1
|
Singh S, Murti Y, Semwal B. Antiviral Activity of Natural Herbs and their Isolated BioactiveCompounds: A Review. Comb Chem High Throughput Screen 2024; 27:2013-2042. [PMID: 37957899 DOI: 10.2174/0113862073267048231027070537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/23/2023] [Accepted: 08/10/2023] [Indexed: 11/15/2023]
Abstract
Viruses are the cause of many human pathogenesis-related conditions. A serious hazard to public health has been created because of the increase in worldwide travel, fast urbanization, and infectious epidemics. At the same time, no preventative vaccines or antiviral treatments are currently available. Resources for developing new antiviral medications can be found in enhanced natural products and herbal medicines. These natural substances have aided the research on developing preventive vaccines and antiviral treatments. Based primarily on in vitro and in vivo searches, this review aims to explore the antiviral properties of plant extracts and some isolated plant natural products. Only a few antiviral medications have been given clinical approval, while numerous viruses continue to elude adequate immunization. Therefore, developing novel antiviral medicines is crucial, and natural substances make excellent sources for these new drugs. This review highlights various natural herbal drugs possessing antiviral properties.
Collapse
Affiliation(s)
- Sonia Singh
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P, 281406, India
| | - Yogesh Murti
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P, 281406, India
| | - Bhupesh Semwal
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P, 281406, India
| |
Collapse
|
2
|
Wu CC, Chen MS, Lee TY, Cheng YJ, Tsou HH, Huang TS, Cho DY, Chen JY. Screening and identification of emodin as an EBV DNase inhibitor to prevent its biological functions. Virol J 2023; 20:148. [PMID: 37443068 PMCID: PMC10339607 DOI: 10.1186/s12985-023-02107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND The Epstein-Barr virus (EBV) is a prevalent oncovirus associated with a variety of human illnesses. BGLF5, an EBV DNase with alkaline nuclease (AN) activity, plays important roles in the viral life cycle and progression of human malignancies and has been suggested as a possible diagnostic marker and target for cancer therapy. Methods used conventionally for the detection of AN activity, radioactivity-based nuclease activity assay and DNA digestion detection by gel electrophoresis, are not suitable for screening AN inhibitors; the former approach is unsafe, and the latter is complicated. In the present study, a fluorescence-based nuclease activity assay was used to screen several natural compounds and identify an EBV DNase inhibitor. RESULTS Fluorescence-based nuclease activity assays, in which the DNA substrate is labelled with PicoGreen dye, are cheaper, safer, and easier to perform. Herein, the results of the fluorescence-based nuclease activity assay were consistent with the results of the two conventional methods. In addition, the PicoGreen-labelling method was applied for the biochemical characterisation of viral nucleases. Using this approach, we explored EBV DNase inhibitors. After several rounds of screening, emodin, an anthraquinone derivative, was found to possess significant anti-EBV DNase activity. We verified the efficacy of emodin using the conventional DNA-cleavage assay. Furthermore, using comet assay and micronucleus formation detection, we confirmed that emodin can inhibit DNase-induced DNA damage and genomic instability. Additionally, emodin treatment inhibited EBV production. CONCLUSIONS Using a PicoGreen-mediated nuclease activity assay, we successfully demonstrated that emodin has the potential to inhibit EBV DNase nuclease activity. Emodin also inhibits EBV DNase-related biological functions, suggesting that it is a potential inhibitor of EBV DNase.
Collapse
Affiliation(s)
- Chung-Chun Wu
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, No. 2, Yude Rd., North Dist, Taichung City, 40447, Taiwan.
| | - Mei-Shu Chen
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli County, Taiwan
| | - Ting-Ying Lee
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, No. 2, Yude Rd., North Dist, Taichung City, 40447, Taiwan
| | - Yu-Jhen Cheng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Hsiao-Hui Tsou
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Tze-Sing Huang
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli County, Taiwan
| | - Der-Yang Cho
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, No. 2, Yude Rd., North Dist, Taichung City, 40447, Taiwan
| | - Jen-Yang Chen
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli County, Taiwan.
| |
Collapse
|
3
|
Arita M, Fuchino H. Characterization of Anti-Poliovirus Compounds Isolated from Edible Plants. Viruses 2023; 15:v15040903. [PMID: 37112883 PMCID: PMC10145814 DOI: 10.3390/v15040903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
Poliovirus (PV) is the causative agent of poliomyelitis and is a target of the global eradication programs of the World Health Organization (WHO). After eradication of type 2 and 3 wild-type PVs, vaccine-derived PV remains a substantial threat against the eradication as well as type 1 wild-type PV. Antivirals could serve as an effective means to suppress the outbreak; however, no anti-PV drugs have been approved at present. Here, we screened for effective anti-PV compounds in a library of edible plant extracts (a total of 6032 extracts). We found anti-PV activity in the extracts of seven different plant species. We isolated chrysophanol and vanicoside B (VCB) as the identities of the anti-PV activities of the extracts of Rheum rhaponticum and Fallopia sachalinensis, respectively. VCB targeted the host PI4KB/OSBP pathway for its anti-PV activity (EC50 = 9.2 μM) with an inhibitory effect on in vitro PI4KB activity (IC50 = 5.0 μM). This work offers new insights into the anti-PV activity in edible plants that may serve as potent antivirals for PV infection.
Collapse
Affiliation(s)
- Minetaro Arita
- Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi 208-0011, Tokyo, Japan
| | - Hiroyuki Fuchino
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, 1-2 Hachimandai, Tsukuba 305-0843, Ibaraki, Japan
| |
Collapse
|
4
|
Shokry S, Hegazy A, Abbas AM, Mostafa I, Eissa IH, Metwaly AM, Yahya G, El-Shazly AM, Aboshanab KM, Mostafa A. Phytoestrogen β-Sitosterol Exhibits Potent In Vitro Antiviral Activity against Influenza A Viruses. Vaccines (Basel) 2023; 11:228. [PMID: 36851106 PMCID: PMC9964242 DOI: 10.3390/vaccines11020228] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Influenza is a contagious infection in humans that is caused frequently by low pathogenic seasonal influenza viruses and occasionally by pathogenic avian influenza viruses (AIV) of H5, H7, and H9 subtypes. Recently, the clinical sector in poultry and humans has been confronted with many challenges, including the limited number of antiviral drugs and the rapid evolution of drug-resistant variants. Herein, the anti-influenza activities of various plant-derived phytochemicals were investigated against highly pathogenic avian influenza A/H5N1 virus (HPAIV H5N1) and seasonal low pathogenic human influenza A/H1N1 virus (LPHIV H1N1). Out of the 22 tested phytochemicals, the steroid compounds β-sitosterol and β-sitosterol-O-glucoside have very potent activity against the predefined influenza A viruses (IAV). Both steroids could induce such activity by affecting multiple stages during IAV replication cycles, including viral adsorption and replication with a major and significant impact on the virus directly in a cell-free status "viricidal effect". On a molecular level, several molecular docking studies suggested that β-sitosterol and β-sitosterol-O-glucoside exhibited viricidal effects through blocking active binding sites of the hemagglutinin surface protein, as well as showing inhibitory effects against replication through the binding with influenza neuraminidase activity and blocking the active sites of the M2 proton channel activity. The phytoestrogen β-sitosterol has structural similarity with the active form of the female sex hormone estradiol, and this similarity is likely one of the molecular determinants that enables the phytoestrogen β-sitosterol and its derivative to control IAV infection in vitro. This promising anti-influenza activity of β-sitosterol and its O-glycoside derivative, according to both in vitro and cheminformatics studies, recommend both phytochemicals for further studies going through preclinical and clinical phases as efficient anti-influenza drug candidates.
Collapse
Affiliation(s)
- Sara Shokry
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Akram Hegazy
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Giza District, Giza 12613, Egypt
| | - Ahmad M. Abbas
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, King Salman International University (KSIU), Sinai 46612, Egypt
| | - Islam Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed M. Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Assem M. El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida 44813, Sharkia, Egypt
| | - Khaled M. Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| |
Collapse
|
5
|
Ntemafack A, Singh RV, Ali S, Kuiate JR, Hassan QP. Antiviral potential of anthraquinones from Polygonaceae, Rubiaceae and Asphodelaceae: Potent candidates in the treatment of SARS-COVID-19, A comprehensive review. SOUTH AFRICAN JOURNAL OF BOTANY : OFFICIAL JOURNAL OF THE SOUTH AFRICAN ASSOCIATION OF BOTANISTS = SUID-AFRIKAANSE TYDSKRIF VIR PLANTKUNDE : AMPTELIKE TYDSKRIF VAN DIE SUID-AFRIKAANSE GENOOTSKAP VAN PLANTKUNDIGES 2022; 151:146-155. [PMID: 36193345 PMCID: PMC9519529 DOI: 10.1016/j.sajb.2022.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/03/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Medicinal plants are being used as an alternative source of health management to cure various human ailments. The healing role is attributed to the hidden dynamic groups of various phytoconstituents, most of which have been recorded from plants and their derivatives. Nowadays, medicinal plants have gained more attention due to their pharmacological and industrial potential. Aromatic compounds are one of the dynamic groups of secondary metabolites (SM) naturally present in plants; and anthraquinones of this group are found to be attractive due to their high bioactivity and low toxicity. They have been reported to exhibit anticancer, antimicrobial, immune-suppressive, antioxidant, antipyretic, diuretic and anti-inflammatory activities. Anthraquinones have been also shown to exhibit potent antiviral effects against different species of viruses. Though, it has been reported that a medicinal plant with antiviral activity against one viral infection may be used to combat other types of viral infections. Therefore, in this review, we explored and highlighted the antiviral properties of anthraquinones of Polygonaceae, Rubiaceae and Asphodelaceae families. Anthraquinones from these plant families have been reported for their effects on human respiratory syncytial virus and influenza virus. They are hence presumed to have antiviral potential against SARS-CoV as well. Thus, anthraquinones are potential candidates that need to be screened thoroughly and developed as drugs to combat COVID-19. The information documented in this review could therefore serve as a starting point in developing novel drugs that may help to curb the SARS-COVID-19 pandemic.
Collapse
Affiliation(s)
- Augustin Ntemafack
- Department of Biochemistry, University of Dschang, Dschang, Cameroon
- Department of Biochemistry and Molecular Biology, Indiana University-Purdue University Indianapolis, Indiana, USA
| | - Rahul Vikram Singh
- Department of Dietetic and Nutrition Technology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Sabeena Ali
- Molecular Biology and Plant Biotechnology Division, CSIR - Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, India
| | | | - Qazi Parvaiz Hassan
- Molecular Biology and Plant Biotechnology Division, CSIR - Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, India
| |
Collapse
|
6
|
Chen YC, Su SH, Huang JC, Chao CY, Sung PJ, Chen YF, Ko HH, Kuo YH. Tyrosinase Inhibitors Derived from Chemical Constituents of Dianella ensifolia. PLANTS (BASEL, SWITZERLAND) 2022; 11:2142. [PMID: 36015447 PMCID: PMC9414913 DOI: 10.3390/plants11162142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Dianella ensifolia is a perennial herb with thickened rhizome and is widely distributed in tropical and subtropical regions of Asia, Australia, and the Pacific islands. This plant has the potential to be used as a source of herbal medicine. This study investigated further phytochemistry and tyrosinase inhibitory effect of some constituents isolated from D. ensifolia. Four new flavans, (2S)-4’-hydroxy-6,7-dimethoxyflavan (1), (2S)-3’,4’-dihydroxy-7-methoxy-8-methylflavan (2), (2S)-2’-hydroxy-7-methoxyflavan (3), and (2S,1′S)-4-hydroxy-4-(7-methoxy-8-methylchroman-2-yl)-cyclohex-2-enone (4), together with 67 known compounds, including 10 flavans (5−14), 5 flavanones (15−19), 3 flavone (20−22), 5 chalcones (23−27), 3 chromones (28−30), 15 aromatics (31−45), 7 phenylpropanoids (46−52), one lignan (53), 7 steroids (54−60), one monoterpene (61), one diterpene (62), 4 triterpenes (63−66), a carotenoid (67), 2 alkaloids (68 and 69), and 2 fatty acids (70 and 71) were isolated from D. ensifolia. Their structures were elucidated on the basis of physical and spectroscopic data analyses. Moreover, compounds 1−4, 8, 10−15, 20, 21, and 41 were evaluated for their mushroom tyrosinase inhibitory effect. Compounds 11 and 14 strongly inhibited mushroom tyrosinase activity with IC50 values of 8.6 and 14.5 μM, respectively.
