1
|
Sarica AS, Bor S, Orman MN, Barajas-Martinez H, Juang JMJ, Antzelevitch C, Hasdemir C. Frequency of Irritable Bowel Syndrome in Patients with Brugada Syndrome and Drug-Induced Type 1 Brugada Pattern. Am J Cardiol 2021; 151:51-56. [PMID: 34034907 DOI: 10.1016/j.amjcard.2021.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 11/26/2022]
Abstract
Irritable bowel syndrome (IBS) is one of the most widely recognized functional bowel disorders (FBDs) with a genetic component. SCN5A gene and SCN1B loci have been identified in population-based IBS cohorts and proposed to have a mechanistic role in the pathophysiology of IBS. These same genes have been associated with Brugada syndrome (BrS). The present study examines the hypothesis that these two inherited syndromes are linked. Prevalence of FBDs over a 12 months period were compared between probands with BrS/drug-induced type 1 Brugada pattern (DI-Type 1 BrP) (n = 148) and a control group (n = 124) matched for age, female sex, presence of arrhythmia and co-morbid conditions. SCN5A/SCN1B genes were screened in 88 patients. Prevalence of IBS was 25% in patients with BrS/DI-Type 1 BrP and 8.1% in the control group (p = 2.34 × 10-4). On stepwise logistic regression analysis, presence of current and/or history of migraine (OR of 2.75; 95% CI: 1.08 to 6.98; p = 0.033) was a predictor of underlying BrS/DI-Type 1 BrP among patients with FBDs. We identified 8 putative SCN5A/SCN1B variants in 7 (12.3%) patients with BrS/DI-Type 1 BrP and 1 (3.2%) patient in control group. Five out of 8 (62.5%) patients with SCN5A/SCN1B variants had FBDs. In conclusion, IBS is a common co-morbidity in patients with BrS/DI-Type 1 BrP. Presence of current and/or history of migraine are a predictor of underlying BrS/DI-Type 1 BrP among patients with FBDs. Frequent co-existence of IBS and BrS/DI-Type 1 BrP necessitates cautious use of certain drugs among the therapeutic options for IBS that are known to exacerbate the Brugada phenotype.
Collapse
|
2
|
Xiao QY, Fang XC, Li XQ, Fei GJ. Ethnic differences in genetic polymorphism associated with irritable bowel syndrome. World J Gastroenterol 2020; 26:2049-2063. [PMID: 32536774 PMCID: PMC7267697 DOI: 10.3748/wjg.v26.i17.2049] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/25/2020] [Accepted: 04/04/2020] [Indexed: 02/06/2023] Open
Abstract
Genetic polymorphism is associated with irritable bowel syndrome (IBS) in terms of susceptibility and clinical manifestations. Previous studies have shown that genetic polymorphism might play a key role in the onset and progression of IBS by modulating components of its pathogenesis such as the gut-brain axis, gastrointestinal motility, inflammatory activity, and immune status. Although underlying pathophysiological mechanisms have not been fully clarified, the potential ethnic differences that are present in worldwide genetic studies of IBS deserve attention. This review surveyed numerous studies focusing on IBS-associated single nucleotide polymorphisms, and investigated the ethnic disparities revealed by them. The results demonstrate the need for more attention on ethnic factors in IBS-related genetic studies. Taking ethnic backgrounds into accounts and placing emphasis on disparities potentially ascribed to ethnicity could help lay a solid and generalized foundation for transcultural, multi-ethnic, or secondary analyses in IBS, for example, a meta-analysis. Broader genetic studies considering ethnic factors are greatly needed to obtain a better understanding of the pathophysiological mechanisms of IBS and to improve the prevention, intervention, and treatment of this disease.
Collapse
Affiliation(s)
- Qi-Yun Xiao
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiu-Cai Fang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiao-Qing Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Gui-Jun Fei
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
3
|
Verstraelen TE, Ter Bekke RMA, Volders PGA, Masclee AAM, Kruimel JW. The role of the SCN5A-encoded channelopathy in irritable bowel syndrome and other gastrointestinal disorders. Neurogastroenterol Motil 2015; 27:906-13. [PMID: 25898860 DOI: 10.1111/nmo.12569] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/17/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Gastrointestinal functional and motility disorders, like irritable bowel syndrome (IBS), have a high prevalence in the Western population and cause significant morbidity and loss of quality of life leading to considerable costs for health care. A decade ago, it has been demonstrated that interstitial cells of Cajal and intestinal smooth muscle cells, cells important for gastrointestinal motility, express the sodium channel alpha subunit Nav 1.5. In the heart, aberrant variants in this sodium channel, encoded by SCN5A, are linked to inherited arrhythmia syndromes, like the long-QT syndrome type 3 and Brugada syndrome. Mounting data show a possible contribution of SCN5A mutants to gastrointestinal functional and motility disorders. Two percent of IBS patients harbor SCN5A mutations with electrophysiological evidence of loss- and gain-of-function. In addition, gastrointestinal symptoms are more prevalent in cardiac SCN5A-mutation positive patients. PURPOSE This review firstly describes the Nav 1.5 channel and its physiological role in ventricular cardiomyocytes and gastrointestinal cells, then we focus on the involvement of mutant Nav 1.5 in gastrointestinal functional and motility disorders. Future research might uncover novel mutation-specific treatment strategies for SCN5A-encoded gastrointestinal channelopathies.
