1
|
Afshari A, Azarpira N, Pakbaz S. Differentiation of Wharton's jelly-derived mesenchymal stromal cells into hepatocyte-like cells using a refined method. BMC Mol Cell Biol 2025; 26:9. [PMID: 40033232 PMCID: PMC11874389 DOI: 10.1186/s12860-025-00534-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 02/24/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND The production of functional hepatocyte cells in enough quantities is of paramount importance for the replacement of lost hepatocytes. In this investigation, a series of 7-mimic microRNAs was harnessed to induce the differentiation of Wharton's jelly-derived mesenchymal stromal cells (WJ-MSCs) into hepatocyte-like cells (HLC) through the application of two distinct techniques: transfection agents and electroporation. The results were then compared with those of HLCs differentiated through the consumption of chemical compounds. RESULTS Different time points (48 h, 72 h, and 96 h), unlike concentrations of mimic miRNAs (100 pM, and 200 pM), and dissimilar combinations of mimic-miRNAs (4-mimic and 7-mimic miRNAs) were selected to assess the stage of differentiated cells through electroporation and lipofection methods. For chemical differentiation, a two-step chemical hepatic differentiation protocol was used (for 21 days). The expression level of eleven key genes that were selected to estimate the stage of produced HLCs by each method were tested at different time points, concentrations and combination of mimic-miRNA. Results demonstrated that the 7-miR-mimics/72 h culture method by electroporation, then the 7-miR-mimics/72 h culture method by lipofection, and finally the chemical differentiation (72 h culture) showed the best result for differentiation. Furthermore, the period in which HLCs are maintained under culture conditions is important, as prolonged culture (more than 72 h) leads to cell loss. CONCLUSION In conclusion, the results demonstrated that the 7-miR cocktail delivered by electroporation after 72 h effectively promoted the acquisition of hepatocyte-like characteristics which was evidenced by a significant decrease in the Oct4 stemness factor and an increase in the expression of ALB, TAT, AAT, CYP, G6P and HNF4A.
Collapse
Affiliation(s)
- Afsoon Afshari
- Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, 7193711351, Iran.
| | - Sara Pakbaz
- Department of Pathology and Laboratory Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
2
|
Nijiati N, Wubuli D, Li X, Zhou Z, Julaiti M, Huang P, Hu B. The Construction of Stem Cell-Induced Hepatocyte Model and Its Application in Evaluation of Developmental Hepatotoxicity of Environmental Pollutants. Stem Cells Dev 2024; 33:575-585. [PMID: 39109950 DOI: 10.1089/scd.2024.0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
Stem cells, with their ability to self-renew and differentiate into various cell types, are a unique and valuable resource for medical research and toxicological studies. The liver is the most crucial metabolic organ in the human body and serves as the primary site for the accumulation of environmental pollutants. Enrichment with environmental pollutants can disrupt the early developmental processes of the liver and have a significant impact on liver function. The liver comprises a complex array of cell types, and different environmental pollutants have varying effects on these cells. Currently, there is a lack of well-established research models that can effectively demonstrate the mechanisms by which environmental pollutants affect human liver development. The emergence of liver cells and organoids derived from stem cells offers a promising tool for investigating the impact of environmental pollutants on human health. Therefore, this study systematically reviewed the developmental processes of different types of liver cells and provided an overview of studies on the developmental toxicity of various environmental pollutants using stem cell models.
Collapse
Affiliation(s)
- Nadire Nijiati
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Dilixiati Wubuli
- Department of Physiology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Xiaobing Li
- The Third Clinical Medicine College of Xinjiang Medical University, Urumqi, China
| | - Zidong Zhou
- The Third Clinical Medicine College of Xinjiang Medical University, Urumqi, China
| | - Mulati Julaiti
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Pengfei Huang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Bowen Hu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
3
|
Lee SY, Lee DY, Yun SH, Lee J, Mariano E, Park J, Choi Y, Han D, Kim JS, Hur SJ. Current technology and industrialization status of cell-cultivated meat. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:1-30. [PMID: 38618028 PMCID: PMC11007461 DOI: 10.5187/jast.2023.e107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 04/16/2024]
Abstract
Interest and investment in cultivated meat are increasing because of the realization that it can effectively supply sufficient food resources and reduce the use of livestock. Nevertheless, accurate information on the specific technologies used for cultivated meat production and the characteristics of cultivated meat is lacking. Authorization for the use of cultivated meat is already underway in the United States, Singapore, and Israel, and other major countries are also expected to approve cultivated meat as food once the details of the intricate process of producing cultivated meat, which encompasses stages such as cell proliferation, differentiation, maturation, and assembly, is thoroughly established. The development and standardization of mass production processes and safety evaluations must precede the industrialization and use of cultivated meat as food. However, the technology for the industrialization of cultivated meat is still in its nascent stage, and the mass production process has not yet been established. The mass production process of cultivated meat may not be easy to disclose because it is related to the interests of several companies or research teams. However, the overall research flow shows that equipment development for mass production and cell acquisition, proliferation, and differentiation, as well as for three-dimensional production supports and bioreactors have not yet been completed. Therefore, additional research on the mass production process and safety of cultivated meat is essential. The consumer's trust in the cultivated meat products and production technologies recently disclosed by some companies should also be analyzed and considered for guiding future developments in this industry. Furthermore, close monitoring by academia and the government will be necessary to identify fraud in the cultivated meat industry.
Collapse
Affiliation(s)
- Seung Yun Lee
- Division of Animal Science, Division of
Applied Life Science (BK21 Four), Institute of Agriculture & Life
Science, Gyeongsang National University, Jinju 52828,
Korea
| | - Da Young Lee
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Seung Hyeon Yun
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Juhyun Lee
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Ermie Mariano
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jinmo Park
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Yeongwoo Choi
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Dahee Han
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jin Soo Kim
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Sun Jin Hur
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
4
|
Shafritz DA, Ebrahimkhani MR, Oertel M. Therapeutic Cell Repopulation of the Liver: From Fetal Rat Cells to Synthetic Human Tissues. Cells 2023; 12:529. [PMID: 36831196 PMCID: PMC9954009 DOI: 10.3390/cells12040529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Progenitor cells isolated from the fetal liver can provide a unique cell source to generate new healthy tissue mass. Almost 20 years ago, it was demonstrated that rat fetal liver cells repopulate the normal host liver environment via a mechanism akin to cell competition. Activin A, which is produced by hepatocytes, was identified as an important player during cell competition. Because of reduced activin receptor expression, highly proliferative fetal liver stem/progenitor cells are resistant to activin A and therefore exhibit a growth advantage compared to hepatocytes. As a result, transplanted fetal liver cells are capable of repopulating normal livers. Important for cell-based therapies, hepatic stem/progenitor cells containing repopulation potential can be separated from fetal hematopoietic cells using the cell surface marker δ-like 1 (Dlk-1). In livers with advanced fibrosis, fetal epithelial stem/progenitor cells differentiate into functional hepatic cells and out-compete injured endogenous hepatocytes, which cause anti-fibrotic effects. Although fetal liver cells efficiently repopulate the liver, they will likely not be used for human cell transplantation. Thus, utilizing the underlying mechanism of repopulation and developed methods to produce similar growth-advantaged cells in vitro, e.g., human induced pluripotent stem cells (iPSCs), this approach has great potential for developing novel cell-based therapies in patients with liver disease. The present review gives a brief overview of the classic cell transplantation models and various cell sources studied as donor cell candidates. The advantages of fetal liver-derived stem/progenitor cells are discussed, as well as the mechanism of liver repopulation. Moreover, this article reviews the potential of in vitro developed synthetic human fetal livers from iPSCs and their therapeutic benefits.
Collapse
Affiliation(s)
- David A. Shafritz
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Mo R. Ebrahimkhani
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center (PLRC), University of Pittsburgh, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Michael Oertel
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center (PLRC), University of Pittsburgh, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
5
|
Yao L, Hu X, Dai K, Yuan M, Liu P, Zhang Q, Jiang Y. Mesenchymal stromal cells: promising treatment for liver cirrhosis. Stem Cell Res Ther 2022; 13:308. [PMID: 35841079 PMCID: PMC9284869 DOI: 10.1186/s13287-022-03001-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/13/2022] [Indexed: 11/11/2022] Open
Abstract
Liver fibrosis is a wound-healing process that occurs in response to severe injuries and is hallmarked by the excessive accumulation of extracellular matrix or scar tissues within the liver. Liver fibrosis can be either acute or chronic and is induced by a variety of hepatotoxic causes, including lipid deposition, drugs, viruses, and autoimmune reactions. In advanced fibrosis, liver cirrhosis develops, a condition for which there is no successful therapy other than liver transplantation. Although liver transplantation is still a viable option, numerous limitations limit its application, including a lack of donor organs, immune rejection, and postoperative complications. As a result, there is an immediate need for a different kind of therapeutic approach. Recent research has shown that the administration of mesenchymal stromal cells (MSCs) is an attractive treatment modality for repairing liver injury and enhancing liver regeneration. This is accomplished through the cell migration into liver sites, immunoregulation, hepatogenic differentiation, as well as paracrine mechanisms. MSCs can also release a huge variety of molecules into the extracellular environment. These molecules, which include extracellular vesicles, lipids, free nucleic acids, and soluble proteins, exert crucial roles in repairing damaged tissue. In this review, we summarize the characteristics of MSCs, representative clinical study data, and the potential mechanisms of MSCs-based strategies for attenuating liver cirrhosis. Additionally, we examine the processes that are involved in the MSCs-dependent modulation of the immune milieu in liver cirrhosis. As a result, our findings lend credence to the concept of developing a cell therapy treatment for liver cirrhosis that is premised on MSCs. MSCs can be used as a candidate therapeutic agent to lengthen the survival duration of patients with liver cirrhosis or possibly reverse the condition in the near future.
Collapse
Affiliation(s)
- Lichao Yao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Xue Hu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Kai Dai
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Mengqin Yuan
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Pingji Liu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Qiuling Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Yingan Jiang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
6
|
Fatima A, Malick TS, Khan I, Ishaque A, Salim A. Effect of glycyrrhizic acid and 18β-glycyrrhetinic acid on the differentiation of human umbilical cord-mesenchymal stem cells into hepatocytes. World J Stem Cells 2021; 13:1580-1594. [PMID: 34786159 PMCID: PMC8567450 DOI: 10.4252/wjsc.v13.i10.1580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/25/2021] [Accepted: 09/19/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND End-stage liver disease is a global health complication with high prevalence and limited treatment options. Cell-based therapies using mesenchymal stem cells (MSCs) emerged as an alternative approach to support hepatic regeneration. In vitro preconditioning strategies have been employed to strengthen the regenerative and differentiation potential of MSCs towards hepatic lineage. Chemical compounds of the triterpene class; glycyrrhizic acid (GA) and 18β-glycyrrhetinic acid (GT) possess diverse therapeutic properties including hepato-protection and anti-fibrosis characteristics. They are capable of modulating several signaling pathways that are crucial in hepatic regeneration. Preconditioning with hepato-protective triterpenes may stimulate MSC fate transition towards hepatocytes.