Collapse
Affiliation(s)
- Yu-Chang Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Sheng-Han Su
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Jheng-Cian Huang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Che-Yi Chao
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 413, Taiwan
| | - Ping-Jyun Sung
- National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan
| | - Yih-Fung Chen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Horng-Huey Ko
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, Taichung 404, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 404, Taiwan
- Department of Biotechnology, Asia University, Taichung 413, Taiwan
| |
Collapse
|
7
|
Khan A, Iqtadar S, Mumtaz SU, Heinrich M, Pascual-Figal DA, Livingstone S, Abaidullah S. Oral Co-Supplementation of Curcumin, Quercetin, and Vitamin D3 as an Adjuvant Therapy for Mild to Moderate Symptoms of COVID-19—Results From a Pilot Open-Label, Randomized Controlled Trial. Front Pharmacol 2022; 13:898062. [PMID: 35747751 PMCID: PMC9211374 DOI: 10.3389/fphar.2022.898062] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/27/2022] [Indexed: 12/15/2022] Open
Abstract
Background: Curcumin, quercetin, and vitamin D3 (cholecalciferol) are common natural ingredients of human nutrition and reportedly exhibit promising anti-inflammatory, immunomodulatory, broad-spectrum antiviral, and antioxidant activities. Objective: The present study aimed to investigate the possible therapeutic benefits of a single oral formulation containing supplements curcumin, quercetin, and cholecalciferol (combinedly referred to here as CQC) as an adjuvant therapy for early-stage of symptomatic coronavirus disease 2019 (COVID-19) in a pilot open-label, randomized controlled trial conducted at Mayo Hospital, King Edward Medical University, Lahore, Pakistan. Methods: Reverse transcriptase polymerase chain reaction (RT-PCR) confirmed, mild to moderate symptomatic COVID-19 outpatients were randomized to receive either the standard of care (SOC) (n = 25) (control arm) or a daily oral co-supplementation of 168 mg curcumin, 260 mg quercetin, and 9 µg (360 IU) of cholecalciferol, as two oral soft capsules b.i.d. as an add-on to the SOC (n = 25) (CQC arm) for 14 days. The SOC includes paracetamol with or without antibiotic (azithromycin). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RT-PCR test, acute symptoms, and biochemistry including C-reactive protein (CRP), D-dimer, lactate dehydrogenase, ferritin, and complete blood count were evaluated at baseline and follow-up day seven. Results: Patients who received the CQC adjuvant therapy showed expedited negativization of the SARS-CoV-2 RT-PCR test, i.e., 15 (60.0%) vs. five (20.0%) of the control arm, p = 0.009. COVID-19- associated acute symptoms were rapidly resolved in the CQC arm, i.e., 15 (60.0%) vs. 10 (40.0%) of the control arm, p = 0.154. Patients in the CQC arm experienced a greater fall in serum CRP levels, i.e., from (median (IQR) 34.0 (21.0, 45.0) to 11.0 (5.0, 16.0) mg/dl as compared to the control arm, i.e., from 36.0 (28.0, 47.0) to 22.0 (15.0, 25.0) mg/dl, p = 0.006. The adjuvant therapy of co-supplementation of CQC was safe and well-tolerated by all 25 patients and no treatment-emergent effects, complications, side effects, or serious adverse events were reported. Conclusion: The co-supplementation of CQC may possibly have a therapeutic role in the early stage of COVID-19 infection including speedy negativization of the SARS-CoV-2 RT-PCR test, resolution of acute symptoms, and modulation of the hyperinflammatory response. In combination with routine care, the adjuvant co-supplementation of CQC may possibly help in the speedy recovery from early-stage mild to moderate symptoms of COVID-19. Further research is warranted. Clinical Trial Registration:Clinicaltrials.gov, identifier NCT05130671
Collapse
Affiliation(s)
- Amjad Khan
- INEOS Oxford Institute for AMR Research, University of Oxford, Oxford, United Kingdom
- Department of Biochemistry, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
- *Correspondence: Amjad Khan,
| | - Somia Iqtadar
- Department of Medicine, King Edward Medical University, Lahore, Pakistan
| | - Sami Ullah Mumtaz
- Department of Medicine, King Edward Medical University, Lahore, Pakistan
| | - Michael Heinrich
- UCL School of Pharmacy, University of London, London, United Kingdom
| | - Domingo A. Pascual-Figal
- Department of Cardiology, University of Murcia Hospital Universitario Virgen de la Arrixaca Murcia, Murcia, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Sajid Abaidullah
- Department of Medicine, King Edward Medical University, Lahore, Pakistan
| |
Collapse
|
8
|
Khan M, Rauf W, Habib FE, Rahman M, Iqbal S, Shehzad A, Iqbal M. Hesperidin identified from Citrus extracts potently inhibits HCV genotype 3a NS3 protease. BMC Complement Med Ther 2022; 22:98. [PMID: 35366855 PMCID: PMC8976278 DOI: 10.1186/s12906-022-03578-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/25/2022] [Indexed: 11/29/2022] Open
Abstract
Background Hepatitis C virus infection is the main cause of liver ailments across the globe. Several HCV genotypes have been identified in different parts of the world. Effective drugs for combating HCV infections are available but not affordable, particularly to infected individuals from resource-limited countries. Hence, cost-effective drugs need to be developed against important HCV drug targets. As Citrus fruits naturally contain bioactive compounds with antiviral activities, the current study was designed to identify antiviral inhibitors from Citrus fruit extracts against an important drug target, NS3 protease, of HCV genotype 3a which is found predominantly in South Asian countries. Methods The full-length NS3 protease alone and the NS3 protease domain in fusion with the cognate NS4A cofactor were expressed in Escherichia coli, and purified by chromatographic techniques. Using the purified protein as a drug target, Citrus extracts were evaluated in a FRET assay, and active ingredients, identified using ESI–MS/MS, were docked to observe the interaction with active site residues of NS3. The best interacting compound was further confirmed through the FRET assay as the inhibitor of NS3 protease. Results Fusion of the NS3 protease domain to the NS4A cofactor significantly improved the purification yield, and NS3-NS4A was functionally more active than the full-length NS3 alone. The purified protein (NS3-NS4A) was successfully employed in a validated FRET assay to evaluate 14 Citrus fruit extracts, revealing that the mesocarp extract of Citrus paradisi, and whole fruit extracts of C. sinesis, C. aurantinum, and C. reticulata significantly inhibited the protease activity of HCV NS3 protease (IC50 values of 5.79 ± 1.44 µg/mL, 37.19 ± 5.92 µg/mL, 42.62 ± 6.89 µg/mL, and 57.65 ± 3.81 µg/mL, respectively). Subsequent ESI-MSn analysis identified a flavonoid, hesperidin, abundantly present in all the afore-mentioned Citrus extracts. Importantly, docking studies suggested that hesperidin interacts with active site residues, and acts as a potent inhibitor of NS3 protease, exhibiting an IC50 value of 11.34 ± 3.83 µg/mL. Conclusions A FRET assay was developed using NS3-NS4A protease, which was successfully utilized for the evaluation of Citrus fruit extracts. Hesperidin, a compound present in the Citrus extracts, was identified as the main flavonoid, which can serve as a cost-effective potent inhibitor of NS3 protease, and could be developed as a drug for antiviral therapy against HCV genotype 3a. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03578-1.
Collapse
|
9
|
Horvat M, Avbelj M, Durán-Alonso MB, Banjanac M, Petković H, Iskra J. Antiviral Activities of Halogenated Emodin Derivatives against Human Coronavirus NL63. Molecules 2021; 26:6825. [PMID: 34833917 PMCID: PMC8618202 DOI: 10.3390/molecules26226825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/23/2022] Open
Abstract
The current COVID-19 outbreak has highlighted the need for the development of new vaccines and drugs to combat Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2). Recently, various drugs have been proposed as potentially effective against COVID-19, such as remdesivir, infliximab and imatinib. Natural plants have been used as an alternative source of drugs for thousands of years, and some of them are effective for the treatment of various viral diseases. Emodin (1,3,8-trihydroxy-6-methylanthracene-9,10-dione) is a biologically active anthraquinone with antiviral activity that is found in various plants. We studied the selectivity of electrophilic aromatic substitution reactions on an emodin core (halogenation, nitration and sulfonation), which resulted in a library of emodin derivatives. The main aim of this work was to carry out an initial evaluation of the potential to improve the activity of emodin against human coronavirus NL63 (HCoV-NL63) and also to generate a set of initial SAR guidelines. We have prepared emodin derivatives which displayed significant anti-HCoV-NL63 activity. We observed that halogenation of emodin can improve its antiviral activity. The most active compound in this study was the iodinated emodin analogue E_3I, whose anti-HCoV-NL63 activity was comparable to that of remdesivir. Evaluation of the emodin analogues also revealed some unwanted toxicity to Vero cells. Since new synthetic routes are now available that allow modification of the emodin structure, it is reasonable to expect that analogues with significantly improved anti-HCoV-NL63 activity and lowered toxicity may thus be generated.
Collapse
Affiliation(s)
- Monika Horvat
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia;
| | - Martina Avbelj
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia;
| | - María Beatriz Durán-Alonso
- Unit of Excellence, Institute of Biology and Molecular Genetics (IBGM), University of Valladolid-CSIC, 47003 Valladolid, Spain;
| | - Mihailo Banjanac
- Fidelta d.o.o., Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia;
| | - Hrvoje Petković
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia;
| | - Jernej Iskra
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia;
| |
Collapse
|
10
|
Hamza M, Ali A, Khan S, Ahmed S, Attique Z, Ur Rehman S, Khan A, Ali H, Rizwan M, Munir A, Khan AM, Siddique F, Mehmood A, Nouroz F, Khan S. nCOV-19 peptides mass fingerprinting identification, binding, and blocking of inhibitors flavonoids and anthraquinone of Moringa oleifera and hydroxychloroquine. J Biomol Struct Dyn 2021; 39:4089-4099. [PMID: 32567487 PMCID: PMC7332867 DOI: 10.1080/07391102.2020.1778534] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022]
Abstract
An rare pandemic of viral pneumonia occurs in December 2019 in Wuhan, China, which is now recognized internationally as Corona Virus Disease 2019 (COVID-19), the etiological agent classified as Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2). According to the World Health Organization (WHO), it has so far expanded to more than 213 countries/territories worldwide. Our study aims to find the viral peptides of SARS-COV-2 by peptide mass fingerprinting (PMF) in order to predict its novel structure and find an inhibitor for each viral peptide. For this reason, we calculated the mass of amino acid sequences translated from the SARS-CoV2 whole genome and identify the peptides that may be a target for inhibition. Molecular peptide docking with Moringa oleifera, phytochemicals (aqueous and ethanolic) leaf extracts of flavonoids (3.56 ± 0.03), (3.83 ± 0.02), anthraquinone (11.68 ± 0.04), (10.86 ± 0.06) and hydroxychloroquine present therapy of COVID-19 in Pakistan for comparative study. Results indicate that 15 peptides of SARS-CoV2 have been identified from PMF, which is then used as a selective inhibitor. The maximum energy obtained from AutoDock Vina for hydroxychloroquine is -5.1 kcal/mol, kaempferol (flavonoid) is -6.2 kcal/mol, and for anthraquinone -6 kcal/mol. Visualization of docking complex, important effects are observed regarding the binding of peptides to drug compounds. In conclusion, it is proposed that these compounds are effective antiviral agents against COVID-19 and can be used in clinical trials.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muhammad Hamza
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Bioinformatics, Govt. Postgraduate College Mandian Abbottabad, Abbottabad, KPK, Pakistan
| | - Ashaq Ali
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, China
| | - Suliman Khan
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Saeed Ahmed
- Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Zarlish Attique
- Department of Bioinformatics, Govt. Postgraduate College Mandian Abbottabad, Abbottabad, KPK, Pakistan
| | - Saad Ur Rehman
- Department of Bioinformatics, Govt. Postgraduate College Mandian Abbottabad, Abbottabad, KPK, Pakistan
| | - Ayesha Khan
- Department of Biotechnology, COMSATS Abbottabad, Abbottabad, KPK, Pakistan
| | - Hussain Ali
- Department of Bioinformatics, Govt. Postgraduate College Mandian Abbottabad, Abbottabad, KPK, Pakistan
| | - Muhammad Rizwan
- Department of Bioinformatics, Govt. Postgraduate College Mandian Abbottabad, Abbottabad, KPK, Pakistan
| | - Anum Munir
- Department of Bioinformatics, Govt. Postgraduate College Mandian Abbottabad, Abbottabad, KPK, Pakistan
| | - Arshad Mehmood Khan
- Department of Chemistry, Govt. Postgraduate College Mandian Abbottabad, Abbottabad, KPK, Pakistan
| | - Faiza Siddique
- Department of Bioinformatics, Govt. Postgraduate College Mandian Abbottabad, Abbottabad, KPK, Pakistan
| | - Azhar Mehmood
- Department of Bioinformatics, Govt. Postgraduate College Mandian Abbottabad, Abbottabad, KPK, Pakistan
| | - Faisal Nouroz
- Department of Bioinformatic, Hazara University Mansehra, Mansehra, KPK, Pakistan
| | - Sajid Khan
- Department of Bioinformatics, Govt. Postgraduate College Mandian Abbottabad, Abbottabad, KPK, Pakistan
| |
Collapse
|
11
|
Bibi S, Sarfraz A, Mustafa G, Ahmad Z, Zeb MA, Wang YB, Khan T, Khan MS, Kamal MA, Yu H. Impact of Traditional Plants and their Secondary Metabolites in the Discovery of COVID-19 Treatment. Curr Pharm Des 2021; 27:1123-1143. [PMID: 33213320 DOI: 10.2174/1381612826666201118103416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/12/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Coronavirus Disease-2019 belongs to the family of viruses which cause serious pneumonia along with fever, breathing issues and infection of lungs, and was first reported in China and later spread worldwide. OBJECTIVE Several studies and clinical trials have been conducted to identify potential drugs and vaccines for Coronavirus Disease-2019. The present study listed natural secondary metabolites identified from plant sources with antiviral properties and could be a safer and tolerable treatment for Coronavirus Disease-2019. METHODS A comprehensive search on the reported studies was conducted using different search engines such as Google Scholar, SciFinder, Sciencedirect, Medline PubMed, and Scopus for the collection of research articles based on plant-derived secondary metabolites, herbal extracts, and traditional medicine for coronavirus infections. RESULTS Status of COVID-19 worldwide and information of important molecular targets involved in COVID- 19 are described, and through literature search, it is highlighted that numerous plant species and their extracts possess antiviral properties and are studied with respect to coronavirus treatments. Chemical information, plant source, test system type with a mechanism of action for each secondary metabolite are also mentioned in this review paper. CONCLUSION The present review has listed plants that have presented antiviral potential in the previous coronavirus pandemics and their secondary metabolites, which could be significant for the development of novel and a safer drug which could prevent and cure coronavirus infection worldwide.
