1
|
Mohanty E, Mohanty A. Role of artificial intelligence in peptide vaccine design against RNA viruses. INFORMATICS IN MEDICINE UNLOCKED 2021; 26:100768. [PMID: 34722851 PMCID: PMC8536498 DOI: 10.1016/j.imu.2021.100768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/16/2021] [Accepted: 10/16/2021] [Indexed: 01/18/2023] Open
Abstract
RNA viruses have high rate of replication and mutation that help them adapt and change according to their environmental conditions. Many viral mutants are the cause of various severe and lethal diseases. Vaccines, on the other hand have the capacity to protect us from infectious diseases by eliciting antibody or cell-mediated immune responses that are pathogen-specific. While there are a few reviews pertaining to the use of artificial intelligence (AI) for SARS-COV-2 vaccine development, none focus on peptide vaccination for RNA viruses and the important role played by AI in it. Peptide vaccine which is slowly coming to be recognized as a safe and effective vaccination strategy has the capacity to overcome the mutant escape problem which is also being currently faced by SARS-COV-2 vaccines in circulation.Here we review the present scenario of peptide vaccines which are developed using mathematical and computational statistics methods to prevent the spread of disease caused by RNA viruses. We also focus on the importance and current stage of AI and mathematical evolutionary modeling using machine learning tools in the establishment of these new peptide vaccines for the control of viral disease.
Collapse
Affiliation(s)
- Eileena Mohanty
- Trident School of Biotech Sciences, Trident Academy of Creative Technology (TACT), Bhubaneswar, Odisha, 751024, India
| | - Anima Mohanty
- School of Biotechnology (KSBT), KIIT University-2, Bhubaneswar, 751024, India
| |
Collapse
|
2
|
Lopes RS, Queiroz MAF, Gomes STM, Vallinoto ACR, Goulart LR, Ishak R. Phage display: an important tool in the discovery of peptides with anti-HIV activity. Biotechnol Adv 2018; 36:1847-1854. [PMID: 30012540 DOI: 10.1016/j.biotechadv.2018.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/14/2018] [Accepted: 07/12/2018] [Indexed: 10/28/2022]
Abstract
Human immunodeficiency virus (HIV) remains a worldwide health problem despite huge investments and research breakthroughs, and no single drug is effective in killing the virus yet. Among new strategies to control HIV infection, the phage display (PD) technology has become a promising tool in the discovery of peptides that can be used as new drugs, or also as possible vaccine candidates. This review discusses basic aspects of PD and its use to advance two main objectives related to combating HIV-1 infection: the identification of peptides that inhibit virus replication and the identification of peptides that induce the production of neutralizing antibodies. We will cover the different approaches used for mapping and selection of mimotopes, and discuss the promising results of these biologicals as antiviral agents.
Collapse
Affiliation(s)
- Ronaldo Souza Lopes
- Biological Sciences Institute, Federal University of Para (Instituto de Ciências Biológicas/Universidade Feral do Pará - ICB/UFPA), Rua Augusto Corrêa, 1 - Guamá, Belém, PA 66075-110, Brazil.
| | - Maria Alice Freitas Queiroz
- Biological Sciences Institute, Federal University of Para (Instituto de Ciências Biológicas/Universidade Feral do Pará - ICB/UFPA), Rua Augusto Corrêa, 1 - Guamá, Belém, PA 66075-110, Brazil
| | - Samara Tatielle Monteiro Gomes
- Biological Sciences Institute, Federal University of Para (Instituto de Ciências Biológicas/Universidade Feral do Pará - ICB/UFPA), Rua Augusto Corrêa, 1 - Guamá, Belém, PA 66075-110, Brazil
| | - Antonio Carlos Rosário Vallinoto
- Biological Sciences Institute, Federal University of Para (Instituto de Ciências Biológicas/Universidade Feral do Pará - ICB/UFPA), Rua Augusto Corrêa, 1 - Guamá, Belém, PA 66075-110, Brazil.
| | - Luiz Ricardo Goulart
- Institute of Biotechnology, Federal University of Uberlândia (Universidade Federal de Uberlândia - UFU), Laboratory of Nanobiotechnology, Av. Amazonas s/n, Bloco 2E, Sala 248 - Campus Umuarama, Uberlândia, MG, CEP 38400-902, Brazil.