AIM To explore the effect of GA and GT on hepatic differentiation of human umbilical cord-MSCs (hUC-MSCs).
METHODS hUC-MSCs were isolated and characterized phenotypically by flow cytometry and immunocytochemistry for the expression of MSC-associated surface molecules. Isolated cells were treated with GA, GT, and their combination for 24 h and then analyzed at three time points; day 7, 14, and 21. qRT-PCR was performed for the expression of hepatic genes. Expression of hepatic proteins was analyzed by immunocytochemistry at day 21. Periodic acid Schiff staining was performed to determine the functional ability of treated cells.
RESULTS The fusiform-shaped morphology of MSCs in the treatment groups in comparison with the untreated control, eventually progressed towards the polygonal morphology of hepatocytes with the passage of time. The temporal transcriptional profile of preconditioned MSCs displayed significant expression of hepatic genes with increasing time of differentiation. Preconditioned cells showed positive expression of hepatocyte-specific proteins. The results were further corroborated by positive periodic acid Schiff staining, indicating the presence of glycogen in their cytoplasm. Moreover, bi-nucleated cells, which is the typical feature of hepatocytes, were also seen in the preconditioned cells.
CONCLUSION Preconditioning with glycyrrhizic acid, 18β-glycyrrhetinic acid and their combination, successfully differentiates hUC-MSCs into hepatic-like cells. These MSCs may serve as a better therapeutic option for degenerative liver diseases in future.
Collapse
Affiliation(s)
- Abiha Fatima
- Stem Cell Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Tuba Shakil Malick
- Stem Cell Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Irfan Khan
- Stem Cell Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Aisha Ishaque
- Stem Cell Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Asmat Salim
- Stem Cell Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS, University of Karachi, Karachi 75270, Sindh, Pakistan
| |
Collapse
|
7
|
Li QY, Chen J, Luo YH, Zhang W, Xiao EH. Sodium Butyrate Pre-Treatment Enhance Differentiation of Bone Marrow Mesenchymal Stem Cells (BM-MSCs) into Hepatocytes and Improve Liver Injury. Curr Mol Med 2021; 22:663-674. [PMID: 34649486 DOI: 10.2174/1566524021666211014161716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The treatment of liver failure by stem cell transplantation has attracted growing interest. Herein, we aim to explore the role of sodium butyrate (NaB) in the hepatic differentiation of bone marrow mesenchymal stem cells (BM-MSCs) under liver-specific factors induction in vitro and vivo. MATERIALS & METHODS We isolated BM-MSCs from the mononuclear cell fraction of rabbit bone marrow samples, and identified the cells by Immunophenotypic analysis. We investigated the effects of different concentrations and induction conditions. The histone deacetylase inhibitor NaB induced hepatic differentiation of BM-MSCs under liver-specific factors induction in vitro. Morphological features, liver-specific gene and protein expression, and functional analyses in vitro and vivo were performed to evaluate the hepatic differentiation of BM-MSCs. RESULTS Our results showed that pre-treated NaB inhibited the expression of liver-specific protein in a dose-dependent manner. The induction efficiency of NaB with 24h pre-treatment was higher than that of NaB continuous intervention. 0.5 mM 24h NaB pre-treated cells can improve liver tissue damage in vivo. And the liver ALB, AAT and the serum TP were significantly increased, while the serum ALT was significantly reduced. CONCLUSION Continuous NaB treatment can inhibit BM-MSCs proliferation in a dose-dependent manner at a certain concentration range. 0.5 mM 24h pre-treatment of NaB enhanced differentiation of BM-MSCs into hepatocytes and improves liver injury in vitro and vivo.
Collapse
Affiliation(s)
- Qiu-Yun Li
- Department of Radiology, Second Xiangya hospital of Central South University, Changsha, Hunan, 410011. China
| | - Juan Chen
- Department of Radiology, Second Xiangya hospital of Central South University, Changsha, Hunan, 410011. China
| | - Yong-Heng Luo
- Department of Radiology, Second Xiangya hospital of Central South University, Changsha, Hunan, 410011. China
| | - Wei Zhang
- Department of Radiology, Second people's hospital of Hunan Province, Changsha, Hunan, 410007. China
| | - En-Hua Xiao
- Department of Radiology, Second Xiangya hospital of Central South University, Changsha, Hunan, 410011. China
| |
Collapse
|
8
|
Yagi K. [Transition of the Field from Biochemical Engineering to Pharmaceutical Sciences during 40 Years of the Research]. YAKUGAKU ZASSHI 2019; 139:285-297. [PMID: 30713241 DOI: 10.1248/yakushi.18-00178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review reflects back over almost 40 years of the author's basic research conducted at Graduate School of Pharmaceutical Sciences, Osaka University, Japan. After performing postdoctoral research in USA, the author became a research associate at Prof. Yoshiharu Miura's lab and started research on Biochemical Engineering in 1984. At that time, the main research purpose was to solve global environmental issues for maintaining human health. The author's achievements included novel useful material production system under inorganic conditions and genetically engineered whole-cell bacterial sensors detecting arsenite by naked eye without a detecting device. Another theme in the lab was to construct bioartificial liver support system. Various scaffolds for hepatocytes were newly prepared for constructing the compact reactor. Besides the bioreactor study, the author conducted cell transplantation research for the treatment of chronic liver diseases. It was shown that mesenchymal stem cells derived from third molars (wisdom teeth) could differentiate into hepatocytes and exhibit therapeutic effects in liver-damaged animals. After 2006, the lab started research on drug delivery systems, including noninvasive delivery of drugs such as peptides and nucleic acids by regulating epithelial tight junctions. Many substances enabling drug delivery through "paracellular" route were newly prepared. The author started basic research on Biochemical Engineering in the 1970s. Although these studies eventually shifted into the pharmaceutical field, the underlying concept was based on "engineering" throughout a 40-year research period. The author cordially thanks all colleagues for supporting engineering research in our lab.
Collapse
Affiliation(s)
- Kiyohito Yagi
- Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|
9
|
Han W, Wu Q, Zhang X, Duan Z. Innovation for hepatotoxicity in vitro research models: A review. J Appl Toxicol 2018; 39:146-162. [PMID: 30182494 DOI: 10.1002/jat.3711] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 12/18/2022]
Abstract
Many categories of drugs can induce hepatotoxicity, so improving the prediction of toxic drugs is important. In vitro models using human hepatocytes are more accurate than in vivo animal models. Good in vitro models require an abundance of metabolic enzyme activities and normal cellular polarity. However, none of the in vitro models can completely simulate hepatocytes in the human body. There are two ways to overcome this limitation: enhancing the metabolic function of hepatocytes and changing the cultural environment. In this review, we summarize the current state of research, including the main characteristics of in vitro models and their limitations, as well as improved technology and developmental prospects. We hope that this review provides some new ideas for hepatotoxicity research.
Collapse
Affiliation(s)
- Weijia Han
- Artificial Liver Center, Beijing Youan Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Liver Failure; Artificial Liver Treatment and Research; Beijing China
| | - Qiao Wu
- Artificial Liver Center, Beijing Youan Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Liver Failure; Artificial Liver Treatment and Research; Beijing China
| | - Xiaohui Zhang
- Artificial Liver Center, Beijing Youan Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Liver Failure; Artificial Liver Treatment and Research; Beijing China
| | - Zhongping Duan
- Artificial Liver Center, Beijing Youan Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Liver Failure; Artificial Liver Treatment and Research; Beijing China
| |
Collapse
|
10
|
Luo Y, Lou C, Zhang S, Zhu Z, Xing Q, Wang P, Liu T, Liu H, Li C, Shi W, Du Z, Gao Y. Three-dimensional hydrogel culture conditions promote the differentiation of human induced pluripotent stem cells into hepatocytes. Cytotherapy 2018; 20:95-107. [PMID: 28969895 DOI: 10.1016/j.jcyt.2017.08.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 08/03/2017] [Accepted: 08/09/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND AIMS Human induced pluripotent stem cells (hiPSCs) are becoming increasingly popular in research endeavors due to their potential for clinical application; however, such application is challenging due to limitations such as inferior function and low induction efficiency. In this study, we aimed to establish a three-dimensional (3D) culture condition to mimic the environment in which hepatogenesis occurs in vivo to enhance the differentiation of hiPSCs for large-scale culture and high throughput BAL application. METHODS We used hydrogel to create hepatocyte-like cell (HLC) spheroids in a 3D culture condition and analyzed the cell-behavior and differentiation properties of hiPSCs in a synthetic nanofiber scaffold. RESULTS We found that treating cells with Y-27632 promoted the formation of spheroids, and the cells aggregated more rapidly in a 3D culture condition. The ALB secretion, urea production and glycogen synthesis by HLCs in 3D were significantly higher than those grown in a 2-dimensional culture condition. In addition, the metabolic activities of the CYP450 enzymes were also higher in cells differentiated in the 3D culture condition. CONCLUSIONS 3D hydrogel culture condition can promote differentiation of hiPSCs into hepatocytes. The 3D culture approach could be applied to the differentiation of hiPSCs into hepatocytes for bioartificial liver.
Collapse
Affiliation(s)
- Ying Luo
- Tianjin Key Laboratory of Artificial Cell, Tianjin Institute of Hepatobiliary Disease, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Third Central Hospital of Tianjin, Tianjin, China
| | - Cheng Lou
- Department of Hepatobiliary Surgery, Third Central Hospital of Tianjin, Tianjin, China
| | - Sui Zhang
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zhengyan Zhu
- Tianjin Key Laboratory of Artificial Cell, Tianjin Institute of Hepatobiliary Disease, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Third Central Hospital of Tianjin, Tianjin, China
| | - Qianzhe Xing
- Department of Hepatobiliary Surgery, Third Central Hospital of Tianjin, Tianjin, China
| | - Peng Wang
- Tianjin Key Laboratory of Artificial Cell, Tianjin Institute of Hepatobiliary Disease, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Third Central Hospital of Tianjin, Tianjin, China
| | - Tong Liu
- Tianjin Key Laboratory of Artificial Cell, Tianjin Institute of Hepatobiliary Disease, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Third Central Hospital of Tianjin, Tianjin, China
| | - Hui Liu
- Tianjin Key Laboratory of Artificial Cell, Tianjin Institute of Hepatobiliary Disease, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Third Central Hospital of Tianjin, Tianjin, China
| | - Chenglong Li
- Tianjin Key Laboratory of Artificial Cell, Tianjin Institute of Hepatobiliary Disease, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Third Central Hospital of Tianjin, Tianjin, China
| | - Wenxia Shi
- Tianjin Key Laboratory of Artificial Cell, Tianjin Institute of Hepatobiliary Disease, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Third Central Hospital of Tianjin, Tianjin, China
| | - Zhi Du
- Tianjin Key Laboratory of Artificial Cell, Tianjin Institute of Hepatobiliary Disease, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Third Central Hospital of Tianjin, Tianjin, China
| | - Yingtang Gao
- Tianjin Key Laboratory of Artificial Cell, Tianjin Institute of Hepatobiliary Disease, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Third Central Hospital of Tianjin, Tianjin, China.
| |
Collapse
|
11
|
Ogoke O, Oluwole J, Parashurama N. Bioengineering considerations in liver regenerative medicine. J Biol Eng 2017; 11:46. [PMID: 29204185 PMCID: PMC5702480 DOI: 10.1186/s13036-017-0081-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/25/2017] [Indexed: 12/19/2022] Open
Abstract
Background Liver disease contributes significantly to global disease burden and is associated with rising incidence and escalating costs. It is likely that innovative approaches, arising from the emerging field of liver regenerative medicine, will counter these trends. Main body Liver regenerative medicine is a rapidly expanding field based on a rich history of basic investigations into the nature of liver structure, physiology, development, regeneration, and function. With a bioengineering perspective, we discuss all major subfields within liver regenerative medicine, focusing on the history, seminal publications, recent progress within these fields, and commercialization efforts. The areas reviewed include fundamental aspects of liver transplantation, liver regeneration, primary hepatocyte cell culture, bioartificial liver, hepatocyte transplantation and liver cell therapies, mouse liver repopulation, adult liver stem cell/progenitor cells, pluripotent stem cells, hepatic microdevices, and decellularized liver grafts. Conclusion These studies highlight the creative directions of liver regenerative medicine, the collective efforts of scientists, engineers, and doctors, and the bright outlook for a wide range of approaches and applications which will impact patients with liver disease.
