1
|
Folz J, Culver RN, Morales JM, Grembi J, Triadafilopoulos G, Relman DA, Huang KC, Shalon D, Fiehn O. Human metabolome variation along the upper intestinal tract. Nat Metab 2023; 5:777-788. [PMID: 37165176 PMCID: PMC10229427 DOI: 10.1038/s42255-023-00777-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 03/03/2023] [Indexed: 05/12/2023]
Abstract
Most processing of the human diet occurs in the small intestine. Metabolites in the small intestine originate from host secretions, plus the ingested exposome1 and microbial transformations. Here we probe the spatiotemporal variation of upper intestinal luminal contents during routine daily digestion in 15 healthy male and female participants. For this, we use a non-invasive, ingestible sampling device to collect and analyse 274 intestinal samples and 60 corresponding stool homogenates by combining five mass spectrometry assays2,3 and 16S rRNA sequencing. We identify 1,909 metabolites, including sulfonolipids and fatty acid esters of hydroxy fatty acids (FAHFA) lipids. We observe that stool and intestinal metabolomes differ dramatically. Food metabolites display trends in dietary biomarkers, unexpected increases in dicarboxylic acids along the intestinal tract and a positive association between luminal keto acids and fruit intake. Diet-derived and microbially linked metabolites account for the largest inter-individual differences. Notably, two individuals who had taken antibiotics within 6 months before sampling show large variation in levels of bioactive FAHFAs and sulfonolipids and other microbially related metabolites. From inter-individual variation, we identify Blautia species as a candidate to be involved in FAHFA metabolism. In conclusion, non-invasive, in vivo sampling of the human small intestine and ascending colon under physiological conditions reveals links between diet, host and microbial metabolism.
Collapse
Affiliation(s)
- Jacob Folz
- West Coast Metabolomics Center, University of California, Davis, CA, USA
| | - Rebecca Neal Culver
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Jessica Grembi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | - David A Relman
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Infectious Diseases Section, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Kerwyn Casey Huang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis, CA, USA.
| |
Collapse
|
2
|
Organic Cation Transporters in Human Physiology, Pharmacology, and Toxicology. Int J Mol Sci 2020; 21:ijms21217890. [PMID: 33114309 PMCID: PMC7660683 DOI: 10.3390/ijms21217890] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Individual cells and epithelia control the chemical exchange with the surrounding environment by the fine-tuned expression, localization, and function of an array of transmembrane proteins that dictate the selective permeability of the lipid bilayer to small molecules, as actual gatekeepers to the interface with the extracellular space. Among the variety of channels, transporters, and pumps that localize to cell membrane, organic cation transporters (OCTs) are considered to be extremely relevant in the transport across the plasma membrane of the majority of the endogenous substances and drugs that are positively charged near or at physiological pH. In humans, the following six organic cation transporters have been characterized in regards to their respective substrates, all belonging to the solute carrier 22 (SLC22) family: the organic cation transporters 1, 2, and 3 (OCT1–3); the organic cation/carnitine transporter novel 1 and 2 (OCTN1 and N2); and the organic cation transporter 6 (OCT6). OCTs are highly expressed on the plasma membrane of polarized epithelia, thus, playing a key role in intestinal absorption and renal reabsorption of nutrients (e.g., choline and carnitine), in the elimination of waste products (e.g., trimethylamine and trimethylamine N-oxide), and in the kinetic profile and therapeutic index of several drugs (e.g., metformin and platinum derivatives). As part of the Special Issue Physiology, Biochemistry, and Pharmacology of Transporters for Organic Cations, this article critically presents the physio-pathological, pharmacological, and toxicological roles of OCTs in the tissues in which they are primarily expressed.
Collapse
|
3
|
Elimrani I, Dionne S, Saragosti D, Qureshi I, Levy E, Delvin E, Seidman EG. Acetylcarnitine potentiates the anticarcinogenic effects of butyrate on SW480 colon cancer cells. Int J Oncol 2015; 47:755-63. [PMID: 26043725 DOI: 10.3892/ijo.2015.3029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 02/02/2015] [Indexed: 11/06/2022] Open
Abstract
Butyrate is a potent anticarcinogenic compound against colon cancer cells in vitro. However, its rapid metabolism is hypothesized to limit its anticancer benefits in colonic epithelial cells. Carnitine, a potent antioxidant, is essential to fatty acid oxidation. The aims of this study were to identify a colon cancer cell line capable of transporting carnitine. We evaluated the effect of carnitine and acetylcarnitine (ALCAR) on the response of colon carcinoma cells to butyrate. We explored the mechanisms underlying the anticarcinogenic benefit. SW480 cells were incubated with butyrate ± carnitine or ALCAR. Carnitine uptake was assessed using [3H]-carnitine. Apoptosis and cell viability were assessed using an ELISA kit and flow cytometry, respectively. Modulation of proteins implicated in carnitine transport, cell death and proliferation were assessed by western blotting. SW480 cells were found to transport carnitine primarily via the OCTN2 transporter. Butyrate induced SW480 cell death occurred at concentrations of 2 mM and higher. Cells treated with the combination of butyrate (3 mM) with ALCAR exhibited increased mortality. The addition of carnitine or ALCAR also increased butyrate-induced apoptosis. Butyrate increased levels of cyclin D1, p21 and PARP p86, but decreased Bcl-XL and survivin levels. Butyrate also downregulated dephospho-β-catenin and increased acetylated histone H4 levels. Butyrate and carnitine decreased survivin levels by ≥25%. ALCAR independently induced a 20% decrease in p21. These results demonstrate that butyrate and ALCAR are potentially beneficial anticarcinogenic nutrients that inhibit colon cancer cell survival in vitro. The combination of both agents may have superior anticarcinogenic properties than butyrate alone.