Collapse
Affiliation(s)
- T E Verstraelen
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - R M A Ter Bekke
- Department of Cardiology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - P G A Volders
- Department of Cardiology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - A A M Masclee
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - J W Kruimel
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
4
|
Beyder A, Farrugia G. Targeting ion channels for the treatment of gastrointestinal motility disorders. Therap Adv Gastroenterol 2012; 5:5-21. [PMID: 22282704 PMCID: PMC3263980 DOI: 10.1177/1756283x11415892] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Gastrointestinal (GI) functional and motility disorders are highly prevalent and responsible for long-term morbidity and sometimes mortality in the affected patients. It is estimated that one in three persons has a GI functional or motility disorder. However, diagnosis and treatment of these widespread conditions remains challenging. This partly stems from the multisystem pathophysiology, including processing abnormalities in the central and peripheral (enteric) nervous systems and motor dysfunction in the GI wall. Interstitial cells of Cajal (ICCs) are central to the generation and propagation of the cyclical electrical activity and smooth muscle cells (SMCs) are responsible for electromechanical coupling. In these and other excitable cells voltage-sensitive ion channels (VSICs) are the main molecular units that generate and regulate electrical activity. Thus, VSICs are potential targets for intervention in GI motility disorders. Research in this area has flourished with advances in the experimental methods in molecular and structural biology and electrophysiology. However, our understanding of the molecular mechanisms responsible for the complex and variable electrical behavior of ICCs and SMCs remains incomplete. In this review, we focus on the slow waves and action potentials in ICCs and SMCs. We describe the constituent VSICs, which include voltage-gated sodium (Na(V)), calcium (Ca(V)), potassium (K(V), K(Ca)), chloride (Cl(-)) and nonselective ion channels (transient receptor potentials [TRPs]). VSICs have significant structural homology and common functional mechanisms. We outline the approaches and limitations and provide examples of targeting VSICs at the pores, voltage sensors and alternatively spliced sites. Rational drug design can come from an integrated view of the structure and mechanisms of gating and activation by voltage or mechanical stress.
Collapse
Affiliation(s)
- Arthur Beyder
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
5
|
Saito YA, Strege PR, Tester DJ, Locke GR, Talley NJ, Bernard CE, Rae JL, Makielski JC, Ackerman MJ, Farrugia G. Sodium channel mutation in irritable bowel syndrome: evidence for an ion channelopathy. Am J Physiol Gastrointest Liver Physiol 2009; 296:G211-8. [PMID: 19056759 PMCID: PMC2643921 DOI: 10.1152/ajpgi.90571.2008] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The SCN5A-encoded Na(v)1.5 Na(+) channel is expressed in interstitial cells of Cajal and smooth muscle in the circular layer of the human intestine. Patients with mutations in SCN5A are more likely to report gastrointestinal symptoms, especially abdominal pain. Twin and family studies of irritable bowel syndrome (IBS) suggest a genetic basis for IBS, but no genes have been identified to date. Therefore, our aims were to evaluate SCN5A as a candidate gene involved in the pathogenesis of IBS and to determine physiological consequences of identified mutations. Mutational analysis was performed on genomic DNA obtained from 49 subjects diagnosed with IBS who reported at least moderately severe abdominal pain. One patient hosted a loss-of-function missense mutation, G298S, that was not observed in >3,000 reference alleles derived from 1,500 healthy control subjects. Na(+) currents were recorded from the four common human SCN5A transcripts in transfected HEK-293 cells. Comparing Na(v)1.5 with G298S-SCN5A versus wild type in HEK cells, Na(+) current density was significantly less by 49-77%, and channel activation time was delayed in backgrounds that also contained the common H558R polymorphism. Single-channel measurements showed no change in Na(v)1.5 conductance. Mechanosensitivity was reduced in the H558/Q1077del transcript but not in the other three backgrounds. In conclusion, the G298S-SCN5A missense mutation caused a marked reduction of whole cell Na(+) current and loss of function of Na(v)1.5, suggesting SCN5A as a candidate gene in the pathophysiology of IBS.