Collapse
Affiliation(s)
- Ogechi Ogoke
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Furnas Hall, Buffalo, NY 14260 USA.,Clinical and Translation Research Center (CTRC), University at Buffalo (State University of New York), 875 Ellicott St., Buffalo, NY 14203 USA
| | - Janet Oluwole
- Clinical and Translation Research Center (CTRC), University at Buffalo (State University of New York), 875 Ellicott St., Buffalo, NY 14203 USA.,Department of Biomedical Engineering, University at Buffalo (State University of New York), Furnas Hall, 907 Furnas Hall, Buffalo, NY 14260 USA
| | - Natesh Parashurama
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Furnas Hall, Buffalo, NY 14260 USA.,Clinical and Translation Research Center (CTRC), University at Buffalo (State University of New York), 875 Ellicott St., Buffalo, NY 14203 USA.,Department of Biomedical Engineering, University at Buffalo (State University of New York), Furnas Hall, 907 Furnas Hall, Buffalo, NY 14260 USA
| |
Collapse
|
12
|
Kumar A, Kumar V, Rattan V, Jha V, Pal A, Bhattacharyya S. Molecular spectrum of secretome regulates the relative hepatogenic potential of mesenchymal stem cells from bone marrow and dental tissue. Sci Rep 2017; 7:15015. [PMID: 29118330 PMCID: PMC5678086 DOI: 10.1038/s41598-017-14358-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/10/2017] [Indexed: 01/10/2023] Open
Abstract
Liver regeneration is a spontaneous process that occurs after liver injury, but acute liver failure is a complex and fatal disease which is difficult to treat. Cell-based therapies are promising alternative therapeutic approach for liver failure and different cell sources have been tested in this regard. We investigated the comparative hepatogenic potential of human bone marrow stem cells (BMSC) with stem cells derived from human dental pulp (DPSC), apical papilla (SCAP) and follicle (DFSC) during this study. Hepatogenic potential of stem cells was assessed by functional assays at both genetic and protein level. We observed higher expression of most of the hepatic markers post differentiation in DPSCs compared to other cell types. LC-MS/MS analysis of stem cell secretome revealed the presence of different proteins related to hepatogenic lineage like growth arrest specific protein 6, oncostatin M, hepatocyte growth factor receptor etc. Interactome and Reactome pathway analysis revealed the interaction of DPSC/SCAP secretome proteins and these proteins were found to be associated with various pathways involved in lipid transport and metabolism. To the best of our knowledge, this is the first study regarding detailed investigation of hepatogenic potential of BMSCs v/s DMSCs (DPSC, SCAP & DFSC) along-with secretome characterization.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Biophysics, PGIMER, Chandigarh, India
| | - Vinod Kumar
- Department of Nephrology, PGIMER, Chandigarh, India
| | - Vidya Rattan
- Unit of Oral and Maxillofacial surgery, Oral health science centre, PGIMER, Chandigarh, India
| | - Vivekananda Jha
- Department of Nephrology, PGIMER, Chandigarh, India.,University of Oxford, Oxford, UK
| | - Arnab Pal
- Department of Biochemistry, PGIMER, Chandigarh, India
| | | |
Collapse
|
13
|
Saleh R, Reza HM. Short review on human umbilical cord lining epithelial cells and their potential clinical applications. Stem Cell Res Ther 2017; 8:222. [PMID: 29017529 PMCID: PMC5634865 DOI: 10.1186/s13287-017-0679-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The human umbilical cord has been studied extensively in the past two decades. It is free of ethical dilemmas, non-tumorigenic, and less immunogenic and thus provides a significant advantage over other stem cell sources. The cord lining yields both mesenchymal and epithelial stem cells. The mesenchymal cells have been appraised at length by many researchers, which led to the current review focusing on the cord lining epithelial cells (CLECs). These cells have high proliferative capacity and their superior harvest and multiplication, using the revolutionary CellOptimaTM technology, makes them better candidates in comparison to contemporary adult stem cells. Following 30 replication cycles these cells have been observed to retain their stemness, with their phenotype and karyotype intact. However, their remarkable immunosuppressant properties, protecting self as well as co-transplanted allografts from rejection, are what truly define their transplantation potential. They have been successfully applied to many chronic conditions, using animal models, including type 1 diabetes, limbal stem cell deficiency, burn injuries, and wound healing, etc. with encouraging results. CONCLUSIONS This review first discusses some of the advantages afforded by CLECs over other stem cell lines and then delineates their potential use in various clinical applications. Clinical trials using CLECs are currently underway in the US in collaboration with CellResearch Corp. and their potential positive findings will help garner an FDA approval, likely leading to the eventual commercialization of this promising technology.
Collapse
Affiliation(s)
- Razwa Saleh
- Department of Pharmaceutical Sciences, North South University, Plot 15, Block B, Bashundhara, Dhaka, 1229, Bangladesh
| | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, North South University, Plot 15, Block B, Bashundhara, Dhaka, 1229, Bangladesh.
| |
Collapse
|
14
|
Rasmussen MK. Induction of cytochrome P450 mRNA in porcine primary hepatocytes cultured under serum free conditions: Comparison of freshly isolated cells and cryopreserved. Exp Cell Res 2017; 360:218-225. [PMID: 28916194 DOI: 10.1016/j.yexcr.2017.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 01/08/2023]
Abstract
Primary hepatocytes are widely used in the study of dynamic events like regulation of gene expression, as they are superior to most cell-lines. However, the culturing of the hepatocytes often results in loss of phenotype, e.g. the expression of the cytochrome p450s (CYP). The present study investigated the impact of serum in the culture medium of porcine primary hepatocytes (PPH) on markers of dedifferentiation as well as the impact on CYP induction. The effects were studied in both freshly isolated primary hepatocytes as well as cryopreserved. The exclusion of serum in the culturing media were not introducing significant dedifferentiation as judged by the gene expression of α-fetoprotein, albumin, glucose-6-phosphatase and the constitutive expression of selected transcription factors and CYP. The induction of CYP2B22 and CYP3A29 by phenobarbital and rifampicin, were greater in hepatocytes cultured without serum. The same were not observed for TCDD induced CYP1A2 expression. In conclusion, PPH cultured under serum free conditions results in little or no dedifferentiation, while being more responsive to known CYP inducers. Hence, it can be suggested that PPH cultured under serum free conditions provides a reliable hepatocyte model to investigate CYP gene regulation.
Collapse
|
15
|
Shirahashi H, Wu J, Yamamoto N, Catana A, Wege H, Wager B, Okita K, Zern MA. Differentiation of Human and Mouse Embryonic Stem Cells along a Hepatocyte Lineage. Cell Transplant 2017; 13:197-211. [PMID: 15191158 DOI: 10.3727/000000004783984016] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Embryonic stem (ES) cells may differentiate along a hepatocyte lineage; however, currently there are no reports of culture conditions yielding high levels of hepatocyte-specific gene expression in these cells. We investigated culture conditions for differentiating ES cells into hepatocyte-like cells in vitro. Various combinations of culture media, growth and differentiation factors, and substratum precoatings were evaluated, and it was determined that a combination of Iscove's modified Dulbecco's medium with 20% fetal bovine serum, human insulin, dexamethasone, and collagen type I precoating was optimal for directing mouse ES cells along a hepatocyte lineage. Treatment of mouse ES cell with the optimal condition led to prealbumin gene expression 20% as high, and albumin synthesis 7% as high, as in mouse liver. The optimal culture condition also induced albumin gene expression in differentiated human ES cells 1% as high as in normal human hepatocytes as shown by Western blot analysis, and cells were positive for human albumin by immunocyto-chemistry. In addition, our optimal condition led to high levels of albumin gene expression in primary mouse hepatocytes after 35 days of culture, levels 10-fold higher than with other hepatocyte differentiation media. In conclusion, our optimal condition directed both mouse and human ES cells along a hepatocyte lineage. This represents the initial step in establishing cell lines that can be employed in cell-based therapeutics in humans and for toxicology and pharmacology studies.
Collapse
Affiliation(s)
- Hitoshi Shirahashi
- Transplant Research Institute, University of California, Davis Medical Center, Sacramento, CA 95817, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Teratani T, Quinn G, Yamamoto Y, Sato T, Yamanokuchi H, Asari A, Ochiya T. Long-Term Maintenance of Liver-Specific Functions in Cultured ES Cell-Derived Hepatocytes with Hyaluronan Sponge. Cell Transplant 2017; 14:629-35. [PMID: 16405073 DOI: 10.3727/000000005783982611] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This study investigated the three-dimensional culture of hepatocytes differentiated from mouse embryonic stem (ES) cells with a porous hyaluronan (HA) sponge support. Hepatocytes were immobilized within the pores of the support. Spheroids could be observed within the support, each containing between 20 and 50 hepatocytes. To examine the liver-specific functions of the hepatocytes in the culture, the levels of albumin secreted into the medium were analyzed. The secretion of albumin was stable over the course of 32 days, longer than that in both conventional monolayer and collagen sponge cultures. To elucidate further the liver-specific functions of hepatocytes embedded in the HA sponge, metabolic activities of the hepatocytes were examined for their ability to eliminate ammonia from culture media and the synthesis of urea nitrogen. While rates of ammonia removal and urea nitrogen synthesis were similar to those in both conventional monolayer and in collagen sponge cultures, these functions were maintained for longer duration in cells embedded in the HA sponge. These results demonstrate that the porous HA sponge is an effective support for the in vitro culture of ES-derived hepatocytes used for both basic and applied studies for cell transplantation.