Collapse
Affiliation(s)
- Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environment, Institute of Herbal Biotic Resource, Yunnan University, Kunming 650504, Yunnan, China
| | - Ayesha Sarfraz
- Department of Biosciences, Faculty of Sciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Ghazala Mustafa
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Zeeshan Ahmad
- Kohsar Homeopathic Medical College, Rawalpindi, Pakistan
| | - Muhammad A Zeb
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Yuan-Bing Wang
- Yunnan Herbal Laboratory, College of Ecology and Environment, Institute of Herbal Biotic Resource, Yunnan University, Kunming 650504, Yunnan, China
| | - Tahir Khan
- Yunnan Herbal Laboratory, College of Ecology and Environment, Institute of Herbal Biotic Resource, Yunnan University, Kunming 650504, Yunnan, China
| | - Muhammad S Khan
- Department of Biosciences, Faculty of Sciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Mohammad A Kamal
- West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hong Yu
- Yunnan Herbal Laboratory, College of Ecology and Environment, Institute of Herbal Biotic Resource, Yunnan University, Kunming 650504, Yunnan, China
| |
Collapse
|
12
|
Khan SA, Al-Balushi K. Combating COVID-19: The role of drug repurposing and medicinal plants. J Infect Public Health 2021; 14:495-503. [PMID: 33743371 PMCID: PMC7590838 DOI: 10.1016/j.jiph.2020.10.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/11/2020] [Accepted: 10/12/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND A novel corona virus-2 disease has spread to 213 countries and territories across the globe. The corona pandemic has claimed more than 548,934 deaths worldwide till the evening of 8th of July 2020 and the number of confirmed cases is increasing at an alarming rate. Therefore, there is an urgent need to find a treatment or a vaccine for COVID-19 at the earliest. The aim of this mini-review is to give an overview of identified repurposed anti-COVID-19 drugs which are currently under clinical trials. METHODS A thorough literature survey was done to retrieve relevant information using various web based search engines such as Google, Google scholar, and various other electronic research databases such as PubMed, Medline, MeSh etc. The findings of the recently published articles, clinical trials, COVID-19 update by World Health Organization etc., and the opinion of the authors is summarized in this brief review. The antiviral medicinal plants were identified based on their use in Chinese/Indian indigenous systems of medicine, traditional use, published scientific phytochemical studies and/or their effectiveness against upper respiratory infections, severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS). RESULTS The disease is just over six months old and effective prophylactic or therapeutic agents are yet to be developed for COVID-19. Thus, in the absence of an effective therapy, scientific community has rationally considered the drug repurposing approach for the development of anti COVID-19 drugs. Various studies and clinical trials involving antimalarial drugs, anti-HIV drugs, anti-hepatitis drugs, anti-parasitic drug, anti-inflammatory drugs, the combination of antimalarial and macrolide antibiotic and few other molecules identified through drug repurposing are currently underway to combat COVID-19. Due emphasis is also given to develop novel corona vaccines for the prophylaxis and to identify drugs for adjunct/supportive therapy. Several medicinal plants along with their major phytochemicals exhibiting antiviral activity are identified for further exploration. It is anticipated that these natural products might also play an important role in combating COVID-19. CONCLUSIONS Use of drug repurposing strategy to develop anti COVID-19 drugs and exploring antiviral medicinal plants as adjunct or supportive therapy appears to be a viable option. Therefore, it is the need of the hour to work in parallel on different strategies such as genetic engineering, in silico approach, herbal remedies and drug repositioning to achieve the common goal of finding a safe and effective treatment for COVID-19 at the earliest.
Collapse
Affiliation(s)
- Shah A Khan
- College of Pharmacy, National University of Science and Technology, PO Box 620, PC 130, Muscat, Oman.
| | - K Al-Balushi
- College of Pharmacy, National University of Science and Technology, PO Box 620, PC 130, Muscat, Oman
| |
Collapse
|
13
|
Akhtar MS, Yang W, Kim SH, Lee YR. Organic‐Inorganic Dual Catalytic System for the Regioselective Construction of Diverse Quinone Derivatives
via
Benzannulation. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Muhammad Saeed Akhtar
- School of Chemical Engineering Yeungnam University Gyeongsan 38541 Republic of Korea
| | - Won‐Guen Yang
- Analysis Research Division, Daegu Center Korea Basic Science Institute Daegu 41566 Republic of Korea
| | - Sung Hong Kim
- Analysis Research Division, Daegu Center Korea Basic Science Institute Daegu 41566 Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering Yeungnam University Gyeongsan 38541 Republic of Korea
| |
Collapse
|
14
|
Lao Z, Fan Y, Huo Y, Liao F, Zhang R, Zhang B, Kong Z, Long H, Xie J, Sang C, Fu L, Lin J, Wu Y, Yu L, Li G. Physcion, a novel inhibitor of 5α-reductase that promotes hair growth in vitro and in vivo. Arch Dermatol Res 2021; 314:41-51. [PMID: 33635414 DOI: 10.1007/s00403-021-02195-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/16/2020] [Accepted: 02/06/2021] [Indexed: 11/26/2022]
Abstract
Androgenic alopecia (AGA) has a high incidence. Excess dihydrotestosterone in blood capillaries, which is converted from testosterone by 5α-reductase, is an AGA causative factor. We identified the inhibitory activity of four Polygonum multiflorum compounds against 5α-reductase via high-performance liquid chromatography, and the results showed that Physcion was a potent 5α-reductase inhibitor. Additionally, we found that through inhibiting 5α-reductase expression, Physcion could shorten the time of dorsal skin darkening and hair growth, improve hair follicle morphology, and significantly increase hair follicle count. Eventually, through molecular docking study, we found the binding energy and molecular interactions between Physcion and 5α-reductase type II. These results suggested that Physcion is a potent 5α-reductase inhibitor, as well as a new natural medicine for treating AGA.
Collapse
Affiliation(s)
- Zizhao Lao
- School of Chinese Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yaohua Fan
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, 518000, China
| | - Yuhang Huo
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Feng Liao
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Rongwen Zhang
- Bawang (Guangzhou) Co. Ltd., Guangzhou, 510440, China
| | - Bei Zhang
- School of Chinese Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ziyun Kong
- School of Chinese Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Haishan Long
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jieliang Xie
- School of Chinese Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chuanlan Sang
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Ludi Fu
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Ji Lin
- School of Chinese Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yina Wu
- School of Chinese Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Liangwen Yu
- School of Chinese Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Geng Li
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
15
|
Baranova AA, Alferova VA, Korshun VA, Tyurin AP. Antibiotics from Extremophilic Micromycetes. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020; 46:903-971. [PMID: 33390684 PMCID: PMC7768999 DOI: 10.1134/s1068162020060023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 12/03/2022]
Abstract
Extremophilic microorganisms, which are capable of functioning normally at extremely high or low temperatures, pressure, and in other environmental conditions, have been in the focus of microbiologists' attention for several decades due to the biotechnological potential of enzymes inherent in extremophiles. These enzymes (also called extremozymes) are used in the production of food and detergents and other industries. At the same time, the inhabitants of extreme econiches remained almost unexplored for a long time in terms of the chemistry of natural compounds. In recent years, the emergence of new antibiotic-resistant strains of pathogens, which affect humans and animals has become a global problem. The problem is compounded by a strong slowdown in the development of new antibiotics. In search of new active substances and scaffolds for medical chemistry, researchers turn to unexplored natural sources. In recent years, there has been a sharp increase in the number of studies on secondary metabolites produced by extremophiles. From the discovery of penicillin to the present day, micromycetes, along with actinobacteria, are one of the most productive sources of antibiotic compounds for medicine and agriculture. Many authors consider extremophilic micromycetes as a promising source of small molecules with an unusual mechanism of action or significant structural novelty. This review summarizes the latest (for 2018-2019) experimental data on antibiotic compounds, which are produced by extremophilic micromycetes with various types of adaptation. Active metabolites are classified by the type of structure and biosynthetic origin. The data on the biological activity of the isolated metabolites are summarized.
Collapse
Affiliation(s)
- A. A. Baranova
- Gause Institute of New Antibiotics, 119021 Moscow, Russia
| | - V. A. Alferova
- Gause Institute of New Antibiotics, 119021 Moscow, Russia
- National Research University, Higher School of Economics, 101000 Moscow, Russia
| | - V. A. Korshun
- Gause Institute of New Antibiotics, 119021 Moscow, Russia
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- National Research University, Higher School of Economics, 101000 Moscow, Russia
| | - A. P. Tyurin
- Gause Institute of New Antibiotics, 119021 Moscow, Russia
- National Research University, Higher School of Economics, 101000 Moscow, Russia
| |
Collapse
|
16
|
Ghosh R, Chakraborty A, Biswas A, Chowdhuri S. Depicting the inhibitory potential of polyphenols from Isatis indigotica root against the main protease of SARS CoV-2 using computational approaches. J Biomol Struct Dyn 2020; 40:4110-4121. [PMID: 33292085 PMCID: PMC7738210 DOI: 10.1080/07391102.2020.1858164] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The pandemic disease COVID-19, caused by SARS CoV-2, has created a global crisis. Presently, researchers across the globe are in a quest to identify/develop drugs or vaccines by targeting different non-structural proteins (Nsps) of SARS CoV-2. One such important drug target is Nsp5/main protease (Mpro) which plays a critical role in the viral replication. This cysteine protease/Mpro of SARS CoV-2 has high sequence similarity with the same protease from SARS CoV-1. Previously, it has been shown experimentally that eight polyphenols derived from the root of Isatis indigotica show inhibitory effect on the cleavage/catalytic activity of the SARS CoV-1 Mpro. But whether these polyphenols exhibit any inhibitory effect on SARS CoV-2 Mpro is unclear. To explore this possibility, here, we have adopted various computational approaches. Polyphenols that qualified the pharmacological parameters (indigo, sinigrin, hesperetin and daidzein) and two well-known Mpro inhibitors (N3 and lopinavir) were subjected to molecular docking studies. Two of them (sinigrin and hesperetin) were selected by comparing their binding affinities with N3 and lopinavir. Sinigrin and hesperetin interacted with the two most important catalytic residues of Mpro (His41 and Cys145). Molecular dynamics studies further revealed that these two Mpro-polyphenol complexes are more stable and experience less conformational fluctuations than Mpro-N3/lopinavir complex. The Mpro-hesperetin complex was more compact and less expanded than Mpro-sinigrin complex. These findings were additionally validated by MM-GBSA analysis. As a whole, our study revealed that these two polyphenols may be potent SARS CoV-2 Mpro inhibitors and may possibly be considered for COVID-19 treatment.