Collapse
Affiliation(s)
- Ihsan Elimrani
- Division of Gastroenterology, Research Institute, McGill University Health Center, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Serge Dionne
- Division of Gastroenterology, Research Institute, McGill University Health Center, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Dan Saragosti
- Division of Gastroenterology, Research Institute, McGill University Health Center, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Ijaz Qureshi
- Sainte Justine Hospital Research Center, Departments of Nutrition and Biochemistry, University of Montreal, Montreal, Quebec, Canada
| | - Emile Levy
- Sainte Justine Hospital Research Center, Departments of Nutrition and Biochemistry, University of Montreal, Montreal, Quebec, Canada
| | - Edgar Delvin
- Sainte Justine Hospital Research Center, Departments of Nutrition and Biochemistry, University of Montreal, Montreal, Quebec, Canada
| | - Ernest G Seidman
- Division of Gastroenterology, Research Institute, McGill University Health Center, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Bain MA, Milne RW, Evans AM. Disposition and Metabolite Kinetics of Oral L-carnitine in Humans. J Clin Pharmacol 2013; 46:1163-70. [PMID: 16988205 DOI: 10.1177/0091270006292851] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The pharmacokinetics of L-carnitine and its metabolites were investigated in 7 healthy subjects following the oral administration of 0, 0.5, 1, and 2 g 3 times a day for 7 days. Mean plasma concentrations of L-carnitine across an 8-hour dose interval increased significantly (P < .05) from a baseline of 54.2 +/- 9.3 microM to 80.5 +/- 12.5 microM following the 0.5-g dose; there was no further increase at higher doses. There was a significant increase (P < .001) in the renal clearance of L-carnitine indicating saturation of tubular reabsorption. Trimethylamine plasma levels increased proportionately with L-carnitine dose, but there was no change in renal clearance. A significant increase in the plasma concentrations of trimethylamine-N-oxide from baseline was evident only for the 2-g dose of L-carnitine (from 34.5 +/- 2.0 to 149 +/- 145 microM), and its renal clearance decreased with increasing dose (P < .05). There was no evidence for nonlinearity in the metabolism of trimethylamine to trimethylamine-N-oxide. In conclusion, the pharmacokinetics of oral L-carnitine display nonlinearity above a dose of 0.5 g 3 times a day.
Collapse
Affiliation(s)
- Marcus A Bain
- Sansom Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | | | | |
Collapse
|
5
|
Reuter SE, Evans AM. Carnitine and acylcarnitines: pharmacokinetic, pharmacological and clinical aspects. Clin Pharmacokinet 2012; 51:553-72. [PMID: 22804748 DOI: 10.1007/bf03261931] [Citation(s) in RCA: 354] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
L-Carnitine (levocarnitine) is a naturally occurring compound found in all mammalian species. The most important biological function of L-carnitine is in the transport of fatty acids into the mitochondria for subsequent β-oxidation, a process which results in the esterification of L-carnitine to form acylcarnitine derivatives. As such, the endogenous carnitine pool is comprised of L-carnitine and various short-, medium- and long-chain acylcarnitines. The physiological importance of L-carnitine and its obligatory role in the mitochondrial metabolism of fatty acids has been clearly established; however, more recently, additional functions of the carnitine system have been described, including the removal of excess acyl groups from the body and the modulation of intracellular coenzyme A (CoA) homeostasis. In light of this, acylcarnitines cannot simply be considered by-products of the enzymatic carnitine transfer system, but provide indirect evidence of altered mitochondrial metabolism. Consequently, examination of the contribution of L-carnitine and acylcarnitines to the endogenous carnitine pool (i.e. carnitine pool composition) is critical in order to adequately characterize metabolic status. The concentrations of L-carnitine and its esters are maintained within relatively narrow limits for normal biological functioning in their pivotal roles in fatty acid oxidation and maintenance of free CoA availability. The homeostasis of carnitine is multifaceted with concentrations achieved and maintained by a combination of oral absorption, de novo biosynthesis, carrier-mediated distribution into tissues and extensive, but saturable, renal tubular reabsorption. Various disorders of carnitine insufficiency have been described but ultimately all result in impaired entry of fatty acids into the mitochondria and consequently disturbed lipid oxidation. Given the sensitivity of acylcarnitine concentrations and the relative carnitine pool composition in reflecting the intramitochondrial acyl-CoA to free CoA ratio (and, hence, any disturbances in mitochondrial metabolism), the relative contribution of L-carnitine and acylcarnitines within the total carnitine pool is therefore considered critical in the identification of mitochondria dysfunction. Although there is considerable research in the literature focused on disorders of carnitine insufficiency, relatively few have examined relative carnitine pool composition in these conditions; consequently, the complexity of these disorders may not be fully understood. Similarly, although important studies have been conducted establishing the pharmacokinetics of exogenous carnitine and short-chain carnitine esters in healthy volunteers, few studies have examined carnitine pharmacokinetics in patient groups. Furthermore, the impact of L-carnitine administration on the kinetics of acylcarnitines has not been established. Given the importance of L-carnitine as well as acylcarnitines in maintaining normal mitochondrial function, this review seeks to examine previous research associated with the homeostasis and pharmacokinetics of L-carnitine and its esters, and highlight potential areas of future research.