| | - Ricardo Ishak
- Biological Sciences Institute, Federal University of Para (Instituto de Ciências Biológicas/Universidade Feral do Pará - ICB/UFPA), Rua Augusto Corrêa, 1 - Guamá, Belém, PA 66075-110, Brazil.
| |
Collapse
|
3
|
Lange M, Fiedler M, Bankwitz D, Osburn W, Viazov S, Brovko O, Zekri AR, Khudyakov Y, Nassal M, Pumpens P, Pietschmann T, Timm J, Roggendorf M, Walker A. Hepatitis C virus hypervariable region 1 variants presented on hepatitis B virus capsid-like particles induce cross-neutralizing antibodies. PLoS One 2014; 9:e102235. [PMID: 25014219 PMCID: PMC4094522 DOI: 10.1371/journal.pone.0102235] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/16/2014] [Indexed: 01/01/2023] Open
Abstract
Hepatitis C virus (HCV) infection is still a serious global health burden. Despite improved therapeutic options, a preventative vaccine would be desirable especially in undeveloped countries. Traditionally, highly conserved epitopes are targets for antibody-based prophylactic vaccines. In HCV-infected patients, however, neutralizing antibodies are primarily directed against hypervariable region I (HVRI) in the envelope protein E2. HVRI is the most variable region of HCV, and this heterogeneity contributes to viral persistence and has thus far prevented the development of an effective HVRI-based vaccine. The primary goal of an antibody-based HCV vaccine should therefore be the induction of cross-reactive HVRI antibodies. In this study we approached this problem by presenting selected cross-reactive HVRI variants in a highly symmetric repeated array on capsid-like particles (CLPs). SplitCore CLPs, a novel particulate antigen presentation system derived from the HBV core protein, were used to deliberately manipulate the orientation of HVRI and therefore enable the presentation of conserved parts of HVRI. These HVRI-CLPs induced high titers of cross-reactive antibodies, including neutralizing antibodies. The combination of only four HVRI CLPs was sufficient to induce antibodies cross-reactive with 81 of 326 (24.8%) naturally occurring HVRI peptides. Most importantly, HVRI CLPs with AS03 as an adjuvant induced antibodies with a 10-fold increase in neutralizing capability. These antibodies were able to neutralize infectious HCVcc isolates and 4 of 19 (21%) patient-derived HCVpp isolates. Taken together, these results demonstrate that the induction of at least partially cross-neutralizing antibodies is possible. This approach might be useful for the development of a prophylactic HCV vaccine and should also be adaptable to other highly variable viruses.
Collapse
Affiliation(s)
- Milena Lange
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Melanie Fiedler
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - William Osburn
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Sergei Viazov
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Olena Brovko
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Yury Khudyakov
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Michael Nassal
- Department of Internal Medicine II, University Hospital Freiburg, Freiburg, Germany
| | - Paul Pumpens
- Department of Recombinant biotechnology, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | - Jörg Timm
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Michael Roggendorf
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andreas Walker
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
4
|
Subtractive phage display selection from canine visceral leishmaniasis identifies novel epitopes that mimic Leishmania infantum antigens with potential serodiagnosis applications. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 21:96-106. [PMID: 24256622 DOI: 10.1128/cvi.00583-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Visceral leishmaniasis (VL) is a zoonotic disease that is endemic to Brazil, where dogs are the main domestic parasite reservoirs, and the percentages of infected dogs living in regions where canine VL (CVL) is endemic have ranged from 10% to 62%. Despite technological advances, some problems have been reported with CVL serodiagnosis. The present study describes a sequential subtractive selection through phage display technology from polyclonal antibodies of negative and positive sera that resulted in the identification of potential bacteriophage-fused peptides that were highly sensitive and specific to antibodies of CVL. A negative selection was performed in which phage clones were adhered to purified IgGs from healthy and Trypanosoma cruzi-infected dogs to eliminate cross-reactive phages. The remaining supernatant nonadhered phages were submitted to positive selection against IgG from the blood serum of dogs that were infected with Leishmania infantum. Phage clones that adhered to purified IgGs from the CVL-infected serum samples were selected. Eighteen clones were identified and their reactivities tested by a phage enzyme-linked immunosorbent assay (phage-ELISA) against the serum samples from infected dogs (n = 31) compared to those from vaccinated dogs (n = 21), experimentally infected dogs with cross-reactive parasites (n = 23), and healthy controls (n = 17). Eight clones presented sensitivity, specificity, and positive and negative predictive values of 100%, and they showed no cross-reactivity with T. cruzi- or Ehrlichia canis-infected dogs or with dogs vaccinated with two different commercial CVL vaccines in Brazil. Our study identified eight mimotopes of L. infantum antigens with 100% accuracy for CVL serodiagnosis. The use of these mimotopes by phage-ELISA proved to be an excellent assay that was reproducible, simple, fast, and inexpensive, and it can be applied in CVL-monitoring programs.
