1
|
Shalaby SM, Shawky SA, Ashour H, Sarhan W. The interplay between COX-2, chemotherapeutic drugs, and chemoresistance in colon cancer. Sci Rep 2025; 15:15837. [PMID: 40328989 PMCID: PMC12056169 DOI: 10.1038/s41598-025-98451-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 04/11/2025] [Indexed: 05/08/2025] Open
Abstract
Chemoresistance and tumor relapse remain major clinical problems. Evidence indicates that COX2/PGE2/EP axis has a critical role in tumorogenesis and chemoresistance. This study assessed the relation of the COX-2 gene expression with chemoresistance in colon cancer (CC) patients. Also, it explored the effect of chemotherapy on COX-2 expression. The study included 24 patients with CC without chemotherapeutic treatment and 24 chemoresistant CC patients. Tumor and adjacent non-neoplastic colon tissue samples were collected and COX-2 mRNA expression was measured. Also, COX-2 and its related genes; TROP2 and DUSP4 expression were analysed in 5 flurouracil and Oxalliplatin treated Caco-2 and SW-620 cells. The results indicated significant upregulation of COX-2 expression in tissues of chemoresistant CC patients when compared with that in CC tissues without chemotherapy (p < 0.001). There was a relation between COX-2 expression with lymph nodes, metastases and staging in both groups. Concerning in-vitro experiments, there was a dose dependent significant increase of COX-2, TROP2 and DUSP4 mRNA and protein expression levels in 5flurouracil and Oxalliplatin treated cells. These findings demonstrated that overexpression of COX-2 in the chemoresistant CC patients. Both 5 flurouracil and Oxalliplatin induced COX-2 overexpression and in turn COX-2 upregulation may decrease the response of cancer to chemotherapy.
Collapse
Affiliation(s)
- Sally M Shalaby
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Salma A Shawky
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Hassan Ashour
- Surgery Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Walaa Sarhan
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
2
|
Effect of Ketorolac on Pharmacokinetics and Pharmacodynamics of 5-Fluorouracil: In Vivo and In Vitro Study. J Trop Med 2022; 2022:5267861. [PMID: 36187458 PMCID: PMC9519353 DOI: 10.1155/2022/5267861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022] Open
Abstract
Background. This study aimed to evaluate the impact of ketorolac on the pharmacokinetics of 5-FU and its effect on the efficacy of 5-fluorouracil (5-FU) on the HT-29 cell line. Methods. Cell culture: the HT-29 cell line was treated with different concentrations of 5-FU, ketorolac, and combination of 5-FU and ketorolac for 24 and 48 hours. The cell viability (%) was calculated by the MTT assay. Animal study: rats were randomly divided into control and pretreatment groups. The control group received physiological saline, whereas the pretreatment group received ketorolac by intraperitoneal (i.p.) injections on a daily basis for 14 days. On the 15th day, both groups received 5-FU (i.p.). Blood samples were collected at different times for HPLC analysis, and 5-FU pharmacokinetic parameters were calculated. Results. At cell culture study, in a certain concentration range, combination therapy showed synergistic effects (<0.05). However, at concentrations above this range, combination therapy showed antagonistic effects on 5-FU efficacy (<0.05). According to the pharmacokinetic analysis, pretreatment with ketorolac resulted in a significant increase in AUC, Cmax, and Tmax of 5-FU (<0.05) and a significant decrease in V/F and Cl/F of 5-FU (<0.05). Conclusions. Combination therapy with ketorolac and 5-FU, depending on time and concentration, has a synergistic effect on reducing the viability of cancer cells. Also, ketorolac is able to alter the pharmacokinetics of 5-FU. Since there is a close relationship between pharmacokinetic parameters of 5-FU and its effectiveness/toxicity, it seems that these changes are towards creating a synergistic effect on 5-FU cytotoxicity. These results suggest the need to optimize the dose of these drugs in order to increase clinical efficacy and reduce the toxicity associated with them.
Collapse
|
3
|
Cheratta AR, Thayyullathil F, Pallichankandy S, Subburayan K, Alakkal A, Galadari S. Prostate apoptosis response-4 and tumor suppression: it's not just about apoptosis anymore. Cell Death Dis 2021; 12:47. [PMID: 33414404 PMCID: PMC7790818 DOI: 10.1038/s41419-020-03292-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023]
Abstract
The tumor suppressor prostate apoptosis response-4 (Par-4) has recently turned ‘twenty-five’. Beyond its indisputable role as an apoptosis inducer, an increasing and sometimes bewildering, new roles for Par-4 are being reported. These roles include its ability to regulate autophagy, senescence, and metastasis. This growing range of responses to Par-4 is reflected by our increasing understanding of the various mechanisms through which Par-4 can function. In this review, we summarize the existing knowledge on Par-4 tumor suppressive mechanisms, and discuss how the interaction of Par-4 with different regulators influence cell fate. This review also highlights the new secretory pathway that has emerged and the likely discussion on its clinical implications.
Collapse
Affiliation(s)
- Anees Rahman Cheratta
- Cell Death Signaling Laboratory, Division of Science, Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, UAE
| | - Faisal Thayyullathil
- Cell Death Signaling Laboratory, Division of Science, Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, UAE
| | - Siraj Pallichankandy
- Cell Death Signaling Laboratory, Division of Science, Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, UAE
| | - Karthikeyan Subburayan
- Cell Death Signaling Laboratory, Division of Science, Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, UAE
| | - Ameer Alakkal
- Cell Death Signaling Laboratory, Division of Science, Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, UAE
| | - Sehamuddin Galadari
- Cell Death Signaling Laboratory, Division of Science, Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, UAE.
| |
Collapse
|
4
|
El-Guendy N. Prostate Apoptosis Response-4 in Inflammation. TUMOR SUPPRESSOR PAR-4 2021:25-40. [DOI: 10.1007/978-3-030-80558-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
5
|
Li Z, Wang Z, Shen B, Chen C, Ding X, Song H. Effects of aspirin on the gastrointestinal tract: Pros vs. cons. Oncol Lett 2020; 20:2567-2578. [PMID: 32782574 PMCID: PMC7400979 DOI: 10.3892/ol.2020.11817] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
Acetylsalicylic acid, also known as aspirin, is often used in clinical antipyretic, analgesic and antiplatelet therapy. Aspirin can cause numerous side effects in the gastrointestinal (GI) tract, ranging from unpleasant GI symptoms without gastric mucosal lesions to ulcer bleeding and even death. However, recent studies have found that aspirin can significantly prevent GI tumors. Despite impressive advances in cancer research, screening and treatment options, GI tumors remain a leading cause of death worldwide. Prevention is a far better option than treatment for tumors. Therefore, the present review assesses the pros and cons of aspirin on the GI tract and, on this the basis, the appropriate dose of aspirin to protect it.
Collapse
Affiliation(s)
- Zhuoya Li
- Department of Internal Medicine, The Medical School of Ningbo University, Ningbo, Zhejiang 315000, P.R. China
- Department of Gastroenterology, Ningbo First Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Zheng Wang
- Department of Gastroenterology, Ningbo First Hospital, Ningbo, Zhejiang 315000, P.R. China
- Department of Internal Medicine, The Medical School of Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Baile Shen
- Department of Internal Medicine, The Medical School of Ningbo University, Ningbo, Zhejiang 315000, P.R. China
- Department of Gastroenterology, Ningbo First Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Chen Chen
- Department of Internal Medicine, The Medical School of Ningbo University, Ningbo, Zhejiang 315000, P.R. China
- Department of Gastroenterology, Ningbo First Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Xiaoyun Ding
- Department of Gastroenterology, Ningbo First Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Haojun Song
- Department of Gastroenterology, Ningbo First Hospital, Ningbo, Zhejiang 315000, P.R. China
| |
Collapse
|
6
|
Santos RVC, de Sena WLB, Dos Santos FA, da Silva Filho AF, da Rocha Pitta MG, da Rocha Pitta MG, de Melo Rego MB, Pereira MC. Potential Therapeutic Agents Against Par-4 Target for Cancer Treatment: Where Are We Going? Curr Drug Targets 2020; 20:635-654. [PMID: 30474528 DOI: 10.2174/1389450120666181126122440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 02/06/2023]
Abstract
One of the greatest challenges of cancer therapeutics nowadays is to find selective targets successfully. Prostate apoptosis response-4 (Par-4) is a selective tumor suppressor protein with an interesting therapeutic potential due to its specificity on inducing apoptosis in cancer cells. Par-4 activity and levels can be downregulated in several tumors and cancer cell types, indicating poor prognosis and treatment resistance. Efforts to increase Par-4 expression levels have been studied, including its use as a therapeutic protein by transfection with adenoviral vectors or plasmids. However, gene therapy is very complex and still presents many hurdles to be overcome. We decided to review molecules and drugs with the capacity to upregulate Par-4 and, thereby, be an alternative to reach this druggable target. In addition, Par-4 localization and function are reviewed in some cancers, clarifying how it can be used as a therapeutic target.
Collapse
Affiliation(s)
- Renata Virgínia Cavalcanti Santos
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, PE, Brazil
| | - Wanessa Layssa Batista de Sena
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, PE, Brazil
| | - Flaviana Alves Dos Santos
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, PE, Brazil
| | - Antônio Felix da Silva Filho
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, PE, Brazil
| | | | - Maira Galdino da Rocha Pitta
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, PE, Brazil
| | - Moacyr Barreto de Melo Rego
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, PE, Brazil
| | - Michelly Cristiny Pereira
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, PE, Brazil
| |
Collapse
|
7
|
Wang Y, Du C, Zhang N, Li M, Liu Y, Zhao M, Wang F, Luo F. TGF-β1 mediates the effects of aspirin on colonic tumor cell proliferation and apoptosis. Oncol Lett 2018; 15:5903-5909. [PMID: 29552221 DOI: 10.3892/ol.2018.8047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/23/2017] [Indexed: 02/05/2023] Open
Abstract
Previous studies have demonstrated that aspirin serves an important role in chemoprevention and the suppression of colorectal cancer (CRC); however, the underlying mechanisms for this inhibition by aspirin remain unclear. Aspirin is capable of promoting apoptosis through prostaglandin-dependent orprostaglandin-independent signaling pathways. In the prostaglandin-dependent pathways, inhibition of cyclooxygenase (COX), particularly COX-2, is the primary mechanism known to be involved in aspirin-induced CRC suppression. Previous studies have implicated prostaglandin-independent signaling pathways and certain associated proteins, including SOX7, in aspirin-induced CRC suppression. In the present study, a newly-characterized association between aspirin, transforming growth factor (TGF)-β1 and CRC inhibition was identified. Specifically, aspirin triggers CRC cell apoptosis by inducing the secretion of TGF-β1, and the increased TGF-β1 then leads to apoptosis and proliferation inhibition in CRC cells.
