad % G y Ronda; CP 10400 Ciudad de La Habana Cuba
| | - L. Peña
- Departamento de Química Macromolecular, Centro de Biomateriales; Universidad de La Habana, Ave. Universidad % G y Ronda; CP 10400 Ciudad de La Habana Cuba
| | - Y. Solís
- Departamento de Química Macromolecular, Centro de Biomateriales; Universidad de La Habana, Ave. Universidad % G y Ronda; CP 10400 Ciudad de La Habana Cuba
| | - J.A. Ramón
- Departamento de Química Macromolecular, Centro de Biomateriales; Universidad de La Habana, Ave. Universidad % G y Ronda; CP 10400 Ciudad de La Habana Cuba
| | - Marcos L. Dias
- Universidade Federal do Rio de Janeiro; Instituto de Macromoléculas Professora Eloisa Mano, Av. Horácio Macedo; 2030-Centro de Tecnologia. Bloco J Rio de Janeiro, RJ Brazil
| |
Collapse
|
35
|
Rai G, Yadav AK, Jain NK, Agrawal GP. Eudragit-coated dextran microspheres of 5-fluorouracil for site-specific delivery to colon. Drug Deliv 2014; 23:328-37. [PMID: 24845476 DOI: 10.3109/10717544.2014.913733] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objective of the present investigation was to prepare and evaluate the potential of enteric coated dextran microspheres for colon targeting of 5-fluorouracil (5-FU). Dextran microspheres were prepared by emulsification-crosslinking method and the formulation variables studied included different molecular weights of dextran, drug:polymer ratio, volume of crosslinking agent, stirring speed and time. Enteric coating (Eudragit S-100) of dextran microspheres was performed by oil-in-oil solvent evaporation method using different coat:core ratios (4:1 or 8:1). Uncoated and coated dextran microspheres were characterized by particle size, surface morphology, entrapment efficiency, DSC, in vitro drug release in the presence of dextranase and 2% rat cecal contents. The release study of 5-FU from coated dextran microspheres was pH dependent. No release was observed at acidic pH; however, the drug was released quickly where Eudragit starts solublizing there was continuous release of drug from the microspheres. Organ distribution study was suggested that coated dextran microspheres retard the release of drug in gastric and intestinal pH environment and released of drug from microspheres in colon due to the degradation of dextran by colonic enzymes.
Collapse
Affiliation(s)
- Gopal Rai
- a Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences , Dr. Hari Singh Gour University , Sagar , Madhya Pradesh , India
| | - Awesh K Yadav
- a Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences , Dr. Hari Singh Gour University , Sagar , Madhya Pradesh , India
| | - Narendra K Jain
- a Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences , Dr. Hari Singh Gour University , Sagar , Madhya Pradesh , India
| | - Govind P Agrawal
- a Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences , Dr. Hari Singh Gour University , Sagar , Madhya Pradesh , India
| |
Collapse
|
36
|
Lautenschläger C, Schmidt C, Fischer D, Stallmach A. Drug delivery strategies in the therapy of inflammatory bowel disease. Adv Drug Deliv Rev 2014; 71:58-76. [PMID: 24157534 DOI: 10.1016/j.addr.2013.10.001] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/08/2013] [Accepted: 10/10/2013] [Indexed: 12/17/2022]
Abstract
Inflammatory bowel disease (IBD) is a frequently occurring disease in young people, which is characterized by a chronic inflammation of the gastrointestinal tract. The therapy of IBD is dominated by the administration of anti-inflammatory and immunosuppressive drugs, which suppress the intestinal inflammatory burden and improve the disease-related symptoms. Established treatment strategies are characterized by a limited therapeutical efficacy and the occurrence of adverse drug reactions. Thus, the development of novel disease-targeted drug delivery strategies is intended for a more effective therapy and demonstrates the potential to address unmet medical needs. This review gives an overview about the established as well as future-oriented drug targeting strategies, including intestine targeting by conventional drug delivery systems (DDS), disease targeted drug delivery by synthetic DDS and disease targeted drug delivery by biological DDS. Furthermore, this review analyses the targeting mechanisms of the respective DDS and discusses the possible field of utilization in IBD.