Collapse
Affiliation(s)
- Rajesh Ghosh
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Ayon Chakraborty
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Ashis Biswas
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Snehasis Chowdhuri
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| |
Collapse
|
17
|
Gurung AB, Ali MA, Lee J, Farah MA, Al-Anazi KM. The potential of Paritaprevir and Emetine as inhibitors of SARS-CoV-2 RdRp. Saudi J Biol Sci 2020; 28:1426-1432. [PMID: 33281478 PMCID: PMC7708801 DOI: 10.1016/j.sjbs.2020.11.078] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 11/18/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA-dependent RNA polymerase (RdRp) is a well-characterized therapeutic target which is a key player driving the viral replication and transcription machinery. The recent elucidation of the experimental structure of SARS-CoV-2 RdRp enzyme complexed with triphosphate form of Remdesivir (RTP) has opened an avenue for structure-based identification of potent inhibitors. Given the high mortality rate of the coronavirus disease 2019 (COVID-19) and lack of effective therapeutics against it, an alternative for safe and speedy drug discovery needs to be sought after. One promising strategy could be to explore the possibility for repurposing the Food and Drug Administration (FDA) approved antiviral drugs and antiviral phytocompounds. In the present study, a set of FDA approved antiviral drugs and antiviral phytocompounds were screened for their ability to bind within the RdRp enzyme active pocket. The top 3 hits among the FDA approved drugs were Paritaprevir (D33), Rilpivirine (D19) and Simeprevir (D31) which scored binding energies between −8.08 kcal/mol and −10.46 kcal/mol. Emetine (P5), 7,4-di-O-galloyltricetifavan (P28) and Oleanolic acid (P17) were the top three phytocompounds hits and exhibited binding energies ranging from −7.81 kcal/mol to −8.17 kcal/mol. These drugs and phytocompounds were able to establish hydrogen bonds with the catalytic residues-Asp760 and Asp761 and hydrophobic interactions with neighbouring residues. Further, the physicochemical properties of the molecules were evaluated. These identified potential inhibitors warrant further experimental investigations before their acceptance as drug candidates for the treatment of the disease.
Collapse
Affiliation(s)
- Arun Bahadur Gurung
- Department of Basic Sciences and Social Sciences, North-Eastern Hill University, Shillong 793022, Meghalaya, India
- Corresponding author.
| | - Mohammad Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Joongku Lee
- Department of Environment and Forest Resources, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Mohammad Abul Farah
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid Mashay Al-Anazi
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
18
|
Development of a microbial coating for cellulosic surface using aloe vera and silane. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2020. [PMCID: PMC7669238 DOI: 10.1016/j.carpta.2020.100015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The highly contagious nature of SARS-CoV-2 (COVID-19) virus has created a havoc effect all over the world in a very short period. The most effective method for precaution of this virus as suggested by WHO is use of PPEs (triple layered face mask, body suits) and social distancing. However, the frontline doctors and medical staff have high risk of exposure to the virus during treatments and removal and discarding of the PPEs. Also the PPEs are of the onetime use and wearing these PPEs in hot and humid seasons is very uncomfortable. A possible solution of this problem is if clothes are anti-bacterial and anti-viral in nature, one single-layered will be sufficient and the spread of virus will also be minimized. Considering this, we have designed a facile and durable anti-wash antimicrobial coating on cloth by aloe vera and hexadecyltrimethoxysilane (HDTMS). In lab scale study, present coating shows good chemical and thermal stability making it reusable multiple times even after repeated washing. The coated cloth reveals the excellent anti-dirt and stain resistance properties leading to complete non-adherence of dirt and stain (e.g. Color, food, ink) on it. Anti-bacterial and anti-fungi properties of the coated cloth were confirmed by doing E. coli (bacteria) and A. Niger (fungus) culture studies, respectively. This coating is imbibed with well-known anti-viral agent aloe vera which inhibits the attachment of the virus on the surface. The water-repellent nature of the coating combined with the use anti-viral agent, aloe vera makes it a potential anti-COVID-19 coating.
Collapse
|
19
|
Khan M, Rauf W, Habib FE, Rahman M, Iqbal M. Screening and identification of bioactive compounds from citrus against non-structural protein 3 protease of hepatitis C virus genotype 3a by fluorescence resonance energy transfer assay and mass spectrometry. World J Hepatol 2020; 12:976-992. [PMID: 33312423 PMCID: PMC7701965 DOI: 10.4254/wjh.v12.i11.976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/03/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatitis C virus genotype 3a (HCV G3a) is highly prevalent in Pakistan. Due to the elevated cost of available Food and Drug Administration-approved drugs against HCV, medicinal natural products of potent antiviral activity should be screened for the cost-effective treatment of the disease. Furthermore, from natural products, active compounds against vital HCV proteins like non-structural protein 3 (NS3) protease could be identified to prevent viral proliferation in the host. AIM To develop cost-effective HCV genotype 3a NS3 protease inhibitors from citrus fruit extracts. METHODS Full-length NS3 without co-factor non-structural protein 4A (NS4A) and codon optimized NS3 protease in fusion with NS4A were expressed in Escherichia coli. The expressed protein was purified by metal ion affinity chromatography and gel filtration. Citrus fruit extracts were screened using fluorescence resonance energy transfer (FRET) assay against the protease and polyphenols were identified as potential inhibitors using electrospray ionization-mass spectrometry (MS)/MS technique. Among different polyphenols, highly potent compounds were screened using molecular modeling approaches and consequently the most active compound was further evaluated against HCV NS4A-NS3 protease domain using FRET assay. RESULTS NS4A fused with NS3 protease domain gene was overexpressed and the purified protein yield was high in comparison to the lower yield of the full-length NS3 protein. Furthermore, in enzyme kinetic studies, NS4A fused with NS3 protease proved to be functionally active compared to full-length NS3. So it was concluded that co-factor NS4A fusion is essential for the purification of functionally active protease. FRET assay was developed and validated by the half maximal inhibitory concentration (IC50) values of commercially available inhibitors. Screening of citrus fruit extracts against the native purified fused NS4A-NS3 protease domain showed that the grapefruit mesocarp extract exhibits the highest percentage inhibition 91% of protease activity. Among the compounds identified by LCMS analysis, hesperidin showed strong binding affinity with the protease catalytic triad having S-score value of -10.98. CONCLUSION Fused NS4A-NS3 protease is functionally more active, which is effectively inhibited by hesperidin from the grapefruit mesocarp extract with an IC50 value of 23.32 µmol/L.
Collapse
Affiliation(s)
- Mahim Khan
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Punjab, Pakistan
| | - Waqar Rauf
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Punjab, Pakistan
| | - Fazal-E- Habib
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Punjab, Pakistan
| | - Moazur Rahman
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Punjab, Pakistan
| | - Mazhar Iqbal
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Punjab, Pakistan.
| |
Collapse
|
20
|
Din M, Ali F, Waris A, Zia F, Ali M. Phytotherapeutic options for the treatment of COVID-19: A concise viewpoint. Phytother Res 2020; 34:2431-2437. [PMID: 32815574 PMCID: PMC7461328 DOI: 10.1002/ptr.6786] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 01/22/2023]
Affiliation(s)
- Misbahud Din
- Department of BiotechnologyQuaid‐i‐Azam UniversityIslamabadPakistan
| | - Fawad Ali
- Department of PharmacyQuaid‐i‐Azam UniversityIslamabadPakistan
| | - Abdul Waris
- Department of BiotechnologyQuaid‐i‐Azam UniversityIslamabadPakistan
| | - Fatima Zia
- Department of BiotechnologyQuaid‐i‐Azam UniversityIslamabadPakistan
| | - Muhammad Ali
- Department of BiotechnologyQuaid‐i‐Azam UniversityIslamabadPakistan
| |
Collapse
|
21
|
Peng KC, Chang KC, Ke SC, Chen J, Liu SY. Novel protein photocleavers: Chrysophanol and pachybasin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2020. [DOI: 10.1016/j.jpap.2020.100008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
22
|
Anthraquinone: a promising scaffold for the discovery and development of therapeutic agents in cancer therapy. Future Med Chem 2020; 12:1037-1069. [PMID: 32349522 DOI: 10.4155/fmc-2019-0198] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cancer, characterized by uncontrolled malignant neoplasm, is a leading cause of death in both advanced and emerging countries. Although, ample drugs are accessible in the market to intervene with tumor progression, none are totally effective and safe. Natural anthraquinone (AQ) equivalents such as emodin, aloe-emodin, alchemix and many synthetic analogs extend their antitumor activity on different targets including telomerase, topoisomerases, kinases, matrix metalloproteinases, DNA and different phases of cell lines. Nano drug delivery strategies are advanced tools which deliver drugs into tumor cells with minimum drug leakage to normal cells. This review delineates the way AQ derivatives are binding on these targets by abolishing tumor cells to produce anticancer activity and purview of nanoformulations related to AQ analogs.
Collapse
|
23
|
Nguyen TTH, Shin HJ, Pandey RP, Jung HJ, Liou K, Sohng JK. Biosynthesis of Rhamnosylated Anthraquinones in Escherichia coli. J Microbiol Biotechnol 2020; 30:398-403. [PMID: 31893599 PMCID: PMC9728250 DOI: 10.4014/jmb.1911.11047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rhamnose is a naturally occurring deoxysugar present as a glycogenic component of plant and microbial natural products. A recombinant mutant Escherichia coli strain was developed by overexpressing genes involved in the TDP-L-rhamnose biosynthesis pathway of different bacterial strains and Saccharothrix espanaensis rhamnosyl transferase to conjugate intrinsic cytosolic TDP-L-rhamnose with anthraquinones supplemented exogenously. Among the five anthraquinones (alizarin, emodin, chrysazin, anthrarufin, and quinizarin) tested, quinizarin was biotransformed into a rhamoside derivative with the highest conversion ratio by whole cells of engineered E. coli. The quinizarin glycoside was identified by various chromatographic and spectroscopic analyses. The anti-proliferative property of the newly synthesized rhamnoside, quinizarin-4-O-α-L-rhamnoside, was assayed in various cancer cells.
Collapse
Affiliation(s)
- Trang Thi Huyen Nguyen
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 3460, Republic of Korea
| | - Hee Jeong Shin
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 3460, Republic of Korea
| | - Ramesh Prasad Pandey
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 3460, Republic of Korea,Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan 31460, Republic of Korea
| | - Hye Jin Jung
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 3460, Republic of Korea,Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan 31460, Republic of Korea
| | - Kwangkyoung Liou
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 3460, Republic of Korea,Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan 31460, Republic of Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 3460, Republic of Korea,Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan 31460, Republic of Korea,Corresponding author Phone: +82-41-530-2246 Fax: +82-41-544-2919 E-mail:
| |
Collapse
|
24
|
Parvez MK, Al-Dosari MS, Alam P, Rehman M, Alajmi MF, Alqahtani AS. The anti-hepatitis B virus therapeutic potential of anthraquinones derived from Aloe vera. Phytother Res 2019; 33:2960-2970. [PMID: 31410907 DOI: 10.1002/ptr.6471] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 06/24/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022]
Abstract
Although the approved hepatitis B virus (HBV)-polymerase inhibitors (e.g., lamivudine) often lead to drug-resistance, several natural products have shown promising efficacies. Though Aloe vera (AV) gel and its constituents are shown inhibitors of many viruses, their anti-HBV activity still remains elusive. We therefore, tested the anti-HBV potential of AV extract and its anthraquinones in hepatoma cells, including molecular docking, high-performance thin layer chromatography (HPTLC), and cytochrome P450 (CYP3A4) activation analyses. Our anti-HBV assays (HBsAg/HBeAg Elisa) showed maximal inhibition of viral antigens production by aloe-emodin (~83%) > chrysophanol (~62%) > aloin B (~61%) > AV extract (~37%) in HepG2.2.15 cells. Interestingly, the effect of aloe-emodin was comparable with lamivudine (~86%). Moreover, sequential treatment with lamivudine (pulse) followed by aloe-emodin (chase) enhanced the efficacy of monotherapy by ~12%. Docking (AutoDock Vina) of the anthraquinones indicated strong interactions with HBV-polymerase residues that formed stable complexes with high Gibbs's free energy. Further, identification of aloe-emodin and aloin B by validated HPTLC in AV extract strongly endorsed its anti-HBV potential. In addition, our luciferase-reporter gene assay of transfected HepG2 cells showed moderate induction of CYP3A4 by aloe-emodin. In conclusion, this is the first report on anti-HBV potential of AV-derived anthraquinones, possibly via HBV-polymerase inhibition. Of these, although aloin B exhibits novel antiviral effect, aloe-emodin appears as the most promising anti-HBV natural drug with CYP3A4 activating property towards its enhanced therapeutic efficacy.