Collapse
|
5
|
Hepatitis C vaccines. Vaccines (Basel) 2013. [DOI: 10.1016/b978-1-4557-0090-5.00051-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
6
|
Gazarian K, Rowlay M, Gazarian T, Vazquez Buchelli JE, Hernández Gonzáles M. Mimotope peptides selected from phage display combinatorial library by serum antibodies of pigs experimentally infected with Taenia solium as leads to developing diagnostic antigens for human neurocysticercosis. Peptides 2012; 38:381-8. [PMID: 23022592 DOI: 10.1016/j.peptides.2012.09.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 09/19/2012] [Accepted: 09/19/2012] [Indexed: 01/19/2023]
Abstract
Neurocysticercosis is caused by penetration of the tapeworm Taenia solium larvae into the central nervous system resulting in a diverse range of neurologic complications including epilepsy in endemic areas that globalization spreads worldwide. Sensitive and specific immunodiagnosis is needed for the early detection and elimination of the parasite, but the lack of standardized, readily obtainable antigens is a challenge. Here, we used the phage display for resolving the problem. The rationale of the strategy rests on the concept that the screening of combinatorial libraries with polyclonal serum to pathogens reveals families of peptides mimicking the pathogen most immunodominant epitopes indispensable for the successful diagnosis. The screening of a 7mer library with serum IgG of four pigs experimentally infected with parasite followed by computer aided segregation of the selected sequences resulted in the discovery of four clusters of homologous sequences of which one presented a family of ten mimotopes selected by three infected pig serum IgGs; the common motif sequence LSPF carried by the family was considered to be the core of an immunodominant epitope of the parasite critical for the binding with the antibody that selected the mimotopes. The immunoassay testing permitted to select a mimotope whose synthetic peptide free of the phage with the amino acid sequence Leu-Ser-Fen-Pro-Ser-Val-Val that distinguished well a panel of 21 cerebrospinal fluids of neurocysticercosis patients from the fluids of individuals with neurological complications of other etiology. This peptide is proposed as a lead for developing a novel molecularly defined diagnostic antigen(s) for the neurocysticercosis.
Collapse
Affiliation(s)
- Karlen Gazarian
- Department of Medicinal Genomics and Environmental Toxicology, Institute of Biomedical Research of the Mexican National Autonomous University, Mexico City, University Campus, CP 04510, Mexico.
| | | | | | | | | |
Collapse
|
7
|
Campo DS, Dimitrova Z, Yokosawa J, Hoang D, Perez NO, Ramachandran S, Khudyakov Y. Hepatitis C virus antigenic convergence. Sci Rep 2012; 2:267. [PMID: 22355779 PMCID: PMC3279735 DOI: 10.1038/srep00267] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 01/20/2012] [Indexed: 12/13/2022] Open
Abstract
Vaccine development against hepatitis C virus (HCV) is hindered by poor understanding of factors defining cross-immunoreactivity among heterogeneous epitopes. Using synthetic peptides and mouse immunization as a model, we conducted a quantitative analysis of cross-immunoreactivity among variants of the HCV hypervariable region 1 (HVR1). Analysis of 26,883 immunological reactions among pairs of peptides showed that the distribution of cross-immunoreactivity among HVR1 variants was skewed, with antibodies against a few variants reacting with all tested peptides. The HVR1 cross-immunoreactivity was accurately modeled based on amino acid sequence alone. The tested peptides were mapped in the HVR1 sequence space, which was visualized as a network of 11,319 sequences. The HVR1 variants with a greater network centrality showed a broader cross-immunoreactivity. The entire sequence space is explored by each HCV genotype and subtype. These findings indicate that HVR1 antigenic diversity is extensively convergent and effectively limited, suggesting significant implications for vaccine development.
