1
|
Bagheri A, Radman G, Aria N, Rezaei F, Khajenouri M, Ghiabi S, Bagheri Y. The Effects of Quercetin on Apoptosis and Antioxidant Activity in a Renal Ischemia/Reperfusion Injury Animal Model. Drug Res (Stuttg) 2023. [PMID: 36972618 DOI: 10.1055/a-1999-7600] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Renal ischemia-reperfusion injury (IRI) is considered as one of the most prevalent causes of acute kidney injury (AKI), which can happen in various clinical situations including hypovolemic shock, injury, thrombo-embolism, and after a kidney transplant. This paper aims to evaluate the reno-protective effects of Quercetin in induced ischemia/reperfusion injury by regulating apoptosis-related proteins, inflammatory cytokines, MMP-2, MMP-9, and nuclear factor kappa-light-chain-enhancer inactivated B cells (NF-kB) in rats. The male Wistar rats (n=32) were randomly divided into Sham, untreated IR, and Quercetin-treated IR (gavage and intraperitoneal). Quercetin was given orally and intraperitoneally one hour before inducing ischemia-reperfusion injury . After reperfusion, blood samples and kidneys were collected to assess renal function and inflammatory cytokines, apoptotic signaling proteins, and antioxidants. Urea, creatinine, and MDA levels improved in Quercetin-treated groups with different administration methods. In addition, the activities of other antioxidant in Quercetin-treated rats were higher than those in the IR group. Further, Quercetin inhibited NF-kB signaling, apoptosis-associated factors and produced matrix metalloproteinase protein in the kidneys of rats. Based on the findings, the antioxidant, anti-inflammatory, and anti-apoptotic effects of the Quercetin diminished renal ischemia-reperfusion injury in the rats significantly. It is suggested that a single dosage of Quercetin have a reno-protective impact in the case of renal I/R injury.
Collapse
Affiliation(s)
- Amin Bagheri
- Department of Urology, Sina Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ghazal Radman
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Negar Aria
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Rezaei
- Faculty of Pharmacy in Hradec Kralove, Charles University, Prague, Czech Republic
| | - Mohammad Khajenouri
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Shamim Ghiabi
- Department of Medical Chemistry, Faculty of Pharmacy, Tehran Medical Sciences Islamic Azad University, Tehran, Iran
| | - Yasin Bagheri
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Abstract
Acute kidney injury (AKI), a major public health problem associated with high mortality and increased risk of progression towards end-stage renal disease, is characterized by the activation of intra-renal haemostatic and inflammatory processes. Platelets, which are present in high numbers in the circulation and can rapidly release a broad spectrum of bioactive mediators, are important acute modulators of inflammation and haemostasis, as they are the first cells to arrive at sites of acute injury, where they interact with endothelial cells and leukocytes. Diminished control of platelet reactivity by endothelial cells and/or an increased release of platelet-activating mediators can lead to uncontrolled platelet activation in AKI. As increased platelet sequestration and increased expression levels of the markers P-selectin, thromboxane A2, CC-chemokine ligand 5 and platelet factor 4 on platelets have been reported in kidneys following AKI, platelet activation likely plays a part in AKI pathology. Results from animal models and some clinical studies highlight the potential of antiplatelet therapies in the preservation of renal function in the context of AKI, but as current strategies also affect other cell types and non-platelet-derived mediators, additional studies are required to further elucidate the extent of platelet contribution to the pathology of AKI and to determine the best therapeutic approach by which to specifically target related pathogenic pathways.
Collapse
Affiliation(s)
- Marcel P B Jansen
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Sandrine Florquin
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
3
|
Basile DP, Collett JA, Yoder MC. Endothelial colony-forming cells and pro-angiogenic cells: clarifying definitions and their potential role in mitigating acute kidney injury. Acta Physiol (Oxf) 2018; 222:10.1111/apha.12914. [PMID: 28656611 PMCID: PMC5745310 DOI: 10.1111/apha.12914] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 05/10/2017] [Accepted: 06/21/2017] [Indexed: 12/12/2022]
Abstract
Acute kidney injury (AKI) represents a significant clinical concern that is associated with high mortality rates and also represents a significant risk factor for the development of chronic kidney disease (CKD). This article will consider alterations in renal endothelial function in the setting of AKI that may underlie impairment in renal perfusion and how inefficient vascular repair may manifest post-AKI and contribute to the potential transition to CKD. We provide updated terminology for cells previously classified as 'endothelial progenitor' that may mediate vascular repair such as pro-angiogenic cells and endothelial colony-forming cells. We consider how endothelial repair may be mediated by these different cell types following vascular injury, particularly in models of AKI. We further summarize the potential ability of these different cells to mitigate the severity of AKI, improve perfusion and maintain vascular structure in pre-clinical studies.
Collapse
Affiliation(s)
- David P. Basile
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine
| | - Jason A. Collett
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine
| | - Mervin C. Yoder
- Department of Pediatrics, Indiana University School of Medicine
| |
Collapse
|
4
|
Collett JA, Mehrotra P, Crone A, Shelley WC, Yoder MC, Basile DP. Endothelial colony-forming cells ameliorate endothelial dysfunction via secreted factors following ischemia-reperfusion injury. Am J Physiol Renal Physiol 2017; 312:F897-F907. [PMID: 28228404 DOI: 10.1152/ajprenal.00643.2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 01/07/2023] Open
Abstract
Damage to endothelial cells contributes to acute kidney injury (AKI) by leading to impaired perfusion. Endothelial colony-forming cells (ECFC) are endothelial precursor cells with high proliferative capacity, pro-angiogenic activity, and in vivo vessel forming potential. We hypothesized that ECFC may ameliorate the degree of AKI and/or promote repair of the renal vasculature following ischemia-reperfusion (I/R). Rat pulmonary microvascular endothelial cells (PMVEC) with high proliferative potential were compared with pulmonary artery endothelial cells (PAEC) with low proliferative potential in rats subjected to renal I/R. PMVEC administration reduced renal injury and hastened recovery as indicated by serum creatinine and tubular injury scores, while PAEC did not. Vehicle-treated control animals showed consistent reductions in renal medullary blood flow (MBF) within 2 h of reperfusion, while PMVEC protected against loss in MBF as measured by laser Doppler. Interestingly, PMVEC mediated protection occurred in the absence of homing to the kidney. Conditioned medium (CM) from human cultured cord blood ECFC also conveyed beneficial effects against I/R injury and loss of MBF. Moreover, ECFC-CM significantly reduced the expression of ICAM-1 and decreased the number of differentiated lymphocytes typically recruited into the kidney following renal ischemia. Taken together, these data suggest that ECFC secrete factors that preserve renal function post ischemia, in part, by preserving microvascular function.
