1
|
Qin X, Strand SH, Lee MR, Saraswathibhatla A, van IJzendoorn DGP, Zhu C, Vennam S, Varma S, Hall A, Factor RE, King L, Simpson L, Luo X, Colditz GA, Jiang S, Chaudhuri O, Hwang ES, Marks JR, Owzar K, West RB. Single-Cell Expression Analysis of Ductal Carcinoma In Situ Identifies Complex Genotypic-Phenotypic Relationships Altering Epithelial Composition. Cancer Res 2025; 85:2302-2319. [PMID: 40101158 DOI: 10.1158/0008-5472.can-24-3023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/16/2025] [Accepted: 03/12/2025] [Indexed: 03/20/2025]
Abstract
Ductal carcinoma in situ (DCIS) is a risk factor for subsequent invasive breast cancer (IBC). To identify events in DCIS that lead to invasive cancer, we performed single-cell RNA sequencing on DCIS lesions and matched normal breast tissue. Inferred copy-number variation was used to identify neoplastic epithelial cells from clinical specimens, which contained a mixture of DCIS and normal ducts. Phylogenetic analysis demonstrated intratumoral clonal heterogeneity that was associated with significant gene expression differences. Classification of epithelial cells into mammary cell states revealed that subclones contained a mixture of cell states, suggesting an ongoing pattern of differentiation after neoplastic transformation. Cell state proportions were significantly different based on estrogen receptor expression, with estrogen receptor-negative DCIS more closely resembling the distribution in the normal breast, particularly with respect to cells with basal characteristics. Specific alterations in cell state proportions were associated with progression to invasive cancer in a cohort of DCIS with longitudinal outcome. Ongoing transcription of key basement membrane (BM) genes occurred in specific subsets of epithelial cell states, including basal/myoepithelial, which are diminished in DCIS. In the transition to IBC, the BM protein laminin, but not COL4, was altered in DCIS adjacent to invasion. Loss of COL4, but not laminin, in an in vitro DCIS model led to an invasive phenotype. These findings suggest that the process of invasion is a loss-of-function event due to an imbalance in critical cell populations essential for BM integrity rather than a gain of an invasive phenotype by neoplastic cells. SIGNIFICANCE Single-cell analyses reveal ductal carcinoma in situ comprises multiple genetic clones with significant phenotypic diversity and link alterations in epithelial cell states and basement membrane integrity with invasive breast cancer progression.
Collapse
Affiliation(s)
- Xiaodi Qin
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina
| | - Siri H Strand
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Marissa R Lee
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina
| | | | | | - ChunFang Zhu
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Sujay Vennam
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Sushama Varma
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Allison Hall
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina
| | - Rachel E Factor
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina
| | - Lorraine King
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Lunden Simpson
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Xiaoke Luo
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Graham A Colditz
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Shu Jiang
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, California
| | - E Shelley Hwang
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Jeffrey R Marks
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Kouros Owzar
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina
| | - Robert B West
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
2
|
Jiang J, Wu Q, Rajasekaran S, Wu R. MMP3 at the crossroads: Linking molecular pathways to disease diagnosis and therapy. Pharmacol Res 2025; 216:107750. [PMID: 40311957 DOI: 10.1016/j.phrs.2025.107750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/21/2025] [Accepted: 04/27/2025] [Indexed: 05/03/2025]
Abstract
Matrix metalloproteinase 3 (MMP-3) is a multifaceted enzyme that plays a critical role in the regulation of extracellular matrix (ECM) dynamics, influencing both normal physiological and pathological processes. In addition to its established role in ECM degradation, MMP-3 is gaining recognition for modulating cellular behaviors such as inflammation, migration, and proliferation. Recent research has uncovered its capacity to activate latent signaling molecules, release growth factors from the ECM and interact with various cell surface receptors, linking MMP-3 to the progression of various diseases, including inflammatory diseases, infection diseases, cardiovascular diseases, neurodegenerative disorders, and cancer. The review provides an overview of MMP-3's molecular regulation, emphasizing the mechanisms controlling its expression and activity. We discuss MMP3's involvement in both ECM-dependent and independent pathways, and its potential as a diagnostic, prognostic biomarker in various diseases. Additionally, we explore therapeutic strategies targeting MMP-3, summarizing ongoing efforts to develop specific inhibitors and modulate its activity in different pathologic conditions. Through this review, we aim to consolidate the diverse functions of MMP-3 and provide new insights into future research directions, particularly in translating these findings into clinical applications.
Collapse
Affiliation(s)
- Jing Jiang
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States; Binzhou Medical University, Yantai, China
| | - Qiong Wu
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States
| | - Snekha Rajasekaran
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States
| | - Rongxue Wu
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States.
| |
Collapse
|
3
|
Khalili-Tanha G, Radisky ES, Radisky DC, Shoari A. Matrix metalloproteinase-driven epithelial-mesenchymal transition: implications in health and disease. J Transl Med 2025; 23:436. [PMID: 40217300 PMCID: PMC11992850 DOI: 10.1186/s12967-025-06447-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a process in which epithelial cells, defined by apical-basal polarity and tight intercellular junctions, acquire migratory and invasive properties characteristic of mesenchymal cells. Under normal conditions, EMT directs essential morphogenetic events in embryogenesis and supports tissue repair. When dysregulated, EMT contributes to pathological processes such as organ fibrosis, chronic inflammation, and cancer progression and metastasis. Matrix metalloproteinases (MMPs)-a family of zinc-dependent proteases that degrade structural components of the extracellular matrix-sit at the nexus of this transition by dismantling basement membranes, activating pro-EMT signaling pathways, and cleaving adhesion molecules. When normally regulated, MMPs promote balanced ECM turnover and support the cyclical remodeling necessary for proper development, wound healing, and tissue homeostasis. When abnormally regulated, MMPs drive excessive ECM turnover, thereby promoting EMT-related pathologies, including tumor progression and fibrotic disease. This review provides an integrated overview of the molecular mechanisms by which MMPs both initiate and sustain EMT under physiological and disease conditions. It discusses how MMPs can potentiate EMT through TGF-β and Wnt/β-catenin signaling, disrupt cell-cell junction proteins, and potentiate the action of hypoxia-inducible factors in the tumor microenvironment. It discusses how these pathologic processes remodel tissues during fibrosis, and fuel cancer cell invasion, metastasis, and resistance to therapy. Finally, the review explores emerging therapeutic strategies that selectively target MMPs and EMT, ranging from CRISPR/Cas-mediated interventions to engineered tissue inhibitors of metalloproteinases (TIMPs), and demonstrates how such approaches may suppress pathological EMT without compromising its indispensable roles in normal biology.
Collapse
Affiliation(s)
- Ghazaleh Khalili-Tanha
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Evette S Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Alireza Shoari
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
4
|
Gentile R, Feudi D, Sallicandro L, Biagini A. Can the Tumor Microenvironment Alter Ion Channels? Unraveling Their Role in Cancer. Cancers (Basel) 2025; 17:1244. [PMID: 40227837 PMCID: PMC11988140 DOI: 10.3390/cancers17071244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 03/29/2025] [Accepted: 04/03/2025] [Indexed: 04/15/2025] Open
Abstract
Neoplastic cells are characterized by metabolic reprogramming, known as the Warburg effect, in which glucose metabolism is predominantly directed toward aerobic glycolysis, with reduced mitochondrial oxidative phosphorylation and increased lactate production even in the presence of oxygen. This phenomenon provides cancer cells with a proliferative advantage, allowing them to rapidly produce energy (in the form of ATP) and generate metabolic intermediates necessary for the biosynthesis of macromolecules essential for cell growth. It is important to understand the role of ion channels in the tumor context since they participate in various physiological processes and in the regulation of the tumor microenvironment. These changes may contribute to the development and transformation of cancer cells, as well as affect the communication between cells and the surrounding microenvironment, including impaired or altered expression and functionality of ion channels. Therefore, the aim of this review is to elucidate the impact of the tumor microenvironment on the electrical properties of the cellular membranes in several cancers as a possible therapeutic target.
Collapse
Affiliation(s)
- Rosaria Gentile
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06123 Perugia, Italy;
| | - Davide Feudi
- Department of Biostatistics, Epidemiology and Public Health, University of Padua, Via L. Loredan 18, 35131 Padova, Italy;
| | - Luana Sallicandro
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06123 Perugia, Italy;
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
| | - Andrea Biagini
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06123 Perugia, Italy;
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
| |
Collapse
|
5
|
Yang S, Liu Y, Pei Y, Qian ZJ. Anti-angiogenic activity and mechanism of fucoidan from brown algae, Sargassum Naozhouense mediated by intracellular antioxidation. Int J Biol Macromol 2025; 293:139318. [PMID: 39740700 DOI: 10.1016/j.ijbiomac.2024.139318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/16/2024] [Accepted: 12/28/2024] [Indexed: 01/02/2025]
Abstract
Fucoidan has various physiological activities, and its structure is also different according to different brown algae. In this study SNF (Sargassum Naozhouense fucoidan) was extracted by acid extraction method, and its relative molecular weight was determined to be 631.40 kDa. The structure contains 42 % hydroxyl with sulfate group, and it is mainly composed of fucose, galactose and xylose. In the activity study, intracellular oxidative stress is closely related to angiogenesis. The results show that SNF could ameliorate cellular oxidative stress injury by inhibiting the production of intracellular reactive oxygen species (ROS), nitric oxide (NO) and DNA damage in HepG2/CYP2E1 cell. In addition, SNF can reduce the activity of Matrix Metallopeptidase (MMP-2/9), and inhibit hypoxia-inducible factor-1α (HIF-1α) expression by regulating the downstream PI3K/AKT and Ras/MAPK pathways, thereby preventing vascular endothelial growth factor (VEGF) production, and further inhibits VEGF receptor-2 activation and ultimately inhibits angiogenesis in HT1080 and HUVECs. Therefore, SNF has the potential to develop tumor prevention functional substances and can provide theoretical basis for the high-value comprehensive utilization of brown algae.
Collapse
Affiliation(s)
- Shengtao Yang
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China; Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China
| | - Yi Liu
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yu Pei
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhong-Ji Qian
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
6
|
Sato A, Takagi K, Yamaguchi-Tanaka M, Okushima J, Yamazaki Y, Ito A, Suzuki T. Matrix metalloproteinase-3 is a potent prognostic factor associated with cell proliferation and migration in prostate cancer. Exp Mol Pathol 2025; 141:104954. [PMID: 39933392 DOI: 10.1016/j.yexmp.2025.104954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/23/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
Prostate cancer is a common malignancy in men around the world, and it is crucial to explore novel biomarkers to improve its treatment. Prostate cancer cells typically invade the surrounding stroma, and remodeling of the extracellular matrix (ECM) is a crucial step in the progress of prostate cancer. Matrix metalloproteinase-3 (MMP3) is an enzyme that degrades several ECM components and is implicated in human malignancies. However, the clinical and biological significance of MMP3 has not been well elucidated. We therefore immunolocalized MMP3 in prostate cancer tissues (n = 117) and demonstrated that MMP3 immunoreactivity was correlated with aggressive phenotype of prostate cancer, including higher proliferation/invasion ability, and shorter disease-free survival. In addition, subsequent in vitro analysis revealed that overexpression of MMP3 significantly increased the proliferative and migratory abilities of PC-3 and DU-145 prostate cancer cell lines, depending on conditioned media from WMPY-1 prostate stromal cells. It was concluded that MMP3 might contribute to prostate cancer progression by modifying the ECM surrounding prostate cancer cells and could serve as a potent prognostic factor in prostate cancer.
Collapse
Affiliation(s)
- Ai Sato
- Departments of Pathology and Histotechnology, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Kiyoshi Takagi
- Departments of Pathology and Histotechnology, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan.
| | - Mio Yamaguchi-Tanaka
- Departments of Pathology and Histotechnology, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan; Departments of Personalized Medicine Center, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Jotaro Okushima
- Departments of Pathology and Histotechnology, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Akihiro Ito
- Departments of Urology, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Takashi Suzuki
- Departments of Pathology and Histotechnology, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan; Department of Pathology, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan; Departments of Anatomic Pathology Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
7
|
Peeney D, Kumar S, Singh TP, Liu Y, Jensen SM, Chowdhury A, Coates-Park S, Rich J, Gurung S, Fan Y, Meerzaman D, Stetler-Stevenson WG. Timp2 loss-of-function mutation and TIMP2 treatment in a murine model of NSCLC: Modulation of immunosuppression and oncogenic signaling. Transl Oncol 2025; 53:102309. [PMID: 39904284 PMCID: PMC11846589 DOI: 10.1016/j.tranon.2025.102309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/06/2024] [Accepted: 01/30/2025] [Indexed: 02/06/2025] Open
Abstract
Mounting evidence suggests that the tissue inhibitor of metalloproteinases-2 (TIMP2) can reduce tumor burden and metastasis. However, the demonstration of such anti-tumor activity and associated mechanisms using in vivo tumor models is lacking. The effects of a Timp2 functional mutation and administration of recombinant TIMP2 were examined in both orthotopic and heterotopic murine models of lung cancer using C57Bl/6 syngeneic Lewis Lung 2-luciferase 2 cells (LL2-Luc2) cells. Mice harboring a functional mutation of TIMP2 (mT2) display markedly increased primary lung tumor growth, increased mortality, enriched vasculature, and enhanced infiltration of pro-tumorigenic, immunosuppressive myeloid cells. Treatment with recombinant TIMP2 reduced primary tumor growth in both mutant and wild-type (wt) mice. Comparison of transcriptional profiles of lung tissues from tumor-free, wt versus mT2 mice reveals only minor changes. However, lung tumor-bearing mice of both genotypes demonstrate significant genotype-dependent changes in gene expression following treatment with TIMP. In tumor-bearing wt mice, TIMP2 treatment reduced the expression of upstream oncogenic mediators, whereas treatment of mT2 mice resulted in an immunomodulatory phenotype. A heterotopic subcutaneous model generating metastatic pulmonary tumors demonstrated that daily administration of recombinant TIMP2 significantly reduces the expression of heat shock proteins, suggesting a reduction of cell-stress responses. In summary, we describe how TIMP2 exerts novel, anti-tumor effects in a murine model of lung cancer and that rTIMP2 treatment supports a normalizing effect on the tumor microenvironment. Our findings show that TIMP2 treatment demonstrates significant potential as an adjuvant in the treatment of NSCLC.
