1
|
Lei J, Xin Z, Liu N, Ning T, Jing Y, Qiao Y, He Z, Jiang M, Yang Y, Zhang Z, Zhao L, Li J, Lv D, Yan Y, Zhang H, Xiao L, Zhang B, Huang H, Sun S, Zheng F, Jiang X, Lu H, Dong X, Yue S, Ma C, Shuai J, Ji Z, Liu F, Ye Y, Yan K, Hu Q, Xu G, Zhao Q, Wu R, Cai Y, Fan Y, Jing Y, Wang Q, Reddy P, Lu X, Zheng Z, Liu B, Haghani A, Ma S, Suzuki K, Rodriguez Esteban C, Yang J, Song M, Horvath S, Zhang W, Li W, Xiang AP, Zhu L, Fu X, Zhao G, Belmonte JCI, Qu J, Wang S, Liu GH. Senescence-resistant human mesenchymal progenitor cells counter aging in primates. Cell 2025:S0092-8674(25)00571-9. [PMID: 40516525 DOI: 10.1016/j.cell.2025.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/08/2025] [Accepted: 05/19/2025] [Indexed: 06/16/2025]
Abstract
Aging is characterized by a deterioration of stem cell function, but the feasibility of replenishing these cells to counteract aging remains poorly defined. Our study addresses this gap by developing senescence (seno)-resistant human mesenchymal progenitor cells (SRCs), genetically fortified to enhance cellular resilience. In a 44-week trial, we intravenously delivered SRCs to aged macaques, noting a systemic reduction in aging indicators, such as cellular senescence, chronic inflammation, and tissue degeneration, without any detected adverse effects. Notably, SRC treatment enhanced brain architecture and cognitive function and alleviated the reproductive system decline. The restorative effects of SRCs are partly attributed to their exosomes, which combat cellular senescence. This study provides initial evidence that genetically modified human mesenchymal progenitors can slow primate aging, highlighting the therapeutic potential of regenerative approaches in combating age-related health decline.
Collapse
Affiliation(s)
- Jinghui Lei
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, Beijing Municipal Geriatric Medical Research Center, Beijing Key Laboratory of Environment and Aging, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Zijuan Xin
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, Beijing Municipal Geriatric Medical Research Center, Beijing Key Laboratory of Environment and Aging, Xuanwu Hospital Capital Medical University, Beijing 100053, China; State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Ning Liu
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Taixin Ning
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, Beijing Municipal Geriatric Medical Research Center, Beijing Key Laboratory of Environment and Aging, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Ying Jing
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, Beijing Municipal Geriatric Medical Research Center, Beijing Key Laboratory of Environment and Aging, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Yicheng Qiao
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zan He
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, Beijing Municipal Geriatric Medical Research Center, Beijing Key Laboratory of Environment and Aging, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Mengmeng Jiang
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yuanhan Yang
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyi Zhang
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Liyun Zhao
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, Beijing Municipal Geriatric Medical Research Center, Beijing Key Laboratory of Environment and Aging, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Jingyi Li
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Aging Biomarker Consortium (ABC), Beijing 100101, China
| | - Dongliang Lv
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yupeng Yan
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Hui Zhang
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Lingling Xiao
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, Beijing Municipal Geriatric Medical Research Center, Beijing Key Laboratory of Environment and Aging, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Baohu Zhang
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haoyan Huang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, Beijing Municipal Geriatric Medical Research Center, Beijing Key Laboratory of Environment and Aging, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Shuhui Sun
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Fangshuo Zheng
- Chongqing Fifth People's Hospital, Chongqing 400060, China
| | - Xiaoyu Jiang
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huifen Lu
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, Beijing Municipal Geriatric Medical Research Center, Beijing Key Laboratory of Environment and Aging, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Xueda Dong
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College, Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shasha Yue
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chencan Ma
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jichen Shuai
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, Beijing Municipal Geriatric Medical Research Center, Beijing Key Laboratory of Environment and Aging, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Zhejun Ji
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Feifei Liu
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Yanxia Ye
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Kaowen Yan
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Qinchao Hu
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou 510060, China
| | - Gang Xu
- Liver Transplant Center, Organ Transplant Center, West China Hospital of Sichuan University, Chengdu 610000, China; Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu 610000, China
| | - Qian Zhao
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, Beijing Municipal Geriatric Medical Research Center, Beijing Key Laboratory of Environment and Aging, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Ruochen Wu
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yusheng Cai
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yanling Fan
- Beijing Institute of Genomics, China National Center for Bioinformation, Chinese Academy of Sciences, Beijing 100101, China
| | - Yaobin Jing
- International Center for Aging and Cancer, Hainan Medical University, Haikou 571199, China
| | - Qiaoran Wang
- Beijing Institute of Genomics, China National Center for Bioinformation, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pradeep Reddy
- Altos Labs San Diego Institute of Science, San Diego, CA, USA
| | - Xiaoyong Lu
- Beijing Institute of Genomics, China National Center for Bioinformation, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zikai Zheng
- Beijing Institute of Genomics, China National Center for Bioinformation, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Beibei Liu
- Beijing Institute of Genomics, China National Center for Bioinformation, Chinese Academy of Sciences, Beijing 100101, China
| | - Amin Haghani
- Altos Labs San Diego Institute of Science, San Diego, CA, USA
| | - Shuai Ma
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Aging Biomarker Consortium (ABC), Beijing 100101, China
| | - Keiichiro Suzuki
- Institute for Advanced Co-Creation Studies, The University of Osaka, Osaka 560-8531, Japan
| | | | - Jiayin Yang
- Liver Transplant Center, Organ Transplant Center, West China Hospital of Sichuan University, Chengdu 610000, China; Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu 610000, China
| | - Moshi Song
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Aging Biomarker Consortium (ABC), Beijing 100101, China
| | - Steve Horvath
- Altos Labs San Diego Institute of Science, San Diego, CA, USA
| | - Weiqi Zhang
- Beijing Institute of Genomics, China National Center for Bioinformation, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, China; Aging Biomarker Consortium (ABC), Beijing 100101, China
| | - Wei Li
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China; Aging Biomarker Consortium (ABC), Beijing 100101, China
| | - Lan Zhu
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiaobing Fu
- Tissue Repair and Regeneration Research Center, Medical Innovation Department, PLA General Hospital and Medical College, Beijing 100842, China
| | - Guoguang Zhao
- Department of Neurosurgery, Beijing Municipal Geriatric Medical Research Center, National Medical Center for Neurological Diseases, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Juan Carlos Izpisua Belmonte
- Altos Labs San Diego Institute of Science, San Diego, CA, USA; Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jing Qu
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 100049, China; Aging Biomarker Consortium (ABC), Beijing 100101, China.
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, Beijing Municipal Geriatric Medical Research Center, Beijing Key Laboratory of Environment and Aging, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Aging Biomarker Consortium (ABC), Beijing 100101, China.
| | - Guang-Hui Liu
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Aging Translational Medicine Center, Beijing Municipal Geriatric Medical Research Center, Beijing Key Laboratory of Environment and Aging, Xuanwu Hospital Capital Medical University, Beijing 100053, China; State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Aging Biomarker Consortium (ABC), Beijing 100101, China.
| |
Collapse
|
2
|
Wang LT, Yin HL, Jin YM, Hu DD, Yang XX, Sheng J, Huang YW, Wang XJ. Ellagic acid ameliorates atherosclerosis by inhibiting PCSK9 through the modulation of FoxO3 and HNF1α. Nutrition 2025; 134:112717. [PMID: 40086009 DOI: 10.1016/j.nut.2025.112717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/10/2025] [Accepted: 02/13/2025] [Indexed: 03/16/2025]
Abstract
INTRODUCTION Proprotein convertase subtilisin/kexin type 9 (PCSK9) hinders the clearance of low-density lipoprotein cholesterol (LDL-C) by promoting the degradation of the low-density lipoprotein receptor (LDLR), leading to the accumulation of LDL-C and thus becoming an important cause of atherosclerosis. Ellagic acid, a naturally occurring polyphenol widely present in fruits, vegetables, and nuts, has attracted significant attention due to its potential role in the prevention and treatment of cardiovascular diseases. However, the molecular mechanisms by which ellagic acid alleviates atherosclerosis by inhibiting PCSK9 are not fully understood. MATERIALS AND METHODS This study further validated the mechanism of action of ellagic acid through in vitro HepG2 cell experiments and a high-fat diet-induced ApoE-/- mouse model. RESULTS The results showed that ellagic acid significantly reduced the expression and secretion of PCSK9 while upregulating LDLR protein levels; its mechanism is related to the inhibition of hepatocyte nuclear factor 1α (HNF1α) expression and the promotion of forkhead box O3 (FoxO3) expression increase. Additionally, ellagic acid reduced aortic plaque deposition in mice induced by a high-fat diet; consistent with the in vitro experimental results, ellagic acid lowered the expression and secretion of PCSK9 and elevated LDLR protein levels by inhibiting HNF1α and increased FoxO3 expression. CONCLUSIONS In summary, this study demonstrates that ellagic acid inhibits PCSK9 by regulating HNF1α and FoxO3, thereby increasing LDLR levels and alleviating atherosclerosis. This finding not only consolidates the scientific basis of plant-based diets for preventing cardiovascular diseases but also provides an important direction for developing functional foods and nutritional intervention strategies based on natural polyphenols.
Collapse
Affiliation(s)
- Li-Tian Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China; Faculty of basic medical science, Kunming medical university, Kunming, China
| | - Huai-Liu Yin
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Ya-Min Jin
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Dan-Dan Hu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China; College of Science, Yunnan Agricultural University, Kunming, China
| | - Xiang-Xuan Yang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.
| | - Ye-Wei Huang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China; Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming, China.
| | - Xuan-Jun Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China; College of Resources, Environment, and Chemistry, Chuxiong Normal University, Chuxiong, China.
| |
Collapse
|
3
|
Tomás A, Pojo M. PIK3CA Mutations: Are They a Relevant Target in Adult Diffuse Gliomas? Int J Mol Sci 2025; 26:5276. [PMID: 40508087 PMCID: PMC12154018 DOI: 10.3390/ijms26115276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2025] [Revised: 05/27/2025] [Accepted: 05/28/2025] [Indexed: 06/16/2025] Open
Abstract
Gliomas are the most common and lethal malignant primary brain tumors in adults, associated with the highest number of years of potential life lost. The latest WHO classification for central nervous system tumors highlighted the need for new biomarkers of diagnosis, prognosis, and response to therapy. The PI3K/Akt signaling pathway is clearly implicated in tumorigenesis, being one of the most frequently altered pathways in cancer. Activating PI3KCA mutations are oncogenic and can influence both prognosis and treatment response in various tumor types. In gliomas, however, studies have reported inconsistent PIK3CA mutational frequencies, ranging from 0% to 30%. Furthermore, the impact of these alterations on glioma diagnosis, prognosis, and therapy response remains unclear. Current evidence suggests that PIK3CA mutations may represent early and constitutive events in glioma development, associated with worse glioblastoma prognoses, earlier recurrences, and widespread disease. Among these, the hotspot mutation H1047R has been particularly associated with a more aggressive phenotype while also modulating the neuronal microenvironment. In this review, we examine the clinical relevance of PIK3CA mutations across different cancers, with a particular focus on their emerging role in glioma. Moreover, we also discuss the therapeutic potential and challenges of targeting PIK3CA mutations in the context of glioma.
Collapse
Affiliation(s)
- Ana Tomás
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Lisboa Francisco Gentil (IPOLFG) E.P.E., 1099-023 Lisbon, Portugal;
- NOVA Medical School, NOVA University of Lisbon, 1169-056 Lisbon, Portugal
| | - Marta Pojo
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Lisboa Francisco Gentil (IPOLFG) E.P.E., 1099-023 Lisbon, Portugal;
| |
Collapse
|
4
|
Pan Y, Iejima D, Yoshitake K, Tsunoda K, Iwata T, Japan Eye Genetics Consortium. Clinical features and molecular mechanisms of RP1L1 variants causing occult macular dystrophy. HGG ADVANCES 2025; 6:100461. [PMID: 40450528 DOI: 10.1016/j.xhgg.2025.100461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 05/23/2025] [Accepted: 05/27/2025] [Indexed: 06/16/2025] Open
Abstract
Occult macular dystrophy (OMD) is an inherited retinopathy characterized by progressive bilateral vision loss despite normal findings on fundoscopic examination, fluorescein angiography, and full-field electroretinography. Its pathogenesis remains unknown, and no treatments are available. Here, we performed whole-exome sequencing on 133 samples from 78 OMD pedigrees to identify pathogenic variants, using filters for minor allele frequency, function prediction, and retinal expression. We identified the RP1L1 c.133C>T, p.Arg45Trp (R45W) mutation as the sole pathogenic variant in two families with dominantly inherited OMD. Additionally, we discovered five other potentially pathogenic RP1L1 variants. Together, these six variants accounted for 33.33% of pedigrees, with R45W being the most prevalent, at 16.6%. The R45W mutation correlated with earlier onset, more severe clinical phenotypes, and abnormal intracellular localization rather than altered expression levels. R45W disrupted the intracellular localization of RP1L1 and RP1, compromising cell viability. In induced photoreceptor-like cells derived from OMD patients carrying R45W, we observed downregulation of the long noncoding RNA MEG3 and the PI3K/Akt pathway, alongside upregulation of extracellular matrix organization. These findings validate the etiologic role of RP1L1 and offer insights into the pathogenesis of OMD, thereby facilitating future research and therapeutic development.
Collapse
Affiliation(s)
- Yang Pan
- Molecular and Cellular Biology Division, National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo, Japan
| | - Daisuke Iejima
- Molecular and Cellular Biology Division, National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo, Japan
| | - Kazutoshi Yoshitake
- Molecular and Cellular Biology Division, National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo, Japan; School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Kazushige Tsunoda
- Division of Vision Research, National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo, Japan
| | - Takeshi Iwata
- Molecular and Cellular Biology Division, National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo, Japan.
| | | |
Collapse
|
5
|
Xu S, Zhang H, Tian Y. Pericytes in hematogenous metastasis: mechanistic insights and therapeutic approaches. Cell Oncol (Dordr) 2025:10.1007/s13402-025-01073-6. [PMID: 40392500 DOI: 10.1007/s13402-025-01073-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 05/09/2025] [Indexed: 05/22/2025] Open
Abstract
Metastasis, the leading cause of cancer-related deaths, underscores the critical need to understand its regulatory mechanisms to improve prevention and treatment strategies for late-stage tumors. Hematogenous dissemination is a key route of metastasis. However, as the gatekeeper of vessels, the role of pericytes in hematogenous metastasis remains largely unknown. In this review, we comprehensively explore the contributions of pericytes throughout the metastatic cascade, particularly their functions that extend beyond influencing tumor angiogenesis. Pericytes should not be perceived as passive bystanders, but rather as active participants in various stages of the metastatic cascade. Pericytes-targeted therapy may provide novel insights for preventing and treating advanced-stage tumor.
Collapse
Affiliation(s)
- Shuo Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Hong Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China.
