1
|
Tsolakis AV. Enterochromaffin-Like Cells. ENCYCLOPEDIA OF ENDOCRINE DISEASES 2019:565-570. [DOI: 10.1016/b978-0-12-801238-3.66115-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Rossignoli G, Grottesi A, Bisello G, Montioli R, Borri Voltattorni C, Paiardini A, Bertoldi M. Cysteine 180 Is a Redox Sensor Modulating the Activity of Human Pyridoxal 5'-Phosphate Histidine Decarboxylase. Biochemistry 2018; 57:6336-6348. [PMID: 30346159 DOI: 10.1021/acs.biochem.8b00625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Histidine decarboxylase is a pyridoxal 5'-phosphate enzyme catalyzing the conversion of histidine to histamine, a bioactive molecule exerting its role in many modulatory processes. The human enzyme is involved in many physiological functions, such as neurotransmission, gastrointestinal track function, cell growth, and differentiation. Here, we studied the functional properties of the human enzyme and, in particular, the effects exerted at the protein level by two cysteine residues: Cys-180 and Cys-418. Surprisingly, the enzyme exists in an equilibrium between a reduced and an oxidized form whose extent depends on the redox state of Cys-180. Moreover, we determined that (i) the two enzymatic redox species exhibit modest structural changes in the coenzyme microenvironment and (ii) the oxidized form is slightly more active and stable than the reduced one. These data are consistent with the model proposed by bioinformatics analyses and molecular dynamics simulations in which the Cys-180 redox state could be responsible for a structural transition affecting the C-terminal domain reorientation leading to active site alterations. Furthermore, the biochemical properties of the purified C180S and C418S variants reveal that C180S behaves like the reduced form of the wild-type enzyme, while C418S is sensitive to reductants like the wild-type enzyme, thus allowing the identification of Cys-180 as the redox sensitive switch. On the other hand, Cys-418 appears to be a residue involved in aggregation propensity. A possible role for Cys-180 as a regulatory switch in response to different cellular redox conditions could be suggested.
Collapse
Affiliation(s)
- Giada Rossignoli
- Department of Neuroscience, Biomedicine and Movement , University of Verona , Strada Le Grazie, 8 , 37134 Verona , Italy
| | | | - Giovanni Bisello
- Department of Neuroscience, Biomedicine and Movement , University of Verona , Strada Le Grazie, 8 , 37134 Verona , Italy
| | - Riccardo Montioli
- Department of Neuroscience, Biomedicine and Movement , University of Verona , Strada Le Grazie, 8 , 37134 Verona , Italy
| | - Carla Borri Voltattorni
- Department of Neuroscience, Biomedicine and Movement , University of Verona , Strada Le Grazie, 8 , 37134 Verona , Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences "A. Rossi Fanelli" , University "La Sapienza", Rome , P.zale A. Moro 5 , 00185 Roma , Italy
| | - Mariarita Bertoldi
- Department of Neuroscience, Biomedicine and Movement , University of Verona , Strada Le Grazie, 8 , 37134 Verona , Italy
| |
Collapse
|
3
|
Tsolakis AV, Grimelius L, Granerus G, Stridsberg M, Falkmer SE, Janson ET. Histidine decarboxylase and urinary methylimidazoleacetic acid in gastric neuroendocrine cells and tumours. World J Gastroenterol 2015; 21:13240-13249. [PMID: 26715806 PMCID: PMC4679755 DOI: 10.3748/wjg.v21.i47.13240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 08/27/2015] [Accepted: 09/13/2015] [Indexed: 02/06/2023] Open
Abstract
AIM To study histidine decarboxylase (HDC) expression in normal and neoplastic gastric neuroendocrine cells in relationship to the main histamine metabolite. METHODS Control tissues from fundus (n = 3) and corpus (n = 3) mucosa of six patients undergoing operations for gastric adenocarcinoma, biopsy and/or gastric surgical specimens from 64 patients with primary gastric neuroendocrine tumours (GNETs), as well as metastases from 22 of these patients, were investigated using conventional immunohistochemistry and double immunofluorescence with commercial antibodies vs vesicular monoamine transporter 2 (VMAT-2), HDC and ghrelin. The urinary excretion of the main histamine metabolite methylimidazoleacetic acid (U-MeImAA) was determined using high-performance liquid chromatography in 27 of the 64 patients. RESULTS In the gastric mucosa of the control tissues, co-localization studies identified neuroendocrine cells that showed immunoreactivity only to VMAT-2 and others with reactivity only to HDC. A third cell population co-expressed both antigens. There was no co-expression of HDC and ghrelin. Similar results were obtained in the foci of neuroendocrine cell hyperplasia associated with chronic atrophic gastritis type A and also in the tumours. The relative incidence of the three aforementioned markers varied in the tumours that were examined using conventional immunohistochemistry. All of these GNETs revealed both VMAT-2 and HDC immunoreactivity, and their metastases showed an immunohistochemical pattern and frequency similar to that of their primary tumours. In four patients, increased U-MeImAA excretion was detected, but only two of the patients exhibited related endocrine symptoms. CONCLUSION Human enterochromaffin-like cells appear to partially co-express VMAT-2 and HDC. Co-expression of VMAT-2 and HDC might be required for increased histamine production in patients with GNETs.