Collapse
Affiliation(s)
- Christian Lautenschläger
- Clinic of Internal Medicine IV, University Hospital Jena, Erlanger Allee 101, 07740 Jena, Germany.
| | - Carsten Schmidt
- Clinic of Internal Medicine IV, University Hospital Jena, Erlanger Allee 101, 07740 Jena, Germany.
| | - Dagmar Fischer
- Institute of Pharmacy, Department of Pharmaceutical Technology, Friedrich-Schiller University Jena, Otto-Schott-Strasse 41, 07745 Jena, Germany.
| | - Andreas Stallmach
- Clinic of Internal Medicine IV, University Hospital Jena, Erlanger Allee 101, 07740 Jena, Germany.
| |
Collapse
|
37
|
Giovannini M, Riva E, Salvatici E, Cefalo G, Radaelli G. Randomized Controlled Trial of a Protein Substitute with Prolonged Release on the Protein Status of Children with Phenylketonuria. J Am Coll Nutr 2014; 33:103-10. [DOI: 10.1080/07315724.2013.857281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
Ali H, Weigmann B, Neurath MF, Collnot EM, Windbergs M, Lehr CM. Budesonide loaded nanoparticles with pH-sensitive coating for improved mucosal targeting in mouse models of inflammatory bowel diseases. J Control Release 2014; 183:167-77. [PMID: 24685705 DOI: 10.1016/j.jconrel.2014.03.039] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 03/20/2014] [Accepted: 03/20/2014] [Indexed: 12/27/2022]
Abstract
The purpose of this study was to investigate the therapeutic potential of budesonide loaded nanocarriers for the treatment of inflammatory bowel disease (IBD). First, budesonide was encapsulated in poly(lactic-co-glycolic) acid (PLGA) nanoparticles by an oil in water (O/W) emulsion technique. A second batch of the same nanoparticles was additionally coated with a pH-sensitive methyl-methacrylate-copolymer. The particle sizes of the plain and the coated PLGA were 200±10.1nm and ~240±14.7nm, respectively. As could be shown in vitro, the pH-sensitive coating prevented premature drug release at acidic pH and only releases the drug at neutral to slightly alkaline pH. The efficacy of both coated and plain nanoparticle formulations was assessed in different acute and chronic colitis mouse models, also in comparison to an aqueous solution of the drug. The dose was always the same (0.168mg/kg). It was found that delivery by coated PLGA nanoparticles alleviated the induced colitis significantly better than by plain PLGA particles, which was already more effective than treatment with the same dose of the free drug. These data further corroborate the potential of polymeric nanocarriers for targeted drug delivery to the inflamed intestinal mucosa, and that this concept can still be further improved regarding the oral route of administration by implementing pH-dependent drug release characteristics.
Collapse
Affiliation(s)
- H Ali
- Biopharmaceutics and Pharmaceutical Technology, Campus A 4 1, Saarland University, 66123 Saarbrücken, Germany
| | - B Weigmann
- Medical Clinic 1, University Hospital Erlangen, 91052 Erlangen, Germany
| | - M F Neurath
- Medical Clinic 1, University Hospital Erlangen, 91052 Erlangen, Germany
| | - E M Collnot
- Department of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus A 4 1, 66123 Saarbrücken, Germany
| | - M Windbergs
- Biopharmaceutics and Pharmaceutical Technology, Campus A 4 1, Saarland University, 66123 Saarbrücken, Germany; Department of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus A 4 1, 66123 Saarbrücken, Germany
| | - C-M Lehr
- Biopharmaceutics and Pharmaceutical Technology, Campus A 4 1, Saarland University, 66123 Saarbrücken, Germany; Department of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus A 4 1, 66123 Saarbrücken, Germany.
