1
|
Kunst C, Elger T, Loibl J, Huss M, Kandulski A, Krautbauer S, Müller M, Liebisch G, Tews HC, Buechler C. Fecal Nervonic Acid as a Biomarker for Diagnosing and Monitoring Inflammatory Bowel Disease. Biomedicines 2024; 12:2764. [PMID: 39767671 PMCID: PMC11673069 DOI: 10.3390/biomedicines12122764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Inflammatory bowel disease (IBD) is a chronic immune-mediated pathology associated with the dysregulation of lipid metabolism. The administration of nervonic acid, a very long-chain fatty acid, has been shown to improve colonic inflammation in a mouse model of colitis. Our study aimed to quantify fecal levels of nervonic acid, as well as the very long-chain fatty acids, lignoceric acid, and pentacosanoic acid, to identify associations with IBD activity. METHODS Stool samples were collected from 62 patients with IBD and 17 healthy controls. Nervonic acid, lignoceric acid, and pentacosanoic acid were quantified by gas chromatography coupled with mass spectrometry (GC-MS). Lipid levels, normalized to the dry weight of fecal homogenates, were used for calculations. RESULTS Patients with IBD exhibited elevated fecal nervonic acid levels compared to healthy controls, with no significant differences observed between ulcerative colitis and Crohn's disease. A fecal nervonic acid concentration of 0.49 µmol/g distinguished IBD patients from controls, achieving a sensitivity of 71% and a specificity of 82%. Fecal nervonic acid levels showed a positive correlation with both C-reactive protein and fecal calprotectin and increased proportionally with rising fecal calprotectin levels. IBD patients treated with corticosteroids or interleukin-12/23 antibodies had higher levels of fecal nervonic acid than those in other therapies, with no difference in serum C-reactive protein and calprotectin levels between these groups. CONCLUSIONS In summary, this analysis indicates that fecal nervonic acid may emerge as a novel specific biomarker for IBD diagnosis and disease monitoring.
Collapse
Affiliation(s)
- Claudia Kunst
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (C.K.); (T.E.); (J.L.); (M.H.); (A.K.); (M.M.); (H.C.T.)
| | - Tanja Elger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (C.K.); (T.E.); (J.L.); (M.H.); (A.K.); (M.M.); (H.C.T.)
| | - Johanna Loibl
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (C.K.); (T.E.); (J.L.); (M.H.); (A.K.); (M.M.); (H.C.T.)
| | - Muriel Huss
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (C.K.); (T.E.); (J.L.); (M.H.); (A.K.); (M.M.); (H.C.T.)
| | - Arne Kandulski
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (C.K.); (T.E.); (J.L.); (M.H.); (A.K.); (M.M.); (H.C.T.)
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany; (S.K.); (G.L.)
| | - Martina Müller
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (C.K.); (T.E.); (J.L.); (M.H.); (A.K.); (M.M.); (H.C.T.)
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany; (S.K.); (G.L.)
| | - Hauke Christian Tews
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (C.K.); (T.E.); (J.L.); (M.H.); (A.K.); (M.M.); (H.C.T.)
| | - Christa Buechler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (C.K.); (T.E.); (J.L.); (M.H.); (A.K.); (M.M.); (H.C.T.)
| |
Collapse
|
2
|
Ullah H, Alioui Y, Ali M, Ali S, Farooqui NA, Siddiqui NZ, Alsholi DM, Ilyas M, Rahman MU, Xin Y, Wang L. Sea conch ( Rapana venosa) peptide hydrolysate regulates NF-κB pathway and restores intestinal immune homeostasis in DSS-induced colitis mice. Food Sci Nutr 2024; 12:10070-10086. [PMID: 39723032 PMCID: PMC11666983 DOI: 10.1002/fsn3.4410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 12/28/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract. Sea conch peptide hydrolysate (CPH) was produced by enzymatic digestion of fresh conch meat with trypsin enzyme. To analyze the molecular composition, functional groups, and structural morphology of the hydrolysate, we employed liquid chromatography-mass spectrometry (LC-MS), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Results confirmed that crude protein could be effectively digested by enzymes to generate peptides. In this study, we evaluated the bioactivities of CPH on dextran sulfate solution (DSS)-induced colitis in mice. The findings demonstrated that CPH supplementation improved body weight, food and water intake, and colon length. The therapeutic efficacy and immunoregulatory effect of CPH were further determined. Our results exhibited that CPH treatment significantly ameliorated pathological symptoms by enhancing intestinal integrity, mucin production, and goblet cell count. Moreover, the immunoregulatory effect of CPH on mRNA expression levels of different pro- and anti-inflammatory cytokines was determined. Results exhibited a decrease in the expression of pro-inflammatory cytokines and an increase in anti-inflammatory cytokines in the colon. Additionally, the CPH administration modulates the nuclear factor kappa B (NF-κB) pathway, preventing DNA damage and cell death. Assays for apoptosis and DNA damage revealed that CPH reduced oxidative DNA damage and apoptosis. These findings highlight the immunomodulatory and treatment amelioration effect of CPH in reducing the severity of colitis.
Collapse
Affiliation(s)
- Hidayat Ullah
- Department of Biotechnology, College of Basic Medical ScienceDalian Medical UniversityDalianChina
| | - Yamina Alioui
- Department of Biotechnology, College of Basic Medical ScienceDalian Medical UniversityDalianChina
| | - Muhsin Ali
- Department of Biotechnology, College of Basic Medical ScienceDalian Medical UniversityDalianChina
| | - Sharafat Ali
- Department of Biochemistry and Molecular Biology, College of Basic Medical ScienceDalian Medical UniversityDalianChina
| | - Nabeel Ahmed Farooqui
- Department of Biotechnology, College of Basic Medical ScienceDalian Medical UniversityDalianChina
| | - Nimra Z. Siddiqui
- Department of Biotechnology, College of Basic Medical ScienceDalian Medical UniversityDalianChina
| | - Duaa M. Alsholi
- Department of Biotechnology, College of Basic Medical ScienceDalian Medical UniversityDalianChina
| | - Muhammad Ilyas
- Department of Biotechnology, College of Basic Medical ScienceDalian Medical UniversityDalianChina
| | - Mujeeb U. Rahman
- Department of Biotechnology, College of Basic Medical ScienceDalian Medical UniversityDalianChina
| | - Yi Xin
- Department of Biotechnology, College of Basic Medical ScienceDalian Medical UniversityDalianChina
| | - Liang Wang
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine CenterThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
| |
Collapse
|
3
|
Faghih M, Moshiri M, Mazrouei Arani N, Ahmadzadeh F, Jafari N, Ghasemi M, Abediankenari S. Evaluation of TNF-α and IFN-γ primed conditioned medium of mesenchymal stem cell in acetic acid-induced mouse model of acute colitis. Cell Immunol 2024; 405-406:104876. [PMID: 39342814 DOI: 10.1016/j.cellimm.2024.104876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024]
Abstract
IBD, an autoimmune-inflammatory disorder that affects people who are genetically prone to inflammation. There is a lot of interest in MSC-CM therapy, especially when primed with TNF-α + IFN-γ. Throughout the study, data were collected on the percentage of apoptotic cells, gene expression of ZO-1, Foxp3, GATA3, IDO-1, Muc2, T-bet, Notch1, TNFR2, and ROR-γt, colon weight and length, histopathological analysis, and DAI. TNF-α and IL-10 levels were assessed in addition to the NO level. The results suggest that primed MSC-CM improved DAI, mucosal deterioration, intestinal inflammation and NO concentration. The amount of TNF-α was decreased, but IL-10 and the colon's percentage of apoptotic cells was increased. The mRNA expression of ZO-1, Foxp3, GATA3, IDO-1, and Muc2 genes increased greatly in the treatment groups, while the expression of T-bet, Notch1, TNFR2, and ROR-γt genes has decreased. These studies suggest that primed MSC-CM may combine with common treatments to improve responsiveness.
Collapse
MESH Headings
- Animals
- Mice
- Interferon-gamma/metabolism
- Interferon-gamma/pharmacology
- Colitis/chemically induced
- Colitis/metabolism
- Tumor Necrosis Factor-alpha/metabolism
- Disease Models, Animal
- GATA3 Transcription Factor/metabolism
- GATA3 Transcription Factor/genetics
- Mesenchymal Stem Cells/metabolism
- Culture Media, Conditioned/pharmacology
- T-Box Domain Proteins/metabolism
- T-Box Domain Proteins/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Interleukin-10/metabolism
- Forkhead Transcription Factors/metabolism
- Forkhead Transcription Factors/genetics
- Mucin-2/metabolism
- Mucin-2/genetics
- Zonula Occludens-1 Protein/metabolism
- Zonula Occludens-1 Protein/genetics
- Apoptosis/drug effects
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Male
- Colon/pathology
- Colon/metabolism
- Receptor, Notch1/metabolism
- Receptor, Notch1/genetics
- Acute Disease
Collapse
Affiliation(s)
- Manizhe Faghih
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, IRAN; Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mona Moshiri
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, IRAN; Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nader Mazrouei Arani
- Anatomical Research Center, Kashan University of Medical Sciences and Health Services, kashan, IRAN
| | - Fatemeh Ahmadzadeh
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, IRAN; Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Narjes Jafari
- Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Ghasemi
- Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department of Pathology, School of Medicine, Mazandaran University of Medical Sciences, Sari, IRAN
| | - Saeid Abediankenari
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, IRAN.
| |
Collapse
|
4
|
Effects of Spore-Displayed p75 Protein from Lacticaseibacillus rhamnosus GG on the Transcriptional Response of HT-29 Cells. Microorganisms 2022; 10:microorganisms10071276. [PMID: 35888995 PMCID: PMC9323162 DOI: 10.3390/microorganisms10071276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/10/2022] Open
Abstract
A Lacticaseibacillus rhamnosus GG-derived protein, p75, is one of the key molecules exhibiting probiotic activity. However, the molecular mechanism and transcriptional response of p75 in human intestinal epithelial cells are not completely understood. To gain a deeper understanding of its potential probiotic action, this study investigated genome-wide responses of HT-29 cells to stimulation by spore-displayed p75 (CotG-p75) through a transcriptome analysis based on RNA sequencing. Analysis of RNA-seq data showed significant changes of gene expression in HT-29 cells stimulated by CotG-p75 compared to the control. A total of 189 up-regulated and 314 down-regulated genes was found as differentially expressed genes. Gene ontology enrichment analysis revealed that a large number of activated genes was involved in biological processes, such as epithelial cell differentiation, development, and regulation of cell proliferation. A gene–gene interaction network analysis showed that several DEGs, including AREG, EREG, HBEGF, EPGN, FASLG, GLI2, CDKN1A, FOSL1, MYC, SERPINE1, TNFSF10, BCL6, FLG, IVL, SPRR1A, SPRR1B, SPRR3, and MUC5AC, might play a critical role in these biological processes. RNA-seq results for selected genes were verified by reverse transcription-quantitative polymerase chain reaction. Overall, these results provide extensive knowledge about the transcriptional responses of HT-29 cells to stimulation by CotG-p75. This study showed that CotG-p75 can contribute to cell survival and epithelial development in human intestinal epithelial cells.
Collapse
|
5
|
Melatonin Attenuates Dextran Sodium Sulfate Induced Colitis in Obese Mice. Pharmaceuticals (Basel) 2021; 14:ph14080822. [PMID: 34451919 PMCID: PMC8399719 DOI: 10.3390/ph14080822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 01/03/2023] Open
Abstract
Epidemiological studies have indicated that obesity is an independent risk factor for colitis and that a high-fat diet (HFD) increases the deterioration of colitis-related indicators in mice. Melatonin has multiple anti-inflammatory effects, including inhibiting tumor growth and regulating immune defense. However, the mechanism of its activity in ameliorating obesity-promoted colitis is still unclear. This study explored the possibility that melatonin has beneficial functions in HFD-induced dextran sodium sulfate (DSS)-induced colitis in mice. Here, we revealed that HFD-promoted obesity accelerated DSS-induced colitis, while melatonin intervention improved colitis. Melatonin significantly alleviated inflammation by increasing anti-inflammatory cytokine release and reducing the levels of proinflammatory cytokines in HFD- and DSS-treated mice. Furthermore, melatonin expressed antioxidant activities and reversed intestinal barrier integrity, resulting in improved colitis in DSS-treated obese mice. We also found that melatonin could reduce the ability of inflammatory cells to utilize fatty acids and decrease the growth-promoting effect of lipids by inhibiting autophagy. Taken together, our study indicates that the inhibitory effect of melatonin on autophagy weakens the lipid-mediated prosurvival advantage, which suggests that melatonin-targeted autophagy may provide an opportunity to prevent colitis in obese individuals.