Collapse
|
4
|
García-Faroldi G, Correa-Fiz F, Abrighach H, Berdasco M, Fraga MF, Esteller M, Urdiales JL, Sánchez-Jiménez F, Fajardo I. Polyamines affect histamine synthesis during early stages of IL-3-induced bone marrow cell differentiation. J Cell Biochem 2010; 108:261-71. [PMID: 19562674 DOI: 10.1002/jcb.22246] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mast cells synthesize and store histamine, a key immunomodulatory mediator. Polyamines are essential for every living cell. Previously, we detected an antagonistic relationship between the metabolisms of these amines in established mast cell and basophilic cell lines. Here, we used the IL-3-driven mouse bone marrow-derived mast cell (BMMC) culture system to further investigate this antagonism in a mast cell model of deeper physiological significance. Polyamines and histamine levels followed opposite profiles along the bone marrow cell cultures leading to BMMCs. alpha-Difluoromethylornithine (DFMO)-induced polyamine depletion resulted in an upregulation of histidine decarboxylase (HDC, the histamine-synthesizing enzyme) expression and activity, accompanied by increased histamine levels, specifically during early stages of these cell cultures, where an active histamine synthesis process occurs. In contrast, DFMO did not induce any effect in either HDC activity or histamine levels of differentiated BMMCs or C57.1 mast cells, that exhibit a nearly inactive histamine synthesis rate. Sequence-specific DNA methylation analysis revealed that the DFMO-induced HDC mRNA upregulation observed in early bone marrow cell cultures is not attributable to a demethylation of the gene promoter caused by the pharmacological polyamine depletion. Taken together, the results support an inverse relationship between histamine and polyamine metabolisms during the bone marrow cell cultures leading to BMMCs and, moreover, suggest that the regulation of the histamine synthesis occurring during the early stages of these cultures depends on the concentrations of polyamines.
Collapse
Affiliation(s)
- Gianni García-Faroldi
- Faculty of Sciences, Department of Molecular Biology, University of Málaga, CIBER de Enfermedades Raras (CIBER-ER), Campus de Teatinos s/n, 29071 Málaga, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Zhao CM, Martinez V, Piqueras L, Wang L, Taché Y, Chen D. Control of gastric acid secretion in somatostatin receptor 2 deficient mice: shift from endocrine/paracrine to neurocrine pathways. Endocrinology 2008; 149:498-505. [PMID: 17974627 PMCID: PMC2219299 DOI: 10.1210/en.2007-0238] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The gastrin-enterochromaffin-like (ECL) cell-parietal cell axis is known to play an important role in the regulation of gastric acid secretion. Somatostatin, acting on somatostatin receptor type 2 (SSTR(2)), interferes with this axis by suppressing the activity of the gastrin cells, ECL cells, and parietal cells. Surprisingly, however, freely fed SSTR(2) knockout mice seem to display normal circulating gastrin concentration and unchanged acid output. In the present study, we compared the control of acid secretion in these mutant mice with that in wild-type mice. In SSTR(2) knockout mice, the number of gastrin cells was unchanged; whereas the numbers of somatostatin cells were reduced in the antrum (-55%) and increased in the oxyntic mucosa (35%). The ECL cells displayed a reduced expression of histidine decarboxylase and vesicle monoamine transport type 2 (determined by immunohistochemistry), and an impaired transformation of the granules to secretory vesicles (determined by electron microscopic analysis), suggesting low activity of the ECL cells. These changes were accompanied by an increased expression of galanin receptor type 1 in the oxyntic mucosa. The parietal cells were found to respond to pentagastrin or to vagal stimulation (evoked by pylorus ligation) with increased acid production. In conclusion, the inhibitory galanin-galanin receptor type 1 pathway is up-regulated in the ECL cells, and the direct stimulatory action of gastrin and vagal excitation is enhanced on the parietal cells in SSTR(2) knockout mice. We suggest that there is a remodeling of the neuroendocrine mechanisms that regulate acid secretion in these mutant mice.