Collapse
Affiliation(s)
- Yuyi Wang
- Department of Medical Oncology, Lung Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Chi Du
- Department of Medical Oncology, Lung Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Oncology, The Second People's Hospital of Neijiang, Neijiang, Sichuan 641000, P.R. China
| | - Nan Zhang
- Department of Medical Oncology, Lung Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Mei Li
- Department of Medical Oncology, Lung Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yanyang Liu
- Department of Medical Oncology, Lung Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Maoyuan Zhao
- Department of Medical Oncology, Lung Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Feng Wang
- Department of Medical Oncology, Lung Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Feng Luo
- Department of Medical Oncology, Lung Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
8
|
Boueroy P, Aukkanimart R, Boonmars T, Sriraj P, Ratanasuwan P, Juasook A, Wonkchalee N, Vaeteewoottacharn K, Wongkham S. Inhibitory Effect of Aspirin on Cholangiocarcinoma Cells. Asian Pac J Cancer Prev 2017; 18:3091-3096. [PMID: 29172284 PMCID: PMC5773796 DOI: 10.22034/apjcp.2017.18.11.3091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Aspirin and other non-steroidal anti-inflammatory drugs reduce the risk of cancer due to their anti-proliferative and apoptotic effects, which are the important mechanisms for their anti-tumor activity. Here, the effect of aspirin on human cholangiocarcinoma cells (KKU-214) and the underlying mechanisms of its action were explored. Cell proliferation was measured by sulforhodamine B (SRB) assay, while cell cycle distribution and apoptosis were determined by flow cytometry. Western blotting was used to explore protein expression underlying molecular mechanisms of anti-cancer treatment of aspirin. Aspirin reduced cell proliferation in a dose- and time-dependent manner, and altered the cell cycle phase distribution of KKU-214 cells by increasing the proportion of cells in the G0/G1 phase and reducing the proportion in the S and G2/M phases. Consistent with its effect on the cell cycle, aspirin also reduced the expression of cyclin D1 and cyclin-dependent kinase 4 (Cdk-4), which are important for G0/G1 cell cycle progression. Treatment with aspirin led to increased induction of apoptosis in a dose-dependent manner. Further analysis of the mechanism underlying the effect of this drug showed that aspirin induced the expression of the tumor-suppressor protein p53 while inhibiting the anti-apoptotic protein B-cell lymphoma-2 (Bcl-2). Correspondingly, the activation of caspase-9 and -3 was also increased. These findings suggest that aspirin causes cell cycle arrest and apoptosis, both of which could contribute to its anti-proliferative effect.
Collapse
Affiliation(s)
- Parichart Boueroy
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Neglected, Zoonosis and Vector-Borne Disease Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Li Q, Peng J, Liu T, Zhang G. Effects of celecoxib on cell apoptosis and Fas, FasL and Bcl-2 expression in a BGC-823 human gastric cancer cell line. Exp Ther Med 2017; 14:1935-1940. [PMID: 28962106 PMCID: PMC5609129 DOI: 10.3892/etm.2017.4769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 03/13/2017] [Indexed: 01/10/2023] Open
Abstract
Fas, which is an apoptotic-related protein, has an important role in cell apoptosis. Fas ligand (FasL) binds to Fas and activates apoptosis signal transduction. We previously demonstrated that the efficiency of celecoxib inhibited the proliferation and apoptosis of HT-29 colon cancer cell line. The BGC823 cell line was used as an experimental model to evaluate the potential role of celecoxib on gastric cancer cell apoptosis. Inhibitory effects of celecoxib on cell viability were determined by MTT assay. Cell apoptosis was evaluated by flow cytometric analysis and laser confocal microscopy. The results of the present study demonstrated that celecoxib inhibited the viability of BGC823 cells in a concentration- and time-dependent manner. Furthermore, the effect of BGC823 cells apoptosis was increased in a concentration-dependent manner. Western blotting was used to determine the protein expression levels of Fas, FasL, and B-cell lymphoma-2 (Bcl-2). During the celecoxib-induced apoptosis of BGC823 cells, celecoxib upregulated Fas expression and downregulated FasL and Bcl-2 expression in a concentration-dependent manner. These results suggest that celecoxib inhibited the growth and induced apoptosis of BGC823 gastric cancer cells by regulating the protein expression of Fas, FasL and Bcl-2.
Collapse
Affiliation(s)
- Qian Li
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jie Peng
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ting Liu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Guiying Zhang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
10
|
Malakar S. Bioactive food chemicals and gastrointestinal symptoms: a focus of salicylates. J Gastroenterol Hepatol 2017; 32 Suppl 1:73-77. [PMID: 28244660 DOI: 10.1111/jgh.13702] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/28/2016] [Indexed: 12/28/2022]
Abstract
Bioactive food chemicals are substances present in food that are capable of interacting with living cells causing changes in physiological functions. Salicylic acid (SA), a plant hormone involved in plant immune response, is one such bioactive food chemical. Aspirin, a commercially available SA, might play beneficial roles in cardiovascular health and colon cancer. It may also cause urticaria, angioedema, asthma, and gastrointestinal symptoms in SA-sensitive individuals. Dietary SA might exert similar beneficial effects and/or may induce similar symptoms in hypersensitive individuals. Food-related SA sensitivity in relation to gastrointestinal symptoms is not well documented besides a few self-reported questionnaires and the knowledge that low doses of aspirin (equivalent of high dietary intake) can cause gastrointestinal injury. The only direct evidence that suggests benefits of reducing dietary SA was reported in asthmatic individuals. Although SA sensitivity in relation to gut symptoms in susceptible individuals is accepted by clinicians, the detection of this disease remains a challenge because of the complicated nature of dietary challenges and the risk of oral aspirin provocation tests in patients with severe hypersensitivity reactions. Given the non-IgE mediated nature of the disease, in vitro assays like basophil activation may have failed to produce reliable results. However, given the simplicity of this assay, further studies need to be formulated to firmly establish its reliability. Formulation of proper dietary strategies for symptom control is also impossible given the controversial and scant nature of the data on SA content of food. This issue needs to be resolved to formulate proper dietary strategies for effective symptom control.
Collapse
Affiliation(s)
- Sreepurna Malakar
- Department of Gastroenterology, Monash University and Alfred Hospital, Melbourne, Australia
| |
Collapse
|
11
|
Abstract
The prostate apoptosis response protein 4 (Par-4) is a tumor-suppressor that has been shown to induce cancer-cell selective apoptosis in a variety of cancers. The regulation of Par-4 expression and activity is a relatively understudied area, and identifying novel regulators of Par-4 may serve as novel therapeutic targets. To identify novel regulators of Par-4, a co-immunoprecipitation was performed in colon cancer cells, and co-precipitated proteins were identified by mass-spectometry. TRIM21 was identified as a novel interacting partner of Par-4, and further shown to interact with Par-4 endogenously and through its PRY-SPRY domain. Additional studies show that TRIM21 downregulates Par-4 levels in response to cisplatin, and that TRIM21 can increase the resistance of colon cancer cells to cisplatin. Furthermore, forced Par-4 expression can sensitize pancreatic cancer cells to cisplatin. Finally, we demonstrate that TRIM21 expression predicts survival in pancreatic cancer patients. Our work highlights a novel mechanism of Par-4 regulation, and identifies a novel prognostic marker and potential therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Jeffrey Q Nguyen
- a Department of Medicine and Penn State Hershey Cancer Institute , Penn State College of Medicine , Hershey , PA , USA
| | - Rosalyn B Irby
- a Department of Medicine and Penn State Hershey Cancer Institute , Penn State College of Medicine , Hershey , PA , USA
| |
Collapse
|
12
|
García-París M, López-Estrada EK. First records of Eupompha imperialis (Wellman, 1912) (Coleoptera: Meloidae) in Mexico. GRAELLSIA 2015. [DOI: 10.3989/graellsia.2015.v71.131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
|
14
|
Brant KA, Leikauf GD. Dysregulation of FURIN by prostaglandin-endoperoxide synthase 2 in lung epithelial NCI-H292 cells. Mol Carcinog 2012; 53:192-200. [PMID: 23065687 DOI: 10.1002/mc.21963] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 08/07/2012] [Accepted: 08/27/2012] [Indexed: 11/08/2022]
Abstract
Because proprotein convertases (PCSKs) activate growth factors and matrix metalloproteinase, these enzymes have been implicated in non-small cell lung cancer tumor progression and aggressiveness. Previous studies indicate that one PCSK member, FURIN is overexpressed in NSCLC, but little is known regarding the mechanisms driving PCSKs expression during malignant change. We sought to determine whether prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and cyclooxygenase) (PTGS2) (aka COX2), whose expression is also frequently increased in NSCLC, differentially regulates PCSK expression and activity between normal (NHBE) and NSCLC epithelial cells (NCI-H292, NCI-H441, A549). NSCLC cells exhibit significantly greater cell-associated and secreted PCSK activity as compared with NHBE. The heightened activity is consistent with increased FURIN, PCSK4, and PCSK6 protein in the NCSLC cells. Inhibition of PTGS2 activity using NS-398 and siRNA decreased FURIN mRNA, protein, activity along with cell proliferation in NCI-H292 cells but not NHBE cells. NSCLC also expressed elevated levels of the transcription factor E2F1. When NCI-H292 cells were transfected with E2F1 siRNA, both PTGS2 expression and PCSK activity were attenuated, arguing a pivotal role for E2F1 in the differential regulation of PCSKs by PTGS2. Our results highlight a novel role for PTGS2 in NSCLC and may provide a mechanism, whereby PTGS2 inhibitors suppress lung cancer cell growth.