Collapse
Affiliation(s)
- David Peeney
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892, USA.
| | - Sarvesh Kumar
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | - Tej Pratap Singh
- Laboratory of Molecular Immunology, National Institute for Allergy, and Infectious Disease (NIAID), Bethesda, MD 20892, USA
| | - Yueqin Liu
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | - Sandra M Jensen
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | - Ananda Chowdhury
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | - Sasha Coates-Park
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | - Joshua Rich
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | - Sadeechya Gurung
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | - Yu Fan
- Computational Genomics and Bioinformatics Group, Center for Biomedical Informatics & Information Technology, National Cancer Institute, Rockville, MD 20850, USA
| | - Daoud Meerzaman
- Computational Genomics and Bioinformatics Group, Center for Biomedical Informatics & Information Technology, National Cancer Institute, Rockville, MD 20850, USA
| | - William G Stetler-Stevenson
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892, USA.
| |
Collapse
|
8
|
Sreesada P, Vandana, Krishnan B, Amrutha R, Chavan Y, Alfia H, Jyothis A, Venugopal P, Aradhya R, Suravajhala P, Nair BG. Matrix metalloproteinases: Master regulators of tissue morphogenesis. Gene 2025; 933:148990. [PMID: 39393432 DOI: 10.1016/j.gene.2024.148990] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
The matrix metalloproteinases (MMPs) are a class of zinc proteases that aid in breaking most of the extracellular matrix's (ECM) constituents. Additionally, MMPs play a part in processing elements that affect inflammation, cell development and proliferation, and many more. In vivo genetic study of the Drosophila MMPs Mmp1 and Mmp2 reveals they are essential for tissue remodeling but not embryonic development. The canonical and conserved MMP domain organization is present in both fly MMPs. Because Mmp2 appeared to be membrane-anchored and Mmp1 appeared to be released, the pericellular localization of Drosophila MMPs has been used to classify them. This suggests that the protein's localization is the critical distinction in this small MMP family. The signal sequence, the propeptide, the catalytic domain, and the hemopexin-like domain are among the numerous domains found in MMPs. Following secretion from the extracellular environment to the endoplasmic reticulum, the pre-domain, also known as the signal sequence, serves to direct MMP production. MMPs of the secretory and membrane types (MT-MMPs) are two groups of MMPs that have been widely recognized. Subgroups of MMPs are categorized based on their structure and function. While analysis of the intracellular activity of human MMPs is challenging because the human genome contains around 23 distinct MMPs with overlapping functions, only two MMPs, dMMP1 and dMMP2, are encoded by the Drosophila melanogaster genome. On the other hand, the balance between MMPs and the family members are implicated in various pathophysiology/progression of diseases, but whether or not the mechanisms of MMP inhibition are not clearly understood as master regulators. In this review, we outline the role of MMPs as master regulators of tissue morphogenesis.
Collapse
Affiliation(s)
- P Sreesada
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| | - Vandana
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| | - Bhagath Krishnan
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| | - R Amrutha
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| | - Yash Chavan
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| | - Hasanath Alfia
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| | - Anjali Jyothis
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| | - Parvathy Venugopal
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| | - Rajaguru Aradhya
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India.
| | - Prashanth Suravajhala
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India.
| | - Bipin G Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| |
Collapse
|
9
|
Feng C, Chen X, Yin X, Jiang Y, Zhao C. Matrix Metalloproteinases on Skin Photoaging. J Cosmet Dermatol 2024; 23:3847-3862. [PMID: 39230065 PMCID: PMC11626319 DOI: 10.1111/jocd.16558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/31/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Skin aging is characterized by an imbalance between the generation and degradation of extracellular matrix molecules (ECM). Matrix metalloproteinases (MMPs) are the primary enzymes responsible for ECM breakdown. Intrinsic and extrinsic stimuli can induce different MMPs. However, there is limited literature especially on the summary of skin MMPs and potential inhibitors. OBJECTIVE We aim to focus on the upregulation of MMP expression or activity in skin cells following exposure to UV radiation. We also would like to offer valuable insights into potential clinical applications of MMP inhibitors for mitigating skin aging. METHODS This article presents the summary of prior research, which involved an extensive literature search across diverse academic databases including Web of Science and PubMed. RESULTS Our findings offer a comprehensive insight into the effects of MMPs on skin aging after UV irradiation, including their substrate preferences and distinct roles in this process. Additionally, a comprehensive list of natural plant and animal extracts, proteins, polypeptides, amino acids, as well as natural and synthetic compounds that serve as inhibitors for MMPs is compiled. CONCLUSION Skin aging is a complex process influenced by environmental factors and MMPs. Research focuses on UV-induced skin damage and the formation of Advanced Glycosylation End Products (AGEs), leading to wrinkles and impaired functionality. Inhibiting MMPs is crucial for maintaining youthful skin. Natural sources of MMP inhibitor substances, such as extracts from plants and animals, offer a safer approach to obtain inhibitors through dietary supplements. Studying isolated active ingredients can contribute to developing targeted MMP inhibitors.
Collapse
Affiliation(s)
- Chao Feng
- Beijing Qingyan Boshi Health Management Co., Ltd.BeijingChina
| | - Xianglong Chen
- Beijing Qingyan Boshi Health Management Co., Ltd.BeijingChina
| | - Xiuqing Yin
- Beijing Qingyan Boshi Health Management Co., Ltd.BeijingChina
| | - Yanfei Jiang
- Beijing Qingyan Boshi Health Management Co., Ltd.BeijingChina
| | - Chunyue Zhao
- Beijing Qingyan Boshi Health Management Co., Ltd.BeijingChina
| |
Collapse
|
10
|
Dimitrieva S, Harrison JM, Chang J, Piquet M, Mino-Kenudson M, Gabriel M, Sagar V, Horn H, Lage K, Kim J, Li G, Weng S, Harris C, Kulkarni AS, Ting DT, Qadan M, Fagenholz PJ, Ferrone CR, Grauel AL, Laszewski T, Raza A, Riester M, Somerville T, Wagner JP, Dranoff G, Engelman JA, Kauffmann A, Leary R, Warshaw AL, Lillemoe KD, Fernández-del Castillo C, Ruddy DA, Liss AS, Cremasco V. Dynamic Evolution of Fibroblasts Revealed by Single-Cell RNA Sequencing of Human Pancreatic Cancer. CANCER RESEARCH COMMUNICATIONS 2024; 4:3049-3066. [PMID: 39485038 PMCID: PMC11609929 DOI: 10.1158/2767-9764.crc-23-0489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 10/29/2024] [Indexed: 11/03/2024]
Abstract
SIGNIFICANCE Pancreatic cancer remains a high unmet medical need. Understanding the interactions between stroma and cancer cells in this disease may unveil new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
| | - Jon M. Harrison
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jonathan Chang
- Oncology Translational Research, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Michelle Piquet
- Oncology Innovative Targets and Technologies, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Millicent Gabriel
- Oncology Innovative Targets and Technologies, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Vivek Sagar
- Oncology Data Science, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Heiko Horn
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kasper Lage
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Julie Kim
- Oncology Innovative Targets and Technologies, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Gang Li
- Oncology Data Science, Novartis Biomedical Research, Basel, Switzerland
| | - Shaobu Weng
- Oncology Translational Research, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Cynthia Harris
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | - Motaz Qadan
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Peter J. Fagenholz
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Cristina R. Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Angelo L. Grauel
- Oncology Data Science, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Tyler Laszewski
- Oncology Translational Research, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Alina Raza
- Oncology Translational Research, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Markus Riester
- Oncology Data Science, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Tim Somerville
- Oncology Innovative Targets and Technologies, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Joel P. Wagner
- Oncology Data Science, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Glenn Dranoff
- Oncology, Novartis Biomedical Research, Cambridge, Massachusetts
| | | | - Audrey Kauffmann
- Oncology Data Science, Novartis Biomedical Research, Basel, Switzerland
| | - Rebecca Leary
- Oncology Translational Research, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Andrew L. Warshaw
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Keith D. Lillemoe
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - David A. Ruddy
- Oncology Innovative Targets and Technologies, Novartis Biomedical Research, Cambridge, Massachusetts
| | - Andrew S. Liss
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Viviana Cremasco
- Oncology Translational Research, Novartis Biomedical Research, Cambridge, Massachusetts
| |
Collapse
|
11
|
Faupel-Badger J, Kohaar I, Bahl M, Chan AT, Campbell JD, Ding L, De Marzo AM, Maitra A, Merrick DT, Hawk ET, Wistuba II, Ghobrial IM, Lippman SM, Lu KH, Lawler M, Kay NE, Tlsty TD, Rebbeck TR, Srivastava S. Defining precancer: a grand challenge for the cancer community. Nat Rev Cancer 2024; 24:792-809. [PMID: 39354069 DOI: 10.1038/s41568-024-00744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2024] [Indexed: 10/03/2024]
Abstract
The term 'precancer' typically refers to an early stage of neoplastic development that is distinguishable from normal tissue owing to molecular and phenotypic alterations, resulting in abnormal cells that are at least partially self-sustaining and function outside of normal cellular cues that constrain cell proliferation and survival. Although such cells are often histologically distinct from both the corresponding normal and invasive cancer cells of the same tissue origin, defining precancer remains a challenge for both the research and clinical communities. Once sufficient molecular and phenotypic changes have occurred in the precancer, the tissue is identified as a 'cancer' by a histopathologist. While even diagnosing cancer can at times be challenging, the determination of invasive cancer is generally less ambiguous and suggests a high likelihood of and potential for metastatic disease. The 'hallmarks of cancer' set out the fundamental organizing principles of malignant transformation but exactly how many of these hallmarks and in what configuration they define precancer has not been clearly and consistently determined. In this Expert Recommendation, we provide a starting point for a conceptual framework for defining precancer, which is based on molecular, pathological, clinical and epidemiological criteria, with the goal of advancing our understanding of the initial changes that occur and opportunities to intervene at the earliest possible time point.
Collapse
Affiliation(s)
| | - Indu Kohaar
- Division of Cancer Prevention, National Cancer Institute, NIH, Rockville, MD, USA
| | - Manisha Bahl
- Division of Breast Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Joshua D Campbell
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Li Ding
- Department of Medicine and Genetics, McDonnell Genome Institute, and Siteman Cancer Center, Washington University in St Louis, Saint Louis, MO, USA
| | - Angelo M De Marzo
- Department of Pathology, Urology and Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anirban Maitra
- Department of Translational Molecular Pathology, Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel T Merrick
- Division of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ernest T Hawk
- Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Irene M Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Scott M Lippman
- Department of Medicine, University of California, La Jolla, San Diego, CA, USA
| | - Karen H Lu
- Department of Gynecological Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Mark Lawler
- Patrick G Johnson Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Neil E Kay
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Thea D Tlsty
- Department of Medicine and Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Timothy R Rebbeck
- Dana-Farber Cancer Institute and Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Sudhir Srivastava
- Division of Cancer Prevention, National Cancer Institute, NIH, Rockville, MD, USA.
| |
Collapse
|
12
|
Sacco JL, Gomez EW. Epithelial-Mesenchymal Plasticity and Epigenetic Heterogeneity in Cancer. Cancers (Basel) 2024; 16:3289. [PMID: 39409910 PMCID: PMC11475326 DOI: 10.3390/cancers16193289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
The tumor microenvironment comprises various cell types and experiences dynamic alterations in physical and mechanical properties as cancer progresses. Intratumoral heterogeneity is associated with poor prognosis and poses therapeutic challenges, and recent studies have begun to identify the cellular mechanisms that contribute to phenotypic diversity within tumors. This review will describe epithelial-mesenchymal (E/M) plasticity and its contribution to phenotypic heterogeneity in tumors as well as how epigenetic factors, such as histone modifications, histone modifying enzymes, DNA methylation, and chromatin remodeling, regulate and maintain E/M phenotypes. This review will also report how mechanical properties vary across tumors and regulate epigenetic modifications and E/M plasticity. Finally, it highlights how intratumoral heterogeneity impacts therapeutic efficacy and provides potential therapeutic targets to improve cancer treatments.