Collapse
Affiliation(s)
- Chun-Mei Zhao
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NO-7006, Trondheim, Norway.
| | | | | | | | | | | |
Collapse
|
6
|
Tanaka-Shintani M, Watanabe M. Immunohistochemical study of enterochromaffin-like cell in human gastric mucosa. Pathol Int 2007; 57:572-83. [PMID: 17685928 DOI: 10.1111/j.1440-1827.2007.02141.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Enterochromaffin-like (ECL) cell has been identified as the histamine-containing argyrophil cell in rat gastric mucosa and vigorously studied. However, there are few reports of the distribution of ECL cell in human stomach. The aim of the present study was to determine the precise distribution of ECL cell by immunohistochemical staining of histidine decarboxylase (HDC) and gastrin-cholecystokinin B receptor (CCK-BR) in human stomach, and the correlation between their distribution and that of parietal cells. Thirty specimens of surgically resected stomach were used. Parietal cell, Grimelius-silver-positive cell, gastrin, HDC- and CCK-BR-immunoreactive cell were studied on continuous cell counting in the restricted field along the lamina muscularis from the oral to the anal ends. The percentage of HDC-immunoreactive cells of endocrine cells was smaller (15%) than that of a previous report (35%) in the fundic region. HDC- and CCK-BR-immunoreactive cells were found not only in the fundic region, but also in the intermediate and pyloric regions. In the pyloric region, HDC- and CCK-BR-immunoreactive cells were found mainly in the mucosa with intestinal metaplasia. Double-positive cells were also found, but only in small numbers. This suggests that ECL cell, or a cell sharing its function, is present in the pyloric region.
Collapse
|
7
|
Ai W, Takaishi S, Wang TC, Fleming JV. Regulation of l‐Histidine Decarboxylase and Its Role in Carcinogenesis. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2006; 81:231-70. [PMID: 16891173 DOI: 10.1016/s0079-6603(06)81006-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Wandong Ai
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, Irving Cancer Research Center, New York, New York 10032, USA
| | | | | | | |
Collapse
|
8
|
Torbergsen K, Wiksén H, Johansen K, Rahimipoor S, Falkmer UG, Zhao CM. Immunoreactivity of gastric ECL and A-like cells in fasted and fed rats and mice. Biotech Histochem 2005; 80:21-30. [PMID: 15804823 DOI: 10.1080/10520290500051229] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The oxyntic mucosa of rat and mouse stomach harbors histamine-producing ECL cells and ghrelin-producing A-like cells. The ECL cells are known to be active when the circulating gastrin levels are elevated in response to food intake. The A-like cells are the main source of circulating ghrelin. In response to starvation, the circulating ghrelin is elevated as a hunger signal. The aim of the present work was to study the correlation between the immunoreactivities and cellular activities of the ECL cells and A-like cells. Rats were either fed or fasted for 48 h and mice for 24 h. Immunohistochemical examination with antiserum against chromogranin A-derived fragment pancreastatin revealed both the ECL cells and the A-like cells without a difference between fasted and fed animals. Histamine was limited to the ECL cells with no significant difference between fasted and fed animals. Histidine decarboxylase (HDC) immunoreactivity occurred predominately in the ECL cells of the fed, but not fasted, animals in which the HDC enzymatic activity in the oxyntic mucosa was higher than in fasted animals. Ghrelin immunoreactivity was increased in terms of intensity, but not cell density in fasted animals. Thus, the immunoreactivities of ECL cells and A-like cells might be affected by starvation.
Collapse
Affiliation(s)
- K Torbergsen
- Department of Medical Technology, Faculty of Food Science and Medical Technology, Sør-Trøndelag University College, Trondheim, Norway
| | | | | | | | | | | |
Collapse
|
9
|
Moya-Garcia AA, Medina MA, Sánchez-Jiménez F. Mammalian histidine decarboxylase: from structure to function. Bioessays 2005; 27:57-63. [PMID: 15612036 DOI: 10.1002/bies.20174] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Histamine is a multifunctional biogenic amine with relevant roles in intercellular communication, inflammatory processes and highly prevalent pathologies. Histamine biosynthesis depends on a single decarboxylation step, carried out by a PLP-dependent histidine decarboxylase activity (EC 4.1.1.22), an enzyme that still remains to be fully characterized. Nevertheless, during the last few years, important advances have been made in this field, including the generation and validation of the first three-dimensional model of the enzyme, which allows us to revisit previous results and conclusions. This essay provides a comprehensive review of the current knowledge of the structural and functional characteristics of mammalian histidine decarboxylase.