Collapse
Affiliation(s)
- Stephanie E Reuter
- School of Pharmacy Medical Sciences, University of South Australia, Adelaide, SA, Australia.
| | | |
Collapse
|
6
|
Tamai I. Pharmacological and pathophysiological roles of carnitine/organic cation transporters (OCTNs: SLC22A4, SLC22A5 and Slc22a21). Biopharm Drug Dispos 2012; 34:29-44. [PMID: 22952014 DOI: 10.1002/bdd.1816] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 08/27/2012] [Accepted: 08/30/2012] [Indexed: 02/06/2023]
Abstract
The carnitine/organic cation transporter (OCTN) family consists of three transporter isoforms, i.e. OCTN1 (SLC22A4) and OCTN2 (SLC22A5) in humans and animals and Octn3 (Slc22a21) in mice. These transporters are physiologically essential to maintain appropriate systemic and tissue concentrations of carnitine by regulating its membrane transport during intestinal absorption, tissue distribution and renal reabsorption. Among them, OCTN2 is a sodium-dependent, high-affinity transporter of carnitine, and a functional defect of OCTN2 due to genetic mutation causes primary systemic carnitine deficiency (SCD). Since carnitine is essential for beta-oxidation of long-chain fatty acids to produce ATP, OCTN2 gene mutation causes a range of symptoms, including cardiomyopathy, skeletal muscle weakness, fatty liver and male infertility. These functional consequences of Octn2 gene mutation can be seen clearly in an animal model, jvs mouse, which exhibits the SCD phenotype. In addition, although the mechanism is not clear, single nucleotide polymorphisms of OCTN1 and OCTN2 genes are associated with increased incidences of rheumatoid arthritis, Crohn's disease and asthma. OCTN1 and OCTN2 accept cationic drugs as substrates and contribute to intestinal and pulmonary absorption, tissue distribution (including to tumour cells), and renal excretion of these drugs. Modulation of the transport activity of OCTN2 by externally administered drugs may cause drug-induced secondary carnitine deficiency. Rodent Octn3 transports carnitine specifically, particularly in male reproductive tissues. Thus, the OCTNs are physiologically, pathologically and pharmacologically important. Detailed characterization of these transporters will greatly improve our understanding of the pathology associated with common diseases caused by functional deficiency of OCTNs.
Collapse
Affiliation(s)
- Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
7
|
Oda M, Fujimoto K, Kobayashi M, Saitoh H. Bacampicillin uptake is shared with thiamine in Caco-2 cells. Biol Pharm Bull 2007; 30:1344-9. [PMID: 17603179 DOI: 10.1248/bpb.30.1344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacampicillin was developed as a prodrug to improve the intestinal absorption of its metabolite ampicillin. This study was undertaken to characterize bacampicillin transport in Caco-2 cells. The uptake of bacampicillin in Caco-2 cells was significantly greater than those of ampicillin and pivampicillin. An Eadie-Hofstee plot obtained from 5-min uptake of 0.2-5 mM bacampicillin was linear, indicating the presence of a saturable transport system for bacampicillin with K(m) and V(max) of 3.6 mM and 23.9 nmol/mg protein/min, respectively. Hydrophilic organic cations such as choline, cimetidine, guanidine, nicotinamide, 1-methylnicotiamide, and tetraethylammonium failed to modulate bacampicillin uptake in Caco-2 cells whereas diphenhydramine, procainamide, and thiamine significantly depressed it. Moreover, when thiamine was preloaded in Caco-2 cells, bacampicillin uptake was significantly increased, indicating that this cationic vitamin was capable of trans-stimulating bacampicillin transport across the apical membrane of Caco-2 cells. However, trans-stimulated bacampicillin uptake was not observed in the presence of diphenhydramine. Bacampicillin uptake increased with elevation of the medium pH, and the known modulators of thiamine transport such as amiloride and oxythiamine significantly inhibited bacampicillin uptake. Thiamine also significantly decreased the apical-to-basolateral transport of bacampicillin across Caco-2 cell monolayers. However, thiamine did not exert any modulating effect on pivampicillin uptake and its apical-to-basolateral permeation in Caco-2 cells. These results suggest that bacampicillin is transported in Caco-2 cells, sharing a carrier-mediated system with thiamine.