Collapse
|
6
|
Zhang J, Wan J, Chen D, Yu B, He J. Low-Molecular-Weight Chitosan Attenuates Lipopolysaccharide-Induced Inflammation in IPEC-J2 Cells by Inhibiting the Nuclear Factor-κB Signalling Pathway. Molecules 2021; 26:molecules26030569. [PMID: 33499133 PMCID: PMC7865926 DOI: 10.3390/molecules26030569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 02/07/2023] Open
Abstract
Low-molecular-weight chitosan (LMWC), a product of chitosan deacetylation, possesses anti-inflammatory effects. In the present study, a porcine small intestinal epithelial cell line, IPEC-J2, was used to assess the protective effects of LMWC on lipopolysaccharide (LPS)-induced intestinal epithelial cell injury. IPEC-J2 cells were pretreated with or without LMWC (400 μg/mL) in the presence or absence of LPS (5 μg/mL) for 6 h. LMWC pretreatment increased (p < 0.05) the occludin abundance and decreased (p < 0.05) the tumour necrosis factor-α (TNF-α) production, apoptosis rate and cleaved cysteinyl aspartate-specific protease-3 (caspase-3) and -8 contents in LPS-treated IPEC-J2 cells. Moreover, LMWC pretreatment downregulated (p < 0.05) the expression levels of TNF receptor 1 (TNFR1) and TNFR-associated death domain and decreased (p < 0.05) the nuclear and cytoplasmic abundance of nuclear factor-κB (NF-κB) p65 in LPS-stimulated IPEC-J2 cells. These results suggest that LMWC exerts a mitigation effect on LPS-induced intestinal epithelial cell damage by suppressing TNFR1-mediated apoptosis and decreasing the production of proinflammatory cytokines via the inhibition of NF-κB signalling pathway.
Collapse
Affiliation(s)
| | | | | | | | - Jun He
- Correspondence: ; Tel.: +86-13419354223; Fax: +86-28-86291781
| |
Collapse
|
7
|
Ye Y, Zhang L, Hu T, Yin J, Xu L, Pang Z, Chen W. CircRNA_103765 acts as a proinflammatory factor via sponging miR-30 family in Crohn's disease. Sci Rep 2021; 11:565. [PMID: 33436852 PMCID: PMC7804428 DOI: 10.1038/s41598-020-80663-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/23/2020] [Indexed: 01/08/2023] Open
Abstract
Increasing evidence suggests that circular RNAs (circRNAs) play critical roles in various pathophysiological activities. However, the role of circRNAs in inflammatory bowel disease (IBD) remains unclear. Here we report the potential roles of hsa_circRNA_103765 in regulating cell apoptosis induced by TNF-α in Crohn’s disease (CD). We identify that CircRNA_103765 expression was significantly upregulated in peripheral blood mononuclear cells (PBMCs) of patients with active IBD. A positive correlation with TNF-α significantly enhanced circRNA_103765 expression in CD, which was significantly reversed by anti-TNF-α mAb (infliximab) treatment. In vitro experiments showed that TNF-α could induce the expression of circRNA_103765, which was cell apoptosis dependent, while silencing of circRNA_103765 could protect human intestinal epithelial cells (IECs) from TNF-α-induced apoptosis. In addition, circRNA_103765 acted as a molecular sponge to adsorb the miR-30 family and impair the negative regulation of Delta-like ligand 4 (DLL4). Collectively, CircRNA_103765 is a novel important regulator of the pathogenesis of IBD via sponging miR-30 family-mediated DLL4 expression changes. Blockade of circRNA_103765 could serve as a novel approach for the treatment of IBD patients.
Collapse
Affiliation(s)
- Yulan Ye
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, 215008, Jiangsu, China.,Department of Gastroenterology, The North District of the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215008, Jiangsu, China
| | - Liping Zhang
- Department of Gastroenterology, The North District of the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215008, Jiangsu, China
| | - Tong Hu
- Department of Gastroenterology, The North District of the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215008, Jiangsu, China
| | - Juan Yin
- Department of Gastroenterology, The North District of the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215008, Jiangsu, China
| | - Lijuan Xu
- Department of Gastroenterology, The North District of the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215008, Jiangsu, China
| | - Zhi Pang
- Department of Gastroenterology, The North District of the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215008, Jiangsu, China
| | - Weichang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, 215008, Jiangsu, China.
| |
Collapse
|
8
|
Yu T, Meng F, Xie M, Liu H, Zhang L, Chen X. Long Noncoding RNA PMS2L2 Downregulates miR-24 through Methylation to Suppress Cell Apoptosis in Ulcerative Colitis. Dig Dis 2020; 39:467-476. [PMID: 33238281 DOI: 10.1159/000513330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 11/23/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Ulcerative colitis (UC) is an inflammatory bowel disease characterized by chronic inflammation of the colon. It has been reported that PMS2L2 plays protective roles in inflammatory injury. This study aimed to investigate the role of the long noncoding RNA PMS2L2 in UC. METHODS Sixty-two patients with UC as well as 62 age- and gender-matched healthy controls were enrolled. Expressions of PMS2L2 and miR-24 in plasma from UC patients and healthy controls were determined by RT-qPCR. The interaction between PMS2L2 and miR-24 was predicted by bioinformatics and confirmed by RNA immunoprecipitation and RNA pull-down. The role of PMS2L2 in the regulation of miR-24 gene methylation was analyzed by methylation-specific PCR. The effects of PMS2L2 and miR-24 on the expressions of apoptosis-related proteins were detected by Western blots. RESULTS PMS2L2 was downregulated in the plasma of UC patients compared to that in age- and gender-matched healthy control. In human colonic epithelial cells (HCnEpCs), PMS2L2 overexpression inhibited miR-24 expression via promoting the methylation of miR-24 gene. In contrast, miR-24 overexpression failed to affect PMS2L2. In the detection of cell apoptosis, PMS2L2 overexpression could promote the expression of Bcl-2 and inhibit Bax, cleaved-caspase-3, and cleaved-caspase-9 expressions stimulated by LPS. Flow cytometer revealed that PMS2L2 elevation suppressed the apoptosis of HCnEpCs induced by LPS, but miR-24 aggravated the apoptosis. PMS2L2 overexpression rescued the detrimental effect of miR-24 on cell apoptosis. CONCLUSION PMS2L2 may downregulate miR-24 via methylation to suppress cell apoptosis in UC.
Collapse
Affiliation(s)
- Ting Yu
- Department of TCM Proctlogy, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Fanyu Meng
- Department of TCM Proctlogy, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Minning Xie
- Department of TCM Proctlogy, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Huajiang Liu
- Department of TCM Proctlogy, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Lei Zhang
- Department of TCM Proctlogy, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Xinghua Chen
- Department of TCM Proctlogy, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
9
|
Cell death in the gut epithelium and implications for chronic inflammation. Nat Rev Gastroenterol Hepatol 2020; 17:543-556. [PMID: 32651553 DOI: 10.1038/s41575-020-0326-4] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/26/2020] [Indexed: 02/06/2023]
Abstract
The intestinal epithelium has one of the highest rates of cellular turnover in a process that is tightly regulated. As the transit-amplifying progenitors of the intestinal epithelium generate ~300 cells per crypt every day, regulated cell death and sloughing at the apical surface keeps the overall cell number in check. An aberrant increase in the rate of intestinal epithelial cell (IEC) death underlies instances of extensive epithelial erosion, which is characteristic of several intestinal diseases such as inflammatory bowel disease and infectious colitis. Emerging evidence points to a crucial role of necroptosis, autophagy and pyroptosis as important modes of programmed cell death in the intestine in addition to apoptosis. The mode of cell death affects tissue restitution responses and ultimately the long-term risks of intestinal fibrosis and colorectal cancer. A vicious cycle of intestinal barrier breach, misregulated cell death and subsequent inflammation is at the heart of chronic inflammatory and infectious gastrointestinal diseases. This Review discusses the underlying molecular and cellular underpinnings that control programmed cell death in IECs, which emerge during intestinal diseases. Translational aspects of cell death modulation for the development of novel therapeutic alternatives for inflammatory bowel diseases and colorectal cancer are also discussed.
Collapse
|
10
|
Lee JS, Wang RX, Goldberg MS, Clifford GP, Kao DJ, Colgan SP. Microbiota-Sourced Purines Support Wound Healing and Mucous Barrier Function. iScience 2020; 23:101226. [PMID: 32554188 PMCID: PMC7303675 DOI: 10.1016/j.isci.2020.101226] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/04/2020] [Accepted: 05/29/2020] [Indexed: 01/07/2023] Open
Abstract
The intestinal mucosa requires high levels of nucleotides for energy procurement, proliferation, and innate immunity. This need for nucleotide substrates substantially increases during injury, infection, and wound healing. In the present studies, we profile potential sources of purine nucleotides in murine mucosal tissue. This work reveals the gut microbiota as a prominent source of exogenous purines and that such microbiota-sourced purines (MSPs) are available to the intestinal mucosa. The MSPs are utilized for nucleotide genesis and promote energy balance. Further analyses reveal that colitic tissues lacking MSPs are proliferatively stunted, with notable energetic and endoplasmic reticulum stress to the detriment of mucous barrier integrity. Purine reconstitution either directly or through colonization of germ-free/antibiotic-treated mice with MSP-sufficient E. coli alleviates such deficits, establishing MSP as a critical source of substrate for tissue metabolism, wound healing, and mucous barrier sterile integrity.
Collapse
Affiliation(s)
- J Scott Lee
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Anschutz Medical Campus, 12700 East 19th Avenue, MS B-146, Aurora, CO 80045, USA
| | - Ruth X Wang
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Anschutz Medical Campus, 12700 East 19th Avenue, MS B-146, Aurora, CO 80045, USA
| | - Matthew S Goldberg
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Anschutz Medical Campus, 12700 East 19th Avenue, MS B-146, Aurora, CO 80045, USA
| | - Garrett P Clifford
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Anschutz Medical Campus, 12700 East 19th Avenue, MS B-146, Aurora, CO 80045, USA
| | - Daniel J Kao
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Anschutz Medical Campus, 12700 East 19th Avenue, MS B-146, Aurora, CO 80045, USA
| | - Sean P Colgan
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Anschutz Medical Campus, 12700 East 19th Avenue, MS B-146, Aurora, CO 80045, USA.
| |
Collapse
|
11
|
Lu C, Klement JD, Yang D, Albers T, Lebedyeva IO, Waller JL, Liu K. SUV39H1 regulates human colon carcinoma apoptosis and cell cycle to promote tumor growth. Cancer Lett 2020; 476:87-96. [PMID: 32061753 DOI: 10.1016/j.canlet.2020.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 01/06/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
Abstract
Trimethylation of histone 3 lysine 9 (H3K9me3) at gene promoters is a major epigenetic mechanism that silences gene expression. We have developed a small molecule inhibitor for the H3K9me3-specific histone methyltransferase SUV39H1. We report here that FAS expression is significantly down-regulated and SUV39H1 expression is significantly up-regulated in human colorectal carcinoma (CRC) as compared to normal colon. SUV39H1-selective inhibitor F5446 decreased H3K9me3 deposition at the FAS promoter, increased Fas expression, and increased CRC cell sensitivity to FasL-induced apoptosis in vitro. Furthermore, inhibition of SUV39H1 altered the expression of genes with known functions in DNA replication and cell cycle in the metastatic colon carcinoma cells, which is associated with cell cycle arrest at S phase in the metastatic human colon carcinoma cells, resulting in tumor cell apoptosis and growth inhibition in a concentration-dependent manner in vitro. Moreover, F5446 increased 5-FU-resistant human CRC sensitivity to both 5-FU- and FasL-induced apoptosis and inhibited tumor cell growth in vitro. More importantly, F5446 suppressed human colon tumor xenograft growth in vivo. Our data indicate that pharmacological inhibition of SUV39H1 is an effective approach to suppress human CRC.
Collapse
Affiliation(s)
- Chunwan Lu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, 30912, USA; Georgia Cancer Center, Medical College of Georgia, Augusta, GA, 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA.
| | - John D Klement
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, 30912, USA; Georgia Cancer Center, Medical College of Georgia, Augusta, GA, 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, 30912, USA; Georgia Cancer Center, Medical College of Georgia, Augusta, GA, 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA
| | - Thomas Albers
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA, 30912, USA
| | - Iryna O Lebedyeva
- Department of Chemistry and Physics, Augusta University, Augusta, GA, 30904, USA
| | - Jennifer L Waller
- Department of Population Health Sciences, Augusta University, Augusta, GA, 30912, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, 30912, USA; Georgia Cancer Center, Medical College of Georgia, Augusta, GA, 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA.
| |
Collapse
|
12
|
Kawamoto A, Nagata S, Anzai S, Takahashi J, Kawai M, Hama M, Nogawa D, Yamamoto K, Kuno R, Suzuki K, Shimizu H, Hiraguri Y, Yui S, Oshima S, Tsuchiya K, Nakamura T, Ohtsuka K, Kitagawa M, Okamoto R, Watanabe M. Ubiquitin D is Upregulated by Synergy of Notch Signalling and TNF-α in the Inflamed Intestinal Epithelia of IBD Patients. J Crohns Colitis 2019; 13:495-509. [PMID: 30395194 DOI: 10.1093/ecco-jcc/jjy180] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS The intestinal epithelium of inflammatory bowel disease [IBD] patients is exposed to various pro-inflammatory cytokines, most notably tumour necrosis factor alpha [TNF-α]. We have previously shown that the Notch signalling pathway is also upregulated in such an epithelium, contributing to intestinal epithelial cell [IEC] proliferation and regeneration. We aimed to reproduce such environment in vitro and explore the gene regulation involved. METHODS Human IEC cell lines or patient-derived organoids were used to analyse Notch- and TNF-α-dependent gene expression. Immunohistochemistry was performed to analyse expression of ubiquitin D [UBD] in various patient-derived intestinal tissues. RESULTS In human IEC cell lines, we found that Notch signalling and TNF-α-induced NFκB signalling are reciprocally regulated to promote expression of a specific gene subset. Global gene expression analysis identified UBD to be one of the most highly upregulated genes, due to synergy of Notch and TNF-α. The synergistic expression of UBD was regulated at the transcriptional level, whereas the UBD protein had an extremely short half-life due to post-translational, proteasomal degradation. In uninflamed intestinal tissues from IBD patients, UBD expression was limited to IECs residing at the crypt bottom. In contrast, UBD-expressing IECs were seen throughout the crypt in inflamed tissues, indicating substantial induction by the local inflammatory environment. Analysis using patient-derived organoids consistently confirmed conserved Notch- and TNF-α-dependent expression of UBD. Notably, post-infliximab [IFX] downregulation of UBD reflected favourable outcome in IBD patients. CONCLUSION We propose that UBD is a novel inflammatory-phase protein expressed in IECs, with a highly rapid responsiveness to anti-TNF-α treatment.