Collapse
Affiliation(s)
- Aurelio A Moya-Garcia
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain
| | | | | |
Collapse
|
10
|
Torrent A, Moreno-Delgado D, Gómez-Ramírez J, Rodríguez-Agudo D, Rodríguez-Caso C, Sánchez-Jiménez F, Blanco I, Ortiz J. H3 autoreceptors modulate histamine synthesis through calcium/calmodulin- and cAMP-dependent protein kinase pathways. Mol Pharmacol 2005; 67:195-203. [PMID: 15465923 DOI: 10.1124/mol.104.005652] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
H(3) autoreceptors provide feedback control of neurotransmitter synthesis in histaminergic neurons, but the transduction pathways involved are poorly understood. In rat brain cortical slices, histamine synthesis can be stimulated by depolarization and inhibited by H(3) agonists. We show that histamine synthesis stimulation by depolarization with 30 mM K(+) requires extracellular calcium entry, mostly through N-type channels, and subsequent activation of calcium/calmodulin-dependent protein kinase type II. In vitro, this kinase phosphorylated and activated histidine decarboxylase, the histamine-synthesizing enzyme. Inhibition of depolarization-stimulated histamine synthesis by the histamine H(3) receptor agonist imetit was impaired by preincubation with pertussis toxin and by the presence of a myristoylated peptide (myristoyl-N-QEHAQEPERQYMHIGTMVE-FAYALVGK) blocking the actions of G-protein betagamma subunits. The stimulation of another G(i/o)-coupled receptor, adenosine A(1), also decreased depolarization-stimulated histamine synthesis. In contrast, protein kinase A activation, which is also repressed by H(3) receptors, elicited a depolarization- and calcium/calmodulin-independent stimulation of histamine synthesis. Protein kinase A was able also to phosphorylate and activate histidine decarboxylase in vitro. These results show how depolarization activates histamine synthesis in nerve endings and demonstrate that both pathways modulating neurotransmitter synthesis are controlled by H(3) autoreceptors.
Collapse
Affiliation(s)
- Anna Torrent
- Universitat Autonoma de Barcelona, Dept. Biochemistry and Molecular Biology, School of Medicine, Neuroscience Institute, Room M2-120, E-08193 Bellaterra, Spain
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Fleming J, Fajardo I, Langlois M, SáNCHEZ-JIMéNEZ F, Wang T. The C-terminus of rat L-histidine decarboxylase specifically inhibits enzymic activity and disrupts pyridoxal phosphate-dependent interactions with L-histidine substrate analogues. Biochem J 2004; 381:769-78. [PMID: 15089748 PMCID: PMC1133887 DOI: 10.1042/bj20031553] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Revised: 04/06/2004] [Accepted: 04/19/2004] [Indexed: 11/17/2022]
Abstract
Full-length rat HDC (L-histidine decarboxylase) translated in reticulocyte cell lysate reactions is inactive, whereas C-terminally truncated isoforms are capable of histamine biosynthesis. C-terminal processing of the approximately 74 kDa full-length protein occurs naturally in vivo, with the production of multiple truncated isoforms. The minimal C-terminal truncation required for the acquisition of catalytic competence has yet to be defined, however, and it remains unclear as to why truncation is needed. Here we show that approximately 74 kDa HDC monomers can form dimers, which is the conformation in which the enzyme is thought to be catalytically active. Nevertheless, the resulting dimer is unable to establish pyridoxal phosphate-dependent interactions with an L-histidine substrate analogue. Protein sequences localized to between amino acids 617 and 633 specifically mediate this inhibition. Removing this region or replacing the entire C-terminus with non-HDC protein sequences permitted interactions with the substrate analogue to be re-established. This corresponded exactly with the acquisition of catalytic competence, and the ability to decarboxylate natural L-histidine substrate. These studies suggested that the approximately 74 kDa full-length isoform is deficient in substrate binding, and demonstrated that C-terminally truncated isoforms with molecular masses between approximately 70 kDa and approximately 58 kDa have gradually increasing specific activities. The physiological relevance of our results is discussed in the context of differential expression of HDC isoforms in vivo.
Collapse
Affiliation(s)
- John V. Fleming
- *University of Massachusetts Medical School, Worcester, MA 01605, U.S.A
- †Institute of Molecular Medicine, University of Lisbon, Lisboa 1649-028, Portugal
- Correspondence may be sent to either author [email (J.V.F.) or (T.C.W.)]
| | - Ignacio Fajardo
- ‡Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Málaga 29071, Spain
| | | | - Francisca SáNCHEZ-JIMéNEZ
- ‡Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Málaga 29071, Spain
| | - Timothy C. Wang
- *University of Massachusetts Medical School, Worcester, MA 01605, U.S.A
- Correspondence may be sent to either author [email (J.V.F.) or (T.C.W.)]