Collapse
Affiliation(s)
- David S. Campo
- Molecular Epidemiology & Bioinformatics Laboratory, Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, USA, 30329
| | - Zoya Dimitrova
- Molecular Epidemiology & Bioinformatics Laboratory, Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, USA, 30329
| | - Jonny Yokosawa
- Molecular Epidemiology & Bioinformatics Laboratory, Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, USA, 30329
- Laboratório de Virologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Duc Hoang
- Molecular Epidemiology & Bioinformatics Laboratory, Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, USA, 30329
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Nestor O. Perez
- Molecular Epidemiology & Bioinformatics Laboratory, Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, USA, 30329
- Probiomed S.A., Tenancingo, Mexico
| | - Sumathi Ramachandran
- Molecular Epidemiology & Bioinformatics Laboratory, Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, USA, 30329
| | - Yury Khudyakov
- Molecular Epidemiology & Bioinformatics Laboratory, Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, USA, 30329
| |
Collapse
|
8
|
Gazarian K, Gazarian T, Betancourt JIS, Alonso Morales RA. Immunogenic peptides from phage display libraries with potential of protecting mice against the Pseudorabies virus. Vet Microbiol 2011; 154:29-36. [DOI: 10.1016/j.vetmic.2011.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 06/20/2011] [Accepted: 06/23/2011] [Indexed: 10/18/2022]
|
9
|
Unravelling the antigenic landscape of the HIV-1 subtype A envelope of an individual with broad cross-neutralizing antibodies using phage display peptide libraries. J Virol Methods 2010; 169:95-102. [PMID: 20637241 DOI: 10.1016/j.jviromet.2010.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 06/29/2010] [Accepted: 07/05/2010] [Indexed: 12/26/2022]
Abstract
Broad cross-neutralizing antibodies from persons infected with HIV-1 target a variety of epitopes. Identification of these HIV-1 epitopes may result in an optimal panel of antigenic peptides to be included in a prophylactic vaccine. Phage display peptide libraries were used to unravel the antigenic landscape of an individual (ITM1) infected with HIV-1 subtype A with broad cross-neutralizing antibodies. A stringent selection strategy resulted in the identification of 60 unique HIV-1 peptide phage, which were subjected to sequence analysis and mapped onto the ITM1 envelope sequences. Four groups of peptide phages were found: the first group (n=11) were similar with the tip of the V3 loop (KxxHxGPxxxF); the second group (n=11) represented the gp41 principal immunodominant domain (CxGxLxCTxNxP); the third group (n=16) could be localized in the V2 loop (KxxxHxxxY); and the fourth group (n=22) mimicked a conformational epitope (Hxx(S)/(T)NxK). All but the V2-binding antibodies were conserved over the 11 years of follow-up. A neutralization inhibition assay revealed the contribution of the V3 antibodies to the neutralizing capacity of the ITM1 plasma. Overall, the ITM1 immunogenic landscape was mapped and a part of the origin of this broad cross-neutralizing activity was demonstrated.
Collapse
|
10
|
Abstract
Phage display has been extensively used to study protein-protein interactions, receptor- and antibody-binding sites, and immune responses, to modify protein properties, and to select antibodies against a wide range of different antigens. In the format most often used, a polypeptide is displayed on the surface of a filamentous phage by genetic fusion to one of the coat proteins, creating a chimeric coat protein, and coupling phenotype (the protein) to genotype (the gene within). As the gene encoding the chimeric coat protein is packaged within the phage, selection of the phage on the basis of the binding properties of the polypeptide displayed on the surface simultaneously results in the isolation of the gene encoding the polypeptide. This unit describes the background to the technique, and illustrates how it has been applied to a number of different problems, each of which has its neurobiological counterparts. Although this overview concentrates on the use of filamentous phage, which is the most popular platform, other systems are also described.
