1
|
Chen L, Ye X, Yang L, Zhao J, You J, Feng Y. Linking fatty liver diseases to hepatocellular carcinoma by hepatic stellate cells. JOURNAL OF THE NATIONAL CANCER CENTER 2024; 4:25-35. [PMID: 39036388 PMCID: PMC11256631 DOI: 10.1016/j.jncc.2024.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 07/23/2024] Open
Abstract
Hepatic stellate cells (HSCs), a distinct category of non-parenchymal cells in the liver, are critical for liver homeostasis. In healthy livers, HSCs remain non-proliferative and quiescent. However, under conditions of acute or chronic liver damage, HSCs are activated and participate in the progression and regulation of liver diseases such as liver fibrosis, cirrhosis, and liver cancer. Fatty liver diseases (FLD), including nonalcoholic (NAFLD) and alcohol-related (ALD), are common chronic inflammatory conditions of the liver. These diseases, often resulting from multiple metabolic disorders, can progress through a sequence of inflammation, fibrosis, and ultimately, cancer. In this review, we focused on the activation and regulatory mechanism of HSCs in the context of FLD. We summarized the molecular pathways of activated HSCs (aHSCs) in mediating FLD and their role in promoting liver tumor development from the perspectives of cell proliferation, invasion, metastasis, angiogenesis, immunosuppression, and chemo-resistance. We aimed to offer an in-depth discussion on the reciprocal regulatory interactions between FLD and HSC activation, providing new insights for researchers in this field.
Collapse
Affiliation(s)
- Liang'en Chen
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Xiangshi Ye
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Lixian Yang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Hangzhou Medical College), Hangzhou, China
| | - Jiangsha Zhao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Jia You
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Yuxiong Feng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Porto E, De Backer J, Thuy LTT, Kawada N, Hankeln T. Transcriptomics of a cytoglobin knockout mouse: Insights from hepatic stellate cells and brain. J Inorg Biochem 2024; 250:112405. [PMID: 37977965 DOI: 10.1016/j.jinorgbio.2023.112405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023]
Abstract
The vertebrate respiratory protein cytoglobin (Cygb) is thought to exert multiple cellular functions. Here we studied the phenotypic effects of a Cygb knockout (KO) in mouse on the transcriptome level. RNA sequencing (RNA-Seq) was performed for the first time on sites of major endogenous Cygb expression, i.e. quiescent and activated hepatic stellate cells (HSCs) and two brain regions, hippocampus and hypothalamus. The data recapitulated the up-regulation of Cygb during HSC activation and its expression in the brain. Differential gene expression analyses suggested a role of Cygb in the response to inflammation in HSCs and its involvement in retinoid metabolism, retinoid X receptor (RXR) activation-induced xenobiotics metabolism, and RXR activation-induced lipid metabolism and signaling in activated cells. Unexpectedly, only minor effects of the Cygb KO were detected in the transcriptional profiles in hippocampus and hypothalamus, precluding any enrichment analyses. Furthermore, the transcriptome data pointed at a previously undescribed potential of the Cygb- knockout allele to produce cis-acting effects, necessitating future verification studies.
Collapse
Affiliation(s)
- Elena Porto
- Institute of Organismic and Molecular Evolution, Molecular Genetics & Genome Analysis Group, Johannes Gutenberg University Mainz, J. J. Becher-Weg 30A, Mainz D-55128, Germany
| | - Joey De Backer
- Research Group PPES, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp 1610, Belgium
| | - Le Thi Thanh Thuy
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Thomas Hankeln
- Institute of Organismic and Molecular Evolution, Molecular Genetics & Genome Analysis Group, Johannes Gutenberg University Mainz, J. J. Becher-Weg 30A, Mainz D-55128, Germany.