Collapse
Affiliation(s)
- Jason A Collett
- Department of Cellular and Integrative Physiology, Indiana University, Indianapolis, Indiana; and
| | - Purvi Mehrotra
- Department of Cellular and Integrative Physiology, Indiana University, Indianapolis, Indiana; and
| | - Allison Crone
- Department of Cellular and Integrative Physiology, Indiana University, Indianapolis, Indiana; and
| | - W Christopher Shelley
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mervin C Yoder
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - David P Basile
- Department of Cellular and Integrative Physiology, Indiana University, Indianapolis, Indiana; and
| |
Collapse
|
5
|
Cheadle C, Watkins T, Ehrlich E, Barnes K, Gaber AO, Hemmerich S, Rabb H. Effects of anti-adhesive therapy on kidney biomarkers of ischemia reperfusion injury in human deceased donor kidney allografts. Clin Transplant 2010; 25:766-75. [PMID: 21114535 DOI: 10.1111/j.1399-0012.2010.01365.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Molecular biomarkers validated previously in animal models are increasingly being studied in conjunction with traditional clinical endpoints in therapeutic trials. PATIENT AND METHODS We hypothesized that human kidneys would exhibit a brisk, gene-specific inflammatory response during ischemia reperfusion injury (IRI), which would be modified by anti-adhesive therapy. Forty deceased-donor kidneys were biopsied prior to implantation and ∼1 h after reperfusion during an intervention trial with the selectin antagonist YSPSL (recombinant P-selectin glycoprotein ligand Ig). Ten inflammatory genes were measured by RT-PCR and normalized to three housekeeping genes. RESULTS Pre-implantation kidney biopsies were already significantly inflamed relative to healthy tissue, with transcripts encoding IL-6, IL-8, and CD25 > 10-fold elevated. After reperfusion, IL-6 and IL-8 increased additional 60- and 120-fold (p < 0.05), while already elevated CD25-levels remained stable. Furthermore, transcripts encoding MCP-1, E-selectin, and TNFα were also induced significantly upon reperfusion (p < 0.0005). Systemic treatment of the recipient with YSPSL pre-reperfusion, with or without pre-implantation YSPSL flush of the donor organ, attenuated the post-reperfusion increase in MCP-1 and TGFβ (p < 0.05), E-selectin and hemoxygenase 1 transcripts (p < 0.1). CONCLUSIONS Our data in humans demonstrate a robust increase in inflammatory gene transcript levels during kidney transplantation IRI and reduction thereof by inhibition of leukocyte adhesion.
Collapse
Affiliation(s)
- Chris Cheadle
- Lowe Family Genomics Core, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Cámara-Lemarroy CR, Guzmán-de la Garza FJ, Alarcón-Galván G, Cordero-Pérez P, Fernández-Garza NE. Effect of Sulfasalazine on Renal Ischemia/Reperfusion Injury in Rats. Ren Fail 2009; 31:822-8. [DOI: 10.3109/08860220903151427] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
7
|
Figura M, Chilton L, Liacini A, Viskovic MM, Phan V, Knight D, Millar TM, Patel K, Kubes P, Giles WR, Tibbles LA. Blockade of K(ATP) channels reduces endothelial hyperpolarization and leukocyte recruitment upon reperfusion after hypoxia. Am J Transplant 2009; 9:687-96. [PMID: 19292831 DOI: 10.1111/j.1600-6143.2009.02553.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ischemia/reperfusion injury in renal transplantation leads to slow or initial nonfunction, and predisposes to acute and chronic rejection. In fact, severe ischemia reperfusion injury can significantly reduce graft survival, even with modern immunosuppressive agents. One of the mechanisms by which ischemia/reperfusion causes injury is activation of endothelial cells resulting in inflammation. Although several therapies can be used to prevent leukocyte recruitment to ischemic vessels (e.g. antiadhesion molecule antibodies), there have been no clinical treatments reported that can prevent initial immediate neutrophil recruitment upon reperfusion. Using intravital microscopy, we describe abrogation of immediate neutrophil recruitment to ischemic microvessels by the K(ATP) antagonist glibenclamide (Glyburide). Further, we show that glibenclamide can reduce leukocyte recruitment in vitro under physiologic flow conditions. ATP-regulated potassium channels (K(ATP)) are important in the control of cell membrane polarization. Here we describe profound hyperpolarization of endothelial cells during hypoxia, and the reduction of this hyperpolarization using glibenclamide. These findings suggest that control of endothelial membrane potential during ischemia may be an important therapeutic tool in avoiding ischemia/reperfusion injury, and therefore, enhancing transplant long-term function.
Collapse
Affiliation(s)
- M Figura
- Institute of Infection, Immunity and Inflammation, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Guz G, Demirogullari B, Ulusu NN, Dogu C, Demirtola A, Kavutcu M, Omeroglu S, Stefek M, Karasu C. Stobadine protects rat kidney against ischaemia/reperfusion injury. Clin Exp Pharmacol Physiol 2007; 34:210-6. [PMID: 17250641 DOI: 10.1111/j.1440-1681.2007.04574.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
1. Ischaemia-reperfusion (I/R) injury, one of the main causes of acute renal failure, still needs satisfactory treatment for routine clinical application. Stobadine, a novel synthetic pyridoindole anti-oxidant, has the ability to reduce tissue injury induced by mechanisms involving reactive oxygen species during I/R. The aim of the present study was to determine the effects of stobadine on renal I/R injury. 2. Forty male Wistar rats were randomly divided into four groups as follows: sham, I/R, stobadine treated and I/R + stobadine treated. Stobadine (2 mg/kg, i.v.) was given intravenously to two groups of rats. The stobadine-treated group was treated with stobadine following sham operation before the abdominal wall was closed, whereas the I/R + stobadine group received stobadine at the beginning of reperfusion. Renal I/R was achieved by occluding the renal arteries bilaterally for 40 min, followed by 6 h reperfusion. Immediately thereafter, blood was drawn and tissue samples were harvested to assess: (i) serum levels of blood urea nitrogen and creatinine; (ii) serum and/or tissue levels of malondialdehyde (MDA), glutathione (GSH), glucose 6-phosphate dehydrogenase (G-6PD), 6-phosphogluconate dehydrogenase (6-PGD), glutathione reductase (GR) and glutathione peroxidase (GPx); (iii) renal morphology; and (iv) immunohistochemical staining for P-selectin. 3. Stobadine was able to significantly attenuate the renal dysfunction as a result of renal I/R injury. Ischaemia-reperfusion resulted in a significant increase in serum and kidney MDA levels and a decrease in serum and kidney GSH. Stobadine treatment at the beginning of reperfusion attenuated both the increased MDA levels and decreased GSH secondary to I/R injury. In addition, the decreased G-6PD activity observed after I/R was significantly attenuated by stobadine treatment. Stobadine did not alter 6-PGD activity after I/R. Neither GR nor GPx activity was significantly changed in the I/R alone or the I/R + stobadine groups compared with the sham group. In addition, stobadine decreased the morphological deterioration and high P-selectin immunoreactivity secondary to renal I/R injury. 4. A pyridoindole anti-oxidant, stobadine exerts a renal protective effect in renal I/R injury, which is probably due to its radical-scavenging and anti-oxidant activities.