Collapse
Affiliation(s)
- Yuri A. Saito
- Enteric Neuroscience Program, Departments of Medicine (Cardiovascular Diseases), Pediatrics (Pediatric Cardiology), and Molecular Pharmacology and Experimental Therapeutics and the Windland Smith Rice Sudden Death Genomics Laboratory, and Miles and Shirley Fiterman Center for Digestive Diseases, Mayo Clinic, Rochester, Minnesota; and Department of Medicine, University of Wisconsin, Madison, Wisconsin
| | - Peter R. Strege
- Enteric Neuroscience Program, Departments of Medicine (Cardiovascular Diseases), Pediatrics (Pediatric Cardiology), and Molecular Pharmacology and Experimental Therapeutics and the Windland Smith Rice Sudden Death Genomics Laboratory, and Miles and Shirley Fiterman Center for Digestive Diseases, Mayo Clinic, Rochester, Minnesota; and Department of Medicine, University of Wisconsin, Madison, Wisconsin
| | - David J. Tester
- Enteric Neuroscience Program, Departments of Medicine (Cardiovascular Diseases), Pediatrics (Pediatric Cardiology), and Molecular Pharmacology and Experimental Therapeutics and the Windland Smith Rice Sudden Death Genomics Laboratory, and Miles and Shirley Fiterman Center for Digestive Diseases, Mayo Clinic, Rochester, Minnesota; and Department of Medicine, University of Wisconsin, Madison, Wisconsin
| | - G. Richard Locke
- Enteric Neuroscience Program, Departments of Medicine (Cardiovascular Diseases), Pediatrics (Pediatric Cardiology), and Molecular Pharmacology and Experimental Therapeutics and the Windland Smith Rice Sudden Death Genomics Laboratory, and Miles and Shirley Fiterman Center for Digestive Diseases, Mayo Clinic, Rochester, Minnesota; and Department of Medicine, University of Wisconsin, Madison, Wisconsin
| | - Nicholas J. Talley
- Enteric Neuroscience Program, Departments of Medicine (Cardiovascular Diseases), Pediatrics (Pediatric Cardiology), and Molecular Pharmacology and Experimental Therapeutics and the Windland Smith Rice Sudden Death Genomics Laboratory, and Miles and Shirley Fiterman Center for Digestive Diseases, Mayo Clinic, Rochester, Minnesota; and Department of Medicine, University of Wisconsin, Madison, Wisconsin
| | - Cheryl E. Bernard
- Enteric Neuroscience Program, Departments of Medicine (Cardiovascular Diseases), Pediatrics (Pediatric Cardiology), and Molecular Pharmacology and Experimental Therapeutics and the Windland Smith Rice Sudden Death Genomics Laboratory, and Miles and Shirley Fiterman Center for Digestive Diseases, Mayo Clinic, Rochester, Minnesota; and Department of Medicine, University of Wisconsin, Madison, Wisconsin
| | - James L. Rae
- Enteric Neuroscience Program, Departments of Medicine (Cardiovascular Diseases), Pediatrics (Pediatric Cardiology), and Molecular Pharmacology and Experimental Therapeutics and the Windland Smith Rice Sudden Death Genomics Laboratory, and Miles and Shirley Fiterman Center for Digestive Diseases, Mayo Clinic, Rochester, Minnesota; and Department of Medicine, University of Wisconsin, Madison, Wisconsin
| | - Jonathan C. Makielski
- Enteric Neuroscience Program, Departments of Medicine (Cardiovascular Diseases), Pediatrics (Pediatric Cardiology), and Molecular Pharmacology and Experimental Therapeutics and the Windland Smith Rice Sudden Death Genomics Laboratory, and Miles and Shirley Fiterman Center for Digestive Diseases, Mayo Clinic, Rochester, Minnesota; and Department of Medicine, University of Wisconsin, Madison, Wisconsin
| | - Michael J. Ackerman
- Enteric Neuroscience Program, Departments of Medicine (Cardiovascular Diseases), Pediatrics (Pediatric Cardiology), and Molecular Pharmacology and Experimental Therapeutics and the Windland Smith Rice Sudden Death Genomics Laboratory, and Miles and Shirley Fiterman Center for Digestive Diseases, Mayo Clinic, Rochester, Minnesota; and Department of Medicine, University of Wisconsin, Madison, Wisconsin
| | - Gianrico Farrugia
- Enteric Neuroscience Program, Departments of Medicine (Cardiovascular Diseases), Pediatrics (Pediatric Cardiology), and Molecular Pharmacology and Experimental Therapeutics and the Windland Smith Rice Sudden Death Genomics Laboratory, and Miles and Shirley Fiterman Center for Digestive Diseases, Mayo Clinic, Rochester, Minnesota; and Department of Medicine, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|