Collapse
|
11
|
Uhde-Holzem K, Schlösser V, Viazov S, Fischer R, Commandeur U. Immunogenic properties of chimeric potato virus X particles displaying the hepatitis C virus hypervariable region I peptide R9. J Virol Methods 2010; 166:12-20. [PMID: 20138085 DOI: 10.1016/j.jviromet.2010.01.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 01/20/2010] [Accepted: 01/25/2010] [Indexed: 12/11/2022]
Abstract
The immunogenic properties of chimeric potato virus X (PVX) particles engineered to display the synthetic R9 peptide have been evaluated. The R9 peptide is a consensus sequence derived from diverse variants of the hypervariable region 1 from the hepatitis C virus (HCV) envelope protein E2. Two different constructs were designed, with the R9 peptide expressed either as an indirect fusion via the ribosomal skip 2A (PVX(R9-2A)CP) sequence or as a direct PVX coat protein fusion (PVX(R9)CP). Systemic infection of Nicotiana benthamiana plants was only achieved with PVX(R9-2A)CP constructs, and the presence of the R9 peptide was detected in extracts from these plants by ELISA, Western blot and electron microscopy using specific anti-R9 antibodies. The virus particles were recovered at yields of up to 125mg/kg from leaf material. BALB/c mice immunized with purified PVX(R9-2A)CP particles developed specific anti-R9 IgG titers of up to 1:50,000. Monoclonal anti-R9 antibodies were obtained from the spleen of a mouse immunized with PVX(R9-2A)CP particles and characterized by Western blot and electron microscopy. Sera from patients infected chronically with HCV were found to react specifically with PVX(R9-2A)CP particles in 35% of cases.
Collapse
Affiliation(s)
- Kerstin Uhde-Holzem
- Institute for Molecular Biotechnology (Biology VII), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | | | | | | | | |
Collapse
|
12
|
Humbert M, Rasmussen RA, Ong H, Kaiser FMP, Hu SL, Ruprecht RM. Inducing cross-clade neutralizing antibodies against HIV-1 by immunofocusing. PLoS One 2008; 3:e3937. [PMID: 19081789 PMCID: PMC2597739 DOI: 10.1371/journal.pone.0003937] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 11/06/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Although vaccines are important in preventing viral infections by inducing neutralizing antibodies (nAbs), HIV-1 has proven to be a difficult target and escapes humoral immunity through various mechanisms. We sought to test whether HIV-1 Env mimics may serve as immunogens. METHODOLOGY/PRINCIPAL FINDINGS Using random peptide phage display libraries, we identified the epitopes recognized by polyclonal antibodies of a rhesus monkey that had developed high-titer, broadly reactive nAbs after infection with a simian-human immunodeficiency virus (SHIV) encoding env of a recently transmitted HIV-1 clade C (HIV-C). Phage peptide inserts were analyzed for conformational and linear homology using computational analysis; some peptides mimicked various domains of the original HIV-C Env, such as conformational V3 loop epitopes and the conserved linear region of the gp120 C-terminus. Next, we devised a novel prime/boost strategy to test the immunogenicity of such phage-displayed peptides and primed mice only once with HIV-C gp160 DNA followed by boosting with mixtures of recombinant phages. CONCLUSIONS/SIGNIFICANCE This strategy, which was designed to focus the immune system on a few Env epitopes (immunofocusing), not only induced HIV-C gp160 binding antibodies and cross-clade nAbs, but also linked a conserved HIV Env region for the first time to the induction of nAbs: the C-terminus of gp120. The identification of conserved antigen mimics may lead to novel immunogens capable of inducing broadly reactive nAbs.
Collapse
Affiliation(s)
- Michael Humbert
- Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Robert A. Rasmussen
- Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Helena Ong
- Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Fabian M. P. Kaiser
- Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Shiu-Lok Hu
- University of Washington, National Primate Research Center, Seattle, Washington, United States of America
| | - Ruth M. Ruprecht
- Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
13
|
|
14
|
Keck ZY, Machida K, Lai MMC, Ball JK, Patel AH, Foung SKH. Therapeutic control of hepatitis C virus: the role of neutralizing monoclonal antibodies. Curr Top Microbiol Immunol 2008; 317:1-38. [PMID: 17990788 DOI: 10.1007/978-3-540-72146-8_1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Liver failure associated with hepatitis C virus (HCV) accounts for a substantial portion of liver transplantation. Although current therapy helps some patients with chronic HCV infection, adverse side effects and a high relapse rate are major problems. These problems are compounded in liver transplant recipients as reinfection occurs shortly after transplantation. One approach to control reinfection is the combined use of specific antivirals together with HCV-specific antibodies. Indeed, a number of human and mouse monoclonal antibodies to conformational and linear epitopes on HCV envelope proteins are potential candidates, since they have high virus neutralization potency and are directed to epitopes conserved across diverse HCV genotypes. However, a greater understanding of the factors contributing to virus escape and the role of lipoproteins in masking virion surface domains involved in virus entry will be required to help define those protective determinants most likely to give broad protection. An approach to immune escape is potentially caused by viral infection of immune cells leading to the induction hypermutation of the immunoglobulin gene in B cells. These effects may contribute to HCV persistence and B cell lymphoproliferative diseases.