Collapse
Affiliation(s)
- Galip Guz
- Department of Nephrology, Gazi University Faculty of Medicine, Ankara, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Atkinson C, Zhu H, Qiao F, Varela JC, Yu J, Song H, Kindy MS, Tomlinson S. Complement-Dependent P-Selectin Expression and Injury following Ischemic Stroke. THE JOURNAL OF IMMUNOLOGY 2006; 177:7266-74. [PMID: 17082645 DOI: 10.4049/jimmunol.177.10.7266] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mechanisms that contribute to inflammatory damage following ischemic stroke are poorly characterized, but studies indicate a role for both complement and P-selectin. In this study, we show that compared with wild-type mice, C3-deficient mice showed significant improvement in survival, neurological deficit, and infarct size at 24 h after middle cerebral artery occlusion and reperfusion. Furthermore, P-selectin protein expression was undetectable in the cerebral microvasculature of C3-deficient mice following reperfusion, and there was reduced neutrophil influx, reduced microthrombus formation, and increased blood flow postreperfusion in C3-deficient mice. We further investigated the use of a novel complement inhibitory protein in a therapeutic paradigm. Complement receptor 2 (CR2)-Crry inhibits complement activation at the C3 stage and targets to sites of complement activation. Treatment of normal mice with CR2-Crry at 30 min postreperfusion resulted in a similar level of protection to that seen in C3-deficient mice in all of the above-measured parameters. The data demonstrate an important role for complement in cerebrovascular thrombosis, inflammation, and injury following ischemic stroke. P-selectin expression in the cerebrovasculature, which is also implicated in cerebral ischemia and reperfusion injury, was shown to be distal to and dependent on complement activation. Data also show that a CR2-targeted approach of complement inhibition provides appropriate bioavailability in cerebral injury to enable complement inhibition at a dose that does not significantly affect systemic levels of serum complement activity, a potential benefit for stroke patients where immunosuppression would be undesirable due to significantly increased susceptibility to lung infection.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Apoptosis/immunology
- Brain Ischemia/etiology
- Brain Ischemia/genetics
- Brain Ischemia/metabolism
- Brain Ischemia/therapy
- Cerebrovascular Circulation/immunology
- Complement C3/antagonists & inhibitors
- Complement C3/deficiency
- Complement C3/genetics
- Complement C3/physiology
- Complement Inactivator Proteins/administration & dosage
- Complement Inactivator Proteins/physiology
- Complement Inactivator Proteins/therapeutic use
- Infarction, Middle Cerebral Artery/genetics
- Infarction, Middle Cerebral Artery/metabolism
- Infarction, Middle Cerebral Artery/pathology
- Infarction, Middle Cerebral Artery/therapy
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neutrophil Infiltration/genetics
- Neutrophil Infiltration/immunology
- P-Selectin/biosynthesis
- P-Selectin/physiology
- Receptors, Complement/administration & dosage
- Receptors, Complement/metabolism
- Receptors, Complement/physiology
- Receptors, Complement 3b
- Receptors, Complement 3d/administration & dosage
- Receptors, Complement 3d/physiology
- Receptors, Complement 3d/therapeutic use
- Reperfusion Injury/etiology
- Reperfusion Injury/genetics
- Reperfusion Injury/metabolism
- Reperfusion Injury/therapy
- Survival Analysis
Collapse
Affiliation(s)
- Carl Atkinson
- Department of Microbiology and Immunology, Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Guz G, Oz E, Lortlar N, Ulusu NN, Nurlu N, Demirogullari B, Omeroglu S, Sert S, Karasu C. The effect of taurine on renal ischemia/reperfusion injury. Amino Acids 2006; 32:405-11. [PMID: 17006602 DOI: 10.1007/s00726-006-0383-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Accepted: 06/02/2006] [Indexed: 01/12/2023]
Abstract
Ischemia-reperfusion (I/R) injury is one of the most common causes of renal dysfunction. Taurine is an endogenous antioxidant and a membrane-stabilizing, intracellular, free beta-amino acid. It has been demonstrated to have protective effects against I/R injuries to tissues other than kidney. The aim of this study was to determine whether taurine has a beneficial role in renal I/R injury. Forty Wistar-Albino rats were allocated into four groups as follows: sham, taurine, I/R, and I/R+taurine. Taurine 7.5 mg/kg was given intra-peritoneally to rats in the groups taurine and I/R+taurine. Renal I/R was achieved by occluding the renal arteries bilaterally for 40 min, followed by 6 h of reperfusion. Immediately thereafter, blood was drawn and tissue samples were harvested to measure 1) serum levels of BUN and creatinine; 2) serum and/or tissue levels of malondialdehyde (MDA), glutathione (GSH), glucose 6-phosphate dehydrogenase (G-6PD), 6-phosphogluconate dehydrogenase (6-PGD) and glutathione reductase (GSH-red); 3) renal morphology; and 4) immunohistochemical staining for P-selectin. Taurine administration reduced I/R-induced increases in serum BUN and creatinine, and serum and tissue MDA levels (p<0.05). Additionally, taurine lessened the reductions in serum and tissue glutathione levels secondary to I/R (p<0.05). Taurine also attenuated histopathologic evidence of renal injury, and reduced I/R-induced P-selectin immunoreactivity (p<0.05). Overall, then, taurine administration appears to reduce the injurious effects of I/R on kidney.
