1
|
Hadamitzky M, Lückemann L, Pacheco-López G, Schedlowski M. Pavlovian Conditioning of Immunological and Neuroendocrine Functions. Physiol Rev 2020; 100:357-405. [DOI: 10.1152/physrev.00033.2018] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The phenomenon of behaviorally conditioned immunological and neuroendocrine functions has been investigated for the past 100 yr. The observation that associative learning processes can modify peripheral immune functions was first reported and investigated by Ivan Petrovic Pavlov and his co-workers. Their work later fell into oblivion, also because so little was known about the immune system’s function and even less about the underlying mechanisms of how learning, a central nervous system activity, could affect peripheral immune responses. With the employment of a taste-avoidance paradigm in rats, this phenomenon was rediscovered 45 yr ago as one of the most fascinating examples of the reciprocal functional interaction between behavior, the brain, and peripheral immune functions, and it established psychoneuroimmunology as a new research field. Relying on growing knowledge about efferent and afferent communication pathways between the brain, neuroendocrine system, primary and secondary immune organs, and immunocompetent cells, experimental animal studies demonstrate that cellular and humoral immune and neuroendocrine functions can be modulated via associative learning protocols. These (from the classical perspective) learned immune responses are clinically relevant, since they affect the development and progression of immune-related diseases and, more importantly, are also inducible in humans. The increased knowledge about the neuropsychological machinery steering learning and memory processes together with recent insight into the mechanisms mediating placebo responses provide fascinating perspectives to exploit these learned immune and neuroendocrine responses as supportive therapies, the aim being to reduce the amount of medication required, diminishing unwanted drug side effects while maximizing the therapeutic effect for the patient’s benefit.
Collapse
Affiliation(s)
- Martin Hadamitzky
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany; Health Sciences Department, Metropolitan Autonomous University (UAM), Campus Lerma, Mexico; and Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Laura Lückemann
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany; Health Sciences Department, Metropolitan Autonomous University (UAM), Campus Lerma, Mexico; and Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gustavo Pacheco-López
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany; Health Sciences Department, Metropolitan Autonomous University (UAM), Campus Lerma, Mexico; and Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany; Health Sciences Department, Metropolitan Autonomous University (UAM), Campus Lerma, Mexico; and Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
CHEN Z, CHEN H, CHEN F, GU D, SUN L, ZHANG W, FAN L, LIN Y, DONG R, LAI K. Vagotomy Decreases the Neuronal Activities of Medulla Oblongata and Alleviates Neurogenic Inflammation of Airways Induced by Repeated Intra-Esophageal Instillation of HCl in Guinea Pigs. Physiol Res 2017; 66:1021-1028. [DOI: 10.33549/physiolres.933574] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Neuronal activity in the medulla oblongata and neurogenic inflammation of airways were investigated in a guinea pig model induced by repeated intra-esophageal instillation of hydrochloric acid (HCl) after vagotomy. Unilateral vagotomy was performed in the vagotomy group, while a sham-operation was performed in the sham group. Operation was not conducted in sham control group. Airway inflammation was observed with hematoxylin and eosin (HE) staining. C-fos protein was measured by immunohistochemistry (IHC) and Western blot (WB). Substance P was examined by IHC and enzyme-linked immuno sorbent assay (ELISA). Airway microvascular permeability was detected by evans blue dye (EBD) fluorescence. Inflammation of airway was observed in the trachea and bronchi after chronic HCl perfusion into the lower esophagus, and was alleviated after unilateral vagotomy. C-fos expression in the medulla oblongata was lower in the vagotomy group compared to the sham control and sham groups. Substance P-like immunoreactivity (SP-li), concentration and microvascular leakage in airway were lower in the vagotomy group than that in the other groups. Our results suggest that vagotomy improved neurogenic inflammation of airways and decreased neuronal activities, the afferent nerves and neurons in medulla oblongata may be involved in neurogenic inflammation of airways mediated by esophageal-bronchial reflex.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - R. DONG
- Medical School of Southeast University, Nanjing, China
| | - K. LAI
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Disease, Guangzhou, China
| |
Collapse
|
3
|