| |
Collapse
|
12
|
Fleming JV, Sánchez-Jiménez F, Moya-García AA, Langlois MR, Wang TC. Mapping of catalytically important residues in the rat L-histidine decarboxylase enzyme using bioinformatic and site-directed mutagenesis approaches. Biochem J 2004; 379:253-61. [PMID: 14961766 PMCID: PMC1224094 DOI: 10.1042/bj20031525] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Revised: 01/09/2004] [Accepted: 01/15/2004] [Indexed: 11/17/2022]
Abstract
HDC (L-histidine decarboxylase), the enzyme responsible for the catalytic production of histamine from L-histidine, belongs to an evolutionarily conserved family of vitamin B6-dependent enzymes known as the group II decarboxylases. Yet despite the obvious importance of histamine, mammalian HDC enzymes remain poorly characterized at both the biochemical and structural levels. By comparison with the recently described crystal structure of the homologous enzyme L-DOPA decarboxylase, we have been able to identify a number of conserved domains and motifs that are important also for HDC catalysis. This includes residues that were proposed to mediate events within the active site, and HDC proteins carrying mutations in these residues were inactive when expressed in reticulocyte cell lysates reactions. Our studies also suggest that a significant change in quartenary structure occurs during catalysis. This involves a protease sensitive loop, and incubating recombinant HDC with an L-histidine substrate analogue altered enzyme structure so that the loop was no longer exposed for tryptic proteolysis. In total, 27 mutant proteins were used to test the proposed importance of 34 different amino acid residues. This is the most extensive mutagenesis study yet to identify catalytically important residues in a mammalian HDC protein sequence and it provides a number of novel insights into the mechanism of histamine biosynthesis.
Collapse
Affiliation(s)
- John V Fleming
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 05063, USA.
| | | | | | | | | |
Collapse
|
13
|
Zhao CM, Chen D, Dornonville de la Cour C, Lindqvist A, Persson L, Håkanson R. Histamine and histidine decarboxylase are hallmark features of ECL cells but not G cells in rat stomach. ACTA ACUST UNITED AC 2004; 118:61-6. [PMID: 14759558 DOI: 10.1016/j.regpep.2003.10.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2003] [Revised: 10/09/2003] [Accepted: 10/15/2003] [Indexed: 10/26/2022]
Abstract
The oxyntic mucosa of the rat stomach is rich in ECL cells which produce and secrete histamine in response to gastrin. Histamine and the histamine-forming enzyme histidine decarboxylase (HDC) have been claimed to occur also in the gastrin-secreting G cells in the antrum. In the present study, we used a panel of five HDC antisera and one histamine antiserum to investigate whether histamine and HDC are exclusive to the ECL cells. By immunocytochemistry, we could show that the ECL cells were stained with the histamine antiserum and all five HDC antisera. The G cells, however, were not stained with the histamine antiserum, but with three of the five HDC antisera. Thus, histamine and HDC coexist in the ECL cells (oxyntic mucosa) but not in G cells (antral mucosa). Western blot analysis revealed a typical pattern of HDC-immunoreactive bands (74, 63 and 54 kDa) in oxyntic mucosa extracts with all five antisera. In antral extracts, immunoreactive bands were detected with three of the five HDC antisera (same as above); the pattern of immunoreactivity differed from that in oxyntic mucosa. Food intake of fasted rats or treatment with the proton pump inhibitor omeprazole raised the HDC activity and the HDC protein content of the oxyntic mucosa but not of the antral mucosa; the HDC activity in the antrum was barely detectable. We suggest that the HDC-like immunoreactivity in the antrum represents a cross-reaction with non-HDC proteins and conclude that histamine and HDC are hallmark features of ECL cells but not of G cells.
Collapse
Affiliation(s)
- C-M Zhao
- Department of Medical Technology, Faculty of Technology, Sør-Trøndelag University College, Trondheim, Norway.
| | | | | | | | | | | |
Collapse
|
14
|
Chen D, Zhao CM, Håkanson R, Samuelson LC, Rehfeld JF, Friis-Hansen L. Altered control of gastric acid secretion in gastrin-cholecystokinin double mutant mice. Gastroenterology 2004; 126:476-87. [PMID: 14762785 DOI: 10.1053/j.gastro.2003.11.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Three pathways control gastric acid secretion: the gastrin-enterochromaffin-like (ECL) cell axis, the vagus-parietal cell axis, and the cholecystokinin (CCK)-D cell axis. Mice lacking gastrin or both gastrin and CCK were examined to determine the role of the hormones. METHODS Acid was measured after pylorus ligation, and biopsies from gastrin knockout (KO), gastrin-CCK double-KO, and wild-type (WT) mice were collected for biochemical, immunocytochemical, and electron-microscopic examination. RESULTS The ECL cells were inactive in both groups of mutant mice but the cell number was unaffected. Both parietal cell number and level of H(+)/K(+)-ATPase messenger RNA (mRNA) were reduced in the mutant strains, but gastrin-CCK double-KO mice displayed more active parietal cells and larger acid output than the gastrin KO mice. The acid response to histamine in double-KO mice was unchanged whereas that to gastrin was diminished, but it could be restored by infusion of gastrin. Oxyntic D-cell density was the same in both mutant strains, but the D cells were more active in the gastrin KO than in the double-KO mice. CCK infusion in gastrin-CCK double-KO mice raised the somatostatin mRNA level and inhibited acid secretion to the level seen in gastrin KO mice. Vagotomy and atropine abolished acid secretion in all 3 groups of mice. CONCLUSIONS Lack of gastrin impairs the gastrin-ECL axis, whereas lack of gastrin and CCK impairs both hormonal pathways. In the gastrin-CCK double-KO mice, acid secretion is only controlled by cholinergic vagal stimulation, which normalizes the acid output.