Collapse
Affiliation(s)
- G Guz
- Department of Nephrology, Gazi University Faculty of Medicine, Ankara, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lowenstein CJ, Morrell CN, Yamakuchi M. Regulation of Weibel–Palade Body Exocytosis. Trends Cardiovasc Med 2005; 15:302-8. [PMID: 16297768 DOI: 10.1016/j.tcm.2005.09.005] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Revised: 09/28/2005] [Accepted: 09/29/2005] [Indexed: 02/07/2023]
Abstract
Weibel-Palade bodies (WPBs) are endothelial granules that store von Willebrand factor (VWF), P-selectin, and other vascular modulators. Endothelial cells secrete WPBs in response to vascular injury, releasing VWF, which triggers platelet rolling, and externalizing P-selectin, which activates leukocyte trafficking. Endothelial exocytosis is one of the earliest responses to vascular damage and plays a pivotal role in thrombosis and inflammation. This review examines the regulation of WPB exocytosis-the exocytic machinery, activators, and inhibitors of exocytosis-and speculates about the development of novel anti-exocytic drugs.
Collapse
Affiliation(s)
- Charles J Lowenstein
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | |
Collapse
|
12
|
Tahara M, Nakayama M, Jin MB, Fujita M, Suzuki T, Taniguchi M, Shimamura T, Furukawa H, Todo S. A radical scavenger, edaravone, protects canine kidneys from ischemia-reperfusion injury after 72 hours of cold preservation and autotransplantation. Transplantation 2005; 80:213-21. [PMID: 16041266 DOI: 10.1097/01.tp.0000165092.07375.c9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Cold ischemia-reperfusion (I/R) injury is a prominent cause of delayed graft function after kidney transplantation. Reactive oxygen species play a crucial role in I/R injury. Edaravone is a synthetic radical scavenger that has been used in acute stroke. Some animal experiments have revealed its beneficial effects against I/R injury, but its effects after cold preservation and transplantation of canine kidneys are unknown. METHODS Female hybrid dogs weighing 11 to 13 kg were used. Under anesthesia, the left kidney was harvested. After 72 hr of preservation in cold histidine-tryptophan-ketoglutarate solution, autotransplantation was performed in the right iliac fossa, with contralateral nephrectomy. Animals were divided into control and treatment groups (n=6 per group). In the treatment group, edaravone was administered intravenously at harvest and at reperfusion (3 mg/kg) and in addition was added to the preservation solution (50 microM). RESULTS Animal survival at 2 weeks was four of six in the control group and six of six in the treatment group. Compared with controls, treated animals had higher mean urine output, higher mean glomerular filtration rate, improved tubular cell function, lower mean serum creatinine, and lower renal vascular resistance. Biopsy specimens from treated animals showed less tubular cell damage and decreased P-selectin expression in endothelial cells. Lipid peroxidation of renal tissue and urinary excretion of 8-hydroxy-2'-deoxyguanosine were suppressed by the treatment. CONCLUSIONS Edaravone reduced cold I/R injury in canine renal transplantation. The agent has the potential to ameliorate preservation injury in clinical transplantation.
Collapse
Affiliation(s)
- Munenori Tahara
- First Department of Surgery, Hokkaido University School of Medicine, Sapporo, Hokkaido, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kazanskaya GM, Volkov AM, Nepomnyashchikh LM, Malinovskaya YV, Chernyavskii AM, Gorbatykh YN, D'yakonitsa TM. Ultrastructural Analysis of Secretory Granules of Myocardial Capillary Endothelium in Cardiosurgical Stress. Bull Exp Biol Med 2005; 140:257-61. [PMID: 16283016 DOI: 10.1007/s10517-005-0460-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In patients with chronic myocardial tissue hypoxia irrespective of the disease (Fallot's tetralogy, coronary disease) factors of cardiosurgical stress initiate a drop of secretory production in coronary capillary endothelium and obstruction of the intravascular space by blood cells. In children the peak of exocytosis of secretory granules coincides with the period of aortic occlusion, while in adults it is attained at the stage of reperfusion.
Collapse
Affiliation(s)
- G M Kazanskaya
- E. N. Meshalkin Novosibirsk Institute of Circulatory Diseases, Ministry of Health of Siberian Region of Russian Federation, Novosibirsk
| | | | | | | | | | | | | |
Collapse
|
14
|
Neto JS, Nakao A, Kimizuka K, Romanosky AJ, Stolz DB, Uchiyama T, Nalesnik MA, Otterbein LE, Murase N. Protection of transplant-induced renal ischemia-reperfusion injury with carbon monoxide. Am J Physiol Renal Physiol 2004; 287:F979-89. [PMID: 15292046 DOI: 10.1152/ajprenal.00158.2004] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Carbon monoxide (CO), a product of heme metabolism by heme oxygenases, is known to impart protection against oxidative stress. We hypothesized that CO would protect ischemia-reperfusion (I/R) injury of transplanted organs, and the efficacy of CO was studied in the rat kidney transplantation model. A Lewis rat kidney graft, preserved in University of Wisconsin solution at 4 degrees C for 24 h, was orthotopically transplanted into syngeneic rats. Recipients were maintained in room air or exposed to CO (250 ppm) in air for 1 h before and 24 h after transplantation. Animals were killed 1, 3, 6, and 24 h after transplantation to assess efficacy of inhaled CO. Rapid upregulation of mRNA for IL-6, IL-1beta, TNF-alpha, ICAM-1, heme oxygenase-1, and inducible nitric oxide synthase was observed within 3 h after transplantation in the control grafts of air-exposed recipients, associating with histopathological evidences of acute tubular necrosis, interstitial hemorrhage, and edema. In contrast, the increase of inflammatory mediators was markedly inhibited in kidney grafts of CO-treated recipients, which correlated with improved renal cortical blood flow. Further detailed morphological analyses revealed that CO preserved the glomerular vascular architecture and podocyte viability with less apoptosis of tubular epithelial cells and less ED1(+) macrophage infiltration. CO inhalation resulted in improved serum creatinine levels and clearance, and animal survival was significantly improved with CO to 60.5 from 25 days in untreated controls. The study demonstrates that exposure of kidney graft recipients to CO at a low concentration can impart significant protective effects against renal I/R injury and improve function of renal grafts.
Collapse
Affiliation(s)
- Joao Seda Neto
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, E1555 Biomedical Science Tower, Pittsburgh, PA 15213, USA. murase+@pitt.edu
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Schrier RW, Wang W, Poole B, Mitra A. Acute renal failure: definitions, diagnosis, pathogenesis, and therapy. J Clin Invest 2004. [DOI: 10.1172/jci200422353] [Citation(s) in RCA: 518] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
16
|
Schrier RW, Wang W, Poole B, Mitra A. Acute renal failure: definitions, diagnosis, pathogenesis, and therapy. J Clin Invest 2004; 114:5-14. [PMID: 15232604 PMCID: PMC437979 DOI: 10.1172/jci22353] [Citation(s) in RCA: 225] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acute renal failure (ARF), characterized by sudden loss of the ability of the kidneys to excrete wastes, concentrate urine, conserve electrolytes, and maintain fluid balance, is a frequent clinical problem, particularly in the intensive care unit, where it is associated with a mortality of between 50% and 80%. In this review, the epidemiology and pathophysiology of ARF are discussed, including the vascular, tubular, and inflammatory perturbations. The clinical evaluation of ARF and implications for potential future therapies to decrease the high mortality are described.