Collapse
Affiliation(s)
- Ami Kawamoto
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sayaka Nagata
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sho Anzai
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Junichi Takahashi
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mao Kawai
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Minami Hama
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daichi Nogawa
- Department of Comprehensive Pathology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kouhei Yamamoto
- Department of Comprehensive Pathology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Reiko Kuno
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kohei Suzuki
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiromichi Shimizu
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yui Hiraguri
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shiro Yui
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shigeru Oshima
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kiichiro Tsuchiya
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuya Nakamura
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Advanced Therapeutics in GI Diseases, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuo Ohtsuka
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masanobu Kitagawa
- Department of Comprehensive Pathology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mamoru Watanabe
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
13
|
Lu C, Yang D, Klement JD, Oh IK, Savage NM, Waller JL, Colby AH, Grinstaff MW, Oberlies NH, Pearce CJ, Xie Z, Kulp SK, Coss CC, Phelps MA, Albers T, Lebedyeva IO, Liu K. SUV39H1 Represses the Expression of Cytotoxic T-Lymphocyte Effector Genes to Promote Colon Tumor Immune Evasion. Cancer Immunol Res 2019; 7:414-427. [PMID: 30610059 DOI: 10.1158/2326-6066.cir-18-0126] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/07/2018] [Accepted: 12/18/2018] [Indexed: 01/23/2023]
Abstract
Despite the presence of CTLs in the tumor microenvironment, the majority of immunogenic human colon cancer does not respond to immune checkpoint inhibitor immunotherapy, and microsatellite instable (MSI) tumors are not naturally eliminated. The molecular mechanism underlying the inactivity of tumor-infiltrating CTLs is unknown. We report here that CTLs were present in both MSI and microsatellite stable colon tumors. The expression of the H3K9me3-specific histone methyltransferase SUV39H1 was significantly elevated in human colon carcinoma compared with normal colon tissues. Using a mouse colon carcinoma model, we further determined that tumor-infiltrating CTLs in the colon tumor microenvironment have high expression of SUV39H1. To target SUV39H1 in the tumor microenvironment, a virtual chemical library was screened on the basis of the SET (suppressor of variegation 3-9, enhancer of zeste and trithorax) domain structure of the human SUV39H1 protein. Functional enzymatic activity assays identified a small molecule that inhibits SUV39H1 enzymatic activity. On the basis of the structure of this small molecule, we modified it and chemically synthesized a small molecule, termed F5446, which has an EC50 of 0.496 μmol/L for SUV39H1 enzymatic activity. H3K9me3 was enriched in the promoters of GZMB, PRF1, FASLG, and IFNG in quiescent T cells. F5446 inhibited H3K9me3, thereby upregulating expression of these effectors in tumor-infiltrating CTLs and suppressing colon carcinoma growth in a CD8+ CTL-dependent manner in vivo Our data indicate that SUV39H1 represses CTL effector gene expression and, in doing so, confers colon cancer immune escape.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Cell Line, Tumor
- Colonic Neoplasms/drug therapy
- Colonic Neoplasms/immunology
- Colonic Neoplasms/metabolism
- Disease Models, Animal
- Enzyme Inhibitors/pharmacology
- Enzyme Inhibitors/therapeutic use
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/immunology
- Histones/metabolism
- Humans
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Methyltransferases/antagonists & inhibitors
- Methyltransferases/immunology
- Methyltransferases/metabolism
- Mice
- Repressor Proteins/antagonists & inhibitors
- Repressor Proteins/immunology
- Repressor Proteins/metabolism
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Tumor Escape
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Chunwan Lu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia.
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
- Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
- Charlie Norwood VA Medical Center, Augusta, Georgia
| | - John D Klement
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
- Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Il Kyu Oh
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia
| | - Natasha M Savage
- Department of Pathology, Medical College of Georgia, Augusta, Georgia
| | - Jennifer L Waller
- Department of Population Health Sciences, Medical College of Georgia, Augusta, Georgia
| | - Aaron H Colby
- Ionic Pharmaceuticals, Brookline, Massachusetts
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Mark W Grinstaff
- Ionic Pharmaceuticals, Brookline, Massachusetts
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina
| | | | - Zhiliang Xie
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Samuel K Kulp
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Christopher C Coss
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Mitch A Phelps
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Thomas Albers
- Department of Chemistry and Physics, Augusta University, Augusta, Georgia
| | - Iryna O Lebedyeva
- Department of Chemistry and Physics, Augusta University, Augusta, Georgia
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia.
- Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
- Charlie Norwood VA Medical Center, Augusta, Georgia
| |
Collapse
|
14
|
Hua C, Tian J, Tian P, Cong R, Luo Y, Geng Y, Tao S, Ni Y, Zhao R. Feeding a High Concentration Diet Induces Unhealthy Alterations in the Composition and Metabolism of Ruminal Microbiota and Host Response in a Goat Model. Front Microbiol 2017; 8:138. [PMID: 28210249 PMCID: PMC5288341 DOI: 10.3389/fmicb.2017.00138] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/19/2017] [Indexed: 12/23/2022] Open
Abstract
There is limited knowledge about the impact of long-term feeding a high-concentrate (HC) diet on rumen microbiota, metabolome, and host cell functions. In this study, a combination of mass spectrometry-based metabolomics techniques, 454 pyrosequencing of 16S rDNA genes, and RT-PCR was applied to evaluate the changes of ruminal microbiota composition, ruminal metabolites, and related genes expression in rumen epithelial cells of lactating goats received either a 35% concentrate diet or a 65% concentrate diet for 4 or 19 weeks, respectively. Results show that feeding a HC diet reduced the microbiota diversity and led to the disorders of metabolism in the rumen. The concentrations of lactate, phosphorus, NH3-N and endotoxin Lipopolysaccharide in ruminal fluids, and plasma histamine, lactate and urine N (UN) were increased significantly in goats fed with a HC diet. A significant increase of genes expression related to volatile fatty acids transport, cell apoptosis, and inflammatory responses were also observed in goats fed with a HC diet. Correlation analysis revealed some potential relationships between bacteria abundance and metabolites concentrations. Our findings indicate that a HC diet can induce ruminal microbiota dysbiosis and metabolic disorders, thus increasing risks to host health and potential harm to the environment.
Collapse
Affiliation(s)
- Canfeng Hua
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University Nanjing, China
| | - Jing Tian
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University Nanjing, China
| | - Ping Tian
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University Nanjing, China
| | - Rihua Cong
- College of Veterinary Medicine, Northwest A&F University Xianyang, China
| | - Yanwen Luo
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University Nanjing, China
| | - Yali Geng
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University Nanjing, China
| | - Shiyu Tao
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University Nanjing, China
| | - Yingdong Ni
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University Nanjing, China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University Nanjing, China
| |
Collapse
|
15
|
Inaba Y, Ueno N, Numata M, Zhu X, Messer JS, Boone DL, Fujiya M, Kohgo Y, Musch MW, Chang EB. Soluble bioactive microbial mediators regulate proteasomal degradation and autophagy to protect against inflammation-induced stress. Am J Physiol Gastrointest Liver Physiol 2016; 311:G634-G647. [PMID: 27514476 PMCID: PMC5142193 DOI: 10.1152/ajpgi.00092.2016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/07/2016] [Indexed: 01/31/2023]
Abstract
Bifidobacterium breve and other Gram-positive gut commensal microbes protect the gastrointestinal epithelium against inflammation-induced stress. However, the mechanisms whereby these bacteria accomplish this protection are poorly understood. In this study, we examined soluble factors derived from Bifidobacterium breve and their impact on the two major protein degradation systems within intestinal epithelial cells, proteasomes and autophagy. Conditioned media from gastrointestinal Gram-positive, but not Gram-negative, bacteria activated autophagy and increased expression of the autophagy proteins Atg5 and Atg7 along with the stress response protein heat shock protein 27. Specific examination of media conditioned by the Gram-positive bacterium Bifidobacterium breve (Bb-CM) showed that this microbe produces small molecules (<3 kDa) that increase expression of the autophagy proteins Atg5 and Atg7, activate autophagy, and inhibit proteasomal enzyme activity. Upregulation of autophagy by Bb-CM was mediated through MAP kinase signaling. In vitro studies using C2BBe1 cells silenced for Atg7 and in vivo studies using mice conditionally deficient in intestinal epithelial cell Atg7 showed that Bb-CM-induced cytoprotection is dependent on autophagy. Therefore, this work demonstrates that Gram-positive bacteria modify protein degradation programs within intestinal epithelial cells to promote their survival during stress. It also reveals the therapeutic potential of soluble molecules produced by these microbes for prevention and treatment of gastrointestinal disease.
Collapse
Affiliation(s)
- Yuhei Inaba
- Department of Medicine, Inflammatory Bowel Disease Research Center, The University of Chicago, Chicago, Illinois; Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Nobuhiro Ueno
- Department of Medicine, Inflammatory Bowel Disease Research Center, The University of Chicago, Chicago, Illinois; Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Masatsugu Numata
- Department of Medicine, Inflammatory Bowel Disease Research Center, The University of Chicago, Chicago, Illinois; Division of Life Style and Digestive Diseases, Kagoshima Medical University, Kagoshima, Japan
| | - Xiaorong Zhu
- Department of Medicine, Inflammatory Bowel Disease Research Center, The University of Chicago, Chicago, Illinois
| | - Jeannette S Messer
- Department of Medicine, Inflammatory Bowel Disease Research Center, The University of Chicago, Chicago, Illinois
| | - David L Boone
- Department of Microbiology and Immunology, Indiana University School of Medicine-South Bend, South Bend, Indiana
| | - Mikihiro Fujiya
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Yutaka Kohgo
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Mark W Musch
- Department of Medicine, Inflammatory Bowel Disease Research Center, The University of Chicago, Chicago, Illinois
| | - Eugene B Chang
- Department of Medicine, Inflammatory Bowel Disease Research Center, The University of Chicago, Chicago, Illinois;
| |
Collapse
|
16
|
Yao J, Cao X, Zhang R, Li YX, Xu ZL, Zhang DG, Wang LS, Wang JY. Protective Effect of Baicalin Against Experimental Colitis via Suppression of Oxidant Stress and Apoptosis. Pharmacogn Mag 2016; 12:225-34. [PMID: 27601854 PMCID: PMC4989799 DOI: 10.4103/0973-1296.186342] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: Baicalin is a bioactive ingredient extracted from the root of Scutellariae radix, which is used to treat ulcerative colitis (UC). Objective: We investigated the activity of baicalin on lipopolysaccharide-stimulated RAW264.7 cells and 2,4,6-trinitrobenzene sulfonic acid-induced rats, including the attenuation of oxidant stress and apoptosis. Materials and Methods: The severity of colitis was assessed by disease activity index. The activities of catalase (CAT), glutathione peroxidase (GSH-PX), superoxide dismutase (SOD), and the content of malondialdehyde (MDA) were determined by their corresponding kits. The terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) was performed to study whether experimental colitis was associated with intestinal epithelial cell (IEC) apoptosis and the effect of baicalin on IEC apoptosis. Western blot analysis and immunocytochemistry assay were applied to determine the protein expressions. The reactive oxygen species (ROS) level in the colon of UC rats treated with baicalin was determined by ROS assay kit. Results: Baicalin remarkably upregulated the activities of CAT, GSH-PX, and SOD and decreased the content of MDA in a dose-dependent manner in vitro and in vivo. The TUNEL-positive cells in rats treated baicalin were remarkably reduced. Both Western blot analysis and immunocytochemistry assay indicated that baicalin significantly decreased the expressions of transforming growth factor beta-1, Bax protein and upregulated the expression of Bcl-2 protein. In addition, the expressions of total and cleaved caspase-3, total and cleaved caspase-9 protein, Fas, and FasL in vitro were downregulated by the treatment with baicalin. Baicalin of different doses reduced the generation of ROS in UC rats. Conclusion: Taken together, these evidences provide scientific basics for the application of baicalin in the treatment of UC and suggest that baicalin exerts its effect via suppression of oxidant stress and apoptosis. SUMMARY
Baicalin remarkably upregulated the activities of catalase, glutathione peroxidase, and superoxide dismutase and decreased the content of MDA, both in vivo and in vitro The terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling-positive cells in rats treated baicalin remarkably reduced in a concentration-dependent manner Western blot analysis and immunocytochemistry assay indicated that baicalin significantly decreased the expressions of transforming growth factor beta-1, Bax protein, and upregulated the expression of Bcl-2 protein The expressions of total and cleaved caspase-3, total and cleaved caspase-9 protein, Fas, and FasL in vitro were downregulated by the treatment with baicalin. Abbreviations used: UC: Ulcerative colitis, LPS: Lipopolysaccharide, TNBS: 2,4,6-trinitrobenzene sulfonic acid, DAI: Disease activity index, CAT: Catalase, GSH-PX: Glutathione peroxidase, SOD: Superoxide dismutase, MDA: Malondialdehyde, TUNEL: Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling, ROS: Reactive oxygen species, IEC: Intestinal epithelial cell, SD: Sprague-Dawley, HE: H and E, DNTB: 5,5'-dithiobis-2-nitrobenzoic acid, TBA: Thiobarbituric acid, TBARS: Thiobarbituric acid-reactive substances, S.D: Standard deviation, and PBS: Phosphate-buffered saline.