Collapse
Affiliation(s)
- Duan Chen
- Department of Cancer Research & Molecular Medicine, Norweigian University of Science and Technology, Trondheim, Norway
| | | | | | | | | | | |
Collapse
|
15
|
Rodríguez-Caso C, Rodríguez-Agudo D, Moya-García AA, Fajardo I, Medina MA, Subramaniam V, Sánchez-Jiménez F. Local changes in the catalytic site of mammalian histidine decarboxylase can affect its global conformation and stability. ACTA ACUST UNITED AC 2003; 270:4376-87. [PMID: 14622303 DOI: 10.1046/j.1432-1033.2003.03834.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mature, active mammalian histidine decarboxylase is a dimeric enzyme of carboxy-truncated monomers (approximately 53 kDa). By using a biocomputational approach, we have generated a three-dimensional model of a recombinant 1/512 fragment of the rat enzyme, which shows kinetic constants similar to those of the mature enzyme purified from rodent tissues. This model, together with previous spectroscopic data, allowed us to postulate that the occupation of the catalytic center by the natural substrate, or by substrate-analogs, would induce remarkable changes in the conformation of the intact holoenzyme. To investigate the proposed conformational changes during catalysis, we have carried out electrophoretic, chromatographic and spectroscopic analyses of purified recombinant rat 1/512 histidine decarboxylase in the presence of the natural substrate or substrate-analogs. Our results suggest that local changes in the catalytic site indeed affect the global conformation and stability of the dimeric protein. These results provide insights for new alternatives to inhibit histamine production efficiently in vivo.
Collapse
Affiliation(s)
- Carlos Rodríguez-Caso
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, Málaga, Spain
| | | | | | | | | | | | | |
Collapse
|
16
|
Medina MA, Urdiales JL, Rodríguez-Caso C, Ramírez FJ, Sánchez-Jiménez F. Biogenic amines and polyamines: similar biochemistry for different physiological missions and biomedical applications. Crit Rev Biochem Mol Biol 2003; 38:23-59. [PMID: 12641342 DOI: 10.1080/713609209] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Biogenic amines are organic polycations derived from aromatic or cationic amino acids. All of them have one or more positive charges and a hydrophobic skeleton. Nature has evolved these molecules to play different physiological roles in mammals, but maintains similar patterns for their metabolic and intracellular handling. As deduced from this review, many questions still remain to be solved around their biochemistry and molecular biology, blocking our aims to control the relevant pathologies in which they are involved (cancer and immunological, neurological, and gastrointestinal diseases). Advances in this knowledge are dispersed among groups working on different biomedical areas. In these pages, we put together the most relevant information to remark how fruitful it can be to learn from Nature and to take advantage of the biochemical similarities (key protein structures and their regulation data on metabolic interplays and binding properties) to generate new hypothesis and develop different biomedical strategies based on biochemistry and molecular biology of these compounds.
Collapse
|
17
|
Abstract
Enterochromaffin-like (ECL) cells are neuroendocrine cells in the gastric mucosa that control acid secretion by releasing histamine as a paracrine stimulant. The antral hormone gastrin and the neural messenger pituitary adenylyl cyclase-activating peptide (PACAP) potently stimulate histamine synthesis, storage, and secretion by ECL cells. Histamine is stored in secretory vesicles via V-type ATPases and vesicular monoamine transporters of subtype 2 (VMAT-2). Plasmalemmal calcium entry occurs via L-type calcium channels upon stimulation with secretagogues. K(+) and Cl(-) channels maintain the membrane potential. Calcium-triggered exocytosis of histamine is mediated by interacting SNARE proteins, especially by synaptobrevin and SNAP-25. Dynamins and amphiphysins appear to play a key role in endocytosis. ECL cells are under transcriptional control of various hormones. Gastrin stimulates transcriptional activity of the histidine decarboxylase (HDC), VMAT-2, and chromogranin A promoter by activation of Sp1 elements and CREB. During chronic Helicobacter pylori infection, pro-inflammatory cytokines are released that can also affect ECL cells, thus impairing their secretory function and viability, which can predispose to hypochlorhydria and gastric carcinogenesis.