Collapse
Affiliation(s)
- Takumi Teratani
- National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Choi D, Oh HJ, Chang UJ, Koo SK, Jiang JX, Hwang SY, Lee JD, Yeoh GC, Shin HS, Lee JS, Oh B. In Vivo Differentiation of Mouse Embryonic Stem Cells into Hepatocytes. Cell Transplant 2017. [DOI: 10.3727/000000002783985792] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Embryonic stem (ES) cells have been regarded as a powerful resource for cell replacement therapy. In recent reports mouse ES cells have been successfully applied in the treatment of spinal cord injury, hereditary myelin disorder of the central nervous system, and diabetes mellitus. Another type of disease that could benefit from the availability of stem cell therapy is liver disease. However, for this potential to be realized, it is necessary to demonstrate the differentiation of ES cells into hepatocytes. To demonstrate the in vivo differentiation potential of mouse ES cells, we injected ES cells into the spleen of immunosuppressed nude mice. Histological analysis of teratomas derived from injected ES cells revealed that some areas contained typical hepatocytes arranged in a sinusoidal structure. The hepatic nature of these cells was further confirmed by showing that transcripts of liver-specific genes were present in the differentiated teratoma using reverse transcriptase-polymerase chain reaction and immunohistochemistry using several liver-specific antibodies including HEP-PAR, phenylalanine hydroxylase, and mouse N-system aminotransferase to identify the respective proteins in the differentiated hepatocytes. This is the first demonstration that mouse ES cells can differentiate in vivo into a mixed population of hepatocytes of varying maturity. This finding extends the potential use of ES cells in the cell replacement therapy by including its possible application for treating liver diseases.
Collapse
Affiliation(s)
- Dongho Choi
- Division of Genetic Disease, Department of Biomedical Science, National Institute of Health, Seoul 122-701, Korea
| | - Hyun-Jeong Oh
- Division of Genetic Disease, Department of Biomedical Science, National Institute of Health, Seoul 122-701, Korea
| | - Uck-Jin Chang
- Division of Genetic Disease, Department of Biomedical Science, National Institute of Health, Seoul 122-701, Korea
| | - Soo Kyung Koo
- Division of Genetic Disease, Department of Biomedical Science, National Institute of Health, Seoul 122-701, Korea
| | - Jean X. Jiang
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229-3900
| | - Sue-Yun Hwang
- Research Institute of Immunology, Catholic Institutes of Medical Science, The Catholic University of Korea, Seoul 137-701, Korea
| | - Jung-Dal Lee
- Department of Pathology, SongDo Hospital, Seoul 100-453, Korea
| | - George C. Yeoh
- Department of Biochemistry, University of Western Australia, Nedlands, Western Australia, Australia
| | - Hee-Sup Shin
- Korea Institute of Science and Technology, Seoul 130-650, Korea
| | - Jin-Sung Lee
- Department of Pediatrics, Yonsei University Medial School, Seoul 120-752, Korea
| | - Bermseok Oh
- Division of Genetic Disease, Department of Biomedical Science, National Institute of Health, Seoul 122-701, Korea
| |
Collapse
|
18
|
Jeong J, Kim KN, Chung MS, Kim HJ. Functional comparison of human embryonic stem cells and induced pluripotent stem cells as sources of hepatocyte-like cells. Tissue Eng Regen Med 2016; 13:740-749. [PMID: 30603455 DOI: 10.1007/s13770-016-0094-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/20/2016] [Accepted: 07/25/2016] [Indexed: 12/17/2022] Open
Abstract
Pluripotent stem cells can differentiate into many cell types including mature hepatocytes, and can be used in the development of new drugs, treatment of diseases, and in basic research. In this study, we established a protocol leading to efficient hepatic differentiation, and compared the capacity to differentiate into the hepatocyte lineage of human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). Optimal combinations of cytokines and growth factors were added to embryoid bodies produced by both types of cell. Differentiation of the cells was assessed with optical and electron microscopes, and hepatic-specific transcripts and proteins were detected by quantitative reverse transcription polymerase chain reaction and immunocytochemistry, respectively. Both types of embryoid body produced polygonal hepatocyte-like cells accompanied by time-dependent up regulation of genes for α-fetoprotein, albumin (ALB), asialoglycoprotein1, CK8, CK18, CK19, CYP1A2, and CYP3A4, which are expressed in fetal and adult hepatocytes. Both types of cell displayed functions characteristic of mature hepatocytes such as accumulation of glycogen, secretion of ALB, and uptake of indocyanine green. And these cells are transplanted into mouse model. Our findings indicate that hESCs and hiPSCs have similar abilities to differentiate into hepatocyte in vitro using the protocol developed here, and these cells are transplantable into damaged liver. Electronic Supplementary Material Supplementary material is available for this article at 10.1007/s13770-016-0094-y and is accessible for authorized users.
Collapse
Affiliation(s)
- Jaemin Jeong
- 1Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Kyu Nam Kim
- 2Department of Anesthesiology and Pain Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Min Sung Chung
- 1Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- 3Department of Surgery, Hanyang University College of Medicine, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763 Korea
| | - Han Joon Kim
- 1Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- 3Department of Surgery, Hanyang University College of Medicine, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763 Korea
| |
Collapse
|
19
|
Singh VK, Saini A, Kalsan M, Kumar N, Chandra R. Describing the Stem Cell Potency: The Various Methods of Functional Assessment and In silico Diagnostics. Front Cell Dev Biol 2016; 4:134. [PMID: 27921030 PMCID: PMC5118841 DOI: 10.3389/fcell.2016.00134] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 11/02/2016] [Indexed: 12/11/2022] Open
Abstract
Stem cells are defined by their capabilities to self-renew and give rise to various types of differentiated cells depending on their potency. They are classified as pluripotent, multipotent, and unipotent as demonstrated through their potential to generate the variety of cell lineages. While pluripotent stem cells may give rise to all types of cells in an organism, Multipotent and Unipotent stem cells remain restricted to the particular tissue or lineages. The potency of these stem cells can be defined by using a number of functional assays along with the evaluation of various molecular markers. These molecular markers include diagnosis of transcriptional, epigenetic, and metabolic states of stem cells. Many reports are defining the particular set of different functional assays, and molecular marker used to demonstrate the developmental states and functional capacities of stem cells. The careful evaluation of all these methods could help in generating standard identifying procedures/markers for them.
Collapse
Affiliation(s)
- Vimal K Singh
- Stem Cell Research Laboratory, Department of Biotechnology, Delhi Technological University Delhi, India
| | - Abhishek Saini
- Stem Cell Research Laboratory, Department of Biotechnology, Delhi Technological University Delhi, India
| | - Manisha Kalsan
- Stem Cell Research Laboratory, Department of Biotechnology, Delhi Technological University Delhi, India
| | - Neeraj Kumar
- Stem Cell Research Laboratory, Department of Biotechnology, Delhi Technological University Delhi, India
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi Delhi, India
| |
Collapse
|
20
|
Yahoo N, Pournasr B, Rostamzadeh J, Fathi F. Forced expression of Hnf4a induces hepatic gene activation through directed differentiation. Biochem Biophys Res Commun 2016; 476:313-318. [PMID: 27233607 DOI: 10.1016/j.bbrc.2016.05.119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 05/23/2016] [Indexed: 11/29/2022]
Abstract
Embryonic stem (ES) cells are capable of unlimited self-renewal and have a diverse differentiation potential. These unique features make ES cells as an attractive source for developmental biology studies. Having the mature hepatocyte in the lab with functional activities is valuable in drug discovery studies. Overexpression of hepatocyte lineage-specific transcription factors (TFs) becomes a promising approach in pluripotent cell differentiation toward liver cells. Many studies generate transgenic ES cell lines to examine the effects of specific TFs overexpression in cell differentiation. In the present report, we have addressed whether a suspension or adherent model of differentiation is an appropriate way to study the role of Hnf4a overexpression. We generated ES cells that carried a doxycycline (Dox)-inducible Hnf4a using lentiviral vectors. The transduced cells were subjected to induced Hnf4a overexpression through both spontaneous and directed differentiation methods. Gene expression analysis showed substantially increased expression of hepatic gene markers, particularly Ttr and endogenous Hnf4a, in transduced cells differentiated by the directed approach. These results demonstrated that forced expression of TFs during directed differentiation would be an appropriate way to study relevant gene activation and the effects of overexpression in the context of hepatic differentiation.
Collapse
Affiliation(s)
- Neda Yahoo
- Cellular and Molecular Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Behshad Pournasr
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Jalal Rostamzadeh
- Department of Biological Sciences and Biotechnology, School of Science, University of Kurdistan, Sanandaj, Iran
| | - Fardin Fathi
- Cellular and Molecular Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
21
|
Beggs KM, McGreal SR, McCarthy A, Gunewardena S, Lampe JN, Lau C, Apte U. The role of hepatocyte nuclear factor 4-alpha in perfluorooctanoic acid- and perfluorooctanesulfonic acid-induced hepatocellular dysfunction. Toxicol Appl Pharmacol 2016; 304:18-29. [PMID: 27153767 DOI: 10.1016/j.taap.2016.05.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/21/2016] [Accepted: 05/01/2016] [Indexed: 01/09/2023]
Abstract
Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), chemicals present in a multitude of consumer products, are persistent organic pollutants. Both compounds induce hepatotoxic effects in rodents, including steatosis, hepatomegaly and liver cancer. The mechanisms of PFOA- and PFOS-induced hepatic dysfunction are not completely understood. We present evidence that PFOA and PFOS induce their hepatic effects via targeting hepatocyte nuclear factor 4-alpha (HNF4α). Human hepatocytes treated with PFOA and PFOS at a concentration relevant to occupational exposure caused a decrease in HNF4α protein without affecting HNF4α mRNA or causing cell death. RNA sequencing analysis combined with Ingenuity Pathway Analysis of global gene expression changes in human hepatocytes treated with PFOA or PFOS indicated alterations in the expression of genes involved in lipid metabolism and tumorigenesis, several of which are regulated by HNF4α. Further investigation of specific HNF4α target gene expression revealed that PFOA and PFOS could promote cellular dedifferentiation and increase cell proliferation by down regulating positive targets (differentiation genes such as CYP7A1) and inducing negative targets of HNF4α (pro-mitogenic genes such as CCND1). Furthermore, in silico docking simulations indicated that PFOA and PFOS could directly interact with HNF4α in a similar manner to endogenous fatty acids. Collectively, these results highlight HNF4α degradation as novel mechanism of PFOA and PFOS-mediated steatosis and tumorigenesis in human livers.
Collapse
Affiliation(s)
- Kevin M Beggs
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, 4052 HLSIC, Kansas City, KS 66160, United States.
| | - Steven R McGreal
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, 4052 HLSIC, Kansas City, KS 66160, United States.
| | - Alex McCarthy
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, 4052 HLSIC, Kansas City, KS 66160, United States
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd, 2027 HLSIC, Kansas City, KS 66160, United States.
| | - Jed N Lampe
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, 4052 HLSIC, Kansas City, KS 66160, United States.
| | - Christoper Lau
- Developmental Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, United States.