| |
Collapse
|
3
|
Šrajer Gajdošik M, Kovač Peić A, Begić M, Grbčić P, Brilliant KE, Hixson DC, Josić D. Possible Role of Extracellular Vesicles in Hepatotoxicity of Acetaminophen. Int J Mol Sci 2022; 23:8870. [PMID: 36012131 PMCID: PMC9408656 DOI: 10.3390/ijms23168870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
We examined proteomic profiles of rat liver extracellular vesicles (EVs) shed following treatment with a sub-toxic dose (500 mg/kg) of the pain reliever drug, acetaminophen (APAP). EVs representing the entire complement of hepatic cells were isolated after perfusion of the intact liver and analyzed with LC-MS/MS. The investigation was focused on revealing the function and cellular origin of identified EVs proteins shed by different parenchymal and non-parenchymal liver cells and their possible role in an early response of this organ to a toxic environment. Comparison of EV proteomic profiles from control and APAP-treated animals revealed significant differences. Alpha-1-macroglobulin and members of the cytochrome P450 superfamily were highly abundant proteins in EVs shed by the normal liver. In contrast, proteins like aminopeptidase N, metalloreductase STEAP4, different surface antigens like CD14 and CD45, and most members of the annexin family were detected only in EVs that were shed by livers of APAP-treated animals. In EVs from treated livers, there was almost a complete disappearance of members of the cytochrome P450 superfamily and a major decrease in other enzymes involved in the detoxification of xenobiotics. Additionally, there were proteins that predominated in non-parenchymal liver cells and in the extracellular matrix, like fibronectin, receptor-type tyrosine-protein phosphatase C, and endothelial type gp91. These differences indicate that even treatment with a sub-toxic concentration of APAP initiates dramatic perturbation in the function of this vital organ.
Collapse
Affiliation(s)
| | | | - Marija Begić
- Faculty of Medicine, University Juraj Dobrila of Pula, 52100 Pula, Croatia
| | - Petra Grbčić
- Faculty of Medicine, University Juraj Dobrila of Pula, 52100 Pula, Croatia
| | - Kate E. Brilliant
- Proteomics Core, COBRE CCRD, Rhode Island Hospital, Providence, RI 02903, USA
- Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Douglas C. Hixson
- Proteomics Core, COBRE CCRD, Rhode Island Hospital, Providence, RI 02903, USA
- Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Djuro Josić
- Faculty of Medicine, University Juraj Dobrila of Pula, 52100 Pula, Croatia
- Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| |
Collapse
|
4
|
Kamm DR, McCommis KS. Hepatic stellate cells in physiology and pathology. J Physiol 2022; 600:1825-1837. [PMID: 35307840 PMCID: PMC9012702 DOI: 10.1113/jp281061] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/04/2022] [Indexed: 11/08/2022] Open
Abstract
Hepatic stellate cells (HSCs) comprise a minor cell population in the liver but serve numerous critical functions in the normal liver and in response to injury. HSCs are primarily known for their activation upon liver injury and for producing the collagen-rich extracellular matrix in liver fibrosis. In the absence of liver injury, HSCs reside in a quiescent state, in which their main function appears to be the storage of retinoids or vitamin A-containing metabolites. Less appreciated functions of HSCs include amplifying the hepatic inflammatory response and expressing growth factors that are critical for liver development and both the initiation and termination of liver regeneration. Recent single-cell RNA sequencing studies have corroborated earlier studies indictaing that HSC activation involves a diverse array of phenotypic alterations and identified unique HSC populations. This review serves to highlight these many functions of HSCs, and to briefly describe the recent genetic tools that will help to thoroughly investigate the role of HSCs in hepatic physiology and pathology.