Collapse
Affiliation(s)
- Z Y Keck
- Department of Pathology, Stanford Medical School Blood Center, Palo Alto, CA 94304, USA
| | | | | | | | | | | |
Collapse
|
15
|
Pawlotsky JM, Chevaliez S, McHutchison JG. The hepatitis C virus life cycle as a target for new antiviral therapies. Gastroenterology 2007; 132:1979-98. [PMID: 17484890 DOI: 10.1053/j.gastro.2007.03.116] [Citation(s) in RCA: 223] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 03/23/2007] [Indexed: 12/11/2022]
Abstract
The burden of disease consequent to hepatitis C virus (HCV) infection has been well described and is expected to increase dramatically over the next decade. Current approved antiviral therapies are effective in eradicating the virus in approximately 50% of infected patients. However, pegylated interferon and ribavirin-based therapy is costly, prolonged, associated with significant adverse effects, and not deemed suitable for many HCV-infected patients. As such, there is a clear and pressing need for the development of additional agents that act through alternate or different mechanisms, in the hope that such regimens could lead to enhanced response rates more broadly applicable to patients with hepatitis C infection. Recent basic science enhancements in HCV cell culture systems and replication assays have led to a broadening of our understanding of many of the mechanisms of HCV replication and, therefore, potential novel antiviral targets. In this article, we have attempted to highlight important new information as it relates to our understanding of the HCV life cycle. These steps broadly encompass viral attachment, entry, and fusion; viral RNA translation; posttranslational processing; HCV replication; and viral assembly and release. In each of these areas, we present up-to-date knowledge of the relevant aspects of that component of the viral life cycle and then describe the preclinical and clinical development targets and pathways being explored in the translational and clinical settings.
Collapse
Affiliation(s)
- Jean-Michel Pawlotsky
- French National Reference Center for Viral Hepatitis B, C, and delta, Department of Virology, Hôpital Henri Mondor, Université Paris 12, Créteil, France.
| | | | | |
Collapse
|
16
|
Wang YS, Fan HJ, Li Y, Shi ZL, Pan Y, Lu CP. Development of a multi-mimotope peptide as a vaccine immunogen for infectious bursal disease virus. Vaccine 2007; 25:4447-55. [PMID: 17445956 DOI: 10.1016/j.vaccine.2007.03.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 03/09/2007] [Accepted: 03/11/2007] [Indexed: 11/22/2022]
Abstract
To explore the mimotope vaccine approach against infectious bursal disease virus (IBDV), five IBDV-specific monoclonal antibodies (mAbs) were prepared and their binding peptides were screened against a phage-displayed 12-mer peptide library. After three rounds of biopanning, 12 phages were selected for each mAbs and their specificity to IBDV was verified by sandwich and competitive inhibition ELISAs. Seven phages per mAb were sequenced and their amino acid sequences were deduced. The five representative sequences of mimotopes corresponding mAbs were determined. An artificial gene, designated 5epis (5 epitopes) and consisting of the five mimotopes arranged in tandem (F1-F7-B34-2B1-2G8) with four GGGS spacers, was chemically synthesized and cloned into a prokaryotic expression plasmid pET28b. The protein, designated r5EPIS, was efficiently expressed in Escherichia coli and showed a size of 10kDa in SDS-PAGE. The r5EPIS protein reacted with anti-IBDV mAbs and polyclonal antibodies in Western blot immunoassays. Immunization of SPF chickens with r5EPIS protein (with Freund adjuvant, 50mug per injection on day 0 and 14) evoked high levels of antibody (12,800 by ELISA/1600 by virus neutralizing assay at day 21) and protected 100% of the chickens against a challenge of 200 ELD(50) of IBDV GX8/99 strain, which sharply contrasted with the, respectively, 13.3% and 6.6% survival rate in the adjuvant group and the untreated group. The multi-mimotope protein r5EPIS promises to be a novel subunit vaccine candidate for IBDV.