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China.
| |
Collapse
|
6
|
Lemons AH, Murphy B, Dengler JS, Salar S, Davies PA, Smalley JL, Moss SJ. Neuroactive steroids activate membrane progesterone receptors to induce sex specific effects on protein kinase activity. iScience 2025; 28:112352. [PMID: 40292327 PMCID: PMC12032937 DOI: 10.1016/j.isci.2025.112352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/30/2024] [Accepted: 04/01/2025] [Indexed: 04/30/2025] Open
Abstract
Neuroactive steroids (NAS), which are synthesized in the brain from progesterone, exert potent effects on behavior and are used to treat postpartum depression, yet how these compounds induce sustained modifications in neuronal activity are ill-defined. Here, we examined the efficacy of NAS for membrane progesterone receptors (mPRs) δ and ε, members of a family of GPCRs for progestins that are expressed in the CNS. NAS increase PKC activity via the Gq activation of mPRδ with EC50s between 3 and 11nM. In contrast, they activate Gs via mPRε to potentiate PKA activity with similar potencies. NAS also induced the rapid internalization of only mPRδ. In the forebrain of female mice, mPRδ expression levels were 8-fold higher than in males. Consistent with this, the activation of PKC by NAS was evident in acute brain slices from female mice. Collectively, our results suggest that NAS may exert sex-specific effects on intracellular signaling in the brain via the activation of mPRs.
Collapse
Affiliation(s)
- Abigail H.S. Lemons
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Briana Murphy
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Jake S. Dengler
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Seda Salar
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Paul A. Davies
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Joshua L. Smalley
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Stephen J. Moss
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1 6BT, UK
| |
Collapse
|
7
|
Bozzi M, Sciandra F, Bigotti MG, Brancaccio A. Misregulation of the Ubiquitin-Proteasome System and Autophagy in Muscular Dystrophies Associated with the Dystrophin-Glycoprotein Complex. Cells 2025; 14:721. [PMID: 40422224 DOI: 10.3390/cells14100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2025] [Revised: 05/09/2025] [Accepted: 05/12/2025] [Indexed: 05/28/2025] Open
Abstract
The stability of the sarcolemma is severely impaired in a series of genetic neuromuscular diseases defined as muscular dystrophies. These are characterized by the centralization of skeletal muscle syncytial nuclei, the replacement of muscle fibers with fibrotic tissue, the release of inflammatory cytokines, and the disruption of muscle protein homeostasis, ultimately leading to necrosis and loss of muscle functionality. A specific subgroup of muscular dystrophies is associated with genetic defects in components of the dystrophin-glycoprotein complex (DGC), which plays a crucial role in linking the cytosol to the skeletal muscle basement membrane. In these cases, dystrophin-associated proteins fail to correctly localize to the sarcolemma, resulting in dystrophy characterized by an uncontrolled increase in protein degradation, which can ultimately lead to cell death. In this review, we explore the role of intracellular degradative pathways-primarily the ubiquitin-proteasome and autophagy-lysosome systems-in the progression of DGC-linked muscular dystrophies. The DGC acts as a hub for numerous signaling pathways that regulate various cellular functions, including protein homeostasis. We examine whether the loss of structural stability within the DGC affects key signaling pathways that modulate protein recycling, with a particular emphasis on autophagy.
Collapse
Affiliation(s)
- Manuela Bozzi
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Sezione di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Roma, Italy
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta"-SCITEC (CNR), Largo F. Vito, 00168 Roma, Italy
| | - Francesca Sciandra
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta"-SCITEC (CNR), Largo F. Vito, 00168 Roma, Italy
| | - Maria Giulia Bigotti
- Bristol Heart Institute, Bristol Royal Infirmary, Research Floor Level 7, Bristol BS2 8HW, UK
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Andrea Brancaccio
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta"-SCITEC (CNR), Largo F. Vito, 00168 Roma, Italy
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
8
|
Kim SM, Kim JY, Jun EM, Jaiswal V, Park EJ, Lee HJ. Mealworm hydrolysate ameliorates dexamethasone-induced muscle atrophy via sirtuin 1-mediated signaling and Akt pathway. NPJ Sci Food 2025; 9:72. [PMID: 40360542 PMCID: PMC12075696 DOI: 10.1038/s41538-025-00432-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Loss of skeletal muscle mass and strength can result from various factors, including malnutrition, glucocorticoid usage, and diseases. The mealworm (Tenebrio molitor larvae) is an edible insect gaining popularity as an alternative protein-rich diet. Mealworms are expected to help alleviate muscle atrophy based on their rich, high-quality protein and peptide content, but it remains unclear whether mealworms ameliorate muscle loss. This study aimed to investigate the potential of mealworm hydrolysate (MH) in mitigating dexamethasone (DEX)-induced muscle atrophy and to elucidate the underlying mechanisms. MH ameliorates muscle atrophy by activating sirtuin 1 (SIRT1) and Akt, reducing muscle-specific RING finger protein-1 and atrogin-1 expression, and inhibiting apoptosis in DEX-treated C2C12 cells. Additionally, MH significantly increased the muscle mass, grip strength, and muscle fiber cross-sectional area by activating SIRT1 and Akt in DEX-treated rats. These findings suggest that MH has the potential in alleviating dexamethasone-induced muscle atrophy.
Collapse
Affiliation(s)
- Sung-Min Kim
- Department of Food Science and Biotechnology, Gachon University, Gyeonggi-do, Republic of Korea
- Institute for Aging and Clinical Nutrition research, Gachon University, Gyeonggi-do, Republic of Korea
| | - Jong-Yeon Kim
- Department of Food Science and Biotechnology, Gachon University, Gyeonggi-do, Republic of Korea
- Institute for Aging and Clinical Nutrition research, Gachon University, Gyeonggi-do, Republic of Korea
| | - Eun-Min Jun
- Department of Food and Nutrition, Gachon University, Gyeonggi-do, Republic of Korea
| | - Varun Jaiswal
- Institute for Aging and Clinical Nutrition research, Gachon University, Gyeonggi-do, Republic of Korea
- Department of Food and Nutrition, Gachon University, Gyeonggi-do, Republic of Korea
| | - Eun-Jung Park
- Institute for Aging and Clinical Nutrition research, Gachon University, Gyeonggi-do, Republic of Korea.
- Department of Food and Nutrition, Gachon University, Gyeonggi-do, Republic of Korea.
| | - Hae-Jeung Lee
- Department of Food Science and Biotechnology, Gachon University, Gyeonggi-do, Republic of Korea.
- Institute for Aging and Clinical Nutrition research, Gachon University, Gyeonggi-do, Republic of Korea.
- Department of Food and Nutrition, Gachon University, Gyeonggi-do, Republic of Korea.
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea.
- Gachon Biomedical Convergence Institute, Gachon University Gil Medical Center, Incheon, Republic of Korea.
| |
Collapse
|
9
|
Yu YS, Kim IS, Baek SH. Decoding the dual role of autophagy in cancer through transcriptional and epigenetic regulation. FEBS Lett 2025. [PMID: 40346781 DOI: 10.1002/1873-3468.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 05/12/2025]
Abstract
Autophagy is a conserved catabolic process that is essential for maintaining cellular homeostasis by degrading and recycling damaged organelles and misfolded proteins. In cancer, autophagy exhibits a context-dependent dual role: In early stages, autophagy acts as a tumor suppressor by preserving genomic integrity and limiting oxidative stress. In advanced stages, autophagy supports tumor progression by facilitating metabolic adaptation, therapy resistance, immune evasion, and metastasis. This review highlights the molecular mechanisms underlying this dual function and focuses on the transcriptional and epigenetic regulation of autophagy in cancer cells. Key transcription factors, including the MiT/TFE family, FOXO family, and p53, as well as additional regulators, are discussed in the context of stress-responsive pathways mediated by mTORC1 and AMPK. A deeper understanding of the transcriptional and epigenetic regulation of autophagy in cancer is crucial for developing context-specific therapeutic strategies to either promote or inhibit autophagy depending on the cancer stage, thereby improving clinical outcomes in cancer treatment.
Collapse
Affiliation(s)
- Young Suk Yu
- Creative Research Initiatives Center for Epigenetic Code and Diseases, School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Ik Soo Kim
- Department of Microbiology, Gachon University College of Medicine, Incheon, South Korea
| | - Sung Hee Baek
- Creative Research Initiatives Center for Epigenetic Code and Diseases, School of Biological Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
10
|
Yang F, Chen C, Chen R, Yang C, Liu Z, Wen L, Xiao H, Geng B, Xia Y. Unraveling the Potential of SGK1 in Osteoporosis: From Molecular Mechanisms to Therapeutic Targets. Biomolecules 2025; 15:686. [PMID: 40427579 PMCID: PMC12109298 DOI: 10.3390/biom15050686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/15/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Osteoporosis (OP) is a prevalent metabolic bone disease, with several million cases of fractures resulting from osteoporosis worldwide each year. This phenomenon contributes to a substantial increase in direct medical expenditures and poses a considerable socioeconomic burden. Despite its prevalence, our understanding of the underlying mechanisms remains limited. Recent studies have demonstrated the involvement of serum glucocorticoid-regulated protein kinase 1 (SGK1) in multiple signaling pathways that regulate bone metabolism and its significant role in the development of osteoporosis. Therefore, it is of great significance to deeply explore the mechanism of SGK1 in osteoporosis and its therapeutic potential. In this paper, we present a comprehensive review of the structure and activation mechanism of SGK1, its biological function, the role of SGK1 in different types of osteoporosis, and the inhibitors of SGK1. The aim is to comprehensively assess the latest research progress with regards to SGK1's role in osteoporosis, clarify its role in the regulation of bone metabolism and its potential as a therapeutic target, and lay the foundation for the development of novel therapeutic strategies and personalized treatment in the future. Furthermore, by thoroughly examining the interactions between SGK1 and other molecules or signaling pathways, potential biomarkers may be identified, thereby enhancing the efficacy of early screening and intervention for osteoporosis.
Collapse
Affiliation(s)
- Fei Yang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (F.Y.); (C.C.); (R.C.); (C.Y.); (Z.L.); (L.W.); (H.X.); (B.G.)
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
- Department of Orthopedics, Nanchong Central Hospital, Nanchong 637000, China
| | - Changshun Chen
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (F.Y.); (C.C.); (R.C.); (C.Y.); (Z.L.); (L.W.); (H.X.); (B.G.)
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
- Department of Orthopedics and Trauma Surgery, Affiliated Hospital of Yunnan University, Kunming 650032, China
| | - Rongjin Chen
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (F.Y.); (C.C.); (R.C.); (C.Y.); (Z.L.); (L.W.); (H.X.); (B.G.)
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Chenghui Yang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (F.Y.); (C.C.); (R.C.); (C.Y.); (Z.L.); (L.W.); (H.X.); (B.G.)
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Zirui Liu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (F.Y.); (C.C.); (R.C.); (C.Y.); (Z.L.); (L.W.); (H.X.); (B.G.)
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Lei Wen
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (F.Y.); (C.C.); (R.C.); (C.Y.); (Z.L.); (L.W.); (H.X.); (B.G.)
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
- Department of Orthopedics and Trauma Surgery, Affiliated Hospital of Yunnan University, Kunming 650032, China
| | - Hefang Xiao
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (F.Y.); (C.C.); (R.C.); (C.Y.); (Z.L.); (L.W.); (H.X.); (B.G.)
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Bin Geng
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (F.Y.); (C.C.); (R.C.); (C.Y.); (Z.L.); (L.W.); (H.X.); (B.G.)
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Yayi Xia
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (F.Y.); (C.C.); (R.C.); (C.Y.); (Z.L.); (L.W.); (H.X.); (B.G.)
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| |
Collapse
|
11
|
Foote K, Rienks M, Schmidt L, Theofilatos K, Yasmin, Ozols M, Eckersley A, Shah A, Figg N, Finigan A, O’Shaughnessy K, Wilkinson I, Mayr M, Bennett M. Oxidative DNA damage promotes vascular ageing associated with changes in extracellular matrix-regulating proteins. Cardiovasc Res 2025; 121:614-628. [PMID: 38717632 PMCID: PMC12054627 DOI: 10.1093/cvr/cvae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/31/2024] [Accepted: 02/29/2024] [Indexed: 02/13/2025] Open
Abstract
AIMS Vascular ageing is characterized by vessel stiffening, with increased deposition of extracellular matrix (ECM) proteins including collagens. Oxidative DNA damage occurs in vascular ageing, but how it regulates ECM proteins and vascular stiffening is unknown. We sought to determine the relationship between oxidative DNA damage and ECM regulatory proteins in vascular ageing. METHODS AND RESULTS We examined oxidative DNA damage, the major base excision repair (BER) enzyme 8-Oxoguanine DNA Glycosylase (Ogg1) and its regulators, multiple physiological markers of ageing, and ECM proteomics in mice from 22 to 72 w. Vascular ageing was associated with increased oxidative DNA damage, and decreased expression of Ogg1, its active acetylated form, its acetylation regulatory proteins P300 and CBP, and the transcription factor Foxo3a. Vascular stiffness was examined in vivo in control, Ogg1-/-, or mice with vascular smooth muscle cell-specific expression of Ogg1+ (Ogg1) or an inactive mutation (Ogg1KR). Ogg1-/- and Ogg1KR mice showed reduced arterial compliance and distensibility, and increased stiffness and pulse pressure, whereas Ogg1 expression normalized all parameters to 72 w. ECM proteomics identified major changes in collagens with ageing, and downregulation of the ECM regulatory proteins Protein 6-lysyl oxidase (LOX) and WNT1-inducible-signaling pathway protein 2 (WISP2). Ogg1 overexpression upregulated LOX and WISP2 both in vitro and in vivo, and downregulated Transforming growth factor β1 (TGFb1) and Collagen 4α1 in vivo compared with Ogg1KR. Foxo3a activation induced Lox, while Wnt3 induction of Wisp2 also upregulated LOX and Foxo3a, and downregulated TGFβ1 and fibronectin 1. In humans, 8-oxo-G increased with vascular stiffness, while active OGG1 reduced with both age and stiffness. CONCLUSION Vascular ageing is associated with oxidative DNA damage, downregulation of major BER proteins, and changes in multiple ECM structural and regulatory proteins. Ogg1 protects against vascular ageing, associated with changes in ECM regulatory proteins including LOX and WISP2.