Collapse
Affiliation(s)
- Kelly A Brant
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15219-3130
| | | |
Collapse
|
15
|
Zaorsky NG, Buyyounouski MK, Li T, Horwitz EM. Aspirin and statin nonuse associated with early biochemical failure after prostate radiation therapy. Int J Radiat Oncol Biol Phys 2012; 84:e13-7. [PMID: 22652109 DOI: 10.1016/j.ijrobp.2012.02.050] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 02/21/2012] [Accepted: 02/21/2012] [Indexed: 12/21/2022]
Abstract
PURPOSE To present the largest retrospective series investigating the effect of aspirin and statins, which are hypothesized to have antineoplastic properties, on biochemical failure (nadir plus 2 ng/mL) after prostate radiation therapy (RT). METHODS AND MATERIALS Between 1989 and 2006, 2051 men with clinically localized prostate cancer received definitive RT alone (median dose, 76 Gy). The rates of aspirin use and statin use (defined as any use at the time of RT or during follow-up) were 36% and 34%, respectively. The primary endpoint of the study was an interval to biochemical failure (IBF) of less than 18 months, which has been shown to be the single strongest predictor of distant metastasis, prostate cancer survival, and overall survival after RT. Patient demographic characteristics and tumor staging factors were assessed with regard to associations with the endpoint. Univariate analysis was performed with the χ(2) test for categorical variables and the Wilcoxon test for continuous variables. Multivariable analysis was performed with a multiple logistic regression. RESULTS The median follow-up was 75 months. Univariate analysis showed that an IBF of less than 18 months was associated with aspirin nonuse (P<.0001), statin nonuse (P<.0001), anticoagulant nonuse (P=.0006), cardiovascular disease (P=.0008), and prostate-specific antigen (continuous) (P=.008) but not with Gleason score, age, RT dose, or T stage. On multivariate analysis, only aspirin nonuse (P=.0012; odds ratio, 2.052 [95% confidence interval, 1.328-3.172]) and statin nonuse (P=.0002; odds ratio, 2.465 [95% confidence interval, 1.529-3.974]) were associated with an IBF of less than 18 months. CONCLUSIONS In patients who received RT for prostate cancer, aspirin or statin nonuse was associated with early biochemical failure, a harbinger of distant metastasis and death. Further study is needed to confirm these findings and to determine the optimal dosing and schedule, as well as the relative benefits and risks, of both therapies in combination with RT.
Collapse
Affiliation(s)
- Nicholas G Zaorsky
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
16
|
Hossain MA, Kim DH, Jang JY, Kang YJ, Yoon JH, Moon JO, Chung HY, Kim GY, Choi YH, Copple BL, Kim ND. Aspirin induces apoptosis in vitro and inhibits tumor growth of human hepatocellular carcinoma cells in a nude mouse xenograft model. Int J Oncol 2011; 40:1298-304. [PMID: 22179060 PMCID: PMC3584583 DOI: 10.3892/ijo.2011.1304] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 11/29/2011] [Indexed: 12/21/2022] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are known to induce apoptosis in a variety of cancer cells, including colon, prostate, breast and leukemia. Among them, aspirin, a classical NSAID, shows promise in cancer therapy in certain types of cancers. We hypothesized that aspirin might affect the growth of liver cancer cells since liver is the principal site for aspirin metabolism. Therefore, we investigated the effects of aspirin on the HepG2 human hepatocellular carcinoma cell line in vitro and the HepG2 cell xenograft model in BALB/c nude mice. We found that treatment with aspirin inhibited cell growth and induced apoptosis involving both extrinsic and intrinsic pathways as measured by DNA ladder formation, alteration in the Bax/Bcl-2 ratio, activation of the caspase activities and related protein expressions. In vivo antitumor activity assay also showed that aspirin resulted in significant tumor growth inhibition compared to the control. Oral administration of aspirin (100 mg/kg/day) caused a significant reduction in the growth of HepG2 tumors in nude mice. These findings suggest that aspirin may be used as a promising anticancer agent against liver cancer.
Collapse
Affiliation(s)
- Mohammad Akbar Hossain
- Division of Pharmacy, College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan 609-735, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Tai HH, Chi X, Tong M. Regulation of 15-hydroxyprostaglandin dehydrogenase (15-PGDH) by non-steroidal anti-inflammatory drugs (NSAIDs). Prostaglandins Other Lipid Mediat 2011; 96:37-40. [DOI: 10.1016/j.prostaglandins.2011.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/10/2011] [Accepted: 06/10/2011] [Indexed: 12/01/2022]
|
18
|
Duthie GG, Wood AD. Natural salicylates: foods, functions and disease prevention. Food Funct 2011; 2:515-20. [DOI: 10.1039/c1fo10128e] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Kim YM, Shin YK, Jun HJ, Rha SY, Pyo H. Systematic analyses of genes associated with radiosensitizing effect by celecoxib, a specific cyclooxygenase-2 inhibitor. JOURNAL OF RADIATION RESEARCH 2011; 52:752-765. [PMID: 22104269 DOI: 10.1269/jrr.10146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
To investigate genes regulated by COX-2 or a COX-2 specific inhibitor, celecoxib, in irradiated cancer cells, we analyzed changes in gene expression using complementary DNA microarray following celecoxib or combined celecoxib and ionizing radiation (IR) treatment in a stable COX-2 knockdown A549 (AS) and a mock cell line (AN). Thirty-six genes were differentially expressed by COX-2 knockdown. Celecoxib changed the expressions of 40 and 69 genes in AN and AS cells, respectively. Twenty-seven genes were synchronously regulated by COX-2 and celecoxib. Among these, celecoxib regulated ras homolog gene family B and mitosin protein expression in a COX-2 dependent manner, especially in irradiated cells. In addition, we identified 11 genes that changed by more than 1.5 times the expected additive values after celecoxib and IR treatment. The current study may provide evidence that COX-2 or celecoxib regulates various intracellular functions in addition to their enzymatic activity regulation. We also identified candidate molecules that may be responsible for COX-2-dependent radiosensitization by celecoxib.
Collapse
Affiliation(s)
- Young-Mee Kim
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, Korea
| | | | | | | | | |
Collapse
|
20
|
Optimization of cell-based assays to quantify the anti-inflammatory/allergic potential of test substances in 96-well format. Inflammopharmacology 2010; 19:169-81. [PMID: 21069571 DOI: 10.1007/s10787-010-0065-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 10/11/2010] [Indexed: 01/08/2023]
Abstract
OBJECTIVE There is an insistent need for robust, reliable, and optimized assays for screening novel drugs targeting the inflammatory/allergic markers. The present study describes about the optimization of eight cell-based assays utilizing mammalian cell lines in 96-well format for quantifying anti-inflammatory/allergic drug candidates. MATERIALS AND METHODS We estimated the inhibitory response of reference compounds: 1400 W dihydrochloride on LPS-induced NO release, celecoxib on LPS-induced PGE(2) production and dexamethasone on LPS-induced pro-inflammatory cytokines IL-1 beta, IL-6, and TNF-alpha production by J774A.1 murine macrophages. Response of acetylsalicylic acid and celecoxib was studied on A23187-induced TXB(2) production; captopril on A23187-stimulated LTB(4) production by HL-60 cells. Effect of ketotifen fumarate was evaluated on A23187-elicited histamine release by RBL-2H3 cells. Each experiment was repeated twice to assess the reproducibility and suitability of the assays by determining appropriate statistical tools viz. %CV, S/B and Z' factor. RESULTS 1400 W dihydrochloride was capable of inhibiting LPS-induced NO levels (IC(50) = 10.7 μM). Dexamethasone attenuated LPS-induced IL-1 beta (IC(50) = 70 nM), IL-6 (IC(50) = 58 nM) and TNF-alpha (IC(50) = 44 nM) release, whereas celecoxib, a specific COX-2 inhibitor showed marked reduction in LPS-induced PGE(2) (IC(50) = 23 nM) production. Captopril (IC(50) = 48 μM) and ketotifen fumarate (IC(50) = 36.4 μM) demonstrated potent inhibitory effect against A23187-stimulated LTB(4) and histamine levels, respectively. Both acetylsalicylic acid (IC(50) = 5.5 μM) and celecoxib (IC(50) = 7.9 nM) exhibited concentration-dependent decrease in TXB(2) production. Results for all the cell assays from two experiments showed a Z' factor varying from 0.30 to 0.99; the S/B ratio ranged from 2.39 to 24.92; %CV ranged between 1.52 and 20.14. CONCLUSION The results proclaim that these cell-based assays can act as ideal tools for screening new anti-inflammatory/anti-allergic compounds.
Collapse
|
21
|
Wang BD, Kline CLB, Pastor DM, Olson TL, Frank B, Luu T, Sharma AK, Robertson G, Weirauch MT, Patierno SR, Stuart JM, Irby RB, Lee NH. Prostate apoptosis response protein 4 sensitizes human colon cancer cells to chemotherapeutic 5-FU through mediation of an NF kappaB and microRNA network. Mol Cancer 2010; 9:98. [PMID: 20433755 PMCID: PMC2883962 DOI: 10.1186/1476-4598-9-98] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 04/30/2010] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Diminished expression or activity of prostate apoptosis response protein 4 (Par-4) has been demonstrated in a number of cancers, although reports on Par-4 expression during colon cancer progression are lacking. An understanding of the molecular events in conjunction with the genetic networks affected by Par-4 is warranted. RESULTS Colon cancer specimens derived from patients have significantly diminished expression of Par-4 mRNA relative to paired normal colon. Hence, the functional consequences of reintroducing Par-4 into HT29 colon cancer cells were assessed. Overexpression augmented the interaction of Par-4 with NF kappaB in the cytosol but not nucleus, and facilitated apoptosis in the presence of 5-fluorouracil (5-FU). Analogous findings were obtained when AKT1 pro-survival signaling was inhibited. Transcriptome profiling identified approximately 700 genes differentially regulated by Par-4 overexpression in HT29 cells. Nearly all Par-4-regulated genes were shown by promoter analysis to contain cis-binding sequences for NF kappaB, and meta-analysis of patient expression data revealed that one-third of these genes exist as a recurrent co-regulated network in colon cancer specimens. Sets of genes involved in programmed cell death, cell cycle regulation and interestingly the microRNA pathway were found overrepresented in the network. Noteworthy, Par-4 overexpression decreased NF kappaB occupancy at the promoter of one particular network gene DROSHA, encoding a microRNA processing enzyme. The resulting down-regulation of DROSHA was associated with expression changes in a cohort of microRNAs. Many of these microRNAs are predicted to target mRNAs encoding proteins with apoptosis-related functions. Western and functional analyses were employed to validate several predictions. For instance, miR-34a up-regulation corresponded with a down-regulation of BCL2 protein. Treating Par-4-overexpressing HT29 cells with a miR-34a antagomir functionally reversed both BCL2 down-regulation and apoptosis by 5-FU. Conversely, bypassing Par-4 overexpression by direct knockdown of DROSHA expression in native HT29 cells increased miR-34a expression and 5-FU sensitivity. CONCLUSION Our findings suggest that the initiation of apoptotic sensitivity in colon cancer cells can be mediated by Par-4 binding to NF kappaB in the cytoplasm with consequential changes in the expression of microRNA pathway components.