Collapse
Affiliation(s)
- Jessica L. Sacco
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Esther W. Gomez
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA;
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
13
|
Qin X, Strand SH, Lee MR, Saraswathibhatla A, van IJzendoorn DGP, Zhu C, Vennam S, Varma S, Hall A, Factor RE, King L, Simpson L, Luo X, Colditz GA, Jiang S, Chaudhuri O, Hwang ES, Marks JR, Owzar K, West RB. Single Cell Expression Analysis of Ductal Carcinoma in Situ Identifies Complex Genotypic-Phenotypic Relationships Altering Epithelial Composition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.10.561724. [PMID: 39386437 PMCID: PMC11463646 DOI: 10.1101/2023.10.10.561724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
To identify mechanisms underlying the growth of ductal carcinoma in situ (DCIS) and properties that lead to progression to invasive cancer, we performed single-cell RNA-sequencing (scRNA-seq) on DCIS lesions and matched synchronous normal breast tissue. Using inferred copy number variations (CNV), we identified neoplastic epithelial cells from the clinical specimens which contained a mixture of DCIS and normal ducts. Phylogenetic analysis based on the CNVs demonstrated intratumoral clonal heterogeneity was associated with significant gene expression differences. We also classified epithelial cells into mammary cell states and found that individual genetic clones contained a mixture of cell states suggesting an ongoing pattern of differentiation after neoplastic transformation. Cell state proportions were significantly different based on estrogen receptor (ER) expression with ER-DCIS more closely resembling the distribution in the normal breast, particularly with respect to cells with basal characteristics. Using deconvolution from bulk RNA-seq in archival DCIS specimens, we show that specific alterations in cell state proportions are associated with progression to invasive cancer. Loss of an intact basement membrane (BM) is the functional definition of invasive breast cancer (IBC) and scRNA-seq data demonstrated that ongoing transcription of key BM genes occurs in specific subsets of epithelial cell states. Examining BM in archival microinvasive breast cancers and an in vitro model of invasion, we found that passive loss of BM gene expression due to cell state proportion alterations is associated with loss of the structural integrity of the duct leading to an invasive phenotype. Our analyses provide detailed insight into DCIS biology. SIGNIFICANCE Single cell analysis reveals that preinvasive breast cancer is comprised of multiple genetic clones and there is substantial phenotypic diversity both within and between these clones. Ductal carcinoma in situ (DCIS) of the breast is a non-invasive condition commonly identified through mammographic screening. A primary diagnosis of DCIS carries little mortality risk on its own, but its presence is a risk factor for subsequent clonally related invasive breast cancer (IBC) (1-5).
Collapse
|
14
|
Di Y, Wang Z, Xiao J, Zhang X, Ye L, Wen X, Qin J, Lu L, Wang X, He W. ACSL6-activated IL-18R1-NF-κB promotes IL-18-mediated tumor immune evasion and tumor progression. SCIENCE ADVANCES 2024; 10:eadp0719. [PMID: 39292786 PMCID: PMC11409972 DOI: 10.1126/sciadv.adp0719] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/09/2024] [Indexed: 09/20/2024]
Abstract
Aberrant activation of IL-18 signaling regulates tumor immune evasion and progression. However, the underlying mechanism remains unclear. Here, we report that long-chain acyl-CoA synthase 6 (ACSL6) is highly expressed in liver cancer and correlated with poor prognosis. ACSL6 promotes tumor growth, metastasis, and immune evasion mediated by IL-18, independent of its metabolic enzyme activity. Mechanistically, upon IL-18 stimulation, ACSL6 is phosphorylated by ERK2 at S674 and recruits IL-18RAP to interact with IL-18R1, thereby reinforcing the IL-18R1-IL-18RAP heterodimer and triggering NF-κB-dependent gene expression to facilitate tumor development. Furthermore, the up-regulation of CXCL1 and CXCL5 by ACSL6 promotes tumor-associated neutrophil and tumor-associated macrophage recruitment, thereby inhibiting cytotoxic CD8+ T cell infiltration. Ablation or S674A mutation of ACSL6 potentiated anti-PD-1 therapeutic efficacy by increasing the effector activity of intertumoral CD8+ T cells. We revealed that ACSL6 is a potential adaptor that activates IL-18-NF-κB axis-mediated tumor immune evasion and provides valuable insights for developing effective immunotherapy strategies for cancer.
Collapse
Affiliation(s)
- Yuqin Di
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Ziyang Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jing Xiao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, Guangdong 519000, China
| | - Xiang Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Lvlan Ye
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xiangqiong Wen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jiale Qin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, Guangdong 519000, China
| | - Xiongjun Wang
- School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Weiling He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Department of Gastrointestinal Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| |
Collapse
|
15
|
Pote MS, Singh D, M. A A, Suchita J, Gacche RN. Cancer metastases: Tailoring the targets. Heliyon 2024; 10:e35369. [PMID: 39170575 PMCID: PMC11336595 DOI: 10.1016/j.heliyon.2024.e35369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Metastasis is an intricate and formidable pathophysiological process encompassing the dissemination of cancer cells from the primary tumour body to distant organs. It stands as a profound and devastating phenomenon that constitutes the primary driver of cancer-related mortality. Despite great strides of advancements in cancer research and treatment, tailored anti-metastasis therapies are either lacking or have shown limited success, necessitating a deeper understanding of the intrinsic elements driving cancer invasiveness. This comprehensive review presents a contemporary elucidation of pivotal facets within the realm of cancer metastasis, commencing with the intricate processes of homing and invasion. The process of angiogenesis, which supports tumour growth and metastasis, is addressed, along with the pre-metastatic niche, wherein the primary tumour prepares for a favorable microenvironment at distant sites for subsequent metastatic colonization. The landscape of metastasis-related genetic and epigenetic mechanisms, involvement of metastasis genes and metastasis suppressor genes, and microRNAs (miRNA) are also discussed. Furthermore, immune modulators' impact on metastasis and their potential as therapeutic targets are addressed. The interplay between cancer cells and the immune system, including immune evasion mechanisms employed by metastatic cells, is discussed, highlighting the importance of targeting immune modulation in arresting metastatic progression. Finally, this review presents promising treatment opportunities derived from the insights gained into the mechanisms of metastasis. Identifying novel therapeutic targets and developing innovative strategies to disrupt the metastatic cascade holds excellent potential for improving patient outcomes and ultimately reducing cancer-related mortality.
Collapse
Affiliation(s)
| | | | | | | | - Rajesh N. Gacche
- Department of Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, India
| |
Collapse
|
16
|
Yao Y, Tian G, Zhang J, Zhang S, Liu X, Hou J. Integrating bulk and single-cell sequencing reveals metastasis-associated CAFs in head and neck squamous cell carcinoma. Life Sci 2024; 351:122768. [PMID: 38851417 DOI: 10.1016/j.lfs.2024.122768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/18/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
AIMS Cancer-associated fibroblasts (CAFs) have been shown to promote the metastasis of head and neck squamous cell carcinoma (HNSCC), but the underlying mechanisms remain unclear. The purpose of this study is to identify gene in CAFs that are associated with metastasis and to preliminarily validate its impact on the metastasis of HNSCC. MATERIALS AND METHODS Scissor analysis was utilized to process single-cell and bulk RNA sequencing datasets, identifying genes associated with the metastasis of HNSCC through differential gene expression analysis. A risk model was constructed using LASSO regression analysis. Quantitative real time-PCR and Western blot were employed to measure mRNA and protein expressions, respectively. Multiplex immunohistochemistry (mIHC) was used to assess protein expression in CAFs. siRNA was utilized to achieve gene knockdown. CCK-8 and Transwell assays were employed to evaluate the biological characteristics of HNSCC cells. KEY FINDINGS Compare to the nonmetastatic primary CAFs (nmCAFs), tissue inhibitors of metalloproteinase-1 (TIMP1) was founded to be overexpressed in the cells and tissues of metastatic primary CAFs (mCAFs). Knocking down TIMP1 in CAFs can signifucantly inhibit the proliferation, invasion, and migration of HNSCC cells. SIGNIFICANCE CAFs facilitate HNSCC cell metastasis by upregulating TIMP1, highlighting TIMP1 as a potential therapeutic target in HNSCC metastasis management.
Collapse
Affiliation(s)
- Yihuan Yao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan west Street, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong Shan Er Road 74, Guangzhou 510080, China
| | - Guoli Tian
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan west Street, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong Shan Er Road 74, Guangzhou 510080, China
| | - Jiaqiang Zhang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan west Street, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong Shan Er Road 74, Guangzhou 510080, China
| | - Shuaiyuan Zhang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan west Street, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong Shan Er Road 74, Guangzhou 510080, China
| | - Xiaoyong Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan west Street, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong Shan Er Road 74, Guangzhou 510080, China
| | - Jingsong Hou
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan west Street, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong Shan Er Road 74, Guangzhou 510080, China.
| |
Collapse
|
17
|
Hamblin MH, Boese AC, Murad R, Lee JP. MMP-3 Knockout Induces Global Transcriptional Changes and Reduces Cerebral Infarction in Both Male and Female Models of Ischemic Stroke. Int J Mol Sci 2024; 25:7383. [PMID: 39000490 PMCID: PMC11242542 DOI: 10.3390/ijms25137383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Ischemic stroke followed by reperfusion (IR) leads to extensive cerebrovascular injury characterized by neuroinflammation and brain cell death. Inhibition of matrix metalloproteinase-3 (MMP-3) emerges as a promising therapeutic approach to mitigate IR-induced stroke injury. We employed middle cerebral artery occlusion with subsequent reperfusion (MCAO/R) to model ischemic stroke in adult mice. Specifically, we investigated the impact of MMP-3 knockout (KO) on stroke pathophysiology using RNA sequencing (RNA-seq) of stroke brains harvested 48 h post-MCAO. MMP-3 KO significantly reduced brain infarct size following stroke. Notably, RNA-seq analysis showed that MMP-3 KO altered expression of 333 genes (252 downregulated) in male stroke brains and 3768 genes (889 downregulated) in female stroke brains. Functional pathway analysis revealed that inflammation, integrin cell surface signaling, endothelial- and epithelial-mesenchymal transition (EndMT/EMT), and apoptosis gene signatures were decreased in MMP-3 KO stroke brains. Intriguingly, MMP-3 KO downregulated gene signatures more profoundly in females than in males, as indicated by greater negative enrichment scores. Our study underscores MMP-3 inhibition as a promising therapeutic strategy, impacting multiple cellular pathways following stroke.
Collapse
Affiliation(s)
- Milton H. Hamblin
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA
- Health Sciences Center, Tulane University, New Orleans, LA 70112, USA
| | - Austin C. Boese
- School of Medicine, Emory University, Atlanta, GA 30322, USA;
| | - Rabi Murad
- Bioinformatics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA;
| | - Jean-Pyo Lee
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
18
|
Xiang Q, Qu L, Lei H, Duan Z, Zhu C, Yuwen W, Ma X, Fan D. Expression of Multicopy Tandem Recombinant Ginseng Hexapeptide in Bacillus subtilis and the Evaluation of Antiaging Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7266-7278. [PMID: 38523338 DOI: 10.1021/acs.jafc.3c09158] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Ginseng oligopeptides are naturally occurring small-molecule peptides extracted from ginseng that exhibit positive effects on health and longevity. However, the current industrial production of ginseng oligopeptides primarily relies on plant extraction and chemical synthesis. In this study, we proposed a novel genetic engineering approach to produce active ginseng peptides through multicopy tandem insertion (5 and 15 times). The recombinant ginseng peptides were successfully produced from engineered Bacillus subtilis with an increasing yield from 356.55 to 2900 mg/L as the repeats multiple. Additionally, an oxidative stress-induced aging model caused by H2O2 was established to evaluate whether the recombinant ginseng peptides, without enzymatic hydrolysis into individual peptides, also have positive effects on antiaging. The results demonstrated that all two kinds of recombinant ginseng peptides could also delay cellular aging through various mechanisms, such as inhibiting cell cycle arrest, suppressing the expression of pro-inflammatory factors, and enhancing cellular antioxidant capacity.