Collapse
MESH Headings
- Animals
- DNA Glycosylases/genetics
- DNA Glycosylases/metabolism
- DNA Glycosylases/deficiency
- Oxidative Stress
- DNA Damage
- Forkhead Box Protein O3/metabolism
- Extracellular Matrix Proteins/metabolism
- Extracellular Matrix Proteins/genetics
- Aging/metabolism
- Aging/pathology
- Aging/genetics
- Vascular Stiffness
- Mice, Knockout
- Mice, Inbred C57BL
- Male
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Humans
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/enzymology
- Signal Transduction
- Cells, Cultured
- Acetylation
- Extracellular Matrix/metabolism
- Mice
Collapse
Affiliation(s)
- Kirsty Foote
- Section of Cardiorespiratory Medicine, University of Cambridge, Victor Phillip Dahdaleh Heart & Lung Research Institute, Papworth Road, Cambridge Biomedical Campus, Cambridge CB2 0BB, UK
| | - Marieke Rienks
- Cardiovascular Division, King’s College London, The James Black Centre, 2nd Floor, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Lukas Schmidt
- Cardiovascular Division, King’s College London, The James Black Centre, 2nd Floor, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Konstantinos Theofilatos
- Cardiovascular Division, King’s College London, The James Black Centre, 2nd Floor, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Yasmin
- Department of Medicine, Experimental Medicine and Therapeutics, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 2QQ, UK
| | - Matiss Ozols
- Human Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Saffron Walden CB10 1RQ, UK
| | - Alexander Eckersley
- Division of Musculoskeletal & Dermatological Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Aarti Shah
- Section of Cardiorespiratory Medicine, University of Cambridge, Victor Phillip Dahdaleh Heart & Lung Research Institute, Papworth Road, Cambridge Biomedical Campus, Cambridge CB2 0BB, UK
| | - Nichola Figg
- Section of Cardiorespiratory Medicine, University of Cambridge, Victor Phillip Dahdaleh Heart & Lung Research Institute, Papworth Road, Cambridge Biomedical Campus, Cambridge CB2 0BB, UK
| | - Alison Finigan
- Section of Cardiorespiratory Medicine, University of Cambridge, Victor Phillip Dahdaleh Heart & Lung Research Institute, Papworth Road, Cambridge Biomedical Campus, Cambridge CB2 0BB, UK
| | - Kevin O’Shaughnessy
- Department of Medicine, Experimental Medicine and Therapeutics, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 2QQ, UK
| | - Ian Wilkinson
- Department of Medicine, Experimental Medicine and Therapeutics, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 2QQ, UK
| | - Manuel Mayr
- Cardiovascular Division, King’s College London, The James Black Centre, 2nd Floor, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Martin Bennett
- Section of Cardiorespiratory Medicine, University of Cambridge, Victor Phillip Dahdaleh Heart & Lung Research Institute, Papworth Road, Cambridge Biomedical Campus, Cambridge CB2 0BB, UK
| |
Collapse
|
12
|
Müller TD, Adriaenssens A, Ahrén B, Blüher M, Birkenfeld AL, Campbell JE, Coghlan MP, D'Alessio D, Deacon CF, DelPrato S, Douros JD, Drucker DJ, Figueredo Burgos NS, Flatt PR, Finan B, Gimeno RE, Gribble FM, Hayes MR, Hölscher C, Holst JJ, Knerr PJ, Knop FK, Kusminski CM, Liskiewicz A, Mabilleau G, Mowery SA, Nauck MA, Novikoff A, Reimann F, Roberts AG, Rosenkilde MM, Samms RJ, Scherer PE, Seeley RJ, Sloop KW, Wolfrum C, Wootten D, DiMarchi RD, Tschöp MH. Glucose-dependent insulinotropic polypeptide (GIP). Mol Metab 2025; 95:102118. [PMID: 40024571 PMCID: PMC11931254 DOI: 10.1016/j.molmet.2025.102118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/06/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Glucose-dependent insulinotropic polypeptide (GIP) was the first incretin identified and plays an essential role in the maintenance of glucose tolerance in healthy humans. Until recently GIP had not been developed as a therapeutic and thus has been overshadowed by the other incretin, glucagon-like peptide 1 (GLP-1), which is the basis for several successful drugs to treat diabetes and obesity. However, there has been a rekindling of interest in GIP biology in recent years, in great part due to pharmacology demonstrating that both GIPR agonism and antagonism may be beneficial in treating obesity and diabetes. This apparent paradox has reinvigorated the field, led to new lines of investigation, and deeper understanding of GIP. SCOPE OF REVIEW In this review, we provide a detailed overview on the multifaceted nature of GIP biology and discuss the therapeutic implications of GIPR signal modification on various diseases. MAJOR CONCLUSIONS Following its classification as an incretin hormone, GIP has emerged as a pleiotropic hormone with a variety of metabolic effects outside the endocrine pancreas. The numerous beneficial effects of GIPR signal modification render the peptide an interesting candidate for the development of pharmacotherapies to treat obesity, diabetes, drug-induced nausea and both bone and neurodegenerative disorders.
Collapse
Affiliation(s)
- Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany; Walther-Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University Munich (LMU), Germany.
| | - Alice Adriaenssens
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Bo Ahrén
- Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
| | - Matthias Blüher
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Andreas L Birkenfeld
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen 72076, Germany; Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich, Tübingen, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA; Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Matthew P Coghlan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - David D'Alessio
- Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA; Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Carolyn F Deacon
- School of Biomedical Sciences, Ulster University, Coleraine, UK; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stefano DelPrato
- Interdisciplinary Research Center "Health Science", Sant'Anna School of Advanced Studies, Pisa, Italy
| | | | - Daniel J Drucker
- The Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, and the Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Natalie S Figueredo Burgos
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Peter R Flatt
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Brian Finan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Ruth E Gimeno
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Fiona M Gribble
- Institute of Metabolic Science-Metabolic Research Laboratories & MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Matthew R Hayes
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christian Hölscher
- Neurodegeneration Research Group, Henan Academy of Innovations in Medical Science, Xinzheng, China
| | - Jens J Holst
- Department of Biomedical Sciences and the Novo Nordisk Foundation Centre for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Patrick J Knerr
- Indianapolis Biosciences Research Institute, Indianapolis, IN, USA
| | - Filip K Knop
- Center for Clinical Metabolic Research, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christine M Kusminski
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Arkadiusz Liskiewicz
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany; Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Guillaume Mabilleau
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS UMR 1229, Angers, France; CHU Angers, Departement de Pathologie Cellulaire et Tissulaire, Angers, France
| | | | - Michael A Nauck
- Diabetes, Endocrinology and Metabolism Section, Department of Internal Medicine I, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Aaron Novikoff
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany
| | - Frank Reimann
- Institute of Metabolic Science-Metabolic Research Laboratories & MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Anna G Roberts
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark
| | - Ricardo J Samms
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Philip E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Kyle W Sloop
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Schwerzenbach, Switzerland
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | | | - Matthias H Tschöp
- Helmholtz Munich, Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
13
|
Li C, Zhang D, Huang J, Zhou H, Song T, Wang X, Kong Q, Li L, Liu Z, Zhang N, Lu Y, Tan J, Zhang J. From non-coding RNAs to cancer regulators: The fascinating world of micropeptides. Int J Cancer 2025. [PMID: 40279117 DOI: 10.1002/ijc.35459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025]
Abstract
Micropeptides are commonly identified as peptides encoded by non-coding RNAs (ncRNAs). In the short open reading frame (sORF) of ncRNAs, there is a base sequence encoding functional micropeptides, which is of great significance in the biological field. Recently, micropeptides regulate diverse processes, including mitochondrial metabolism, calcium transport, mRNA splicing, signal transduction, myocyte fusion, and cellular senescence, regulating the homeostasis of the internal environment and cancer's incidence and progression. Especially, the study of micropeptides in cancer about the potential regulatory mechanism will be conducive to further understanding of the process of cancer initiation and development. More and more research shows micropeptides have been confirmed to play an essential role in the emergence of multiple kinds of cancers, including Breast cancer, Colon cancer, Colorectal cancer, Glioma, Glioblastoma, and Liver cancer. This review presents a comprehensive synthesis of the latest advancements in our understanding of the biological roles of micropeptides in cancer cells, with a particular focus on the regulatory networks involving micropeptides in oncogenesis. The new mode of action of micropeptides provides innovative ideas for cancer diagnosis and treatment. Moreover, we explored the significant capacity of micropeptides as diagnostic biomarkers and targets for anti-cancer therapies in cancer clinical settings, highlighting their role in the development of innovative micropeptide-based diagnostic tools and anti-cancer therapeutics.
Collapse
Affiliation(s)
- Can Li
- Nanshan Class, Zunyi Medical University, Zunyi, China
| | - Dan Zhang
- Library, Zunyi Medical University, Zunyi, China
| | - Jinxi Huang
- Nanshan Class, Zunyi Medical University, Zunyi, China
| | - He Zhou
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Tao Song
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Xianyao Wang
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Qinghong Kong
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, China
| | - Liujin Li
- Department of Otolaryngology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhaohui Liu
- Department of Otolaryngology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Neng Zhang
- Department of Urology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yanxin Lu
- Basic Medical Science Department, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Jun Tan
- Department of Histology and Embryology, Zunyi Medical University, Zunyi, China
| | - Jidong Zhang
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| |
Collapse
|
14
|
Li S, Huang K, Xu C, Zhang H, Wang X, Zhang R, Lu Y, Mohan M, Hu C. DYRK1B phosphorylates FOXO1 to promote hepatic gluconeogenesis. Nucleic Acids Res 2025; 53:gkaf319. [PMID: 40287828 PMCID: PMC12034038 DOI: 10.1093/nar/gkaf319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 03/31/2025] [Accepted: 04/25/2025] [Indexed: 04/29/2025] Open
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1B (DYRK1B), a member of the CMGC group of kinases, is linked to metabolic syndrome, though the underlying molecular mechanisms remain unclear. In this study, we show that Dyrk1b expression is induced in the liver by fasting and in diabetic mice. Through both in vivo and in vitro experiments, we demonstrate that DYRK1B promotes hepatic gluconeogenesis and glucose intolerance. Liver-specific Dyrk1b conditional knockout mice were protected from diet-induced hyperglycemia. Mechanistically, DYRK1B interacts with and phosphorylates FOXO1, primarily at Thr467/Ser468, which is essential for its nuclear localization. Additionally, DYRK1B inhibits AKT-mediated FOXO1 phosphorylation at Thr24 and Ser256, enhancing its nuclear retention. DYRK1B-mediated phosphorylation increases the expression of gluconeogenic genes and promotes gluconeogenesis. Further, AZ191, a pharmacological inhibitor of DYRK1B, significantly reduced blood glucose levels in diabetic mice. Collectively, these findings provide new insights into the role of DYRK1B in glucose metabolism and identify it as a new therapeutic target for treating diabetes.
Collapse
Affiliation(s)
- Shanshan Li
- Shanghai Diabetes Institute, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Kai Huang
- Department of Sports Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Chu Xu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong Zhang
- Shanghai Diabetes Institute, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xiao Wang
- Key Laboratory of Biomedical Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310002, Zhejiang, China
| | - Rong Zhang
- Shanghai Diabetes Institute, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yan Lu
- Institute of Metabolism and Regenerative Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Man Mohan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| |
Collapse
|
15
|
Wang QY, Xu BY, Wang Y, Lin YM, Zheng LF, Liu G, Li DZ, Jiang CS, Wang W, Zeng XP. Sodium aescinate promotes apoptosis of pancreatic stellate cells and alleviates pancreatic fibrosis by inhibiting the PI3K/Akt/FOXO1 signaling pathways. Front Pharmacol 2025; 16:1554260. [PMID: 40331192 PMCID: PMC12052937 DOI: 10.3389/fphar.2025.1554260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
Chronic pancreatitis (CP) is an inflammatory disease of progressive pancreatic fibrosis, and pancreatic stellate cells (PSCs) are key cells involved in pancreatic fibrosis. To date, there are no clinical therapies available to reverse inflammatory damage or pancreatic fibrosis associated with CP. Sodium Aescinate (SA) is a natural mixture of triterpene saponins extracted from the dried and ripe fruits of horse chestnut tree. It has been shown to have anti-inflammatory and anti-edematous effects. This study aims to explore the therapeutic potential of SA in CP and the molecular mechanism of its modulation. Through in vivo animal models and experiments, we found that SA significantly alleviated pancreatic inflammation and fibrosis in caerulein-induced CP mice model. In addition, SA inhibited the proliferation, migration and activation of PSCs as well as promoted apoptosis of PSCs through a series of experiments on cells in vitro including CCK-8 assay, Western blotting, immunofluorescence staining, wound-healing assay, Transwell migration assays, flow cytometric analysis, etc. Further RNA sequencing and in vitro validation assays revealed that inhibition of the PI3K/AKT/FOXO1 signaling pathway was involved in the SA mediated promotion of PSCs apoptosis, thus alleviating pancreatic fibrosis. In conclusion, this study revealed that SA may have promising potential as therapeutic agent for the treatment of CP, and the PI3K/AKT/FOXO1 pathway is a potential therapeutic target for pancreatic inflammation and fibrosis.
Collapse
Affiliation(s)
- Qing-Yun Wang
- Department of Digestive Diseases, Dongfang Hospital of Xiamen University, School of Medicine, Xiamen University, Fuzhou, China
- Department of Digestive Diseases, 900th Hospital of PLA Joint Logistic Support Force, Fuzhou, China
- Department of Digestive Diseases, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Bai-Yan Xu
- Department of Digestive Diseases, Huian County Hospital, Quanzhou, China
| | - Yi Wang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan-Mei Lin
- Department of Digestive Diseases, Dongfang Hospital of Xiamen University, School of Medicine, Xiamen University, Fuzhou, China
- Department of Digestive Diseases, 900th Hospital of PLA Joint Logistic Support Force, Fuzhou, China
- Department of Digestive Diseases, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Lin-Fu Zheng
- Department of Digestive Diseases, Dongfang Hospital of Xiamen University, School of Medicine, Xiamen University, Fuzhou, China
- Department of Digestive Diseases, 900th Hospital of PLA Joint Logistic Support Force, Fuzhou, China
- Department of Digestive Diseases, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Gang Liu
- Department of Digestive Diseases, Dongfang Hospital of Xiamen University, School of Medicine, Xiamen University, Fuzhou, China
- Department of Digestive Diseases, 900th Hospital of PLA Joint Logistic Support Force, Fuzhou, China
- Department of Digestive Diseases, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Da-Zhou Li
- Department of Digestive Diseases, Dongfang Hospital of Xiamen University, School of Medicine, Xiamen University, Fuzhou, China
- Department of Digestive Diseases, 900th Hospital of PLA Joint Logistic Support Force, Fuzhou, China
- Department of Digestive Diseases, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Chuan-Shen Jiang
- Department of Digestive Diseases, Dongfang Hospital of Xiamen University, School of Medicine, Xiamen University, Fuzhou, China
- Department of Digestive Diseases, 900th Hospital of PLA Joint Logistic Support Force, Fuzhou, China
- Department of Digestive Diseases, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Wen Wang
- Department of Digestive Diseases, Dongfang Hospital of Xiamen University, School of Medicine, Xiamen University, Fuzhou, China
- Department of Digestive Diseases, 900th Hospital of PLA Joint Logistic Support Force, Fuzhou, China
- Department of Digestive Diseases, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Xiang-Peng Zeng
- Department of Digestive Diseases, Dongfang Hospital of Xiamen University, School of Medicine, Xiamen University, Fuzhou, China
- Department of Digestive Diseases, 900th Hospital of PLA Joint Logistic Support Force, Fuzhou, China
- Department of Digestive Diseases, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| |
Collapse
|
16
|
Ma Z, Zhou M, Chen H, Shen Q, Zhou J. Deubiquitinase-Targeting Chimeras (DUBTACs) as a Potential Paradigm-Shifting Drug Discovery Approach. J Med Chem 2025; 68:6897-6915. [PMID: 40135978 DOI: 10.1021/acs.jmedchem.4c02975] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Developing proteolysis-targeting chimeras (PROTACs) is well recognized through target protein degradation (TPD) toward promising therapeutics. While a variety of diseases are driven by aberrant ubiquitination and degradation of critical proteins with protective functions, target protein stabilization (TPS) rather than TPD is emerging as a unique therapeutic modality. Deubiquitinase-targeting chimeras (DUBTACs), a class of heterobifunctional protein stabilizers consisting of deubiquitinase (DUB) and protein-of-interest (POI) targeting ligands conjugated with a linker, can rescue such proteins from aberrant elimination. DUBTACs stabilize the levels of POIs in a DUB-dependent manner, removing ubiquitin from polyubiquitylated and degraded proteins. DUBTACs can induce a new interaction between POI and DUB by forming a POI-DUBTAC-DUB ternary complex. Herein, therapeutic benefits of TPS approaches for human diseases are introduced, and recent advances in developing DUBTACs are summarized. Relevant challenges, opportunities, and future perspectives are also discussed.