Collapse
Affiliation(s)
- Bi-Dar Wang
- Department of Pharmacology and Physiology, The George Washington University Medical Center, Washington, DC 20037, USA
| | | | - Danielle M Pastor
- Penn State Hershey Cancer Institute, Hershey, PA 17033, USA
- Department of Surgery, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Thomas L Olson
- Penn State Hershey Cancer Institute, Hershey, PA 17033, USA
| | - Bryan Frank
- Department of Pharmacology and Physiology, The George Washington University Medical Center, Washington, DC 20037, USA
| | - Truong Luu
- Department of Pharmacology and Physiology, The George Washington University Medical Center, Washington, DC 20037, USA
| | - Arun K Sharma
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Gavin Robertson
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Matthew T Weirauch
- Biomolecular Engineering Department, UC Santa Cruz, Santa Cruz, CA 95064, USA
| | - Steven R Patierno
- Department of Pharmacology and Physiology, The George Washington University Medical Center, Washington, DC 20037, USA
| | - Joshua M Stuart
- Biomolecular Engineering Department, UC Santa Cruz, Santa Cruz, CA 95064, USA
| | - Rosalyn B Irby
- Penn State Hershey Cancer Institute, Hershey, PA 17033, USA
| | - Norman H Lee
- Department of Pharmacology and Physiology, The George Washington University Medical Center, Washington, DC 20037, USA
| |
Collapse
|
22
|
Abstract
Evidence from a wide range of sources suggests that individuals taking aspirin and related non-steroidal anti-inflammatory drugs have reduced risk of large bowel cancer. Work in animals supports cancer reduction with aspirin, but no long-term randomised clinical trials exist in human beings, and randomisation would be ethically unacceptable because vascular protection would have to be denied to a proportion of the participants. However, opportunistic trials of aspirin, designed to test vascular protection, provide some evidence of a reduction in cancer, but only after at least 10 years. We summarise evidence for the potential benefit of aspirin and natural salicylates in cancer prevention. Possible mechanisms of action and directions for further work are discussed, and implications for clinical practice are considered.
Collapse
|
23
|
Thun MJ, Blackard B. Pharmacologic effects of NSAIDs and implications for the risks and benefits of long-term prophylactic use of aspirin to prevent cancer. Recent Results Cancer Res 2009; 181:215-21. [PMID: 19213571 DOI: 10.1007/978-3-540-69297-3_20] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This paper briefly reviews the pharmacologic effects of nonsteroidal antiinflammatory drugs (NSAIDs) that influence the risks and benefits of using these drugs prophylactically for cancer. It describes the metabolism of arachidonic acid through the cyclooxygenase (COX) pathway, the physiologic functions ofprostanoids (prostaglandins, prostacyclin, and thromboxane A2) produced by this pathway, and the pharmacologic consequences of blocking the enzymatic activity of the two COX isoforms. We mention other proposed mechanisms by which NSAIDs may directly or indirectly affect non-COX pathways. The diverse pharmacologic effects of NSAIDs, when combined with the relatively low probability that an individual with average risk will develop any single type of cancer over a lifetime, severely limit the tolerance for toxicity if aspirin or related drugs are to be administered prophylactically to large numbers of otherwise healthy people. Further research is needed to identify a drug, dose, treatment regimen, and patient population(s) where the benefits of prophy- lactic treatment will exceed the risks. A singular advantage of aspirin over all other NSAIDs is the potential to combine reduced risk of certain cancers with cardiovascular benefit. However, many elements that are needed to achieve this remain unresolved.
Collapse
Affiliation(s)
- Michael J Thun
- Epidemiology and Surveillance Research, American Cancer Society, NW, Atlanta, GA 30303-1002, USA.
| | | |
Collapse
|
24
|
Wu WKK, Sung JJY, Wu YC, Li HT, Yu L, Li ZJ, Cho CH. Inhibition of cyclooxygenase-1 lowers proliferation and induces macroautophagy in colon cancer cells. Biochem Biophys Res Commun 2009; 382:79-84. [PMID: 19258012 DOI: 10.1016/j.bbrc.2009.02.140] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 02/24/2009] [Indexed: 01/15/2023]
Abstract
Evolving evidence supports that cyclooxygenase-1 (COX-1) takes part in colon carcinogenesis. The effects of COX-1 inhibition on colon cancer cells, however, remains obscured. In this study, we demonstrate that COX-1 inhibitor sc-560 inhibited colon cancer cell proliferation with concomitant G(0)/G(1)-phase cell cycle arrest. The anti-proliferative effect was associated with down-regulation of c-Fos, cyclin E(2) and E(2)F-1 and up-regulation of p21(Waf1/Cip1) and p27(Kip1). In addition, sc-560 induced macroautophagy, an emerging mechanism of tumor suppression, as evidenced by the formation of LC3(+) autophagic vacuoles, enhanced LC3 processing, and the accumulation of acidic vesicular organelles and autolysosomes. In this connection, 3-methyladenine, a Class III phosphoinositide 3-kinase inhibitor, significantly abolished the formation of LC3(+) autophagic vacuoles and the processing of LC3 induced by sc-560. To conclude, this study reveals the unreported relationship between COX-1 and proliferation/macroautophagy of colon cancer cells.
Collapse
Affiliation(s)
- William Ka Kei Wu
- Institute of Digestive Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong.
| | | | | | | | | | | | | |
Collapse
|
25
|
Kunte DP, Wali RK, Koetsier JL, Roy HK. Antiproliferative effect of sulindac in colonic neoplasia prevention: role of COOH-terminal Src kinase. Mol Cancer Ther 2008; 7:1797-806. [PMID: 18644992 PMCID: PMC2493571 DOI: 10.1158/1535-7163.mct-08-0022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although the nonsteroidal anti-inflammatory drugs (NSAID) protection against colorectal cancer is well established, the molecular mechanisms remain unclear. We show herein that induction of the tumor suppressor gene COOH-terminal Src kinase (Csk) by NSAID is important for their antiproliferative and hence chemopreventive effects. In the azoxymethane-treated rat model of experimental colon carcinogenesis, sulindac treatment markedly induced Csk with a corresponding increase in inhibitory phosphorylation of Src (Tyr(527)). Sulindac-mediated Csk induction was replicated in the human colorectal cancer cell line HT-29, with a corresponding suppression of both Src kinase activity (63% of vehicle; P < 0.05) and E-cadherin tyrosine phosphorylation (an in vivo Src target). To determine the importance of Csk in NSAID antiproliferative activity, we stably transfected a Csk-specific short hairpin RNA (shRNA) vector into HT-29 cells, thereby blunting the sulindac-mediated Csk induction. These transfectants were significantly less responsive to the antiproliferative effect of sulindac sulfide (suppression of proliferating cell nuclear antigen was 21 +/- 2.3% in transfectants versus 45 +/- 4.23% in wild-type cells), with a corresponding mitigation of the sulindac-mediated G(1)-S-phase arrest (S-phase cells 48 +/- 3.6% versus 14 +/- 2.8% of vehicle respectively). Importantly, the Csk shRNA cells had a marked decrease in the cyclin-dependent kinase inhibitor p21(cip/waf1), a critical regulator of G(1)-S-phase progression (49% of wild-type cells). Moreover, although sulindac-mediated induction of p21(cip/waf1) was 113% in wild-type HT-29, this induction was alleviated in the Csk shRNA transfectants (65% induction; P < 0.01). Thus, this is the first demonstration that the antiproliferative activity of NSAID is modulated, at least partly, through the Csk/Src axis.
Collapse
Affiliation(s)
- Dhananjay P Kunte
- Feinberg School of Medicine at Northwestern University, Department of Internal Medicine, Evanston Northwestern Healthcare, 2650 Ridge Avenue, Suite G208, Evanston, IL 60201, USA
| | | | | | | |
Collapse
|
26
|
Lang S, Tiwari S, Andratschke M, Loehr I, Lauffer L, Bergmann C, Mack B, Lebeau A, Moosmann A, Whiteside TL, Zeidler R. Immune restoration in head and neck cancer patients after in vivo COX-2 inhibition. Cancer Immunol Immunother 2007; 56:1645-52. [PMID: 17387473 PMCID: PMC11030741 DOI: 10.1007/s00262-007-0312-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Accepted: 03/03/2007] [Indexed: 01/07/2023]
Abstract
PURPOSE To determine the immunomodulatory effects of in vivo COX-2 inhibition on leukocyte infiltration and function in patients with head and neck cancer. EXPERIMENTAL DESIGN Patients with squamous cell carcinoma of the head and neck preoperatively received a specific COX-2 inhibitor (rofecoxib, 25 mg daily) orally for 3 weeks. Serum and tumor specimens were collected at the start of COX-2 inhibition (day 0) and again on the day of surgery (day 21). Adhesion to peripheral blood monocytes to ICAM-1 was examined. Percentages of tumor-infiltrating monocytes (CD68, CCR5) and lymphocytes (CCR5, CD4, CD8 and CD25) were determined by immunohistochemistry. RESULTS Monocytes obtained from untreated cancer patients showed lower binding to ICAM-1 compared to monocytes of healthy donors but significantly regained adhesion affinity following incubation in sera of healthy donors. Conversely, sera of cancer patients inhibited adhesion of healthy donors' monocytes. Tumor monocyte adhesion to ICAM-1 was increased (P<0.001) after 21 days of COX-2 inhibition, and concomitant increases in tumor infiltrating monocytes (CD68+), lymphocytes (CD68- CCR5+, CD4+ and CD8+) and activated (CD25+) T cells were observed. CONCLUSIONS Short-term administration of a COX2 inhibitor restored monocyte binding to ICAM-1 and increased infiltration into the tumor of monocytes and Th1 and CD25+ activated lymphocytes. Thus, in vivo inhibition of the COX-2 pathway may be useful in potentiating specific active immunotherapy of cancer.