Collapse
Affiliation(s)
- Dakota R. Kamm
- Department of Biochemistry & Molecular Biology Saint Louis University School of Medicine St. Louis MO
| | - Kyle S. McCommis
- Department of Biochemistry & Molecular Biology Saint Louis University School of Medicine St. Louis MO
| |
Collapse
|
5
|
Sufleţel RT, Melincovici CS, Gheban BA, Toader Z, Mihu CM. Hepatic stellate cells - from past till present: morphology, human markers, human cell lines, behavior in normal and liver pathology. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY 2021; 61:615-642. [PMID: 33817704 PMCID: PMC8112759 DOI: 10.47162/rjme.61.3.01] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Hepatic stellate cell (HSC), initially analyzed by von Kupffer, in 1876, revealed to be an extraordinary mesenchymal cell, essential for both hepatocellular function and lesions, being the hallmark of hepatic fibrogenesis and carcinogenesis. Apart from their implications in hepatic injury, HSCs play a vital role in liver development and regeneration, xenobiotic response, intermediate metabolism, and regulation of immune response. In this review, we discuss the current state of knowledge regarding HSCs morphology, human HSCs markers and human HSC cell lines. We also summarize the latest findings concerning their roles in normal and liver pathology, focusing on their impact in fibrogenesis, chronic viral hepatitis and liver tumors.
Collapse
Affiliation(s)
- Rada Teodora Sufleţel
- Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania;
| | | | | | | | | |
Collapse
|
6
|
Santra S, Bishnu D, Dhali GK, Santra A, Chowdhury A. Expression of type I collagen in response to Isoniazid exposure is indirect and is facilitated by collateral induction of cytochrome P450 2E1: An in-vitro study. PLoS One 2020; 15:e0236992. [PMID: 32735603 PMCID: PMC7394448 DOI: 10.1371/journal.pone.0236992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/18/2020] [Indexed: 01/04/2023] Open
Abstract
We wanted to investigate whether Isoniazid (INH) can directly stimulate activation of hepatic stellate cells (HSCs) and enhance production of collagen. Treatment of human hepatic stellate cell line LX2 with or without 5μM INH for 24 to 72 hours was performed to look into content of cytochrome P450 2E1 (CYP2E1), activity of NADPH oxidase (NOX) and intracellular oxidative stress. Protein level as well as mRNA expression of alpha smooth muscle actin (α-SMA) and collagen1A1 (COL1A1) were assessed by western blot and real time PCR. In some experiments pyrazole (PY) was pre-treated to LX2 cells to induce CYP2E1 prior to INH treatment. CYP2E1 level as well as NOX activity was gradually increased with INH treatment in LX2 cells till 72 hours. Following 72 hours of INH exposure, intracellular glutathione (GSH) level was found to be reduced compared to control (p<0.01) and showed expression of α-SMA, indicating activation of HSC. We could not found any change in collagen expression in this experimental study. Pyrazole (PY) pre-treatment to LX2 cells caused significant increase in cellular CYP2E1 content associated with increase of NOX, intracellular reactive oxygen species (ROS), and expression of α-SMA and collagen1 after INH exposure. CYP2E1 is present in insignificant amount in HSCs and INH treatment could not induce collagen expression, although altered cellular oxidant levels was observed. But in LX2 cells when CYP2E1 was over-expressed by PY, INH administration provokes oxidative stress mediated stellate cells activation along with collagen type I expression.
Collapse
Affiliation(s)
- Suman Santra
- Centre for Liver Research, School of Digestive & Liver Diseases, Institute of Post Graduate Medical Education & Research, Kolkata, India
| | - Debasree Bishnu
- Centre for Liver Research, School of Digestive & Liver Diseases, Institute of Post Graduate Medical Education & Research, Kolkata, India
| | - Gopal Krishna Dhali
- Centre for Liver Research, School of Digestive & Liver Diseases, Institute of Post Graduate Medical Education & Research, Kolkata, India
| | - Amal Santra
- Centre for Liver Research, School of Digestive & Liver Diseases, Institute of Post Graduate Medical Education & Research, Kolkata, India
- JCM Center for Liver Research and Innovations, Indian Institute of Liver and Digestive Sciences, Sonarpur, India
| | - Abhijit Chowdhury
- Centre for Liver Research, School of Digestive & Liver Diseases, Institute of Post Graduate Medical Education & Research, Kolkata, India
- JCM Center for Liver Research and Innovations, Indian Institute of Liver and Digestive Sciences, Sonarpur, India
- * E-mail:
| |
Collapse
|
7
|
Role of hepatic stellate cell (HSC)-derived cytokines in hepatic inflammation and immunity. Cytokine 2018; 124:154542. [PMID: 30241896 DOI: 10.1016/j.cyto.2018.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/01/2018] [Accepted: 09/07/2018] [Indexed: 12/15/2022]
Abstract
In their quiescent state, Hepatic stellate cells (HSCs), are present in the sub-endothelial space of Disse and have minimal interaction with immune cells. However, upon activation following injury, HSCs directly or indirectly interact with various immune cells that enter the space of Disse and thereby regulate diverse hepatic function and immune physiology. Other than the normal physiological functions of HSCs such as hepatic homeostasis, maturation and differentiation, they also participate in hepatic inflammation by releasing a battery of inflammatory cytokines and chemokines and interacting with other liver cells. Here, we have reviewed the role of HSC in the pathogenesis of liver inflammation and some infectious diseases in order to understand how the interplay between immune cells and HSCs regulates the overall outcome and disease pathology.