Collapse
Affiliation(s)
- Zonghui Ma
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Mingxiang Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Qiang Shen
- Department of Interdisciplinary Oncology, School of Medicine, LSU LCMC Health Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| |
Collapse
|
17
|
Cao J, Qin X, Yang H, Liu C, Cheng T. Dimm targets GDAP2 to regulate larval development in the silkworm, Bombyx mori. INSECT SCIENCE 2025. [PMID: 40205793 DOI: 10.1111/1744-7917.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/16/2025] [Accepted: 03/04/2025] [Indexed: 04/11/2025]
Abstract
The basic helix-loop-helix (bHLH) domain transcription factors precisely regulate various developmental processes in insects. Dimm, a specific bHLH transcription factor, integrates the insulin/insulin-like growth factor signaling (IIS) and juvenile hormone signaling (JHS) pathways to modulate larval development in silkworms. However, the molecular mechanisms underlying this regulation are not yet fully understood. This study aimed to determine the targets of Dimm through which it regulates larval development. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) revealed ganglioside-induced differentiation-associated protein 2 (GDAP2) as a direct downstream target gene of Dimm. Further study showed that Dimm directly binds to an enhancer element located in the second intron of the GDAP2 gene to promote its transcription. GDAP2 exhibited widespread expression across different stages and tissues of silkworms, regulated by both the IIS and the JHS pathways. The systemic knockout of GDAP2 leads to delayed larval development with a significant reduction in body weight; moreover, larval development was arrested at the 4th-instar stage. Further investigation unveiled that the inhibition of the ecdysone and innate immune signaling pathways in the mutant line led to abnormal larval development. A systematic investigation of the biological functions of GDAP2 offers valuable insights into the mechanism by which Dimm integrates IIS and JHS pathways to regulate the larval development of silkworms.
Collapse
Affiliation(s)
- Jun Cao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Xiaodan Qin
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Hongguo Yang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Chun Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Tingcai Cheng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| |
Collapse
|
18
|
Husremović T, Meier V, Piëch L, Siess KM, Antonioli S, Grishkovskaya I, Kircheva N, Angelova SE, Wenzl K, Brandstätter A, Veis J, Miočić-Stošić F, Anrather D, Hartl M, Truebestein L, Cerron-Alvan LM, Leeb M, Žagrović B, Hann S, Bock C, Ogris E, Dudev T, Irwin NAT, Haselbach D, Leonard TA. PHLPP2 is a pseudophosphatase that lost activity in the metazoan ancestor. Proc Natl Acad Sci U S A 2025; 122:e2417218122. [PMID: 40168118 PMCID: PMC12002173 DOI: 10.1073/pnas.2417218122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/28/2025] [Indexed: 04/03/2025] Open
Abstract
The phosphoinositide 3-kinase (PI3K) pathway is a major regulator of cell and organismal growth. Consequently, hyperactivation of PI3K and its downstream effector kinase, Akt, is observed in many human cancers. Pleckstrin homology domain leucine-rich repeat-containing protein phosphatases (PHLPP), two paralogous members of the metal-dependent protein phosphatase family, have been reported as negative regulators of Akt signaling and, therefore, tumor suppressors. However, the stoichiometry and identity of the bound metal ion(s), mechanism of action, and enzymatic specificity of these proteins are not known. Seeking to fill these gaps in our understanding of PHLPP biology, we unexpectedly found that PHLPP2 has no catalytic activity in vitro. Instead, we found that PHLPP2 is a pseudophosphatase with a single zinc ion bound in its catalytic center. Furthermore, we found that cancer genomics data do not support the proposed role of PHLPP1 or PHLPP2 as tumor suppressors. Phylogenetic analyses revealed an ancestral phosphatase that arose more than 1,000 Mya, but that lost activity at the base of the metazoan lineage. Surface conservation indicates that while PHLPP2 has lost catalytic activity, it may have retained substrate binding. Finally, using phylogenomics, we identify coevolving genes consistent with a scaffolding role for PHLPP2 on membranes. In summary, our results provide a molecular explanation for the inconclusive results that have hampered research on PHLPP and argue for a focus on the noncatalytic roles of PHLPP1 and PHLPP2.
Collapse
Affiliation(s)
- Tarik Husremović
- Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna1030, Austria
| | - Vanessa Meier
- Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna1030, Austria
| | - Lucas Piëch
- Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna1030, Austria
- Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, ViennaA-1030, Austria
| | - Katharina M. Siess
- Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna1030, Austria
| | - Sumire Antonioli
- Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna1030, Austria
- Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, ViennaA-1030, Austria
| | - Irina Grishkovskaya
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna1030, Austria
| | - Nikoleta Kircheva
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, Sofia1113, Bulgaria
| | - Silvia E. Angelova
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, Sofia1113, Bulgaria
- University of Chemical Technology and Metallurgy, Sofia1756, Bulgaria
| | - Karoline Wenzl
- Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna1030, Austria
| | - Andreas Brandstätter
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna1190, Austria
| | - Jiri Veis
- Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna1030, Austria
| | - Fran Miočić-Stošić
- Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna1030, Austria
- Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, ViennaA-1030, Austria
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna1030, Austria
| | - Dorothea Anrather
- Max Perutz Labs, Mass Spectrometry Facility, Vienna Biocenter Campus, Vienna1030, Austria
- Department of Biochemistry and Cell Biology, Center for Molecular Biology, University of Vienna, Vienna1030, Austria
| | - Markus Hartl
- Max Perutz Labs, Mass Spectrometry Facility, Vienna Biocenter Campus, Vienna1030, Austria
- Department of Biochemistry and Cell Biology, Center for Molecular Biology, University of Vienna, Vienna1030, Austria
| | - Linda Truebestein
- Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna1030, Austria
| | - Luis M. Cerron-Alvan
- Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna1030, Austria
- Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, ViennaA-1030, Austria
- Department of Microbiology, Immunobiology and Genetics, Center for Molecular Biology, University of Vienna, Vienna1030, Austria
| | - Martin Leeb
- Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna1030, Austria
- Department of Microbiology, Immunobiology and Genetics, Center for Molecular Biology, University of Vienna, Vienna1030, Austria
| | - Bojan Žagrović
- Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna1030, Austria
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna1030, Austria
| | - Stephan Hann
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna1190, Austria
| | - Christoph Bock
- Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna1090, Austria
- Center for Medical Data Science, Institute of Artificial Intelligence, Medical University of Vienna, Vienna1090, Austria
| | - Egon Ogris
- Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna1030, Austria
| | - Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, Sofia1164, Bulgaria
| | - Nicholas A. T. Irwin
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna1030, Austria
| | - David Haselbach
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna1030, Austria
| | - Thomas A. Leonard
- Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna1030, Austria
| |
Collapse
|
19
|
Asadi Y, Moundounga RK, Chakroborty A, Pokokiri A, Wang H. FOXOs and their roles in acute and chronic neurological disorders. Front Mol Biosci 2025; 12:1538472. [PMID: 40260403 PMCID: PMC12010098 DOI: 10.3389/fmolb.2025.1538472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/10/2025] [Indexed: 04/23/2025] Open
Abstract
The forkhead family of transcription factors of class O (FOXOs) consisting of four functionally related proteins, FOXO1, FOXO3, FOXO4, and FOXO6, are mammalian homologs of daf-16 in Caenorhabditis elegans and were previously identified as tumor suppressors, oxidative stress sensors, and cell survival modulators. Under normal physiological conditions, FOXO protein activities are negatively regulated by phosphorylation via the phosphoinositide 3-kinase (PI3K)-Akt pathway, a well-known cell survival pathway: Akt phosphorylates FOXOs to inactivate their transcriptional activity by relocalizing FOXOs from the nucleus to the cytoplasm for degradation. However, under oxidative stress or absent the cellular survival drive of growth factors, FOXO proteins translocate to the nucleus and upregulate a series of target genes, thereby promoting cell growth arrest and cell death and altering mitochondrial homeostasis. FOXO gene expression is also regulated by other transcriptional factors such as p53 or autoregulation by their activities and end products. Here we summarize the structure, posttranslational modifications, and translocation of FOXOs linking to their transcriptional control of cellular functions, survival, and death, emphasizing their role in regulating the cellular response to some acute insults and chronic neurological disorders. This review will conclude with a brief section on potential therapeutic interventions that can be used to modulate FOXOs' activities when treating acute and chronic neurological disorders.
Collapse
Affiliation(s)
- Yasin Asadi
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Rozenn K. Moundounga
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Anand Chakroborty
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Augustina Pokokiri
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Hongmin Wang
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
20
|
Li P, Zhang Y, Yu Y. A large-scale method to measure the absolute stoichiometries of protein Poly-ADP-Ribosylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.27.645734. [PMID: 40196648 PMCID: PMC11974908 DOI: 10.1101/2025.03.27.645734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Poly-ADP-ribosylation (PARylation) is a reversible posttranslational modification that occurs in higher eukaryotes. While thousands of PARylated substrates have been identified, the specific biological functions of most PARylated proteins remain elusive. PARylation stoichiometry is a critical parameter to assess the potential functions of a PARylated protein. Here, we developed a large-scale strategy to measure the absolute stoichiometries of protein PARylation. By integrating mild cell lysis, boronate enrichment and carefully designed titration experiments, we were able to determine the PARylation stoichiometries for a total of 235 proteins. This approach enables the capture of all PARylation events on various amino acid acceptors. We revealed that PARylation occupancy spans over three orders of magnitude. However, most PARylation events occur at low stoichiometric values (median 0.578%). Notably, we observed that high stoichiometry PARylation (>1%) predominantly targets proteins involved in transcription regulation and chromatin remodeling. Thus, our study provides a systems-scale, quantitative view of PARylation stoichiometries under genotoxic conditions, which serves as invaluable resources for future functional studies of this important protein posttranslational modification.
Collapse
Affiliation(s)
- Peng Li
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yajie Zhang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yonghao Yu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| |
Collapse
|
21
|
Tang Q, Li J, Zhang L, Zeng S, Bao Q, Hu W, He L, Huang G, Wang L, Liu Y, Zhao X, Yang S, Hu C. Orlistat facilitates immunotherapy via AKT-FOXO3a-FOXM1-mediated PD-L1 suppression. J Immunother Cancer 2025; 13:e008923. [PMID: 40139835 PMCID: PMC11951015 DOI: 10.1136/jitc-2024-008923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 12/02/2024] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND The immunotherapy targeting cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) and programmed cell death ligand-1 (PD-L1) has achieved significant breakthroughs, but further improvements are still needed in cancer treatment. METHODS We investigated orlistat, a drug approved by the Food and Drug Administration for the treatment of obesity and found that it can enhance the efficacy of CTLA-4 blockade immunotherapy. We conducted both in vivo and in vitro experiments to explore the mechanism by which orlistat increased antitumor immunity. RESULTS Orlistat enhances the efficacy of anti-CTLA-4 immunotherapy by suppressing tumor cell PD-L1 protein expression and boosting the transcription of interferon-stimulated genes (ISGs) and MHC-I. Mechanistically, orlistat inhibits AKT activity and subsequent phosphorylation of forkhead box O3a (FOXO3a) at its threonine (T) 32, serine (S) 253, thereby downregulating Forkhead box M1 (FOXM1) expression, which ultimately suppresses PD-L1 transcription. Specifically, inhibition of FOXM1 leads to FOXO3a accumulation through impaired AKT activity. FOXM1 activates protein kinase B (AKT) via acting as a scaffold to facilitate 3-phosphoinositide-dependent protein kinase 1 (PDK1) and AKT and interaction. In addition, orlistat enhances phosphorylated signal transducer and activator of transcription 1 (p-STAT1) at tyrosine (Y) 701, resulting in upregulation of ISGs and MHC-I. CONCLUSIONS Orlistat plays a crucial role in modulating the immune response and supporting the combination with CTLA-4 blockade to promote antitumor immunotherapy.
Collapse
Affiliation(s)
- Qingyun Tang
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Jie Li
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Lianhua Zhang
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Shuo Zeng
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Qiyu Bao
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Weichao Hu
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Lijiao He
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Guiping Huang
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Liting Wang
- Army Military Medical University, Chongqing, China
| | - Yunyi Liu
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Xiaoyan Zhao
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Shiming Yang
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| | - Changjiang Hu
- Department of Gastroenterology, Army Medical University Xinqiao Hospital, Chongqing, China
| |
Collapse
|
22
|
Zhang W, Li W, Du J, Yang C, Yu L, Yang P, Zhang H, Wu Z, Ge G, Yang H, Geng D. Dnmt3a-mediated hypermethylation of FoxO3 promotes redox imbalance during osteoclastogenesis. Proc Natl Acad Sci U S A 2025; 122:e2418023122. [PMID: 40106360 PMCID: PMC11962505 DOI: 10.1073/pnas.2418023122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 02/19/2025] [Indexed: 03/22/2025] Open
Abstract
Redox imbalance contributes to aberrant osteoclastogenesis and osteoporotic bone loss. In this study, we observed lower Forkhead box protein O3 (FoxO3), a transcription factor associated with cellular oxidative stress, enhanced osteoclastogenesis in osteoporosis (OP). Single-cell RNA sequencing (scRNA-seq) analysis on the human femoral head indicated that FoxO3 is widely expressed in macrophages. Furthermore, Lysm-Cre;FoxO3f/f OVX mice showed increased reactive oxygen species (ROS), enhanced osteoclastogenesis, and more bone loss than normal OVX mice. Mechanistically, we identified FoxO3 promoter methylation as a crucial factor contributing to decreased FoxO3, thereby influencing osteoclastogenesis and OC function. Intriguingly, we observed that Dnmt3a, highly expressed during osteoclastogenesis, played a pivotal role in regulating the methylation of the FoxO3 promoter. Knockdown of Dnmt3a promoted FoxO3 expression, inhibiting osteoclastogenesis and mitigating OP. Interestingly, we observed that Dnmt3a alleviated osteoclastogenesis by suppressing ROS via upregulating FoxO3 rather than inducing the dissociation of RANK and TRAF6. Collectively, this study elucidates the role and mechanism of FoxO3 in osteoclastogenesis and OP, providing a epigenetic target for the treatment of OP.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou215006, Jiangsu, China
| | - Wenming Li
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou215006, Jiangsu, China
| | - Jun Du
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou215006, Jiangsu, China
| | - Chen Yang
- Department of Orthopaedics, Huaian Hospital Affiliated to Yangzhou University, Huaian, Jiangsu223300, China
| | - Lei Yu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou215006, Jiangsu, China
| | - Peng Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou215006, Jiangsu, China
| | - Haifeng Zhang
- Department of Orthopaedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200080, China
| | - Zebin Wu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou215006, Jiangsu, China
| | - Gaoran Ge
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou215006, Jiangsu, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou215006, Jiangsu, China
| | - Dechun Geng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou215006, Jiangsu, China
| |
Collapse
|
23
|
Waheed I, Sikandri T, Zaheen S, Khakwani MMAK, An Z, Liu T, Zhu C, Wei J. Evaluating the Molecular Interactions between Type 2 Diabetes Mellitus and Parkinson's Disease: Role of Antidiabetic Drugs as Promising Therapeutics. ACS Chem Neurosci 2025; 16:988-999. [PMID: 40042145 DOI: 10.1021/acschemneuro.4c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
Evidence from previous research demonstrates a relationship between diabetes mellitus (DM) and Parkinson's disease (PD). T2DM is associated with chronic glucose dysregulation, as an etiological factor. It inhibits neuronal function through disrupted insulin signaling and oxidative stress, which ultimately lead to the loss of dopaminergic neurons in the substantia nigra (SN). Interactions between T2DM and PD were analyzed by gene expression, coexpression, and gene set enrichment via NCBI and STRING databases following pathways like KEGG and Reactome. The study identified nine key gene interactions through published literature on different databases and search engines that are involved in the progression of these chronic diseases. Furthermore, some genetic and nongenetic risk factors, gene mutations and environmental factors, are also involved in the progression of T2DM and PD. This review highlights the limitations of currently available drug treatments for these diseases and examines modern therapeutic approaches to address neurodegenerative and metabolic abnormalities. We critically assess the current experimental methodologies aimed at unraveling the pathophysiological mechanisms linking PD and T2DM while addressing the key challenges impeding a comprehensive understanding of the concurrent emergence of these debilitating age-related conditions.