Stadlbauer U, Arnold M, Weber E, Langhans W. Possible mechanisms of circulating PYY-induced satiation in male rats. Endocrinology 2013; 154:193-204. [PMID: 23239815 DOI: 10.1210/en.2012-1956] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Peptide tyrosine-tyrosine (PYY) is implicated in eating control, but the site(s) and mechanism(s) of its action remain uncertain. We tested acute effects of intrameal hepatic portal vein (HPV) PYY(3-36) infusions on eating in adult, male rats and measured HPV and jugular vein (JV) plasma levels of PYY in response to a solid, mixed-nutrient meal. We also examined the effects of HPV PYY(3-36) infusions on JV plasma levels, flavor acceptance, and neuronal activation. Intrameal HPV PYY(3-36) infusions [1 and 3 nmol/kg body weight (BW)] selectively reduced (P < 0.05) ongoing meal size. HPV PYY levels increased (P < 0.05) during a chow (12.5 kcal) or an isocaloric high-fat meal. JV PYY levels were generally lower than HPV levels but also increased in response to the chow meal. HPV PYY(3-36) infusion (1 nmol/kg BW) caused a greater increase in JV PYY than a meal, but neither 1 nor 3 nmol/kg BW PYY(3-36) caused conditioned flavor avoidance. HPV PYY(3-36) (1 nmol/kg BW) increased the number of c-Fos-expressing cells in the nucleus tractus solitarii, the hypothalamic arcuate and paraventricular nuclei, the central area of the amygdala, and the nucleus accumbens but not in the area postrema and parabrachial nucleus. These data show that HPV infusions of PYY(3-36) inhibit eating in rats without causing avoidance, and they identify some brain areas that might be involved. Endogenous PYY may induce satiation by acting directly in the brain, but further studies should examine whether PYY(3-36) administrations that mimic the meal-induced increase in plasma PYY are sufficient to inhibit eating.
Collapse
Affiliation(s)
- Ulrike Stadlbauer
- Swiss Federal Institute of Technology Zurich, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland.
| | | | | | | |
Collapse
|
4
|
Labouesse MA, Stadlbauer U, Weber E, Arnold M, Langhans W, Pacheco-López G. Vagal afferents mediate early satiation and prevent flavour avoidance learning in response to intraperitoneally infused exendin-4. J Neuroendocrinol 2012; 24:1505-16. [PMID: 22827554 DOI: 10.1111/j.1365-2826.2012.02364.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 06/28/2012] [Accepted: 07/21/2012] [Indexed: 12/13/2022]
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) agonists such as exendin-4 (Ex-4) affect eating and metabolism and are potential candidates for treating obesity and type II diabetes. In the present study, we tested whether vagal afferents mediate the eating-inhibitory and avoidance-inducing effects of Ex-4. Subdiaphragmatic vagal deafferentation (SDA) blunted the short-term (< 1 h) but not long-term eating-inhibitory effect of i.p.-infused Ex-4 (0.1 μg/kg) in rats. A dose of 1 μg/kg Ex-4 reduced 0.5, 1, 2 and 4 h cumulative food intake in SDA and sham-operated rats to a similar extent. Paradoxically, SDA but not sham rats developed a conditioned flavour avoidance (CFA) after i.p. Ex-4 (0.1 μg/kg). SDA completely blunted the induction of c-Fos expression by Ex-4 in the hypothalamic paraventricular nucleus. Ex-4, however, increased the number of c-Fos expressing cells, independent of intact vagal afferents, in the nucleus accumbens and in the central nucleus of the amygdala, the lateral external parabrachial nucleus, the caudal ventrolateral medulla and the dorsal vagal complex. These data suggest that intact vagal afferents are only necessary for the full expression of the early satiating effect of Ex-4 but not for later eating-inhibitory actions, when circulating Ex-4 might reach the brain via the circulation. Our data also dissociate the satiating and avoidance-inducing effects of the low Ex-4 dose tested under our conditions and suggest that vagal afferent signalling may protect against the development of CFA. Taken together, these findings reveal a complex role of vagal afferents in mediating the effects of GLP-1R activation on ingestive behaviour.
Collapse
Affiliation(s)
- M A Labouesse
- Physiology and Behaviour Laboratory, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
| | | | | | | | | | | |
Collapse
|
5
|
Antigen-induced changes in odor attractiveness and reproductive output in male mice. Brain Behav Immun 2012; 26:451-8. [PMID: 22178900 DOI: 10.1016/j.bbi.2011.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 11/11/2011] [Accepted: 11/30/2011] [Indexed: 11/22/2022] Open
Abstract
Modulation of social signals by antigen-induced immunoenhancement is a significant component of behavioral and reproductive adaptations of a host population to parasitic pressure. To investigate this concept, we studied odor attractiveness and reproductive output of ICR male mice treated with keyhole limpet hemocyanin (KLH) as an antigenic stimulus. We collected urine samples for olfactory preference tests (control vs. KLH administration) on different days following treatment. We found that the differences in odor attractiveness between control and immunized males, which were observed on the 3rd day, disappeared soon afterwards. Odor attractiveness of male mice positively correlated with their immunoresponsiveness, which was assessed by the sum of anti-KLH IgG1 and anti-KLH IgG2a titers. According to the hypothesis of terminal investment, antigen-treated males had higher reproductive output in comparison with control males and produced more progeny as a result.