Collapse
Affiliation(s)
- Jun Yao
- Department of Gastroenterology, Shenzhen genetic engineering Animal Center, Jinan University of Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen 518020, China
| | - Xu Cao
- Department of Internal Medicine-Neurology, Shenzhen genetic engineering Animal Center, Jinan University of Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen 518020, China
| | - Ru Zhang
- Department of Gastroenterology, Shenzhen genetic engineering Animal Center, Jinan University of Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen 518020, China
| | - Ying-Xue Li
- Department of Gastroenterology, Shenzhen genetic engineering Animal Center, Jinan University of Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen 518020, China
| | - Zheng-Lei Xu
- Department of Gastroenterology, Shenzhen genetic engineering Animal Center, Jinan University of Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen 518020, China
| | - Ding-Guo Zhang
- Department of Gastroenterology, Shenzhen genetic engineering Animal Center, Jinan University of Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen 518020, China
| | - Li-Sheng Wang
- Department of Gastroenterology, Shenzhen genetic engineering Animal Center, Jinan University of Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen 518020, China
| | - Jian-Yao Wang
- Department of General Surgery, Shenzhen Children's Hospital, Shenzhen 518026, Guangdong Province, China
| |
Collapse
|
17
|
Chen Y, Zheng H, Zhang J, Wang L, Jin Z, Gao W. Protective effect and potential mechanisms of Wei-Chang-An pill on high-dose 5-fluorouracil-induced intestinal mucositis in mice. JOURNAL OF ETHNOPHARMACOLOGY 2016; 190:200-211. [PMID: 27240747 DOI: 10.1016/j.jep.2016.05.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wei-Chang-An pill (WCA pill), a traditional Chinese pharmaceutical preparation, possessed potential anti-inflammatory advantages and noteworthy gastrointestinal regulations in digestive diseases, which might represent a promising candidate for the treatment of intestinal mucositis (IM) induced by 5-fluorouracil (5-FU). AIM OF THE STUDY To analyze the bioactive constituents and investigate the effect of methanol extraction from WCA pill (WCA ext) on 5-FU induced IM with underlying mechanisms. MATERIALS AND METHODS The analysis of serum bioactive constituents after WCA ext administration in rats was carried out by UHPLC-Quadrupole-Time of Flight-Mass Spectrometry. In mice, IM was induced by 5-FU and physical manifestations were measured during the period of drug delivery. Half of mice were assessed with histology, expression of inflammatory cytokines in ileum and plasma via hematoxylin and eosin staining, immunohistochemical staining as well as cytokine enzyme-linked immunosorbent assay test, respectively. Besides, gastric emptying (GE) and gastrointestinal transit (GIT) were further tested in the other half of 5-FU induced mice. RESULTS Twenty-two compounds were identified or tentatively characterized. IM induced by 5-FU was improved significantly after treatment with WCA ext through reducing the body weight loss, relieving the severe diarrhea, and inhibiting the GE as well as GIT. Further assessments validated that WCA ext promoted the recovery of intestinal mucosa, evaluated the activity of enterocyte proliferation, maintained the integrity of tight junction, and ameliorated the inflammatory disturbances. CONCLUSIONS These results suggested that WCA ext promoted the restoration of intestinal function in 5-FU-induced IM via regulating multiple sites of actions in intestinal homeostasis. Accordingly, WCA pill might be a promising therapeutic candidate for the prevention of IM during cancer chemotherapy.
Collapse
Affiliation(s)
- Yuling Chen
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Hong Zheng
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Jingze Zhang
- Department of Pharmacy, Logistics University of Chinese People's Armed Police Forces, Special Drugs R & D Center of People's Armed Police Forces, Tianjin 300162, China.
| | - Lei Wang
- Tianjin Lerentang Pharmaceutical Factory, Tianjin Zhongxin Pharmaceutical Group Co., Ltd., Tianjin 300380, China
| | - Zhaoxiang Jin
- Tianjin Lerentang Pharmaceutical Factory, Tianjin Zhongxin Pharmaceutical Group Co., Ltd., Tianjin 300380, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
18
|
Seidelin JB. Regulation of antiapoptotic and cytoprotective pathways in colonic epithelial cells in ulcerative colitis. Scand J Gastroenterol 2016; 50 Suppl 1:1-29. [PMID: 26513451 DOI: 10.3109/00365521.2016.1101245] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ulcerative colitis is an inflammatory bowel disease involving the colon resulting in bloody diarrhea and increased risk of colorectal cancer in certain patient subgroups. Increased apoptosis in the epithelial cell layer causes increased permeability, especially during flares; this leads to translocation of luminal pathogens resulting in a continued inflammatory drive. The present work investigates how epithelial apoptosis is regulated in ulcerative colitis. The main results are that Fas mediated apoptosis is inhibited during flares of ulcerative colitis, probably by an upregulation of cellular inhibitor of apoptosis protein 2 (cIAP2) and cellular FLICE-like inhibitory protein. cIAP2 is upregulated in regenerative epithelial cells both in ulcerative colitis and in experimental intestinal wounds. Inhibition of cIAP2 decreases wound healing in vitro possibly through inhibition of migration. Altogether, it is shown that epithelial cells in ulcerative colitis responds to the hostile microenvironment by activation of cytoprotective pathways that tend to counteract the cytotoxic effects of inflammation. However, the present studies also show that epithelial cells produce increased amounts of reactive oxygen species during stimulation with tumor necrosis factor-α and interferon-γ resulting in DNA instability. The combined effect of increased DNA-instability and decreased apoptosis responses could lead to neoplasia.
Collapse
Affiliation(s)
- Jakob B Seidelin
- a Department of Gastroenterology, Medical Section , Herlev Hospital, University of Copenhagen , Herlev , Denmark
| |
Collapse
|
19
|
Mitomi H, Okayasu I, Bronner MP, Kanazawa H, Nishiyama Y, Otani Y, Sada M, Tanabe S, Igarashi M, Katsumata T, Saigenji K. Comparative Histologic Assessment of Proctocolectomy Specimens from Japanese and American Patients with Ulcerative Colitis with or Without Dysplasia. Int J Surg Pathol 2016; 13:259-65. [PMID: 16086081 DOI: 10.1177/106689690501300305] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There have been no reports of histologic differences in ulcerative colitis (UC) between Japanese and American patients. We therefore compared histology in proctocolectomy resection specimens between Japanese patients with UC (19 cases with and 21 without dysplasia) at the Kitasato University East Hospital and American patients with UC (21 cases with and 24 without dysplasia) at the University of Washington Medical Center. In cases of UC with, but not without dysplasia, cryptitis (p = 0.010) and epithelial apoptosis (p < 0.001) in the nondysplastic mucosa were more frequently observed in Japanese than in American cases, whereas lamina propria fibrosis was more prominent in American counterparts (p = 0.008). In patients with UC with dysplasia, the duration of disease was significantly longer in American than in Japanese patients (median, 17 vs 14 years, respectively; p = 0.038). This might, in part, explain the histologic variation. Another possibility for the differences is that the preoperative medications may have differed in the populations.
Collapse
Affiliation(s)
- Hiroyuki Mitomi
- Department of Clinical Research Laboratory, National Sagamihara Hospital, 18-1 Sakura-dai, Sagamihara, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Gamma/delta intraepithelial lymphocytes in the mouse small intestine. Anat Sci Int 2016; 91:301-12. [PMID: 27056578 DOI: 10.1007/s12565-016-0341-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/18/2016] [Indexed: 12/30/2022]
Abstract
Although many studies of intraepithelial lymphocytes (IELs) have been reported, most of them have focused on αβ-IELs; little attention has been paid to γδ-IELs. The function of γδ-IELs remains largely unclear. In this article, we briefly review a number of reports on γδ-IELs, especially those in the small intestine, along with our recent studies. We found that γδ-IELs are the most abundant (comprising >70 % of the) IELs in the duodenum and the jejunum, implying that it is absolutely necessary to investigate the function(s) of γδ-IELs when attempting to delineate the in vivo defense system of the small intestine. Intraperitoneal injection of anti-CD3 mAb stimulated the γδ-IELs and caused rapid degranulation of them. Granzyme B released from their granules induced DNA fragmentation of duodenal and jejunal epithelial cells (paracrine) and of the IELs themselves (autocrine). However, perforin (Pfn) was not detected, and DNA fragmentation was induced even in Pfn-knockout mice; our system was therefore found to present a novel type of in vivo Pfn-independent DNA fragmentation. We can therefore consider γδ-IELs to be a novel type of large granular lymphocyte without Pfn. Fragmented DNA was repaired in the cells, indicating that DNA fragmentation alone cannot be regarded as an unambiguous marker of cell death or apoptosis. Finally, since the response was so rapid and achieved without the need for accessory cells, it seems that γδ-IELs respond readily to various stimuli, are activated only once, and die 2-3 days after activation in situ without leaving their site. Taken together, these results suggest that γδ-IELs are not involved in the recognition of specific antigen(s) and are not involved in the resulting specific killing or exclusion of the relevant antigen(s).
Collapse
|
21
|
New insights into immune mechanisms underlying autoimmune diseases of the gastrointestinal tract. Autoimmun Rev 2015; 14:1161-9. [PMID: 26275585 DOI: 10.1016/j.autrev.2015.08.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 08/05/2015] [Indexed: 02/07/2023]
|
22
|
Heterogeneous Nuclear Ribonucleoprotein A1 Improves the Intestinal Injury by Regulating Apoptosis Through Trefoil Factor 2 in Mice with Anti-CD3-induced Enteritis. Inflamm Bowel Dis 2015; 21:1541-52. [PMID: 25901972 DOI: 10.1097/mib.0000000000000401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND The role of hnRNP A1 in the onset of intestinal inflammation remains unclear. This study investigated the function of hnRNP A1 in mice enteritis models. METHODS C57Bl6/J mice were intraperitoneally injected with anti-CD3 antibodies to develop enteritis. In the DSS-induced colitis group, the mice were allowed free access to 3% DSS solution in their drinking water for 5 days. 3H-mannitol flux and complementary DNA array tests were used to assess the intestinal barrier function and messenger RNA (mRNA) expression, respectively. Real-time PCR was performed after immunoprecipitation with anti-hnRNP antibodies to determine the specific mRNA binding of hnRNP A1. RESULTS The hnRNP A1 expression was increased in the intestine of the mouse at 24 hours after treatment with anti-CD3 antibodies and 5 days after starting DSS administration. Small interfering RNA (siRNA) against hnRNP A1 exacerbated the intestinal injuries in both models. According to the microarray analysis, trefoil factor 2 (TFF2) was identified as a candidate molecule targeted by hnRNP A1 in the anti-CD3 antibody-induced enteritis group. Moreover, the binding between hnRNP A1 and TFF2 mRNA significantly increased in the enteritis mice, and the administration of siRNA against either hnRNP A1 or TFF2 exacerbated the degree of intestinal injury. In the DSS-induced colitis group, treatment with the siRNA of hnRNP A1 worsened the intestinal injury, while the expression of TFF3 did not change. CONCLUSIONS hnRNP A1 improves intestinal injury in anti-CD3 antibody-induced enteritis mice through the upregulation of TFF2, which regulates apoptosis and enhances epithelial restoration, whereas this molecule ameliorates DSS-induced colitis through a different pathway.
Collapse
|
23
|
Abstract
Dysregulated homeostasis of epithelial cells resulting in disruption of mucosal barrier function is an important pathogenic mechanism in inflammatory bowel diseases (IBD). We have characterized a novel gastric protein, Antrum Mucosal Protein (AMP)-18, that has pleiotropic properties; it is mitogenic, anti-apoptotic and can stimulate formation of tight junctions. A 21-mer synthetic peptide derived from AMP-18 exhibits the same biological functions as the full-length protein and is an effective therapeutic agent in mouse models of IBD. In this study we set out to characterize therapeutic mechanisms and identify molecular targets by which AMP-18 maintains and restores disrupted epithelial homeostasis in cultured intestinal epithelial cells and a mouse model of IBD. Tumor necrosis factor (TNF)-α, a pro-inflammatory cytokine known to mediate gastrointestinal (GI) mucosal injury in IBD, was used to induce intestinal epithelial cell injury, and study the effects of AMP-18 on apoptosis and the cell cycle. An apoptosis array used to search for targets of AMP-18 in cells exposed to TNF-α identified the cyclin-dependent kinase inhibitor p21WAF1/CIP1. Treatment with AMP-18 blunted increases in p21 expression and apoptosis, while reversing disturbed cell cycle kinetics induced by TNF-α. AMP-18 appears to act through PI3K/AKT pathways to increase p21 phosphorylation, thereby reducing its nuclear accumulation to overcome the antiproliferative effects of TNF-α. In vitamin D receptor-deficient mice with TNBS-induced IBD, the observed increase in p21 expression in colonic epithelial cells was suppressed by treatment with AMP peptide. The results indicate that AMP-18 can maintain and/or restore the homeostatic balance between proliferation and apoptosis in intestinal epithelial cells to protect and repair mucosal barrier homeostasis and function, suggesting a therapeutic role in IBD.