Collapse
|
8
|
Abstract
Hepatic stellate cells are resident perisinusoidal cells distributed throughout the liver, with a remarkable range of functions in normal and injured liver. Derived embryologically from septum transversum mesenchyme, their precursors include submesothelial cells that invade the liver parenchyma from the hepatic capsule. In normal adult liver, their most characteristic feature is the presence of cytoplasmic perinuclear droplets that are laden with retinyl (vitamin A) esters. Normal stellate cells display several patterns of intermediate filaments expression (e.g., desmin, vimentin, and/or glial fibrillary acidic protein) suggesting that there are subpopulations within this parental cell type. In the normal liver, stellate cells participate in retinoid storage, vasoregulation through endothelial cell interactions, extracellular matrix homeostasis, drug detoxification, immunotolerance, and possibly the preservation of hepatocyte mass through secretion of mitogens including hepatocyte growth factor. During liver injury, stellate cells activate into alpha smooth muscle actin-expressing contractile myofibroblasts, which contribute to vascular distortion and increased vascular resistance, thereby promoting portal hypertension. Other features of stellate cell activation include mitogen-mediated proliferation, increased fibrogenesis driven by connective tissue growth factor, and transforming growth factor beta 1, amplified inflammation and immunoregulation, and altered matrix degradation. Evolving areas of interest in stellate cell biology seek to understand mechanisms of their clearance during fibrosis resolution by either apoptosis, senescence, or reversion, and their contribution to hepatic stem cell amplification, regeneration, and hepatocellular cancer.
Collapse
Affiliation(s)
- Juan E Puche
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai Hospital, New York, New York, New York
| | | | | |
Collapse
|
9
|
Szuster-Ciesielska A, Plewka K, Daniluk J, Kandefer-Szerszeń M. Zinc supplementation attenuates ethanol- and acetaldehyde-induced liver stellate cell activation by inhibiting reactive oxygen species (ROS) production and by influencing intracellular signaling. Biochem Pharmacol 2009; 78:301-14. [PMID: 19376089 DOI: 10.1016/j.bcp.2009.04.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 04/09/2009] [Accepted: 04/09/2009] [Indexed: 02/08/2023]
Abstract
BACKGROUND/AIMS Zinc has been reported to prevent and reverse liver fibrosis in vivo; however, the mechanisms of its action are poorly understood. We therefore aimed to determine the antifibrotic potential of zinc. METHODS Assessed was the influence of preincubation of rat HSCs with 30 microM ZnCl2 on ethanol- (in the presence of 4-methyl pyrazole (4-MP)) or acetaldehyde-induced toxicity, apoptosis, migration, expression of smooth muscle alpha-actin (alpha-SMA) and procollagen I, release of reactive oxygen species (ROS), tumor necrosis factor-alpha (TNF-alpha), tumor growth factor-beta1 (TGF-beta1), metalloproteinase-2 (MMP-2) and tissue inhibitors of metalloproteinases (TIMPs) production. Intracellular signals such as nuclear factor-kappaB (NFkappaB), C-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) induced by ethanol and its metabolite were also assessed. RESULTS 30 microM zinc protected HSCs against ethanol and acetaldehyde toxicity and inhibited their apoptosis. Zinc inhibited the production of ROS by HSCs treated with ethanol and acetaldehyde and inhibited their migration. Zinc also inhibited ethanol- and acetaldehyde-induced TGF-beta1 and TNF-alpha production. Zinc down-regulated ethanol- and acetaldehyde-induced production of TIMP-1 and TIMP-2 and decreased the activity of MMP-2. In ethanol- and acetaldehyde-induced HSCs, zinc inhibited the activation of the p38 MAPK as well as the JNK transduction pathways and phosphorylation of IkappaB and Smad 3. CONCLUSION The results indicated that zinc supplementation inhibited ethanol- and acetaldehyde-induced activation of HSCs on different levels, acting as an antioxidant and inhibitor of MAPK, TGF-beta and NFkappaB/IkappaB transduction signaling. The remarkable inhibition of several markers of HCS activation makes zinc a promising agent for antifibrotic combination therapies.