Collapse
|
6
|
Pacheco-López G, Bermúdez-Rattoni F. Brain-immune interactions and the neural basis of disease-avoidant ingestive behaviour. Philos Trans R Soc Lond B Biol Sci 2011; 366:3389-405. [PMID: 22042916 PMCID: PMC3189354 DOI: 10.1098/rstb.2011.0061] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neuro-immune interactions are widely manifested in animal physiology. Since immunity competes for energy with other physiological functions, it is subject to a circadian trade-off between other energy-demanding processes, such as neural activity, locomotion and thermoregulation. When immunity is challenged, this trade-off is tilted to an adaptive energy protecting and reallocation strategy that is identified as 'sickness behaviour'. We review diverse disease-avoidant behaviours in the context of ingestion, indicating that several adaptive advantages have been acquired by animals (including humans) during phylogenetic evolution and by ontogenetic experiences: (i) preventing waste of energy by reducing appetite and consequently foraging/hunting (illness anorexia), (ii) avoiding unnecessary danger by promoting safe environments (preventing disease encounter by olfactory cues and illness potentiation neophobia), (iii) help fighting against pathogenic threats (hyperthermia/somnolence), and (iv) by associative learning evading specific foods or environments signalling danger (conditioned taste avoidance/aversion) and/or at the same time preparing the body to counteract by anticipatory immune responses (conditioning immunomodulation). The neurobiology behind disease-avoidant ingestive behaviours is reviewed with special emphasis on the body energy balance (intake versus expenditure) and an evolutionary psychology perspective.
Collapse
Affiliation(s)
- Gustavo Pacheco-López
- Physiology and Behaviour Laboratory, ETH (Swiss Federal Institute of Technology)-Zurich, Schwerzenbach 8603, Switzerland
| | - Federico Bermúdez-Rattoni
- Neuroscience Division, Cellular Physiology Institute, UNAM (National University of Mexico), Mexico City 04510, Mexico
| |
Collapse
|
7
|
Doenlen R, Krügel U, Wirth T, Riether C, Engler A, Prager G, Engler H, Schedlowski M, Pacheco-López G. Electrical activity in rat cortico-limbic structures after single or repeated administration of lipopolysaccharide or staphylococcal enterotoxin B. Proc Biol Sci 2010; 278:1864-72. [PMID: 21106598 DOI: 10.1098/rspb.2010.2040] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Immune-to-brain communication is essential for an individual to aptly respond to challenging internal and external environments. However, the specificity by which the central nervous system detects or 'senses' peripheral immune challenges is still poorly understood. In contrast to post-mortem c-Fos mapping, we recorded neural activity in vivo in two specific cortico-limbic regions relevant for processing visceral inputs and associating it with other sensory signalling, the amygdala (Am) and the insular cortex (IC). Adult rats were implanted with deep-brain monopolar electrodes and electrical activity was monitored unilaterally before and after administration of two different immunogens, the T-cell-independent antigen lipopolysaccharide (LPS) or the T-cell-dependent antigen staphylococcal enterotoxin B (SEB). In addition, the neural activity of the same individuals was analysed after single as well as repeated antigen administration, the latter inducing attenuation of the immune response. Body temperature and circulating cytokine levels confirmed the biological activity of the antigens and the success of immunization and desensitization protocols. More importantly, the present data demonstrate that neural activity of the Am and IC is not only specific for the type of immune challenge (LPS versus SEB) but seems to be also sensitive to the different immune state (naive versus desensitization). This indicates that the forebrain expresses specific patterns of electrical activity related to the type of peripheral immune activation as well as to the intensity of the stimulation, substantiating associative learning paradigms employing antigens as unconditioned stimuli. Overall, our data support the view of an intensive immune-to-brain communication, which may have evolved to achieve the complex energetic balance necessary for mounting effective immunity and improved individual adaptability by cognitive functions.