Collapse
Affiliation(s)
- Robert W Schrier
- Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | | | |
Collapse
|
17
|
Farrar CA, Wang Y, Sacks SH, Zhou W. Independent pathways of P-selectin and complement-mediated renal ischemia/reperfusion injury. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:133-41. [PMID: 14695327 PMCID: PMC1602227 DOI: 10.1016/s0002-9440(10)63104-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Evidence from in vitro studies indicates that complement activation regulates the expression of P-selectin on endothelial cells. This suggests that in disorders such as ischemia/reperfusion injury, in which both complement and P-selectin have been shown to play a role, complement activation is a primary event and the effects of P-selectin are secondary. To test this hypothesis in vivo, we examined a mouse kidney model of ischemia/reperfusion injury. Surprisingly, the time course and extent of expression of P-selectin was unaltered in C3-deficient mice compared with wild-type mice, in which there was rapid but transient up-regulation of P-selectin on capillary walls and slower accumulation of complement split product on the tubular epithelium. In addition, treatment with anti-P-selectin antibody to reduce the neutrophil-mediated reperfusion damage was equally effective in the absence of C3. These data imply that complement and P-selectin-mediated pathways of renal reperfusion injury are mutually independent, a conclusion that is possibly explained by the differences in the location and time kinetics of complement activation and P-selectin expression. We conclude that in vivo interaction between complement and P-selectin is limited because of time and spatial considerations. Consequently, complement and P-selectin pose distinct targets for therapy.
Collapse
Affiliation(s)
- Conrad A Farrar
- Department of Nephrology and Transplantation, Guy's Hospital, London, United Kingdom
| | | | | | | |
Collapse
|
18
|
Sakamoto N, Sun Z, Brengman ML, Maemura K, Ozaki M, Bulkley GB, Klein AS. Hepatic reticuloendothelial system dysfunction after ischemia-reperfusion: role of P-selectin-mediated neutrophil accumulation. Liver Transpl 2003; 9:940-8. [PMID: 12942455 DOI: 10.1053/jlts.2003.50182] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The relationship between hepatic ischemia-reperfusion (I-R) and subsequent injury through neutrophil accumulation is well described. Although alterations in reticuloendothelial system (RES) function (specifically Kupffer cell function) after I-R have been delineated, the degree to which discrete components of RES function (phagocytosis and killing) are independently modulated under these conditions has not been quantified. A hepatic segmental I-R model was established in mice, in which blood supply to the left lateral lobe of the liver was occluded for 45 minutes, the liver was reperfused, and the laparotomy incision was closed. Experimental animals were pretreated with either vinblastin (1.5 mg/kg) to induce neutropenia or anti-P-selectin monoclonal antibody (mAb; 50 microg/mice) 4 days and 5 minutes before ischemia, respectively. We previously reported that after intravenous injection of chromium 51 ((51)Cr) and iodine 125 ((125)I) double-labeled Escherichia coli, hepatic (51)Cr levels could be used to reliably quantify hepatic phagocytic clearance (HPC) of bacteria from blood, whereas the subsequent release of (125)I from the liver accurately paralleled hepatic bacterial killing efficiency (HKE). Using this double-label bacteria clearance assay, HPC and HKE were depressed after I-R, in association with hepatic neutrophil accumulation. Segmental I-R resulted in decreased HPC and HKE activity in both ischemic and nonischemic hepatic lobes. Depressions in HPC and HKE were attenuated by either vinblastin-induced neutropenia or blocking neutrophil adhesion to the hepatic endothelium with anti-P-selectin mAb. These findings support the hypothesis that I-R induces hepatic RES dysfunction, at least in part, through P-selectin-mediated neutrophil accumulation.
Collapse
Affiliation(s)
- Nobuaki Sakamoto
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Zhou T, Chen JL, Song W, Wang F, Zhang MJ, Ni PH, Geng JG. Effect of N-desulfated heparin on hepatic/renal ischemia reperfusion injury in rats. World J Gastroenterol 2002; 8:897-900. [PMID: 12378638 PMCID: PMC4656583 DOI: 10.3748/wjg.v8.i5.897] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of N-desulfated heparin on hepatic/renal ischemia and reperfusion injury in rats.
METHODS: Using rat models of 60 min hepatic or renal ischemia followed by 1 h, 3 h, 6 h and 24 h reperfusion, animals were randomly divided into following groups, the sham operated controls, ischemic group receiving only normal saline, and treated group receiving N-desulfated heparin at a dose of 12 mg/kg at 5 min before reperfusion. P-selectin expression was detected in hepatic/renal tissues with immunohistochemistry method.
RESULTS: P-selectin expression, serum ALT, AST, BUN and Cr levels were significantly increased during 60 minute ischemia and 1 h, 3 h, 6 h and 24 h reperfusion, while the increment was significantly inhibited, and hepatic/renal pathology observed by light microscopy was remarkably improved by treatment with the N-desulfated heparin. Furthermore, the heparin was found no effects on PT and KPTT.
CONCLUSION: P-selectin might mediate neutrophil infiltration and contribute to hepatic/renal ischemia and reperfusion. The N-desulfated heparin might prevent hepatic/renal damage induced by ischemia and reperfusion injury without significant anticoagulant activity.