Collapse
Affiliation(s)
- Irum Waheed
- Institute for Brain Sciences Research, Center for Translational Neuromedicine and Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Talal Sikandri
- Institute for Brain Sciences Research, Center for Translational Neuromedicine and Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Sumbal Zaheen
- Institute for Brain Sciences Research, Center for Translational Neuromedicine and Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| | | | - Zhaowu An
- Institute for Brain Sciences Research, Center for Translational Neuromedicine and Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Tingting Liu
- Institute for Brain Sciences Research, Center for Translational Neuromedicine and Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Chaoyang Zhu
- Institute for Brain Sciences Research, Center for Translational Neuromedicine and Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jianshe Wei
- Institute for Brain Sciences Research, Center for Translational Neuromedicine and Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
24
|
Zhang B, Tian M, Qiu Y, Wu J, Cui C, Liu S, Hou J, Tian C, Wang L, Gao K, Jiang Z, Yang X. Glucuronolactone Restores the Intestinal Barrier and Redox Balance Partly Through the Nrf2/Akt/FOXO1 Pathway to Alleviate Weaning Stress-Induced Intestinal Dysfunction in Piglets. Antioxidants (Basel) 2025; 14:352. [PMID: 40227425 PMCID: PMC11939252 DOI: 10.3390/antiox14030352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 04/15/2025] Open
Abstract
(1) Background: Glucuronolactone (GLU) is a glucose metabolite with antioxidant activity. At present, the exact role of it in regulating the intestinal health of piglets under weaning stress is not clear. The purpose of this study is to investigate the effects of GLU on the growth performance and intestinal health of piglets under weaning stress and to explore potential mechanisms. (2) Methods: Twenty-four weaned piglets were randomly assigned into two groups, with one group receiving a basal diet and the other group receiving an experimental diet supplemented with 200 mg/kg of GLU. (3) Results: GLU increased the ADG, ADFI, and final body weight of piglets, while reducing the diarrhea rate. Mechanistically, GLU alleviates weaning stress-induced intestinal oxidative stress and inflammatory responses in piglets partly through activating the Nrf2-Akt signaling pathway to suppress the transcriptional activity of FOXO1, while also inhibiting the activation of the TLR4-MAPK signaling pathway to reduce the secretion of pro-inflammatory cytokines. Moreover, GLU increased the relative abundance of Lactobacillus reuteri in the ileum of piglets and improved the composition of the gut microbiota. (4) Conclusions: GLU reduced inflammation and oxidative stress through the Nrf2/Akt/FOXO1 signaling pathway and improved intestinal health, resulting in improved growth performance of the piglets.
Collapse
Affiliation(s)
- Beibei Zhang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Min Tian
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Yueqin Qiu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Jing Wu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Chenbin Cui
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Shilong Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Jing Hou
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Chaoyang Tian
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Li Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Kaiguo Gao
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Zongyong Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Xuefen Yang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| |
Collapse
|
25
|
Kopalli SR, Behl T, Kyada A, Rekha MM, Kundlas M, Rani P, Nathiya D, Satyam Naidu K, Gulati M, Bhise M, Gupta P, Wal P, Fareed M, Ramniwas S, Koppula S, Gasmi A. Synaptic plasticity and neuroprotection: The molecular impact of flavonoids on neurodegenerative disease progression. Neuroscience 2025; 569:161-183. [PMID: 39922366 DOI: 10.1016/j.neuroscience.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/11/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Flavonoids are a broad family of polyphenolic chemicals that are present in a wide variety of fruits, vegetables, and medicinal plants. Because of their neuroprotective qualities, flavonoids have attracted a lot of interest. The potential of flavonoids to control synaptic plasticity-a crucial process underlying memory, learning, and cognitive function-is becoming more and more clear. Dysregulation of synaptic plasticity is a feature of neurodegenerative diseases such as amyotrophic lateral sclerosis (0.4 %), Parkinson's (1-2 %), Alzheimer's (5-7 %), and Huntington's ((0.2 %)). This review discusses the molecular mechanisms via which flavonoids influence synaptic plasticity as well as their therapeutic potential in neurodegenerative diseases. Flavonoids modulate key signaling pathways such as MAPK/ERK and PI3K/Akt/mTOR to support neuroprotection, synaptic plasticity, and neuronal health, while also influencing neurotrophic factors (BDNF, NGF) and their receptors (TrkB, TrkA). They regulate neurotransmitter receptors like GABA, AMPA, and NMDA to balance excitatory and inhibitory transmission, and exert antioxidant effects via the Nrf2-ARE pathway and anti-inflammatory actions by inhibiting NF-κB signaling, highlighting their potential for treating neurodegenerative diseases. These varied reactions support the preservation of synapse function and neuronal integrity in the face of neurodegenerative insults. Flavonoids can reduce the symptoms of neurodegeneration, prevent synaptic loss, and enhance cognitive function, according to experimental studies. However, there are still obstacles to using these findings in clinical settings, such as limited bioavailability and the need for consistent dose. The focus of future research should be on improving flavonoid delivery systems and combining them with conventional medications.
Collapse
Affiliation(s)
- Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006 Republic of Korea
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Punjab 140306, India
| | - Ashishkumar Kyada
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot 360003 Gujarat, India
| | - M M Rekha
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Mayank Kundlas
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401 Punjab, India
| | - Pooja Rani
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307 Punjab, India
| | - Deepak Nathiya
- Department of Pharmacy Practice, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | | | | | - Pranay Wal
- PSIT- Pranveer Singh Institute of Technology, Pharmacy Kanpur UP, India
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 13713, Saudi Arabia
| | - Seema Ramniwas
- University Centre for Research and Development, Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413 Punjab, India
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| | - Amin Gasmi
- Societe Francophone de Nutritherapie et de Nutrigenetique Appliquee, Villeurbanne, France; International Institute of Nutrition and Micronutrient Sciences, Saint-Etienne, France
| |
Collapse
|
26
|
Pey Adum KS, Haron NH, Md Toha Z, Arsad H. Transcriptome analysis and molecular docking reveal the activation of FOXO4, TNFSF15 and CASP9 in HeLa cells treated with DCM fraction from Clinacanthus nutans ( C. nutans). JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025:1-10. [PMID: 40094535 DOI: 10.1080/10286020.2025.2469691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/14/2025] [Accepted: 02/16/2025] [Indexed: 03/19/2025]
Abstract
Clinacanthus nutans (C. nutans) is a well-known herb in tropical Asia. Previous studies have reported the anticancer activity of C. nutans but the molecular mechanisms on cervical cancer are not fully understood. Therefore, our study aims to explore its effects on HeLa line and analyse the molecular interactions. Firstly, the RNA-Seq reads were processed for differentially expressed analyses. With Ingenuity Pathway Analysis (IPA) method, five cell death-related pathways with three significant genes (CASP9, FOXO4, TNFSF15) were identified. This study provides insight into the potential role of the DCM fraction of C. nutans mediating cell death mechanism in cervical cancer.
Collapse
Affiliation(s)
- Kristine Sandra Pey Adum
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Seberang Perai Utara, Pulau Pinang13200, Malaysia
| | - Nor Hasyimah Haron
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Seberang Perai Utara, Pulau Pinang13200, Malaysia
| | - Zaleha Md Toha
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Seberang Perai Utara, Pulau Pinang13200, Malaysia
| | - Hasni Arsad
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Seberang Perai Utara, Pulau Pinang13200, Malaysia
| |
Collapse
|
27
|
Xia JB, Liu K, Lin XL, Li HJ, Lin JH, Li L, Liang CQ, Cao Y, Wen N, Liao ZF, Zhao H, Park KS, Song GH, Ye ZB, Cai DQ, Ju ZY, Qi XF. FoxO3 controls cardiomyocyte proliferation and heart regeneration by regulating Sfrp2 expression in postnatal mice. Nat Commun 2025; 16:2532. [PMID: 40087279 PMCID: PMC11909131 DOI: 10.1038/s41467-025-57962-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 03/07/2025] [Indexed: 03/17/2025] Open
Abstract
The Forkhead box O3 (FoxO3) transcription factor is crucial to controlling heart growth in adulthood, but its exact role in cardiac repair and regeneration in postnatal mice remains unclear. Here, we show that FoxO3 deficiency promotes cardiomyocyte proliferation in postnatal mice and improves cardiac function in homeostatic adult mice. Moreover, FoxO3 deficiency accelerates heart regeneration following injury in postnatal mice at the regenerative and non-regenerative stages. We reveal that FoxO3 directly promotes the expression of secreted frizzled-related protein 2 (Sfrp2) and suppresses the activation of canonical Wnt/β-catenin signaling during heart regeneration. The increased activation of β-catenin in FoxO3-deficient cardiomyocytes can be blocked by Sfrp2 overexpression. In addition, Sfrp2 overexpression suppressed cardiomyocyte proliferation and heart regeneration in FoxO3-deficient mice. These findings suggest that FoxO3 negatively controls cardiomyocyte proliferation and heart regeneration in postnatal mice at least in part by promoting Sfrp2 expression, which leading to the inactivation of canonical Wnt/β-catenin signaling.
Collapse
Grants
- 82370247, 82070257, and 81770240 National Natural Science Foundation of China (National Science Foundation of China)
- the Fundamental Research Funds for the Central Universities (21623110), the Open Program of Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics (GPKLMMD-OP202302), the Research Grant of Key Laboratory of Regenerative Medicine of Ministry of Education (ZSYXM202402, ZSYXM202303, ZSYXM202206, and ZSYXM202104), the Guangdong Natural Science Funds for Distinguished Young Scholar (2014A030306011), and the Top Young Talents of Guangdong Province Special Support Program (87315007), China.
Collapse
Affiliation(s)
- Jing-Bo Xia
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- Department of Cardiology, The Affiliated Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, 510317, China
| | - Kun Liu
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- Department of Cardiology, Zhongshan Torch Development Zone People's Hospital, Zhongshan, 528437, China
| | - Xiao-Lin Lin
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Hong-Ji Li
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Jin-Hua Lin
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Li Li
- Department of Cardiology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, China
| | - Chi-Qian Liang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yan Cao
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Na Wen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Zhao-Fu Liao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China
| | - Hui Zhao
- Key Laboratory of Regenerative Medicine of Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kyu-Sang Park
- Department of Physiology, Wonju College of Medicine, Yonsei University, Wonju, Gangwon, 220-701, Korea
| | - Guo-Hua Song
- School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, 250117, China
| | - Ze-Bing Ye
- Department of Cardiology, The Affiliated Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, 510317, China.
| | - Dong-Qing Cai
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Zhen-Yu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Xu-Feng Qi
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
- Department of Cardiology, The Affiliated Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, 510317, China.
| |
Collapse
|
28
|
Uliassi E, Bolognesi ML, Milelli A. Targeting Tau Protein with Proximity Inducing Modulators: A New Frontier to Combat Tauopathies. ACS Pharmacol Transl Sci 2025; 8:654-672. [PMID: 40109749 PMCID: PMC11915046 DOI: 10.1021/acsptsci.4c00733] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 03/22/2025]
Abstract
Dysregulation of correct protein tau homeostasis represents the seed for the development of several devastating central nervous system disorders, known as tauopathies, that affect millions of people worldwide. Despite massive public and private support to research funding, these diseases still represent unmet medical needs. In fact, the tau-targeting tools developed to date have failed to translate into the clinic. Recently, taking advantage of the modes that nature uses to mediate the flow of information in cells, researchers have developed a new class of molecules, called proximity-inducing modulators, which exploit spatial proximity to modulate protein function(s) and redirect cellular processes. In this perspective, after a brief discussion about tau protein and the classic tau-targeting approaches, we will discuss the different classes of proximity-inducing modulators developed so far and highlight the applications to modulate tau protein's function and tau-induced toxicity.
Collapse
Affiliation(s)
- Elisa Uliassi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Andrea Milelli
- Department for Life Quality Studies, Alma Mater Studiorum - University of Bologna, Corso d'Augusto 237, Rimini 47921, Italy
| |
Collapse
|
29
|
Matrullo G, Filomeni G, Rizza S. Redox regulation of focal adhesions. Redox Biol 2025; 80:103514. [PMID: 39879736 PMCID: PMC11810850 DOI: 10.1016/j.redox.2025.103514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/07/2025] [Accepted: 01/23/2025] [Indexed: 01/31/2025] Open
Abstract
Focal adhesions (FAs), multi-protein complexes that link the extracellular matrix to the intracellular cytoskeleton, are key mediators of cell adhesion, migration, and proliferation. These dynamic structures act as mechanical sensors, transmitting stimuli from the extracellular to intracellular environment activating in this way signaling pathways and enabling cells to adapt to environmental changes. As such, FAs are critical for tissue organization and serve as hubs governing cell spatial arrangement within the organism. The assembly, reactivity, and functional regulation of FAs are tightly controlled by post-translational modifications, including redox modulation by reactive oxygen and nitrogen species. Increasing evidence suggests that redox signaling plays a pivotal role in both the physiological and pathological functions of FAs and their downstream processes. Redox regulation affects various components of the FA complex, including integrins, focal adhesion kinase 1 (FAK1), SRC, adapter proteins, and cytoskeletal elements. In this review, we provide an updated overview of the complex interplay between redox signaling and post-translational modifications in FAs. We explore how redox reactions influence the structure, dynamics, and function of FAs, shedding light on their broader implications in health and disease.
Collapse
Affiliation(s)
- Gianmarco Matrullo
- Department of Biology, University of Rome "Tor Vergata", 00100, Rome, Italy
| | - Giuseppe Filomeni
- Department of Biology, University of Rome "Tor Vergata", 00100, Rome, Italy; Redox Biology Group, Danish Cancer Institute, 2100, Copenhagen, Denmark
| | - Salvatore Rizza
- Redox Biology Group, Danish Cancer Institute, 2100, Copenhagen, Denmark.
| |
Collapse
|
30
|
Watanabe N, Sanada E, Okano A, Nogawa T, Lai NS, Mazaki Y, Muroi M, Yashiroda Y, Yoshida M, Osada H. Violaceoid F induces nuclear translocation of FOXO3a by inhibiting CRM1 via a novel mechanism and suppresses HeLa cell growth. FEBS Lett 2025; 599:755-765. [PMID: 39727141 DOI: 10.1002/1873-3468.15085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024]
Abstract
FOXO3a is a transcription factor involved in cell growth inhibition and apoptosis. FOXO3a is localized in the cytoplasm in cancer cells, and its nuclear translocation by small molecules is expected to prevent cancer cell growth. In this study, we screened a fungal broth library in HeLa cells using fluorescently labeled FOXO3a and an AI-based imaging system. We identified violaceoid F, which translocates FOXO3a into the nucleus by inhibiting CRM1, which is responsible for nuclear protein export. Violaceoid F was observed to target the reactive cysteine of CRM1 through its α, β-epoxyketone. However, because violaceoid F did not inhibit Crm1 in fission yeast cells, it seems to target cysteine residue(s) other than Cys528 of human CRM1 which are not targeted by other known CRM1 inhibitors, indicating that violaceoid F inhibits CRM1 via a novel mechanism.