Collapse
Affiliation(s)
- Agnieszka Szuster-Ciesielska
- Department of Virology and Immunology, Maria Curie-Skłodowska University, Agnieszka Szuster-Ciesielska, Akademicka 19, 20-033 Lublin, Poland.
| | | | | | | |
Collapse
|
10
|
Abstract
The hepatic stellate cell has surprised and engaged physiologists, pathologists, and hepatologists for over 130 years, yet clear evidence of its role in hepatic injury and fibrosis only emerged following the refinement of methods for its isolation and characterization. The paradigm in liver injury of activation of quiescent vitamin A-rich stellate cells into proliferative, contractile, and fibrogenic myofibroblasts has launched an era of astonishing progress in understanding the mechanistic basis of hepatic fibrosis progression and regression. But this simple paradigm has now yielded to a remarkably broad appreciation of the cell's functions not only in liver injury, but also in hepatic development, regeneration, xenobiotic responses, intermediary metabolism, and immunoregulation. Among the most exciting prospects is that stellate cells are essential for hepatic progenitor cell amplification and differentiation. Equally intriguing is the remarkable plasticity of stellate cells, not only in their variable intermediate filament phenotype, but also in their functions. Stellate cells can be viewed as the nexus in a complex sinusoidal milieu that requires tightly regulated autocrine and paracrine cross-talk, rapid responses to evolving extracellular matrix content, and exquisite responsiveness to the metabolic needs imposed by liver growth and repair. Moreover, roles vital to systemic homeostasis include their storage and mobilization of retinoids, their emerging capacity for antigen presentation and induction of tolerance, as well as their emerging relationship to bone marrow-derived cells. As interest in this cell type intensifies, more surprises and mysteries are sure to unfold that will ultimately benefit our understanding of liver physiology and the diagnosis and treatment of liver disease.
Collapse
Affiliation(s)
- Scott L Friedman
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, New York 10029-6574, USA.
| |
Collapse
|
11
|
Abstract
This paper provides a summary of the effects of alcohol abuse on the pathobiologic responses that occur during acute and chronic pancreatitis considering both the human disease and animal/tissue models. The effects are multiple and include ones on cell death leading to necrosis; on inflammation resulting in a sensitized response to pancreatic stress; and fibrosis through effects of ethanol on pancreatic stellate cells and the plasminogen system. Although the effects of alcohol are multiple and complex, it is likely that a combination of a few key effects on these pathobiologic responses drive the increased sensitivity of the pancreas to acute pancreatitis with pancreatic stress and the promotion of chronic pancreatitis with pancreatic injury occurring during acute pancreatitis.