Collapse
Affiliation(s)
- Qingyu Xiang
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Linlin Qu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Huan Lei
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Zhiguang Duan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Chenhui Zhu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Weigang Yuwen
- Shaanxi Gaint Biotechnology Co., Ltd, Xi'an 710065, Shaanxi, China
| | - Xiaoxuan Ma
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| |
Collapse
|
19
|
Shao L, Liu W, Zhang C, Ma W, Yu X, Han J, Wang X. The Role and Function of Secretory Protein Matrix Metalloproteinase-3 ( MMP3) in Cervical Cancer. IRANIAN JOURNAL OF PUBLIC HEALTH 2024; 53:855-866. [PMID: 39444485 PMCID: PMC11493579 DOI: 10.18502/ijph.v53i4.15562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/16/2023] [Indexed: 10/25/2024]
Abstract
Background We started with RNA-seq analysis and aimed to investigate the possibility of secretory protein matrix metalloproteinase-3(MMP3) as a new diagnosis and therapeutic target in cervical cancer. Methods The study was conducted on Nov 2021 at the Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China. Through conjoint analysis of gene expression data as well as survival rate data, we explored the potential secretary proteins associated with cervical cancer carcinogenesis. One hundred patients aged 38-72 years with clinical stage I-IV cervical cancer, and 100 age-matched healthy women were included. The expression changes in serum of clinical patients was detected. We knockdown or overexpressed the secretory proteins then explored its influence on biological function of cervical cancer cells. Results By cross-analysis of The Cancer Genome Atlas (TCGA) database and MetazSecKB database, MMP3 gene was most significantly upregulated in cervical cancer patients (P < 0.05). Furthermore, MMP3 protein was remarkably increased in the serum of clinical cervical cancer patients and decreased after receiving treatment. Overexpression of MMP3 in HT-3 cells or culturing new cells using the supernatant of the medium after MMP3 overexpression could increase cell viability (P < 0.05) as well as proliferation (P < 0.05). Knockdown of MMP3 reduced the phosphorylation of PI3K as well as AKT proteins, while the PI3K phosphorylation inhibitors could suppress the impact of MMP3 on increasing cell proliferation as well as viability. Conclusion MMP3 could be an underlying target for early diagnosis and treat cervical cancer in the future.
Collapse
Affiliation(s)
- Lei Shao
- Department of Gynecology, the Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Wanqiu Liu
- Department of Gynecology, the Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Chunyan Zhang
- Department of Gynecology, the Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Wei Ma
- Qiqihar City Hospital of Traditional Chinese Medicine South Department of Gynecology, Qiqihar, China
| | - Xiao Yu
- Department of Obstetrics and Gynaecology, the Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Jing Han
- Department of Gynecology, the Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Xiaojuan Wang
- Department of Gynecology, the Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
20
|
Tomasin R, Ghajar CM. Poised epigenetic states dictate metastatic fitness. Trends Cancer 2024; 10:275-276. [PMID: 38521653 DOI: 10.1016/j.trecan.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/25/2024]
Abstract
Seeking to define early events that regulate disseminated tumor cell (DTC) fate upon their arrival to the lung, Jakab et al. reach the surprising conclusion that dormancy is determined by a cell autonomous poised epigenetic state that renders DTCs responsive to angiocrine Wnt signaling.
Collapse
Affiliation(s)
- Rebeka Tomasin
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Center for Metastasis Research eXcellence (MET-X), Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Cyrus M Ghajar
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Center for Metastasis Research eXcellence (MET-X), Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| |
Collapse
|
21
|
Hsu LF, Ratanasereeprasert N, Wang SK, Chen JT, Chen YJ, Yeh TH, Sung HH, Yao CCJ. Craniofacial and olfactory sensory changes after long-term unilateral nasal obstruction-an animal study using MMP-3-LUC transgenic rats. Sci Rep 2024; 14:2616. [PMID: 38297007 PMCID: PMC10830476 DOI: 10.1038/s41598-024-51544-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/06/2024] [Indexed: 02/02/2024] Open
Abstract
Nasal obstruction exerts considerable physiological effects on the respiratory system and craniofacial morphology during the developmental stage. This study used MMP-3-LUC transgenic rats for in vivo tracking of long-term expression in the rat nasal region after unilateral nasal obstruction. Skeletal changes of the craniofacial, nasal, and sinus regions were measured through micro-computed tomography examination and analysis with 3D image processing and calculation. Matrix metalloproteinase-3 and olfactory marker protein expression were also investigated through immunohistochemistry (IHC). Unilateral nasal obstruction significantly reduced the MMP-3 signal in the nasal region of MMP-3-LUC transgenic rats, which was mainly expressed in the respiratory epithelium. Long-term obstruction also caused morphological changes of the craniofacial hard tissue, such as nasal septal deviation, longer inter-jaw distance, and increased maxillary molar dental height. It also caused compensatory growth in olfactory nerve bundles and the olfactory epithelium, as confirmed by IHC. In our study, long-term unilateral nasal obstruction caused nasal septal deviation toward the unobstructed side, hyper divergent facial development including longer molar dental height, and reduced MMP-3 production. However, further investigation is necessary to explore the mechanism in depth.
Collapse
Affiliation(s)
- Li-Fang Hsu
- Department of Dentistry, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu, Taiwan
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, No. 1, Chang-Te Street, Taipei, 10048, Taiwan
| | - Nutthakarn Ratanasereeprasert
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, No. 1, Chang-Te Street, Taipei, 10048, Taiwan
| | - Shih-Kai Wang
- Department of Dentistry, National Taiwan University School of Dentistry, Taipei, Taiwan
| | - Jung-Tsu Chen
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, No. 1, Chang-Te Street, Taipei, 10048, Taiwan
| | - Yi-Jane Chen
- Department of Dentistry, National Taiwan University School of Dentistry, Taipei, Taiwan
- Division of Orthodontics and Dentofacial Orthopedics, Dental Department, National Taiwan University Hospital, Taipei, Taiwan
| | - Te-Huei Yeh
- Department of Otolaryngology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsiang-Hsuan Sung
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
| | - Chung-Chen Jane Yao
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, No. 1, Chang-Te Street, Taipei, 10048, Taiwan.
- Division of Orthodontics and Dentofacial Orthopedics, Dental Department, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
22
|
Galadima M, Teles M, Pastor J, Hernández-Losa J, Rodríguez-Gil JE, Rivera del Alamo MM. Programmed Death-Ligand (PD-L1), Epidermal Growth Factor (EGF), Relaxin, and Matrix Metalloproteinase-3 (MMP3): Potential Biomarkers of Malignancy in Canine Mammary Neoplasia. Int J Mol Sci 2024; 25:1170. [PMID: 38256245 PMCID: PMC10816983 DOI: 10.3390/ijms25021170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Gene expression has been suggested as a putative tool for prognosis and diagnosis in canine mammary neoplasia (CMNs). In the present study, 58 formalin-fixed paraffin-embedded (FFPE) paraffined canine mammary neoplasias from 27 different bitches were included. Thirty-seven tumours were classified as benign, whereas thirty-one were classified as different types of canine carcinoma. In addition, mammary samples from three healthy bitches were also included. The gene expression for vascular endothelial growth factor-α (VEGFα), CD20, progesterone receptor (PGR), hyaluronidase-1 (HYAL-1), programmed death-ligand 1 (PD-L1), epidermal growth factor (EGF), relaxin (RLN2), and matrix metalloproteinase-3 (MMP3) was assessed through RT-qPCR. All the assessed genes yielded a higher expression in neoplastic mammary tissue than in healthy tissue. All the evaluated genes were overexpressed in neoplastic mammary tissue, suggesting a role in the process of tumorigenesis. Moreover, PD-L1, EGF, relaxin, and MMP3 were significantly overexpressed in malignant CMNs compared to benign CMNs, suggesting they may be useful as malignancy biomarkers.
Collapse
Affiliation(s)
- Makchit Galadima
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (M.G.); (J.P.); (J.E.R.-G.)
| | - Mariana Teles
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Josep Pastor
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (M.G.); (J.P.); (J.E.R.-G.)
| | - Javier Hernández-Losa
- Department of Pathology, Hospital Universitari Vall d’Hebron, VHIR, 08035 Barcelona, Spain;
| | - Joan Enric Rodríguez-Gil
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (M.G.); (J.P.); (J.E.R.-G.)
| | - Maria Montserrat Rivera del Alamo
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (M.G.); (J.P.); (J.E.R.-G.)
| |
Collapse
|
23
|
Sari D, Gozuacik D, Akkoc Y. Role of autophagy in cancer-associated fibroblast activation, signaling and metabolic reprograming. Front Cell Dev Biol 2024; 11:1274682. [PMID: 38234683 PMCID: PMC10791779 DOI: 10.3389/fcell.2023.1274682] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/08/2023] [Indexed: 01/19/2024] Open
Abstract
Tumors not only consist of cancerous cells, but they also harbor several normal-like cell types and non-cellular components. cancer-associated fibroblasts (CAFs) are one of these cellular components that are found predominantly in the tumor stroma. Autophagy is an intracellular degradation and quality control mechanism, and recent studies provided evidence that autophagy played a critical role in CAF formation, metabolic reprograming and tumor-stroma crosstalk. Therefore, shedding light on the autophagy and its role in CAF biology might help us better understand the roles of CAFs and the TME in cancer progression and may facilitate the exploitation of more efficient cancer diagnosis and treatment. Here, we provide an overview about the involvement of autophagy in CAF-related pathways, including transdifferentiation and activation of CAFs, and further discuss the implications of targeting tumor stroma as a treatment option.
Collapse
Affiliation(s)
- Dyana Sari
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
| | - Devrim Gozuacik
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
- Department of Medical Biology, School of Medicine, Koç University, Istanbul, Türkiye
- Department of Biotechnology, SUNUM Nanotechnology Research and Application Center, Istanbul, Türkiye
| | - Yunus Akkoc
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
| |
Collapse
|
24
|
Peeney D, Kumar S, Singh TP, Liu Y, Jensen SM, Chowdhury A, Coates-Park S, Rich J, Gurung S, Fan Y, Meerzaman D, Stetler-Stevenson WG. Timp2 loss-of-function mutation and TIMP2 treatment in murine model of NSCLC: modulation of immunosuppression and oncogenic signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.29.573636. [PMID: 38234759 PMCID: PMC10793420 DOI: 10.1101/2023.12.29.573636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Mounting evidence suggests that the tissue inhibitor of metalloproteinases-2 (TIMP2) can reduce tumor burden and metastasis. However, the demonstration of such anti-tumor activity and associated mechanisms using in vivo tumor models is lacking. The effects of a Timp2 functional mutation and administration of recombinant TIMP2 were examined in both orthotopic and heterotopic murine models of lung cancer using C57Bl/6 syngeneic Lewis Lung 2-luciferase 2 cells (LL2-luc2) cells. Mice harboring a functional mutation of TIMP2 (mT2) display markedly increased primary lung tumor growth, increased mortality, enriched vasculature, and enhanced infiltration of pro-tumorigenic, immunosuppressive myeloid cells. Treatment with recombinant TIMP2 reduced primary tumor growth in both mutant and wild-type (wt) mice. Comparison of transcriptional profiles of lung tissues from tumor-free, wt versus mT2 mice reveals only minor changes. However, lung tumor-bearing mice of both genotypes demonstrate significant genotype-dependent changes in gene expression following treatment with TIMP. In tumor-bearing wt mice, TIMP2 treatment reduced the expression of upstream oncogenic mediators, whereas treatment of mT2 mice resulted in an immunomodulatory phenotype. A heterotopic subcutaneous model generating metastatic pulmonary tumors demonstrated that daily administration of recombinant TIMP2 significantly downregulates the expression of heat shock proteins, suggesting a reduction of cell-stress responses. In summary, we describe how TIMP2 exerts novel, anti-tumor effects in a murine model of lung cancer and that rTIMP2 treatment supports a normalizing effect on the tumor microenvironment. Our findings show that TIMP2 treatment demonstrates significant potential as an adjuvant in the treatment of NSCLC.
Collapse
Affiliation(s)
- David Peeney
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI); Bethesda, MD, 20892
| | - Sarvesh Kumar
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI); Bethesda, MD, 20892
| | - Tej Pratap Singh
- Laboratory of Molecular Immunology, National Institute for Allergy, and Infectious Disease (NIAID); Bethesda, MD 20892
| | - Yueqin Liu
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI); Bethesda, MD, 20892
| | - Sandra M. Jensen
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI); Bethesda, MD, 20892
| | - Ananda Chowdhury
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI); Bethesda, MD, 20892
| | - Sasha Coates-Park
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI); Bethesda, MD, 20892
| | - Joshua Rich
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI); Bethesda, MD, 20892
| | - Sadeechya Gurung
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI); Bethesda, MD, 20892
| | - Yu Fan
- Computational Genomics and Bioinformatics Group, Center for Biomedical Informatics & Information Technology, National Cancer Institute; Rockville, MD 20850
| | - Daoud Meerzaman
- Computational Genomics and Bioinformatics Group, Center for Biomedical Informatics & Information Technology, National Cancer Institute; Rockville, MD 20850
| | - William G. Stetler-Stevenson
- Extracellular Matrix Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI); Bethesda, MD, 20892
| |
Collapse
|
25
|
Jumaniyazova E, Lokhonina A, Dzhalilova D, Kosyreva A, Fatkhudinov T. Role of Microenvironmental Components in Head and Neck Squamous Cell Carcinoma. J Pers Med 2023; 13:1616. [PMID: 38003931 PMCID: PMC10672525 DOI: 10.3390/jpm13111616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/04/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Head and neck squamous cell cancer (HNSCC) is one of the ten most common malignant neoplasms, characterized by an aggressive course, high recurrence rate, poor response to treatment, and low survival rate. This creates the need for a deeper understanding of the mechanisms of the pathogenesis of this cancer. The tumor microenvironment (TME) of HNSCC consists of stromal and immune cells, blood and lymphatic vessels, and extracellular matrix. It is known that HNSCC is characterized by complex relationships between cancer cells and TME components. TME components and their dynamic interactions with cancer cells enhance tumor adaptation to the environment, which provides the highly aggressive potential of HNSCC and resistance to antitumor therapy. Basic research aimed at studying the role of TME components in HNSCC carcinogenesis may serve as a key to the discovery of both new biomarkers-predictors of prognosis and targets for new antitumor drugs. This review article focuses on the role and interaction with cancer of TME components such as newly formed vessels, cancer-associated fibroblasts, and extracellular matrix.