Collapse
Grants
- 21K19418 Ministry of Education, Culture, Sports, Science and Technology
- 23H04880 Ministry of Education, Culture, Sports, Science and Technology
- 23H04882 Ministry of Education, Culture, Sports, Science and Technology
- 23H04885 Ministry of Education, Culture, Sports, Science and Technology
- 23H05473 Ministry of Education, Culture, Sports, Science and Technology
- 24K08739 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Nobumoto Watanabe
- Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, Wako, Japan
- USM-RIKEN International Centre for Advanced Science (URICAS), Universiti Sains Malaysia, Penang, Malaysia
| | - Emiko Sanada
- Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Akiko Okano
- Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Toshihiko Nogawa
- Molecular Structure Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Ngit Shin Lai
- USM-RIKEN International Centre for Advanced Science (URICAS), Universiti Sains Malaysia, Penang, Malaysia
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), Penang, Malaysia
| | - Yui Mazaki
- Molecular Ligand Target Research Team, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Makoto Muroi
- Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, Wako, Japan
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Yoko Yashiroda
- Molecular Ligand Target Research Team, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Japan
- Office of University Professors, The University of Tokyo, Bunkyo, Japan
- Collaborative Research Institute for Innovative Microbiology (CRIIM), The University of Tokyo, Bunkyo, Japan
| | - Hiroyuki Osada
- Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, Wako, Japan
- USM-RIKEN International Centre for Advanced Science (URICAS), Universiti Sains Malaysia, Penang, Malaysia
- Institute of Microbial Chemistry (BIKAKEN), Shinagawa, Japan
| |
Collapse
|
31
|
Dini A, Barker H, Piki E, Sharma S, Raivola J, Murumägi A, Ungureanu D. A multiplex single-cell RNA-Seq pharmacotranscriptomics pipeline for drug discovery. Nat Chem Biol 2025; 21:432-442. [PMID: 39482470 PMCID: PMC11867973 DOI: 10.1038/s41589-024-01761-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/22/2024] [Indexed: 11/03/2024]
Abstract
The gene-regulatory dynamics governing drug responses in cancer are yet to be fully understood. Here, we report a pipeline capable of producing high-throughput pharmacotranscriptomic profiling through live-cell barcoding using antibody-oligonucleotide conjugates. This pipeline combines drug screening with 96-plex single-cell RNA sequencing. We show the potential of this approach by exploring the heterogeneous transcriptional landscape of primary high-grade serous ovarian cancer (HGSOC) cells after treatment with 45 drugs, with 13 distinct classes of mechanisms of action. A subset of phosphatidylinositol 3-OH kinase (PI3K), protein kinase B (AKT) and mammalian target of rapamycin (mTOR) inhibitors induced the activation of receptor tyrosine kinases, such as the epithelial growth factor receptor (EGFR), and this was mediated by the upregulation of caveolin 1 (CAV1). This drug resistance feedback loop could be mitigated by the synergistic action of agents targeting PI3K-AKT-mTOR and EGFR for HGSOC with CAV1 and EGFR expression. Using this workflow could enable the personalized testing of patient-derived tumor samples at single-cell resolution.
Collapse
Affiliation(s)
- Alice Dini
- Disease Networks Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Harlan Barker
- Disease Networks Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Tampere University Hospital and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Emilia Piki
- Disease Networks Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Subodh Sharma
- Disease Networks Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Juuli Raivola
- Applied Tumor Genomics, Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Astrid Murumägi
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Daniela Ungureanu
- Disease Networks Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
- Applied Tumor Genomics, Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
32
|
Kamayirese S, Hansen LA, Lovas S. Ligand recognition by 14-3-3 proteins requires negative charges but not necessarily phosphorylation. FEBS Lett 2025; 599:838-847. [PMID: 39757510 PMCID: PMC11931987 DOI: 10.1002/1873-3468.15077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/11/2024] [Accepted: 11/20/2024] [Indexed: 01/07/2025]
Abstract
Protein-protein interactions involving 14-3-3 proteins regulate various cellular activities in normal and pathological conditions. These interactions have mostly been reported to be phosphorylation-dependent, but the 14-3-3 proteins also interact with unphosphorylated proteins. In this work, we investigated whether phosphorylation is required, or, alternatively, whether negative charges are sufficient for 14-3-3ε binding. We substituted the pThr residue of pT(502-510) peptide by residues with a varying number of negative charges and investigated the binding of the peptides to 14-3-3ε using MD simulations and biophysical methods. We demonstrated that at least one negative charge is required for the peptides to bind 14-3-3ε, although phosphorylation is not necessary, and that two negative charges are preferable for high affinity binding. This discovery opens up new approaches for designing peptide-based 14-3-3 protein inhibitors.
Collapse
Affiliation(s)
| | - Laura A. Hansen
- Department of Biomedical SciencesCreighton UniversityOmahaNEUSA
| | - Sándor Lovas
- Department of Biomedical SciencesCreighton UniversityOmahaNEUSA
| |
Collapse
|
33
|
Luperchio AM, Salamango DJ. Defining the Protein Phosphatase 2A (PP2A) Subcomplexes That Regulate FoxO Transcription Factor Localization. Cells 2025; 14:342. [PMID: 40072071 PMCID: PMC11899004 DOI: 10.3390/cells14050342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/15/2025] Open
Abstract
The family of forkhead box O (FoxO) transcription factors regulate cellular processes involved in glucose metabolism, stress resistance, DNA damage repair, and tumor suppression. FoxO transactivation activity is tightly regulated by a complex network of signaling pathways and post-translational modifications. While it has been well established that phosphorylation promotes FoxO cytoplasmic retention and inactivation, the mechanism underlying dephosphorylation and nuclear translocation is less clear. Here, we investigate the role of protein phosphatase 2A (PP2A) in regulating this process. We demonstrate that PP2A and AMP-activated protein kinase (AMPK) combine to regulate nuclear translocation of multiple FoxO family members following inhibition of metabolic signaling or induction of oxidative stress. Moreover, chemical inhibitor studies indicate that nuclear accumulation of FoxO proteins occurs through inhibition of nuclear export as opposed to promoting nuclear import as previously speculated. Functional, genetic, and biochemical studies combine to identify the PP2A complexes that regulate FoxO nuclear translocation, and the binding motif required. Mutating the FoxO-PP2A interface to enhance or diminish PP2A binding alters nuclear translocation kinetics accordingly. Together, these studies shed light on the molecular mechanisms regulating FoxO nuclear translocation and provide insights into how FoxO regulation is integrated with metabolic and stress-related stimuli.
Collapse
Affiliation(s)
| | - Daniel J. Salamango
- Department of Microbiology, Immunology, and Molecular Genetics, UT Health Science Center, San Antonio, TX 78229, USA;
| |
Collapse
|
34
|
Wu Z, Zhan W, Wu L, Yu L, Xie X, Yu F, Kong W, Bi S, Liu S, Yin G, Zhou J. The Roles of Forkhead Box O3a (FOXO3a) in Bone and Cartilage Diseases - A Narrative Review. Drug Des Devel Ther 2025; 19:1357-1375. [PMID: 40034405 PMCID: PMC11874768 DOI: 10.2147/dddt.s494841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/20/2025] [Indexed: 03/05/2025] Open
Abstract
Bone and cartilage diseases are significantly associated with musculoskeletal disability. However, no effective drugs are available to cure them. FOXO3a, a member of the FOXO family, has been implicated in cell proliferation, ROS detoxification, autophagy, and apoptosis. The biological functions of FOXO3a can be modulated by post-translational modifications (PTMs), such as phosphorylation and acetylation. Several signaling pathways, such as MAPK, NF-κB, PI3K/AKT, and AMPK/Sirt1 pathways, have been implicated in the development of bone and cartilage diseases by mediating the expression of FOXO3a. In particular, FOXO3a acts as a transcriptional factor in mediating the expression of various genes, such as MnSOD, CAT, BIM, BBC3, and CDK6. FOXO3a plays a critical role in the metabolism of bone and cartilage. In this article, we mainly discussed the biological functions of FOXO3a in bone and cartilage diseases, such as osteoporosis (OP), osteoarthritis (OA), rheumatoid arthritis (RA), ankylosing spondylitis (AS), and intervertebral disc degeneration (IDD). FOXO3a can promote osteogenic differentiation, induce osteoblast proliferation, inhibit osteoclast activity, suppress chondrocyte apoptosis, and reduce inflammatory responses. Collectively, up-regulation of FOXO3a expression shows beneficial effects, and FOXO3a has become a potential target for bone and cartilage diseases.
Collapse
Affiliation(s)
- Zhenyu Wu
- Department of Medical Imaging, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
- First Clinical Medical College, Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Wang Zhan
- First Clinical Medical College, Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Longhuo Wu
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Luhu Yu
- Department of Clinical Laboratory, Ganzhou People’s Hospital, Ganzhou, 341000, People’s Republic of China
| | - Xunlu Xie
- Department of Pathology, Ganzhou People’s Hospital, Ganzhou, 341000, People’s Republic of China
| | - Fang Yu
- Department of Joint Surgery, Ganzhou People’s Hospital, Ganzhou, 341000, People’s Republic of China
| | - Weihao Kong
- Department of Joint Surgery, Ganzhou People’s Hospital, Ganzhou, 341000, People’s Republic of China
| | - Shengrong Bi
- Department of Joint Surgery, Ganzhou People’s Hospital, Ganzhou, 341000, People’s Republic of China
| | - Shiwei Liu
- Department of Joint Surgery, Ganzhou People’s Hospital, Ganzhou, 341000, People’s Republic of China
| | - Guoqiang Yin
- Department of Joint Surgery, Ganzhou Hospital Affiliated to Nanchang University, Ganzhou, 341000, People’s Republic of China
| | - Jianguo Zhou
- Department of Joint Surgery, Ganzhou People’s Hospital, Ganzhou, 341000, People’s Republic of China
| |
Collapse
|
35
|
Huot JR, Jamnick NA, Pin F, Livingston PD, Callaway CS, Bonetto A. GL261 glioblastoma induces delayed body weight gain and stunted skeletal muscle growth in young mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.10.635159. [PMID: 39990490 PMCID: PMC11844426 DOI: 10.1101/2025.02.10.635159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Introduction The survival rate for children and adolescents has increased to over 85%. However, there is limited understanding of the impact of pediatric cancers on muscle development and physiology. Given that brain tumors alone account for 26% of all pediatric cancers, this study aimed to investigate the skeletal muscle consequences of tumor growth in young mice. Methods C2C12 myotubes were co-cultured with GL261 murine glioblastoma cells to assess myotube size. GL261 cells were then injected subcutaneously into 4-week-old male C57BL/6J mice. Animals were euthanized 28 days post-GL261 implantation. Muscle function was tested in vivo and ex vivo . Muscle protein synthesis was measured via the SUnSET method, and gene/protein expression levels were assessed via Western blotting and qPCR. Results In vitro , the C2C12 cultures exposed to GL261 exhibited myotube atrophy, consistent with a disrupted anabolic/catabolic balance. In vivo , carcass, heart, and fat mass were significantly reduced in the tumor-bearing mice. Skeletal muscle growth was impeded in the GL261 hosts, along with smaller muscle CSA. Both in vivo muscle torque and the ex vivo EDL muscle force were unchanged. At molecular level, the tumor hosts displayed reduced muscle protein synthesis and increased muscle protein ubiquitination, in disagreement with decreased muscle ubiquitin ligase mRNA expression. Conclusions Overall, we showed that GL261 tumors impact the growth of pediatric mice by stunting skeletal muscle development, decreasing muscle mass, reducing muscle fiber size, diminishing muscle protein synthesis, and altering protein catabolism signaling.
Collapse
|
36
|
Hu L, Wang J, Hao Z, Guo X, Li M, Wu X, Zhen H, Ren C, Zhao Y, Yang P, Wang X. MicroRNA-21 Promotes the Viability, Proliferation and Milk Fat Synthesis of Ovine Mammary Epithelial Cells by Targeting PDCD4. Int J Mol Sci 2025; 26:1460. [PMID: 40003924 PMCID: PMC11854977 DOI: 10.3390/ijms26041460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/26/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
MicroRNAs (miRNAs) are short endogenous non-coding RNAs and play important roles in regulating mammary development and activities of ovine mammary epithelial cells (OMECs), which affect the milk yield and milk ingredient contents of ewes. We previously found that miR-21 was highly expressed in ovine mammary tissue, while the regulatory mechanisms of miR-21 underlying mammary development and lactation performance are still unclear. Accordingly, in this study, we investigated the functions of miR-21 in the activities of OMECs, and validated the target relationship of miR-21 with a predicted target gene programmed cell death 4 (PDCD4) by a dual-luciferase reporter assay. Finally, we investigated the regulatory effect of PDCD4 on the viability, proliferation and milk fat synthesis of OMECs. The overexpression of miR-21 significantly increased the viability of OMECs, the number and proportion of Edu-labeled positive OMECs, as well as the contents of triglyceride in OMECs. In fact, miR-21 inhibitor obtained opposite results with miR-21 mimics. The results obtained from the dual luciferase report and RT-qPCR assays confirmed that the seed sequence of miR-21 can complementarily combine with the 3'-untranslated regions (3'-UTR) of PDCD4, and miR-21 decreased the luciferase activity of PDCD4. Meanwhile, miR-21 also reduced the expression of PDCD4. These results indicate that PDCD4 is a target gene of miR-21. It was further found that PDCD4 decreased the viability and triglyceride content of OMECs, and the number and proportion of Edu-labeled positive OMECs. These findings suggest that miR-21 promotes the viability, proliferation and milk fat synthesis of OMECs by down-regulating the expression of PDCD4. The results revealed the regulatory mechanism by which miR-21 affected the activities and milk fat synthesis of OMECs in sheep.