Collapse
Affiliation(s)
- Christian Prinz
- II. Medizinische Klinik, Technische Universität München, D-81675 München, Germany.
| | | | | |
Collapse
|
18
|
Zhao CM, Chen D, Yamada H, Dornonville de la Cour C, Lindström E, Persson L, Håkanson R. Rat stomach ECL cells: mode of activation of histidine decarboxylase. REGULATORY PEPTIDES 2003; 114:21-7. [PMID: 12763636 DOI: 10.1016/s0167-0115(03)00063-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Histidine decarboxylase (HDC) occurs in ECL cells in the oxyntic mucosa of rat stomach. It is activated by gastrin. Refeeding of fasted rats or treatment with the proton pump inhibitor omeprazole promptly raised the serum gastrin concentration and consequently the HDC activity and the HDC protein content of the oxyntic mucosa. The food- and omeprazole-induced increase in HDC mRNA expression in the oxyntic mucosa was modest by comparison. Blockade of translation (cycloheximide) but not transcription (actinomycin D) prevented the postprandial rise in HDC activity. The half-life of HDC activity (after blockade of translation) was 94 min in omeprazole-treated rats and 55 min in fasted controls. The rate of enzyme synthesis was estimated to be 15 times higher in omeprazole-treated rats than in fasted controls. Inhibition of histamine uptake into ECL-cell granules by reserpine, a blocker of the vesicular monoamine transporter type-2, lowered the HDC activity and prevented the gastrin-induced HDC activation. We suggest that HDC activation reflects enhanced transcription, translation and/or posttranslational enzyme activation as well as stabilization, and that a high cytosolic histamine concentration suppresses HDC activation.
Collapse
Affiliation(s)
- C-M Zhao
- Department of Medical Technology, Faculty of Technology, Sør-Trøndelag University College, Trondheim, Norway.
| | | | | | | | | | | | | |
Collapse
|
19
|
Fajardo I, Urdiales JL, Medina MA, Sanchez-Jimenez F. Effects of phorbol ester and dexamethasone treatment on histidine decarboxylase and ornithine decarboxylase in basophilic cells. Biochem Pharmacol 2001; 61:1101-6. [PMID: 11301043 DOI: 10.1016/s0006-2952(01)00567-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Both histamine and polyamines are important for maintaining basophilic cell function and viability. The synthesis of these biogenic amines is regulated by histidine decarboxylase and ornithine decarboxylase, respectively. In other mammalian tissues, an interplay between histamine and polyamine metabolisms has been suspected. In this report, the interplay between histamine and ornithine-derived polyamines was studied in a non-transformed mouse mast cell line (C57.1) treated with phorbol ester and dexamethasone, a treatment previously used to increase histidine decarboxylase expression in mastocytoma and basophilic leukemia. Treatment with phorbol ester and dexamethasone increased histidine decarboxylase expression and intracellular histamine levels in C57.1 mast cells to a greater extent than those found for other transformed basophilic models. The treatment also induced a reduction in ornithine decarboxylase expression, intracellular polyamine contents, and cell proliferation. These results indicate that the treatment induces a co-ordinate response of polyamine metabolism and proliferation in mast cells and other immune-related cells. The decrease in the proliferative capacity of mast cells caused by phorbol ester and dexamethasone was simultaneous to an increase in histamine production. Our results, together with those reported by other groups working with polyamine-treated mast cells, indicate an antagonism between histamine and polyamines in basophilic cells.
Collapse
Affiliation(s)
- I Fajardo
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Malaga, Campus of Teatinos, 29071 Malaga, Spain
| | | | | | | |
Collapse
|
20
|
Lindström E, Chen D, Norlén P, Andersson K, Håkanson R. Control of gastric acid secretion:the gastrin-ECL cell-parietal cell axis. Comp Biochem Physiol A Mol Integr Physiol 2001; 128:505-14. [PMID: 11246041 DOI: 10.1016/s1095-6433(00)00331-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Gastric acid secretion is under nervous and hormonal control. Gastrin, the major circulating stimulus of acid secretion, probably does not stimulate the parietal cells directly but acts to mobilize histamine from the ECL cells in the oxyntic mucosa. Histamine stimulates the parietal cells to secrete HCl. The gastrin-ECL cell pathway has been investigated extensively in situ (gastric submucosal microdialysis), in vitro (isolated ECL cells) and in vivo (intact animals). Gastrin acts on CCK2 receptors to control the synthesis of ECL-cell histamine, accelerating the expression of the histamine-forming enzyme histidine decarboxylase (HDC) at both the transcription and the translation/posttranslation levels. Depletion of histamine by alpha-fluoromethylhistidine (an irreversible inhibitor of HDC) prevents gastrin-induced but not histamine-induced gastric acid secretion. Acute CCK2 receptor blockade inhibits gastrin-evoked but not histamine-induced acid secretion. Studies both in vivo/in situ and in vitro have suggested that while acetylcholine seems capable of activating parietal cells, it does not affect histamine secretion from ECL cells. Unlike acetylcholine, the neuropeptides pituitary adenylate cyclase-activating peptide and vasoactive intestinal peptide mobilize ECL-cell histamine. Whether vagally stimulated acid secretion reflects an effect of the enteric nervous system on the ECL cells (neuropeptides) and/or a direct one on the parietal cells needs to be further investigated.