| |
Collapse
|
39
|
Gungor S, Okyar A, Erturk-Toker S, Baktir G, Ozsoy Y. Ondansetron-loaded biodegradable microspheres as a nasal sustained delivery system: in vitro/in vivo studies. Pharm Dev Technol 2013; 15:258-65. [PMID: 22716466 DOI: 10.3109/10837450903148257] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aim of this study was to prepare ondansetron-loaded biodegradable microspheres as a nasal delivery system. Microspheres were prepared with emulsification/spray-drying technique using poly(d,l-lactide) (PLA) and two different types of poly(d,l-lactide-co-glycolide) (PLGA). The effect of the type of organic solvent (dichloromethane (DCM) or a mixture of DCM and ethyl acetate) on the microsphere characteristics was also examined. The prepared microspheres were evaluated with respect to the morphological properties, particle size, zeta potential, drug loading efficiency, and in vitro drug release. The mean particle size (d(50)) of microsphere formulations was ranged from 11.67-25.54 μm, indicating suitable particle size for nasal administration. All microspheres had low drug loading efficiency in the range of 12.28-21.04%. The results indicated that particle size of microspheres were affected by both type of polymer and organic solvent, however drug loading efficiency of microspheres were affected by only the type of organic solvent used. All microspheres were negatively charged due to the polymers (PLA or PLGA) used. A prolonged in vitro drug release profile was observed for 96 h. Based on in vitro data, the selected microsphere formulation has been applied via nasal route to rats in vivo. Following nasal administration of ondansetron-loaded microsphere to rats, ondansetron plasma levels were within a range of 30-48 ng/mL during 96 h, indicating a sustained drug delivery pattern and relatively a constant plasma drug concentration level. The results suggested that biodegradable microspheres prepared with emulsification/spray-drying technique could be considered to deliver ondansetron via nasal route to obtain a prolonged release.
Collapse
Affiliation(s)
- Sevgi Gungor
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | | | | | | | | |
Collapse
|
40
|
Deol PK, Kaur IP. Improving the therapeutic efficiency of ginger extract for treatment of colon cancer using a suitably designed multiparticulate system. J Drug Target 2013; 21:855-65. [PMID: 23962278 DOI: 10.3109/1061186x.2013.829076] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ginger extract (GE), a potential natural anticancer agent, has compromised therapeutic utilization due to poor bioavailability and physicochemical properties. Present study aimed at assigning GE with a pharmaceutical couture so as to improve its biopharmaceutical performance by monitoring its localized (though prolonged) delivery in the distal parts of gastrointestinal tract for the treatment of colon cancer. Alginate beads entrapping 85.9 ± 1.78% GE were subjected to Eudragit S100 coating. Latter is insoluble at acidic and near neutral (6.8) pH of stomach and upper part of small intestine and it led to 50% retardation (upto 12 h) in release of GE. However, it was solubilised at pH > 7.0 resulting in colon targeted system. Developed beads were free flowing, showed a particle size of 0.9 ± 0.006 mm and super class-II release controlled by swelling and polymer relaxation. Preclinical evaluation using 1,2-dimethylhydrazine-induced colon cancer, in male Wistar rats, in terms of histopathology, oxidative stress, mitochondrial complex activity, β-glucuronidase and ammonia concentration determinations indicated GE loaded beads (50 mg/kg) to be significantly better (p < 0.05) than free GE. Highlight of the study was that GE loaded coated alginate beads were administered after the induction of colon cancer and significant recession of the cancers was observed after 4 weeks of treatment.
Collapse
Affiliation(s)
- Parneet Kaur Deol
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study, Panjab University , Chandigarh , India
| | | |
Collapse
|
41
|
Overcoming therapeutic obstacles in inflammatory bowel diseases: A comprehensive review on novel drug delivery strategies. Eur J Pharm Sci 2013; 49:712-22. [DOI: 10.1016/j.ejps.2013.04.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 04/14/2013] [Accepted: 04/29/2013] [Indexed: 02/07/2023]
|
42
|
Gan L, Gao YP, Zhu CL, Zhang XX, Gan Y. Novel pH-Sensitive Lipid-Polymer Composite Microspheres of 10-Hydroxycamptothecin Exhibiting Colon-Specific Biodistribution and Reduced Systemic Absorption. J Pharm Sci 2013; 102:1752-1759. [DOI: 10.1002/jps.23499] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/17/2013] [Accepted: 02/04/2013] [Indexed: 12/29/2022]