Collapse
Affiliation(s)
- Stephen J Pandol
- Department of Medicine, University of California, Department of Veterans Affairs, Los Angeles, California, USA.
| | | |
Collapse
|
12
|
Abstract
Evidence has accumulated to suggest an important role of ethanol and/or its metabolites in the pathogenesis of alcohol-related liver disease. In this review, the fibrogenic effects of ethanol and its metabolites on hepatic stellate cells (HSCs) are discussed. In brief, ethanol interferes with retinoid metabolism and its signaling, induces the release of fibrogenic cytokines such as transforming growth factor β-1 (TGFβ-1) from HSCs, up-regulates the gene expression of collagen I and enhances type I collagen protein production by HSCs. Ethanol further perpetuates an activated HSC phenotype through extracellular matrix remodeling. The underlying pathophysiologic mechanisms by which ethanol exerts these pro-fibrogenic effects on HSCs are reviewed.
Collapse
Affiliation(s)
- Jian-Hua Wang
- Storr Liver Unit, Westmead Millennium Institute, University of Sydney and Westmead Hospital, Westmead, New South Wales, Australia.
| | | | | |
Collapse
|
13
|
Abstract
This paper reviews current concepts on tools for studying the pharmacokinetics of alcohol. It has been known that ethanol metabolism occurs mainly in the liver via alcohol dehydrogenase and an accessory microsomal pathway. The contribution of each pathway has been examined by administration of metabolic inhibitors. The role of gastric alcohol dehydrogenase in the first-pass effects of ethanol has been speculative and may be relatively low. Some pharmacokinetic approaches with mathematical models have elucidated the role of gastric alcohol dehydorgenase, hepatic alcohol dehydrogenase and cytochrome P450 2E1 in ethanol elimination. The scale-up of ethanol elimination kinetics has enabled extrapolation from animal models to human kinetics. The clarification of the pharmacokinetics of ethanol is very important for estimating the effects of ethanol on biological events.
Collapse
Affiliation(s)
- Hiroshi Matsumoto
- Department of Legal Medicine, Kyoto University Faculty of Medicine, Kyoto 606-8501, Japan.
| | | |
Collapse
|
14
|
Donohue TM, Clemens DL, Galli A, Crabb D, Nieto N, Kato J, Barve SS. Use of cultured cells in assessing ethanol toxicity and ethanol-related metabolism. Alcohol Clin Exp Res 2001. [PMID: 11411462 DOI: 10.1111/j.1530-0277.2001.tb02380.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This article represents the proceedings of a symposium at the 2000 ISBRA Meeting in Yokohama, Japan. The chairs were Terrence M. Donohue, Jr, and Dahn L. Clemens. The presentations were (1) Characterization of single and double recombinant hepatoma cells that express ethanol-metabolizing enzymes, by Terrence M. Donohue, Jr; (2) Inhibition of cell growth by ethanol metabolism, by Dahn L. Clemens; (3) Use of transfected HeLa cells to study the genesis of alcoholic fatty liver, by Andrea Galli and David Crabb; (4) CYP2E1-mediated oxidative stress induces COL1A2 mRNA in hepatic stellate cells and in a coculture system of HepG2 and stellate cells, by Natalia Nieto; (5) Transforming growth factor-alpha secreted from ethanol-exposed hepatocytes contributes to development of alcoholic hepatic fibrosis, by Junji Kato; and (6) Effect of ethanol on Fas-dependent caspase-3 activation and apoptosis in CD4+ T cells, by Shirish S. Barve.