Collapse
|
24
|
Yang Y, Li W, Sun Y, Han F, Hu CAA, Wu Z. Amino acid deprivation disrupts barrier function and induces protective autophagy in intestinal porcine epithelial cells. Amino Acids 2014; 47:2177-84. [PMID: 25287255 DOI: 10.1007/s00726-014-1844-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 09/16/2014] [Indexed: 12/19/2022]
Abstract
The integrity of intestinal barrier is essential for the absorption of nutrients and health in humans and animals. Dysfunction of the mucosal barrier is associated with increased gut permeability and development of various gastrointestinal diseases. Aside from serving as substrates for protein biosynthesis, amino acids also maintain the health of intestinal mucosal barrier. However, the underlying mechanisms remain unclear. We aimed to determine the effect and mechanism of non-essential amino acid (NEAA) deprivation on intestinal tight junction permeability using porcine intestinal epithelial cells as a model. We found that NEAA deprivation led to an impairment of barrier function as evidenced by increased permeability, decreased trans-epithelial resistance, and decreased expression of tight junction proteins claudin-1 and ZO-1. Importantly, NEAA deprivation induced both apoptosis and autophagy as shown by caspase-3 activation, and poly ADP-ribose polymerase cleavage; and LC3II lipidation and p62 degradation, hallmarks of apoptosis and autophagy, respectively. Importantly, we showed that the autophagy induced by NEAA deprivation counteracts apoptosis. Abrogation of autophagy by 3-methyladenine enhanced NEAA deprivation-induced barrier dysfunction and apoptosis; whereas, activation of autophagy by rapamycin partially rescued NEAA deprivation-induced barrier dysfunction and apoptosis. Taken together, our results demonstrate a critical role of NEAA on the mucosal integrity by regulating cell death and survival signaling pathways.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Wei Li
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yuli Sun
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Feng Han
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Chien-An A Hu
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM, 87131-0001, USA
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
25
|
Tao S, Duanmu Y, Dong H, Tian J, Ni Y, Zhao R. A high-concentrate diet induced colonic epithelial barrier disruption is associated with the activating of cell apoptosis in lactating goats. BMC Vet Res 2014; 10:235. [PMID: 25256013 PMCID: PMC4180839 DOI: 10.1186/s12917-014-0235-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 09/23/2014] [Indexed: 12/24/2022] Open
Abstract
Background In ruminants, lower ruminal pH causes massive disruption of ruminal epithelial structure during periods of feeding high-concentrate diets. However, the influence of excessive organic fatty acids in the lumen of hindgut on the epithelial structure is unclear. In this study, twelve mid-lactating goats were randomly assigned to either a HC diet group (65% concentrate of dry matter; n = 6) or a LC diet group (35% concentrate of dry matter; n = 6) for 10 weeks. The colonic epithelial structure was detected by HE staining and transmission electron microscopy (TEM), and the apoptotic status of epithelial cells was estimated by TUNEL method and caspase activities. Results HC goats showed higher level of free lipopolysaccharide (LPS) in rumen fluid (p < 0.01) but not in colonic digesta (p > 0.05), and higher total volatile fatty acid (VFA) concentrations in rumen fluid (p < 0.05) and in colonic digesta (p < 0.01), and higher content of starch in colonic digesta (p < 0.05) compared to LC goats. HC goats demonstrated profound alterations in the colonic epithelial structure and tight junctions (TJ), apparently due to damage of the epithelium with widened TJs space and nuclear breakdown and mitochondrial swelling. HC goats showed higher level of apoptosis in the colonic epithelium with higher proportion of TUNEL-positive apoptotic cells and increases of caspase-3 and −3/7 activities, as well as the lower ratio of bcl-2/bax mRNA expression in the colonic mucosa (p < 0.05). However, β-defense mRNA was significantly down-regulated in the colonic mucosa of HC goats compared to LC (p < 0.05). HC goats showed higher level of TJ proteins including claudin-1 and claudin-4 in the colonic mucosa than LC (p < 0.05). Neither free LPS content in the colonic digesta nor NF-κ B protein expression in tissues showed significant difference between HC and LC goats (p > 0.05). Conclusions Our results reveal that long-term feeding HC diet to lactating goats causes severe damages to the colonic mucosa barrier associated with activating cells apoptosis. Electronic supplementary material The online version of this article (doi:10.1186/s12917-014-0235-2) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
Inhibition of epithelial cell death by Bcl-2 improved chronic colitis in IL-10 KO mice. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 183:1936-1944. [PMID: 24266926 DOI: 10.1016/j.ajpath.2013.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 08/05/2013] [Accepted: 08/07/2013] [Indexed: 11/22/2022]
Abstract
IL-10-deficient mice spontaneously develop intestinal inflammation, which has many similarities to Crohn's disease. Several reports suggest that epithelial cell death may increase the severity of colitis; however, decisive evidence is lacking. In the present report, we addressed whether and how epithelial cell death plays a role in the development of chronic colitis. We first examined the morphological characteristics of intestines of IL-10-deficient mice and found two forms of epithelial cell death (typical apoptosis and necrosis-like cell death) in colitis. To elucidate the pathological roles of epithelial cell death, we crossbred IL-10-deficient knockout mice with Bcl-2 transgenic mice, in which the anti-apoptosis protein Bcl-2 was overexpressed in intestinal epithelial cells, but not in immune cells. Epithelial cell-specific Bcl-2 protected IL-10 deficiency-induced colitis and markedly reduced their symptoms. Interestingly, morphological analysis revealed that Bcl-2 suppressed apoptosis and necrosis-like cell death, and better maintained mucosal barrier in IL-10-deficient mice. From the immunological aspect, Bcl-2 did not alter the activation of T-helper cell 1 but inhibited the growth of T-helper cell 17, suggesting that mucosal integrity may control the immune responses. These results provide genetic evidence demonstrating that epithelial cell death is crucial for the development of chronic colitis.
Collapse
|
27
|
Ślebioda TJ, Kmieć Z. Tumour necrosis factor superfamily members in the pathogenesis of inflammatory bowel disease. Mediators Inflamm 2014; 2014:325129. [PMID: 25045210 PMCID: PMC4087264 DOI: 10.1155/2014/325129] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/29/2014] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a group of inflammatory conditions of the gastrointestinal tract of unclear aetiology of which two major forms are Crohn's disease (CD) and ulcerative colitis (UC). CD and UC are immunologically distinct, although they both result from hyperactivation of proinflammatory pathways in intestines and disruption of intestinal epithelial barrier. Members of the tumour necrosis factor superfamily (TNFSF) are molecules of broad spectrum of activity, including direct disruption of intestinal epithelial barrier integrity and costimulation of proinflammatory functions of lymphocytes. Tumour necrosis factor (TNF) has a well-established pathological role in IBD which also serves as a target in IBD treatment. In this review we discuss the role of TNF and other TNFSF members, notably, TL1A, FasL, LIGHT, TRAIL, and TWEAK, in the pathogenesis of IBD.
Collapse
Affiliation(s)
- Tomasz J. Ślebioda
- Department of Histology, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| | - Zbigniew Kmieć
- Department of Histology, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| |
Collapse
|
28
|
Kim A, Jung BH, Cadet P. A novel pathway by which the environmental toxin 4-Nonylphenol may promote an inflammatory response in inflammatory bowel disease. Med Sci Monit Basic Res 2014; 20:47-54. [PMID: 24717721 PMCID: PMC3997203 DOI: 10.12659/msmbr.890644] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background 4-Nonylphenol is a ubiquitous environmental toxin that is formed as a byproduct in the manufacturing and/or sewage treatment of regular household items. Previous work in our lab has implicated 4-NP in the progression of autoimmune diseases such as inflammatory bowel disease in which macrophages mistakenly attack the intestinal linings, causing chronic inflammation. Several key pro-and anti-inflammatory molecules have been shown to be involved in the manifestation of this disease, including IL-23A, COX-2, IL-8, TLR-4, and IL-10. Material and Methods 4-NP's effects on these known mediators of IBD were effectively analyzed using a novel model for IBD, by which 4-NP may promote an inflammatory response. Data were collected using DNA Microarray, RT-PCR, and ELISA, after 48 hour treatment of U937 histiocytic lymphocyte cells and COLO320DM human intestinal epithelial cells with 1 nM and 5 nM concentrations of 4-NP. Results Significant dysregulation of the expression of both pro- and anti-inflammatory genes was observed in U937 cells that would promote and prolong inflammation. However, TLR-4, IL-8, and COX-2 gene expressions showed unprecedented effects in COLO320DM cells suggesting that these genes mediate apoptotic processes within the gastrointestinal tract. Conclusions Overall, our results suggest that 4-NP administration engenders immune responses linked to apoptotic processes via dysregulation of macrophage signaling. In sum, 4-NP appears to increases the risk of developing inflammatory bowel disease by promoting or prolonging adverse progression of inflammation in the gastrointestinal tract.
Collapse
Affiliation(s)
- Albert Kim
- Department of Biology, Neuroscience Research Institute, State University of New York - College at Old Westbury, Old Westbury, USA
| | - Byeong Ho Jung
- Department of Biology, Neuroscience Research Institute, State University of New York - College at Old Westbury, Old Westbury, USA
| | - Patrick Cadet
- Department of Biology, Neuroscience Research Institute, State University of New York - College at Old Westbury, Old Westbury, USA
| |
Collapse
|
29
|
Yuge K, Takahashi T, Khai NC, Goto K, Fujiwara T, Fujiwara H, Kosai KI. Intramuscular injection of adenoviral hepatocyte growth factor at a distal site ameliorates dextran sodium sulfate-induced colitis in mice. Int J Mol Med 2014; 33:1064-74. [PMID: 24604303 PMCID: PMC4020479 DOI: 10.3892/ijmm.2014.1686] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 02/19/2014] [Indexed: 01/18/2023] Open
Abstract
Inflammatory bowel disease (IBD) severely affects the quality of life of patients. At present, there is no clinical solution for this condition; therefore, there is a need for innovative therapies for IBD. Hepatocyte growth factor (HGF) exerts various biological activities in various organs. However, a clinically applicable and effective HGF-based therapy for IBD has yet to be developed. In this study, we examined the therapeutic effect of injecting an adenoviral vector encoding the human HGF gene (Ad.HGF) into the hindlimbs of mice with dextran sodium sulfate (DSS)-induced colitis. Plasma levels of circulating human HGF (hHGF) were measured in injected mice. The results showed that weight loss and colon shortening were significantly lower in Ad.HGF-infected mice as compared to control (Ad.LacZ-infected) colitic mice. Additionally, inflammation and crypt scores were significantly reduced in the entire length of the colon, particularly in the distal section. This therapeutic effect was associated with increased cell proliferation and an antiapoptotic effect, as well as a reduction in the number of CD4+ cells and a decreased CD4/CD8 ratio. The levels of inflammatory, as well as Th1 and Th2 cytokines were higher in Ad.HGF-infected mice as compared to the control colitic mice. Thus, systemically circulating hHGF protein, produced by an adenovirally transduced hHGF gene introduced at distal sites in the limbs, significantly ameliorated DSS-induced colitis by promoting cell proliferation (i.e., regeneration), preventing apoptosis, and immunomodulation. Owing to its clinical feasibility and potent therapeutic effects, this method may be developed into a clinical therapy for treating IBD.
Collapse
Affiliation(s)
- Kentaro Yuge
- Department of Gene Therapy and Regenerative Medicine, Graduate School of Medicine, Gifu University, Gifu 502-1194, Japan
| | - Tomoyuki Takahashi
- Department of Gene Therapy and Regenerative Medicine, Graduate School of Medicine, Gifu University, Gifu 502-1194, Japan
| | - Ngin Cin Khai
- Department of Gene Therapy and Regenerative Medicine, Graduate School of Medicine, Gifu University, Gifu 502-1194, Japan
| | - Kazuko Goto
- Department of Gene Therapy and Regenerative Medicine, Graduate School of Medicine, Gifu University, Gifu 502-1194, Japan
| | - Takako Fujiwara
- Department of Food Science, Kyoto Women's University, Kyoto 605-8501, Japan
| | - Hisayoshi Fujiwara
- Department of Gene Therapy and Regenerative Medicine, Graduate School of Medicine, Gifu University, Gifu 502-1194, Japan
| | - Ken-Ichiro Kosai
- Department of Gene Therapy and Regenerative Medicine, Graduate School of Medicine, Gifu University, Gifu 502-1194, Japan
| |
Collapse
|
30
|
Abstract
BACKGROUND Apoptosis plays a role in epithelial and mucosal injury, which is 1 of the mechanisms in the pathogenesis of ulcerative colitis. Apoptotic cells increase as a result of injured mucosa in ulcerative colitis and serum M 30 levels increase in epithelial cell apoptosis. In this study, we aimed to evaluate the relation between M 30 serum levels and ulcerative colitis activity. METHODS Eighty patients with ulcerative colitis and 40 healthy controls were enrolled into the study. The patient group consisted of 31 extensive colitis, 30 left-sided colitis, and 19 proctitis. The activity of ulcerative colitis was determined with clinical and endoscopic findings. Serum M 30 levels, acute phase reactants, and biochemical tests were analyzed in all subjects. RESULTS Serum M 30 levels in patients with active ulcerative colitis were significantly higher when compared with the healthy controls (165.6 ± 60.6 and 129.6 ± 37.4; P = 0.003). Serum M 30 levels in active left-sided colitis patients was significantly higher when compared with patients in remission phase (180.6 ± 58.5, 141.5 ± 35.4; P = 0.044). When we exclude patients with ulcerative proctitis, M 30 levels in active ulcerative colitis patients were significantly higher than that the patients in remission phase (174.0 ± 63.5, 135.0 ± 29.9; P = 0.017). CONCLUSIONS We found that M 30 levels increase in patients with active ulcerative colitis. Our findings support the role of apoptosis demonstrated by serum M 30 levels in the pathogenesis of active ulcerative colitis.