Collapse
Affiliation(s)
- Mohammad K Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed S Al-Dosari
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Perwez Alam
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - MdTabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali S Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
25
|
Shen MX, Ma N, Li MK, Liu YY, Chen T, Wei F, Liu DY, Hou W, Xiong HR, Yang ZQ. Antiviral Properties of R. tanguticum Nanoparticles on Herpes Simplex Virus Type I In Vitro and In Vivo. Front Pharmacol 2019; 10:959. [PMID: 31555137 PMCID: PMC6737004 DOI: 10.3389/fphar.2019.00959] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/29/2019] [Indexed: 11/13/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1), an enveloped DNA virus, plays a key role in varieties of diseases including recurrent cold sores, keratoconjunctivitis, genital herpes and encephalitis in humans. Great efforts have been made in developing more effective and less side-effects anti-herpes simplex virus agents, including traditional Chinese herbal medicines. In the present study, we evaluated the antiviral efficacy of Rheum tanguticum nanoparticles against HSV-1 in vitro and in vivo. R. tanguticum nanoparticles could inactivate the HSV-1 virions and block the viral attachment and entry into cells. Time-of-addition assay indicated that R. tanguticum nanoparticles could interfere with the entire phase of viral replication. Besides, R. tanguticum nanoparticles showed the ability to inhibit the mRNA expression of HSV-1 immediate early gene ICP4 and early gene ICP8 as well as the expression of viral protein ICP4 and ICP8. Moreover, R. tanguticum nanoparticles have been proved to protect mice against HSV-1 induced lethality by decreasing the viral load and alleviated pathological changes in brain tissues. In conclusion, we demonstrated that R. tanguticum nanoparticles could inhibit HSV-1 infection through multiple mechanisms. These results suggest that R. tanguticum nanoparticles may have novel roles in the treatment of HSV-1 infection.
Collapse
Affiliation(s)
- Meng-Xin Shen
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Nian Ma
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Min-Ke Li
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yuan-Yuan Liu
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Tian Chen
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Fei Wei
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Dong-Ying Liu
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wei Hou
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Hai-Rong Xiong
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Zhan-Qiu Yang
- State Key Laboratory of Virology, Institute of Medical Virology, National Laboratory of Antiviral and Tumour of Traditional Chinese Medicine, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
26
|
Lu J, Li J, Hu Y, Guo Z, Sun D, Wang P, Guo K, Duan DD, Gao S, Jiang J, Wang J, Liu P. Chrysophanol protects against doxorubicin-induced cardiotoxicity by suppressing cellular PARylation. Acta Pharm Sin B 2019; 9:782-793. [PMID: 31384538 PMCID: PMC6663922 DOI: 10.1016/j.apsb.2018.10.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 09/26/2018] [Accepted: 10/09/2018] [Indexed: 01/13/2023] Open
Abstract
The clinical application of doxorubicin (DOX) in cancer chemotherapy is limited by its life-threatening cardiotoxic effects. Chrysophanol (CHR), an anthraquinone compound isolated from the rhizome of Rheum palmatum L., is considered to play a broad role in a variety of biological processes. However, the effects of CHR׳s cardioprotection in DOX-induced cardiomyopathy is poorly understood. In this study, we found that the cardiac apoptosis, mitochondrial injury and cellular PARylation levels were significantly increased in H9C2 cells treated by Dox, while these effects were suppressed by CHR. Similar results were observed when PARP1 activity was suppressed by its inhibitors 3-aminobenzamide (3AB) and ABT888. Ectopic expression of PARP1 effectively blocked this CHR׳s cardioprotection against DOX-induced cardiomyocyte injury in H9C2 cells. Furthermore, pre-administration with both CHR and 3AB relieved DOX-induced cardiac apoptosis, mitochondrial impairment and heart dysfunction in Sprague-Dawley rat model. These results revealed that CHR protects against DOX-induced cardiotoxicity by suppressing cellular PARylation and provided critical evidence that PARylation may be a novel target for DOX-induced cardiomyopathy.
Collapse
Key Words
- 3AB, 3-aminobenzamide
- ADR, adriamycin
- ANOVA, one-way analysis of variance
- Apoptosis
- CHR, chrysophanol
- CMC-Na, sodium carboxymethyl
- CO, cardiac output
- Cardiotoxicity
- Chrysophanol
- Cyt c, Cytochrome c
- DOX, doxorubicin
- Doxorubicin
- EF, ejection fraction
- FBS, fetal bovine serum
- FS, fractional shortening
- HE, hematoxylin-eosin
- HR, heart rate
- IVSd, end-diastolic interventricular septum
- IVSs, end-systolic interventricular septum
- LV, end-systolic volume
- LVEDV, LV end-diastolic volume
- LVIDd, LV end-diastolic internal diameter
- LVIDs, LV end-systolic internal diameter
- LVPWd, LV end-diastolic posterior wall thickness
- LVPWs, LV end-systolic posterior wall thickness
- Mitochondria
- NS, normal saline
- PAR, polymers of ADP-ribose
- PARP1, poly(ADP-ribose) polymerase 1
- PARylated, poly(ADP-ribosyl)ated
- PARylation
- PARylation, poly(ADP-ribosyl)ation
- PBS, phosphate-buffered saline
- RCR, respiratory control ratio
- ROS, reactive oxygen species
- Rh123, rhodamine 123
- SD, Sprague–Dawley
- TUNEL, TdT-mediated dUTP nick end labeling
- VDAC1, voltage dependent anion channel 1
Collapse
|
27
|
Prateeksha, Yusuf MA, Singh BN, Sudheer S, Kharwar RN, Siddiqui S, Abdel-Azeem AM, Fernandes Fraceto L, Dashora K, Gupta VK. Chrysophanol: A Natural Anthraquinone with Multifaceted Biotherapeutic Potential. Biomolecules 2019; 9:E68. [PMID: 30781696 PMCID: PMC6406798 DOI: 10.3390/biom9020068] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 12/16/2022] Open
Abstract
Chrysophanol is a unique anthraquinone having broad-spectrum therapeutic potential along with ecological importance. It is the first polyketide that has been reported to be biosynthesized in an organism-specific manner. The traditional Chinese and Korean medicinal systems provide evidence of the beneficial effects of chrysophanol on human health. The global distribution of chrysophanol encountered in two domains of life (bacteria and eukaryota) has motivated researchers to critically evaluate the properties of this compound. A plethora of literature is available on the pharmacological properties of chrysophanol, which include anticancer, hepatoprotective, neuroprotective, anti-inflammatory, antiulcer, and antimicrobial activities. However, the pharmacokinetics and toxicity studies on chrysophanol demand further investigations for it to be used as a drug. This is the first comprehensive review on the natural sources, biosynthetic pathways, and pharmacology of chrysophanol. Here we reviewed recent advancements made on the pharmacokinetics of the chrysophanol. Additionally, we have highlighted the knowledge gaps of its mechanism of action against diseases and toxicity aspects.
Collapse
Affiliation(s)
- Prateeksha
- Department of Biosciences, Integral University, Lucknow-226026, Uttar Pradesh, India;
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow-226001, Uttar Pradesh, India
| | - Mohd Aslam Yusuf
- Department of Bioengineering, Integral University, Lucknow-226016, Uttar Pradesh, India;
| | - Brahma N. Singh
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow-226001, Uttar Pradesh, India
| | - Surya Sudheer
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, Tallinn University of Technology, 12618 Tallinn, Estonia;
| | - Ravindra N. Kharwar
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India;
| | - Saba Siddiqui
- Integral Institute of Agricultural Science and Technology (IIAST), Integral University, Lucknow-226026, Uttar Pradesh, India;
| | - Ahmed M. Abdel-Azeem
- Botany Department, Faculty of Science, University of Suez Canal, Ismailia 41522, Egypt;
| | - Leonardo Fernandes Fraceto
- Institute of Science and Technology of Sorocaba, São Paulo State University–Unesp, Sorocaba–São Paulo 18087-180, Brazil;
| | - Kavya Dashora
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India;
| | - Vijai K. Gupta
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, Tallinn University of Technology, 12618 Tallinn, Estonia;
| |
Collapse
|
28
|
Song J, Chen X, Lyu Y, Zhuang W, Zhang J, Gao L, Tong X. Sanhuang Xiexin decoction promotes good functional outcome in acute ischemic stroke. Brain Behav 2019; 9:e01185. [PMID: 30569662 PMCID: PMC6346639 DOI: 10.1002/brb3.1185] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/19/2018] [Accepted: 11/25/2018] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVES To explore the efficiency and safety of Sanhuang Xiexin decoction in the treatment of acute ischemic stroke (AIS) patients after endovascular intervention examination. METHODS In this prospective observational study, 121 AIS patients admitted in our hospital were enrolled from January 2012 to December 2015. They were randomly divided into two groups, 61 patients received Sanhuang Xiexin decoction + basic treatment (SX group) and 60 patients received basic treatment (control group). The prescription of Sanhuang Xiexin decoction was taken in the SX group, with one dose (100 ml), twice a day for 7 days orally. For all patients, blood samples were drawn on the first morning and sixth morning after endovascular intervention examination under fasting state for Fib (fibrinogen), PAgT (platelet aggregation test), CRP (C-reactive protein), and TMAO (trimethylamine oxide) tested. Estimate the changes in plasma Fib, PAgT, CRP, and TMAO levels and the syndrome of fire-heat scores. RESULTS The plasma Fib, PAgT, CRP, and TMAO levels in the SX group were significantly lower than those in the control group (PFib < 0.01, PPAgT < 0.01, PCRP = 0.02, PTMAO < 0.01). The syndrome of fire-heat scores in the SX group was significantly lower than that in the control group (p < 0.01). The incidences of ischemic cerebrovascular events within 3 and 6 months after endovascular intervention treatment in the SX group were lower than those in the control group (P3 month = 0.04, P6month = 0.03). CONCLUSIONS The prescription of Sanhuang Xiexin is efficient and safe in the treatment of AIS patients after endovascular intervention examination through reducing the inflammatory factors.
Collapse
Affiliation(s)
- Juexian Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xin Chen
- Department of Geriatrics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Lyu
- Department of Anesthesiology, Yunnan Baoshan Anli Hospital, Shanghai, China
| | - Wei Zhuang
- Department of Pharmacy, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jing Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Li Gao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaolin Tong
- Department of Endocrinology, Guang'anmen Hospital of China, Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
29
|
Abstract
The viral infection and resistance to the existing antiviral drugs are alarming, which is a serious public health concern. Medicinal plants are valuable resources for treatment of viral infections and can be used for the management of infections like herpes simplex virus (HSV), human immunodeficiency virus (HIV), influenza, etc. The antiviral screening of plant extracts should be highly selective, specific, and sensitive for bioactivity guided isolation of the active compounds from the plant extracts. The antiviral screening system should be validated for accuracy, reproducibility, simplicity, and cost effectiveness. This chapter highlights on various aspects for screening and evaluation of antiviral natural components including factors affecting antiviral in vivo studies, host cells, organisms, and culture media followed by different virus-specific assays for antiviral screening of natural products.
Collapse
|
30
|
Monjo ALA, Pringle ES, Thornbury M, Duguay BA, Monro SMA, Hetu M, Knight D, Cameron CG, McFarland SA, McCormick C. Photodynamic Inactivation of Herpes Simplex Viruses. Viruses 2018; 10:v10100532. [PMID: 30274257 PMCID: PMC6213367 DOI: 10.3390/v10100532] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 02/04/2023] Open
Abstract
Herpes simplex virus (HSV) infections can be treated with direct acting antivirals like acyclovir and foscarnet, but long-term use can lead to drug resistance, which motivates research into broadly-acting antivirals that can provide a greater genetic barrier to resistance. Photodynamic inactivation (PDI) employs a photosensitizer, light, and oxygen to create a local burst of reactive oxygen species that inactivate microorganisms. The botanical plant extract OrthoquinTM is a powerful photosensitizer with antimicrobial properties. Here we report that Orthoquin also has antiviral properties. Photoactivated Orthoquin inhibited herpes simplex virus type 1 (HSV-1) and herpes simplex virus type 2 (HSV-2) infection of target cells in a dose-dependent manner across a broad range of sub-cytotoxic concentrations. HSV inactivation required direct contact between Orthoquin and the inoculum, whereas pre-treatment of target cells had no effect. Orthoquin did not cause appreciable damage to viral capsids or premature release of viral genomes, as measured by qPCR for the HSV-1 genome. By contrast, immunoblotting for HSV-1 antigens in purified virion preparations suggested that higher doses of Orthoquin had a physical impact on certain HSV-1 proteins that altered protein mobility or antigen detection. Orthoquin PDI also inhibited the non-enveloped adenovirus (AdV) in a dose-dependent manner, whereas Orthoquin-mediated inhibition of the enveloped vesicular stomatitis virus (VSV) was light-independent. Together, these findings suggest that the broad antiviral effects of Orthoquin-mediated PDI may stem from damage to viral attachment proteins.