Collapse
Affiliation(s)
- Stephan Lang
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital of Essen, Hufelandstr. 55, Essen, 45122 Germany
| | - Sanjay Tiwari
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital of Essen, Hufelandstr. 55, Essen, 45122 Germany
| | - Michaela Andratschke
- Department of Otorhinolaryngology, Ludwig-Maximilians-University, Marchioninistr. 15, Munich, 81377 Germany
| | - Iren Loehr
- Department of Otorhinolaryngology, Ludwig-Maximilians-University, Marchioninistr. 15, Munich, 81377 Germany
| | - Lina Lauffer
- Department of Otorhinolaryngology, Ludwig-Maximilians-University, Marchioninistr. 15, Munich, 81377 Germany
| | - Christoph Bergmann
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital of Essen, Hufelandstr. 55, Essen, 45122 Germany
| | - Brigitte Mack
- Department of Otorhinolaryngology, Ludwig-Maximilians-University, Marchioninistr. 15, Munich, 81377 Germany
| | - Annette Lebeau
- Institute for Pathology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas Moosmann
- Department of Otorhinolaryngology, Ludwig-Maximilians-University, Marchioninistr. 15, Munich, 81377 Germany
| | | | - Reinhard Zeidler
- Department of Otorhinolaryngology, Ludwig-Maximilians-University, Marchioninistr. 15, Munich, 81377 Germany
- Ludwig-Maximilians-University, c/o GSF-Forschungszentrum, Marchioninistr. 25, 81377 Munich, Germany
| |
Collapse
|
27
|
Deasy BM, O'Sullivan-Coyne G, O'Donovan TR, McKenna SL, O'Sullivan GC. Cyclooxygenase-2 inhibitors demonstrate anti-proliferative effects in oesophageal cancer cells by prostaglandin E(2)-independent mechanisms. Cancer Lett 2007; 256:246-58. [PMID: 17707579 DOI: 10.1016/j.canlet.2007.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 04/24/2007] [Accepted: 06/15/2007] [Indexed: 01/28/2023]
Abstract
The incidence of oesophageal cancer (OC) has risen in recent decades, with survival rates remaining poor despite surgical treatment and adjuvant chemotherapy. Studies have reported cyclooxygenase-2 (COX-2) overexpression in OC and current evidence suggests NSAIDs have major potential for chemoprevention through COX-2 inhibition. However, several reports have questioned the specificity of these inhibitors, suggesting they may act through mechanisms other than COX-2. We evaluated the effects of specific COX-2 inhibitors, NS-398 and nimesulide, on cell lines of both histological types of OC. COX-2 protein expression varied in the cell lines and corresponded with levels of prostaglandin E(2) (PGE(2)) production. Following treatment with low concentrations of NS-398 (0.1 microM), PGE(2) production was reduced dramatically, indicating inhibition of COX-2 activity. Examination of cellular morphology, caspase-3 activity and mitochondrial membrane integrity found no major induction of apoptotic cell death at concentrations below 100 microM. Tumour cell proliferation was significantly reduced at high concentrations (50-100 microM) of both inhibitors over 6 days. Cellular responses were more evident in NS-398-treated adenocarcinoma cells. However, concentrations required to inhibit proliferation were up to 1000-fold higher than those needed to inhibit enzyme activity. Addition of exogenous PGE(2) to NS-398-treated adenocarcinoma cells failed to reverse the inhibitory effects, indicating PG and COX-2 independence. It remains possible that in vivo COX-2 is the primary target, as enzyme inhibition can be achieved at low concentrations, however, inhibition of proliferation is not the primary mechanism of their anti-tumour activity.
Collapse
Affiliation(s)
- B M Deasy
- Leslie C. Quick Laboratory, Cork Cancer Research Centre, 5th Floor, BioSciences Institute, University College Cork and Mercy University Hospital, Grenville Place, Cork, Ireland
| | | | | | | | | |
Collapse
|
28
|
Sarthy AV, Morgan-Lappe SE, Zakula D, Vernetti L, Schurdak M, Packer JCL, Anderson MG, Shirasawa S, Sasazuki T, Fesik SW. Survivin depletion preferentially reduces the survival of activated K-Ras-transformed cells. Mol Cancer Ther 2007; 6:269-76. [PMID: 17237286 DOI: 10.1158/1535-7163.mct-06-0560] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
To identify cancer-specific targets, we have conducted a synthetic lethal screen using a small interfering RNA (siRNA) library targeting ∼4,000 individual genes for enhanced killing in the DLD-1 colon carcinoma cell line that expresses an activated copy of the K-Ras oncogene. We found that siRNAs targeting baculoviral inhibitor of apoptosis repeat-containing 5 (survivin) significantly reduced the survival of activated K-Ras-transformed cells compared with its normal isogenic counterpart in which the mutant K-Ras gene had been disrupted (DKS-8). In addition, survivin siRNA induced a transient G2-M arrest and marked polyploidy that was associated with increased caspase-3 activation in the activated K-Ras cells. These results indicate that tumors expressing the activated K-Ras oncogene may be particularly sensitive to inhibitors of the survivin protein. [Mol Cancer Ther 2007;6(1):269–76]
Collapse
Affiliation(s)
- Aparna V Sarthy
- Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Moore HG, Guillem JG. Effect of Sulindac on Gene Expression in Rectal MucosaLimited Project Grant #071. SEMINARS IN COLON AND RECTAL SURGERY 2006. [DOI: 10.1053/j.scrs.2006.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
30
|
Zemskova M, Wechter W, Bashkirova S, Chen CS, Reiter R, Lilly MB. Gene expression profiling in R-flurbiprofen-treated prostate cancer: R-Flurbiprofen regulates prostate stem cell antigen through activation of AKT kinase. Biochem Pharmacol 2006; 72:1257-67. [PMID: 16949054 DOI: 10.1016/j.bcp.2006.07.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 07/26/2006] [Accepted: 07/27/2006] [Indexed: 12/15/2022]
Abstract
We have used gene expression profiling to characterize genes regulated by the anti-tumor non-steroidal anti-inflammatory drug (NSAID)-like agent R-flurbiprofen (RFB) in murine TRAMP prostate cancer. Mice with spontaneous, palpable tumors were treated with RFB 25 mg/(kgd) x 7d orally, or vehicle only. RNA was then extracted from tumor tissue and used for microarray analysis with Affymetrix chips. Fifty-eight genes were reproducibly regulated by RFB treatment. One of the most highly up-regulated genes was prostate stem cell antigen (psca). We used TRAMP C1 murine prostate cancer cells to examine potential mechanisms through which RFB could regulate psca. RFB induced dose-dependent expression of PSCA protein, and activity of the psca promoter, in TRAMP C1 cells in culture. Increased psca promoter activity was also seen following treatment of cells with sulindac sulfone, another NSAID-like agent, but not with celecoxib treatment. RFB activation of the psca promoter could be attenuated by co-transfection of dominant-negative akt and h-ras constructs, but not by dominant-negative mek1 plasmids. Immunoblotting revealed that RFB increased expression of phosphorylated AKT at concentrations that stimulated psca promoter activity, and that increased PSCA protein expression. In addition, RFB-dependent up-regulation of PSCA protein expression could be blocked by AKT inhibitors. These data demonstrate that RFB, and possibly other NSAID-like analogs, can increase expression of the psca gene both in vivo and in culture. They further suggest the utility of combining RFB with AKT inhibitors or with monoclonal antibodies targeting PSCA protein, for treatment or prevention of prostate cancer.
Collapse
Affiliation(s)
- Marina Zemskova
- Center for Molecular Biology and Gene Therapy, Loma Linda University, Loma Linda, CA 92354, USA
| | | | | | | | | | | |
Collapse
|
31
|
Fernández-Martínez A, Mollá B, Mayoral R, Boscá L, Casado M, Martín-Sanz P. Cyclo-oxygenase 2 expression impairs serum-withdrawal-induced apoptosis in liver cells. Biochem J 2006; 398:371-380. [PMID: 16800815 PMCID: PMC1559469 DOI: 10.1042/bj20060780] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 06/26/2006] [Accepted: 06/27/2006] [Indexed: 02/07/2023]
Abstract
We have investigated the mechanism of COX-2 (cyclo-oxygenase 2)-dependent inhibition of apoptosis in liver, a key pathway underlying proliferative actions of COX-2 in liver cancers, cirrhosis, chronic hepatitis C infection and regeneration after partial hepatectomy. Stable expression of COX-2 in CHL (Chang liver) cells induced proliferation, with an increase in the proportion of cells in S-phase, but no other significant changes in cell-cycle distribution. This was associated with a marked inhibition of the apoptotic response to serum deprivation, an effect mimicked by treating empty-vector-transfected control cells (CHL-V cells) with prostaglandin E2 and prevented in COX-2-expressing cells (CHL-C cells) treated with selective inhibitors of COX-2. Serum-deprived CHL-V cells displayed several indicators of activation of intrinsic apoptosis: caspases 9 and 3 activated within 6 h and caspase 8 within 18 h, Bax expression was induced, cytochrome c was released to the cytosol, and PARP-1 [poly(ADP-ribose) polymerase 1] cleavage was evident in nuclei. COX-2 expression blocked these events, concomitant with reduced expression of p53 and promotion of Akt phosphorylation, the latter indicating activation of survival pathways. CHL cells were resistant to stimulation of the extrinsic pathway with anti-Fas antibody. Moreover, in vivo expression of GFP (green fluorescent protein)-labelled COX-2 in mice by hydrodynamics-based transient transfection conferred resistance to caspase 3 activation and apoptosis induced by stimulation of Fas.
Collapse
Key Words
- apoptosis
- cyclo-oxygenase (cox)
- hepatocyte
- hydrodynamic transfection
- liver
- prostaglandin
- aa, arachidonic acid
- alt, alanine aminotransferase
- chl, chang liver
- chl-c cell, cyclo-oxygenase-2-expressing chl cell
- chl-v cell, empty-vector-transfected control chl cell
- cox, cyclo-oxygenase
- coxib, selective cox-2 inhibitor
- dfu, 5,5-dimethyl-3-(3-fluorophenyl)-4-(4-methylsulfonyl)phenyl-2(5h)-furanone
- dmem, dulbecco's modified eagle's medium
- fbs, foetal bovine serum
- gfp, green fluorescent protein
- hcc, hepatocellular carcinoma
- iap, inhibitor of apoptosis
- nf-κb, nuclear factor κb
- parp-1, poly(adp-ribose) polymerase 1
- pg, prostaglandin
- pi, propidium iodide
- pi3k, phosphoinositide 3-kinase
- rt, reverse transcription
- sp1, specificity protein 1
- tnf, tumour necrosis factor
- tunel, terminal deoxynucleotidyl transferase-mediated dutp nick-end labelling
- xiap, x-linked iap
Collapse
Affiliation(s)
- Amalia Fernández-Martínez
- *Centro de Investigaciones Biológicas (CSIC), Centro Nacional de Investigaciones Cardiovasculares, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Belén Mollá
- †Instituto de Biomedicina de Valencia (CSIC), Jaume Roig 11, 46010 Valencia, Spain
| | - Rafael Mayoral
- *Centro de Investigaciones Biológicas (CSIC), Centro Nacional de Investigaciones Cardiovasculares, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Lisardo Boscá
- *Centro de Investigaciones Biológicas (CSIC), Centro Nacional de Investigaciones Cardiovasculares, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Marta Casado
- †Instituto de Biomedicina de Valencia (CSIC), Jaume Roig 11, 46010 Valencia, Spain
| | - Paloma Martín-Sanz
- *Centro de Investigaciones Biológicas (CSIC), Centro Nacional de Investigaciones Cardiovasculares, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| |
Collapse
|
32
|
Klenke FM, Gebhard MM, Ewerbeck V, Abdollahi A, Huber PE, Sckell A. The selective Cox-2 inhibitor Celecoxib suppresses angiogenesis and growth of secondary bone tumors: an intravital microscopy study in mice. BMC Cancer 2006; 6:9. [PMID: 16409625 PMCID: PMC1360103 DOI: 10.1186/1471-2407-6-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2005] [Accepted: 01/12/2006] [Indexed: 01/11/2023] Open
Abstract
Background The inhibition of angiogenesis is a promising strategy for the treatment of malignant primary and secondary tumors in addition to established therapies such as surgery, chemotherapy, and radiation. There is strong experimental evidence in primary tumors that Cyclooxygenase-2 (Cox-2) inhibition is a potent mechanism to reduce angiogenesis. For bone metastases which occur in up to 85% of the most frequent malignant primary tumors, the effects of Cox-2 inhibition on angiogenesis and tumor growth remain still unclear. Therefore, the aim of this study was to investigate the effects of Celecoxib, a selective Cox-2 inhibitor, on angiogenesis, microcirculation and growth of secondary bone tumors. Methods In 10 male severe combined immunodeficient (SCID) mice, pieces of A549 lung carcinomas were implanted into a newly developed cranial window preparation where the calvaria serves as the site for orthotopic implantation of the tumors. From day 8 after tumor implantation, five animals (Celecoxib) were treated daily with Celecoxib (30 mg/kg body weight, s.c.), and five animals (Control) with the equivalent amount of the CMC-based vehicle. Angiogenesis, microcirculation, and growth of A549 tumors were analyzed by means of intravital microscopy. Apoptosis was quantified using the TUNEL assay. Results Treatment with Celecoxib reduced both microvessel density and tumor growth. TUNEL reaction showed an increase in apoptotic cell death of tumor cells after treatment with Celecoxib as compared to Controls. Conclusion Celecoxib is a potent inhibitor of tumor growth of secondary bone tumors in vivo which can be explained by its anti-angiogenic and pro-apoptotic effects. The results indicate that a combination of established therapy regimes with Cox-2 inhibition represents a possible application for the treatment of bone metastases.