Collapse
Affiliation(s)
- Tong Zhou
- Department of Nephrology, Ruijin Hospital, Shanghai Second Medical University, Shanghai 200025,China.
| | | | | | | | | | | | | |
Collapse
|
20
|
Renkonen R, Fukuda MN, Petrov L, Paavonen T, Renkonen J, Häyry P, Fukuda M. A peptide mimic of selectin ligands abolishes in vivo inflammation but has no effect on the rat heart allograft survival1. Transplantation 2002; 74:2-6. [PMID: 12134091 DOI: 10.1097/00007890-200207150-00002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Acute heart allograft rejection is characterized by leukocyte infiltration and myocyte damage, key elements in the histological grading of rejection. The induction of selectins and their ligands on the graft postcapillary venular endothelium increases leukocyte tethering to, rolling on, and extravasation through the endothelium into graft parenchyma. We have characterized peptide mimicking selectin ligands by screening phage peptide libraries using anti-Lewis A antibodies and E-selectin as target molecules. The effect of this selectin- binding peptide, IELLQAR, on the prevention of inflammation and tissue damage and on the prolongation of graft survival in inbred DA (RT1a) rat heart allografts transplanted to WF (RT1v) recipients was tested. Bovine serum albumin (0.1%, solvent), VTSIAQA (control peptide), or IELLQAR were either continuously infused into the peritoneum via osmotic mini pumps or injected twice daily IV. Treatment with bovine serum albumin and VTSIAQA did not alter the number of graft infiltrating leukocytes or the histological grade of acute rejection, all scored as grade 4. On the contrary, the selectin binding peptide, IELLQAR, dose-dependently reduced inflammation and at the highest dose (6.0 mg/kg per day) eliminated the majority of graft infiltrating leukocytes, reduced the histological grade from 4 to 1B, but had no effect on graft survival. These data indicate that the intensity of inflammation related to the allograft rejection does not correlate to the graft survival.
Collapse
Affiliation(s)
- Risto Renkonen
- Department of Bacteriology and Immunology, Pathology, and Transplantation Laboratory, Haartman Institute, University of Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
21
|
Yin M, Currin RT, Peng XX, Mekeel HE, Schoonhoven R, Lemasters JJ. Carolina rinse solution minimizes kidney injury and improves graft function and survival after prolonged cold ischemia. Transplantation 2002; 73:1410-20. [PMID: 12023618 DOI: 10.1097/00007890-200205150-00009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Kidney damage caused by cold ischemia-reperfusion injury promotes adverse outcomes after renal transplantation. The purpose of this study was to determine whether Carolina rinse solution (CRS) used at the end of cold ischemic storage decreases kidney injury and improves graft function and survival. METHODS Inbred male Lewis rats were used as donors and recipients. Left kidneys were removed from donor rats, infused with cold University of Wisconsin solution, and stored for 24, 30, or 48 hr at 0-1 degrees C. Just before implantation, kidneys were flushed with either Ringer's solution or CRS at 35-37 degrees C or were not treated. Kidneys were then transplanted into recipient rats with removal of both native kidneys. RESULTS Survival and renal function were analyzed over a 14-day postoperative period. Among rats receiving kidneys after 24-hr cold storage, creatinine clearance was 75% greater in rats transplanted with kidneys flushed with CRS compared with Ringer's solution or nontreatment. In animals receiving kidneys after 30-hr cold storage, recipient survival after CRS was significantly higher than with Ringer's solution or without flushing (80% vs. 25% and 17%, respectively). However, CRS failed to prevent renal graft failure after 48 hr of cold storage (14% survival with CRS vs. 0% with Ringer's solution). In separate ex vivo studies, nonviable cell nuclei were labeled by trypan blue after cold preservation and brief warm reperfusion. CRS decreased podocyte and peritubular endothelial cell killing associated with cold ischemia-reperfusion injury. CONCLUSION Flushing renal explants with warm CRS before implantation diminishes cold ischemia-reperfusion injury and improves the function and survival of transplanted kidneys.
Collapse
Affiliation(s)
- Ming Yin
- Department of Cell and Developmental Biology, and Environmental Science and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | |
Collapse
|
22
|
Yin M, Currin RT, Peng XX, Mekeel HE, Schoonhoven R, Lemasters JJ. Different patterns of renal cell killing after warm and cold ischemia. Ren Fail 2002; 24:147-63. [PMID: 12071589 DOI: 10.1081/jdi-120004092] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Kidneys preserved for transplantation surgery sustain injuries caused by cold ischemia during storage. Additionally, kidneys harvested from non-heart-beating donors encounter the stress of warm ischemia. The aim of this study was to determine the specific cell types losing viability after warm and cold ischemia. In warm ischemia studies, the pedicles of left kidneys of Lewis rats were cross-clamped for up to 90 min. In cold ischemia studies, kidneys were flushed with cold University of Wisconsin solution and stored up to 48h at 0-1 degrees C. After warm or cold ischemia, kidneys were perfused via the renal arteries with Krebs-Henseleit bicarbonate (KHB) buffer at 37 degrees C, followed by trypan blue to label the nuclei of nonviable cells. Warm ischemia for 90 min caused renal failure and led to injury of proximal tubular cells, e.g., loss of brush borders, cast formation and trypan blue labeling. Cold ischemia for 48 h also caused renal failure but, unlike warm ischemia, caused trypan blue labeling of glomerular podocytes and peritubular endothelial cells. In warm ischemia-induced injury, electron microscopy showed shedding of microvilli and marked swelling of proximal tubular cells, microvilli and mitochondria. In cold ischemia-induced injury, podocytes were blebbed and swollen, and their pedicels were detached from the basement membrane, but disruption in proximal tubules was milder. In conclusion, warm ischemia triggers injury primarily to proximal tubular cells, whereas cold ischemia damages glomerular podocytes and peritubular endothelial cells in addition to proximal tubules.