Collapse
Affiliation(s)
- T M Donohue
- Liver Study Unit, Omaha Veterans Affairs Medical Center, University of Nebraska Medical Center 68105, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Donohue TM, Clemens DL, Galli A, Crabb D, Nieto N, Kato J, Barve SS. Use of cultured cells in assessing ethanol toxicity and ethanol-related metabolism. Alcohol Clin Exp Res 2001; 25:87S-93S. [PMID: 11411462 DOI: 10.1097/00000374-200105051-00016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This article represents the proceedings of a symposium at the 2000 ISBRA Meeting in Yokohama, Japan. The chairs were Terrence M. Donohue, Jr, and Dahn L. Clemens. The presentations were (1) Characterization of single and double recombinant hepatoma cells that express ethanol-metabolizing enzymes, by Terrence M. Donohue, Jr; (2) Inhibition of cell growth by ethanol metabolism, by Dahn L. Clemens; (3) Use of transfected HeLa cells to study the genesis of alcoholic fatty liver, by Andrea Galli and David Crabb; (4) CYP2E1-mediated oxidative stress induces COL1A2 mRNA in hepatic stellate cells and in a coculture system of HepG2 and stellate cells, by Natalia Nieto; (5) Transforming growth factor-alpha secreted from ethanol-exposed hepatocytes contributes to development of alcoholic hepatic fibrosis, by Junji Kato; and (6) Effect of ethanol on Fas-dependent caspase-3 activation and apoptosis in CD4+ T cells, by Shirish S. Barve.
Collapse
Affiliation(s)
- T M Donohue
- Liver Study Unit, Omaha Veterans Affairs Medical Center, University of Nebraska Medical Center 68105, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Nieto N, Greenwel P, Friedman SL, Zhang F, Dannenberg AJ, Cederbaum AI. Ethanol and arachidonic acid increase alpha 2(I) collagen expression in rat hepatic stellate cells overexpressing cytochrome P450 2E1. Role of H2O2 and cyclooxygenase-2. J Biol Chem 2000; 275:20136-45. [PMID: 10770928 DOI: 10.1074/jbc.m001422200] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The ability of ethanol and arachidonic acid (AA), as inducers of oxidative stress and key factors in alcoholic liver disease, to up-regulate alpha 2 collagen type I (COL1A2) gene expression was studied in a hepatic stellate cell line overexpressing the ethanol-inducible cytochrome P450 2E1 (CYP2E1) (E5 cells). A time- and dose-dependent induction in COL1A2 mRNA by ethanol or AA was observed that was prevented by diallylsulfide, a CYP2E1 inhibitor. Nuclear run-on experiments showed transcriptional activation of the COL1A2 gene by ethanol and AA. Catalase abrogated the increase in COL1A2 mRNA suggesting an H(2)O(2)-dependent mechanism. Cyclooxygenase-2 (COX-2) levels and production of prostaglandin E(2) upon addition of AA were elevated in the E5 cells. Incubation with NS-398, a COX-2 inhibitor, blocked the effect of AA, but not of ethanol, on COL1A2 expression suggesting that CYP2E1 activates COX-2 expression, and the oxidation of AA by COX-2 is responsible for the increase in COL1A2. Activity of a reporter construct driven by -378 base pairs of the proximal promoter region of the COL1A2 gene increased in E5 but not control cells and was further increased by ethanol or AA. These experiments link CYP2E1-dependent oxidative stress to induction of COX-2 and the actions of ethanol and AA on activation of collagen gene expression in hepatic stellate cells.
Collapse
Affiliation(s)
- N Nieto
- Departments of Biochemistry and Molecular Biology and Medicine and Liver Diseases, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | |
Collapse
|
17
|
Whalen R, Rockey DC, Friedman SL, Boyer TD. Activation of rat hepatic stellate cells leads to loss of glutathione S-transferases and their enzymatic activity against products of oxidative stress. Hepatology 1999; 30:927-33. [PMID: 10498644 DOI: 10.1002/hep.510300404] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Oxidative stress, mediated partly by lipid peroxidation products, may lead to increased collagen synthesis by hepatic stellate cells (HSC). Stellate cells are protected from oxidative stress by enzymes of detoxication such as the glutathione S-transferases (GSTs), which form glutathione conjugates with lipid peroxidation products (e.g., 4-hydroxy-2-nonenal [HNE]). To better understand the role of GSTs in stellate cell biology, we examined the expression and enzymatic activity of GSTs in normal and activated (both culture- and in vivo-activated) stellate cells. Normal stellate cells contained numerous isoforms of GST including those that detoxify HNE. High levels of enzymatic activity toward 1-chloro-2,4-dinitrobenzene (CDNB) and HNE were present in normal stellate cells and were similar to levels present in whole liver. Following activation by growth in culture, the expression of several GSTs (rGSTA1/A2, A3, and M1) was lost. Also, enzymatic activities toward CDNB and HNE fell approximately 90%. However, expression of rGSTP1 was maintained. A similar loss of rGSTA1/A2, A3, and M1 with persistent expression of rGSTP1 was present after activation in vivo. Furthermore, we identified 2 subpopulations of activated stellate cells with different GST phenotypes from injured livers. In summary, activated stellate cells lose most forms of GST and associated enzymatic activities that are present in normal stellate cells. The findings raise the possibility that activated stellate cells have less ability to detoxify lipid peroxidation products and may be susceptible to oxidative stress. Additionally, we propose that the phenotypic change in GSTs is a sensitive marker of stellate cell activation.