Collapse
Affiliation(s)
- Enar Jumaniyazova
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (A.L.); (A.K.); (T.F.)
| | - Anastasiya Lokhonina
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (A.L.); (A.K.); (T.F.)
- Avtsyn Research Institute of Human Morphology of FSBSI Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, 117997 Moscow, Russia
| | - Dzhuliia Dzhalilova
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (A.L.); (A.K.); (T.F.)
- Avtsyn Research Institute of Human Morphology of FSBSI Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| | - Anna Kosyreva
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (A.L.); (A.K.); (T.F.)
- Avtsyn Research Institute of Human Morphology of FSBSI Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| | - Timur Fatkhudinov
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (A.L.); (A.K.); (T.F.)
- Avtsyn Research Institute of Human Morphology of FSBSI Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| |
Collapse
|
26
|
Atiya HI, Gorecki G, Garcia GL, Frisbie LG, Baruwal R, Coffman L. Stromal-Modulated Epithelial-to-Mesenchymal Transition in Cancer Cells. Biomolecules 2023; 13:1604. [PMID: 38002286 PMCID: PMC10669774 DOI: 10.3390/biom13111604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
The ability of cancer cells to detach from the primary site and metastasize is the main cause of cancer- related death among all cancer types. Epithelial-to-mesenchymal transition (EMT) is the first event of the metastatic cascade, resulting in the loss of cell-cell adhesion and the acquisition of motile and stem-like phenotypes. A critical modulator of EMT in cancer cells is the stromal tumor microenvironment (TME), which can promote the acquisition of a mesenchymal phenotype through direct interaction with cancer cells or changes to the broader microenvironment. In this review, we will explore the role of stromal cells in modulating cancer cell EMT, with particular emphasis on the function of mesenchymal stromal/stem cells (MSCs) through the activation of EMT-inducing pathways, extra cellular matrix (ECM) remodeling, immune cell alteration, and metabolic rewiring.
Collapse
Affiliation(s)
- Huda I. Atiya
- Division of Hematology/Oncology, Department of Medicine, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Grace Gorecki
- Division of Hematology/Oncology, Department of Medicine, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Geyon L. Garcia
- Medical Scientist Training Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Leonard G. Frisbie
- Department of Integrative Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Roja Baruwal
- Molecular Pharmacology Graduate Program, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Lan Coffman
- Division of Hematology/Oncology, Department of Medicine, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee Women’s Research Institute, Pittsburgh, PA15213, USA
| |
Collapse
|
27
|
Xu L, Yang H, Yan M, Li W. Matrix metalloproteinase 1 is a poor prognostic biomarker for patients with hepatocellular carcinoma. Clin Exp Med 2023; 23:2065-2083. [PMID: 36169759 DOI: 10.1007/s10238-022-00897-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 09/08/2022] [Indexed: 02/01/2023]
Abstract
Hepatocellular carcinoma (HCC) remains an incurable malignancy despite the treatment methods being continually updated. Matrix metalloproteinases (MMPs) promote the progression of HCC; however, no consensus exists on which MMP plays the predominant role in HCCs. In the present study, we analyzed differentially expressed genes in HCCs, especially MMPs, compared with adjacent tissues using the Cancer Genome Atlas database. The KEGG enrichment pathway using differentially expressed genes included extracellular matrix-receptor interaction, which was correlated with MMPs. We found that among the MMP family, only MMP1, MMP3, MMP8, MMP9, MMP11, MMP12, MMP14, MMP15, MMP20, MMP21, and MMP24 significantly increased in HCCs compared with adjacent tissues. Crucially, survival and univariate analyses indicated that only MMPs 1, 9, 12, and 14 predict poor overall survival; however, multivariate Cox analysis and a nomogram demonstrated that only MMP1 is a poor prognostic biomarker for HCCs. In addition, we observed significant enrichment of uncharacterized cells but decreased macrophages in HCC tissues. Consistent with decreased macrophages in HCCs, MMP1 was negatively associated with macrophages but positively correlated with uncharacterized cells, indicating that the main producer of MMP1 is uncharacterized cells. Furthermore, MMP1 expression was negatively correlated with immune responses of HCCs. Taken together, our findings indicated that MMP1 is a poor and predominant prognostic biomarker for patients with HCC and that anti-MMP1 may be a novel therapy that is worth studying in depth.
Collapse
Affiliation(s)
- Linping Xu
- Department of Research and Foreign Affairs, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, China.
| | - Hui Yang
- Department of Gastroenterology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Meimei Yan
- Department of Research and Foreign Affairs, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, China
| | - Wei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
28
|
Masuda T, Fukuda A, Yamakawa G, Omatsu M, Namikawa M, Sono M, Fukunaga Y, Nagao M, Araki O, Yoshikawa T, Ogawa S, Masuo K, Goto N, Hiramatsu Y, Muta Y, Tsuda M, Maruno T, Nakanishi Y, Masui T, Hatano E, Matsuzaki T, Noda M, Seno H. Pancreatic RECK inactivation promotes cancer formation, epithelial-mesenchymal transition, and metastasis. J Clin Invest 2023; 133:e161847. [PMID: 37712427 PMCID: PMC10503799 DOI: 10.1172/jci161847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/27/2023] [Indexed: 09/16/2023] Open
Abstract
RECK is downregulated in various human cancers; however, how RECK inactivation affects carcinogenesis remains unclear. We addressed this issue in a pancreatic ductal adenocarcinoma (PDAC) mouse model and found that pancreatic Reck deletion dramatically augmented the spontaneous development of PDAC with a mesenchymal phenotype, which was accompanied by increased liver metastases and decreased survival. Lineage tracing revealed that pancreatic Reck deletion induced epithelial-mesenchymal transition (EMT) in PDAC cells, giving rise to inflammatory cancer-associated fibroblast-like cells in mice. Splenic transplantation of Reck-null PDAC cells resulted in numerous liver metastases with a mesenchymal phenotype, whereas reexpression of RECK markedly reduced metastases and changed the PDAC tumor phenotype into an epithelial one. Consistently, low RECK expression correlated with low E-cadherin expression, poor differentiation, metastasis, and poor prognosis in human PDAC. RECK reexpression in the PDAC cells was found to downregulate MMP2 and MMP3, with a concomitant increase in E-cadherin and decrease in EMT-promoting transcription factors. An MMP inhibitor recapitulated the effects of RECK on the expression of E-cadherin and EMT-promoting transcription factors and invasive activity. These results establish the authenticity of RECK as a pancreatic tumor suppressor, provide insights into its underlying mechanisms, and support the idea that RECK could be an important therapeutic effector against human PDAC.
Collapse
Affiliation(s)
| | | | - Go Yamakawa
- Department of Gastroenterology and Hepatology
| | | | | | - Makoto Sono
- Department of Gastroenterology and Hepatology
| | - Yuichi Fukunaga
- Department of Gastroenterology and Hepatology
- Department of Drug Discovery Medicine, Medical Innovation Center
| | | | - Osamu Araki
- Department of Gastroenterology and Hepatology
| | | | | | - Kenji Masuo
- Department of Gastroenterology and Hepatology
| | | | | | - Yu Muta
- Department of Gastroenterology and Hepatology
| | | | | | | | - Toshihiko Masui
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, and
| | - Etsuro Hatano
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, and
| | - Tomoko Matsuzaki
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Makoto Noda
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | |
Collapse
|
29
|
Nie Y, Xu L, Bai Z, Liu Y, Wang S, Zeng Q, Gao X, Xia X, Chang D. Prognostic utility of TME-associated genes in pancreatic cancer. Front Genet 2023; 14:1218774. [PMID: 37727377 PMCID: PMC10505756 DOI: 10.3389/fgene.2023.1218774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/15/2023] [Indexed: 09/21/2023] Open
Abstract
Background: Pancreatic cancer (PC) is a deadly disease. The tumor microenvironment (TME) participates in PC oncogenesis. This study focuses on the assessment of the prognostic and treatment utility of TME-associated genes in PC. Methods: After obtaining the differentially expressed TME-related genes, univariate and multivariate Cox analyses and least absolute shrinkage and selection operator (LASSO) were performed to identify genes related to prognosis, and a risk model was established to evaluate risk scores, based on The Cancer Genome Atlas (TCGA) data set, and it was validated by external data sets from the Gene Expression Omnibus (GEO) and Clinical Proteomic Tumor Analysis Consortium (CPTAC). Multiomics analyses were adopted to explore the potential mechanisms, discover novel treatment targets, and assess the sensitivities of immunotherapy and chemotherapy. Results: Five TME-associated genes, namely, FERMT1, CARD9, IL20RB, MET, and MMP3, were identified and a risk score formula constructed. Next, their mRNA expressions were verified in cancer and normal pancreatic cells. Multiple algorithms confirmed that the risk model displayed a reliable ability of prognosis prediction and was an independent prognostic factor, indicating that high-risk patients had poor outcomes. Immunocyte infiltration, gene set enrichment analysis (GSEA), and single-cell analysis all showed a strong relationship between immune mechanism and low-risk samples. The risk score could predict the sensitivity of immunotherapy and some chemotherapy regimens, which included oxaliplatin and irinotecan. Various latent treatment targets (LAG3, TIGIT, and ARID1A) were addressed by mutation landscape based on the risk model. Conclusion: The risk model based on TME-related genes can reflect the prognosis of PC patients and functions as a novel set of biomarkers for PC therapy.
Collapse
Affiliation(s)
- Yuanhua Nie
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Longwen Xu
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Zilong Bai
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yaoyao Liu
- Geneplus-Beijing, Co., Ltd., Beijing, China
| | - Shilong Wang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Qingnuo Zeng
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xuan Gao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- GenePlus- Shenzhen Clinical Laboratory, Shenzhen, China
| | | | - Dongmin Chang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
30
|
Gouignard N, Bibonne A, Mata JF, Bajanca F, Berki B, Barriga EH, Saint-Jeannet JP, Theveneau E. Paracrine regulation of neural crest EMT by placodal MMP28. PLoS Biol 2023; 21:e3002261. [PMID: 37590318 PMCID: PMC10479893 DOI: 10.1371/journal.pbio.3002261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 09/05/2023] [Accepted: 07/18/2023] [Indexed: 08/19/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is an early event in cell dissemination from epithelial tissues. EMT endows cells with migratory, and sometimes invasive, capabilities and is thus a key process in embryo morphogenesis and cancer progression. So far, matrix metalloproteinases (MMPs) have not been considered as key players in EMT but rather studied for their role in matrix remodelling in later events such as cell migration per se. Here, we used Xenopus neural crest cells to assess the role of MMP28 in EMT and migration in vivo. We show that a catalytically active MMP28, expressed by neighbouring placodal cells, is required for neural crest EMT and cell migration. We provide strong evidence indicating that MMP28 is imported in the nucleus of neural crest cells where it is required for normal Twist expression. Our data demonstrate that MMP28 can act as an upstream regulator of EMT in vivo raising the possibility that other MMPs might have similar early roles in various EMT-related contexts such as cancer, fibrosis, and wound healing.
Collapse
Affiliation(s)
- Nadège Gouignard
- Molecular Cellular and Developmental Biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
- New York University, College of Dentistry, Department of Molecular Pathobiology, New York, New York, United States of America
| | - Anne Bibonne
- Molecular Cellular and Developmental Biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - João F. Mata
- Instituto Gulbenkian de Ciência, Mechanisms of Morphogenesis Lab, Oeiras, Portugal
| | - Fernanda Bajanca
- Molecular Cellular and Developmental Biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Bianka Berki
- Molecular Cellular and Developmental Biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Elias H. Barriga
- Instituto Gulbenkian de Ciência, Mechanisms of Morphogenesis Lab, Oeiras, Portugal
| | - Jean-Pierre Saint-Jeannet
- New York University, College of Dentistry, Department of Molecular Pathobiology, New York, New York, United States of America
| | - Eric Theveneau
- Molecular Cellular and Developmental Biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
31
|
Wang L, Donahue G, Zhang C, Havas A, Lei X, Xu C, Wang W, Vahedi G, Adams PD, Berger SL. Dynamic enhancer interactome promotes senescence and aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541769. [PMID: 37292952 PMCID: PMC10245931 DOI: 10.1101/2023.05.22.541769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Gene expression programs are regulated by enhancers which act in a context-specific manner, and can reside at great distances from their target genes. Extensive three-dimensional (3D) genome reorganization occurs in senescence, but how enhancer interactomes are reconfigured during this process is just beginning to be understood. Here we generated high-resolution contact maps of active enhancers and their target genes, assessed chromatin accessibility, and established one-dimensional maps of various histone modifications and transcription factors to comprehensively understand the regulation of enhancer configuration during senescence. Hyper-connected enhancer communities/cliques formed around genes that are highly expressed and within essential gene pathways in each cell state. In addition, motif analysis indicates the involvement of specific transcription factors in hyper-connected regulatory elements in each condition; importantly, MafK, a bZIP family transcription factor, was upregulated in senescence, and reduced expression of MafK ameliorated the senescence phenotypes. Because the accumulation of senescent cells is a key feature of aging, we further investigated enhancer connectomes in the liver of young and aged mice. Hyper-connected enhancer communities were identified during aging, which regulate essential genes that maintain cell differentiation and homeostasis. These findings reveal that hyper-connected enhancer communities correlate with high gene expression in senescence and aging and provide potential hotspots for therapeutic intervention in aging and age-associated diseases.