|
43
|
Tayel SA, El-Nabarawi MA, Tadros MI, Abd-Elsalam WH. Positively charged polymeric nanoparticle reservoirs of terbinafine hydrochloride: preclinical implications for controlled drug delivery in the aqueous humor of rabbits. AAPS PharmSciTech 2013; 14:782-93. [PMID: 23615773 DOI: 10.1208/s12249-013-9964-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 03/30/2013] [Indexed: 01/19/2023] Open
Abstract
Frequent instillation of terbinafine hydrochloride (T HCl) eye drops (0.25%, w/v) is necessary to maintain effective aqueous humor concentrations for treatment of fungal keratitis. The current approach aimed at developing potential positively charged controlled-release polymeric nanoparticles (NPs) of T HCl. The estimation of the drug pharmacokinetics in the aqueous humor following ocular instillation of the best-achieved NPs in rabbits was another goal. Eighteen drug-loaded (0.50%, w/v) formulae were fabricated by the nanopreciptation method using Eudragit® RS100 and chitosan (0.25%, 0.5%, and 1%, w/v). Soybean lecithin (1%, w/v) and Pluronic® F68 (0.5%, 1%, and 1.5%, w/v) were incorporated in the alcoholic and aqueous phases, respectively. The NPs were evaluated for particle size, zeta potential, entrapment efficiency percentage (EE%), morphological examination, drug release in simulated tear fluid (pH 7.4), Fourier-transform IR (FT-IR), X-ray diffraction (XRD), physical stability (2 months, 4°C and 25°C), and drug pharmacokinetics in the rabbit aqueous humor relative to an oily drug solution. Spherical, discrete NPs were successfully developed with mean particle size and zeta potential ranging from 73.29 to 320.15 nm and +20.51 to +40.32 mV, respectively. Higher EE% were achieved with Eudragit® RS100-based NPs. The duration of drug release was extended to more than 8 h. FT-IR and XRD revealed compatibility between inactive formulation ingredients and T HCl and permanence of the latter's crystallinity, respectively. The NPs were physically stable, for at least 2 months, when refrigerated. F5-NP suspension significantly (P<0.05) increased drug mean residence time and improved its ocular bioavailability; 1.657-fold.
Collapse
|
44
|
Ramasamy T, Ruttala HB, Shanmugam S, Umadevi SK. Eudragit-coated aceclofenac-loaded pectin microspheres in chronopharmacological treatment of rheumatoid arthritis. Drug Deliv 2013; 20:65-77. [DOI: 10.3109/10717544.2012.762434] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
45
|
Akhgari A, Heshmati Z, Sharif Makhmalzadeh B. Indomethacin electrospun nanofibers for colonic drug delivery: preparation and characterization. Adv Pharm Bull 2013; 3:85-90. [PMID: 24312817 DOI: 10.5681/apb.2013.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 10/13/2012] [Accepted: 10/20/2012] [Indexed: 11/17/2022] Open
Abstract
PURPOSE The objective of this study was to prepare a suitable form of nanofiber for indomethacin using polymers Eudragit RS100 (ERS) and Eudragit S100 (ES) and to evaluate the effect of some variables on the characteristics of resulted electrospunnanofibers. METHODS Electrospinning process was used for preparation of nanofibers. Different solutions of combinations of ERS, ES and indomethacin in various solvents and different ratios were prepared. The spinning solutions were loaded in 10 mL syringes. The feeding rate was fixed by a syringe pump at 2.0 mL/h and a high voltage supply at range 10-18 kV was applied for electrospinning. Electrospunnanofibers were collected and evaluated by scanning electron microscopy, differential scanning calorimetry and FTIR for possible interaction between materials used in nanofibers. The effect of solvent and viscosity on the characteristics of nanofibers also was investigated. RESULTS Fiber formation was successful using a solvent ethanol and mixture of ERS and ES. Increase in viscosity of ethanolic solutions of ERS followed by addition of ES in the solution led to preparation of smooth fibers with larger diameters and less amounts of beads. DSC analysis of fibers certified that indomethacin is evenly distributed in the nanofibers in an amorphous state. FTIR analysis did not indicate significant interaction between drug and polymer. CONCLUSION It was shown that drug-loaded ERS and ES nanofibers could be prepared by exact selection of range of variables such as type of solvent, drug: polymer ratio and solution viscosity and the optimized formulations could be useful for colonic drug delivery.