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, 4052 HLSIC, Kansas City, KS 66160, United States.
| |
Collapse
|
22
|
Ham SL, Joshi R, Thakuri PS, Tavana H. Liquid-based three-dimensional tumor models for cancer research and drug discovery. Exp Biol Med (Maywood) 2016; 241:939-54. [PMID: 27072562 PMCID: PMC4950350 DOI: 10.1177/1535370216643772] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tumors are three-dimensional tissues where close contacts between cancer cells, intercellular interactions between cancer and stromal cells, adhesion of cancer cells to the extracellular matrix, and signaling of soluble factors modulate functions of cancer cells and their response to therapeutics. Three-dimensional cultures of cancer cells overcome limitations of traditionally used monolayer cultures and recreate essential characteristics of tumors such as spatial gradients of oxygen, growth factors, and metabolites and presence of necrotic, hypoxic, quiescent, and proliferative cells. As such, three-dimensional tumor models provide a valuable tool for cancer research and oncology drug discovery. Here, we describe different tumor models and primarily focus on a model known as tumor spheroid. We summarize different technologies of spheroid formation, and discuss the use of spheroids to address the influence of stromal fibroblasts and immune cells on cancer cells in tumor microenvironment, study cancer stem cells, and facilitate compound screening in the drug discovery process. We review major techniques for quantification of cellular responses to drugs and discuss challenges ahead to enable broad utility of tumor spheroids in research laboratories, integrate spheroid models into drug development and discovery pipeline, and use primary tumor cells for drug screening studies to realize personalized cancer treatment.
Collapse
Affiliation(s)
- Stephanie L Ham
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, USA
| | - Ramila Joshi
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, USA
| | - Pradip S Thakuri
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, USA
| | - Hossein Tavana
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, USA
| |
Collapse
|
23
|
Nakamura T, Koga H, Iwamoto H, Tsutsumi V, Imamura Y, Naitou M, Masuda A, Ikezono Y, Abe M, Wada F, Sakaue T, Ueno T, Ii M, Alev C, Kawamoto A, Asahara T, Torimura T. Ex vivo expansion of circulating CD34(+) cells enhances the regenerative effect on rat liver cirrhosis. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16025. [PMID: 27162932 PMCID: PMC4847556 DOI: 10.1038/mtm.2016.25] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/11/2016] [Accepted: 02/16/2016] [Indexed: 02/07/2023]
Abstract
Ex vivo expansion of autologous cells is indispensable for cell transplantation therapy of patients with liver cirrhosis. The aim of this study was to investigate the efficacy of human ex vivo-expanded CD34+ cells for treatment of cirrhotic rat liver. Recipient rats were intraperitoneally injected with CCl4 twice weekly for 3 weeks before administration of CD34+ cells. CCl4 was then re-administered twice weekly for 3 more weeks, and the rats were sacrificed. Saline, nonexpanded or expanded CD34+ cells were injected via the spleen. After 7 days, CD34+ cells were effectively expanded in a serum-free culture medium. Expanded CD34+ cells were also increasingly positive for cell surface markers of VE-cadherin, VEGF receptor-2, and Tie-2. The expression of proangiogenic growth factors and adhesion molecules in expanded CD34+ cells increased compared with nonexpanded CD34+ cells. Expanded CD34+ cell transplantation reduced liver fibrosis, with a decrease of αSMA+ cells. Assessments of hepatocyte and sinusoidal endothelial cell proliferative activity indicated the superior potency of expanded CD34+ cells over non-expanded CD34+ cells. The inhibition of integrin αvβ3 and αvβ5 disturbed the engraftment of transplanted CD34+ cells and aggravated liver fibrosis. These findings suggest that expanded CD34+ cells enhanced the preventive efficacy of cell transplantation in a cirrhotic model.
Collapse
Affiliation(s)
- Toru Nakamura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan; Liver Cancer Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume, Japan
| | - Hironori Koga
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan; Liver Cancer Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume, Japan
| | - Hideki Iwamoto
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan; Liver Cancer Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume, Japan
| | - Victor Tsutsumi
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies , Mexico City, Mexico
| | - Yasuko Imamura
- Liver Cancer Division, Research Center for Innovative Cancer Therapy, Kurume University , Kurume, Japan
| | - Masako Naitou
- Liver Cancer Division, Research Center for Innovative Cancer Therapy, Kurume University , Kurume, Japan
| | - Atsutaka Masuda
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan; Liver Cancer Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume, Japan
| | - Yu Ikezono
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan; Liver Cancer Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume, Japan
| | - Mitsuhiko Abe
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan; Liver Cancer Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume, Japan
| | - Fumitaka Wada
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan; Liver Cancer Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume, Japan
| | - Takahiko Sakaue
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan; Liver Cancer Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume, Japan
| | - Takato Ueno
- Liver Cancer Division, Research Center for Innovative Cancer Therapy, Kurume University , Kurume, Japan
| | - Masaaki Ii
- Group of Translational Stem Cell Research, Department of Pharmacology, Osaka Medical College , Takatsuki, Japan
| | - Cantas Alev
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University , Kyoto, Japan
| | - Atsuhiko Kawamoto
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation , Kyoto, Japan
| | - Takayuki Asahara
- Department of Regenerative Medicine Science, Tokai University School of Medicine , Isehara, Japan
| | - Takuji Torimura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine , Kurume, Japan
| |
Collapse
|
24
|
Dehdilani N, Shamsasenjan K, Movassaghpour A, Akbarzadehlaleh P, Amoughli Tabrizi B, Parsa H, Sabagi F. Improved Survival and Hematopoietic Differentiation of Murine Embryonic Stem Cells on Electrospun Polycaprolactone Nanofiber. CELL JOURNAL 2016; 17:629-38. [PMID: 26862522 PMCID: PMC4746413 DOI: 10.22074/cellj.2016.3835] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 11/13/2014] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Three-dimensional (3D) biomimetic nanofiber scaffolds have widespread ap- plications in biomedical tissue engineering. They provide a suitable environment for cel- lular adhesion, survival, proliferation and differentiation, guide new tissue formation and development, and are one of the outstanding goals of tissue engineering. Electrospinning has recently emerged as a leading technique for producing biomimetic scaffolds with mi- cro to nanoscale topography and a high porosity similar to the natural extracellular matrix (ECM). These scaffolds are comprised of synthetic and natural polymers for tissue engi- neering applications. Several kinds of cells such as human embryonic stem cells (hESCs) and mouse ESCs (mESCs) have been cultured and differentiated on nanofiber scaffolds. mESCs can be induced to differentiate into a particular cell lineage when cultured as em- bryoid bodies (EBs) on nano-sized scaffolds. MATERIALS AND METHODS We cultured mESCs (2500 cells/100 µl) in 96-well plates with knockout Dulbecco's modified eagle medium (DMEM-KO) and Roswell Park Memorial Institute-1640 (RPMI-1640), both supplemented with 20% ESC grade fetal bovine serum (FBS) and essential factors in the presence of leukemia inhibitory factor (LIF). mESCs were seeded at a density of 2500 cells/100 µl onto electrospun polycaprolactone (PCL) nanofibers in 96-well plates. The control group comprised mESCs grown on tissue cul- ture plates (TCP) at a density of 2500 cells/100 µl. Differentiation of mESCs into mouse hematopoietic stem cells (mHSCs) was performed by stem cell factor (SCF), interleukin-3 (IL-3), IL-6 and Fms-related tyrosine kinase ligand (Flt3-L) cytokines for both the PCL and TCP groups. We performed an experimental study of mESCs differentiation. RESULTS PCL was compared to conventional TCP for survival and differentiation of mESCs to mHSCs. There were significantly more mESCs in the PCL group. Flowcyto- metric analysis revealed differences in hematopoietic differentiation between the PCL and TCP culture systems. There were more CD34+(Sca1+) and CD133+cells subpopulations in the PCL group compared to the conventional TCP culture system. CONCLUSION The nanofiber scaffold, as an effective surface, improves survival and differentiation of mESCs into mHSCs compared to gelatin coated TCP. More studies are necessary to understand how the topographical features of electrospun fibers af- fect cell growth and behavior. This can be achieved by designing biomimetic scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Nima Dehdilani
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Shamsasenjan
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Iran Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Aliakbar Movassaghpour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Akbarzadehlaleh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahram Amoughli Tabrizi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Hamed Parsa
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Sabagi
- Iran Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
25
|
Ji F, Hu AB. Hepatic differentiation of pluripotent stem cells. Shijie Huaren Xiaohua Zazhi 2015; 23:5101-5106. [DOI: 10.11569/wcjd.v23.i32.5101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pluripotent stem cell mainly contain two types: embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC). Their hepatic differentiation and application in transplantation may make them serve as new seed cells for replacement therapy and become an effective adjunctive therapy for end-stage hepatic diseases. Recently, great progress has been made in the research of stem cell technology. For example, iPSCs can maintain pluripotency, and the application of iPSCs can avoid the ethical issues associated with the use of ESCs. The research of differentiation of stem cells has greatly shifted from differentiation into hepatic single-cell lineage to differentiation into liver tissues. All of these can improve the development of replacement therapy, and update the basic knowledge of ectogenesis of the liver.
Collapse
|
26
|
Zhu XQ, Pan XH, Yao L, Li W, Cui J, Wang G, Mrsny RJ, Hoffman AR, Hu JF. Converting Skin Fibroblasts into Hepatic-like Cells by Transient Programming. J Cell Biochem 2015; 117:589-98. [PMID: 26312781 DOI: 10.1002/jcb.25355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 08/25/2015] [Indexed: 12/30/2022]
Affiliation(s)
- Xiang-Qing Zhu
- Research Center of Stem Cell, Tissue and Organ Engineering; Kunming Army General Hospital; Kunming Yunnan P. R. China
| | - Xing-Hua Pan
- Research Center of Stem Cell, Tissue and Organ Engineering; Kunming Army General Hospital; Kunming Yunnan P. R. China
| | - Ling Yao
- Stanford University Medical School; Palo Alto California
| | - Wei Li
- Stem Cell and Cancer Center; The First Affiliated Hospital; Jilin University; Changchun P. R. China
| | - Jiuwei Cui
- Stem Cell and Cancer Center; The First Affiliated Hospital; Jilin University; Changchun P. R. China
| | - Guanjun Wang
- Stem Cell and Cancer Center; The First Affiliated Hospital; Jilin University; Changchun P. R. China
| | - Randall J. Mrsny
- GMR Epigenetics; Palo Alto California
- Department of Pharmacy & Pharmacology; University of Bath; Bath England
| | | | - Ji-Fan Hu
- Stanford University Medical School; Palo Alto California
- Stem Cell and Cancer Center; The First Affiliated Hospital; Jilin University; Changchun P. R. China
| |
Collapse
|
27
|
Hashemi Goradel N, Darabi M, Shamsasenjan K, Ejtehadifar M, Zahedi S. Methods of Liver Stem Cell Therapy in Rodents as Models of Human Liver Regeneration in Hepatic Failure. Adv Pharm Bull 2015; 5:293-8. [PMID: 26504749 DOI: 10.5681/apb.2015.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/07/2014] [Accepted: 12/08/2014] [Indexed: 12/31/2022] Open
Abstract
Cell therapy is a promising intervention for treating liver diseases and liver failure. Different animal models of human liver cell therapy have been developed in recent years. Rats and mice are the most commonly used liver failure models. In fact, rodent models of hepatic failure have shown significant improvement in liver function after cell infusion. With the advent of stem-cell technologies, it is now possible to re-programme adult somatic cells such as skin or hair-follicle cells from individual patients to stem-like cells and differentiate them into liver cells. Such regenerative stem cells are highly promising in the personalization of cell therapy. The present review article will summarize current approaches to liver stem cell therapy with rodent models. In addition, we discuss common cell tracking techniques and how tracking data help to direct liver cell therapy research in animal models of hepatic failure.