Collapse
Affiliation(s)
- Liyan Hu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (L.H.); (Z.H.); (M.L.); (X.W.); (H.Z.); (C.R.); (Y.Z.); (P.Y.); (X.W.)
| | - Jiqing Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (L.H.); (Z.H.); (M.L.); (X.W.); (H.Z.); (C.R.); (Y.Z.); (P.Y.); (X.W.)
| | - Zhiyun Hao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (L.H.); (Z.H.); (M.L.); (X.W.); (H.Z.); (C.R.); (Y.Z.); (P.Y.); (X.W.)
| | - Xian Guo
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China;
| | - Mingna Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (L.H.); (Z.H.); (M.L.); (X.W.); (H.Z.); (C.R.); (Y.Z.); (P.Y.); (X.W.)
| | - Xinmiao Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (L.H.); (Z.H.); (M.L.); (X.W.); (H.Z.); (C.R.); (Y.Z.); (P.Y.); (X.W.)
| | - Huimin Zhen
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (L.H.); (Z.H.); (M.L.); (X.W.); (H.Z.); (C.R.); (Y.Z.); (P.Y.); (X.W.)
| | - Chunyan Ren
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (L.H.); (Z.H.); (M.L.); (X.W.); (H.Z.); (C.R.); (Y.Z.); (P.Y.); (X.W.)
| | - Yuan Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (L.H.); (Z.H.); (M.L.); (X.W.); (H.Z.); (C.R.); (Y.Z.); (P.Y.); (X.W.)
| | - Pan Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (L.H.); (Z.H.); (M.L.); (X.W.); (H.Z.); (C.R.); (Y.Z.); (P.Y.); (X.W.)
| | - Xuanyu Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (L.H.); (Z.H.); (M.L.); (X.W.); (H.Z.); (C.R.); (Y.Z.); (P.Y.); (X.W.)
| |
Collapse
|
37
|
Kubota N, Kubota T, Kadowaki T. Physiological and pathophysiological actions of insulin in the liver. Endocr J 2025; 72:149-159. [PMID: 39231651 PMCID: PMC11850106 DOI: 10.1507/endocrj.ej24-0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/21/2024] [Indexed: 09/06/2024] Open
Abstract
The liver plays an important role in the control of glucose homeostasis. When insulin levels are low, such as in the fasting state, gluconeogenesis and glycogenolysis are stimulated to maintain the blood glucose levels. Conversely, in the presence of increased insulin levels, such as after a meal, synthesis of glycogen and lipid occurs to maintain the blood glucose levels within normal range. Insulin receptor signaling regulates glycogenesis, gluconeogenesis and lipogenesis through downstream pathways such as the insulin receptor substrate (IRS)-phosphoinositide 3 (PI3) kinase-Akt pathway. IRS-1 and IRS-2 are abundantly expressed in the liver and are thought to be responsible for transmitting the insulin signal from the insulin receptor to the intracellular effectors involved in the regulation of glucose and lipid homeostasis. Impaired insulin receptor signaling can cause hepatic insulin resistance and lead to type 2 diabetes. In the present study, we focus on a concept called "selective insulin resistance," which has received increasing attention recently: the frequent coexistence of hyperglycemia and hepatic steatosis in people with type 2 diabetes and obesity suggests that it is possible for the insulin signaling regulating gluconeogenesis to be impaired even while that regulating lipogenesis is preserved, suggestive of selective insulin resistance. In this review, we review the progress in research on the insulin actions and insulin signaling in the liver.
Collapse
Affiliation(s)
- Naoto Kubota
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Tetsuya Kubota
- Division of Diabetes and Metabolism, The Institute of Medical Science, Asahi Life Foundation, Tokyo 103-0002, Japan
| | | |
Collapse
|
38
|
Zheng H, Li L, Wang D, Zhang S, Li W, Cheng M, Ge C, Chen J, Qiang Y, Chen F, Yu Y. FoxO is required for neoblast differentiation during planarian regeneration. Int J Biol Macromol 2025; 288:138729. [PMID: 39672403 DOI: 10.1016/j.ijbiomac.2024.138729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
Stem cells are of great importance in the maintenance and regeneration of tissues, with Forkhead box O (FoxO) proteins emerging as pivotal regulators of their functions. However, the precise impact of FoxO proteins on stem cell behavior within regenerative environments remains ambiguous. Planarians, renowned for their abundance of adult stem cells (neoblasts), serve as an excellent model for investigating the dynamics of stem cells during regeneration. In this study, we identified DjfoxO, a conserved foxO gene in the planarian Dugesia japonica, and demonstrated its expression in neoblasts, with elevated levels detected in the regenerative blastema during the regeneration process. Using a FoxO inhibitor (AS1842856) together with RNA interference techniques, we demonstrated that inhibition of FoxO signaling in planarians hinders the regeneration of missing tissues, including the central nervous system, eyespots, anterior intestinal branches, and pharynx. It is noteworthy that the knockdown of DjfoxO does not significantly affect the mitotic activity of neoblasts. Conversely, it impedes the production of lineage-specific progenitors, potentially via modulation of the Erk pathway. These findings elucidate the instructive function of FoxO signaling in regulating stem cell differentiation and provide valuable insights into its potential for improving stem cell-based regenerative therapies.
Collapse
Affiliation(s)
- Hanxue Zheng
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Linfeng Li
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Du Wang
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Shengchao Zhang
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Wenhui Li
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Mengdi Cheng
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Cui Ge
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Jiayi Chen
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Yanmei Qiang
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Fulin Chen
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China; Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Yuan Yu
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China; Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China.
| |
Collapse
|
39
|
Han J, Kim YH, Han S. Increased oxidative phosphorylation through pyruvate dehydrogenase kinase 2 deficiency ameliorates cartilage degradation in mice with surgically induced osteoarthritis. Exp Mol Med 2025; 57:390-401. [PMID: 39894827 PMCID: PMC11873213 DOI: 10.1038/s12276-025-01400-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 11/12/2024] [Accepted: 11/17/2024] [Indexed: 02/04/2025] Open
Abstract
Chondrocytes can shift their metabolism to oxidative phosphorylation (OxPhos) in the early stages of osteoarthritis (OA), but as the disease progresses, this metabolic adaptation becomes limited and eventually fails, leading to mitochondrial dysfunction and oxidative stress. Here we investigated whether enhancing OxPhos through the inhibition of pyruvate dehydrogenase kinase (PDK) 2 affects the metabolic flexibility of chondrocytes and cartilage degeneration in a surgical model of OA. Among the PDK isoforms, PDK2 expression was increased by IL-1β in vitro and in the articular cartilage of the DMM model in vivo, accompanied by an increase in phosphorylated PDH. Mice lacking PDK2 showed significant resistance to cartilage damage and reduced pain behaviors in the DMM model. PDK2 deficiency partially restored OxPhos in IL-1β-treated chondrocytes, leading to increases in APT and the NAD+/NADH ratio. These metabolic changes were accompanied by a decrease in reactive oxygen species and senescence in chondrocytes, as well as an increase in the expression of antioxidant proteins such as NRF2 and HO-1 after IL-1β treatment. At the signaling level, PDK2 deficiency reduced p38 signaling and maintained AMPK activation without affecting the JNK, mTOR, AKT and NF-κB pathways. p38 MAPK signaling was critically involved in reactive oxygen species production under glycolysis-dominant conditions in chondrocytes. Our study provides a proof of concept for PDK2-mediated metabolic reprogramming toward OxPhos as a new therapeutic strategy for OA.
Collapse
Affiliation(s)
- Jin Han
- Laboratory for Arthritis and Cartilage Biology, Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Yoon Hee Kim
- Laboratory for Arthritis and Cartilage Biology, Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
| | - Seungwoo Han
- Laboratory for Arthritis and Cartilage Biology, Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea.
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
40
|
Souza‐Silva IM, Carregari VC, Steckelings UM, Verano‐Braga T. Phosphoproteomics for studying signaling pathways evoked by hormones of the renin-angiotensin system: A source of untapped potential. Acta Physiol (Oxf) 2025; 241:e14280. [PMID: 39821680 PMCID: PMC11737475 DOI: 10.1111/apha.14280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 01/19/2025]
Abstract
The Renin-Angiotensin System (RAS) is a complex neuroendocrine system consisting of a single precursor protein, angiotensinogen (AGT), which is processed into various peptide hormones, including the angiotensins [Ang I, Ang II, Ang III, Ang IV, Ang-(1-9), Ang-(1-7), Ang-(1-5), etc] and Alamandine-related peptides [Ang A, Alamandine, Ala-(1-5)], through intricate enzymatic pathways. Functionally, the RAS is divided into two axes with opposing effects: the classical axis, primarily consisting of Ang II acting through the AT1 receptor (AT1R), and in contrast the protective axis, which includes the receptors Mas, AT2R and MrgD and their respective ligands. A key area of RAS research is to gain a better understanding how signaling cascades elicited by these receptors lead to either "classical" or "protective" effects, as imbalances between the two axes can contribute to disease. On the other hand, therapeutic benefits can be achieved by selectively activating protective receptors and their associated signaling pathways. Traditionally, robust "hypothesis-driven" methods like Western blotting have built a solid knowledge foundation on RAS signaling. In this review, we introduce untargeted mass spectrometry-based phosphoproteomics, a "hypothesis-generating approach", to explore RAS signaling pathways. This technology enables the unbiased discovery of phosphorylation events, offering insights into previously unknown signaling mechanisms. We review the existing studies which used phosphoproteomics to study RAS signaling and discuss potential future applications of phosphoproteomics in RAS research including advantages and limitations. Ultimately, phosphoproteomics represents a so far underused tool for deepening our understanding of RAS signaling and unveiling novel therapeutic targets.
Collapse
Affiliation(s)
- Igor Maciel Souza‐Silva
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Department of Molecular Medicine, Cardiovascular and Renal Research UnitUniversity of Southern DenmarkOdense MDenmark
| | - Victor Corasolla Carregari
- Laboratório de Neuroproteômica, Instituto de BiologiaUniversidade de CampinasSão PauloBrazil
- Department of Biochemistry and Molecular Biology, Protein Research GroupUniversity of Southern DenmarkOdense MDenmark
| | - U. Muscha Steckelings
- Department of Molecular Medicine, Cardiovascular and Renal Research UnitUniversity of Southern DenmarkOdense MDenmark
| | - Thiago Verano‐Braga
- Department of Molecular Medicine, Cardiovascular and Renal Research UnitUniversity of Southern DenmarkOdense MDenmark
- Departamento de Fisiologia e BiofísicaUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
- Instituto Nacional de Ciência e Tecnologia Em Nanobiofarmacêutica (INCT‐Nanobiofar)Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| |
Collapse
|
41
|
Monaghan-Benson E, Aureille J, Guilluy C. ECM stiffness regulates lung fibroblast survival through RasGRF1-dependent signaling. J Biol Chem 2025; 301:108161. [PMID: 39793891 PMCID: PMC11835592 DOI: 10.1016/j.jbc.2025.108161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/20/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Extracellular matrix stiffness is one of the multiple mechanical signals that alter cellular behavior. During studies exploring the effect of matrix rigidity on lung fibroblast survival, we discovered that enhanced survival on stiff substrates is dependent on elevated Ras activity, owing to the activation of the guanine nucleotide exchange factor, RasGRF1. Mechanistically, we found that the increased Ras activity lead to the activation of both the AKT and ERK pathways. Pharmacological inhibition of AKT or ERK signaling attenuates the elevated survival observed on stiff substrates. AKT signaling regulates the phosphorylation and inactivation of the transcription factor FOXO3a. RNAi experiments demonstrate that FOXO3a activity is critical for the cell death observed on soft substrates. Additionally, downregulation of FOXO3a activity on stiff substrate leads to the degradation of the proapoptotic protein Bim. Depletion of Bim increased the survival of cells on soft substrates. Together, our data show that enhanced matrix stiffness activates a RasGRF1/Ras signaling cascade that regulates the activity of AKT and ERK-dependent FOXO3a and Bim expression to alter cell survival.
Collapse
Affiliation(s)
- Elizabeth Monaghan-Benson
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Julien Aureille
- Institute for Advanced Biosciences Centre de recherche UGA, INSERM U1209, CNRS UMR, Grenoble, France
| | - Christophe Guilluy
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA.
| |
Collapse
|
42
|
Mesquita T, Miguel-Dos-Santos R, Liu W, Fournier M, Rogers RG, Alfaro J, Nawaz A, Sanchez L, Jones XM, Li L, Marbán E, Cingolani E. Upregulated FoxO1 promotes arrhythmogenesis in mice with heart failure and preserved ejection fraction. Nat Commun 2025; 16:1184. [PMID: 39885127 PMCID: PMC11782541 DOI: 10.1038/s41467-025-56186-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/02/2025] [Indexed: 02/01/2025] Open
Abstract
Myocardial fibrosis leads to cardiac dysfunction and arrhythmias in heart failure with preserved ejection fraction (HFpEF), but the underlying mechanisms remain poorly understood. Here, RNA sequencing identifies Forkhead Box1 (FoxO1) signaling as abnormal in male HFpEF hearts. Genetic suppression of FoxO1 alters the intercellular communication between cardiomyocytes and fibroblasts, alleviates abnormal diastolic relaxation, and reduces arrhythmias. Targeted downregulation of FoxO1 in activated fibroblasts reduces cardiac fibrosis, blunts arrhythmogenesis and improves diastolic function in HFpEF. These results not only implicate FoxO1 in arrhythmogenesis and lusitropy but also demonstrate that pro-fibrotic remodeling and cardiomyocyte-fibroblast communication can be corrected, constituting an alternative therapeutic strategy for HFpEF.
Collapse
Affiliation(s)
- Thassio Mesquita
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, CA, USA
| | | | - Weixin Liu
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, CA, USA
| | - Mario Fournier
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, CA, USA
| | - Russell G Rogers
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, CA, USA
| | - Jocelyn Alfaro
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, CA, USA
| | - Asma Nawaz
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, CA, USA
| | - Lizbeth Sanchez
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, CA, USA
| | - Xaviar M Jones
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, CA, USA
| | - Liang Li
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, CA, USA
| | - Eduardo Marbán
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, CA, USA
| | - Eugenio Cingolani
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, CA, USA.
| |
Collapse
|
43
|
Li Y, Pan AP, Ye Y, Shao X, Tu R, Liu Y, Yu AY. FoxO1 promotes high glucose-induced inflammation and cataract formation via JAK1/STAT1. Graefes Arch Clin Exp Ophthalmol 2025:10.1007/s00417-025-06744-6. [PMID: 39878886 DOI: 10.1007/s00417-025-06744-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/29/2024] [Accepted: 01/14/2025] [Indexed: 01/31/2025] Open
Abstract
PURPOSE To investigate whether in diabetic cataract (DC), FoxO1 regulates high glucose (HG)-induced activation of NLRC4/IL-6 inflammatory mediators in human lens epithelial cells (SRA01/04) via the JAK1/STAT1 pathway, leading to cataract formation. METHODS Expression levels of FoxO1, inflammatory factor IL-6 and inflammatory vesicle NLRC4 were examined in SRA01/04 under high glucose (HG) stress at 25-150 mM. Rat lenses were also cultured using HG medium with or without the addition of the FoxO1 inhibitor AS1842856 and the JAK1 agonist RO8191. 5.5 mM glucose concentration group (NG) was used as a control. Real-time PCR, Western blots, and immunofluorescent staining evaluated the mRNA and protein levels of FoxO1, NLRC4, and IL-6. Apoptosis, cell viability, and EDU Staining were also assessed. RESULTS HG stimulation induced elevated FoxO1 expression and caused NLRC4/IL-6 activation in a concentration-dependent manner. Whereas knockdown of FoxO1 inhibited the high expression of NLRC4/IL-6 inflammatory mediators in response to HG stimulation. The growth of SRA01/04 was inhibited under HG condition, and the cell proliferation ability was restored and even promoted by knocking out FoxO1. HG incubation of rat lens resulted in lens clouding and cataract formation, which was prevented by AS1842856 treatment and reversed by RO8191. CONCLUSION FoxO1 positively regulates HG-induced SRA01/04 inflammatory activation through the JAK1/STAT1 pathway and promotes DC. This provides a feasible strategy for the treatment of diabetic cataract.