Collapse
Affiliation(s)
- Yong-shan Wang
- Laboratory of Biomolecular Engineering, Research Institute for Medicine of Nanjing Command, Center for Disease Control and Prevention of Nanjing Command, Nanjing 210002, China.
| | | | | | | | | | | |
Collapse
|
17
|
Ola TO, Biro PA, Hawa MI, Ludvigsson J, Locatelli M, Puglisi MA, Bottazzo GF, Fierabracci A. Importin beta: a novel autoantigen in human autoimmunity identified by screening random peptide libraries on phage. J Autoimmun 2006; 26:197-207. [PMID: 16549322 DOI: 10.1016/j.jaut.2006.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2003] [Revised: 01/24/2006] [Accepted: 01/25/2006] [Indexed: 10/24/2022]
Abstract
By screening random peptide libraries (RPLs) with sera of Type 1 diabetes (T1D) patients, we previously identified 5 disease-specific 'mimotopes' displayed on phages (phagotopes). We already characterised 1 phagotope (CH1p), as an epitope of human osteopontin, an autoantigen expressed within the somatostatin cells of human islets. In this paper, we report the characterization of the second phagotope, 195Dyn, by immunohistochemistry, Western Blotting and screening of a human islet cDNA library using rabbit anti-195Dyn antibodies. The 195Dyn mimotope was detected in human islets. The screening of a lambdagt11 cDNA library from human islets has identified a clone, which corresponded to human importin beta. ELISA detected autoantibodies against this protein in sera of around 60% of TD1 patients and in 30% of patients affected by other autoimmune diseases. In summary, RPLs technology proved again successful in identifying another novel autoantigen (importin beta), whose significance in the autoimmune process remains to be fully elucidated.
Collapse
Affiliation(s)
- Thomas O Ola
- St Bartholomew's and the Royal London School of Medicine and Dentistry, Queen Mary College, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Owsianka A, Tarr AW, Juttla VS, Lavillette D, Bartosch B, Cosset FL, Ball JK, Patel AH. Monoclonal antibody AP33 defines a broadly neutralizing epitope on the hepatitis C virus E2 envelope glycoprotein. J Virol 2005; 79:11095-104. [PMID: 16103160 PMCID: PMC1193588 DOI: 10.1128/jvi.79.17.11095-11104.2005] [Citation(s) in RCA: 239] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Accepted: 06/01/2005] [Indexed: 02/03/2023] Open
Abstract
Hepatitis C virus (HCV) remains a significant threat to the general health of the world's population, and there is a pressing need for the development of new treatments and preventative vaccines. Here, we describe the generation of retrovirus-based pseudoparticles (HCVpp) incorporating a panel of full-length E1E2 clones representative of the major genotypes 1 through 6, and their application to assess the reactivity and neutralizing capability of antisera and monoclonal antibodies raised against portions of the HCV E2 envelope protein. Rabbit antisera raised against either the first hypervariable region or ectodomain of E2 showed limited and strain specific neutralization. By contrast, the monoclonal antibody (MAb) AP33 demonstrated potent neutralization of infectivity against HCVpp carrying E1E2 representative of all genotypes tested. The concentration of AP33 required to achieve 50% inhibition of infection by HCVpp of diverse genotypes ranged from 0.6 to 32 mug/ml. The epitope recognized by MAb AP33 is linear and highly conserved across different genotypes of HCV. Thus, identification of a broadly neutralizing antibody that recognizes a linear epitope is likely to be of significant benefit to future vaccine and therapeutic antibody development.
Collapse
Affiliation(s)
- Ania Owsianka
- MRC Virology Unit, Institute of Virology, University of Glasgow, UK
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Frasca L, Scottà C, Del Porto P, Nicosia A, Pasquazzi C, Versace I, Masci AM, Racioppi L, Piccolella E. Antibody-selected mimics of hepatitis C virus hypervariable region 1 activate both primary and memory Th lymphocytes. Hepatology 2003; 38:653-63. [PMID: 12939592 DOI: 10.1053/jhep.2003.50387] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An ideal strategy that leads to a vaccine aimed at controlling viral escape may be that of preventing the replication of escape mutants by eliciting a T- and B-cell repertoire directed against many viral variants. The hypervariable region 1 (HVR1) of the putative envelope 2 protein that presents B and T epitopes shown to induce protective immunity against hepatitis C virus (HCV), might be suitable for this purpose if its immunogenicity can be improved by generating mimics that induce broad, highly cross-reactive, anti-HVR1 responses. Recently we described a successful approach to select HVR1 mimics (mimotopes) incorporating the variability found in a great number of viral variants. In this report we explore whether these mimotopes, designed to mimic B-cell epitopes, also mimic helper T-cell epitopes. The first interesting observation is that mimotopes selected for their reactivity to HVR1-specific antibodies of infected patients also do express HVR1 T-cell epitopes, suggesting that similar constraints govern HVR1-specific humoral and cellular immune responses. Moreover, some HVR1 mimotopes stimulate a multispecific CD4(+) T-cell repertoire that effectively cross-reacts with HVR1 native sequences. This may significantly limit effects as a T-cell receptor (TCR) antagonist frequently exerted by natural HVR1-variants on HVR1-specific T-cell responses. In conclusion, these data lend strong support to using HVR1 mimotopes in vaccines designed to prevent replication of escape mutants.