Collapse
Affiliation(s)
- Raphael Doenlen
- Swiss Federal Institute of Technology (ETH), Zurich 8092, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Baumgartner I, Pacheco-López G, Rüttimann EB, Arnold M, Asarian L, Langhans W, Geary N, Hillebrand JJG. Hepatic-portal vein infusions of glucagon-like peptide-1 reduce meal size and increase c-Fos expression in the nucleus tractus solitarii, area postrema and central nucleus of the amygdala in rats. J Neuroendocrinol 2010; 22:557-63. [PMID: 20298455 DOI: 10.1111/j.1365-2826.2010.01995.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We recently reported that brief, remotely controlled intrameal hepatic-portal vein infusions of glucagon-like peptide-1 (GLP-1) reduced spontaneous meal size in rats. To investigate the neurobehavioural correlates of this effect, we equipped male Sprague-Dawley rats with hepatic-portal vein catheters and assessed (i) the effect on eating of remotely triggered infusions of GLP-1 (1 nmol/kg, 5 min) or vehicle during the first nocturnal meal after 3 h of food deprivation and (ii) the effect of identical infusions performed at dark onset on c-Fos expression in several brain areas involved in the control of eating. GLP-1 reduced (P < 0.05) the size of the first nocturnal meal and increased its satiety ratio. Also, GLP-1 increased (P < 0.05) the number of c-Fos-expressing cells in the nucleus tractus solitarii, the area postrema and the central nucleus of the amygdala, but not in the arcuate or paraventricular hypothalamic nuclei. These data suggest that the nucleus tractus solitarii, the area postrema and the central nucleus of the amygdala play a role in the eating-inhibitory actions of GLP-1 infused into the hepatic-portal vein; it remains to be established whether activation of these brain nuclei reflect satiation, aversion, or both.
Collapse
Affiliation(s)
- I Baumgartner
- Physiology and Behaviour Laboratory, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Pacheco-Lopez G, Niemi MB, Engler H, Engler A, Riether C, Doenlen R, Espinosa E, Oberbeck R, Schedlowski M. Weakened [corrected] taste-LPS association during endotoxin tolerance. Physiol Behav 2007; 93:261-6. [PMID: 17920645 DOI: 10.1016/j.physbeh.2007.08.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 07/25/2007] [Accepted: 08/29/2007] [Indexed: 11/27/2022]
Abstract
In naive individuals, the administration of bacterial lipopolysaccharide (LPS) provokes a rapid systemic increase in pro-inflammatory cytokines such as tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta and IL-6, inducing an acute phase response including sickness behavior. Strong associative learning occurs when relevant gustatory/olfactory stimuli precede the activation of the immune system, affecting long-term individual food selection and nutritional strategies. Repeated LPS administration results in the development of an endotoxin tolerance status, characterized by a drastic reduction in the LPS-induced cytokine response. Here we investigated how the postprandial categorization of a relevant taste (0.2% saccharin) changed after administration of a high dose of LPS (0.5 mg/kg i.p.) in LPS-tolerant animals. Determination of the consummatory fluid intake revealed that, in contrast to LPS-naive rats, taste-LPS association did not occur during endotoxin tolerance. Ninety minutes after the single association trial, the plasma responses of TNF-alpha, IL-1beta and IL-6 were completely blunted in LPS-tolerant animals, which also resulted in low LPS-adipsogenic and LPS-anorexic effects. These findings indicate that an identical immune challenge can result in completely different neuro-behavioral consequences depending on the immune history of the individual, thus revealing part of the complex interconnection between the immune and neuro-endocrine systems in regulating food selection and consumption during the infectious process.