Collapse
Affiliation(s)
- Frank Michael Klenke
- Department of Orthopedic Surgery, Inselspital, University of Bern, CH-3010 Bern, Switzerland
| | - Martha-Maria Gebhard
- Department of Experimental Surgery, University of Heidelberg, INF 365, D-69120 Heidelberg, Germany
| | - Volker Ewerbeck
- Department of Orthopaedic Surgery, University of Heidelberg, Schlierbacher Landstrasse 200a, D-69118 Heidelberg, Germany
| | - Amir Abdollahi
- German Cancer Research Center, INF 280, D-69120 Heidelberg, Germany
| | - Peter E Huber
- German Cancer Research Center, INF 280, D-69120 Heidelberg, Germany
| | - Axel Sckell
- Department of Trauma and Reconstructive Surgery, Charité – Campus Benjamin Franklin, Hindenburgdamm 30, D-12200 Berlin, Germany
| |
Collapse
|
33
|
Park MK, Kim MK, Kim JC, Sung YK. Pattern of apoptosis by NS398, a selective COX-2 inhibitor, in hepatocellular carcinoma cell lines. Cancer Res Treat 2005; 37:313-7. [PMID: 19956533 DOI: 10.4143/crt.2005.37.5.313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Accepted: 10/19/2005] [Indexed: 02/04/2023] Open
Abstract
PURPOSE NS398, a selective COX-2 inhibitor, is known to inhibit the growth of COX-2 expressing hepatocellular carcinoma cells. The present study investigated whether the cytotoxic effect of NS398 was COX-2 dependent and whether caspases were involved in NS398-induced apoptosis in hepatocellular carcinoma cells. MATERIALS AND METHODS The expressions of COX-2 in SNU 423 and SNU 449 hepatocellular carcinoma cell lines were examined using RT-PCR and Western blot. The cytotoxic effect of NS398 was measured using MTT in the presence or absence of caspase inhibitors. The distribution of the cell cycle and extent of apoptosis were analyzed using flow cytometry and a Cell Death Elisa kit, respectively. RESULTS The expression of COX-2 was observed in SNU423 cells, but not in SNU 449 cells. NS398 treatment resulted in both dose-and time-dependent growth inhibitions, with increases in apoptotic cells in both cell lines. Treatment with the pan-caspase inhibitor, z-VAD- fmk, or the caspase-3 inhibitor, Ac-DMQD-CHO, showed no attenuation of the cytotoxic effect of NS398 in either cell line. CONCLUSION This study demonstrated that the cytotoxic effect of NS398 was independent of COX-2 expression. Caspases were also shown not to be involved in NS398-induced apoptosis in either SNU 423 or SNU 449 Korean HCC cell lines. Our data suggests the feasibility of preventing hepatocellular carcinoma with the use of COX-2 inhibitors needs to be carefully evaluated.
Collapse
Affiliation(s)
- Mi Kyung Park
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, Korea
| | | | | | | |
Collapse
|
34
|
García-Cao I, Duran A, Collado M, Carrascosa MJ, Martín-Caballero J, Flores JM, Diaz-Meco MT, Moscat J, Serrano M. Tumour-suppression activity of the proapoptotic regulator Par4. EMBO Rep 2005; 6:577-83. [PMID: 15877079 PMCID: PMC1369092 DOI: 10.1038/sj.embor.7400421] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 03/17/2005] [Accepted: 04/13/2005] [Indexed: 11/09/2022] Open
Abstract
The proapoptotic protein encoded by Par4 (prostate apoptosis response 4) has been implicated in tumour suppression, particularly in the prostate. We report here that Par4-null mice are prone to develop tumours, both spontaneously and on carcinogenic treatment. The endometrium and prostate of Par4-null mice were particularly sensitive to the development of proliferative lesions. Most (80%) Par4-null females presented endometrial hyperplasia by 9 months of age, and a significant proportion (36%) developed endometrial adenocarcinomas after 1 year of age. Similarly, Par4-null males showed a high incidence of prostate hyperplasia and prostatic intraepithelial neoplasias, and were extraordinarily sensitive to testosterone-induced prostate hyperplasia. Finally, the uterus and prostate of young Par4-null mice have increased levels of the apoptosis inhibitor XIAP (X-chromosome-linked inhibitor of apoptosis), supporting the previously proposed function of Par4 as an inhibitor of the (zeta)PKC (atypical protein kinase)-NF-(kappa)B (nuclear factor-(kappa)B)-XIAP pathway. These data show that Par4 has an important role in tumour suppression, with a particular relevance in the endometrium and prostate.
Collapse
Affiliation(s)
- Isabel García-Cao
- Spanish National Cancer Center (CNIO), 3 Melchor Fernandez Almagro Street, Madrid 28029, Spain
| | - Angeles Duran
- Center of Molecular Biology ‘Severo Ochoa' (UAM-CSIC), Madrid 28049, Spain
| | - Manuel Collado
- Spanish National Cancer Center (CNIO), 3 Melchor Fernandez Almagro Street, Madrid 28029, Spain
| | | | - Juan Martín-Caballero
- Spanish National Cancer Center (CNIO), 3 Melchor Fernandez Almagro Street, Madrid 28029, Spain
| | - Juana M. Flores
- Department of Animal Surgery and Medicine, Complutense University, Madrid 28040, Spain
| | - Maria T. Diaz-Meco
- Center of Molecular Biology ‘Severo Ochoa' (UAM-CSIC), Madrid 28049, Spain
| | - Jorge Moscat
- Center of Molecular Biology ‘Severo Ochoa' (UAM-CSIC), Madrid 28049, Spain
| | - Manuel Serrano
- Spanish National Cancer Center (CNIO), 3 Melchor Fernandez Almagro Street, Madrid 28029, Spain
- Tel: +34 917 328 032; Fax: +34 917 328 028; E-mail:
| |
Collapse
|
35
|
Uchida K, Schneider S, Yochim JM, Kuramochi H, Hayashi K, Takasaki K, Yang D, Danenberg KD, Danenberg PV. Intratumoral COX-2 gene expression is a predictive factor for colorectal cancer response to fluoropyrimidine-based chemotherapy. Clin Cancer Res 2005; 11:3363-8. [PMID: 15867236 DOI: 10.1158/1078-0432.ccr-04-1650] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Cyclooxygenase-2 (COX-2) is generally elevated in tumors compared with normal tissue and apparently has an important role in tumor development. A number of studies have found high expression of COX-2 to be an unfavorable prognostic factor for overall survival in several cancers. However, the influence of COX-2 expression levels on tumor response to chemotherapy has been relatively little studied. The purpose of this study was to ascertain if COX-2 gene expression is associated with tumor response in the clinical treatment of colorectal cancer with the fluoropyrimidine-based therapy S-1. EXPERIMENTAL DESIGN Patients with advanced (stage IV) colorectal cancer were treated with S-1 twice daily based on the patient's body surface area (BSA; BSA < 1.25 m2, 80 mg/d; 1.25 m2 < or = BSA < 1.5 m2, 100 mg/d; BSA > or = 1.5 m2, 120 mg/d) for 28 days followed by a 2-week period rest. mRNA was isolated from paraffin-embedded pretreatment primary tumor specimens and expression levels of COX-2 relative to beta-actin as the internal reference gene were measured using a quantitative reverse transcription-PCR (Taqman) system. RESULTS The overall response rate in a group of 44 patients treated with S-1 was 40.9%. Sufficient tumor tissue was available from 40 of these patients for COX-2 mRNA quantitation. COX-2 gene expression was significantly lower in the responding tumors compared with the nonresponders (P = 0.012, Wilcoxon test). Patients with COX-2 values above the cutoff value of 3.28 x 10(-3) had a significantly shorter survival than those with COX-2 gene expressions below the cutoff value (adjusted P = 0.031). CONCLUSIONS Intratumoral COX-2 gene expression is associated with likelihood of response to chemotherapy with S-1 and is a prognostic factor for survival of patients after the start of S-1 chemotherapy.
Collapse
Affiliation(s)
- Kazumi Uchida
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wagner M, Loos J, Weksler N, Gantner M, Corless CL, Barry JM, Beer TM, Garzotto M. Resistance of prostate cancer cell lines to COX-2 inhibitor treatment. Biochem Biophys Res Commun 2005; 332:800-7. [PMID: 15907789 DOI: 10.1016/j.bbrc.2005.05.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2005] [Accepted: 05/03/2005] [Indexed: 10/25/2022]
Abstract
Targeting of cyclooxygenase-2 (COX-2) for cancer chemoprevention is well supported for several tumor types, most notably colon cancer. In contrast, the data for its role in prostate cancer carcinogenesis are correlative only. Thus, we compared the COX-2 expression, activity, and effects of inhibition in prostate cancer cells on COX-2-dependent colon cancer cells. COX-2 levels in benign and malignant human prostate tissue were determined by immunohistochemistry. Compared to colon cancer cells, prostate cancer cells expressed lower levels of COX-2, produced less PGE2, and were resistant to selective COX-2 inhibition. Examination of benign prostatic epithelium from prostatectomy samples demonstrated rare foci of COX-2. Whereas, human prostate cancer sections were uniformly negative for COX-2. In conclusion, these studies indicate the lack of a putative role for COX-2 in prostate cancer development. Direct evidence for the involvement of COX-2 in prostate cancer carcinogenesis is desperately needed.