Collapse
|
32
|
Pensotti A, Bertolaso M, Bizzarri M. Is Cancer Reversible? Rethinking Carcinogenesis Models-A New Epistemological Tool. Biomolecules 2023; 13:733. [PMID: 37238604 PMCID: PMC10216038 DOI: 10.3390/biom13050733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
A growing number of studies shows that it is possible to induce a phenotypic transformation of cancer cells from malignant to benign. This process is currently known as "tumor reversion". However, the concept of reversibility hardly fits the current cancer models, according to which gene mutations are considered the primary cause of cancer. Indeed, if gene mutations are causative carcinogenic factors, and if gene mutations are irreversible, how long should cancer be considered as an irreversible process? In fact, there is some evidence that intrinsic plasticity of cancerous cells may be therapeutically exploited to promote a phenotypic reprogramming, both in vitro and in vivo. Not only are studies on tumor reversion highlighting a new, exciting research approach, but they are also pushing science to look for new epistemological tools capable of better modeling cancer.
Collapse
Affiliation(s)
- Andrea Pensotti
- Research Unit of Philosophy of Science and Human Development, University Campus Bio-Medico of Rome, 00128 Rome, Italy
- Systems Biology Group Lab, Department of Experimental Medicine, Sapienza University, 00185 Rome, Italy
| | - Marta Bertolaso
- Research Unit of Philosophy of Science and Human Development, University Campus Bio-Medico of Rome, 00128 Rome, Italy
| | - Mariano Bizzarri
- Systems Biology Group Lab, Department of Experimental Medicine, Sapienza University, 00185 Rome, Italy
| |
Collapse
|
33
|
Weeden CE, Hill W, Lim EL, Grönroos E, Swanton C. Impact of risk factors on early cancer evolution. Cell 2023; 186:1541-1563. [PMID: 37059064 DOI: 10.1016/j.cell.2023.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/31/2023] [Accepted: 03/14/2023] [Indexed: 04/16/2023]
Abstract
Recent identification of oncogenic cells within healthy tissues and the prevalence of indolent cancers found incidentally at autopsies reveal a greater complexity in tumor initiation than previously appreciated. The human body contains roughly 40 trillion cells of 200 different types that are organized within a complex three-dimensional matrix, necessitating exquisite mechanisms to restrain aberrant outgrowth of malignant cells that have the capacity to kill the host. Understanding how this defense is overcome to trigger tumorigenesis and why cancer is so extraordinarily rare at the cellular level is vital to future prevention therapies. In this review, we discuss how early initiated cells are protected from further tumorigenesis and the non-mutagenic pathways by which cancer risk factors promote tumor growth. By nature, the absence of permanent genomic alterations potentially renders these tumor-promoting mechanisms clinically targetable. Finally, we consider existing strategies for early cancer interception with perspectives on the next steps for molecular cancer prevention.
Collapse
Affiliation(s)
- Clare E Weeden
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - William Hill
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Emilia L Lim
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK; Cancer Research UK Lung Cancer Center of Excellence, University College London Cancer Institute, London, UK
| | - Eva Grönroos
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK; Cancer Research UK Lung Cancer Center of Excellence, University College London Cancer Institute, London, UK; Department of Oncology, University College London Hospitals, London, UK.
| |
Collapse
|
34
|
Mavatkar AD, Naidu CM, Prabhu JS, Nair MG. The dynamic tumor-stromal crosstalk: implications of 'stromal-hot' tumors in the process of epithelial-mesenchymal transition in breast cancer. Mol Biol Rep 2023; 50:5379-5393. [PMID: 37046108 DOI: 10.1007/s11033-023-08422-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND Breast cancer metastatic programming involves an intricate process by which the tumor cell coevolves with the surrounding extracellular niche. The supporting cells from the local host stroma get transformed into cancer-associated stromal cells. This complex crosstalk leads to extracellular matrix remodeling, invasion, and eventually distant metastasis. METHODS In this review, we examine the protein-miRNA secretome that is crucial for this crosstalk. We also provide evidence from the literature for the pivotal role played by the various stromal cells like fibroblasts, adipocytes, and immune cells in promoting the process of EMT in breast cancer. Through in-silico analysis, we have also attempted to establish that stromal presence is integral to the process of EMT. RESULTS AND CONCLUSION The in-silico analysis delineates the persuasive role of the stroma in mediating epithelial-to-mesenchymal transition. This review elucidates the importance of examining the role of the stromal niche that can yield promising diagnostic markers and pave avenues for formulating tailored anti-cancer therapy. Process of EMT as driven by 'stroma-hot' tumors: The process of EMT is driven by the stromal cells. The stromal cells in the form of fibroblasts, adipocytes, endothelial cells, mesenchymal stromal cells and tissue associated macrophages secrete the miRNA-protein secretome that modulates the stromal niche and the tumor cells to be become 'tumor associated'. This drives tumor progression and invasion. The 'stromal-hot' tumors eventually get the benefit of the surplus nurturing from the stroma that facilitates EMT leading to distant organ seeding and metastasis.
Collapse
Affiliation(s)
- Apoorva D Mavatkar
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, Karnataka, India
| | - Chandrakala M Naidu
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, Karnataka, India
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, Karnataka, India
| | - Madhumathy G Nair
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, Karnataka, India.
| |
Collapse
|
35
|
Dai W, Guo C, Wang Y, Li Y, Xie R, Wu J, Yao B, Xie D, He L, Li Y, Huang H, Wang Y, Liu S. Identification of hub genes and pathways in lung metastatic colorectal cancer. BMC Cancer 2023; 23:323. [PMID: 37024866 PMCID: PMC10080892 DOI: 10.1186/s12885-023-10792-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most prevalent types of malignant tumours. Metastasis is the leading cause of cancer-related mortality, with lung metastases accounting for 32.9% of all metastatic CRCs. However, since the biological mechanism of lung metastatic CRC is poorly understood, limited therapeutic targets are available. In the present study, we aimed to identify the key genes and molecular processes involved in CRC lung metastasis. METHODS The differentially expressed genes (DEGs) between primary and lung metastatic CRC patients were obtained from the Gene Expression Omnibus (GEO) database via the GEO2R tool. The enriched biological processes and pathways modulated by the DEGs were determined with Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome Gene Sets analyses. The search tool Retrieval of Interacting Genes (STRING) and Cytoscape were used to construct a protein-protein interaction (PPI) network among DEGs. RESULTS The DEGs were enriched in surfactant metabolism, cell-cell communication and chemokine signaling pathways. The defined hub genes were included CLU, SFTPD, CCL18, SPP1, APOE, BGN and MMP3. Among them, CLU, SFTPD and CCL18 might be associated with the specific lung tropism metastasis in CRC. In addition, the expression and prognostic values of the hub genes in CRC patients were verified in database of The Cancer Genome Atlas (TCGA) and GEO. Moreover, the protein levels of the hub genes were detected in primary and lung metastatic CRC cells, serum or tissues. Furthermore, SFTPD was confirmed to facilitate cellular proliferation and lung metastasis in CRC. CONCLUSION This bioinformatics study may provide a better understanding of the candidate therapeutic targets and molecular mechanisms for CRC lung metastasis.
Collapse
Affiliation(s)
- Wei Dai
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Caiyao Guo
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Yu Wang
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Yumei Li
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, 341000, China
| | - Renjian Xie
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, 341000, China
| | - Junhong Wu
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Baole Yao
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Dong Xie
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Ling He
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Yingying Li
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Hao Huang
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Yun Wang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Shenglan Liu
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
36
|
Nee K, Ma D, Nguyen QH, Pein M, Pervolarakis N, Insua-Rodríguez J, Gong Y, Hernandez G, Alshetaiwi H, Williams J, Rauf M, Dave KR, Boyapati K, Hasnain A, Calderon C, Markaryan A, Edwards R, Lin E, Parajuli R, Zhou P, Nie Q, Shalabi S, LaBarge MA, Kessenbrock K. Preneoplastic stromal cells promote BRCA1-mediated breast tumorigenesis. Nat Genet 2023; 55:595-606. [PMID: 36914836 PMCID: PMC10655552 DOI: 10.1038/s41588-023-01298-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 12/28/2022] [Indexed: 03/16/2023]
Abstract
Women with germline BRCA1 mutations (BRCA1+/mut) have increased risk for hereditary breast cancer. Cancer initiation in BRCA1+/mut is associated with premalignant changes in breast epithelium; however, the role of the epithelium-associated stromal niche during BRCA1-driven tumor initiation remains unclear. Here we show that the premalignant stromal niche promotes epithelial proliferation and mutant BRCA1-driven tumorigenesis in trans. Using single-cell RNA sequencing analysis of human preneoplastic BRCA1+/mut and noncarrier breast tissues, we show distinct changes in epithelial homeostasis including increased proliferation and expansion of basal-luminal intermediate progenitor cells. Additionally, BRCA1+/mut stromal cells show increased expression of pro-proliferative paracrine signals. In particular, we identify pre-cancer-associated fibroblasts (pre-CAFs) that produce protumorigenic factors including matrix metalloproteinase 3 (MMP3), which promotes BRCA1-driven tumorigenesis in vivo. Together, our findings demonstrate that precancerous stroma in BRCA1+/mut may elevate breast cancer risk through the promotion of epithelial proliferation and an accumulation of luminal progenitor cells with altered differentiation.
Collapse
Affiliation(s)
- Kevin Nee
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Dennis Ma
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Quy H Nguyen
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Maren Pein
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Nicholas Pervolarakis
- Department of Biological Chemistry, University of California, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, CA, USA
| | | | - Yanwen Gong
- Department of Biological Chemistry, University of California, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, CA, USA
| | - Grace Hernandez
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Hamad Alshetaiwi
- Department of Biological Chemistry, University of California, Irvine, CA, USA
- Department of Pathology, University of Hail, Hail, Saudi Arabia
| | - Justice Williams
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Maha Rauf
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Kushal Rajiv Dave
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Keerti Boyapati
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Aliza Hasnain
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Christian Calderon
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Anush Markaryan
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Robert Edwards
- Department of Pathology and Laboratory Medicine, University of California Irvine Medical Center, Orange, CA, USA
| | - Erin Lin
- Department of Surgery, University of California Irvine Medical Center, Orange, CA, USA
| | - Ritesh Parajuli
- Department of Surgery, University of California Irvine Medical Center, Orange, CA, USA
| | - Peijie Zhou
- Department of Mathematics, University of California, Irvine, CA, USA
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, USA
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, CA, USA
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, USA
| | - Sundus Shalabi
- Beckman Research Institute at City of Hope, Duarte, CA, USA
| | - Mark A LaBarge
- Beckman Research Institute at City of Hope, Duarte, CA, USA
| | - Kai Kessenbrock
- Department of Biological Chemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
37
|
Matherne MG, Phillips ES, Embrey SJ, Burke CM, Machado HL. Emerging functions of C/EBPβ in breast cancer. Front Oncol 2023; 13:1111522. [PMID: 36761942 PMCID: PMC9905667 DOI: 10.3389/fonc.2023.1111522] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023] Open
Abstract
Breast tumorigenesis relies on complex interactions between tumor cells and their surrounding microenvironment, orchestrated by tightly regulated transcriptional networks. C/EBPβ is a key transcription factor that regulates the proliferation and differentiation of multiple cell types and modulates a variety of biological processes such as tissue homeostasis and the immune response. In addition, C/EBPβ has well-established roles in mammary gland development, is overexpressed in breast cancer, and has tumor-promoting functions. In this review, we discuss context-specific roles of C/EBPβ during breast tumorigenesis, isoform-specific gene regulation, and regulation of the tumor immune response. We present challenges in C/EBPβ biology and discuss the importance of C/EBPβ isoform-specific gene regulation in devising new therapeutic strategies.