Collapse
Affiliation(s)
- G Pacheco-Lopez
- Chair of Psychology and Behavioral Immunobiology, Institute for Behavioral Sciences, ETH Zurich, 8092 Zurich, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Pacheco-López G, Niemi MB, Kou W, Härting M, Fandrey J, Schedlowski M. Neural substrates for behaviorally conditioned immunosuppression in the rat. J Neurosci 2006; 25:2330-7. [PMID: 15745959 PMCID: PMC6726099 DOI: 10.1523/jneurosci.4230-04.2005] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have previously demonstrated behaviorally conditioned immunosuppression using cyclosporin A as an unconditioned stimulus and saccharin as a conditioned stimulus. In the current study, we examined the central processing of this phenomenon generating excitotoxic lesions before and after acquisition to discriminate between learning and memory processes. Three different brain areas were analyzed: insular cortex (IC), amygdala (Am), and ventromedial nucleus of the hypothalamus (VMH). The results demonstrate that IC lesions performed before and after acquisition disrupted the behavioral component of the conditioned response (taste aversion). In contrast, Am and VMH lesions did not affect conditioned taste aversion. The behaviorally conditioned suppression of splenocyte proliferation and cytokine production (interleukin-2 and interferon-gamma) was differentially affected by the excitotoxic lesions, showing that the IC is essential to acquire and evoke this conditioned response of the immune system. In contrast, the Am seems to mediate the input of visceral information necessary at the acquisition time, whereas the VMH appears to participate within the output pathway to the immune system necessary to evoke the behavioral conditioned immune response. The present data reveal relevant neural mechanisms underlying the learning and memory processes of behaviorally conditioned immunosuppression.
Collapse
Affiliation(s)
- Gustavo Pacheco-López
- Department of Medical Psychology, University Duisburg-Essen, D-45122 Essen, Germany.
| | | | | | | | | | | |
Collapse
|
11
|
Sun FP, Song YG. Effect of environmental hyperthermia on gastrin, somatostatin and motilin in rat ulcerated antral mucosa. World J Gastroenterol 2004; 10:3528-30. [PMID: 15526379 PMCID: PMC4576241 DOI: 10.3748/wjg.v10.i23.3528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: To study the effect of environmental hyperthermia on gastrin, somatostatin and motilin in rat ulcerated antral mucosa.
METHODS: Forty-two Wistar rats were equally divided into six groups, according to the room temperature (high and normal) and the treatment (acetic acid, normal saline and no treatment). Levels of gastrin, somatostatin and motilin in rat ulcerated antral mucosa were measured with a radioimmunoassay method.
RESULTS: The average temperature and humidity were 32.5 °C and 66.7% for the high temperature group, and 21.1 °C and 49.3% for the normal temperature group, respectively. Gastric ulcer model was successfully induced in rat injected with 0.05 mL acetic acid into the antrum. In rats with gastric ulcers, the levels of gastrin and motilin increased, whereas the somatostatin level declined in antral mucosa, compared with those in rats treated with normal saline and the controls. However, the change extent in the levels of gastrin, motilin and somatostatin in antral mucosa was less in the high temperature group than in the normal temperature group.
CONCLUSION: The levels of gastrin, somatostatin and motilin in rat ulcerated antral mucosal tissue remain relatively stable in a high temperature environment, which may relate to the equilibration of the dynamic system.
Collapse
Affiliation(s)
- Feng-Peng Sun
- Department of Gastroenterology, Nanfang Hospital, First Military medical University, Guangzhou 510515, Guangdong Province, China.
| | | |
Collapse
|
12
|
Morales-Montor J, Chavarria A, De León MA, Del Castillo LI, Escobedo EG, Sánchez EN, Vargas JA, Hernández-Flores M, Romo-González T, Larralde C. Host gender in parasitic infections of mammals: an evaluation of the female host supremacy paradigm. J Parasitol 2004; 90:531-46. [PMID: 15270097 DOI: 10.1645/ge-113r3] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
A review of current literature on mammalian hosts' sexual dimorphism (SD) in parasitic infections revealed that (1) it is a scarcely and superficially studied biological phenomenon of considerable significance for individual health, behavior, and lifestyles and for the evolution of species; (2) there are many notable exceptions to the rule of a favorable female bias in susceptibility to infection; (3) a complex network of molecular and cellular reactions connecting the host's immuno-neuroendocrine systems with those of the parasite is responsible for the host-parasite relationship rather than just an adaptive immune response and sex hormones; (4) a lack of gender-specific immune profiles in response to different infections; (5) the direct effects of the host hormones on parasite physiology may significantly contribute to SD in parasitism; and (6) the need to enrich the reductionist approach to complex biological issues, like SD, with more penetrating approaches to the study of cause-effect relationships, i.e., network theory. The review concludes by advising against generalization regarding SD and parasitism and by pointing to some of the most promising lines of research.