Collapse
Affiliation(s)
- R Whalen
- Departments of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | |
Collapse
|
18
|
Nieto N, Friedman SL, Greenwel P, Cederbaum AI. CYP2E1-mediated oxidative stress induces collagen type I expression in rat hepatic stellate cells. Hepatology 1999; 30:987-96. [PMID: 10498651 DOI: 10.1002/hep.510300433] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hepatic stellate cells (HSCs) are a major source of extracellular matrix, which, during fibrogenesis, undergo a process of "activation" characterized by increased proliferation and collagen synthesis. Oxidative stress can stimulate HSC proliferation and collagen synthesis in vitro. Cytochrome P4502E1 (CYP2E1) is an effective producer of reactive oxygen species. To study how intracellular oxidative stress modulates alpha 2 collagen type I (COL1A2) gene induction, a rat HSC line (HSC-T6) was transfected with human CYP2E1 complementary DNA in the sense and antisense orientation and with empty vector, and stable cell lines were generated. The cells expressing CYP2E1 displayed elevated production of reactive oxygen species and showed a 4-fold increase in COL1A2 messenger RNA (mRNA) levels; expression of this mRNA among different clones appeared to correlate with the level of CYP2E1. COL1A2 expression was decreased by vitamin E treatment or transfection with manganese superoxide dismutase, and was further increased after treatment with L-buthionine sulfoximine (BSO) to lower GSH levels. Thus, CYP2E1-dependent oxidative stress plays a major role in the elevation of COL1A2 mRNA levels in this system. Nuclear run-on assay showed a 3-and-a-half-fold increase in COL1A2 transcription in the cells expressing CYP2E1; stabilization of COL1A2 mRNA was also observed. These results indicate that under oxidative stress conditions, COL1A2 mRNA expression is regulated both transcriptionally and through mRNA stabilization. The CYP2E1-expressing HSC appear to be a valuable model for the sustained generation of reactive oxygen species and may allow the elucidation of signaling pathways responsible for oxidant stress-mediated collagen gene induction.
Collapse
Affiliation(s)
- N Nieto
- Department of Biochemistry, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | |
Collapse
|
19
|
Oinonen T, Koivisto T, Lindros KO. No significant expression of CYP2E1 in rat liver stellate cells. Biochem Pharmacol 1998; 56:1075-8. [PMID: 9776321 DOI: 10.1016/s0006-2952(98)00062-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The putative role of the ethanol-inducible cytochrome P450(CYP)2E1 in stimulating collagen synthesis by rat liver stellate cells was studied. Analysis of carefully isolated stellate cells revealed that their content of immunoreactive CYP2E1 protein and of CYP2E1 mRNA, as determined by reverse transcription, polymerase chain reaction (RT-PCR), was very low, i.e. only 0-4% of that in hepatocytes. We conclude that it is improbable that such low expression of CYP2E1 in stellate cells would have functional importance.
Collapse
Affiliation(s)
- T Oinonen
- Alcohol Research Center, National Public Health Institute, Helsinki, Finland
| | | | | |
Collapse
|