Collapse
Affiliation(s)
- Megan G. Matherne
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, United States
| | - Emily S. Phillips
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, United States
| | - Samuel J. Embrey
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, United States
| | - Caitlin M. Burke
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, United States
| | - Heather L. Machado
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, United States,Tulane Cancer Center, Louisiana Cancer Research Consortium, New Orleans, LA, United States,*Correspondence: Heather L. Machado,
| |
Collapse
|
38
|
Kwon MJ. Matrix metalloproteinases as therapeutic targets in breast cancer. Front Oncol 2023; 12:1108695. [PMID: 36741729 PMCID: PMC9897057 DOI: 10.3389/fonc.2022.1108695] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 12/28/2022] [Indexed: 01/22/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are the most prominent proteinases involved in tumorigenesis. They were initially recognized to promote tumor progression by remodeling the extracellular matrix through their proteolytic activity. However, accumulating evidence has revealed that some MMPs have protective roles in cancer progression, and the same MMP can exert opposing roles depending on the cell type in which it is expressed or the stage of cancer. Moreover, studies have shown that MMPs are involved in cancer progression through their roles in other biological processes such as cell signaling and immune regulation, independent of their catalytic activity. Despite the prognostic significance of tumoral or stromal expression of MMPs in breast cancer, their roles and molecular mechanisms in breast cancer progression remain unclear. As the failures of early clinical trials with broad-spectrum MMP inhibitors were mainly due to a lack of drug specificity, substantial efforts have been made to develop highly selective MMP inhibitors. Some recently developed MMP inhibitory monoclonal antibodies demonstrated promising anti-tumor effects in preclinical models of breast cancer. Importantly, anti-tumor effects of these antibodies were associated with the modulation of tumor immune microenvironment, suggesting that the use of MMP inhibitors in combination with immunotherapy can improve the efficacy of immunotherapy in HER2-positive or triple-negative breast cancer. In this review, the current understanding of the roles of tumoral or stromal MMPs in breast cancer is summarized, and recent advances in the development of highly selective MMP inhibitors are discussed.
Collapse
Affiliation(s)
- Mi Jeong Kwon
- Vessel-Organ Interaction Research Center (MRC), College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea,BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea,*Correspondence: Mi Jeong Kwon,
| |
Collapse
|
39
|
Ghannam SF, Rutland CS, Allegrucci C, Mongan NP, Rakha E. Defining invasion in breast cancer: the role of basement membrane. J Clin Pathol 2023; 76:11-18. [PMID: 36253088 DOI: 10.1136/jcp-2022-208584] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/01/2022] [Indexed: 12/27/2022]
Abstract
Basement membrane (BM) is an amorphous, sheet-like structure separating the epithelium from the stroma. BM is characterised by a complex structure comprising collagenous and non-collagenous proteoglycans and glycoproteins. In the breast, the thickness, density and composition of the BM around the ductal lobular system vary during differing development stages. In pathological conditions, the BM provides a physical barrier that separates proliferating intraductal epithelial cells from the surrounding stroma, and its absence or breach in malignant lesions is a hallmark of invasion and metastases. Currently, diagnostic services often use special stains and immunohistochemistry (IHC) to identify the BM in order to distinguish in situ from invasive lesions. However, distinguishing BM on stained sections, and differentiating the native BM from the reactive capsule or BM-like material surrounding some invasive malignant breast tumours is challenging. Although diagnostic use of the BM is being replaced by myoepithelial cell IHC markers, BM is considered by many to be a useful marker to distinguish in situ from invasive lesions in ambiguous cases. In this review, the structure, function and biological and clinical significance of the BM are discussed in relation to the various breast lesions with emphasis on how to distinguish the native BM from alternative pathological tissue mimicking its histology.
Collapse
Affiliation(s)
- Suzan F Ghannam
- Division of cancer and stem cells, school of Medicine, University of Nottingham, Nottingham, UK
- Histology and Cell Biology, Suez Canal University Faculty of Medicine, Ismailia, Egypt
- Nottingham Breast Cancer Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Catrin Sian Rutland
- Nottingham Breast Cancer Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK
- School of Veterinary Medicine and Sciences, University of Nottingham, Nottingham, UK
| | - Cinzia Allegrucci
- Nottingham Breast Cancer Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK
- School of Veterinary Medicine and Sciences, University of Nottingham, Nottingham, UK
| | - Nigel P Mongan
- School of Veterinary Medicine and Sciences, University of Nottingham, Nottingham, UK
- Department of Pharmacology, Weill Cornell Medicine, New York, New York, USA
| | - Emad Rakha
- Division of cancer and stem cells, school of Medicine, University of Nottingham, Nottingham, UK
- Nottingham Breast Cancer Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK
- Histopathology,school of Medicine, University of Nottingham School of Medicine, Nottingham, UK
| |
Collapse
|
40
|
Navneet S, Rohrer B. Elastin turnover in ocular diseases: A special focus on age-related macular degeneration. Exp Eye Res 2022; 222:109164. [PMID: 35798060 PMCID: PMC9795808 DOI: 10.1016/j.exer.2022.109164] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 12/30/2022]
Abstract
The extracellular matrix (ECM) and its turnover play a crucial role in the pathogenesis of several inflammatory diseases, including age-related macular degeneration (AMD). Elastin, a critical protein component of the ECM, not only provides structural and mechanical support to tissues, but also mediates several intracellular and extracellular molecular signaling pathways. Abnormal turnover of elastin has pathological implications. In the eye elastin is a major structural component of Bruch's membrane (BrM), a critical ECM structure separating the retinal pigment epithelium (RPE) from the choriocapillaris. Reduced integrity of macular BrM elastin, increased serum levels of elastin-derived peptides (EDPs), and elevated elastin antibodies have been reported in AMD. Existing reports suggest that elastases, the elastin-degrading enzymes secreted by RPE, infiltrating macrophages or neutrophils could be involved in BrM elastin degradation, thus contributing to AMD pathogenesis. EDPs derived from elastin degradation can increase inflammatory and angiogenic responses in tissues, and the elastin antibodies are shown to play roles in immune cell activity and complement activation. This review summarizes our current understanding on the elastases/elastin fragments-mediated mechanisms of AMD pathogenesis.
Collapse
Affiliation(s)
- Soumya Navneet
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA.
| | - Bärbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA; Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Division of Research, Charleston, SC, USA.
| |
Collapse
|
41
|
Kfoury-Beaumont N, Prakasam R, Pondugula S, Lagas JS, Matkovich S, Gontarz P, Yang L, Yano H, Kim AH, Rubin JB, Kroll KL. The H3K27M mutation alters stem cell growth, epigenetic regulation, and differentiation potential. BMC Biol 2022; 20:124. [PMID: 35637482 PMCID: PMC9153095 DOI: 10.1186/s12915-022-01324-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 05/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neurodevelopmental disorders increase brain tumor risk, suggesting that normal brain development may have protective properties. Mutations in epigenetic regulators are common in pediatric brain tumors, highlighting a potentially central role for disrupted epigenetic regulation of normal brain development in tumorigenesis. For example, lysine 27 to methionine mutation (H3K27M) in the H3F3A gene occurs frequently in Diffuse Intrinsic Pontine Gliomas (DIPGs), the most aggressive pediatric glioma. As H3K27M mutation is necessary but insufficient to cause DIPGs, it is accompanied by additional mutations in tumors. However, how H3K27M alone increases vulnerability to DIPG tumorigenesis remains unclear. RESULTS Here, we used human embryonic stem cell models with this mutation, in the absence of other DIPG contributory mutations, to investigate how H3K27M alters cellular proliferation and differentiation. We found that H3K27M increased stem cell proliferation and stem cell properties. It interfered with differentiation, promoting anomalous mesodermal and ectodermal gene expression during both multi-lineage and germ layer-specific cell specification, and blocking normal differentiation into neuroectoderm. H3K27M mutant clones exhibited transcriptomic diversity relative to the more homogeneous wildtype population, suggesting reduced fidelity of gene regulation, with aberrant expression of genes involved in stem cell regulation, differentiation, and tumorigenesis. These phenomena were associated with global loss of H3K27me3 and concordant loss of DNA methylation at specific genes in H3K27M-expressing cells. CONCLUSIONS Together, these data suggest that H3K27M mutation disrupts normal differentiation, maintaining a partially differentiated state with elevated clonogenicity during early development. This disrupted response to early developmental cues could promote tissue properties that enable acquisition of additional mutations that cooperate with H3K27M mutation in genesis of DMG/DIPG. Therefore, this work demonstrates for the first time that H3K27M mutation confers vulnerability to gliomagenesis through persistent clonogenicity and aberrant differentiation and defines associated alterations of histone and DNA methylation.
Collapse
Affiliation(s)
- N. Kfoury-Beaumont
- Department of Neurosurgery, University of California in San Diego, La Jolla, CA USA
| | - R. Prakasam
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO USA
| | - S. Pondugula
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO USA
| | - J. S. Lagas
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO USA
| | - S. Matkovich
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St Louis, MO USA
| | - P. Gontarz
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO USA
| | - L. Yang
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO USA
| | - H. Yano
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, MO USA
| | - A. H. Kim
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, MO USA
- The Brain Tumor Center, Washington University School of Medicine, Siteman Cancer Center, St. Louis, MO USA
| | - J. B. Rubin
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO USA
- The Brain Tumor Center, Washington University School of Medicine, Siteman Cancer Center, St. Louis, MO USA
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO USA
| | - K. L. Kroll
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO USA
- The Brain Tumor Center, Washington University School of Medicine, Siteman Cancer Center, St. Louis, MO USA
| |
Collapse
|
42
|
Potluri T, Taylor MJ, Stulberg JJ, Lieber RL, Zhao H, Bulun SE. An estrogen-sensitive fibroblast population drives abdominal muscle fibrosis in an inguinal hernia mouse model. JCI Insight 2022; 7:e152011. [PMID: 35439171 PMCID: PMC9090253 DOI: 10.1172/jci.insight.152011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 04/06/2022] [Indexed: 11/17/2022] Open
Abstract
Greater than 25% of all men develop an inguinal hernia in their lifetime, and more than 20 million inguinal hernia repair surgeries are performed worldwide each year. The mechanisms causing abdominal muscle weakness, the formation of inguinal hernias, or their recurrence are largely unknown. We previously reported that excessively produced estrogen in the lower abdominal muscles (LAMs) triggers extensive LAM fibrosis, leading to hernia formation in a transgenic male mouse model expressing the human aromatase gene (Aromhum). To understand the cellular basis of estrogen-driven muscle fibrosis, we performed single-cell RNA sequencing on LAM tissue from Aromhum and wild-type littermates. We found a fibroblast-like cell group composed of 6 clusters, 2 of which were validated for their enrichment in Aromhum LAM tissue. One of the potentially novel hernia-associated fibroblast clusters in Aromhum was enriched for the estrogen receptor-α gene (Esr1hi). Esr1hi fibroblasts maximally expressed estrogen target genes and seemed to serve as the progenitors of another cluster expressing ECM-altering enzymes (Mmp3hi) and to upregulate expression of proinflammatory, profibrotic genes. The discovery of these 2 potentially novel and unique hernia-associated fibroblasts may lead to the development of novel treatments that can nonsurgically prevent or reverse inguinal hernias.
Collapse
Affiliation(s)
- Tanvi Potluri
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, and
| | - Matthew J. Taylor
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, and
| | - Jonah J. Stulberg
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Richard L. Lieber
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, USA
- Shirley Ryan AbilityLab, Chicago, Illinois, USA
| | - Hong Zhao
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, and
| | - Serdar E. Bulun
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, and
| |
Collapse
|
43
|
Raeeszadeh-Sarmazdeh M, Coban M, Mahajan S, Hockla A, Sankaran B, Downey GP, Radisky DC, Radisky ES. Engineering of tissue inhibitor of metalloproteinases TIMP-1 for fine discrimination between closely-related stromelysins MMP-3 and MMP-10. J Biol Chem 2022; 298:101654. [PMID: 35101440 PMCID: PMC8902619 DOI: 10.1016/j.jbc.2022.101654] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 12/03/2022] Open
Abstract
Matrix metalloproteinases (MMPs) have long been known as key drivers in the development and progression of diseases, including cancer and neurodegenerative, cardiovascular, and many other inflammatory and degenerative diseases, making them attractive potential drug targets. Engineering selective inhibitors based upon tissue inhibitors of metalloproteinases (TIMPs), endogenous human proteins that tightly yet nonspecifically bind to the family of MMPs, represents a promising new avenue for therapeutic development. Here, we used a counter-selective screening strategy for directed evolution of yeast-displayed human TIMP-1 to obtain TIMP-1 variants highly selective for the inhibition of MMP-3 in preference over MMP-10. As MMP-3 and MMP-10 are the most similar MMPs in sequence, structure, and function, our results thus clearly demonstrate the capability for engineering full-length TIMP proteins to be highly selective MMP inhibitors. We show using protein crystal structures and models of MMP-3-selective TIMP-1 variants bound to MMP-3 and counter-target MMP-10 how structural alterations within the N-terminal and C-terminal TIMP-1 domains create new favorable and selective interactions with MMP-3 and disrupt unique interactions with MMP-10. While our MMP-3-selective inhibitors may be of interest for future investigation in diseases where this enzyme drives pathology, our platform and screening strategy can be employed for developing selective inhibitors of additional MMPs implicated as therapeutic targets in disease.