Collapse
Affiliation(s)
- J Morales-Montor
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autonoma de Mexico, AP 70228, El Alto, Mexico DF 04510, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Morales-Montor J, Arrieta I, Del Castillo LI, Rodríguez-Dorantes M, Cerbón MA, Larralde C. Remote sensing of intraperitoneal parasitism by the host's brain: regional changes ofc-fosgene expression in the brain of feminized cysticercotic male mice. Parasitology 2004; 128:343-51. [PMID: 15074883 DOI: 10.1017/s0031182003004529] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Experimental intraperitonealTaenia crassicepscysticercosis in mice exhibits distinct genetical, immunological and endocrinological features possibly resulting from the complex interactive network of their physiological systems. Very notable is the tendency of parasites to grow faster in hosts of the female sex. It is also remarkable in the feminization process that the infection induces in chronically infected male mice, characterized by their estrogenization, deandrogenization and loss of sexual and aggressive patterns of behaviour. The proto-oncogenec-fosis a sex steroid-regulated transcription factor gene, expressed basally and upon stimulation by many organisms. In the CNS of rodents,c-fosis found expressed in association to sexual stimulation and to various immunological and stressful events. Hence, we suspected that changes inc-fosexpression in the brain could be involved in the feminization of the infected male mice. Indeed, it was found thatc-fosexpression increased at different times during infection in the hypothalamus, hippocampus, less so in the preoptic area and cortex, and not in several other organs. The significant and distinctive regional changes ofc-fosin the CNS of infected mice indicate that the brain of the host senses intraperitoneal cysticercosis and may also announce its active participation in the regulation of the host–parasite relationship. Possibly, the host's CNS activity is involved in the network that regulates the estrogenization and deandrogenization observed in the chronically infected male mice, as well as in the behavioural and immunological peculiarities observed in this parasitic infection.
Collapse
Affiliation(s)
- J Morales-Montor
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de Mexico, Mexico.
| | | | | | | | | | | |
Collapse
|
14
|
Pacheco-López G, Niemi MB, Kou W, Härting M, Del Rey A, Besedovsky HO, Schedlowski M. Behavioural endocrine immune-conditioned response is induced by taste and superantigen pairing. Neuroscience 2004; 129:555-62. [PMID: 15541877 DOI: 10.1016/j.neuroscience.2004.08.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2004] [Indexed: 11/17/2022]
Abstract
Administration of bacterial superantigen, such as staphylococcal enterotoxin B (SEB), induces in vivo stimulation of T cell proliferation and cytokine production such as interleukin-2 (IL-2). It has been previously reported that SEB administration induces fever, c-Fos expression in the brain, and hypothalamus-pituitary-adrenal axis activation, demonstrating that the brain is able to sense and respond to SEB. Previously it had been shown that immune functions can be behaviourally conditioned pairing a novel gustatory stimulus together with an immunomodulatory drug or an antigen. We designed an experimental protocol using Dark Agouti rats in which saccharin taste, as conditioned stimulus, was paired with an i.p. injection of SEB (2 mg/kg), as unconditioned stimulus. Six days later, when conditioned animals were re-exposed to the conditioned stimulus they displayed strong conditioned taste avoidance to the saccharin. More importantly, re-exposure to the conditioned stimulus significantly increased IL-2, interferon-gamma and corticosterone plasma levels, in comparison with conditioned animals which had not been re-exposed to saccharin taste. These results demonstrate a behavioural-immune-endocrine conditioned response using a superantigen as unconditioned stimulus. In addition, they illustrate the brain abilities to mimic the unconditioned effects of a superantigen by yet unknown mechanisms.
Collapse
Affiliation(s)
- G Pacheco-López
- Department of Medical Psychology, IG-1, Medical Faculty, University Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany.
| | | | | | | | | | | | | |
Collapse
|
15
|
Basso AS, Pinto FAC, Russo M, Britto LRG, de Sá-Rocha LC, Palermo Neto J. Neural correlates of IgE-mediated food allergy. J Neuroimmunol 2003; 140:69-77. [PMID: 12864973 DOI: 10.1016/s0165-5728(03)00166-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although many authors have considered the possibility of a direct interaction between food allergy and behavioral changes, the evidence supporting this hypothesis is elusive. Here, we show that after oral ovalbumin (OVA) challenge, allergic mice present higher levels of anxiety, increased Fos expression in emotionality-related brain areas, and aversion to OVA-containing solution. Moreover, treatment with anti-IgE antibody or induction of oral tolerance abrogate both food aversion and the expression of c-fos in the central nervous system (CNS). Our findings establish a direct relationship between brain function and food allergy, thus creating a solid ground for understanding the etiology of psychological disorders in allergic patients.
Collapse
Affiliation(s)
- Alexandre Salgado Basso
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, 05508-900, São Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|