Collapse
Affiliation(s)
- Matthew Wagner
- Division of Urology and Renal Transplantation, Oregon Health and Science University, Oregon Cancer Institute, Portland, OR, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Winters ME, Mehta AI, Petricoin EF, Kohn EC, Liotta LA. Supra-additive growth inhibition by a celecoxib analogue and carboxyamido-triazole is primarily mediated through apoptosis. Cancer Res 2005; 65:3853-60. [PMID: 15867384 DOI: 10.1158/0008-5472.can-04-1989] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Combination studies of celecoxib and chemotherapeutic agents suggest that combining cyclooxygenase-2 inhibitors with other agents may have supra-additive or synergistic effects on tumor growth inhibition. Carboxyamido-triazole (CAI), a voltage-independent calcium channel inhibitor, has been shown to induce growth inhibition and apoptosis in cancer cells. We found that continuous exposure to cytostatic doses of CAI and LM-1685, a celecoxib analogue, reduced the proliferation and survival of seven human cancer cell lines by at least one log (P < or = 0.001) over either agent alone. To explore the mechanism of action of this combination, we further studied the effects of LM-1685/CAI on CCL-250 colorectal carcinoma cells. We found that the supra-additive antiproliferative effects occurred throughout a range of LM-1685 doses (5-25 micromol/L) and paralleled a decrease in COX-2 activity as measured by prostaglandin E2 production. In these cells, treatment with LM-1685/CAI suppressed the extracellular signal-regulated kinase pathway within the first hour but ultimately results in high, sustained activation of ERK over a 9-day period (P = 0.0005). Suppression of cyclin D1 and phospho-AKT, and cleavage of caspase-3 and PARP were concomitant with persistent ERK activation. Addition of PD98059, a MEK-1 inhibitor, suppressed ERK activation and significantly but incompletely reversed these signaling events and apoptosis. Flow cytometry experiments revealed that the CAI/LM-1685 combination induced a 3-fold increase in apoptosis over control (P = 0.005) in 3 days. We show that the combination of CAI and LM-1685 produces a cytotoxic effect by suppressing proliferation and triggering apoptosis.
Collapse
Affiliation(s)
- Mary E Winters
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
38
|
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are generally prescribed to ameliorate symptoms associated with acute pain and chronic inflammatory diseases such as arthritis. Recent epidemiologic studies and clinical trials indicate that use of NSAIDs and cyclooxygenase (COX)-2 selective inhibitors are associated with a reduced risk of certain malignancies, especially gastrointestinal cancer. The cyclooxygenase enzymes are the best known targets of NSAIDs; this diverse class of compounds blocks conversion of arachidonic acid to prostanoids. Prostaglandins and other eicosanoids derived from COX-1 and COX-2 are involved in a variety of physiologic and pathologic processes in the gastrointestinal tract. Recent efforts to identify the molecular mechanisms by which COX-2-derived prostanoids exert their proneoplastic effects have provided a rationale for the possible use of NSAIDs alone or in a combination with conventional or experimental anticancer agents for the treatment or prevention of gastrointestinal cancers.
Collapse
Affiliation(s)
- Dingzhi Wang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | |
Collapse
|
39
|
Synthesis and Structural Characterisation of Two Novel Diastereoisomeric Naproxen Appended β-Cyclodextrin Derivatives. ACTA ACUST UNITED AC 2005. [DOI: 10.1007/s10847-004-7596-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
N/A. N/A. Shijie Huaren Xiaohua Zazhi 2004; 12:2410-2412. [DOI: 10.11569/wcjd.v12.i10.2410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
41
|
Yu MK, Moos PJ, Cassidy P, Wade M, Fitzpatrick FA. Conditional Expression of 15-Lipoxygenase-1 Inhibits the Selenoenzyme Thioredoxin Reductase. J Biol Chem 2004; 279:28028-35. [PMID: 15123685 DOI: 10.1074/jbc.m313939200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The selenoenzyme thioredoxin reductase regulates redox-sensitive proteins involved in inflammation and carcinogenesis, including ribonucleotide reductase, p53, NFkappaB, and others. Little is known about endogenous cellular factors that modulate thioredoxin reductase activity. Here we report that several metabolites of 15-lipoxygenase-1 inhibit purified thioredoxin reductase in vitro. 15(S)-Hydroperoxy-5,8,11-cis-13-trans-eicosatetraenoic acid, a metastable hydroperoxide generated by 15-lipoxygenase-1, and 4-hydroxy-2-nonenal, its non-enzymatic rearrangement product inhibit thioredoxin reductase with IC(50) = 13 +/- 1.5 microm and 1 +/- 0.2 microm, respectively. Endogenously generated metabolites of 15-lipoxygenase-1 also inhibit thioredoxin reductase in HEK-293 cells that harbor a 15-LOX-1 gene under the control of an inducible promoter complex. Conditional, highly selective induction of 15-lipoxygenase-1 caused an inhibition of ribonucleotide reductase activity, cell cycle arrest in G(1), impairment of anchorage-independent growth, and accumulation of the pro-apoptotic protein BAX. All of these responses are consistent with inhibition of thioredoxin reductase via 15-lipoxygenase-1 overexpression. In contrast, metabolites of 5-lipoxygenase were poor inhibitors of isolated thioredoxin reductase, and the overexpression of 5-lipoxygenase did not inhibit thioredoxin reductase or cause a G cell cycle arrest. The influences of 15-lipoxygenase-1 on (1)inflammation, cell growth, and survival may be attributable, in part, to inhibition of thioredoxin reductase and several redox-sensitive processes subordinate to thioredoxin reductase.
Collapse
Affiliation(s)
- Margaret K Yu
- Department of Internal Medicine, The Huntsman Cancer Institute, University of Utah Health Sciences, Salt Lake City, UT 84112-0555, USA
| | | | | | | | | |
Collapse
|
42
|
Abstract
Breast cancer is a worldwide epidemic among women, and one of the most rapidly increasing cancers. Not only the incidence rate but also the death rate is increasing. Despite enthusiastic efforts in early diagnosis, aggressive surgical treatment and application of additional non-operative modalities, its prognosis is still dismal. This emphasizes the necessity to develop new measures and strategies for its prevention. The understanding of the biology of angiogenesis is improving rapidly, offering the hope for more specific vascular targeting of tumor neovasculature. Anti-angiogenic therapy is a promising, relatively new form of cancer treatment using drugs called angiogenesis inhibitors that specifically inhibit new blood vessel growth. Extensive studies conducted over the past few years have recognized that overexpression of COX-2, VEGF in the cancer might be the leading factors, can induce angiogenesis via induction of multiple pro-angiogenic regulators. Breast tumor growth and metastasization are both hormone-sensitive and angiogenesis-dependent. A single angiogenic inhibitor is not capable to inhibit angiogenesis. Therefore, we should select a combination of angiogenesis inhibitors targeting COX-2, VEGF, and bFGF pathway. This article reviews the background and implementation of the current use of angiogenesis inhibitors and discusses the likely therapeutic roles in the early and advanced breast cancer together with its potential for chemoprevention.
Collapse
Affiliation(s)
- Mohammad Atiqur Rahman
- Breast Cancer Research Program, Tokyo Metropolitan Cancer and Infectious Disease Center, Komagome Hospital, 3-18-22, Honkomagome, Bunkyo-ku, Tokyo 113-8677, Japan
| | | |
Collapse
|
43
|
Xie YL, Ma L. Apoptosis induced by mitomycin with sulindac on human gastric cancer cell SGC7901. Shijie Huaren Xiaohua Zazhi 2004; 12:542-545. [DOI: 10.11569/wcjd.v12.i3.542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of mitomycin (MMC) with sulindac on the cell viability, apoptotic induction and expression of apoptosis-related gene Bcl-2 and cyclooxygenase-2 (COX-2) in gastric adenocarcinoma cell SGC7901.
METHODS: Human gastric cancer SGC7901 cells were divided into three groups, sulindac, MMC and sulindac with MMC. After treatment with drugs, cell viability was examined by MTT assay. Flow cytometry was used for the cell cycle distribution and apoptotic rates. The morphology of the cells was observed under light microscope and interactive laser cytometer. The expression of COX-2, Bcl-2 was determined by the immunocytochemical method.
RESULTS: After exposure for 12 h to three kinds of drugs, gastric cancer cells SGC7901 presented some morphologic features of apoptosis, including cell shrinkage, nuclear condensation, DNA fragmentation, formation of apoptotic bodies. The effects of growth inhibition were more obvious in cotreatment group with MMC and sulindac than MMC group. The apoptotic rates in cotreated cells and MMC-treated cells at 24 h after treatment were 12.0% and 7.2%, respectively. After exposure for 24 h to MMC, upregulation of COX-2 and Bcl-2 protein expression was noted, meanwhile, in cotreatment group, the levels of COX-2 were downregulated but the expression of Bcl-2 gene was not changed significantly.
CONCLUSION: MMC-induced apoptosis is reduced by upregulating the expression of COX-2 and Bcl-2 genes. MMC combined with sulindac can suppress growth of gastric cancer cells through induction of apoptosis which may be mediated by downregulation of apoptosis-related Bcl-2 gene and COX-2 gene.