Collapse
|
31
|
Topcu-Tarladacalisir Y, Akpolat M, Uz YH, Kizilay G, Sapmaz-Metin M, Cerkezkayabekir A, Omurlu IK. Effects of curcumin on apoptosis and oxidoinflammatory regulation in a rat model of acetic acid-induced colitis: the roles of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase. J Med Food 2013; 16:296-305. [PMID: 23566056 DOI: 10.1089/jmf.2012.2550] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The present study evaluated the effects of curcumin on epithelial cell apoptosis, the immunoreactivity of the phospho-c-Jun N-terminal kinase (JNK) and phospho-p38 mitogen-activated protein kinases (MAPKs) in inflamed colon mucosa, and oxidative stress in a rat model of ulcerative colitis induced by acetic acid. Rats were randomly divided into three groups: control, acetic acid, and acetic acid+curcumin. Curcumin (100 mg/kg per day, intragastrically) was administered 10 days before the induction of colitis and was continued for two additional days. Acetic acid-induced colitis caused a significant increase in the macroscopic and microscopic tissue ranking scores as well as an elevation in colonic myeloperoxidase (MPO) activity, malondialdehyde (MDA) levels, and the number of apoptotic epithelial cells in colon tissue compared to controls. In the rat colon, immunoreactivity of phospho-p38 MAPK was increased, whereas the phospho-JNK activity was decreased following the induction of colitis. Curcumin treatment was associated with amelioration of macroscopic and microscopic colitis sores, decreased MPO activity, and decreased MDA levels in acetic acid-induced colitis. Furthermore, oral curcumin supplementation clearly prevented programmed cell death and restored immunreactivity of MAPKs in the colons of colitic rats. The results of this study suggest that oral curcumin treatment decreases colon injury and is associated with decreased inflammatory reactions, lipid peroxidation, apoptotic cell death, and modulating p38- and JNK-MAPK pathways.
Collapse
|
32
|
Sakai H, Sagara A, Matsumoto K, Hasegawa S, Sato K, Nishizaki M, Shoji T, Horie S, Nakagawa T, Tokuyama S, Narita M. 5-Fluorouracil induces diarrhea with changes in the expression of inflammatory cytokines and aquaporins in mouse intestines. PLoS One 2013; 8:e54788. [PMID: 23382968 PMCID: PMC3559799 DOI: 10.1371/journal.pone.0054788] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/14/2012] [Indexed: 12/20/2022] Open
Abstract
Although the mechanisms of 5-fluorouracil (5-FU)-induced diarrhea remain unclear, accumulating evidence has indicated that changes in the mucosal immune system and aquaporins (AQPs) may play a role in its pathogenesis. Therefore, we investigated the possible changes in the gene expression of inflammatory cytokines and AQPs in the intestines of mice with 5-FU-induced diarrhea. In the present study, the expressions of mRNAs that encode inflammatory cytokines, TNF-α, IL-1β, IL-6, Il-17A and IL-22, were significantly increased throughout the entire colon of mice that exhibited diarrhea following 5-FU administration. In contrast, the gene expression of IFNγ was upregulated only in the distal colon. These increases were significantly reduced by the administration of etanercept. However, 5-FU-induced diarrhea was not recovered by etanercept. On the other hand, the genes for AQPs 4 and 8 were markedly present in the colon, and these expressions in the intestines were significantly decreased by treatment with 5-FU. These decreases were not reversed by etanercept. These findings suggest TNF-α neutralization had no effect on the acutely 5-FU-induced diarrhea and impaired AQPs but reduced dramatically several inflammatory cytokines.
Collapse
Affiliation(s)
- Hiroyasu Sakai
- Department of Pharmacology, Hoshi University, Tokyo, Japan
- Research promotion committee, Japanese Society for Pharmaceutical Palliative Care and Sciences, Tokyo, Japan
| | | | - Kenjiro Matsumoto
- Department of Pharmacology, Hoshi University, Tokyo, Japan
- Laboratory of Pharmacology, Josai International University, Togane, Japan
- Research promotion committee, Japanese Society for Pharmaceutical Palliative Care and Sciences, Tokyo, Japan
| | | | - Ken Sato
- Department of Pharmacology, Hoshi University, Tokyo, Japan
| | | | - Tetsuro Shoji
- Department of Pharmacology, Hoshi University, Tokyo, Japan
| | - Syunji Horie
- Laboratory of Pharmacology, Josai International University, Togane, Japan
| | - Takayuki Nakagawa
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
- Research promotion committee, Japanese Society for Pharmaceutical Palliative Care and Sciences, Tokyo, Japan
| | - Shogo Tokuyama
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Japan
- Research promotion committee, Japanese Society for Pharmaceutical Palliative Care and Sciences, Tokyo, Japan
| | - Minoru Narita
- Department of Pharmacology, Hoshi University, Tokyo, Japan
- Research promotion committee, Japanese Society for Pharmaceutical Palliative Care and Sciences, Tokyo, Japan
| |
Collapse
|
33
|
Abstract
Ulcerative colitis (UC) is a colonic inflammatory condition with a substantial impact on the quality of life of affected persons. The disease carries a cumulative risk of need of colectomy of 20-30% and an estimated cumulative risk of colorectal cancer of 18% after 30 years of disease duration. With the introduction of the tumor necrosis factor-alpha inhibitors for the treatment of UC, it has become increasingly evident that the disease course is influenced by whether or not the patient achieves mucosal healing. Thus, patients with mucosal healing have fewer flare-ups, a decreased risk of colectomy, and a lower probability of developing colorectal cancer. Understanding the mechanisms of mucosal wound formation and wound healing in UC, and how they are affected therapeutically is therefore of importance for obtaining efficient treatment strategies holding the potential of changing the disease course of UC. This review is focused on the pathophysiological mechanism of mucosal wound formation in UC as well as the known mechanisms of intestinal wound healing. Regarding the latter topic, pathways of both wound healing intrinsic to epithelial cells and the wound-healing mechanisms involving interaction between epithelial cells and other cells of the mucosa are discussed. The biochemistry of wound healing in UC provides the basis for the subsequent description of how these pathways are affected by the current medications, and what can be learnt on how to design future treatment regimens for UC based on targeting mucosal healing.
Collapse
|
34
|
Soares PMG, Mota JMSC, Souza EP, Justino PFC, Franco AX, Cunha FQ, Ribeiro RA, Souza MHLP. Inflammatory intestinal damage induced by 5-fluorouracil requires IL-4. Cytokine 2012; 61:46-9. [PMID: 23107827 DOI: 10.1016/j.cyto.2012.10.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 08/27/2012] [Accepted: 10/01/2012] [Indexed: 12/17/2022]
Abstract
BACKGROUND 5-Fluorouracil (5-FU) induces intestinal mucositis, which is characterized by epithelial ulcerations in the mucosa and clinical manifestations, such as pain and dyspeptic symptoms. Cytokines participate in the inflammatory and functional events of intestinal mucositis. IL-4 is an important mediator of intestinal inflammation, with either anti-inflammatory or pro-inflammatory functions, depending on the model of intestinal inflammation. This study aimed to evaluate the role of IL-4 in 5-FU-induced intestinal mucositis. METHODS IL-4+/+ or IL-4-/- mice (25-30 g) were intraperitoneally injected with 5-FU (450 mg/Kg) or saline (C). After 3 days, the mice were sacrificed and the duodenum was evaluated for epithelial damage, MPO activity and cytokine concentration. RESULTS 5-FU induced significant damage in the intestinal epithelium of IL-4+/+ mice (reduction in the villus/crypt ratio: control=3.31±0.21 μm, 5-FU=0.99±0.10 μm). However, the same treatment did not induce significant damage in IL-4-/- mice (5-FU=2.87±0.19 μm) compared to wild-type mice. 5-FU-induced epithelial damage increased the MPO activity (neutrophil number) and the level of pro-inflammatory cytokines (IL-4, TNF-α, IL-1β and CXCL-8) in the duodenum. These results were not observed in IL-4-/- mice treated with 5-FU. CONCLUSION Our data suggest that IL-4 participates as a pro-inflammatory cytokine in a 5-FU-induced intestinal damage model and suggests that IL-4 antagonists may be novel therapeutics for this condition.
Collapse
Affiliation(s)
- Pedro M G Soares
- Departamento de Morfologia, Universidade Federal do Ceará, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Zimmerman MA, Singh N, Martin PM, Thangaraju M, Ganapathy V, Waller JL, Shi H, Robertson KD, Munn DH, Liu K. Butyrate suppresses colonic inflammation through HDAC1-dependent Fas upregulation and Fas-mediated apoptosis of T cells. Am J Physiol Gastrointest Liver Physiol 2012; 302:G1405-15. [PMID: 22517765 PMCID: PMC3378095 DOI: 10.1152/ajpgi.00543.2011] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Butyrate, an intestinal microbiota metabolite of dietary fiber, has been shown to exhibit protective effects toward inflammatory diseases such as ulcerative colitis (UC) and inflammation-mediated colorectal cancer. Recent studies have shown that chronic IFN-γ signaling plays an essential role in inflammation-mediated colorectal cancer development in vivo, whereas genome-wide association studies have linked human UC risk loci to IFNG, the gene that encodes IFN-γ. However, the molecular mechanisms underlying the butyrate-IFN-γ-colonic inflammation axis are not well defined. Here we showed that colonic mucosa from patients with UC exhibit increased signal transducer and activator of transcription 1 (STAT1) activation, and this STAT1 hyperactivation is correlated with increased T cell infiltration. Butyrate treatment-induced apoptosis of wild-type T cells but not Fas-deficient (Fas(lpr)) or FasL-deficient (Fas(gld)) T cells, revealing a potential role of Fas-mediated apoptosis of T cells as a mechanism of butyrate function. Histone deacetylase 1 (HDAC1) was found to bind to the Fas promoter in T cells, and butyrate inhibits HDAC1 activity to induce Fas promoter hyperacetylation and Fas upregulation in T cells. Knocking down gpr109a or slc5a8, the genes that encode for receptor and transporter of butyrate, respectively, resulted in altered expression of genes related to multiple inflammatory signaling pathways, including inducible nitric oxide synthase (iNOS), in mouse colonic epithelial cells in vivo. Butyrate effectively inhibited IFN-γ-induced STAT1 activation, resulting in inhibition of iNOS upregulation in human colon epithelial and carcinoma cells in vitro. Our data thus suggest that butyrate delivers a double-hit: induction of T cell apoptosis to eliminate the source of inflammation and suppression of IFN-γ-mediated inflammation in colonic epithelial cells, to suppress colonic inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - David H. Munn
- 4Immunotherapy Center, Georgia Health Sciences University, Augusta, Georgia
| | - Kebin Liu
- 1Departments of Biochemistry and Molecular Biology, ,3Cancer Research Center, and
| |
Collapse
|
36
|
Zhao QJ, Yu YB, Zuo XL, Dong YY, Li YQ. Milk fat globule-epidermal growth factor 8 is decreased in intestinal epithelium of ulcerative colitis patients and thereby causes increased apoptosis and impaired wound healing. Mol Med 2012; 18:497-506. [PMID: 22204000 DOI: 10.2119/molmed.2011.00369] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 12/20/2011] [Indexed: 12/19/2022] Open
Abstract
Milk fat globule-epidermal growth factor 8 (MFG-E8) plays an important role in maintaining intestinal barrier homeostasis and accelerating intestinal restitution. However, studies of MFG-E8 expression in humans with ulcerative colitis are lacking. We examined MFG-E8 expression in colonic mucosal biopsies from ulcerative colitis patients and healthy controls (n = 26 each) by real-time quantitative polymerase chain reaction (PCR), Western blot analysis and immunohistochemistry. MFG-E8 mRNA and protein expression was lower in ulcerative colitis patients than in controls. MFG-E8 expression was inversely correlated with mucosal inflammatory activity and clinical disease activity in patients. MFG-E8 was present in human intestinal epithelial cells both in vivo and in vitro. Apoptosis induction was also detected in the intestinal epithelium of ulcerative colitis patients by terminal-deoxynucleoitidyl transferase mediated nick-end labeling assay. We used lentiviral vectors encoding human MFG-E8 targeting short hairpin RNA to obtain MFG-E8 knockdown intestinal epithelia cell clones. MFG-E8 knockdown could promote apoptosis in intestinal epithelial cell lines, accompanied by a decrease in level of the antiapoptotic protein B-cell lymphoma 2 (BCL-2) and induction of the proapoptotic protein BCL2-associated protein X (BAX). The addition of recombinant human MFG-E8 led to decreased BAX and cleaved caspase-3 levels and induction of BCL-2 level in intestinal epithelia cells. MFG-E8 knockdown also attenuated wound healing on scratch assay of intestinal epithelial cells. The mRNA level of intestinal trefoid factor 3, a pivotal factor in intestinal epithelial cell migration and restitution, was downregulated with MFG-E8 knockdown. In conclusion, we demonstrated that decreased colonic MFG-E8 expression in patients with ulcerative colitis may be associated with mucosal inflammatory activity and clinical disease activity through basal cell apoptosis and preventing tissue healing in the pathogenesis of ulcerative colitis.