Collapse
Affiliation(s)
- Andrea L-A Monjo
- Department of Microbiology and Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada.
| | - Eric S Pringle
- Department of Microbiology and Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada.
| | - Mackenzie Thornbury
- Department of Microbiology and Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada.
- Department of Pathology and Cell Biology, University of Montreal, V-541 Pavillon Roger Gaudry, 2900 Boulevard Édouard-Montpetit, Montreal, QC H3C 3J7, Canada.
| | - Brett A Duguay
- Department of Microbiology and Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada.
| | - Susan M A Monro
- Department of Chemistry, Acadia University, 6 University Avenue, Wolfville, NS B4P 2R6, Canada.
- Photodynamic, Inc., 1344 Summer Street, Halifax, NS B3H 0A8, Canada.
| | - Marc Hetu
- Department of Chemistry, Acadia University, 6 University Avenue, Wolfville, NS B4P 2R6, Canada.
- Photodynamic, Inc., 1344 Summer Street, Halifax, NS B3H 0A8, Canada.
| | - Danika Knight
- Department of Microbiology and Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada.
| | - Colin G Cameron
- Photodynamic, Inc., 1344 Summer Street, Halifax, NS B3H 0A8, Canada.
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, 301 McIver Street, Greensboro, NC 27402, USA.
| | - Sherri A McFarland
- Photodynamic, Inc., 1344 Summer Street, Halifax, NS B3H 0A8, Canada.
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, 301 McIver Street, Greensboro, NC 27402, USA.
| | - Craig McCormick
- Department of Microbiology and Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
31
|
Bajpai VK, Alam MB, Quan KT, Choi HJ, An H, Ju MK, Lee SH, Huh YS, Han YK, Na M. Cytotoxic properties of the anthraquinone derivatives isolated from the roots of Rubia philippinensis. Altern Ther Health Med 2018; 18:200. [PMID: 29970094 PMCID: PMC6029275 DOI: 10.1186/s12906-018-2253-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/07/2018] [Indexed: 02/02/2023]
Abstract
Background Cancer is one of the most frequently occurring diseases and is the second leading cause of death worldwide. In this study, anthraquinone derivatives (Compounds 1–5) were evaluated for their anti-cancer potential against various skin and breast cancer cell lines to assess whether these anthraquinone derivatives may serve as a lead for the augmentation of anti-cancer drug. Methods Anthraquinone derivatives, 2-methyl-1,3,6-trihydroxy-9,10-anthraquinone-3-O-(6′-O-acetyl)-α-rhamnosyl(1 → 2)-β-glucoside (Comp 1), 2-methyl-1,3,6-trihydroxy-9,10-anthraquinone (Comp 2), and alizarin (Comp 3) were isolated from the dichloromethane fraction of the roots of Rubia philippinensis., whereas ethyl acetate fraction yielded xanthopurpurin (Comp 4) and lucidin-ω-methyl ether (Comp 5). Structures of all the isolated compounds were determined by spectral data analysis. All isolated compounds (Comp 1–5) were assessed for cytotoxicity by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay against four different cancer cell lines, i.e. human melanoma (SK-MEL-5), murine melanoma (B16F10), and human breast adenocarcinoma (MCF7 and MDA-MB-231). Results Significant activity of the compounds 4 and 5 was observed against the breast cancer cell line MDA-MB-231 with IC50 values of 14.65 ± 1.45 and 13.03 ± 0.33 μM, respectively. Encouragingly, IC50 values of 67.89 ± 1.02 and 79.01 ± 0.03 μM against normal kidney epithelial cells (MDCK) were also obtained for compounds 4 and 5, respectively, which indicated very low toxicity and favorable selectivity indices for compounds 4 and 5 in the range of 1.85 to 3.95 and 2.11 to 6.06 against skin cancer cell lines (SK-MEL-5, and B16F10), and breast cancer cell lines (MCF7 and MDA-MB-231), respectively. Conclusion Our results suggested that the compounds 4 (xanthopurpurin) and 5 (lucidin-ω-methyl ether) showed high selective toxicity towards breast cancer cells at lower concentrations without showing toxicity towards normal cells, thus could be of potential as new lead molecules in cancer treatment. Electronic supplementary material The online version of this article (10.1186/s12906-018-2253-2) contains supplementary material, which is available to authorized users.
Collapse
|
32
|
Buttachon S, Ramos AA, Inácio Â, Dethoup T, Gales L, Lee M, Costa PM, Silva AMS, Sekeroglu N, Rocha E, Pinto MMM, Pereira JA, Kijjoa A. Bis-Indolyl Benzenoids, Hydroxypyrrolidine Derivatives and Other Constituents from Cultures of the Marine Sponge-Associated Fungus Aspergillus candidus KUFA0062. Mar Drugs 2018; 16:E119. [PMID: 29642369 PMCID: PMC5923406 DOI: 10.3390/md16040119] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 03/27/2018] [Accepted: 04/05/2018] [Indexed: 01/27/2023] Open
Abstract
A previously unreported bis-indolyl benzenoid, candidusin D (2e) and a new hydroxypyrrolidine alkaloid, preussin C (5b) were isolated together with fourteen previously described compounds: palmitic acid, clionasterol, ergosterol 5,8-endoperoxides, chrysophanic acid (1a), emodin (1b), six bis-indolyl benzenoids including asterriquinol D dimethyl ether (2a), petromurin C (2b), kumbicin B (2c), kumbicin A (2d), 2″-oxoasterriquinol D methyl ether (3), kumbicin D (4), the hydroxypyrrolidine alkaloid preussin (5a), (3S, 6S)-3,6-dibenzylpiperazine-2,5-dione (6) and 4-(acetylamino) benzoic acid (7), from the cultures of the marine sponge-associated fungus Aspergillus candidus KUFA 0062. Compounds 1a, 2a-e, 3, 4, 5a-b, and 6 were tested for their antibacterial activity against Gram-positive and Gram-negative reference and multidrug-resistant strains isolated from the environment. Only 5a exhibited an inhibitory effect against S. aureus ATCC 29213 and E. faecalis ATCC29212 as well as both methicillin-resistant S. aureus (MRSA) and vancomycin-resistant enterococci (VRE) strains. Both 1a and 5a also reduced significant biofilm formation in E. coli ATCC 25922. Moreover, 2b and 5a revealed a synergistic effect with oxacillin against MRSA S. aureus 66/1 while 5a exhibited a strong synergistic effect with the antibiotic colistin against E. coli 1410/1. Compound 1a, 2a-e, 3, 4, 5a-b, and 6 were also tested, together with the crude extract, for cytotoxic effect against eight cancer cell lines: HepG2, HT29, HCT116, A549, A 375, MCF-7, U-251, and T98G. Except for 1a, 2a, 2d, 4, and 6, all the compounds showed cytotoxicity against all the cancer cell lines tested.
Collapse
Affiliation(s)
- Suradet Buttachon
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Lexões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| | - Alice A Ramos
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Lexões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| | - Ângela Inácio
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Lexões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| | - Tida Dethoup
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok 10240, Thailand.
| | - Luís Gales
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- Instituto de Biologia Molecular e Celular (i3S-IBMC), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Michael Lee
- Department of Chemistry, University of Leicester, University Road, Leicester LE 7 RH, UK.
| | - Paulo M Costa
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Lexões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| | - Artur M S Silva
- Departamento de Química & QOPNA, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - Nazim Sekeroglu
- Medicinal and Aromatic Plant Programme, Plant and Animal Sciences Department, Vocational School, Kilis 7 Aralık University, 79000 Kilis, Turkey.
| | - Eduardo Rocha
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Lexões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| | - Madalena M M Pinto
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Lexões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
- Laboratório de Química Orgânica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-3 13 Porto, Portugal.
| | - José A Pereira
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Lexões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| | - Anake Kijjoa
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Lexões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
33
|
Kelechi Ob R, Adamma She J. In vitro Antiviral Activities of Bryophyllum pinnatum (Odaa opuo) and Viscum album (Awuruse). ACTA ACUST UNITED AC 2018. [DOI: 10.3923/jm.2018.138.146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
34
|
Pandith SA, Dar RA, Lattoo SK, Shah MA, Reshi ZA. Rheum australe, an endangered high-value medicinal herb of North Western Himalayas: a review of its botany, ethnomedical uses, phytochemistry and pharmacology. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2018; 17:573-609. [PMID: 32214920 PMCID: PMC7088705 DOI: 10.1007/s11101-018-9551-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/25/2018] [Indexed: 05/05/2023]
Abstract
Rheum australe (Himalayan Rhubarb) is a multipurpose, endemic and endangered medicinal herb of North Western Himalayas. It finds extensive use as a medicinal herb since antiquity in different traditional systems of medicine to cure a wide range of ailments related to the circulatory, digestive, endocrine, respiratory and skeletal systems as well as to treat various infectious diseases. The remedying properties of this plant species are ascribed to a set of diverse bioactive secondary metabolite constituents, particularly anthraquinones (emodin, chrysophanol, physcion, aloe-emodin and rhein) and stilbenoids (piceatannol, resveratrol), besides dietary flavonoids known for their putative health benefits. Recent studies demonstrate the pharmacological efficacy of some of these metabolites and/or their derivatives as lead molecules for the treatment of various human diseases. Present review comprehensively covers the literature available on R. australe from 1980 to early 2018. The review provides up-to-date information available on its botany for easy identification of the plant, and origin and historical perspective detailing its trade and commerce. Distribution, therapeutic potential in relation to traditional uses and pharmacology, phytochemistry and general biosynthesis of major chemical constituents are also discussed. Additionally, efficient and reproducible in vitro propagation studies holding vital significance in preserving the natural germplasm of the plant and for its industrial exploitation have also been highlighted. The review presents a detailed perspective for future studies to conserve and sustainably make use of this endangered plant species at a commercial scale.
Collapse
Affiliation(s)
- Shahzad A. Pandith
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir 190006 India
| | - Riyaz Ahmad Dar
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir 190006 India
| | - Surrinder K. Lattoo
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001 India
| | - Manzoor A. Shah
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir 190006 India
| | - Zafar A. Reshi
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir 190006 India
| |
Collapse
|
35
|
Jia Z, Yang C, Jiao J, Li X, Zhu D, Yang Y, Yang J, Che Y, Lu Y, Feng X. Rhein and polydimethylsiloxane functionalized carbon/carbon composites as prosthetic implants for bone repair applications. ACTA ACUST UNITED AC 2017; 12:045004. [PMID: 28425918 DOI: 10.1088/1748-605x/aa6e27] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A major issue in bone tissue engineering is the selection of biocompatible materials for implants, to reduce unwanted inflammatory reactions and promote cell adhesion. Bone tissue growth on suitable biomedical implants can shorten recovery and hospitalization after surgery. Therefore, a method to improve tissue-implant integration and healing would be of scientific and clinical interest. In this work, we permeated polydimethylsiloxane (PDMS) into carbon/carbon (C/C) composites (PDMS-C/C) and then coated it with 4,5-dihydroxyanthraquinone-2-carboxylic acid (rhein) to create rhein-PDMS-C/C to increase its biocompatibility and reduce the occurrence of inflammatory reactions. We measured in vitro adhesion and proliferation of MC3T3-E1 cells and bacteria to evaluate the biocompatibility and antimicrobial properties of C/C, PDMS-C/C, and rhein-PDMS-C/C. In vivo, x-ray and micro-CT evaluation three, six and nine weeks after surgery revealed that rhein-PDMS-C/C was more effective than PDMS-C/C and C/C composite in terms of antibacterial activity, cell adhesion and tissue growth. Compared with C/C and PDMS-C/C, rhein-PDMS-C/C could be suitable for clinical applications for bone tissue engineering.