Collapse
Affiliation(s)
- Masako Oda
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | | | | | | |
Collapse
|
8
|
Bene J, Komlósi K, Gasztonyi B, Juhász M, Tulassay Z, Melegh B. Plasma carnitine ester profile in adult celiac disease patients maintained on long-term gluten free diet. World J Gastroenterol 2005; 11:6671-6675. [PMID: 16425363 PMCID: PMC4355763 DOI: 10.3748/wjg.v11.i42.6671] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 04/26/2005] [Accepted: 04/30/2005] [Indexed: 02/06/2023] Open
Abstract
AIM To determine the fasting plasma carnitine ester in patients with celiac disease. METHODS We determined the fasting plasma carnitine ester profile using ESI triple quadrupol mass spectrometry in 33 adult patients with biopsy-confirmed maturity onset celiac disease maintained on long term gluten free diet. RESULTS The level of free carnitine did not differ as the celiac disease patients were compared with the healthy controls, whereas the acetylcarnitine level was markedly reduced (4.703 +/- 0.205 vs 10.227 +/-0.368 nmol/mL, P<0.01). The level of propionylcarnitine was 61.5%, butyrylcarnitine 56.9%, hexanoylcarnitine 75%, octanoylcarnitine 71.1%, octenoylcarnitine 52.1%, decanoylcarnitine 73.1%, cecenoylcarnitine 58.3%, lauroylcarnitine 61.5%, miristoylcarnitine 66.7%, miristoleylcarnitine 62.5% and oleylcarnitine 81.1% in the celiac disease patients compared to the control values, respectively (P<0.01). CONCLUSION The marked decrease of circulating acetylcarnitine with 50-80 % decrease of 11 other carnitine esters shows that the carnitine ester metabolism can be influenced even in clinically asymptomatic and well being adult celiac disease patients, and gluten withdrawal alone does not necessarily normalize all elements of the disturbed carnitine homeostasis.
Collapse
Affiliation(s)
- Judit Bene
- Department of Medical Genetics and Child Development, University of Pecs, H-7624 PAcs, Szigeti 12., Hungary
| | | | | | | | | | | |
Collapse
|
9
|
Rebouche CJ. Kinetics, pharmacokinetics, and regulation of L-carnitine and acetyl-L-carnitine metabolism. Ann N Y Acad Sci 2005; 1033:30-41. [PMID: 15591001 DOI: 10.1196/annals.1320.003] [Citation(s) in RCA: 282] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In mammals, the carnitine pool consists of nonesterified L-carnitine and many acylcarnitine esters. Of these esters, acetyl-L-carnitine is quantitatively and functionally the most significant. Carnitine homeostasis is maintained by absorption from diet, a modest rate of synthesis, and efficient renal reabsorption. Dietary L-carnitine is absorbed by active and passive transfer across enterocyte membranes. Bioavailability of dietary L-carnitine is 54-87% and is dependent on the amount of L-carnitine in the meal. Absorption of L-carnitine dietary supplements (0.5-6 g) is primarily passive; bioavailability is 14-18% of dose. Unabsorbed L-carnitine is mostly degraded by microorganisms in the large intestine. Circulating L-carnitine is distributed to two kinetically defined compartments: one large and slow-turnover (presumably muscle), and another relatively small and rapid-turnover (presumably liver, kidney, and other tissues). At normal dietary L-carnitine intake, whole-body turnover time in humans is 38-119 h. In vitro experiments suggest that acetyl-L-carnitine is partially hydrolyzed in enterocytes during absorption. In vivo, circulating acetyl-L-carnitine concentration was increased 43% after oral acetyl-L-carnitine supplements of 2 g/day, indicating that acetyl-L-carnitine is absorbed at least partially without hydrolysis. After single-dose intravenous administration (0.5 g), acetyl-L-carnitine is rapidly, but not completely hydrolyzed, and acetyl-L-carnitine and L-carnitine concentrations return to baseline within 12 h. At normal circulating l-carnitine concentrations, renal l-carnitine reabsorption is highly efficient (90-99% of filtered load; clearance, 1-3 mL/min), but displays saturation kinetics. Thus, as circulating L-carnitine concentration increases (as after high-dose intravenous or oral administration of L-carnitine), efficiency of reabsorption decreases and clearance increases, resulting in rapid decline of circulating L-carnitine concentration to baseline. Elimination kinetics for acetyl-L-carnitine are similar to those for L-carnitine. There is evidence for renal tubular secretion of both L-carnitine and acetyl-L-carnitine. Future research should address the correlation of supplement dosage, changes and maintenance of tissue L-carnitine and acetyl-L-carnitine concentrations, and metabolic and functional changes and outcomes.