Collapse
Affiliation(s)
- Qiu-jie Zhao
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | | | | | | | | |
Collapse
|
37
|
Hoogwater FJH, Steller EJA, Westendorp BF, Borel Rinkes IHM, Kranenburg O. CD95 signaling in colorectal cancer. Biochim Biophys Acta Rev Cancer 2012; 1826:189-98. [PMID: 22498253 DOI: 10.1016/j.bbcan.2012.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/09/2012] [Accepted: 03/10/2012] [Indexed: 02/07/2023]
Abstract
CD95 and its ligand (CD95L) are widely expressed in colorectal tumors, but their role in shaping tumor behavior is unclear. CD95 activation on tumor cells can lead to apoptosis, while CD95L attracts neutrophils, suggesting a function in tumor suppression. However, CD95 can also promote tumorigenesis, at least in part by activating non-apoptotic signaling pathways that stimulate tumor cell proliferation, invasion and survival. In addition, CD95 signaling in stromal cells and tumor-infiltrating inflammatory cells has to be taken into account when addressing the function of CD95 and its ligand in colorectal tumor biology. We present a model in which the tumor-suppressing and tumor-promoting activities of CD95/CD95L together determine colorectal tumor behavior. We also discuss how these multiple activities are changing our view of CD95 and CD95L as potential therapeutic targets in the treatment of colorectal cancer. We conclude that locking CD95 in apoptosis-mode may be a more promising anti-cancer strategy than simply inhibiting or stimulating CD95.
Collapse
|
38
|
Bodiga VL, Bodiga S, Surampudi S, Boindala S, Putcha U, Nagalla B, Subramaniam K, Manchala R. Effect of vitamin supplementation on cisplatin-induced intestinal epithelial cell apoptosis in Wistar/NIN rats. Nutrition 2011; 28:572-80. [PMID: 22189195 DOI: 10.1016/j.nut.2011.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 08/17/2011] [Accepted: 09/07/2011] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Chemotherapeutic agents induce small intestinal mucositis that is characterized structurally by crypt loss and villus atrophy and functionally by absorptive and barrier impairments. We studied the effect of selected individual vitamins and multiple-vitamin mixture supplementation in modulating cisplatin-induced intestinal damage and apoptosis. METHODS Thirty-six male Wistar/NIN rats 20 wk old and fed the control diet (AIN-93G) were randomly divided into six groups. Five groups were administered cisplatin (2.61 mg/kg of body weight) once a week for 3 wk and were concomitantly provided the control diet or riboflavin, folate, α- tocopherol, or a multiple-vitamin mixture supplemented diet. The sixth group served as a control for cisplatin and received saline as the vehicle. Intestinal epithelial cell apoptosis was monitored by morphometry, M30 staining, DNA fragmentation, and caspase-3 activity. Functional and structural integrities were determined by measuring activities of alkaline phosphatase and lysine ala-dipeptidyl aminopeptidase and the villus height/crypt depth ratio. Oxidative burden was assessed as the formation of thiobarbituric acid-reactive substances and protein carbonyls. Plasma levels of selected vitamins were also measured. RESULTS Cisplatin administration significantly increased intestinal apoptosis in the villus and crypt regions that correlated with increased oxidative damage, decreased Bcl-2/Bax, and compromised functional integrity. Riboflavin, folate, and the multiple-vitamin mixture supplementation attenuated the cisplatin-induced increase in apoptotic indices, with a decrease in oxidative burden, increased Bcl-2/Bax, and improved functional and structural integrities. The α-tocopherol supplementation, although effective in attenuating oxidative stress and improving functional integrity, failed to lower the apoptotic indices. CONCLUSIONS Riboflavin, folate, and the multiple-vitamin supplementation proved to be more efficacious in attenuating the cisplatin-induced intestinal damage and associated changes in apoptosis.
Collapse
Affiliation(s)
- Vijaya Lakshmi Bodiga
- Pathology Division, National Institute of Nutrition, Hyderabad, Andhra Pradesh, India.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Poritz LS, Harris LR, Kelly AA, Koltun WA. Increase in the tight junction protein claudin-1 in intestinal inflammation. Dig Dis Sci 2011; 56:2802-9. [PMID: 21748286 PMCID: PMC4066382 DOI: 10.1007/s10620-011-1688-9] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 03/21/2011] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Studies have shown a decrease in key tight junction (TJ) proteins such as ZO-1 and occludin in both inflammatory bowel disease (IBD) and experimental models of inflammation. Our group has also shown an increase in claudin-1 in experimental colitis. METHODS IEC-18 cells were treated with increasing doses of tumor necrosis factor alpha (TNFα). The TJ was assessed by transepithelial resistance (TER), permeability, Western blot, PCR, and immunofluorescence. Mucosal samples from patients with ulcerative colitis (UC), Crohn's disease (CD), and without IBD (normal) were assayed for TJ proteins occludin and claudin-1 by Western blot and a ratio of claudin-1 to occludin (C:O) was calculated. RESULTS IEC-18 cells had increased permeability, decreased TER and an increase in claudin-1 with TNFα treatment. In human specimens, there was a decrease in occludin and an increase in claudin-1 leading to a significant increase in the C:O ratio in diseased UC colon compared to non-diseased UC colon (P < 0.001) and normal colon (P < 0.01). In CD, the C:O ratio was similar in all CD tissue irrespective of disease status. CONCLUSIONS Treatment of IEC-18 cells with TNFα, a key inflammatory cytokine in IBD, led to a significant increase in claudin-1 expression. There was a significant increase in the C:O ratio in diseased colon in UC compared to the healthy appearing UC colon and normal controls. The C:O ratio was unchanged in CD despite presence or abscence of gross disease. This suggests that there may be an underlying difference in the TJ between UC and CD.
Collapse
Affiliation(s)
- Lisa S. Poritz
- Division of Colon and Rectal Surgery, Department of Surgery, The Milton S. Hershey Medical Center, H137, 500 University Drive, Hershey, PA 17033, USA. Department of Cellular and Molecular Physiology, The Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Leonard R. Harris
- Division of Colon and Rectal Surgery, Department of Surgery, The Milton S. Hershey Medical Center, H137, 500 University Drive, Hershey, PA 17033, USA
| | - Ashley A. Kelly
- Division of Colon and Rectal Surgery, Department of Surgery, The Milton S. Hershey Medical Center, H137, 500 University Drive, Hershey, PA 17033, USA
| | - Walter A. Koltun
- Division of Colon and Rectal Surgery, Department of Surgery, The Milton S. Hershey Medical Center, H137, 500 University Drive, Hershey, PA 17033, USA
| |
Collapse
|
40
|
Liu X, Wang JM. Iridoid glycosides fraction of Folium syringae leaves modulates NF-κB signal pathway and intestinal epithelial cells apoptosis in experimental colitis. PLoS One 2011; 6:e24740. [PMID: 21931839 PMCID: PMC3172289 DOI: 10.1371/journal.pone.0024740] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 08/16/2011] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND AIMS Iridoid glycosides (IG), the major active fraction of F. syringae leaves has been demonstrated to have strong anti-inflammatory properties to ulcerative colitis (UC) in our previous study. The aim of this study was to investigate whether IG modulates the inflammatory response in experimental colitis at the level of NF-κB signal pathway and epithelial cell apoptosis. METHODS UC in rats was induced by administration with dextran sulfate sodium (DSS) in drinking water. The inflammatory damage was assessed by disease activity index (DAI), macroscopic findings, histology and myeloperoxidase (MPO) activity. The effect of IG on pro-inflammatory cytokines TNF-α, IL-8, COX-2 and regulatory peptide TGF-β1 was measured. Epithelial cell apoptosis and the protein and mRNA expressions of Fas/FasL, Bcl-2/Bax, caspase-3, NF-κB p65, IκBα, p-IκBα and IKKβ were detected by TUNEL method, immunohistochemistry, Western blotting and real-time quantitative PCR, respectively. RESULTS IG significantly ameliorated macroscopic damage and histological changes, reduced the activity of MPO, and strongly inhibited epithelial cell apoptosis. Moreover, IG markedly depressed TNF-α, IL-8, COX-2 and TGF-β1 levels in the colon tissues in a dose-dependent manner. Furthermore, IG significantly blocked of NF-κB signaling by inhibiting IκBα phosphorylation/degradation and IKKβ activity, down-regulated the protein and mRNA expressions of Fas/FasL, Bax and caspase-3, and activated Bcl-2 in intestinal epithelial cells. CONCLUSIONS These results demonstrated for the first time that IG possessed marked protective effects on experimental colitis through inhibition of epithelial cell apoptosis and blockade of NF-κB signal pathway.
Collapse
Affiliation(s)
- Xin Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| | | |
Collapse
|
41
|
Abstract
The gastrointestinal epithelium transports solutes and water between lumen and blood and at the same time forms a barrier between these compartments. This highly selective and regulated barrier permits ions, water, and nutrients to be absorbed, but normally restricts the passage of harmful molecules, bacteria, viruses and other pathogens. During inflammation, the intestinal barrier can be disrupted, indicated by a decrease in transcellular electrical resistance and an increase in paracellular permeability for tracers of different size. Such inflammatory processes are accompanied by increased oxidative stress, which in turn can impair the epithelial barrier. In this review, we discuss the role of inflammatory oxidative stress on barrier function with special attention on the epithelial tight junctions. Diseases discussed causing barrier changes include the inflammatory bowel diseases Crohn's disease, ulcerative colitis, and microscopic colitis, the autoimmune disorder celiac disease, and gastrointestinal infections. In addition, the main cytokines responsible for these effects and their role during oxidative stress and intestinal inflammation will be discussed, as well as therapeutic approaches and their mode of action.
Collapse
Affiliation(s)
- Lena J John
- Department of General Medicine, Charité, Campus Benjamin Franklin, Berlin, Germany
| | | | | |
Collapse
|
42
|
Geng L, Zhu B, Dai BH, Sui CJ, Xu F, Kan T, Shen WF, Yang JM. A let-7/Fas double-negative feedback loop regulates human colon carcinoma cells sensitivity to Fas-related apoptosis. Biochem Biophys Res Commun 2011; 408:494-9. [PMID: 21530489 DOI: 10.1016/j.bbrc.2011.04.074] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 04/18/2011] [Indexed: 12/12/2022]
Abstract
Interferon-γ (IFN-γ) is considered essential for the regulation of anti-tumor reactions as it sensitizes Fas-related apoptosis in HT29 cells, but the mechanism is unclear. In the current study, our data demonstrated that IFN-γ stimulation and Fas activation suppressed Dicer processing and let-7 microRNA biogenesis, while let-7 microRNA strongly inhibited Fas expression by directly targeting Fas mRNA. Accordingly, our results indicate that Fas and let-7 microRNAs form a double-negative feedback loop in IFN-γ and Fas induced apoptosis in colon carcinoma cell line HT29, which may be an important synergistic mechanism in anti-tumor immune response. We also found that a let-7 microRNA inhibitor increased Fas expression and sensitized cells to Fas-related apoptosis, which may have future implications in colon carcinoma therapy.
Collapse
Affiliation(s)
- Li Geng
- The Department of Special Treatment, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, No. 225, Changhai Road, Shanghai 200438, China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Dittmar T, Zänker KS. Horizontal gene transfers with or without cell fusions in all categories of the living matter. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 714:5-89. [PMID: 21506007 PMCID: PMC7120942 DOI: 10.1007/978-94-007-0782-5_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This article reviews the history of widespread exchanges of genetic segments initiated over 3 billion years ago, to be part of their life style, by sphero-protoplastic cells, the ancestors of archaea, prokaryota, and eukaryota. These primordial cells shared a hostile anaerobic and overheated environment and competed for survival. "Coexist with, or subdue and conquer, expropriate its most useful possessions, or symbiose with it, your competitor" remain cellular life's basic rules. This author emphasizes the role of viruses, both in mediating cell fusions, such as the formation of the first eukaryotic cell(s) from a united crenarchaeon and prokaryota, and the transfer of host cell genes integrated into viral (phages) genomes. After rising above the Darwinian threshold, rigid rules of speciation and vertical inheritance in the three domains of life were established, but horizontal gene transfers with or without cell fusions were never abolished. The author proves with extensive, yet highly selective documentation, that not only unicellular microorganisms, but the most complex multicellular entities of the highest ranks resort to, and practice, cell fusions, and donate and accept horizontally (laterally) transferred genes. Cell fusions and horizontally exchanged genetic materials remain the fundamental attributes and inherent characteristics of the living matter, whether occurring accidentally or sought after intentionally. These events occur to cells stagnating for some 3 milliard years at a lower yet amazingly sophisticated level of evolution, and to cells achieving the highest degree of differentiation, and thus functioning in dependence on the support of a most advanced multicellular host, like those of the human brain. No living cell is completely exempt from gene drains or gene insertions.