Collapse
Affiliation(s)
- Abbas Akhgari
- Nanotechnology Research Center and School of Pharmacy, Ahvaz Jundishpaur University of Medical Sciences, Ahvaz,Iran
| | | | | |
Collapse
|
46
|
Vats A, Pathak K. Exploiting microspheres as a therapeutic proficient doer for colon delivery: a review. Expert Opin Drug Deliv 2013; 10:545-57. [DOI: 10.1517/17425247.2013.759937] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
47
|
Makraduli L, Crcarevska MS, Geskovski N, Dodov MG, Goracinova K. Factorial design analysis and optimisation of alginate-Ca-chitosan microspheres. J Microencapsul 2012; 30:81-92. [PMID: 22746546 DOI: 10.3109/02652048.2012.700957] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The purpose of this study was to apply factorial design in order to determine the influence of the formulation factors and their interactions on several responses such as particle size, dissolution behaviour at pH 1.2 and pH 7.4 as well as production yield, during the development of budesonide loaded, chitosan coated Ca-alginate microparticles (MPs) intended for treatment of inflammatory diseases in the gastrointestinal tract. Produced drug-loaded MPs were spherical in shape, had smooth surfaces with low porosity and size range between 5 and 11 µm. Production yield for the formulations from the design varied from 19% to 50%. Optimisation was performed using central composite design setting the targets: particle size at 5.5 µm, maximised yield, suppressed dissolution at pH 1.2 and sustained release at pH 7.4. The optimised batches were identified with a combined desirability value of 0.967.
Collapse
Affiliation(s)
- Liljana Makraduli
- Faculty of Pharmacy, Institute of Pharmaceutical Technology, University Ss Cyril and Methodius, Vodnjanska 17, 1000 Skopje, Macedonia
| | | | | | | | | |
Collapse
|
48
|
Lee WL, Loo SCJ. Revolutionizing drug delivery through biodegradable multilayered particles. J Drug Target 2012; 20:633-47. [PMID: 22738195 DOI: 10.3109/1061186x.2012.702772] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Modern drug discovery technologies are discovering more and more potent therapeutic agents with narrow therapeutic windows, thus necessitating the improvement of current particulate drug delivery systems. Conventional single-layered polymeric particles have limited control over drug release profiles, including burst release, the inability to provide zero-order, pulsatile, time-delayed release and controlled release of multiple drugs. In an attempt to better control drug release kinetics, the development of multilayered microparticles has been introduced. In this review, we give an overview of the fabrication and characterization techniques of multilayered polymeric microparticles. We also focus on the one-step solvent evaporation technique, and the key process parameters in this technique that affect the formation of microparticle configurations. In addition, the benefits and challenges of multilayered microparticulate system for drug delivery were discussed. This review intends to portray how distinctive structural attributes and degradation behaviors of multilayered microparticles can be exploited to fine-tune drug release profiles and kinetics.
Collapse
Affiliation(s)
- Wei Li Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore, Singapore
| | | |
Collapse
|
49
|
Chang C, Wang ZC, Quan CY, Cheng H, Cheng SX, Zhang XZ, Zhuo RX. Fabrication of a novel pH-sensitive glutaraldehyde cross-linked pectin nanogel for drug delivery. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012. [DOI: 10.1163/156856207794761925] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Cong Chang
- a Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430072, P. R. China; Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Zong-Chun Wang
- b Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430072, P. R. China; Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Chang-Yun Quan
- c Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Han Cheng
- d Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Si-Xue Cheng
- e Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xian-Zheng Zhang
- f Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Ren-Xi Zhuo
- g Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
50
|
Lee WL, Widjaja E, Loo SCJ. Designing drug-loaded multi-layered polymeric microparticles. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:81-88. [PMID: 22127404 DOI: 10.1007/s10856-011-4508-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 11/18/2011] [Indexed: 05/31/2023]
Abstract
This work reports how novel multi-layered (from double-layered to quadruple-layered) microparticles comprising immiscible polymers can be fabricated through a simple, economical, reliable and versatile one-step solvent evaporation method. These multi-layered microparticles would be excellent candidates to overcome problems inherent in single-layered microparticles for drug delivery. Particle morphologies, layer configurations, and drug distribution were determined by scanning electron microscopy and Raman mapping. Key process parameters achieving the formation of the multi-layered structure were identified. Encapsulation of multiple drugs and layer localization of these drugs within these multi-layered microparticles have also shown to be possible, which were driven by drug-polymer affinity. This one-step fabrication technique can therefore be used for tailoring particle designs, thus facilitating the development of multiparticulate drug delivery devices.
Collapse
Affiliation(s)
- Wei Li Lee
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | | | | |
Collapse
|