Collapse
Affiliation(s)
- Zhenzhen Jia
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Esposito F, Carli I, Del Vecchio C, Xu L, Corona A, Grandi N, Piano D, Maccioni E, Distinto S, Parolin C, Tramontano E. Sennoside A, derived from the traditional chinese medicine plant Rheum L., is a new dual HIV-1 inhibitor effective on HIV-1 replication. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:1383-1391. [PMID: 27765358 DOI: 10.1016/j.phymed.2016.08.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/19/2016] [Accepted: 08/09/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Despite the availability of effective antiretroviral therapies, drugs for HIV-1 treatment with new mode of action are still needed. An innovative approach is aimed to identify dual HIV-1 inhibitors, small molecules that can inhibit two viral functions at the same time. Rhubarb, originated from Rheum palmatum L. and Rheum officinale Baill., is one of the earliest and most commonly used medicinal plants in Traditional Chinese Medicine (TCM) practice. We wanted to explore TCM for the identification of new chemical scaffolds with dual action abilities against HIV-1. METHODS R. palmatum L. and R. officinale Baill. extracts along with their main single isolated constituents anthraquinone derivatives were tested on both HIV-1 Reverse Transcriptase (RT)-associated DNA Polymerase (RDDP) and Ribonuclease H (RNase H) activities in biochemical assays. Active compounds were then assayed for their effects on HIV-1 mutated RTs, integrase (IN) and viral replication. RESULTS Both R. palmatum L. and R. officinale Baill. extracts inhibited the HIV-1 RT-associated RNase H activity. Among the isolated constituents, Sennoside A and B were effective on both RDDP and RNase H RT-associated functions in biochemical assays. Sennoside A was less potent when tested on K103N, Y181C, Y188L, N474A and Q475A mutated RTs, suggesting the involvement of two RT binding sites for its antiviral activity. Sennoside A affected also HIV-1 IN activity in vitro and HIV-1 replication in cell-based assays. Viral DNA production and time of addition studies showed that Sennoside A targets the HIV-1 reverse transcription process. CONCLUSION Sennoside A is a new scaffold for the development of HIV-1 dual RT inhibitors.
Collapse
Affiliation(s)
- Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella di Monserrato SS554, 09042, Monserrato, Cagliari, Italy
| | - Ilaria Carli
- Department of Molecular Medicine, University of Padova, via Gabelli 63, 35121 Padova, Italy
| | - Claudia Del Vecchio
- Department of Molecular Medicine, University of Padova, via Gabelli 63, 35121 Padova, Italy
| | - Lijia Xu
- Institute of Medicinal Plant Development (IMPLAD), 151 Malianwa North Road Haidian District, 100193 Beijing, China
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella di Monserrato SS554, 09042, Monserrato, Cagliari, Italy
| | - Nicole Grandi
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella di Monserrato SS554, 09042, Monserrato, Cagliari, Italy
| | - Dario Piano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella di Monserrato SS554, 09042, Monserrato, Cagliari, Italy
| | - Elias Maccioni
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella di Monserrato SS554, 09042, Monserrato, Cagliari, Italy
| | - Simona Distinto
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella di Monserrato SS554, 09042, Monserrato, Cagliari, Italy
| | - Cristina Parolin
- Department of Molecular Medicine, University of Padova, via Gabelli 63, 35121 Padova, Italy.
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella di Monserrato SS554, 09042, Monserrato, Cagliari, Italy; Genetics and Biomedical Research institute, National Research Council (CNR), Cittadella di Monserrato SS554, 09042, Monserrato, Cagliari, Italy.
| |
Collapse
|
37
|
Abstract
Many plant essential oils, extracts, and individual chemical components have been demonstrated to possess antiviral efficacy against enveloped and/or non-enveloped viruses. In general, plant antimicrobials exhibit greater antiviral efficacy against enveloped viruses than non-enveloped viruses (though not in all cases). There appear to be multiple mechanisms of antiviral action for plant antimicrobials; nevertheless, the majority of antimicrobials appear to act either directly on the virus itself (e.g., on the envelope or capsid) or during the early stages of virus replication following internalization of the virus into its host cell.
Collapse
|
38
|
Nocchi SR, de Moura-Costa GF, Novello CR, Rodrigues J, Longhini R, de Mello JCP, Filho BPD, Nakamura CV, Ueda-Nakamura T. In vitro Cytotoxicity and Anti-herpes Simplex Virus Type 1 Activity of Hydroethanolic Extract, Fractions, and Isolated Compounds from Stem Bark of Schinus terebinthifolius Raddi. Pharmacogn Mag 2016; 12:160-4. [PMID: 27076754 PMCID: PMC4809172 DOI: 10.4103/0973-1296.177903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Background: Herpes simplex virus type 1 (HSV-1) is associated with orofacial infections and is transmitted by direct contact with infected secretions. Several efforts have been expended in the search for drugs to the treatment for herpes. Schinus terebinthifolius is used in several illnesses and among them, for the topical treatment of skin wounds, especially wounds of mucous membranes, whether infected or not. Objective: To evaluate the cytotoxicity and anti-HSV-1 activity of the crude hydroethanolic extract (CHE) from the stem bark of S. terebinthifolius, as well as its fractions and isolated compounds. Materials and Methods: The CHE was subjected to bioguided fractionation. The anti-HSV-1 activity and the cytotoxicity of the CHE, its fractions, and isolated compounds were evaluated in vitro by SRB method. A preliminar investigation of the action of CHE in the virus–host interaction was conducted by the same assay. Results: CHE presented flavan-3-ols and showed anti-HSV-1 activity, better than its fractions and isolated compounds. The class of substances found in CHE can bind to proteins to form unstable complexes and enveloped viruses, as HSV-1 may be vulnerable to this action. Our results suggest that the CHE interfered with virion envelope structures, masking viral receptors that are necessary for adsorption or entry into host cells. Conclusion: The plant investigated exhibited potential for future development treatment against HSV-1, but further tests are necessary, especially to elucidate the mechanism of action of CHE, as well as preclinical and clinical studies to confirm its safety and efficacy. SUMMARY
Crude hydroethanolic extract (CHE) presents promising activity against herpes simplex virus type 1 (HSV 1), with selectivity index (SI) = 22.50 CHE has flavan-3-ols in its composition, such as catechin and gallocatechin The fractions and isolated compounds obtained from CHE by bioguided fractionation are less active than the CHE against HSV-1 CHE interferes with viral entry process in the host cell and acts directly on the viral particle. Abbreviations used: HSV: Herpes simplex virus, CHE: Crude hydroethanolic extract, WF: Water fraction, AF: Ethyl-acetate fraction, MPLC: Medium-performance liquid chromatography, TLC: Thin-layer chromatography, NMR: Nuclear magnetic resonance, ESI-MS: Electrospray ionization mass spectrometry, SRB: Sulforhodamine B, CPE: Cytopathic effect, CC50: 50% cytotoxic concentration, EC50: 50% effective concentration, PBS: Phosphate-buffered saline.
Collapse
Affiliation(s)
- Samara Requena Nocchi
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | | | - Claudio Roberto Novello
- Coordination of Chemical Engineering, Federal Technical University of Paraná, Francisco Beltrão Campus, Santa Barbara Line s/n, BR-85601-970, Francisco Beltrão, Paraná, Brazil
| | - Juliana Rodrigues
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Renata Longhini
- Department of Pharmacy, State University of Maringá, Av. Colombo 5790, BR-87020-900, Maringá, Paraná, Brazil
| | - João Carlos Palazzo de Mello
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil; Department of Pharmacy, State University of Maringá, Av. Colombo 5790, BR-87020-900, Maringá, Paraná, Brazil
| | - Benedito Prado Dias Filho
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil; Department of Health Basic Sciences, State University of Maringá, Av. Colombo 5790, BR-87020-900, Maringá, Paraná, Brazil
| | - Celso Vataru Nakamura
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil; Department of Health Basic Sciences, State University of Maringá, Av. Colombo 5790, BR-87020-900, Maringá, Paraná, Brazil
| | - Tânia Ueda-Nakamura
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil; Department of Health Basic Sciences, State University of Maringá, Av. Colombo 5790, BR-87020-900, Maringá, Paraná, Brazil
| |
Collapse
|
39
|
Fouillaud M, Venkatachalam M, Girard-Valenciennes E, Caro Y, Dufossé L. Anthraquinones and Derivatives from Marine-Derived Fungi: Structural Diversity and Selected Biological Activities. Mar Drugs 2016; 14:E64. [PMID: 27023571 PMCID: PMC4849068 DOI: 10.3390/md14040064] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/12/2016] [Accepted: 03/08/2016] [Indexed: 12/11/2022] Open
Abstract
Anthraquinones and their derivatives constitute a large group of quinoid compounds with about 700 molecules described. They are widespread in fungi and their chemical diversity and biological activities recently attracted attention of industries in such fields as pharmaceuticals, clothes dyeing, and food colorants. Their positive and/or negative effect(s) due to the 9,10-anthracenedione structure and its substituents are still not clearly understood and their potential roles or effects on human health are today strongly discussed among scientists. As marine microorganisms recently appeared as producers of an astonishing variety of structurally unique secondary metabolites, they may represent a promising resource for identifying new candidates for therapeutic drugs or daily additives. Within this review, we investigate the present knowledge about the anthraquinones and derivatives listed to date from marine-derived filamentous fungi's productions. This overview highlights the molecules which have been identified in microorganisms for the first time. The structures and colors of the anthraquinoid compounds come along with the known roles of some molecules in the life of the organisms. Some specific biological activities are also described. This may help to open doors towards innovative natural substances.
Collapse
Affiliation(s)
- Mireille Fouillaud
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis Cedex 9, Ile de la Réunion, France.
- Ecole Supérieure d'Ingénieurs Réunion Océan Indien-ESIROI, 2 Rue Joseph Wetzell, F-97490 Sainte-Clotilde, Ile de la Réunion, France.
| | - Mekala Venkatachalam
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis Cedex 9, Ile de la Réunion, France.
| | - Emmanuelle Girard-Valenciennes
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis Cedex 9, Ile de la Réunion, France.
| | - Yanis Caro
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis Cedex 9, Ile de la Réunion, France.
- Ecole Supérieure d'Ingénieurs Réunion Océan Indien-ESIROI, 2 Rue Joseph Wetzell, F-97490 Sainte-Clotilde, Ile de la Réunion, France.
| | - Laurent Dufossé
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis Cedex 9, Ile de la Réunion, France.
- Ecole Supérieure d'Ingénieurs Réunion Océan Indien-ESIROI, 2 Rue Joseph Wetzell, F-97490 Sainte-Clotilde, Ile de la Réunion, France.
| |
Collapse
|
40
|
Zhang H, Li S, Liu X, Yuan F, Liang Y, Shi Z. Determination of Five Anthraquinone Derivatives in Sticky Traditional Chinese Patent Medicines by Subzero-Temperature Liquid–Liquid Extraction Combined with High-Performance Liquid Chromatography. J LIQ CHROMATOGR R T 2015. [DOI: 10.1080/10826076.2014.922474] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Hongyi Zhang
- a College of Chemistry and Environmental Science , Hebei University , Baoding , China
- b Key Laboratory of Analytical Science and Technology of Hebei Province , Baoding , China
| | - Shasha Li
- a College of Chemistry and Environmental Science , Hebei University , Baoding , China
| | - Xiaozhe Liu
- a College of Chemistry and Environmental Science , Hebei University , Baoding , China
| | - Feifei Yuan
- a College of Chemistry and Environmental Science , Hebei University , Baoding , China
| | - Yuhuan Liang
- a College of Chemistry and Environmental Science , Hebei University , Baoding , China
| | - Zhihong Shi
- a College of Chemistry and Environmental Science , Hebei University , Baoding , China
- b Key Laboratory of Analytical Science and Technology of Hebei Province , Baoding , China
| |
Collapse
|
41
|
Chattopadhyay D, Ojha D, Mondal S, Goswami D. Validation of Antiviral Potential of Herbal Ethnomedicine. EVIDENCE-BASED VALIDATION OF HERBAL MEDICINE 2015. [PMCID: PMC7150199 DOI: 10.1016/b978-0-12-800874-4.00008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Natural products are the basis of treatment since the dawn of human civilization, and modern medicine has gradually developed, over the years, by scientific and observational efforts from traditional medicine. Today most of the synthetic drugs showed adverse and unacceptable side effects, however, impressive bioactivities with reduced toxicities were reported for many botanicals against several chronic or difficult-to-treat diseases. A whole range of viral diseases including human immunodeficiency virus/acquired immunodeficiency syndrome, severe acute respiratory syndrome, Rabies, Dengue, and Herpes need effective drugs. Considerable research has been carried out on the pharmacognosy, chemistry, pharmacology, and therapeutics of traditional medicines of diverse cultures, and many pharmaceutical companies have renewed their strategies for antiviral drug development where no effective drugs or vaccine exist. Thus, phytochemicals with antiviral potentials need to be studied in depth with standardization, chemical isolation, effectivity, molecular mechanism, along with in vivo toxicity and efficacy to reduce cost and time. This review will portray the scientific approaches and methodologies used for the development of antiviral leads from traditional medicines against selected genetically and functionally diverse viral infections.