Collapse
|
10
|
Abstract
L-Carnitine is a naturally occurring compound that facilitates the transport of fatty acids into mitochondria for beta-oxidation. Exogenous L-carnitine is used clinically for the treatment of carnitine deficiency disorders and a range of other conditions. In humans, the endogenous carnitine pool, which comprises free L-carnitine and a range of short-, medium- and long-chain esters, is maintained by absorption of L-carnitine from dietary sources, biosynthesis within the body and extensive renal tubular reabsorption from glomerular filtrate. In addition, carrier-mediated transport ensures high tissue-to-plasma concentration ratios in tissues that depend critically on fatty acid oxidation. The absorption of L-carnitine after oral administration occurs partly via carrier-mediated transport and partly by passive diffusion. After oral doses of 1-6g, the absolute bioavailability is 5-18%. In contrast, the bioavailability of dietary L-carnitine may be as high as 75%. Therefore, pharmacological or supplemental doses of L-carnitine are absorbed less efficiently than the relatively smaller amounts present within a normal diet.L-Carnitine and its short-chain esters do not bind to plasma proteins and, although blood cells contain L-carnitine, the rate of distribution between erythrocytes and plasma is extremely slow in whole blood. After intravenous administration, the initial distribution volume of L-carnitine is typically about 0.2-0.3 L/kg, which corresponds to extracellular fluid volume. There are at least three distinct pharmacokinetic compartments for L-carnitine, with the slowest equilibrating pool comprising skeletal and cardiac muscle.L-Carnitine is eliminated from the body mainly via urinary excretion. Under baseline conditions, the renal clearance of L-carnitine (1-3 mL/min) is substantially less than glomerular filtration rate (GFR), indicating extensive (98-99%) tubular reabsorption. The threshold concentration for tubular reabsorption (above which the fractional reabsorption begins to decline) is about 40-60 micromol/L, which is similar to the endogenous plasma L-carnitine level. Therefore, the renal clearance of L-carnitine increases after exogenous administration, approaching GFR after high intravenous doses. Patients with primary carnitine deficiency display alterations in the renal handling of L-carnitine and/or the transport of the compound into muscle tissue. Similarly, many forms of secondary carnitine deficiency, including some drug-induced disorders, arise from impaired renal tubular reabsorption. Patients with end-stage renal disease undergoing dialysis can develop a secondary carnitine deficiency due to the unrestricted loss of L-carnitine through the dialyser, and L-carnitine has been used for treatment of some patients during long-term haemodialysis. Recent studies have started to shed light on the pharmacokinetics of L-carnitine when used in haemodialysis patients.
Collapse
Affiliation(s)
- Allan M Evans
- Centre for Pharmaceutical Research, School of Pharmaceutical, Molecular and Biomedical Sciences, University of South Australia, Adelaide, South Australia, Australia.
| | | |
Collapse
|
11
|
Elimrani I, Lahjouji K, Seidman E, Roy MJ, Mitchell GA, Qureshi I. Expression and localization of organic cation/carnitine transporter OCTN2 in Caco-2 cells. Am J Physiol Gastrointest Liver Physiol 2003; 284:G863-71. [PMID: 12684216 DOI: 10.1152/ajpgi.00220.2002] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
l-Carnitine is derived both from dietary sources and biosynthesis. Dietary carnitine is absorbed in the small intestine and then distributed to other organs. Previous studies using Caco-2 cells demonstrated that the transport of l-carnitine in the intestine involves a carrier-mediated system. The purpose of this study was to determine whether the uptake of l-carnitine in Caco-2 cells is mediated by the recently identified organic cation/carnitine transporter (OCTN2). Kinetics of l-[(3)H]carnitine uptake were investigated with or without specific inhibitors. l-Carnitine uptake in mature cells was sodium dependent and linear with time. K(m) and V(max) values for saturable uptake were 14.07 +/- 1.70 micro M and 26.3 +/- 0.80 pmol. mg protein(-1). 6 min(-1), respectively. l-carnitine uptake was inhibited (P < 0.05-0.01) by valproate and other organic cations. Anti-OCTN2 antibodies recognized a protein in the brush-border membrane (BBM) of Caco-2 cells with an apparent molecular mass of 60 kDa. The OCTN2 expression was confirmed by double immunostaining. Our results demonstrate that l-carnitine uptake in differentiated Caco-2 cells is primarily mediated by OCTN2, located on the BBM.