Collapse
|
44
|
Huang YT, Chueh SC, Teng CM, Guh JH. Investigation of ouabain-induced anticancer effect in human androgen-independent prostate cancer PC-3 cells. Biochem Pharmacol 2004; 67:727-33. [PMID: 14757172 DOI: 10.1016/j.bcp.2003.10.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To determine the therapeutic potential of cardiac glycosides in androgen-independent prostate cancer, we examined ouabain-induced cytotoxic effect as well as the signaling pathways in PC-3 cells. Ouabain induced a time- and concentration-dependent cytotoxicity using mitochondrial MTT reduction assays, and the effective threshold concentration was in nanomolar level. At the concentrations less than 10 nM, ouabain induced a decrease of mitochondrial activity until a 7-hr exposure was performed, while it induced a rapid drop of mitochondrial function as early as a 2-hr treatment of cells with high concentrations of ouabain suggesting the involvement of two distinct mechanisms to ouabain action. After functional examinations, the data showed that both low and high concentrations of ouabain induced an inhibition of Na+-K+ ATPase and a subsequent 45Ca2+ influx into PC-3 cells. High concentrations of ouabain induced a significant and time-dependent loss of mitochondrial membrane potential (Deltapsim), a sustained production of reactive oxygen species (ROS), and severe apoptotic reaction. Ouabain also induced an increase of Par-4 (prostate apoptosis response 4) expression. Furthermore, an antisense, but not nonsense, oligomer against Par-4 expression significantly inhibited the cytotoxicity induced by low concentrations of ouabain. It is suggested that ouabain induces two modes of cytotoxic effect in human hormone-independent prostate cancer PC-3 cells. Low concentrations of ouabain induce the increase of Par-4 expression and sensitize the cytotoxicity; while high concentrations of ouabain induce a loss of Deltapsim, a sustained ROS production and a severe apoptosis in PC-3 cells.
Collapse
Affiliation(s)
- Yao-Ting Huang
- Pharmacological Institute, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, Sect. 1, Taipei, Taiwan, ROC
| | | | | | | |
Collapse
|
45
|
Abstract
Prostate cancer is associated with the inability of prostatic epithelial cells to undergo apoptosis rather than with increased cell proliferation. Prostate apoptosis response-4 (Par-4) is a unique pro-apoptotic molecule that is capable of selectively inducing apoptosis in cancer cells when over-expressed, sensitizing the cells to diverse apoptotic stimuli and causing regression of tumors in animal models. This review discusses the salient functions of Par-4 that can be harnessed to prostate cancer therapy.
Collapse
Affiliation(s)
- Sushma Gurumurthy
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky 40536, USA
| | | |
Collapse
|
46
|
Li JY, Wang XZ, Chen FL, Yu JP, Luo HS. Nimesulide inhibits proliferation via induction of apoptosis and cell cycle arrest in human gastric adenocarcinoma cell line. World J Gastroenterol 2003; 9:915-20. [PMID: 12717830 PMCID: PMC4611397 DOI: 10.3748/wjg.v9.i5.915] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2002] [Revised: 11/23/2002] [Accepted: 12/20/2002] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate the potential role of Nimesulide, a selective COX-2 inhibitor, in proliferation and apoptosis of gastric adenocarcinoma cells SGC7901. METHODS Cell counts and MTT assay were used to quantify the influence of Nimesulide in the proliferation of SGC7901 cells. Transmission electron microscopy and flow cytometry were used to observe the induction of Nimesulide the apoptosis of SGC7901 cells and influence in the distribution of cell cycle. The expression of P27(kip1) protein was observed by immunocytochemical staining. RESULTS SGC-7901 Cells treated with Nimesulide at various concentrations exhibited a profound dose- and time-dependent reduction in the proliferation rate over the 72 h test period. The highest survival rate of the cells was 78.7 %, but the lowest being 22.7 %. Nimesulide induced apoptosis of the cells in a dose-dependent and non-linear manner and increased the proportion of cells in the G(0)/G(1) phase and decreased the proportion in the S and G(2)/M phase of the cell cycle. Meanwhile, Nimesulide could up-regulate the expression of P27(kip1) protein. CONCLUSION The induction of apoptosis and cell cycle arrest are both anti-proliferative responses that likely contribute to the antineoplastic action of nimesulide on SGC-7901 cells. The up-regulation of P27(kip1) gene may contribute to the accumulation of these cells in the G(0)/G(1) phase following treatment with Nimesulide. Selective COX-2 inhibitor may be a new channel of the chemoprevention and chemotherapy for gastric carcinoma.
Collapse
Affiliation(s)
- Jian-Ying Li
- Department of Gastroenterology, Affiliated Union Hospital, Fujian Medical University, Fuzhou 350001, China.
| | | | | | | | | |
Collapse
|
47
|
Liao Z, Komaki R, Mason KA, Milas L. Role of Cyclooxygenase-2 Inhibitors in Combination with Radiation Therapy in Lung Cancer. Clin Lung Cancer 2003; 4:356-65. [PMID: 14599301 DOI: 10.3816/clc.2003.n.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cyclooxygenase-2 (COX-2) is an enzyme involved in prostaglandin production in pathologic states such as inflammatory disorders and cancer. The enzyme is often overexpressed in premalignant lesions and cancer of the lung. Overexpression of COX-2 in lung cancer is associated with more aggressive biological tumor behavior and adverse patient outcome. In preclinical studies, inhibition of this enzyme with selective COX-2 inhibitors enhances tumor response to radiation and chemotherapeutic agents. These findings have been rapidly advanced to clinical oncology. Clinical trials of the combination of selective COX-2 inhibitors with radiation therapy, chemotherapy, or both in patients with lung cancer have been initiated and some preliminary results are available. In this review, we describe the relationship between overexpression of COX-2 and lung cancer, the antitumor effect of selective COX-2 inhibitors, discuss the rationale for using selective COX-2 inhibitors combined with radiation therapy and chemotherapy, and summarize current clinical protocols and initial findings.
Collapse
Affiliation(s)
- Zhongxing Liao
- Deapartment of Radiation Oncology,University of Texas M. D. Anderson Cancer Center, Houston 77030, USA.
| | | | | | | |
Collapse
|
48
|
Garcia-Cao I, Lafuente MJ, Criado LM, Diaz-Meco MT, Serrano M, Moscat J. Genetic inactivation of Par4 results in hyperactivation of NF-kappaB and impairment of JNK and p38. EMBO Rep 2003; 4:307-12. [PMID: 12634851 PMCID: PMC1315897 DOI: 10.1038/sj.embor.embor769] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2002] [Revised: 01/02/2003] [Accepted: 01/09/2003] [Indexed: 11/08/2022] Open
Abstract
The Par4 gene was first identified in prostate cells undergoing apoptosis after androgen withdrawal. PAR4 was subsequently shown to interact with, and inhibit, atypical protein kinase C isoforms, functioning as a negative regulator of the NF-kappaB pathway. This may explain its pro-apoptotic function in overexpression experiments. To determine the physiological role of PAR4, we have derived primary embryonic fibroblasts (EFs) from Par4(-/-) mice. We show here that loss of PAR4 leads to a reduction in the ability of tumour necrosis factor-alpha (TNF-alpha) to induce apoptosis by increased activation of NF-kappaB. Consistent with recent reports demonstrating the antagonistic actions of NF-kappaB and c-Jun amino-terminal kinase (JNK) signalling, we have found that Par4(-/-) cells show a reduced activation of the sustained phase of JNK and p38 stimulation by TNF-alpha and interleukin 1. Higher levels of an anti-apoptotic JNK-inhibitor protein, X-chromosome-linked inhibitor of apoptosis, in Par4(-/-) EFs might explain the inhibition of JNK activation in these cells.
Collapse
Affiliation(s)
- Isabel Garcia-Cao
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Universidad Autonoma de Madrid, Canto Blanco, 28049 Madrid, Spain
- These authors contributed equally to this work
| | - María José Lafuente
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autonoma de Madrid, Canto Blanco, 28049 Madrid, Spain
- These authors contributed equally to this work
| | - Luis M. Criado
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Universidad Autonoma de Madrid, Canto Blanco, 28049 Madrid, Spain
| | - María Teresa Diaz-Meco
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autonoma de Madrid, Canto Blanco, 28049 Madrid, Spain
| | - Manuel Serrano
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Universidad Autonoma de Madrid, Canto Blanco, 28049 Madrid, Spain
| | - Jorge Moscat
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autonoma de Madrid, Canto Blanco, 28049 Madrid, Spain
- Tel: +34 91 3978039; Fax: +34 91 7616184;
| |
Collapse
|
49
|
Abstract
Prostate apoptosis response-4 (par-4) is a pro-apoptotic gene identified in prostate cancer cells undergoing apoptosis. Par-4 protein, which contains a leucine zipper domain at the carboxy-terminus, functions as a transcriptional repressor in the nucleus. Par-4 selectively induces apoptosis in androgen-independent prostate cancer cells and Ras-transformed cells but not in androgen-dependent prostate cancer cells or normal cells. Cells that are resistant to apoptosis by Par-4 alone, however, are greatly sensitized by Par-4 to the action of other pro-apoptotic insults such as growth factor withdrawal, tumor necrosis factor, ionizing radiation, intracellular calcium elevation, or those involved in neurodegenerative diseases such as Alzheimer's, Parkinson's, Huntington's, and stroke. Apoptosis induction by Par-4 involves a complex mechanism that requires activation of the Fas death receptor signaling pathway and coparallel inhibition of cell survival NF-kappaB transcription activity. The unique ability of Par-4 to induce apoptosis in cancer cells but not normal cells and the ability of Par-4 antisense or dominant-negative mutant to abrogate apoptosis in neurodegenerative disease paradigms makes it an appealing candidate for molecular therapy of cancer and neuronal diseases.
Collapse
Affiliation(s)
- Nadia El-Guendy
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA
| | | |
Collapse
|
50
|
Dutta K, Engler FA, Cotton L, Alexandrov A, Bedi GS, Colquhoun J, Pascal SM. Stabilization of a pH-sensitive apoptosis-linked coiled coil through single point mutations. Protein Sci 2003; 12:257-65. [PMID: 12538889 PMCID: PMC2312421 DOI: 10.1110/ps.0223903] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2002] [Revised: 10/28/2002] [Accepted: 10/30/2002] [Indexed: 10/27/2022]
Abstract
The apoptosis-associated Par-4 protein has been implicated in cancers of the prostate, colon, and kidney, and in Alzheimer's and Huntington's diseases, among other neurodegenerative disorders. Previously, we have shown that a peptide from the Par-4 C-terminus, which is responsible for Par-4 self-association as well as interaction with all currently identified effector molecules, is natively unfolded at neutral pH, but forms a tightly associated coiled coil at acidic pH and low temperature. Here, we have alternately mutated the two acidic residues predicted to participate in repulsive electrostatic interactions at the coiled coil interhelical interface. Analysis of circular dichroism spectra reveals that a dramatic alteration of the folding/unfolding equilibrium of this peptide can be effected through directed-point mutagenesis, confirming that the two acidic residues are indeed key to the pH-dependent folding behavior of the Par-4 coiled coil, and further suggesting that alleviation of charge repulsion through exposure to either a low pH microenvironment or an electrostatically complementary environment may be necessary for efficient folding of the Par-4 C-terminus.
Collapse
Affiliation(s)
- Kaushik Dutta
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, New York 14642, USA.
| | | | | | | | | | | | | |
Collapse
|