Collapse
Affiliation(s)
- Loredana Frasca
- Department of Cellular and Developmental Biology, La Sapienza University, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Xiu BS, Ling SG, Song XG, Zhang HQ, Chen K, Zhu CX. Cross-reactivity of hypervariable region 1 chimera of hepatitis C virus. World J Gastroenterol 2003; 9:1256-60. [PMID: 12800235 PMCID: PMC4611795 DOI: 10.3748/wjg.v9.i6.1256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2003] [Revised: 02/04/2003] [Accepted: 02/16/2003] [Indexed: 02/06/2023] Open
Abstract
AIM To analyze the amino acid sequences of hypervariable region 1 (HVR1) of HCV isolates in China and to construct a combinatorial chimeric HVR1 protein having a very broad high cross-reactivity. METHODS All of the published HVR1 sequences from China were collected and processed with a computer program. Several representative HVR1's sequences were formulated based on a consensus profile and homology within certain subdivision. A few reported HVR1 mimotope sequences were also included for a broader representation. All of them were cloned and expressed in E.coli. The cross-reactivity of the purified recombinant HVR1 antigens was tested by ELISA with a panel of sera from HCV infected patients in China. Some of them were further ligated together to form a combinatorial HVR1 chimera. RESULTS Altogether 12 HVR1(s) were selected and expressed in E.coli and purified to homogeneity. All of these purified antigens showed some cross-reactivity with sera in a 27 HCV positive panel. Recombinant HVR1s of No. 1, 2, 4, and 8# showing broad cross-reactivities and complementarity with each other, were selected for the ligation elements. The chimera containing these 4 HVR1s was highly expressed in E.coli. The purified chimeric antigen could react not only with all the HCV antibody positive sera in the panel but also with 90/91 sera of HCV -infected patients. CONCLUSION The chimeric antigen was shown to have a broad cross-reactivity. It may be helpful for solving the problem caused by high variability of HCV, and in the efforts for a novel vaccine against the virus.
Collapse
Affiliation(s)
- Bing-Shui Xiu
- Laboratory of Molecular Virology, Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100850, P.R.China
| | | | | | | | | | | |
Collapse
|
21
|
Cheng YQ, Nie QH, Zhou YX, Huang XF, Luo H, Yang HG. Ultrastructure characteristics of HCV infected human trophoblast cells in culture. Shijie Huaren Xiaohua Zazhi 2003; 11:151-156. [DOI: 10.11569/wcjd.v11.i2.151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether the cultured trophoblastic cells can be infected with hepatitis C virus (HCV) and observe the ultrastructural features of infected cells.
METHODS: Human placentae were digested with trypsin and then centrifuged with percoll density gradient to obtain trophoblastic cells, and then incubated in HCV positive serum. The HCV RNA in HCV infected syncytiotroblasts was quantitated with RT-PCR. Ultrastructural characteristics of infected syncytiotroblasts were observed with transmission electron microscope.
RESULTS: HCV RNA was detected in supernatant of the cultured medium during 40 day periods of incubation. The antibody of HCV NS5 was observed around the nucleus with confocal microscope. The Ultrastructure of infected throphotoblast cells differed obviously from that of normal cells, and manifested with hyperplasia of lysosomes and rough endoplasmic, appearance of vacuoles and virus-like particles, and decreased lipid droplets.
CONCLUSION: Trophoblastic cells could be infected by HCV, and the cellular ultrastructure changed dramatically following infection of HCV.
Collapse
|