Collapse
Affiliation(s)
- Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Darabi
- Liver and Gastrointestinal Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Shamsasenjan
- Iran Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tabriz, Iran
| | - Mostafa Ejtehadifar
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarah Zahedi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
28
|
Yang D, Wang ZQ, Deng JQ, Liao JY, Wang X, Xie J, Deng MM, Lü MH. Adipose-derived stem cells: A candidate for liver regeneration. J Dig Dis 2015; 16:489-98. [PMID: 26121206 DOI: 10.1111/1751-2980.12268] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The scarcity of donor livers and the impracticality of hepatocyte transplantation represent the biggest obstacles for the treatment of liver failure. Adipose-derived stem cells, with their ability to differentiate into the hepatic lineage, provide a reliable alternative cell source with clear ethical and practical advantages. Moreover, adipose-derived stem cells can effectively repair liver damage by the dominant indirect pattern and increase the number of hepatocytes by the secondary direct pattern. In recent years, the development of the indirect pattern, which mainly includes immunomodulatory and trophic effects, has become a hot topic in the field of cell engineering. Therefore, adipose-derived stem cells are considered to be ideal therapeutic stem cells for human liver regeneration. In this article, we reviewed the advantages of adipose-derived stem cells in liver regeneration, and explore their underlying mechanisms.
Collapse
Affiliation(s)
- Dan Yang
- Department of Gastroenterology, The Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan Province, China
| | - Zhong Qiong Wang
- Department of Gastroenterology, The Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan Province, China
| | - Jia Qi Deng
- School of Foreign Languages of Sichuan Medical University, Luzhou, Sichuan Province, China
| | - Jing Yuan Liao
- Department of Gastroenterology, The Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan Province, China
| | - Xuan Wang
- Department of Gastroenterology, The Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan Province, China
| | - Jing Xie
- Department of Pediatric Surgery, The Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan Province, China
| | - Ming Ming Deng
- Department of Gastroenterology, The Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan Province, China
| | - Mu Han Lü
- Department of Gastroenterology, The Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan Province, China
| |
Collapse
|
29
|
Al Ghrbawy NM, Afify RAAM, Dyaa N, El Sayed AA. Differentiation of Bone Marrow: Derived Mesenchymal Stem Cells into Hepatocyte-like Cells. Indian J Hematol Blood Transfus 2015; 32:276-83. [PMID: 27429519 DOI: 10.1007/s12288-015-0581-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 08/17/2015] [Indexed: 02/06/2023] Open
Abstract
Cirrhosis is the end-stage liver fibrosis, whereby normal liver architecture is disrupted by fibrotic bands, parenchymal nodules and vascular distortion. Portal hypertension and hepatocyte dysfunction are the end results and give rise to major systemic complications and premature death. Mesenchymal stem cells (MSC) have the capacity of self-renew and to give rise to cells of various lineages, so MSC can be isolated from bone marrow (BM) and induced to differentiate into hepatocyte-like cells. MSC were induced to differentiate into hepatocyte-like cells by hepatotic growth factor (HGF) and fibroblast growth factor-4 (FGF-4). Differentiated cells were examined for the expression of hepatocyte-specific markers and hepatocyte functions. MSC were isolated. Flow cytometry analysis showed that they expressed the MSC-specific markers, reverse transcriptase-polymerase chain reaction (RT-PCR) demonstrated that MSC expressed the hepatocyte-specific marker cytokeratin 18 (CK-18) following hepatocyte induction. This study demonstrates that BM-derived-MSC can differentiate into functional hepatocyte-like cells following the induction of HGF and FGF-4. MSC can serve as a favorable cell source for tissue engineering in the treatment of liver disease.
Collapse
Affiliation(s)
- Nesrien M Al Ghrbawy
- Clinical Pathology Department, Faculty of Medicine, Al kaser Al Aini, Cairo University, Cairo, Egypt
| | | | - Nehal Dyaa
- Clinical Pathology Department, Faculty of Medicine, Al kaser Al Aini, Cairo University, Cairo, Egypt
| | | |
Collapse
|
30
|
Manganelli G, Masullo U, Filosa S. HTS/HCS to screen molecules able to maintain embryonic stem cell self-renewal or to induce differentiation: overview of protocols. Stem Cell Rev Rep 2015; 10:802-19. [PMID: 25007774 DOI: 10.1007/s12015-014-9528-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Embryonic stem (ES) cells, combining self-renewal ability with wide range tissue-specific cell differentiation, represent one of the most powerful model systems in basic research, drug discovery and biomedical applications. In the field of drug development, ES cells are instrumental in high-throughput/content screening (HTS/HCS) for the evaluation of large compound libraries to test biological activity and toxic properties. Since it is a high priority to test new compounds in vitro, before starting animal and human treatments, there is an increasing demand for new in vitro models that can be used in HTS/HCS to facilitate drug development. In order to achieve this objective, several methods for ES cell self-renewal or differentiation have been evaluated to assess their compatibility with HTS/HCS. This review describes protocols used to screen molecules able to maintain self-renewal or to induce differentiation in ectodermal, mesodermal, endodermal, and their derivative cell lines.
Collapse
Affiliation(s)
- Genesia Manganelli
- Istituto di Bioscienze e BioRisorse , UOS Napoli -CNR, Via Pietro Castellino 111, 80131, Naples, Italy,
| | | | | |
Collapse
|
31
|
Wang ZM, Yuan XH, Shen H. BMP-4 induced proliferation and oriented differentiation of rat hepatic oval cells into hepatocytes. ASIAN PAC J TROP MED 2015; 8:412-6. [PMID: 26003603 DOI: 10.1016/s1995-7645(14)60353-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE To explore the role of bone morphogenetic protein 4 (BMP-4) in hepatic progenitor cells (HPCs). METHODS The effect of BMP-4 on rat hepatic oval cells was examined by using the WB-F344 rat hepatocytic epithelial stem-cell-like cell line. This hepatocytic cell line could exert various hepatocyte functions including the secretion of albumin and urea. Immunohistochemistry was used to examine the effects of BMP-4 and its antagonist, Noggin, on the proliferation and differentiation of these cells, cellular uptake and excretion of indocyanine green, the periodic acid-schiff (PAS) assay for glycogen storage and the expression of hepatic markers. RESULTS Our results showed for the first time that BMP-4 may acted as a potential inducer of hepatic differentiation in rat hepatic oval cells. CONCLUSIONS This cell source offers a much-needed attractive and expandable source for future investigations of drug screening, stem cell technologies and cellular transplantation, in a society with increasing levels of liver disease and damage.
Collapse
Affiliation(s)
- Zhi-Ming Wang
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiao-Hua Yuan
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Shen
- Institute of Medical Science, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
32
|
Katona RL. De novo formed satellite DNA-based mammalian artificial chromosomes and their possible applications. Chromosome Res 2015; 23:143-57. [DOI: 10.1007/s10577-014-9458-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
33
|
De Minicis S, Marzioni M, Benedetti A, Svegliati-Baroni G. New insights in hepatocellular carcinoma: from bench to bedside. ANNALS OF TRANSLATIONAL MEDICINE 2014; 1:15. [PMID: 25332959 DOI: 10.3978/j.issn.2305-5839.2013.01.06] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 01/31/2013] [Indexed: 01/10/2023]
Abstract
Hepatocarcinogenesis is a multistep process involving different genetic alterations that ultimately lead to malignant transformation of the hepatocyte. The liver is one of the main targets for different metastatic foci, but it represents an important and frequent locus of degeneration in the course of chronic disease. In fact, Hepatocellular carcinoma (HCC) represents the outcome of the natural history of chronic liver diseases, from the condition of fibrosis, to cirrhosis and finally to cancer. HCC is the sixth most common cancer in the world, some 630,000 new cases being diagnosed each year. Furthermore, about the 80% of people with HCC, have seen their clinical history developing from fibrosis, to cirrhosis and finally to cancer. The three main causes of HCC development are represented by HBV, HCV infection and alcoholism. Moreover, metabolic disease [starting from Non Alcoholic Fatty Liver Disease (NAFLD), Non Alcoholic Steatohepatitis (NASH)] and, with reduced frequency, some autoimmune disease may lead to HCC development. An additional rare cause of carcinogenetic degeneration of the liver, especially developed in African and Asian Countries, is represented by aflatoxin B1. The mechanisms by which these etiologic factors may induce HCC development involve a wide range of pathway and molecules, currently under investigation. In summary, the hepatocarcionogenesis results from a multifactorial process leading to the common condition of genetic changes in mature hepatocytes mainly characterized by uncontrolled proliferation and cell death. Advances in understanding the mechanism of action are fundamental for the development of new potential therapies and results primarily from the association of the research activities coming from basic and clinical science. This review article analyzes the current models used in basic research to investigate HCC activity, and the advances obtained from a basic and clinical point of view.
Collapse
Affiliation(s)
- Samuele De Minicis
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy
| | - Marco Marzioni
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy
| | - Antonio Benedetti
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy
| | | |
Collapse
|
34
|
Kim SJ, Park MH, Moon HJ, Park JH, Ko DY, Jeong B. Polypeptide thermogels as a three dimensional culture scaffold for hepatogenic differentiation of human tonsil-derived mesenchymal stem cells. ACS APPLIED MATERIALS & INTERFACES 2014; 6:17034-17043. [PMID: 25192309 DOI: 10.1021/am504652y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Tonsil-derived mesenchymal stem cells (TMSCs) were investigated for hepatogenic differentiation in the 3D matrixes of poly(ethylene glycol)-b-poly(l-alanine) (PEG-L-PA) thermogel. The diblock polymer formed β-sheet based fibrous nanoassemblies in water, and the aqueous polymer solution undergoes sol-to-gel transition as the temperature increases in a concentration range of 5.0-8.0 wt %. The cell-encapsulated 3D matrix was prepared by increasing the temperature of the cell-suspended PEG-L-PA aqueous solution (6.0 wt %) to 37 °C. The gel modulus at 37 °C was about 1000 Pa, which was similar to that of decellularized liver tissue. Cell proliferation, changes in cell morphology, hepatogenic biomarker expressions, and hepatocyte-specific biofunctions were compared for the following 3D culture systems: TMSC-encapsulated thermogels in the absence of hepatogenic growth factors (protocol M), TMSC-encapsulated thermogels where hepatogenic growth factors were supplied from the medium (protocol MGF), and TMSC-encapsulated thermogels where hepatogenic growth factors were coencapsulated with TMSCs during the sol-to-gel transition (protocol GGF). The spherical morphology and size of the encapsulated cells were maintained in the M system during the 3D culture period of 28 days, whereas the cells changed their morphology and significant aggregation of cells was observed in the MGF and GGF systems. The hepatocyte-specific biomarker expressions and metabolic functions were negligible for the M system. However, hepatogenic genes of albumin, cytokeratin 18 (CK-18), and hepatocyte nuclear factor 4α (HNF 4α) were significantly expressed in both MGF and GGF systems. In addition, production of albumin and α-fetoprotein was also significantly observed in both MGF and GGF systems. The uptake of cardiogreen and low-density lipoprotein, typical metabolic functions of hepatocytes, was apparent for MGF and GGF. The above data indicate that the 3D culture system of PEG-L-PA thermogels provides cytocompatible microenvironments for hepatogenic differentiation of TMSCs. In particular, the successful results of the GGF system suggest that the PEG-L-PA thermogel can be a promising injectable tissue engineering system for liver tissue regeneration after optimizing the aqueous formulation of TMSCs, hepatogenic growth factors, and other biochemicals.