Collapse
Affiliation(s)
| | - Mathew Coban
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224
| | - Shivansh Mahajan
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224
| | - Alexandra Hockla
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224
| | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Gregory P Downey
- Departments of Medicine, Pediatrics, and Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado 80206; Departments of Medicine, and Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224
| | - Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224.
| |
Collapse
|
44
|
microRNA-Mediated Encoding and Decoding of Time-Dependent Signals in Tumorigenesis. Biomolecules 2022; 12:biom12020213. [PMID: 35204714 PMCID: PMC8961662 DOI: 10.3390/biom12020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
microRNAs, pivotal post-transcriptional regulators of gene expression, in the past decades have caught the attention of researchers for their involvement in different biological processes, ranging from cell development to cancer. Although lots of effort has been devoted to elucidate the topological features and the equilibrium properties of microRNA-mediated motifs, little is known about how the information encoded in frequency, amplitude, duration, and other features of their regulatory signals can affect the resulting gene expression patterns. Here, we review the current knowledge about microRNA-mediated gene regulatory networks characterized by time-dependent input signals, such as pulses, transient inputs, and oscillations. First, we identify the general characteristic of the main motifs underlying temporal patterns. Then, we analyze their impact on two commonly studied oncogenic networks, showing how their dysfunction can lead to tumorigenesis.
Collapse
|
45
|
Abstract
The intimate involvement of pathogens with the heightened risk for developing certain cancers is an area of research that has captured a great deal of attention over the last 10 years. One firmly established paradigm that highlights this aspect of disease progression is in the instance of Helicobacter pylori infection and the contribution it makes in elevating the risk for developing gastric cancer. Whilst the molecular mechanisms that pinpoint the contribution that this microorganism inflicts towards host cells during gastric cancer initiation have come into greater focus, another picture that has also emerged is one that implicates the host's immune system, and the chronic inflammation that can arise therefrom, as being a central contributory factor in disease progression. Consequently, when taken with the underlying role that the extracellular matrix plays in the development of most cancers, and how this dynamic can be modulated by proteases expressed from the tumor or inflammatory cells, a complex and detailed relationship shared between the individual cellular components and their surroundings is coming into focus. In this review article, we draw attention to the emerging role played by the cathepsin proteases in modulating the stage-specific progression of Helicobacter pylori-initiated gastric cancer and the underlying immune response, while highlighting the therapeutic significance of this dynamic and how it may be amenable for novel intervention strategies within a basic research or clinical setting.
Collapse
|
46
|
Yan Z, Sheng Z, Zheng Y, Feng R, Xiao Q, Shi L, Li H, Yin C, Luo H, Hao C, Wang W, Zhang B. Cancer-associated fibroblast-derived exosomal miR-18b promotes breast cancer invasion and metastasis by regulating TCEAL7. Cell Death Dis 2021; 12:1120. [PMID: 34853307 PMCID: PMC8636636 DOI: 10.1038/s41419-021-04409-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/06/2021] [Accepted: 11/15/2021] [Indexed: 11/09/2022]
Abstract
Studies have shown that cancer-associated fibroblasts (CAFs) play an irreplaceable role in the occurrence and development of tumors. Therefore, exploring the action and mechanism of CAFs on tumor cells is particularly important. In this study, we compared the effects of CAFs-derived exosomes and normal fibroblasts (NFs)-derived exosomes on breast cancer cells migration and invasion. The results showed that exosomes from both CAFs and NFs could enter into breast cancer cells and CAFs-derived exosomes had a more enhancing effect on breast cancer cells migration and invasion than NFs-derived exosomes. Furthermore, microRNA (miR)-18b was upregulated in CAFs-derived exosomes, and CAFs-derived exosomes miR-18b can promote breast cancer cell migration and metastasis by specifically binding to the 3'UTR of Transcription Elongation Factor A Like 7 (TCEAL7). The miR-18b-TCEAL7 pathway promotes nuclear Snail ectopic activation by activating nuclear factor-kappa B (NF-κB), thereby inducing epithelial-mesenchymal transition (EMT) and promoting cell invasion and metastasis. Moreover, CAFs-derived exosomes miR-18b could promote mouse xenograft model tumor metastasis. Overall, our findings suggest that CAFs-derived exosomes miR-18b promote nuclear Snail ectopic by targeting TCEAL7 to activate the NF-κB pathway, thereby inducing EMT, invasion, and metastasis of breast cancer. Targeting CAFs-derived exosome miR-18b may be a potential treatment option to overcome breast cancer progression.
Collapse
Affiliation(s)
- Ziqian Yan
- Department of Pathology, Weifang Medical University, Weifang, Shandong, China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Zhimei Sheng
- Department of Pathology, Weifang Medical University, Weifang, Shandong, China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Yuanhang Zheng
- Department of Pathology, Weifang Medical University, Weifang, Shandong, China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Ruijun Feng
- Department of Pathology, Weifang Medical University, Weifang, Shandong, China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Qinpei Xiao
- Department of Pathology, Weifang Medical University, Weifang, Shandong, China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Lihong Shi
- Department of Pharmacology, Weifang Medical University, Weifang, Shandong, China
| | - Hongli Li
- Department of Medicine Research Center, Weifang Medical University, Weifang, Shandong, China
| | - Chonggao Yin
- Department of Medicine Research Center, Weifang Medical University, Weifang, Shandong, China
| | - Hao Luo
- Department of Pathology, Weifang Medical University, Weifang, Shandong, China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Chong Hao
- Department of Oncology, Maternal and Child Health Care Hospital of Zibo, Zibo, Shandong, China
| | - Wenhao Wang
- Department of Medical Oncology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Baogang Zhang
- Department of Pathology, Weifang Medical University, Weifang, Shandong, China.
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China.
| |
Collapse
|
47
|
Zhang Y, Mo Y, Yuan J, Zhang Y, Mo L, Zhang Q. MMP-3 activation is involved in copper oxide nanoparticle-induced epithelial-mesenchymal transition in human lung epithelial cells. Nanotoxicology 2021; 15:1380-1402. [PMID: 35108494 PMCID: PMC9484543 DOI: 10.1080/17435390.2022.2030822] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Copper oxide nanoparticles (Nano-CuO) are widely used in medical and industrial fields and our daily necessities. However, the biosafety assessment of Nano-CuO is far behind their rapid development. Here, we investigated the adverse effects of Nano-CuO on normal human bronchial epithelial BEAS-2B cells, especially determined whether Nano-CuO exposure would cause dysregulation of MMP-3, an important mediator in pulmonary fibrosis, and its potential role in epithelial-mesenchymal transition (EMT). Our results showed that exposure to Nano-CuO, but not Nano-TiO2, caused increased ROS generation, MAPKs activation, and MMP-3 upregulation. Nano-CuO-induced ROS generation was not observed in mitochondrial DNA-depleted BEAS-2B ρ0 cells, indicating that mitochondria may be the main source of Nano-CuO-induced ROS generation. Pretreatment of the cells with ROS scavengers or inhibitors or depleting mitochondrial DNA significantly attenuated Nano-CuO-induced MAPKs activation and MMP-3 upregulation, and pretreatment of cells with MAPKs inhibitors abolished Nano-CuO-induced MMP-3 upregulation, suggesting Nano-CuO-induced MMP-3 upregulation is through Nano-CuO-induced ROS generation and MAPKs activation. In addition, exposure of the cells to Nano-CuO for 48 h resulted in decreased E-cadherin expression and increased expression of vimentin, α-SMA, and fibronectin, which was ameliorated by MMP-3 siRNA transfection, suggesting an important role of MMP-3 in Nano-CuO-induced EMT. Taken together, our study demonstrated that Nano-CuO exposure caused mitochondrial ROS generation, MAPKs activation, and MMP-3 upregulation. Nano-CuO exposure also caused cells to undergo EMT, which was through Nano-CuO-induced dysregulation of ROS/MAPKs/MMP-3 pathway. Our findings will provide further understanding of the potential mechanisms involved in metal nanoparticle-induced various toxic effects including EMT and pulmonary fibrosis.
Collapse
Affiliation(s)
- Yuanbao Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Yiqun Mo
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Jiali Yuan
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Yue Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Luke Mo
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Qunwei Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| |
Collapse
|
48
|
Chen Y, McAndrews KM, Kalluri R. Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat Rev Clin Oncol 2021; 18:792-804. [PMID: 34489603 PMCID: PMC8791784 DOI: 10.1038/s41571-021-00546-5] [Citation(s) in RCA: 675] [Impact Index Per Article: 168.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2021] [Indexed: 02/07/2023]
Abstract
Cancer-associated fibroblasts (CAFs) found in primary and metastatic tumours are highly versatile, plastic and resilient cells that are actively involved in cancer progression through complex interactions with other cell types in the tumour microenvironment. As well as generating extracellular matrix components that contribute to the structure and function of the tumour stroma, CAFs undergo epigenetic changes to produce secreted factors, exosomes and metabolites that influence tumour angiogenesis, immunology and metabolism. Because of their putative pro-oncogenic functions, CAFs have long been considered an attractive therapeutic target; however, clinical trials of treatment strategies targeting CAFs have mostly ended in failure and, in some cases, accelerated cancer progression and resulted in inferior survival outcomes. Importantly, CAFs are heterogeneous cells and their characteristics and interactions with other cell types might change dynamically as cancers evolve. Studies involving single-cell RNA sequencing and novel mouse models have increased our understanding of CAF diversity, although the context-dependent roles of different CAF populations and their interchangeable plasticity remain largely unknown. Comprehensive characterization of the tumour-promoting and tumour-restraining activities of CAF subtypes, including how these complex bimodal functions evolve and are subjugated by neoplastic cells during cancer progression, might facilitate the development of novel diagnostic and therapeutic approaches. In this Review, the clinical relevance of CAFs is summarized with an emphasis on their value as prognosis factors and therapeutic targets.
Collapse
Affiliation(s)
- Yang Chen
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kathleen M McAndrews
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Bioengineering, Rice University, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
49
|
Lu D, Yang N, Wang S, Liu W, Zhang D, Wang J, Huang B, Li X. Identifying the Predictive Role of Oxidative Stress Genes in the Prognosis of Glioma Patients. Med Sci Monit 2021; 27:e934161. [PMID: 34836934 PMCID: PMC8634738 DOI: 10.12659/msm.934161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Gliomas are primary aggressive brain tumors with poor prognoses. Oxidative stress plays a crucial role in the tumorigenesis and drug resistance of gliomas. The aim of the present study was to use integrated bioinformatics analyses to evaluate the prognostic value of oxidative stress-related genes (OSRGs) in glioma. Material/Methods Disease- and prognosis-associated OSRGs were identified using microarray and clinical data from the Chinese Glioma Genome Atlas database. Functional enrichment, gene-gene interaction, protein-protein interaction, and survival analyses were performed in screened OSRGs. The protein expression was validated by the Human Protein Atlas database. A risk score model was constructed and verified through Cox regression, receiver operating characteristic curve, principal component, and stratified analyses. The Cancer Genome Atlas (TCGA) database was used for external validation. A nomogram was constructed to facilitate the clinical application. Results Twenty-one disease-associated and 14 prognosis-associated OSRGs were identified. Enrichment analyses indicated that these signature OSRGs were involved in tumorigenesis and drug resistance of glioma. The risk score model demonstrated a significant difference in overall survival between the high- and low-risk groups. The area under the curve and hazard ratio (1.296) revealed the independent prognostic value of the model. The model exhibited good predictive efficacy in the TCGA cohort. A clinical nomogram was constructed to calculate survival rates in glioma patients at 1, 3, and 5 years. Conclusions Our comprehensive study indicated that OSRGs were valuable for prognosis prediction in glioma, which provides a novel insight into the relationship between oxidative stress and glioma and a potential therapeutic strategy for glioma patients.
Collapse
Affiliation(s)
- Di Lu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China (mainland).,Key Laboratory of Brain Function Remodeling, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Ning Yang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China (mainland).,Key Laboratory of Brain Function Remodeling, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Shuai Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China (mainland).,Key Laboratory of Brain Function Remodeling, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Wenyu Liu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China (mainland).,Key Laboratory of Brain Function Remodeling, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Di Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China (mainland).,Key Laboratory of Brain Function Remodeling, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China (mainland).,Key Laboratory of Brain Function Remodeling, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland).,Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China (mainland).,Key Laboratory of Brain Function Remodeling, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China (mainland).,Key Laboratory of Brain Function Remodeling, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|
50
|
Bussey KJ, Davies PCW. Reverting to single-cell biology: The predictions of the atavism theory of cancer. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 165:49-55. [PMID: 34371024 PMCID: PMC8833046 DOI: 10.1016/j.pbiomolbio.2021.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/24/2022]
Abstract
Cancer or cancer-like phenomena pervade multicellular life, implying deep evolutionary roots. Many of the hallmarks of cancer recapitulate unicellular modalities, suggesting that cancer initiation and progression represent a systematic reversion to simpler ancestral phenotypes in response to a stress or insult. This so-called atavism theory may be tested using phylostratigraphy, which can be used to assign ages to genes. Several research groups have confirmed that cancer cells tend to over-express evolutionary older genes, and rewire the architecture linking unicellular and multicellular gene networks. In addition, some of the elevated mutation rate - a well-known hallmark of cancer - is actually self-inflicted, driven by genes found to be homologs of the ancient SOS genes activated in stressed bacteria, and employed to evolve biological workarounds. These findings have obvious implications for therapy.
Collapse
Affiliation(s)
- Kimberly J Bussey
- Precision Medicine, Midwestern University, Glendale, AZ, USA; The BEYOND Center for Fundamental Concepts in Science, Department of Physics, Arizona State University, Tempe, AZ, USA
| | - Paul C W Davies
- The BEYOND Center for Fundamental Concepts in Science, Department of Physics, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|