Collapse
Affiliation(s)
- Thomas Dittmar
- Inst. Immunologie, Universität Witten/Herdecke, Stockumer Str. 10, Witten, 58448 Germany
| | - Kurt S. Zänker
- Institute of Immunologie, University of Witten/Herdecke, Stockumer Str. 10, Witten, 58448 Germany
| |
Collapse
|
44
|
Soares PMG, Lima-Junior RCP, Mota JMSC, Justino PFC, Brito GAC, Ribeiro RA, Cunha FQ, Souza MHLP. Role of platelet-activating factor in the pathogenesis of 5-fluorouracil-induced intestinal mucositis in mice. Cancer Chemother Pharmacol 2010; 68:713-20. [PMID: 21153821 DOI: 10.1007/s00280-010-1540-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 11/24/2010] [Indexed: 10/18/2022]
Abstract
PURPOSE Gastrointestinal mucositis is a common side effect of cancer chemotherapy. Platelet-activating factor (PAF) is produced during gut inflammation. There is no evidence that PAF participates in antineoplastic-induced intestinal mucositis. This study evaluated the role of PAF in 5-fluorouracil (5-FU)-induced intestinal mucositis using a pharmacological approach and PAF receptor knockout mice (PAFR(-/-)). METHODS Wild-type mice or PAFR(-/-) mice were treated with 5-FU (450 mg/kg, i.p.). Other mice were treated with saline or BN52021 (20 mg/kg, s.c.), an antagonist of the PAF receptor, once daily followed by 5-FU administration. After the third day of treatment, animals were sacrificed and tissue samples from the duodenum were removed for morphologic evaluation. In addition, myeloperoxidase activity and the cytokine concentration were measured. RESULTS 5-FU treatment decreased the duodenal villus height/crypt depth ratio, increased MPO activity, and increased the concentration of TNF-α, IL-1β and KC in comparison with saline-treated animals. In PAFR(-/-) mice and PAFR antagonist-treated mice, 5-FU-dependent intestinal damage was reduced and a decrease in duodenal villus height/crypt depth ratio was attenuated. However, the 5-FU-dependent increase in duodenum MPO activity was not affected. Without PAFR activation, 5-FU treatment did not increase the TNF-α, IL-1β and KC concentration. CONCLUSIONS In conclusion, our study establishes the role of PAFR activation in 5-FU-induced intestinal mucositis. This study implicates treatment with PAFR antagonists as novel therapeutic strategy for this condition.
Collapse
Affiliation(s)
- Pedro M G Soares
- Department of Morphology, Federal University of Ceara, Fortaleza, CE, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
OBJECTIVE Epithelial apoptosis rates are increased in ulcerative colitis (UC). The increased apoptosis rate could expose mucosal cells to luminal pathogens and thereby be regarded as a primary pathogenic factor in UC. On the other hand, the local inflammatory reaction could cause epithelial apoptosis secondary to the release of cytotoxic mediators. If apoptosis is a primary defect, apoptosis rates could influence the degree of spreading of inflammation and the clinical course of UC. If apoptosis is a side effect of local inflammation, apoptosis rates would be expected only to correlate with the degree of local inflammation. The aim of the study was to investigate the relationship between epithelial apoptosis and clinical characteristics of UC. MATERIAL AND METHODS Twenty patients with UC (12 with active disease) and 20 control subjects were included. Freshly isolated colonic epithelial cells were cultured. Apoptosis was determined by flow cytometry. Cells were stimulated with Fas ligand. The disease was characterized by endoscopic findings, microscopic inflammation grade, surrogate markers of disease activity (hemoglobin level, white blood cell count, C-reactive protein, or albumin), and the clinical course 6 months after biopsy. RESULTS Epithelial apoptosis correlated with local inflammation, both macroscopic (p< 0.02) and microscopic (p< 0.008). Disease extent, disease course, or surrogate markers of disease activity did not correlate with apoptosis rate. However, increased microscopic inflammation inversely correlated with apoptosis response to the Fas ligand (p< 0.06). CONCLUSIONS The epithelial apoptosis rate is influenced primarily by the local inflammatory response. Colonocytes upregulate cytoprotective mediators that decrease apoptosis susceptibility during active UC.
Collapse
Affiliation(s)
- Jakob Benedict Seidelin
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Denmark.
| | | |
Collapse
|
46
|
Brost S, Koschny R, Sykora J, Stremmel W, Lasitschka F, Walczak H, Ganten TM. Differential expression of the TRAIL/TRAIL-receptor system in patients with inflammatory bowel disease. Pathol Res Pract 2009; 206:43-50. [PMID: 19954896 DOI: 10.1016/j.prp.2009.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 07/16/2009] [Accepted: 09/09/2009] [Indexed: 12/28/2022]
Abstract
TNF-related apoptosis inducing-ligand (TRAIL) is a potent inducer of apoptosis and plays an important role in immune regulation. To explore the role of TRAIL in inflammatory bowel disease (IBD), we examined the expression of the TRAIL/TRAIL-receptor system in colonic resections from patients with ulcerative colitis and Crohn's disease in comparison to normal colon and appendicitis. TRAIL and TRAIL-receptor (TRAIL-R) expression was assessed in resections of normal colon, colon of IBD patients, and appendicitis by immunohistochemistry. TRAIL was downregulated in enterocytes of patients with IBD, but was upregulated in mononuclear cells in areas of active mucosal inflammation. For TRAIL-R1, we detected a strong downregulation in the surface epithelium in IBD but not in appendicitis. TRAIL-R2 and TRAIL-R4 were strongly downregulated in the surface epithelium in any kind of mucosal inflammation. TRAIL and TRAIL-R1 are downregulated in enterocytes, and TRAIL is upregulated in mononuclear cells only in IBD but not in normal colon or appendicitis. This may point to a pathophysiologic role of the TRAIL system in inflammatory bowel disease.
Collapse
Affiliation(s)
- Sylvia Brost
- Department of Gastroenterology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Seidelin JB, Bjerrum JT, Coskun M, Widjaya B, Vainer B, Nielsen OH. IL-33 is upregulated in colonocytes of ulcerative colitis. Immunol Lett 2009; 128:80-5. [PMID: 19913053 DOI: 10.1016/j.imlet.2009.11.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 10/15/2009] [Accepted: 11/04/2009] [Indexed: 12/20/2022]
Abstract
Interleukin-33 (IL-33) is a novel member of the IL-1 cytokine family. It has been shown to elicit a Th2-like cytokine response in immunocompetent cells through binding and activation of the T1/ST2 receptor. IL-33 has recently been associated with immune responses to helminthic intestinal infections, airway inflammation and arthritis in animal models. We now report IL-33 to be produced by colonic epithelial cells in humans and it is highly upregulated in ulcerative colitis (UC). Little mRNA expression was found in control subjects (N=9), whereas patients with UC in remission (N=7) and active UC (N=9) had a 3-fold (p<0.006) and 13-fold (p<0.0002) increased expression, respectively. On the protein level, IL-33 in its uncleaved form was overexpressed in active UC compared to controls (p<0.006) and inactive UC (p<0.03). Immunohistochemistry of IL-33 confirmed expression in active UC in colonic epithelial cells, whereas no detectable epithelial expression was seen in control specimens. Caspase 1, which is known to activate IL-33, was expressed in colonocytes, albeit at just detectable levels when the activated p20 caspase 1 was measured. Since IL-33 recently has been shown to be biologically active in its pro-form, and cleavage seems to inactivate IL-33, IL-33 is suggested to be active in UC. We found no IL-33 expression in Caco2 cells, regardless of stimulation by pro-inflammatory cytokines. In contrast to the IL-33 expression data, we could not show any difference in the production of another member of the IL-1 cytokine family, IL-1beta. This is the first study to describe that IL-33 is upregulated in UC. If IL-33 is driving a Th2-like cytokine response in UC, inhibition of the IL-33 T1/ST2 receptor pathway could be a future therapeutic option in UC.
Collapse
Affiliation(s)
- Jakob Benedict Seidelin
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
48
|
Hörmannsperger G, Haller D. Molecular crosstalk of probiotic bacteria with the intestinal immune system: clinical relevance in the context of inflammatory bowel disease. Int J Med Microbiol 2009; 300:63-73. [PMID: 19828372 DOI: 10.1016/j.ijmm.2009.08.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
It is current knowledge that the intestinal microbiota plays a major role in the development and maintenance of intestinal health. Intestinal epithelial cells (IEC) constitute the interface between the gut lumen and the innate and adaptive immune system. To maintain intestinal homeostasis, the organized and diffuse compartments of the gut-associated lymphoid tissue have to process the continuously varying information at the interface between the luminal side and the host. Dysregulated intestinal immune responses towards commensal bacteria are an important factor in the pathogenesis of inflammatory bowel diseases (IBD). In contrast to the colitogenic effects of enteric bacteria, clinical and experimental studies showed that specific probiotic strains are protective in the context of chronic intestinal inflammation. Although the molecular understanding of bacteria-host interaction is improving, the anti-inflammatory mechanisms induced by these probiotic bacteria are just starting to be unraveled. The present review is meant to summarize and discuss the clinical relevance of probiotics, but it also seeks to give an overview about currently known probiotic mechanisms in the context of chronic intestinal inflammation with a focus on IEC.
Collapse
Affiliation(s)
- Gabriele Hörmannsperger
- Biofunctionality, ZIEL-Research Center for Nutrition and Food Science, CDD-Center for Diet and Disease, Technische Universität München, Am Forum 5, D-85350 Freising-Weihenstephan, Germany
| | | |
Collapse
|
49
|
Satoh Y, Ishiguro Y, Sakuraba H, Kawaguchi S, Hiraga H, Fukuda S, Nakane A. Cyclosporine regulates intestinal epithelial apoptosis via TGF-beta-related signaling. Am J Physiol Gastrointest Liver Physiol 2009; 297:G514-9. [PMID: 19608730 DOI: 10.1152/ajpgi.90608.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cyclosporine is a potent immunomodulator and has a beneficial effect in the treatment of ulcerative colitis (UC). We analyzed the mechanism of the effects of cyclosporine on the regulation of epithelial apoptosis via TGF-beta-related signaling, because the balance between the apoptosis and regeneration of epithelial cells seems to be a key factor to maintain the intestinal homeostasis. For this purpose, colitis was induced by treatment of 4% dextran sulfate sodium (DSS), and the effect of treatment with cyclosporine and anti-TGF-beta antibody was assessed. Treatment with cyclosporine ameliorated body weight loss, mucosal destruction, and epithelial apoptosis in DSS-induced colitis. Cyclosporine was shown to upregulate the expression of TGF-beta in the colonic tissue, enhance the expression of p-Smad2 and cFLIP in epithelial cells, and inhibit caspase-8 activity but not caspase-1 or -9. Upregulation of cFLIP in the colonic epithelial cells, amelioration of body weight loss, and mucosal destruction by cyclosporine were attenuated by anti-TGF-beta antibody treatment. These results indicated that cyclosporine could have a protective role against epithelial apoptosis associated with upregulation of TGF-beta-related signaling.
Collapse
Affiliation(s)
- Yuki Satoh
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | | | | | | | | | | | | |
Collapse
|
50
|
Ben Aleya W, Sfar I, Mouelhi L, Aouadi H, Makhlouf M, Ayed-Jendoubi S, Matri S, Filali A, Najjar T, Ben Abdallah T, Ayed K, Gorgi Y. Association of Fas/Apo1 gene promoter (-670 A/G) polymorphism in Tunisian patients with IBD. World J Gastroenterol 2009; 15:3643-8. [PMID: 19653342 PMCID: PMC2721238 DOI: 10.3748/wjg.15.3643] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To detect a possible association between the polymorphism of the (-670 A/G) Fas/Apo1 gene promoter and susceptibility to Crohn’s disease (CD) and ulcerative colitis (UC) in the Tunisian population.
METHODS: The (-670 A/G) Fas polymorphism was analyzed in 105 patients with CD, 59 patients with UC, and 100 controls using the polymerase chain reaction restriction fragment length polymorphism method.
RESULTS: Significantly lower frequencies of the Fas -670 A allele and A/A homozygous individuals were observed in CD and UC patients when compared with controls. Analysis of (-670 A/G) Fas polymorphism with respect to sex in CD and UC showed a significant difference in A/A genotypes between female patients and controls (P corrected = 0.004 in CD patients and P corrected = 0.02 in UC patients, respectively). Analysis also showed a statistically significant association between genotype AA of the (-670 A/G) polymorphism and the ileum localization of the lesions (P corrected = 0.048) and between genotype GG and the colon localization (P corrected = 0.009). The analysis of inflammatory bowel disease patients according to clinical behavior revealed no difference.
CONCLUSION: Fas-670 polymorphism was associated with the development of CD and UC in the Tunisian population.
Collapse
|