Collapse
Affiliation(s)
- Yike Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, 325027, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Department of Ophthalmology, The First Hospital of Lanzhou University, No. 1 West Donggang Road, Chengguan District, Lanzhou, 730000, Gansu, People's Republic of China
| | - An-Peng Pan
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, 325027, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yishan Ye
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, 325027, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xu Shao
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, 325027, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ruixue Tu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, 325027, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yang Liu
- Department of Ophthalmology, The First Hospital of Lanzhou University, No. 1 West Donggang Road, Chengguan District, Lanzhou, 730000, Gansu, People's Republic of China
| | - A-Yong Yu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, 325027, Zhejiang, China.
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
44
|
Lemons AHS, Murphy B, Dengler JS, Salar S, Davies PA, Smalley JL, Moss SJ. Neuroactive steroids activate membrane progesterone receptors to induce sex specific effects on protein kinase activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.24.634751. [PMID: 39896469 PMCID: PMC11785215 DOI: 10.1101/2025.01.24.634751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Neuroactive steroids (NAS), which are synthesized in the brain from progesterone, exert potent effects on behavior and are used to treat postpartum depression, yet how these compounds induce sustained modifications in neuronal activity are ill-defined. Here, we examined the efficacy of NAS for membrane progesterone receptors (mPRs) δ and ε, members of a family of GPCRs for progestins that are expressed in the CNS. NAS increase PKC activity via G q activation of mPRδ with EC50s between 3-11nM. In contrast, they activate G s via mPRε to potentiate PKA activity with similar potencies. NAS also induced rapid internalization of only mPRδ. In the forebrain of female mice, mPRδ expression levels were 8-fold higher than males. Consistent with this, activation of PKC by NAS was evident in acute brain slices from female mice. Collectively, our results suggests that NAS may exert sex-specific effects on intracellular signaling in the brain via activation of mPRs.
Collapse
|
45
|
Pavithran A, Matarese M, Morone B, Filograna A, Monte ML, Dathan NA, Corda D, Grimaldi G. PARP12-mediated ADP-ribosylation contributes to breast cancer cell fate by regulating AKT activation and DNA-damage response. Cell Mol Life Sci 2025; 82:58. [PMID: 39847113 PMCID: PMC11757654 DOI: 10.1007/s00018-025-05586-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/30/2025]
Abstract
Breast cancer represents the primary cause of death of women under 65 in developed countries, due to the acquisition of multiple drug resistance mechanisms. The PI3K/AKT pathway is one of the major regulating mechanisms altered during the development of endocrine resistance and inhibition of steps in this signalling pathway are adopted as a key strategy to overcome this issue. ADP-ribosylation is a post-translational modification catalysed by PARP enzymes that regulates essential cellular processes, often altered in diseases. PARP12, a member of this family, has been associated with the onset of drug resistance in oestrogen receptor-positive breast cancers, making this enzyme a promising drug target. The molecular basis underlying its involvement in the acquisition of resistance are unknown to date. Here, we demonstrate that PARP12-mediated mono-ADP-ribosylation of AKT is required for AKT activation whilst the absence of PARP12 leads to apoptosis induction in a subset of oestrogen receptor-positive breast cancer cells. Our data show that transcriptional inhibition of PARP12 correlates with an increased DNA-damage induction, mirrored by augmented p53 nuclear localisation and enhanced p53-AKT interaction. Under these conditions, AKT is functionally incompetent towards its downstream targets FOXO, hence favouring cell death. This is achieved by increasing protein levels of the FOXO1 transcription factor, that in turn activates the apoptotic cascade. Overall, we show a novel regulation step of AKT activation and apoptosis relying on PARP12-mediated mono-ADP-ribosylation and propose PARP12 as a potential pharmacological target to be exploited as an innovative therapeutical strategy to overcome endocrine resistance.
Collapse
Affiliation(s)
- Anupama Pavithran
- Institute of Endotypes in Oncology, Metabolism, and Immunology, National Research Council, Via Pietro Castellino 111, Naples, Italy
- OU Health Stephenson Cancer Center, Oklahoma, USA
| | - Maria Matarese
- Institute of Endotypes in Oncology, Metabolism, and Immunology, National Research Council, Via Pietro Castellino 111, Naples, Italy
| | - Barbara Morone
- Institute of Endotypes in Oncology, Metabolism, and Immunology, National Research Council, Via Pietro Castellino 111, Naples, Italy
| | - Angela Filograna
- Institute of Endotypes in Oncology, Metabolism, and Immunology, National Research Council, Via Pietro Castellino 111, Naples, Italy
| | - Matteo Lo Monte
- Institute of Endotypes in Oncology, Metabolism, and Immunology, National Research Council, Via Pietro Castellino 111, Naples, Italy
| | - Nina Alayne Dathan
- Institute of Endotypes in Oncology, Metabolism, and Immunology, National Research Council, Via Pietro Castellino 111, Naples, Italy
| | - Daniela Corda
- Institute of Endotypes in Oncology, Metabolism, and Immunology, National Research Council, Via Pietro Castellino 111, Naples, Italy
| | - Giovanna Grimaldi
- Institute of Endotypes in Oncology, Metabolism, and Immunology, National Research Council, Via Pietro Castellino 111, Naples, Italy.
| |
Collapse
|
46
|
Garcia KC, Khan AA, Ghosh K, Sinha S, Scalora N, DeWane G, Fullenkamp C, Merritt N, Drebot Y, Yu S, Leidinger M, Henry MD, Breheny P, Chimenti MS, Tanas MR. PI3K regulates TAZ/YAP and mTORC1 axes that can be synergistically targeted. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634138. [PMID: 39896636 PMCID: PMC11785051 DOI: 10.1101/2025.01.21.634138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Purpose Sarcomas are a heterogeneous group of cancers with few shared therapeutic targets. PI3K signaling is activated in various subsets of sarcomas, representing a shared oncogenic signaling pathway. Oncogenic PI3K signaling has been challenging to target therapeutically. An integrated view of PI3K and Hippo pathway signaling is examined to determine if this could be leveraged therapeutically. Experimental design A tissue microarray containing sarcomas of various histological types was evaluated for PTEN loss and correlated with levels of activated TAZ and YAP. PI3K and Hippo pathways were dissected in sarcoma cell lines. The role of TAZ and YAP were evaluated in a PI3K-driven mouse model. The efficacy of mTORC1 inhibition and TEAD inhibition were evaluated in sarcoma cell lines and in vivo . Results PI3K signaling is frequently activated in sarcomas due to PTEN loss (in 30-60%), representing a common therapeutic target. TAZ and YAP are transcriptional co-activators regulated by PI3K and drive a transcriptome necessary for tumor growth in a PI3K-driven sarcoma mouse model. Combination therapy using IK-930 (TEAD inhibitor) and everolimus (mTORC1 inhibitor) synergistically diminished proliferation and anchorage independent growth of PI3K-activated sarcoma cell lines at low, physiologically achievable doses. Furthermore, this combination therapy showed a synergistic effect in vivo , reducing tumor proliferation and size. Conclusions TAZ and YAP are transcriptional co-activators downstream of PI3K signaling, a pathway that has lacked a well-defined oncogenic transcription factor. This PI3K-TAZ/YAP axis exists in parallel to the known PI3K-Akt-mTORC1 axis allowing for synergistic combination therapy targeting the TAZ/YAP-TEAD interaction and mTORC1 in sarcomas.
Collapse
|
47
|
He Z, Yan RG, Shang QB, Yang QE. Transcriptomic dynamics and cell-to-cell communication during the transition of prospermatogonia to spermatogonia revealed at single-cell resolution. BMC Genomics 2025; 26:58. [PMID: 39838296 PMCID: PMC11748353 DOI: 10.1186/s12864-025-11244-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/14/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Spermatogonia are essential for the continual production of sperm and regeneration of the entire spermatogenic lineage after injury. In mammals, spermatogonia are formed in the neonatal testis from prospermatogonia (also termed gonocytes), which are established from primordial germ cells during fetal development. Currently, the molecular regulation of the prospermatogonial to spermatogonia transition is not fully understood. RESULTS In this study, we examined the gene expression patterns of prospermatogonia, spermatogonia and testicular somatic cells at 4 different stages, including embryonic day (E) 12.5, E17.5 and postnatal days (P) 1 and 6, using single-cell RNA sequencing (scRNA-seq). We identified 5 different molecular states in the prospermogonial population and revealed gene expression dynamics in corresponding testicular somatic cells. Specifically, we found that prospermatogonia mainly receive signals, while Leydig cells and peritubular myoid cells are the mediators for transmitting signals, indicating their potential roles in regulating the development and differentiation of prospermatogonia. Transcription regulon analyses revealed the involvement of basic helix-loop-helix (bHLH) transcription factors in directing prospermogonial fate decisions. We then disrupted this transcription network by ectopic expression of inhibitor of differentiation 2 (Id2), which is a negative regulator of bHLH transcription factors. The overexpression of Id2 in prospermatogonia caused severe defects in the progression of prospermatogonia to spermatogonia. CONCLUSION Together, these findings provide a crucial dataset for dissecting key genes that direct the establishment of the foundational spermatogonial pool and the fate transitions of different somatic cell lineages in the testis during fetal and neonatal periods of development.
Collapse
Affiliation(s)
- Zhen He
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China
| | - Rong-Ge Yan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China
| | - Qin-Bang Shang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China
| | - Qi-En Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China.
| |
Collapse
|
48
|
Geiselmann A, Micouin A, Vandormael-Pournin S, Laville V, Chervova A, Mella S, Navarro P, Cohen-Tannoudji M. PI3K/AKT signaling controls ICM maturation and proper epiblast and primitive endoderm specification in mice. Dev Cell 2025; 60:204-219.e6. [PMID: 39461340 DOI: 10.1016/j.devcel.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 05/07/2024] [Accepted: 10/03/2024] [Indexed: 10/29/2024]
Abstract
The inner cell mass (ICM) of early mouse embryos is specified into epiblast (Epi) and primitive endoderm (PrE) lineages during blastocyst formation. The antagonistic transcription factors (TFs) NANOG and GATA-binding protein 6 (GATA6) in combination with fibroblast growth factor (FGF)/extracellular-signal-regulated kinase (ERK) signaling are central actors in ICM fate choice. However, what initiates the specification of ICM progenitors into Epi or PrE and whether other factors are involved in this process has not been fully understood yet. Here, we show that phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) is constitutively active during preimplantation development. Using pharmacological inhibition, we demonstrate that PI3K/AKT enables the formation of a functional ICM capable of giving rise to both the Epi and the PrE: it maintains the expression of the TF NANOG, which specifies the Epi, and confers responsiveness to FGF4, which is essential for PrE specification. Our work thus identifies PI3K/AKT signaling as an upstream regulator controlling the molecular events required for both Epi and PrE specification.
Collapse
Affiliation(s)
- Anna Geiselmann
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, 75015 Paris, France; Sorbonne Université, Complexité du Vivant, 75005 Paris, France; Institut Pasteur, Université Paris Cité, CNRS UMR3738, Early Mammalian Development and Stem Cell Biology, 75015 Paris, France
| | - Adèle Micouin
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, 75015 Paris, France; Institut Pasteur, Université Paris Cité, CNRS UMR3738, Early Mammalian Development and Stem Cell Biology, 75015 Paris, France; Université Paris Cité, BioSPC, 75013 Paris, France
| | - Sandrine Vandormael-Pournin
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, 75015 Paris, France; Institut Pasteur, Université Paris Cité, CNRS UMR3738, Early Mammalian Development and Stem Cell Biology, 75015 Paris, France
| | - Vincent Laville
- Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, 75015 Paris, France; Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015 Paris, France
| | - Almira Chervova
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, 75015 Paris, France
| | - Sébastien Mella
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015 Paris, France
| | - Pablo Navarro
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, 75015 Paris, France
| | - Michel Cohen-Tannoudji
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, 75015 Paris, France; Institut Pasteur, Université Paris Cité, CNRS UMR3738, Early Mammalian Development and Stem Cell Biology, 75015 Paris, France.
| |
Collapse
|
49
|
Orea-Soufi A, Dávila D, Salazar-Roa M, Lorente M, Velasco G. Phosphorylation of FOXO Proteins as a Key Mechanism to Regulate Their Activity. Methods Mol Biol 2025; 2871:11-18. [PMID: 39565574 DOI: 10.1007/978-1-0716-4217-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Phosphorylation of FOXO transcription factors is one of the key mechanisms involved in the regulation of the activity, nucleo-cytosolic shuttling, and stability of this family of proteins. Here we describe several experimental approaches allowing analysis of changes in the phosphorylation of these proteins upon exposure to different stimuli.
Collapse
Affiliation(s)
- Alba Orea-Soufi
- ABC-RI, Algarve Biomedical Center Research Institute, Algarve Biomedical Center, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - David Dávila
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - María Salazar-Roa
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Mar Lorente
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Guillermo Velasco
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain.
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain.
| |
Collapse
|
50
|
Amenabar C, Jimenez L, Mourato C, Mayoral-Varo V, Megías D, Ferreira BI, Link W. Multiplexed Dual-Color Fluorescence-Based Distinction Between Nuclear Trapping and Translocation of FOXO3. Methods Mol Biol 2025; 2871:163-170. [PMID: 39565587 DOI: 10.1007/978-1-0716-4217-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
FOXO3 is a transcription factor that mainly exerts its functions in the cell nucleus. The amino acid sequence of FOXO3 contains a nuclear localization sequence (NLS) and a nuclear export sequence (NES) allowing for nuclear/cytoplasmic shuttling that plays an important role in regulating FOXO3 activity. Nuclear accumulation of FOXO3 proteins can be the result of translocation to the nucleus triggered by upstream regulatory input or trapping of FOXO3 within the nucleus through the inhibition of its nuclear export via the receptor CRM1. In order to distinguish these two modes of FOXO3 activation, we have generated a multiplexed assay. The development of this platform includes a reporter cell line that monitors CRM1 activity by using RFP-labeled HIV-1 Rev. protein with a strong heterologous NES. Simultaneously, the intracellular localization of FOXO3 can be monitored by a second cell line stably expressing GFP-FOXO3. Here we describe a detailed protocol on how to co-culture these reporter cell lines and use them to interrogate compound-induced FOXO3 activation in order to understand the mode of action.
Collapse
Affiliation(s)
- Carlos Amenabar
- Sols-Morreale Biomedical Research Institute (IIBM), Spanish National Research Council (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Lucia Jimenez
- Sols-Morreale Biomedical Research Institute (IIBM), Spanish National Research Council (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Cristiana Mourato
- ABC-RI, Algarve Biomedical Center Research Institute, Algarve Biomedical Center, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Victor Mayoral-Varo
- Sols-Morreale Biomedical Research Institute (IIBM), Spanish National Research Council (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Facultad HM de Ciencias de la Salud, Universidad Camilo José Cela, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, Spain
| | - Diego Megías
- Confocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Advanced Optical Microscopy Unit, Central Core Facilities, Instituto de Salud Carlos III, Madrid, Spain
| | - Bibiana I Ferreira
- ABC-RI, Algarve Biomedical Center Research Institute, Algarve Biomedical Center, Faro, Portugal.
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal.
| | - Wolfgang Link
- Department of Cancer Biology, Sols-Morreale Biomedical Research Institute (IIBM), Spanish National Research Council (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain.
| |
Collapse
|