Collapse
Affiliation(s)
- Seung-Jin Kim
- Department of Chemistry and Nano Science, Ewha Womans University , Global Top 5 Research Program, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 120-750, Korea
| | | | | | | | | | | |
Collapse
|
35
|
Hepatocytic differentiation of rhesus monkey embryonic stem cells promoted by collagen gels and growth factors. Cell Biol Int 2014; 35:775-81. [DOI: 10.1042/cbi20100354] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Du C, Narayanan K, Leong MF, Wan AC. Induced pluripotent stem cell-derived hepatocytes and endothelial cells in multi-component hydrogel fibers for liver tissue engineering. Biomaterials 2014; 35:6006-14. [DOI: 10.1016/j.biomaterials.2014.04.011] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/07/2014] [Indexed: 12/22/2022]
|
37
|
KIM YOUNGHEE, KWAK KYUNGA, KANG JINSEOK. Expression of neighbor of Punc E11 in hepatocarcinogenesis induced by diethylnitrosamine. Oncol Rep 2014; 32:1043-9. [DOI: 10.3892/or.2014.3285] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/17/2014] [Indexed: 11/06/2022] Open
|
38
|
Yin CH, Chen W, Hsiao CC, Kuo CY, Chen CL, Wu WT. Production of Mouse Embryoid Bodies with Hepatic Differentiation Potential by Stirred Tank Bioreactor. Biosci Biotechnol Biochem 2014; 71:728-34. [PMID: 17341832 DOI: 10.1271/bbb.60568] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Embryonic stem (ES) cells can differentiate into functional hepatic lineage cells, which can potentially be used in biomedicine. To obtain hepatic lineage cells from ES cells, embryoid bodies (EBs) must be formed. In this study, we developed an EB formation system using a spinner flask for mass production of EBs. ES cells were inoculated into the spinner flask, where they formed EBs within 4 d. The EBs were then transferred into an attached culture for hepatic differentiation. To verify the hepatic lineage cells, albumin secretion and hepatic-specific gene expression were examined. We found that EBs formed by either the spinner flask or hanging drops exhibited similar albumin secretion potential and hepatic-specific gene expression. We conclude that the spinner flask method can be used to produce mouse EBs that can be used to mass produce hepatic lineage cells for use in biomedicine.
Collapse
Affiliation(s)
- Chih-Hsiu Yin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | | | | | |
Collapse
|
39
|
The role of H1 linker histone subtypes in preserving the fidelity of elaboration of mesendodermal and neuroectodermal lineages during embryonic development. PLoS One 2014; 9:e96858. [PMID: 24802750 PMCID: PMC4011883 DOI: 10.1371/journal.pone.0096858] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 04/11/2014] [Indexed: 11/19/2022] Open
Abstract
H1 linker histone proteins are essential for the structural and functional integrity of chromatin and for the fidelity of additional epigenetic modifications. Deletion of H1c, H1d and H1e in mice leads to embryonic lethality by mid-gestation with a broad spectrum of developmental alterations. To elucidate the cellular and molecular mechanisms underlying H1 linker histone developmental functions, we analyzed embryonic stem cells (ESCs) depleted of H1c, H1d and H1e subtypes (H1-KO ESCs) by utilizing established ESC differentiation paradigms. Our study revealed that although H1-KO ESCs continued to express core pluripotency genes and the embryonic stem cell markers, alkaline phosphatase and SSEA1, they exhibited enhanced cell death during embryoid body formation and during specification of mesendoderm and neuroectoderm. In addition, we demonstrated deregulation in the developmental programs of cardiomyocyte, hepatic and pancreatic lineage elaboration. Moreover, ectopic neurogenesis and cardiomyogenesis occurred during endoderm-derived pancreatic but not hepatic differentiation. Furthermore, neural differentiation paradigms revealed selective impairments in the specification and maturation of glutamatergic and dopaminergic neurons with accelerated maturation of glial lineages. These impairments were associated with deregulation in the expression profiles of pro-neural genes in dorsal and ventral forebrain-derived neural stem cell species. Taken together, these experimental observations suggest that H1 linker histone proteins are critical for the specification, maturation and fidelity of organ-specific cellular lineages derived from the three cardinal germ layers.
Collapse
|
40
|
Abstract
Stem cells constitute a population of "primitive cells" with the ability to divide indefinitely and give rise to specialized cells under special conditions. Because of these two characteristics they have received particular attention in recent decades. These cells are the primarily responsible factors for the regeneration of tissues and organs and for the healing of lesions, a feature that makes them a central key in the development of cell-based medicine, called Regenerative Medicine. The idea of wound and organ repair and body regeneration is as old as the mankind, reflecting the human desire for inhibiting aging and immortality and it is first described in the ancient Greek myth of Prometheus. It is of interest that the myth refers to liver, an organ with remarkable regenerative ability after loss of mass and function caused by liver injury or surgical resection. Over the last decade there has been an important progress in understanding liver physiology and the mechanisms underlying hepatic development and regeneration. As liver transplantation, despite its difficulties, remains the only effective therapy for advanced liver disease so far, scientific interest has nowadays been orientated towards Regenerative Medicine and the use of stem cells to repair damaged liver. This review is focused on the available literature concerning the role of stem cells in liver regeneration. It summarizes the results of studies concerning endogenous liver regeneration and stem cell experimental protocols. Moreover, this review discusses the clinical studies that have been conducted in humans so far.
Collapse
|
41
|
Khademi F, Soleimani M, Verdi J, Tavangar SM, Sadroddiny E, Masumi M, Ai J. Human endometrial stem cells differentiation into functional hepatocyte-like cells. Cell Biol Int 2014; 38:825-34. [DOI: 10.1002/cbin.10278] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 02/07/2014] [Indexed: 12/30/2022]
Affiliation(s)
- Farzaneh Khademi
- Department of Tissue Engineering; School of Advanced Technologies in Medicine; Tehran University of Medical Sciences; Tehran Iran
- Stem Cells Technology Research Center; Tehran Iran
| | - Masoud Soleimani
- Stem Cells Technology Research Center; Tehran Iran
- Department of Hematology; Faculty of Medical Science; Tarbiat Modares University; Tehran Iran
| | - Javad Verdi
- Department of Tissue Engineering; School of Advanced Technologies in Medicine; Tehran University of Medical Sciences; Tehran Iran
- Department of Applied Cell; School of Advanced Technologies in Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Seyed Mohammad Tavangar
- Department of Tissue Engineering; School of Advanced Technologies in Medicine; Tehran University of Medical Sciences; Tehran Iran
- Department of Pathology; Shariaty Hospital; Tehran University of Medical Sciences; Tehran Iran
| | - Esmaeil Sadroddiny
- Department of Medical Biotechnology; School of Advanced Technologies in Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Mohammad Masumi
- Stem Cells Technology Research Center; Tehran Iran
- Induced Pluripotent Stem Cell Biotechnology Team; Stem Cells Department; National Institute of Genetic Engineering and Biotechnology; Tehran Iran
| | - Jafar Ai
- Department of Tissue Engineering; School of Advanced Technologies in Medicine; Tehran University of Medical Sciences; Tehran Iran
- Brain and Spinal Injury Research Center; Tehran University of Medical Sciences; Tehran Iran
| |
Collapse
|
42
|
Kim YH, Kang JS. Expression of Glypican-3 in Mouse Embryo Stem Cells and its Derived Hepatic Lineage Cells Treated with Diethylnitrosamine in vitro. Asian Pac J Cancer Prev 2013; 14:6341-5. [DOI: 10.7314/apjcp.2013.14.11.6341] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
43
|
Wang H, Zhao T, Xu F, Li Y, Wu M, Zhu D, Cong X, Liu Y. How important is differentiation in the therapeutic effect of mesenchymal stromal cells in liver disease? Cytotherapy 2013; 16:309-18. [PMID: 24239106 DOI: 10.1016/j.jcyt.2013.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 07/23/2013] [Accepted: 07/29/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND AIMS The protocols for differentiation of hepatocyte-like cells (HLCs) from mesenchymal stromal cells (MSCs) have been well established. Previous data have shown that MSCs and their derived HLCs were able to engraft injured liver and alleviate injuries induced by carbon tetrachloride. The goal of the current study was to determine the differences of MSCs and their derived HLCs in terms of therapeutic functions in liver diseases. METHODS After hepatic differentiation of umbilical cord-derived MSCs in vitro, we detected both MSC and HLC expressions of adhesion molecules and chemokine receptor CXCR4 by flow cytometry; immunosuppressive potential and hepatocyte growth factor expression were determined by means of enzyme-linked immunosorbent assay. We compared the therapeutic effect for fulminant hepatic failure in a mouse model. RESULTS MSC-derived-HLCs expressed lower levels of hepatocyte growth factor, accompanied by impaired immunosuppression in comparison with MSCs. Furthermore, undifferentiated MSCs showed rescuing potentials superior to those in HLCs for the treatment of fulminant hepatic failure. CONCLUSIONS After differentiation, HLCs lost several major properties in comparison with undifferentiated MSCs, which are beneficial for their application in liver diseases. Undifferentiated MSCs may be more appropriate than are HLCs for the treatment of liver diseases.