Collapse
|
42
|
Alam Z, Al-Mahdi Z, Zhu Y, McKee Z, Parris DS, Parikh HI, Kellogg GE, Kuchta A, McVoy MA. Anti-cytomegalovirus activity of the anthraquinone atanyl blue PRL. Antiviral Res 2014; 114:86-95. [PMID: 25499125 PMCID: PMC4289655 DOI: 10.1016/j.antiviral.2014.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 11/28/2022]
Abstract
The anthraquinone atanyl blue PRL inhibits human cytomegalovirus replication. The block to viral replication appears early after entry and substantially reduces viral immediate early gene expression. In vitro, atanyl blue PRL inhibits the nuclease activity of purified viral alkaline nuclease, UL98. The antiviral activity of atanyl blue PRL may be manifested through inhibition of UL98’s nuclease activity. Human cytomegalovirus (CMV) causes significant disease in immunocompromised patients and serious birth defects if acquired in utero. Available CMV antivirals target the viral DNA polymerase, have significant toxicities, and suffer from resistance. New drugs targeting different pathways would be beneficial. The anthraquinone emodin is proposed to inhibit herpes simplex virus by blocking the viral nuclease. Emodin and related anthraquinones are also reported to inhibit CMV. In the present study, emodin reduced CMV infectious yield with an EC50 of 4.9 μM but was cytotoxic at concentrations only twofold higher. Related anthraquinones acid blue 40 and alizarin violet R inhibited CMV at only high concentrations (238–265 μM) that were also cytotoxic. However, atanyl blue PRL inhibited infectious yield of CMV with an EC50 of 6.3 μM, significantly below its 50% cytotoxic concentration of 216 μM. Atanyl blue PRL reduced CMV infectivity and inhibited spread. When added up to 1 h after infection, it dramatically reduced CMV immediate early protein expression and blocked viral DNA synthesis. However, it had no antiviral activity when added 24 h after infection. Interestingly, atanyl blue PRL inhibited nuclease activities of purified CMV UL98 protein with IC50 of 4.5 and 9.3 μM. These results indicate that atanyl blue PRL targets very early post-entry events in CMV replication and suggest it may act through inhibition of UL98, making it a novel CMV inhibitor. This compound may provide valuable insights into molecular events that occur at the earliest times post-infection and serve as a lead structure for antiviral development.
Collapse
Affiliation(s)
- Zohaib Alam
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Zainab Al-Mahdi
- Medical Science Department, College of Nursing, University of Babylon, Babylon, Iraq
| | - Yali Zhu
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Zachary McKee
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Deborah S Parris
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Hardik I Parikh
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Glen E Kellogg
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Alison Kuchta
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Michael A McVoy
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.
| |
Collapse
|
43
|
Li SW, Yang TC, Lai CC, Huang SH, Liao JM, Wan L, Lin YJ, Lin CW. Antiviral activity of aloe-emodin against influenza A virus via galectin-3 up-regulation. Eur J Pharmacol 2014; 738:125-32. [DOI: 10.1016/j.ejphar.2014.05.028] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/10/2014] [Accepted: 05/13/2014] [Indexed: 02/01/2023]
|
44
|
Mechanisms of antiviral action of plant antimicrobials against murine norovirus. Appl Environ Microbiol 2014; 80:4898-910. [PMID: 24907316 DOI: 10.1128/aem.00402-14] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Numerous plant compounds have antibacterial or antiviral properties; however, limited research has been conducted with nonenveloped viruses. The efficacies of allspice oil, lemongrass oil, and citral were evaluated against the nonenveloped murine norovirus (MNV), a human norovirus surrogate. The antiviral mechanisms of action were also examined using an RNase I protection assay, a host cell binding assay, and transmission electron microscopy. All three antimicrobials produced significant reductions (P ≤ 0.05) in viral infectivity within 6 h of exposure (0.90 log10 to 1.88 log10). After 24 h, the reductions were 2.74, 3.00, and 3.41 log10 for lemongrass oil, citral, and allspice oil, respectively. The antiviral effect of allspice oil was both time and concentration dependent; the effects of lemongrass oil and citral were time dependent. Based on the RNase I assay, allspice oil appeared to act directly upon the viral capsid and RNA. The capsids enlarged from ≤ 35 nm to up to 75 nm following treatment. MNV adsorption to host cells was not significantly affected. Alternatively, the capsid remained intact following exposure to lemongrass oil and citral, which appeared to coat the capsid, causing nonspecific and nonproductive binding to host cells that did not lead to successful infection. Such contrasting effects between allspice oil and both lemongrass oil and citral suggest that though different plant compounds may yield similar reductions in virus infectivity, the mechanisms of inactivation may be highly varied and specific to the antimicrobial. This study demonstrates the antiviral properties of allspice oil, lemongrass oil, and citral against MNV and thus indicates their potential as natural food and surface sanitizers to control noroviruses.
Collapse
|
45
|
Teng ZH, Zhou SY, Ran YH, Liu XY, Yang RT, Yang X, Yuan CJ, Mei QB. Cellular Absorption of Anthraquinones Emodin and Chrysophanol in Human Intestinal Caco-2 Cells. Biosci Biotechnol Biochem 2014; 71:1636-43. [PMID: 17617731 DOI: 10.1271/bbb.70025] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The intestinal absorption characteristics of anthraquinones emodin and chrysophanol were observed by measuring the intracellular accumulation across Caco-2 cells by the reverse-phase high performance liquid chromatography. The intracellular accumulation of chrysophanol was much greater than that of emodin, the maximum absorption of emodin and chrysophanol being 414.02+/-15.28 and 105.56+/-11.57 nmol/l x mg x protein, respectively. The absorption of each anthraquinone was significantly lower at 4 degrees C than that of 37 degrees C. The effects of the transport inhibitors, verapamil, cyclosporine and phloridzin, on the intracellular accumulation were also examined. Verapamil and cyclosporine increased the absorption of emodin and chrysophanol, while phloridzin inhibited their absorption, all in a dose-dependent manner. These results suggest that the absorption characteristics of emodin and chrysophanol were closely related to their special structure with the hydroxy groups. It is also likely that a specific transport system mediated the intracellular accumulation of emodin and chrysophanol across the Caco-2 cells.
Collapse
Affiliation(s)
- Zeng-hui Teng
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaan'xi, China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Li YJ, Huang HM, Ye Q, Hou LF, Yu WB, Jia JH, Gao JR. The Construction of Polysubstituted Aromatic Core Derivativesviaa Cycloaddition/Oxidative Aromatization Sequence from Quinone and β-Enamino Esters. Adv Synth Catal 2014. [DOI: 10.1002/adsc.201300892] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
47
|
Antiviral activity of Rheum palmatum methanol extract and chrysophanol against Japanese encephalitis virus. Arch Pharm Res 2014; 37:1117-23. [PMID: 24395532 PMCID: PMC7091366 DOI: 10.1007/s12272-013-0325-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 12/24/2013] [Indexed: 11/13/2022]
Abstract
Rheum palmatum, Chinese traditional herb, exhibits a great variety of anti-cancer and anti-viruses properties. This study rates antiviral activity of R. palmatum extracts and its components against Japanese encephalitis virus (JEV) in vitro. Methanol extract of R. palmatum contained higher levels of aloe emodin, chrysophanol, rhein, emodin and physcion than water extract. Methanol extract (IC50 = 15.04 μg/ml) exhibited more potent inhibitory effects on JEV plaque reduction than water extract (IC50 = 51.41 μg/ml). Meanwhile, IC50 values determined by plaque reduction assay were 15.82 μg/ml for chrysophanol and 17.39 μg/ml for aloe-emodin, respectively. Virucidal activity of agents correlated with anti-JEV activity, while virucidal IC50 values were 7.58 μg/ml for methanol extract, 17.36 μg/ml for water extract, 0.75 μg/ml for chrysophanol and 0.46 μg/ml for aloe-emodin, respectively. In addition, 10 μg/ml of extract, chrysophanol or aloe emodin caused 90 % inhibition of JEV yields in cells and significantly activated gamma activated sequence-driven promoters. Hence, methanol extract of R. palmatum and chrysophanol with high therapeutic index might be useful for development of antiviral agents against JEV.
Collapse
|
48
|
|
49
|
Ahmad W, Zaidi SMA, Mujeeb M, Ansari SH, Ahmad S. HPLC and HPTLC methods by design for quantitative characterization and in vitro anti-oxidant activity of polyherbal formulation containing Rheum emodi. J Chromatogr Sci 2013; 52:911-8. [PMID: 23978770 DOI: 10.1093/chromsci/bmt123] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Safoof-e-Pathar phori (SPP) is a traditional polyherbal formulation and has been used since long time for its anti-urolithiatic activity. It contains three plant constituents Didymocarpous pedicellata, Dolichous biflorus and Rheum emodi. Emodin and chrysophanic acid were selected as chemical markers for SPP and quantified using simultaneous HPTLC and RP-HPLC methods in R. emodi and in SPP. The simultaneous methods were found linear r(2) = 0.991 in a wide range (10-800 ng spot(-1) with HPTLC, 5-500 µg mL(-1) with HPLC) precise, accurate and robust for both the drugs. Anti-oxidant activity of SPP, R. emodi as well as standard emodin and chrysophanic acid were determined by using DPPH (2,2-diphenyl-1-picryl hydrazyl radical), which showed better activity of R. emodi (IC50 = 12.27) extract when compared with SPP (IC50 = 32.99) and standard drugs (IC50 = 66.81). The robustness of methods were proved by applying the Box-Behnken response surface design software and other validation parameters evaluated were satisfactorily met; hence, the developed method found suitable for application in the quality control of several formulations containing emodin and chrysophanic acid.
Collapse
Affiliation(s)
- Wasim Ahmad
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), Jamia Hamdard, New Delhi 110062, India
| | - Syed Mohammad Arif Zaidi
- Department of Surgery, Faculty of Medicine, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Mohd Mujeeb
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), Jamia Hamdard, New Delhi 110062, India
| | - Shahid Hussain Ansari
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), Jamia Hamdard, New Delhi 110062, India
| | - Sayeed Ahmad
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
50
|
Zhang Q, Wang CH, Ma YM, Zhu EY, Wang ZT. UPLC-ESI/MS determination of 17 active constituents in two categorized formulas of traditional Chinese medicine, Sanhuang Xiexin Tang and Fuzi Xiexin Tang: application in comparing the differences in decoctions and macerations. Biomed Chromatogr 2013; 27:1079-88. [PMID: 23629873 DOI: 10.1002/bmc.2910] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 02/28/2013] [Accepted: 03/04/2013] [Indexed: 11/07/2022]
Abstract
A rapid and sensitive UPLC-ESI/MS method was established and validated to determine 17 active constituents (aconitine, hypaconitine, mesaconitine, benzoylaconine, benzoylhypaconine, benzoylmesaconine, berberine, palmatine, jatrorrhizine, coptisine, baicalein, wogonin, baicalin, wogonoside, emodin, aloe-emodin and rhein) in Sanhuang Xiexin Tang (SXT) and Fuzi Xiexin Tang (FXT), which are two classic compound recipes from Xiexin Tang categorized formulas in traditional Chinese medicien. The separation was performed on a UPLC BEH C18 column gradient eluted using acetonitrile and 0.1% formic acid as mobile phase. ESI/MS was operated in positive ([M + H](+)) in selected ion recording mode for analysis of alkaloids and flavones, while in negative ([M - H](-)) selected ion recording mode for anthraquinones. All of the 17 constituents exhibited good linearity in a relatively wide concentration ranges with the lowest limits of detection of 0.38 ng/mL. All of the relative standard deviation values of intra- and inter-precisions and stabilities of 17 constituents were within 5%. The method was successfully applied to determine 17 active constituents in decoctions and macerations of SXT and FXT. The results indicated that different preparative methods resulted in significant diversity in concentrations of the 17 analytes. Herb-herb interaction appeared between aconitum alkaloids in Aconiti Lateralis Radix Preparata and another three herbs.
Collapse
Affiliation(s)
- Qian Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | | | | | | | | |
Collapse
|