Collapse
Affiliation(s)
- Ihsan Elimrani
- Divisions of Medical Genetics and Gastroenterology, Research Center, Hôpital Sainte-Justine, Department of Pediatrics, Université de Montréal, Montreal, Quebec, Canada H3T 1C5
| | | | | | | | | | | |
Collapse
|
12
|
Heo KN, Lin X, Han IK, Odle J. Medium-chain fatty acids but not L-carnitine accelerate the kinetics of [14C]triacylglycerol utilization by colostrum-deprived newborn pigs. J Nutr 2002; 132:1989-94. [PMID: 12097681 DOI: 10.1093/jn/132.7.1989] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The effect of L-carnitine on in vivo fatty acid utilization was determined using colostrum-deprived newborn piglets fed emulsified triglycerides (TG) composed of [1-14C]octanoate (tri-8:0) or [1-14C]octadecanoate (tri-18:1). A soy protein-based liquid diet devoid of L-carnitine was fed piglets for 1 d to allow development of fatty acid-metabolizing enzymes and intestinal fat digestion and absorption before assessment of in vivo fat utilization. The radiolabeled TG were fed in isoenergetic amounts (97.7 kJ/kg(0.75)), with or without L-carnitine (1 mmol/kg(0.75)) as 30% (v/v) emulsions, using polyoxyethylene sorbitan monooleate as an emulsifier. Expired CO(2) was quantified and specific radioactivity (Bq/micromol) was determined at 20-min intervals over 24 h. The rate (mmol ATP.kg(-0.75).min(-1)) and extent (mol ATP/kg(0.75)) of TG oxidative utilization (i.e., composite of digestion, absorption and oxidation) were calculated from the kinetics of 14CO(2) expiration. The maximal rate and extent of tri-8:0 oxidation were three and fourfold greater than those of tri-18:1, respectively (P < 0.001), and tri-18:1 delayed the time to reach 10 and 50% of maximal oxidation rate by 1.2 and 1.9 h (P < 0.01, respectively), regardless of supplemental carnitine. Collectively, these findings quantify the accelerated oxidation of medium-chain vs. long-chain triglycerides, but fail to support a need for supplemental carnitine to maximize fat oxidation in colostrum-deprived piglets.
Collapse
Affiliation(s)
- Kinam N Heo
- Department of Animal Science, North Carolina State University, Raleigh 27695-7621, USA
| | | | | | | |
Collapse
|
13
|
Lahjouji K, Malo C, Mitchell GA, Qureshi IA. L-Carnitine transport in mouse renal and intestinal brush-border and basolateral membrane vesicles. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1558:82-93. [PMID: 11750267 DOI: 10.1016/s0005-2736(01)00433-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We characterized the uptake of carnitine in brush-border membrane (BBM) and basolateral membrane (BLM) vesicles, isolated from mouse kidney and intestine. In kidney, carnitine uptake was Na(+)-dependent, showed a definite overshoot and was saturable for both membranes, but for intestine, it was Na(+)-dependent only in BLM. The uptake was temperature-dependent in BLM of both kidney and intestine. The BBM transporter in kidney had a high affinity for carnitine: apparent K(m)=18.7 microM; V(max)=7.85 pmol/mg protein/s. In kidney BLM, similar characteristics were obtained: apparent K(m)=11.5 microM and V(max)=3.76 pmol/mg protein/s. The carnitine uptake by both membranes was not affected within the physiological pH 6.5-8.5. Tetraethylammonium, verapamil, valproate and pyrilamine significantly inhibited the carnitine uptake by BBM but not by BLM. By Western blot analysis, the OCTN2 (a Na(+)-dependent high-affinity carnitine transporter) was localized in the kidney BBM, and not in BLM. Strong OCTN2 expression was observed in kidney and skeletal muscle, with no expression in intestine in accordance with our functional study. We conclude that different polarized carnitine transporters exist in kidney BBM and BLM. L-Carnitine uptake by mouse renal BBM vesicles involves a carrier-mediated system that is Na(+)-dependent and is inhibited significantly by specific drugs. The BBM transporter is likely to be OCTN2 as indicated by a strong reactivity with the anti-OCTN2 polyclonal antibody.