Collapse
Affiliation(s)
- Hanyu Wang
- Alliancells Institute of Stem Cells and Translational Regenerative Medicine, Tianjin, China
| | - Tingting Zhao
- Alliancells Institute of Stem Cells and Translational Regenerative Medicine, Tianjin, China
| | - Fang Xu
- Alliancells Institute of Stem Cells and Translational Regenerative Medicine, Tianjin, China
| | - Yan Li
- Alliancells Institute of Stem Cells and Translational Regenerative Medicine, Tianjin, China
| | - Mingyuan Wu
- Alliancells Institute of Stem Cells and Translational Regenerative Medicine, Tianjin, China; Beijing Alliancells-PuRui Bioscience Co, Ltd, Beijing, China; University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Delin Zhu
- Alliancells Institute of Stem Cells and Translational Regenerative Medicine, Tianjin, China
| | - Xiuli Cong
- Alliancells Institute of Stem Cells and Translational Regenerative Medicine, Tianjin, China; University of Florida, Department of Medicine, Gainesville, Florida, USA
| | - Yongjun Liu
- Alliancells Institute of Stem Cells and Translational Regenerative Medicine, Tianjin, China.
| |
Collapse
|
44
|
Kia R, Sison RLC, Heslop J, Kitteringham NR, Hanley N, Mills JS, Park BK, Goldring CEP. Stem cell-derived hepatocytes as a predictive model for drug-induced liver injury: are we there yet? Br J Clin Pharmacol 2013; 75:885-96. [PMID: 22703588 DOI: 10.1111/j.1365-2125.2012.04360.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 06/10/2012] [Indexed: 12/22/2022] Open
Abstract
Amongst the different types of adverse drug reactions, drug-induced liver injury is the most prominent cause of patient morbidity and mortality. However, the current available hepatic model systems developed for evaluating safety have limited utility and relevance as they do not fully recapitulate a fully functional hepatocyte, and do not sufficiently represent the genetic polymorphisms present in the population. The rapidly advancing research in stem cells raises the possibility of using human pluripotent stem cells in bridging this gap. The generation of human induced pluripotent stem cells via reprogramming of mature human somatic cells may also allow for disease modelling in vitro for the purposes of assessing drug safety and toxicology. This would also allow for better understanding of disease processes and thus facilitate in the potential identification of novel therapeutic targets. This review will focus on the current state of effort to derive hepatocytes from human pluripotent stem cells for potential use in hepatotoxicity evaluation and aims to provide an insight as to where the future of the field may lie.
Collapse
Affiliation(s)
- Richard Kia
- Department of Molecular and Clinical Pharmacology, University of Liverpool, MRC Centre for Drug Safety Science, Liverpool, UK
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Lau TT, Ho LW, Wang DA. Hepatogenesis of murine induced pluripotent stem cells in 3D micro-cavitary hydrogel system for liver regeneration. Biomaterials 2013; 34:6659-69. [DOI: 10.1016/j.biomaterials.2013.05.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 05/18/2013] [Indexed: 12/23/2022]
|
46
|
Functions of huntingtin in germ layer specification and organogenesis. PLoS One 2013; 8:e72698. [PMID: 23967334 PMCID: PMC3742581 DOI: 10.1371/journal.pone.0072698] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 07/12/2013] [Indexed: 12/23/2022] Open
Abstract
Huntington’s disease (HD) is a neurodegenerative disease caused by abnormal polyglutamine expansion in the huntingtin protein (Htt). Although both Htt and the HD pathogenic mutation (mHtt) are implicated in early developmental events, their individual involvement has not been adequately explored. In order to better define the developmental functions and pathological consequences of the normal and mutant proteins, respectively, we employed embryonic stem cell (ESC) expansion, differentiation and induction experiments using huntingtin knock-out (KO) and mutant huntingtin knock-in (Q111) mouse ESC lines. In KO ESCs, we observed impairments in the spontaneous specification and survival of ectodermal and mesodermal lineages during embryoid body formation and under inductive conditions using retinoic acid and Wnt3A, respectively. Ablation of BAX improves cell survival, but failed to correct defects in germ layer specification. In addition, we observed ensuing impairments in the specification and maturation of neural, hepatic, pancreatic and cardiomyocyte lineages. These developmental deficits occurred in concert with alterations in Notch, Hes1 and STAT3 signaling pathways. Moreover, in Q111 ESCs, we observed differential developmental stage-specific alterations in lineage specification and maturation. We also observed changes in Notch/STAT3 expression and activation. Our observations underscore essential roles of Htt in the specification of ectoderm, endoderm and mesoderm, in the specification of neural and non-neural organ-specific lineages, as well as cell survival during early embryogenesis. Remarkably, these developmental events are differentially deregulated by mHtt, raising the possibility that HD-associated early developmental impairments may contribute not only to region-specific neurodegeneration, but also to non-neural co-morbidities.
Collapse
|
47
|
Roh H, Yang DH, Chun HJ, Khang G. Cellular behaviour of hepatocyte-like cells from nude mouse bone marrow-derived mesenchymal stem cells on galactosylated poly(D,L-lactic-co-glycolic acid). J Tissue Eng Regen Med 2013; 9:819-25. [PMID: 23784953 DOI: 10.1002/term.1771] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 04/02/2013] [Accepted: 04/16/2013] [Indexed: 11/08/2022]
Abstract
Previously, the galactosylation of poly(d,l-lactic-co-glycolic acid) (PLGA) surface was accomplished by grafting allylamine (AA), using inductively coupled plasma-assisted chemical vapour deposition (ICP-CVD) and conjugating lactobionic acid (LA) with AA via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide (EDC/NHS) activation for hepatic tissue-engineering purposes. As a continuation study, the cellular behaviour of hepatocyte-like cells (HLCs) on the surface of the galactosylated PLGA were investigated. Nude mouse bone marrow-derived mesenchymal stem cells (MSCs) were cultured under hepatogenic conditions and the differentiated cells were characterized by reverse-transcription polymerase chain reaction (RT-PCR), immunofluorescence and periodic acid-Schiff (PAS) staining. Galactosylated PLGA enhanced the proliferation rate of HLCs compared to the control; HLCs on the surface of the sample became aggregated and formed spheroids after 3 days of culture. A large number of cells on the surface of the sample exhibited increased liver-specific functional activities, such as albumin and urea secretions. In addition, multicellular spheroids in the sample strongly expressed phospholyated focal adhesion kinase (pFAK) (cell-matrix interactions), E-cadherin (cell-cell interactions) and connexin 32 (Cox32; gap junction).
Collapse
Affiliation(s)
- Hyun Roh
- Institute of Cell and Tissue Engineering, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea.,Department of Biomedical Sciences, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea
| | - Dae Hyeok Yang
- Institute of Cell and Tissue Engineering, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea
| | - Heung Jae Chun
- Institute of Cell and Tissue Engineering, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea.,Department of Biomedical Sciences, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea
| | - Gilson Khang
- Department of BIN Fusion Technology, Department of Polymer-Nanoscience and Technology and Polymer BIN Research Centre, Chonbuk National University, Deokjin, Jeonju, Republic of Korea
| |
Collapse
|
48
|
Heneidi S, Simerman AA, Keller E, Singh P, Li X, Dumesic DA, Chazenbalk G. Awakened by cellular stress: isolation and characterization of a novel population of pluripotent stem cells derived from human adipose tissue. PLoS One 2013; 8:e64752. [PMID: 23755141 PMCID: PMC3673968 DOI: 10.1371/journal.pone.0064752] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 04/17/2013] [Indexed: 12/15/2022] Open
Abstract
Advances in stem cell therapy face major clinical limitations, particularly challenged by low rates of post-transplant cell survival. Hostile host factors of the engraftment microenvironment such as hypoxia, nutrition deprivation, pro-inflammatory cytokines, and reactive oxygen species can each contribute to unwanted differentiation or apoptosis. In this report, we describe the isolation and characterization of a new population of adipose tissue (AT) derived pluripotent stem cells, termed Multilineage Differentiating Stress-Enduring (Muse) Cells, which are isolated using severe cellular stress conditions, including long-term exposure to the proteolytic enzyme collagenase, serum deprivation, low temperatures and hypoxia. Under these conditions, a highly purified population of Muse-AT cells is isolated without the utilization of cell sorting methods. Muse-AT cells grow in suspension as cell spheres reminiscent of embryonic stem cell clusters. Muse-AT cells are positive for the pluripotency markers SSEA3, TR-1-60, Oct3/4, Nanog and Sox2, and can spontaneously differentiate into mesenchymal, endodermal and ectodermal cell lineages with an efficiency of 23%, 20% and 22%, respectively. When using specific differentiation media, differentiation efficiency is greatly enhanced in Muse-AT cells (82% for mesenchymal, 75% for endodermal and 78% for ectodermal). When compared to adipose stem cells (ASCs), microarray data indicate a substantial up-regulation of Sox2, Oct3/4, and Rex1. Muse-ATs also exhibit gene expression patterns associated with the down-regulation of genes involved in cell death and survival, embryonic development, DNA replication and repair, cell cycle and potential factors related to oncogenecity. Gene expression analysis indicates that Muse-ATs and ASCs are mesenchymal in origin; however, Muse-ATs also express numerous lymphocytic and hematopoietic genes, such as CCR1 and CXCL2, encoding chemokine receptors and ligands involved in stem cell homing. Being highly resistant to severe cellular stress, Muse-AT cells have the potential to make a critical impact on the field of regenerative medicine and cell-based therapy.
Collapse
Affiliation(s)
- Saleh Heneidi
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia, United States of America
| | - Ariel A. Simerman
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of Los Angeles, Los Angeles, California, United States of America
| | - Erica Keller
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of Los Angeles, Los Angeles, California, United States of America
| | - Prapti Singh
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of Los Angeles, Los Angeles, California, United States of America
| | - Xinmin Li
- Clinical Microarray Core, David Geffen School of Medicine at University of Los Angeles, Los Angeles, California, United States of America
| | - Daniel A. Dumesic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of Los Angeles, Los Angeles, California, United States of America
| | - Gregorio Chazenbalk
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
49
|
Hepatic differentiation of mouse iPS cells and analysis of liver engraftment potential of multistage iPS progeny. J Physiol Biochem 2013; 69:835-45. [PMID: 23715756 DOI: 10.1007/s13105-013-0260-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 05/05/2013] [Indexed: 12/20/2022]
Abstract
Hepatocyte transplantation is considered a promising therapy for patients with liver diseases. Induced pluripotent stem cells (iPSCs) are an unlimited source for the generation of functional hepatocytes. While several protocols that direct the differentiation of iPSCs into hepatocyte-like cells have already been reported, the liver engraftment potential of iPSC progeny obtained at each step of hepatic differentiation has not yet been thoroughly investigated. In this study, we present an efficient strategy to differentiate mouse iPSCs into hepatocyte-like cells and evaluate their liver engraftment potential at different time points of the protocol (5, 10, 15, and 20 days of differentiation). iPSCs were differentiated in the presence of cytokines, growth factors, and small molecules to finally generate hepatocyte-like cells. These iPSC-derived hepatocyte-like cells exhibited hepatocyte-associated functions, such as albumin secretion and urea synthesis. When we transplanted iPSC progeny into the spleen, we found that 15- and 20-day iPSC progeny engrafted into the livers and further acquired hepatocyte morphology. In contrast, 5- and 10-day iPSC progeny were also able to engraft but did not generate hepatocyte-like cells in vivo. Our data may aid in improving current protocols geared towards the use of iPSCs as a new source of liver-targeted cell therapies.
Collapse
|
50
|
Maruyama J, Matsunaga T, Yamaori S, Sakamoto S, Kamada N, Nakamura K, Kikuchi S, Ohmori S. Differentiation of Monkey Embryonic Stem Cells to Hepatocytes by Feeder-Free Dispersion Culture and Expression Analyses of Cytochrome P450 Enzymes Responsible for Drug Metabolism. Biol Pharm Bull 2013; 36:292-8. [DOI: 10.1248/bpb.b12-00866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Junya Maruyama
- Department of Pharmacy, Shinshu University Hospital, 3–1–1 Asahi, Matsumoto 390–8621, Japan
| | | | | | | | | | | | | | | |
Collapse
|