Collapse
Affiliation(s)
- E Lindström
- Department of Pharmacology, Institute of Physiological Sciences, University of Lund, Lund, Sweden
| | | | | | | | | |
Collapse
|
21
|
Abstract
This article summarizes data published during the past year that improve our understanding of the mechanisms by which various neurotransmitters, paracrine agents, and hormones regulate gastric acid secretion and are themselves regulated. The main stimulants of acid secretion are histamine, gastrin, and acetylcholine. The main inhibitor is somatostatin, which exerts a tonic restraint on parietal, enterochromaffin-like (ECL), and gastrin cells. Histamine, released from ECL cells, stimulates the parietal cell directly via H(2) receptors and indirectly via H(3) receptors coupled to inhibition of somatostatin secretion. Gastrin, acting via gastrin/cholecystokinin-B (CCK-B), now termed CCK(2), receptors on ECL cells activates histidine decarboxylase, releases histamine, and induces ECL hypertrophy and hyperplasia. The latter might be responsible for the rebound hyperacidity observed after withdrawal of long-term antisecretory therapy. The neurotransmitter pituitary adenylate cyclase-activating polypeptide stimulates histamine secretion from isolated ECL cells, but its physiologic role, if any, is not known. Acetylcholine, released from gastric postganglionic intramural neurons, stimulates the parietal cell directly via muscarinic M(3) receptors and indirectly by inhibiting somatostatin secretion. Although infection with H. pylori is associated with increased basal and stimulated acid outputs in patients with duodenal ulcer, most people infected with the organism are asymptomatic and have pangastritis with decreased acid output. In the latter, eradication of the bacterium leads to an increase in gastric acidity and is associated with a two-to threefold increase in gastroesophageal reflux.
Collapse
Affiliation(s)
- M L Schubert
- Department of Medicine, Division of Gastroenterology, Medical College of Virginia and McGuire VAMC, Richmond, Virginia 23249, USA.
| |
Collapse
|
22
|
Fleming JV, Wang TC. Amino- and carboxy-terminal PEST domains mediate gastrin stabilization of rat L-histidine decarboxylase isoforms. Mol Cell Biol 2000; 20:4932-47. [PMID: 10848618 PMCID: PMC85944 DOI: 10.1128/mcb.20.13.4932-4947.2000] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Control of enzymatic function by peptide hormones can occur at a number of different levels and can involve diverse pathways that regulate cleavage, intracellular trafficking, and protein degradation. Gastrin is a peptide hormone that binds to the cholecystokinin B-gastrin receptor and regulates the activity of L-histidine decarboxylase (HDC), the enzyme that produces histamine. Here we show that gastrin can increase the steady-state levels of at least six HDC isoforms without affecting HDC mRNA levels. Pulse-chase experiments indicated that HDC isoforms are rapidly degraded and that gastrin-dependent increases are due to enhanced isoform stability. Deletion analysis identified two PEST domains (PEST1 and PEST2) and an intracellular targeting domain (ER2) which regulate HDC protein expression levels. Experiments with PEST domain fusion proteins demonstrated that PEST1 and PEST2 are strong and portable degradation-promoting elements which are positively regulated by both gastrin stimulation and proteasome inhibition. A chimeric protein containing the PEST domain of ornithine decarboxylase was similarly affected, indicating that gastrin can regulate the stability of other PEST domain-containing proteins and does so independently of antizyme/antizyme inhibitor regulation. At the same time, endoplasmic reticulum localization of a fluorescent chimera containing the ER2 domain of HDC was unaltered by gastrin stimulation. We conclude that gastrin stabilization of HDC isoforms is dependent upon two transferable and sequentially unrelated PEST domains that regulate degradation. These experiments revealed a novel regulatory mechanism by which a peptide hormone such as gastrin can disrupt the degradation function of multiple PEST-domain-containing proteins.
Collapse
Affiliation(s)
- J V Fleming
- Department of Medicine, Harvard Medical School, and Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | | |
Collapse
|