Collapse
Affiliation(s)
- Karim Lahjouji
- Division of Medical Genetics, Hôpital Sainte-Justine, 3175 Cote Sainte-Catherine, H3T 1C5, Montreal, QC, Canada
| | | | | | | |
Collapse
|
14
|
Georges B, Le Borgne F, Galland S, Isoir M, Ecosse D, Grand-Jean F, Demarquoy J. Carnitine transport into muscular cells. Inhibition of transport and cell growth by mildronate. Biochem Pharmacol 2000; 59:1357-63. [PMID: 10751544 DOI: 10.1016/s0006-2952(00)00265-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Carnitine is involved in the transfer of fatty acids across mitochondrial membranes. Carnitine is found in dairy and meat products, but is also biosynthesized from lysine and methionine via a process that, in rat, takes place essentially in the liver. After intestinal absorption or hepatic biosynthesis, carnitine is transferred to organs whose metabolism is dependent on fatty acid oxidation, such as heart and skeletal muscle. In skeletal muscle, carnitine concentration was found to be 50 times higher than in the plasma, implicating an active transport system for carnitine. In this study, we characterized this transport in isolated rat myotubes, established mouse C2C12 myoblastic cells, and rat myotube plasma membranes and found that it was Na(+)-dependent and partly inhibited by a Na(+)/K(+) ATPase inhibitor. L-carnitine analogues such as D-carnitine and gamma-butyrobetaine interfere with this system as does acyl carnitine. Among these inhibitors, the most potent was mildronate (3-(2,2,2-trimethylhydrazinium)propionate), known as a gamma-butyrobetaine hydroxylase inhibitor. It also induced a marked decrease in carnitine transport into muscle cells. Removal of carnitine or treatment with mildronate induced growth inhibition of cultured C2C12 myoblastic cells. These data suggest that myoblast growth and/or differentiation is dependent upon the presence of carnitine.
Collapse
Affiliation(s)
- B Georges
- Université de Bourgogne, UPRES Lipides et Nutrition, UFR Sciences Vie, Bâtiment Mirande, 9 avenue Alain Savary, BP 47870, 21078, Dijon, France
| | | | | | | | | | | | | |
Collapse
|
15
|
Yokogawa K, Miya K, Tamai I, Higashi Y, Nomura M, Miyamoto K, Tsuji A. Characteristics of L-carnitine transport in cultured human hepatoma HLF cells. J Pharm Pharmacol 1999; 51:935-40. [PMID: 10504033 DOI: 10.1211/0022357991773195] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The recently cloned organic cation transporter, OCTN2, isolated as a homologue of OCTN1, has been shown to be of physiological importance in the renal tubular reabsorption of filtered L-carnitine as a high-affinity Na+ carnitine transporter in man. Although the mutation of the OCTN2 gene has been proved to be directly related to primary carnitine deficiency, there is little information about the L-carnitine transport system in the liver. In this study, the characteristics of L-carnitine transport into hepatocytes were studied by use of cultured human hepatoma HLF cells, which expressed OCTN2 mRNA to a greater extent than OCTN1 mRNA. The uptake of L-carnitine into HLF cells was saturable and the Eadie-Hofstee plot showed two distinct components. The apparent Michaelis constant and the maximum transport rate were 6.59+/-1.85 microM (mean+/-s.d.) and 78.5+/-21.4 pmol/5 min/10(6) cells, respectively, for high-affinity uptake, and 590+/-134 microM and 1507+/-142 pmol/5 min/10(6) cells, respectively, for low-affinity uptake. The high affinity L-carnitine transporter was significantly inhibited by metabolic inhibitors (sodium azide, dinitrophenol, iodoacetic acid) and at low temperature (4 degrees C). Uptake of [3H]L-carnitine also required the presence of Na+ ions in the external medium. The uptake activity was highest at pH 7.4, and was significantly lower at acidic or basic pH. L-Carnitine analogues (D-carnitine, L-acetylcarnitine and gamma-butyrobetaine) strongly inhibited uptake of [3H] L-carnitine, whereas beta-alanine, glycine, choline, acetylcholine and an organic anion and cation had little or no inhibitory effect. In conclusion, L-carnitine is absorbed by hepatocytes from man by an active carrier-mediated transport system which is Na+-, energy- and pH-dependent and has properties very similar to those of the carnitine transporter OCTN2.
Collapse
Affiliation(s)
- K Yokogawa
- Department of Pharmacology and Pharmaceutics, Graduate School of Natural Science and Technology, Kanazawa University, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
In procaryotes, L-carnitine may be used as both a carbon and nitrogen source for aerobic growth, or the carbon chain may be used selectively following cleavage trimethylamine. Under anaerobic conditions and in the absence of preferred substrates, some bacteria use carnitine, via crotonobetaine, as an electron acceptor. Formation of trimethylamine and lambda-butyrobetaine (from reduction of crotonobetaine) from L-carnitine by enteric bacteria has been demonstrated in rats and humans. Carnitine is not degraded by enzymes of eukaryotic origin. In higher organisms, carnitine has specific functions in intermediary metabolism. Concentrations of carnitine and its esters in cells of eukaryotes are rigorously maintained to provide optimal function. Carnitine homeostasis in mammals is preserved by a modest rate of endogenous synthesis, absorption from dietary sources, efficient reabsorption, and mechanisms present in most tissues that establish and maintain substantial concentration gradients between intracellular and extracellular carnitine pools.