Collapse
Affiliation(s)
- Ming Yin
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill 27599-7090, USA
| | | | | | | | | | | |
Collapse
|
23
|
Lindner JR, Song J, Christiansen J, Klibanov AL, Xu F, Ley K. Ultrasound assessment of inflammation and renal tissue injury with microbubbles targeted to P-selectin. Circulation 2001; 104:2107-12. [PMID: 11673354 DOI: 10.1161/hc4201.097061] [Citation(s) in RCA: 304] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Routine methods capable of assessing tissue inflammation noninvasively are currently not available. We hypothesized that tissue retention of microbubbles targeted to the endothelial cell adhesion molecule P-selectin would provide a means to assess inflammation with ultrasound imaging. METHODS AND RESULTS Phospholipid microbubbles targeted to P-selectin (MB(p)) were created by conjugating monoclonal antibodies against murine P-selectin to the lipid shell. The microvascular behaviors of MB(p) and control microbubbles without antibody (MB) or with isotype control antibody (MB(iso)) were assessed by intravital microscopy of cremasteric venules of control and tumor necrosis factor (TNF)-alpha-stimulated wild-type mice. Retention of all microbubbles increased (P<0.05) with TNF-alpha treatment because of increased attachment to activated leukocytes. Extensive attachment of MB(p) directly to the venular endothelium or to adherent platelet-leukocyte aggregates was observed in TNF-alpha-stimulated mice, resulting in 4-fold greater (P<0.01) retention of MB(p) than either MB(iso) or MB. Enhanced retention of MB(p) was completely abolished in TNF-alpha-stimulated P-selectin-deficient mice. The ultrasound signal from microbubbles retained in inflamed tissue was assessed by contrast-enhanced renal ultrasound imaging of the kidneys of mice undergoing ischemia-reperfusion injury. In wild-type mice, this signal was significantly higher (P<0.05) for MB(p) (12+/-2 U) than either MB(iso) (6+/-3 U) or MB (5+/-3 U). In P-selectin-deficient mice, the signal for MB(p) was equivalent to that from control microbubbles. CONCLUSIONS Microvascular retention of microbubbles targeted to P-selectin produces strong signal enhancement on ultrasound imaging of inflamed tissue. These results suggest that site-targeted microbubbles may be used to assess inflammation, tissue injury, and other endothelial responses noninvasively with ultrasound.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/metabolism
- Cell Adhesion/drug effects
- Cell Adhesion/immunology
- Contrast Media/administration & dosage
- Contrast Media/chemistry
- Contrast Media/metabolism
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/immunology
- Endothelium, Vascular/physiopathology
- Inflammation/chemically induced
- Inflammation/diagnostic imaging
- Inflammation/physiopathology
- Injections, Intravenous
- Kidney/blood supply
- Kidney/diagnostic imaging
- Kidney/physiopathology
- Leukocytes/drug effects
- Leukocytes/immunology
- Leukocytes/metabolism
- Mice
- Mice, Knockout
- Micelles
- Muscle, Skeletal/blood supply
- Muscle, Skeletal/diagnostic imaging
- Muscle, Skeletal/drug effects
- P-Selectin/genetics
- P-Selectin/immunology
- P-Selectin/metabolism
- Phospholipids/chemistry
- Phospholipids/metabolism
- Predictive Value of Tests
- Reperfusion Injury/chemically induced
- Reperfusion Injury/diagnosis
- Reperfusion Injury/physiopathology
- Sensitivity and Specificity
- Tumor Necrosis Factor-alpha
- Ultrasonography/methods
- Venules/diagnostic imaging
- Venules/drug effects
- Venules/physiopathology
Collapse
Affiliation(s)
- J R Lindner
- Cardiovascular Division, University of Virginia School of Medicine, Charlottesville, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Herbert KJ, Hickey MJ, Lepore DA, Knight KR, Morrison WA, Stewart AG. Effects of the endothelin receptor antagonist Bosentan on ischaemia/reperfusion injury in rat skeletal muscle. Eur J Pharmacol 2001; 424:59-67. [PMID: 11470261 DOI: 10.1016/s0014-2999(01)01133-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We examined the role of endothelin in ischaemia/reperfusion injury in skeletal muscle, using the endothelin receptor antagonist Bosentan. In the rat hindlimb tourniquet ischaemia model, one hindlimb was rendered ischaemic for 2 h at 36 degrees C, then blood flow was re-established for either 24 h to assess muscle survival or 1.5 h for a study of capillary perfusion. In the first set of rats, the gastrocnemius muscle was removed from the postischaemic limb and assessed for viability histochemically using the nitro blue tetrazolium stain. Tissue water content (a measure of oedema) and myeloperoxidase activity (a measure of neutrophil accumulation) were also assessed in the ischaemic muscle, the contralateral non-ischaemic muscle and the lungs. In the second set of rats, the hind limb was infused with India ink after 2-h ischaemia and 1.5-h reperfusion and the muscle was harvested, fixed and cleared. In control rats, muscle viability was 17+/-2% (S.E.M.). In rats treated with Bosentan (10 mg/kg, i.p.) 30 min before release of the tourniquet, muscle viability (48+/-7%) was significantly increased compared to the control group (P<0.01). Bosentan treatment had no significant effect on tissue water content or myeloperoxidase activity in the ischaemic muscle, the contralateral non-ischaemic muscle or the lung. Immunoreactive endothelin levels in serum increased to a peak at 90 min of reperfusion and returned to control levels by 24-h reperfusion. India ink studies demonstrated a significantly increased functional capillary density in postischaemic Bosentan-treated muscles compared with postischaemic control muscles (P<0.05). These results suggest that endothelin plays an important role in the necrosis which results from a period of ischaemia and reperfusion in skeletal muscle, by mediating a decrease in postischaemic microvascular perfusion.
Collapse
Affiliation(s)
- K J Herbert
- Bernard O'Brien Institute of Microsurgery, St Vincent's Hospital Melbourne, 42 Fitzroy Street, Fitzroy, Victoria 3065, Australia
| | | | | | | | | | | |
Collapse
|
25
|
Kirveskari J, Paavonen T, Häyry P, Renkonen R. De novo induction of endothelial L-selectin ligands during kidney allograft rejection. J Am Soc Nephrol 2000; 11:2358-2365. [PMID: 11095659 DOI: 10.1681/asn.v11122358] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Acute kidney allograft rejection is characterized by a lymphocyte infiltration. L-selectin on lymphocytes and its endothelial glycosylated ligands are instrumental in the initiation of lymphocyte extravasation to sites of inflammation. From more than 500 core biopsy specimens taken from kidneys after transplantation, 250 biopsies were graded to have signs of acute rejection. Of these, 52 biopsies with various grades of histologic signs of acute rejection were selected for the study. Controls were 15 biopsies taken within 30 min after revascularization and 10 specimens from well-functioning allografts showing no clinical or histologic evidence of rejection. Immunochemical stainings with monoclonal antibodies against functionally active decorated L-selectin ligands. i.e., sialyl-Lewis x (sLex, 2F3 and HECA-452) or sulfated lactosamine (MECA-79) were performed. Although no endothelial 2F3 and MECA-79 epitopes were detected in nonrejecting control specimens, the expression was induced at the onset and during acute allograft rejections. The level of expression (in semi-quantitative score) of 2F3 reactivity correlated with the severity of rejection (P<0.0001, grade I versus grade IIB), and the level of expression decreased as the rejection resolved. Kidney biopsies taken shortly after revascularization and thus undergoing reperfusion injury showed endothelial staining with another anti sLex antibody, HECA-452. This staining disappeared from well-functioning grafts and reappeared at the onset of an acute allograft rejection. These results suggest that expression of functionally active, properly glycosylated L-selectin ligands might have a role in reperfusion injury and in the initiation of acute rejections after human kidney allograft transplantation.