Collapse
Affiliation(s)
- C J Rebouche
- Department of Pediatrics, University of Iowa College of Medicine, Iowa City 52242, USA.
| | | |
Collapse
|
17
|
Abstract
Carnitine functions as a substrate for a family of enzymes, carnitine acyltransferases, involved in acyl-coenzyme A metabolism and as a carrier for long-chain fatty acids into mitochondria. Carnitine biosynthesis and/or dietary carnitine fulfill the body's requirement for carnitine. To date, a genetic disorder of carnitine biosynthesis has not been described. A genetic defect in the high-affinity plasma membrane carnitine-carrier(in) leads to renal carnitine wasting and primary carnitine deficiency. Myopathic carnitine deficiency could be due to an increase in efflux moderated by the carnitine-carrier(out). Defects in the carnitine transport system for fatty acids in mitochondria have been described and are being examined at the molecular and pathophysiological levels. the nutritional management of these disorders includes a high-carbohydrate, low-fat diet and avoidance of those events that promote fatty acid oxidation, such as fasting, prolonged exercise, and cold. Large-dose carnitine treatment is effective in systemic carnitine deficiency.
Collapse
Affiliation(s)
- J Kerner
- Department of Veteran Affairs Medical Center, Department of Nutrition, Cleveland, USA
| | | |
Collapse
|
18
|
Shennan DB, Grant A, Ramsay RR, Burns C, Zammit VA. Characteristics of L-carnitine transport by lactating rat mammary tissue. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1393:49-56. [PMID: 9714731 DOI: 10.1016/s0005-2760(98)00056-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The transport of L-carnitine by lactating rat mammary tissue has been examined. L-carnitine uptake by rat mammary tissue explants isolated from lactating rats, 3-4 days post partum, was via both Na+-dependent and Na+-independent pathways. The Na+-dependent pathway, the predominant route for L-carnitine uptake, was a saturable process: the Km and Vmax were, respectively, 132 microM and 201 pmol/2 h/mg of intracellular water. The Na+-independent pathway, which was non-saturable, had a coefficient of 0.26 microl/mg of intracellular water/2 h. The Na+-dependent component of L-carnitine uptake by mammary tissue explants was cis-inhibited by D-carnitine and acetyl-L-carnitine, but not by choline or taurine. In contrast, the Na+-independent component of L-carnitine uptake was not affected by any of these compounds. The uptake of L-carnitine by mammary tissue isolated from lactating rats, 10-12 days post partum, was qualitatively similar to that by mammary tissue taken from rats during the early stage of lactation. However, L-carnitine uptake was quantitatively lower: this was attributable to a reduction in the Na+-dependent component of L-carnitine uptake. L-Carnitine efflux from rat mammary tissue taken from animals 3-4 days post partum, consisted of at least two components; a fast extracellular component and a slow membrane-limited component. Reversing the trans-membrane Na+-gradient did not stimulate L-carnitine efflux suggesting that the Na+-dependent L-carnitine carrier operates with asymmetrical kinetics. A hyposmotic shock, hence cell-swelling, increased L-carnitine efflux from mammary tissue explants.
Collapse
|
19
|
Urdaneta E, Idoate I, Larralde J. Drug-nutrient interactions: inhibition of amino acid intestinal absorption by fluoxetine. Br J Nutr 1998; 79:439-46. [PMID: 9682663 DOI: 10.1079/bjn19980074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fluoxetine is one of the most widely used antidepressants and nowadays it is also being used to manage obesity problems. In our laboratory we demonstrated that the drug inhibited sugar absorption (Monteiro et al. 1993). The aim of the present work was to determine the effect of fluoxetine on intestinal leucine absorption. Using a procedure of successive absorptions in vivo the drug diminished amino acid absorption by 30% (P < 0.001). Experiments in vitro in isolated jejunum also revealed a reduction in leucine uptake of 37% (P < 0.001). In both cases fluoxetine only affected mediated transport without altering diffusion. In a preparation enriched in basolateral membrane, fluoxetine inhibited the Na+,K(+)-ATPase (EC 3.6.1.37) activity (55%; P < 0.001) in a non-competitive manner with an inhibition constant (Ki) value of 0.92 mM. Leucine uptake by brush-border membrane vesicles was diminished by the drug (a reduction of 48% was observed at 30s, P < 0.001); only the apical Na(+)-dependent transport system of the amino acid was modified and the inhibition was non-competitive. Leucine uptake in the presence of lysine indicated that transporter B was involved. These results suggest that fluoxetine reduces leucine absorption by its action on the basolateral and apical membrane of the enterocyte; the nutritional status of the patients under drug treatment may be affected as neutral amino acid absorption is decreased.
Collapse
Affiliation(s)
- E Urdaneta
- Departamento de Fisiología y Nutrición, Universidad de Navarra, Pamplona, Spain
| | | | | |
Collapse
|
20
|
Rebouche CJ. Carnitine Absorption: Effects of Sodium Valproate and Sodium Octanoate in the Caco-2 Cell Culture Model of Human Intestinal Epithelium 44This study was supported in part by The Children’s Miracle Network Telethon. J Nutr Biochem 1998. [DOI: 10.1016/s0955-2863(98)00004-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|