Collapse
Affiliation(s)
- Juha Kirveskari
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
- Helsinki University Central Hospital Laboratory Diagnostic, Helsinki, Finland
| | - Timo Paavonen
- Department of Pathology, Haartman Institute, University of Helsinki, Helsinki, Finland
- Helsinki University Central Hospital Laboratory Diagnostic, Helsinki, Finland
| | - Pekka Häyry
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
- Helsinki University Central Hospital Laboratory Diagnostic, Helsinki, Finland
| | - Risto Renkonen
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
- Helsinki University Central Hospital Laboratory Diagnostic, Helsinki, Finland
| |
Collapse
|
26
|
Akgür FM, Brown MF, Zibari GB, McDonald JC, Epstein CJ, Ross CR, Granger DN. Role of superoxide in hemorrhagic shock-induced P-selectin expression. Am J Physiol Heart Circ Physiol 2000; 279:H791-7. [PMID: 10924079 DOI: 10.1152/ajpheart.2000.279.2.h791] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Superoxide has been implicated in the regulation of endothelial cell adhesion molecule expression and the subsequent initiation of leukocyte-endothelial cell adhesion in different experimental models of inflammation. The objective of this study was to assess the contribution of oxygen radicals to P-selectin expression in a murine model of whole body ischemia-reperfusion, i.e., hemorrhage-resuscitation (H/R), with the use of different strategies that interfere with either the production (allopurinol, CD11/CD18-deficient or p47(phox)-/- mice) or accumulation [intravenous superoxide dismutase (SOD), mutant mice that overexpress SOD] of oxygen radicals. P-selectin expression was quantified in different regional vascular beds by use of the dual-radiolabeled monoclonal antibody technique. H/R elicited a significant increase in P-selectin expression in all vascular beds. This response was blunted in SOD transgenic mice and in wild-type mice receiving either intravenous SOD or the xanthine oxidase inhibitor allopurinol. Mice genetically deficient in either a subunit of NADPH oxidase or the leukocyte adhesion molecule CD11/CD18 also exhibited a reduced P-selectin expression. These results implicate superoxide, derived from both xanthine oxidase and NADPH oxidase, as mediators of the increased P-selectin expression observed in different regional vascular beds exposed to hemorrhage and retransfusion.
Collapse
Affiliation(s)
- F M Akgür
- Department of Pediatric Surgery, School of Medicine, Dokuz Eylül University, Izmir, Turkey 35340, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Singbartl K, Green SA, Ley K. Blocking P-selectin protects from ischemia/reperfusion-induced acute renal failure. FASEB J 2000; 14:48-54. [PMID: 10627279 DOI: 10.1096/fasebj.14.1.48] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Acute renal failure (ARF) in response to ischemia-reperfusion is thought to be associated with neutrophil infiltration. Neutrophil recruitment depends on adhesion molecules, including P-selectin. Our study sought to characterize the role of P-selectin in ischemia-reperfusion (I/R) -induced acute renal failure (ARF). In wild-type (wt) and P-selectin-deficient (P-/-) mice (both C57BL/6), ARF was induced by 32 min bilateral renal ischemia, followed by reperfusion (I/R). Wt showed a 12- and 20-fold increase in creatinine at 24 and 48 h after I/R, respectively. Similar changes were seen in blood urea nitrogen (BUN). By contrast, in P-/- creatinine and BUN increased only moderately (fourfold over sham). In wt, renal myeloperoxidase activity, indicating neutrophil infiltration, peaked after 24 h (19-fold over sham). This was significantly attenuated in P-/- (fivefold over sham). Western blot analysis revealed maximum P-selectin expression 12 h after I/R in wt. Immunostaining detected P-selectin in glomerular endothelium and in platelets adherent in glomerular and peritubular vessels. Postischemic injection of P-selectin antibody at 10 min after reperfusion, but not isotype control antibody, protected wt from ARF similar to the protection seen in P-/-. We conclude that blocking P-selectin even after onset of reperfusion protects mice from I/R-induced ARF, suggesting potential therapeutic strategies aimed at blocking P-selectin.
Collapse
Affiliation(s)
- K Singbartl
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, USA. l
| | | | | |
Collapse
|
28
|
Dam JG, Li F, Yin M, You XM, Grauls G, Steinhoff G, Bruggeman CA. Effects of cytomegalovirus infection and prolonged cold ischemia on chronic rejection of rat renal allografts. Transpl Int 2000. [DOI: 10.1111/j.1432-2277.2000.tb01037.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Akgür FM, Zibari GB, McDonald JC, Granger DN, Brown MF. Effects of dextran and pentoxifylline on hemorrhagic shock-induced P-selectin expression. J Surg Res 1999; 87:232-8. [PMID: 10600354 DOI: 10.1006/jsre.1999.5758] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Dextran and pentoxifylline have been shown to prevent leukocyte-endothelium adherence encountered after hemorrhagic shock. P-Selectin is the first endothelial cell adhesion molecule to be upregulated after an ischemic insult. We investigated the effects of resuscitation with dextran 70 and administration of pentoxifylline during resuscitation on hemorrhagic shock-induced P-selectin expression. MATERIAL AND METHODS Hemorrhagic shock was induced in C57BL/6 mice by withdrawing blood to reduce mean arterial blood pressure to 30 mm Hg for 45 min. Animals were resuscitated by infusing one of the following solutions (each n:5): (1) Ringer's lactate, (2) 6% dextran 70, (3) Ringer's lactate plus 50 mg/kg pentoxifylline, (4) 5% human albumin. Afterward shed blood was infused. In vivo P-selectin expression was determined using dual-radiolabeled monoclonal antibody technique in lung, heart, liver, kidney, mesentery, stomach, small bowel, and colon 5 h after resuscitation. RESULTS P-Selectin was significantly upregulated in all of the organs studied in the Ringer's lactate resuscitation group (P < 0.001). Resuscitation with dextran 70 and administration of pentoxifylline during resuscitation prevented P-selectin upregulation. Resuscitation with human albumin caused significant attenuation but could not prevent P-selectin upregulation (p < 0.01). CONCLUSION Our study implies that the prevention of hemorrhagic shock-induced leukocyte-endothelium adherence by dextran 70 and pentoxifylline observed in other studies may be mediated by prevention of P-selectin expression by these agents.
Collapse
Affiliation(s)
- F M Akgür
- School of Medicine, Dokuz Eylül University, Izmir, Turkey.
| | | | | | | | | |
Collapse
|
30
|
Burke J, Zibari GB, Brown MF, Granger N, Kelly R, Singh I, McDonald JC. Hepatic ischemia-reperfusion injury causes E-selectin upregulation. Transplant Proc 1998; 30:2321-3. [PMID: 9723490 DOI: 10.1016/s0041-1345(98)00639-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- J Burke
- Department of Surgery, Louisiana State University Medical Center, Shreveport 71130-3932, USA
| | | | | | | | | | | | | |
Collapse
|